repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
alivecor/tensorflow
tensorflow/python/client/notebook.py
109
4791
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Notebook front-end to TensorFlow. When you run this binary, you'll see something like below, which indicates the serving URL of the notebook: The IPython Notebook is running at: http://127.0.0.1:8888/ Press "Shift+Enter" to execute a cell Press "Enter" on a cell to go into edit mode. Press "Escape" to go back into command mode and use arrow keys to navigate. Press "a" in command mode to insert cell above or "b" to insert cell below. Your root notebooks directory is FLAGS.notebook_dir """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import socket import sys from tensorflow.python.platform import app # pylint: disable=g-import-not-at-top # Official recommended way of turning on fast protocol buffers as of 10/21/14 os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "cpp" os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION_VERSION"] = "2" FLAGS = None ORIG_ARGV = sys.argv # Main notebook process calls itself with argv[1]="kernel" to start kernel # subprocesses. IS_KERNEL = len(sys.argv) > 1 and sys.argv[1] == "kernel" def main(unused_argv): sys.argv = ORIG_ARGV if not IS_KERNEL: # Drop all flags. sys.argv = [sys.argv[0]] # NOTE(sadovsky): For some reason, putting this import at the top level # breaks inline plotting. It's probably a bug in the stone-age version of # matplotlib. from IPython.html.notebookapp import NotebookApp # pylint: disable=g-import-not-at-top notebookapp = NotebookApp.instance() notebookapp.open_browser = True # password functionality adopted from quality/ranklab/main/tools/notebook.py # add options to run with "password" if FLAGS.password: from IPython.lib import passwd # pylint: disable=g-import-not-at-top notebookapp.ip = "0.0.0.0" notebookapp.password = passwd(FLAGS.password) else: print ("\nNo password specified; Notebook server will only be available" " on the local machine.\n") notebookapp.initialize(argv=["--notebook-dir", FLAGS.notebook_dir]) if notebookapp.ip == "0.0.0.0": proto = "https" if notebookapp.certfile else "http" url = "%s://%s:%d%s" % (proto, socket.gethostname(), notebookapp.port, notebookapp.base_project_url) print("\nNotebook server will be publicly available at: %s\n" % url) notebookapp.start() return # Drop the --flagfile flag so that notebook doesn't complain about an # "unrecognized alias" when parsing sys.argv. sys.argv = ([sys.argv[0]] + [z for z in sys.argv[1:] if not z.startswith("--flagfile")]) from IPython.kernel.zmq.kernelapp import IPKernelApp # pylint: disable=g-import-not-at-top kernelapp = IPKernelApp.instance() kernelapp.initialize() # Enable inline plotting. Equivalent to running "%matplotlib inline". ipshell = kernelapp.shell ipshell.enable_matplotlib("inline") kernelapp.start() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--password", type=str, default=None, help="""\ Password to require. If set, the server will allow public access. Only used if notebook config file does not exist.\ """) parser.add_argument( "--notebook_dir", type=str, default="experimental/brain/notebooks", help="root location where to store notebooks") # When the user starts the main notebook process, we don't touch sys.argv. # When the main process launches kernel subprocesses, it writes all flags # to a tmpfile and sets --flagfile to that tmpfile, so for kernel # subprocesses here we drop all flags *except* --flagfile, then call # app.run(), and then (in main) restore all flags before starting the # kernel app. if IS_KERNEL: # Drop everything except --flagfile. sys.argv = ([sys.argv[0]] + [x for x in sys.argv[1:] if x.startswith("--flagfile")]) FLAGS, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
ernfrid/skll
tests/test_preprocessing.py
1
9383
# License: BSD 3 clause """ Tests related to data preprocessing options with run_experiment. :author: Michael Heilman ([email protected]) :author: Nitin Madnani ([email protected]) """ from __future__ import (absolute_import, division, print_function, unicode_literals) import glob import json import os import re from io import open from os.path import abspath, dirname, exists, join import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal, assert_almost_equal from sklearn.feature_extraction import FeatureHasher from sklearn.datasets.samples_generator import make_classification from skll.data import FeatureSet, NDJWriter from skll.experiments import run_configuration from skll.learner import Learner, SelectByMinCount from skll.learner import _DEFAULT_PARAM_GRIDS from utils import fill_in_config_paths _ALL_MODELS = list(_DEFAULT_PARAM_GRIDS.keys()) SCORE_OUTPUT_RE = re.compile(r'Objective Function Score \(Test\) = ' r'([\-\d\.]+)') _my_dir = abspath(dirname(__file__)) def setup(): """ Create necessary directories for testing. """ train_dir = join(_my_dir, 'train') if not exists(train_dir): os.makedirs(train_dir) test_dir = join(_my_dir, 'test') if not exists(test_dir): os.makedirs(test_dir) output_dir = join(_my_dir, 'output') if not exists(output_dir): os.makedirs(output_dir) def tearDown(): """ Clean up after tests. """ output_dir = join(_my_dir, 'output') config_dir = join(_my_dir, 'configs') train_dir = join(_my_dir, 'train') test_dir = join(_my_dir, 'test') for output_file in glob.glob(join(output_dir, 'test_class_map_*')): os.unlink(output_file) if exists(join(train_dir, 'test_class_map.jsonlines')): os.unlink(join(train_dir, 'test_class_map.jsonlines')) if exists(join(test_dir, 'test_class_map.jsonlines')): os.unlink(join(test_dir, 'test_class_map.jsonlines')) config_files = ['test_class_map.cfg', 'test_class_map_feature_hasher.cfg'] for cf in config_files: if exists(join(config_dir, cf)): os.unlink(join(config_dir, cf)) def test_SelectByMinCount(): """ Test SelectByMinCount feature selector """ m2 = [[0.001, 0.0, 0.0, 0.0], [0.00001, -2.0, 0.0, 0.0], [0.001, 0.0, 0.0, 4.0], [0.0101, -200.0, 0.0, 0.0]] # default should keep all nonzero features (i.e. ones that appear 1+ times) feat_selector = SelectByMinCount() expected = np.array([[0.001, 0.0, 0.0], [0.00001, -2.0, 0.0], [0.001, 0.0, 4.0], [0.0101, -200.0, 0.0]]) assert_array_equal(feat_selector.fit_transform(np.array(m2)), expected) assert_array_equal(feat_selector.fit_transform( sp.csr_matrix(m2)).todense(), expected) # keep features that happen 2+ times feat_selector = SelectByMinCount(min_count=2) expected = np.array([[0.001, 0.0], [0.00001, -2.0], [0.001, 0.0], [0.0101, -200.0]]) assert_array_equal(feat_selector.fit_transform(np.array(m2)), expected) assert_array_equal( feat_selector.fit_transform(sp.csr_matrix(m2)).todense(), expected) # keep features that happen 3+ times feat_selector = SelectByMinCount(min_count=3) expected = np.array([[0.001], [0.00001], [0.001], [0.0101]]) assert_array_equal(feat_selector.fit_transform(np.array(m2)), expected) assert_array_equal( feat_selector.fit_transform(sp.csr_matrix(m2)).todense(), expected) def make_class_map_data(): # Create training file train_path = join(_my_dir, 'train', 'test_class_map.jsonlines') ids = [] labels = [] features = [] class_names = ['beagle', 'cat', 'dachsund', 'cat'] for i in range(1, 101): y = class_names[i % 4] ex_id = "{}{}".format(y, i) # note that f1 and f5 are missing in all instances but f4 is not x = {"f2": i + 1, "f3": i + 2, "f4": i + 5} ids.append(ex_id) labels.append(y) features.append(x) train_fs = FeatureSet('train_class_map', ids, features=features, labels=labels) writer = NDJWriter(train_path, train_fs) writer.write() # Create test file test_path = join(_my_dir, 'test', 'test_class_map.jsonlines') ids = [] labels = [] features = [] for i in range(1, 51): y = class_names[i % 4] ex_id = "{}{}".format(y, i) # f1 and f5 are not missing in any instances here but f4 is x = {"f1": i, "f2": i + 2, "f3": i % 10, "f5": i * 2} ids.append(ex_id) labels.append(y) features.append(x) test_fs = FeatureSet('test_class_map', ids, features=features, labels=labels) writer = NDJWriter(test_path, test_fs) writer.write() def test_class_map(): """ Test class maps """ make_class_map_data() config_template_path = join( _my_dir, 'configs', 'test_class_map.template.cfg') config_path = fill_in_config_paths(config_template_path) run_configuration(config_path, quiet=True) with open(join(_my_dir, 'output', ('test_class_map_test_class_map_Logistic' 'Regression.results.json'))) as f: outd = json.loads(f.read()) # outstr = f.read() # logistic_result_score = float( # SCORE_OUTPUT_RE.search(outstr).groups()[0]) logistic_result_score = outd[0]['score'] assert_almost_equal(logistic_result_score, 0.5) def test_class_map_feature_hasher(): """ Test class maps with feature hashing """ make_class_map_data() config_template_path = join(_my_dir, 'configs', 'test_class_map_feature_hasher.template.cfg') config_path = fill_in_config_paths(config_template_path) run_configuration(config_path, quiet=True) with open(join(_my_dir, 'output', ('test_class_map_test_class_map_' 'LogisticRegression.results.' 'json'))) as f: # outstr = f.read() outd = json.loads(f.read()) # logistic_result_score = float( # SCORE_OUTPUT_RE.search(outstr).groups()[0]) logistic_result_score = outd[0]['score'] assert_almost_equal(logistic_result_score, 0.5) def make_scaling_data(use_feature_hashing=False): X, y = make_classification(n_samples=1000, n_classes=2, n_features=5, n_informative=5, n_redundant=0, random_state=1234567890) # we want to arbitrary scale the various features to test the scaling scalers = np.array([1, 10, 100, 1000, 10000]) X = X * scalers # since we want to use SKLL's FeatureSet class, we need to # create a list of IDs ids = ['EXAMPLE_{}'.format(n) for n in range(1, 1001)] # create a list of dictionaries as the features feature_names = ['f{}'.format(n) for n in range(1, 6)] features = [] for row in X: features.append(dict(zip(feature_names, row))) # split everything into training and testing portions train_features, test_features = features[:800], features[800:] train_y, test_y = y[:800], y[800:] train_ids, test_ids = ids[:800], ids[800:] vectorizer = FeatureHasher(n_features=4) if use_feature_hashing else None train_fs = FeatureSet('train_scaling', train_ids, features=train_features, labels=train_y, vectorizer=vectorizer) test_fs = FeatureSet('test_scaling', test_ids, features=test_features, labels=test_y, vectorizer=vectorizer) return (train_fs, test_fs) def check_scaling_features(use_feature_hashing=False, use_scaling=False): train_fs, test_fs = make_scaling_data(use_feature_hashing=use_feature_hashing) # create a Linear SVM with the value of scaling as specified feature_scaling = 'both' if use_scaling else 'none' learner = Learner('SGDClassifier', feature_scaling=feature_scaling, pos_label_str=1) # train the learner on the training set and test on the testing set learner.train(train_fs) test_output = learner.evaluate(test_fs) fmeasures = [test_output[2][0]['F-measure'], test_output[2][1]['F-measure']] # these are the expected values of the f-measures, sorted if not use_feature_hashing: expected_fmeasures = ([0.77319587628865982, 0.78640776699029125] if not use_scaling else [0.94930875576036866, 0.93989071038251359]) else: expected_fmeasures = ([0.42774566473988435, 0.5638766519823788] if not use_scaling else [0.87323943661971837, 0.85561497326203206]) assert_almost_equal(expected_fmeasures, fmeasures) def test_scaling(): yield check_scaling_features, False, False yield check_scaling_features, False, True yield check_scaling_features, True, False yield check_scaling_features, True, True
bsd-3-clause
joernhees/scikit-learn
sklearn/model_selection/tests/test_search.py
6
51806
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from sklearn.externals.joblib._compat import PY3_OR_LATER from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import in1d from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.linear_model import Ridge, SGDClassifier from sklearn.model_selection.tests.common import OneTimeSplitter # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.classes_ = np.unique(Y) return self def predict(self, T): return T.shape[0] def transform(self, X): return X + self.foo_param def inverse_transform(self, X): return X - self.foo_param predict_proba = predict predict_log_proba = predict decision_function = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3]) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) def check_hyperparameter_searcher_with_fit_params(klass, **klass_kwargs): X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam', 'eggs']) searcher = klass(clf, {'foo_param': [1, 2, 3]}, cv=2, **klass_kwargs) # The CheckingClassifer generates an assertion error if # a parameter is missing or has length != len(X). assert_raise_message(AssertionError, "Expected fit parameter(s) ['eggs'] not seen.", searcher.fit, X, y, spam=np.ones(10)) assert_raise_message(AssertionError, "Fit parameter spam has length 1; expected 4.", searcher.fit, X, y, spam=np.ones(1), eggs=np.zeros(10)) searcher.fit(X, y, spam=np.ones(10), eggs=np.zeros(10)) def test_grid_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(GridSearchCV) def test_random_search_with_fit_params(): check_hyperparameter_searcher_with_fit_params(RandomizedSearchCV, n_iter=1) def test_grid_search_fit_params_deprecation(): # NOTE: Remove this test in v0.21 # Use of `fit_params` in the class constructor is deprecated, # but will still work until v0.21. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_warns(DeprecationWarning, grid_search.fit, X, y) def test_grid_search_fit_params_two_places(): # NOTE: Remove this test in v0.21 # If users try to input fit parameters in both # the constructor (deprecated use) and the `fit` # method, we'll ignore the values passed to the constructor. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(expected_fit_params=['spam']) # The "spam" array is too short and will raise an # error in the CheckingClassifier if used. grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(1)}) expected_warning = ('Ignoring fit_params passed as a constructor ' 'argument in favor of keyword arguments to ' 'the "fit" method.') assert_warns_message(RuntimeWarning, expected_warning, grid_search.fit, X, y, spam=np.ones(10)) # Verify that `fit` prefers its own kwargs by giving valid # kwargs in the constructor and invalid in the method call grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, fit_params={'spam': np.ones(10)}) assert_raise_message(AssertionError, "Fit parameter spam has length 1", grid_search.fit, X, y, spam=np.ones(1)) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = search_no_scoring.score(X, y) score_accuracy = search_accuracy.score(X, y) score_no_score_auc = search_no_score_method_auc.score(X, y) score_auc = search_auc.score(X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_groups(): # Check if ValueError (when groups is None) propagates to GridSearchCV # And also check if groups is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) groups = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The 'groups' parameter should not be None.", gs.fit, X, y) gs.fit(X, y, groups=groups) non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_group_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_classes__property(): # Test that classes_ property matches best_estimator_.classes_ X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) Cs = [.1, 1, 10] grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) grid_search.fit(X, y) assert_array_equal(grid_search.best_estimator_.classes_, grid_search.classes_) # Test that regressors do not have a classes_ attribute grid_search = GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]}) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute before it's fit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}) assert_false(hasattr(grid_search, 'classes_')) # Test that the grid searcher has no classes_ attribute without a refit grid_search = GridSearchCV(LinearSVC(random_state=0), {'C': Cs}, refit=False) grid_search.fit(X, y) assert_false(hasattr(grid_search, 'classes_')) def test_trivial_cv_results_attr(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_no_refit(): # Test that GSCV can be used for model selection alone without refitting clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(not hasattr(grid_search, "best_estimator_") and hasattr(grid_search, "best_index_") and hasattr(grid_search, "best_params_")) # Make sure the predict/transform etc fns raise meaningfull error msg for fn_name in ('predict', 'predict_proba', 'predict_log_proba', 'transform', 'inverse_transform'): assert_raise_message(NotFittedError, ('refit=False. %s is available only after ' 'refitting on the best parameters' % fn_name), getattr(grid_search, fn_name), X) def test_grid_search_error(): # Test that grid search will capture errors on data with different length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_when_param_grid_includes_range(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = None if PY3_OR_LATER: grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}) else: grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)}) grid_search.fit(X, y) assert_equal(grid_search.best_estimator_.foo_param, 2) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a non-empty sequence.", GridSearchCV, clf, param_dict) param_dict = {"C": "1,2,3"} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "cv_results_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='fowlkes_mallows_score') grid_search.fit(X, y) # So can FMS ;) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def check_cv_results_array_types(cv_results, param_keys, score_keys): # Check if the search `cv_results`'s array are of correct types assert_true(all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)) assert_true(all(cv_results[key].dtype == object for key in param_keys)) assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)) assert_true(all(cv_results[key].dtype == np.float64 for key in score_keys if not key.startswith('rank'))) assert_true(cv_results['rank_test_score'].dtype == np.int32) def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand): # Test the search.cv_results_ contains all the required results assert_array_equal(sorted(cv_results.keys()), sorted(param_keys + score_keys + ('params',))) assert_true(all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)) def check_cv_results_grid_scores_consistency(search): # TODO Remove in 0.20 cv_results = search.cv_results_ res_scores = np.vstack(list([cv_results["split%d_test_score" % i] for i in range(search.n_splits_)])).T res_means = cv_results["mean_test_score"] res_params = cv_results["params"] n_cand = len(res_params) grid_scores = assert_warns(DeprecationWarning, getattr, search, 'grid_scores_') assert_equal(len(grid_scores), n_cand) # Check consistency of the structure of grid_scores for i in range(n_cand): assert_equal(grid_scores[i].parameters, res_params[i]) assert_array_equal(grid_scores[i].cv_validation_scores, res_scores[i, :]) assert_array_equal(grid_scores[i].mean_validation_score, res_means[i]) def test_grid_search_cv_results(): X, y = make_classification(n_samples=50, n_features=4, random_state=42) n_splits = 3 n_grid_points = 6 params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]), dict(kernel=['poly', ], degree=[1, 2])] grid_search = GridSearchCV(SVC(), cv=n_splits, iid=False, param_grid=params) grid_search.fit(X, y) grid_search_iid = GridSearchCV(SVC(), cv=n_splits, iid=True, param_grid=params) grid_search_iid.fit(X, y) param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_candidates = n_grid_points for search, iid in zip((grid_search, grid_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check if score and timing are reasonable assert_true(all(cv_results['rank_test_score'] >= 1)) assert_true(all(cv_results[k] >= 0) for k in score_keys if k is not 'rank_test_score') assert_true(all(cv_results[k] <= 1) for k in score_keys if 'time' not in k and k is not 'rank_test_score') # Check cv_results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates) # Check masking cv_results = grid_search.cv_results_ n_candidates = len(grid_search.cv_results_['params']) assert_true(all((cv_results['param_C'].mask[i] and cv_results['param_gamma'].mask[i] and not cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'linear')) assert_true(all((not cv_results['param_C'].mask[i] and not cv_results['param_gamma'].mask[i] and cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'rbf')) check_cv_results_grid_scores_consistency(search) def test_random_search_cv_results(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # scipy.stats dists now supports `seed` but we still support scipy 0.12 # which doesn't support the seed. Hence the assertions in the test for # random_search alone should not depend on randomization. n_splits = 3 n_search_iter = 30 params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=False, param_distributions=params) random_search.fit(X, y) random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=True, param_distributions=params) random_search_iid.fit(X, y) param_keys = ('param_C', 'param_gamma') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_cand = n_search_iter for search, iid in zip((random_search, random_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_cand) # For random_search, all the param array vals should be unmasked assert_false(any(cv_results['param_C'].mask) or any(cv_results['param_gamma'].mask)) check_cv_results_grid_scores_consistency(search) def test_search_iid_param(): # Test the IID parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv) for search in (grid_search, random_search): search.fit(X, y) assert_true(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s_i][0] for s_i in range(search.n_splits_))) train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] # Test the first candidate assert_equal(search.cv_results_['param_C'][0], 1) assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) assert_array_almost_equal(train_cv_scores, [1, 1]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average and weighted std expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4. expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 + 3. / 4 * (expected_test_mean - 1. / 3.) ** 2) assert_almost_equal(test_mean, expected_test_mean) assert_almost_equal(test_std, expected_test_std) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) # once with iid=False grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv, iid=False) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv, iid=False) for search in (grid_search, random_search): search.fit(X, y) assert_false(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s][0] for s in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s][0] for s in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] assert_equal(search.cv_results_['param_C'][0], 1) # scores are the same as above assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) # Unweighted mean/std is used assert_almost_equal(test_mean, np.mean(test_cv_scores)) assert_almost_equal(test_std, np.std(test_cv_scores)) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) def test_search_cv_results_rank_tie_breaking(): X, y = make_blobs(n_samples=50, random_state=42) # The two C values are close enough to give similar models # which would result in a tie of their mean cv-scores param_grid = {'C': [1, 1.001, 0.001]} grid_search = GridSearchCV(SVC(), param_grid=param_grid) random_search = RandomizedSearchCV(SVC(), n_iter=3, param_distributions=param_grid) for search in (grid_search, random_search): search.fit(X, y) cv_results = search.cv_results_ # Check tie breaking strategy - # Check that there is a tie in the mean scores between # candidates 1 and 2 alone assert_almost_equal(cv_results['mean_test_score'][0], cv_results['mean_test_score'][1]) assert_almost_equal(cv_results['mean_train_score'][0], cv_results['mean_train_score'][1]) try: assert_almost_equal(cv_results['mean_test_score'][1], cv_results['mean_test_score'][2]) except AssertionError: pass try: assert_almost_equal(cv_results['mean_train_score'][1], cv_results['mean_train_score'][2]) except AssertionError: pass # 'min' rank should be assigned to the tied candidates assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3]) def test_search_cv_results_none_param(): X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1] estimators = (DecisionTreeRegressor(), DecisionTreeClassifier()) est_parameters = {"random_state": [0, None]} cv = KFold(random_state=0) for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv).fit(X, y) assert_array_equal(grid_search.cv_results_['param_random_state'], [0, None]) @ignore_warnings() def test_search_cv_timing(): svc = LinearSVC(random_state=0) X = [[1, ], [2, ], [3, ], [4, ]] y = [0, 1, 1, 0] gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0) rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2) for search in (gs, rs): search.fit(X, y) for key in ['mean_fit_time', 'std_fit_time']: # NOTE The precision of time.time in windows is not high # enough for the fit/score times to be non-zero for trivial X and y assert_true(np.all(search.cv_results_[key] >= 0)) assert_true(np.all(search.cv_results_[key] < 1)) for key in ['mean_score_time', 'std_score_time']: assert_true(search.cv_results_[key][1] >= 0) assert_true(search.cv_results_[key][0] == 0.0) assert_true(np.all(search.cv_results_[key] < 1)) def test_grid_search_correct_score_results(): # test that correct scores are used n_splits = 3 clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits) cv_results = grid_search.fit(X, y).cv_results_ # Test scorer names result_keys = list(cv_results.keys()) expected_keys = (("mean_test_score", "rank_test_score") + tuple("split%d_test_score" % cv_i for cv_i in range(n_splits))) assert_true(all(in1d(expected_keys, result_keys))) cv = StratifiedKFold(n_splits=n_splits) n_splits = grid_search.n_splits_ for candidate_i, C in enumerate(Cs): clf.set_params(C=C) cv_scores = np.array( list(grid_search.cv_results_['split%d_test_score' % s][candidate_i] for s in range(n_splits))) for i, (train, test) in enumerate(cv.split(X, y)): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, cv_scores[i]) def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) grid_search_pickled = pickle.loads(pickle.dumps(grid_search)) assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X)) random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) random_search_pickled = pickle.loads(pickle.dumps(random_search)) assert_array_almost_equal(random_search.predict(X), random_search_pickled.predict(X)) def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) res_params = grid_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, grid_search.cv_results_['split%d_test_score' % i][cand_i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) res_params = random_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, random_search.cv_results_['split%d_test_score' % i][cand_i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. def get_cand_scores(i): return np.array(list(gs.cv_results_['split%d_test_score' % s][i] for s in range(gs.n_splits_))) assert all((np.all(get_cand_scores(cand_i) == 0.0) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER)) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) assert all(np.all(np.isnan(get_cand_scores(cand_i))) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_stochastic_gradient_loss_param(): # Make sure the predict_proba works when loss is specified # as one of the parameters in the param_grid. param_grid = { 'loss': ['log'], } X = np.arange(24).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) # When the estimator is not fitted, `predict_proba` is not available as the # loss is 'hinge'. assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) clf.predict_proba(X) clf.predict_log_proba(X) # Make sure `predict_proba` is not available when setting loss=['hinge'] # in param_grid param_grid = { 'loss': ['hinge'], } clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) assert_false(hasattr(clf, "predict_proba")) def test_search_train_scores_set_to_false(): X = np.arange(6).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = LinearSVC(random_state=0) gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, return_train_score=False) gs.fit(X, y) def test_grid_search_cv_splits_consistency(): # Check if a one time iterable is accepted as a cv parameter. n_samples = 100 n_splits = 5 X, y = make_classification(n_samples=n_samples, random_state=0) gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples)) gs.fit(X, y) gs2 = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=KFold(n_splits=n_splits)) gs2.fit(X, y) def _pop_time_keys(cv_results): for key in ('mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'): cv_results.pop(key) return cv_results # OneTimeSplitter is a non-re-entrant cv where split can be called only # once if ``cv.split`` is called once per param setting in GridSearchCV.fit # the 2nd and 3rd parameter will not be evaluated as no train/test indices # will be generated for the 2nd and subsequent cv.split calls. # This is a check to make sure cv.split is not called once per param # setting. np.testing.assert_equal(_pop_time_keys(gs.cv_results_), _pop_time_keys(gs2.cv_results_)) # Check consistency of folds across the parameters gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.1, 0.2, 0.2]}, cv=KFold(n_splits=n_splits, shuffle=True)) gs.fit(X, y) # As the first two param settings (C=0.1) and the next two param # settings (C=0.2) are same, the test and train scores must also be # same as long as the same train/test indices are generated for all # the cv splits, for both param setting for score_type in ('train', 'test'): per_param_scores = {} for param_i in range(4): per_param_scores[param_i] = list( gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i] for s in range(5)) assert_array_almost_equal(per_param_scores[0], per_param_scores[1]) assert_array_almost_equal(per_param_scores[2], per_param_scores[3]) def test_transform_inverse_transform_round_trip(): clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) grid_search.fit(X, y) X_round_trip = grid_search.inverse_transform(grid_search.transform(X)) assert_array_equal(X, X_round_trip)
bsd-3-clause
beepee14/scikit-learn
examples/ensemble/plot_random_forest_embedding.py
286
3531
""" ========================================================= Hashing feature transformation using Totally Random Trees ========================================================= RandomTreesEmbedding provides a way to map data to a very high-dimensional, sparse representation, which might be beneficial for classification. The mapping is completely unsupervised and very efficient. This example visualizes the partitions given by several trees and shows how the transformation can also be used for non-linear dimensionality reduction or non-linear classification. Points that are neighboring often share the same leaf of a tree and therefore share large parts of their hashed representation. This allows to separate two concentric circles simply based on the principal components of the transformed data. In high-dimensional spaces, linear classifiers often achieve excellent accuracy. For sparse binary data, BernoulliNB is particularly well-suited. The bottom row compares the decision boundary obtained by BernoulliNB in the transformed space with an ExtraTreesClassifier forests learned on the original data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_circles from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier from sklearn.decomposition import TruncatedSVD from sklearn.naive_bayes import BernoulliNB # make a synthetic dataset X, y = make_circles(factor=0.5, random_state=0, noise=0.05) # use RandomTreesEmbedding to transform data hasher = RandomTreesEmbedding(n_estimators=10, random_state=0, max_depth=3) X_transformed = hasher.fit_transform(X) # Visualize result using PCA pca = TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) # Learn a Naive Bayes classifier on the transformed data nb = BernoulliNB() nb.fit(X_transformed, y) # Learn an ExtraTreesClassifier for comparison trees = ExtraTreesClassifier(max_depth=3, n_estimators=10, random_state=0) trees.fit(X, y) # scatter plot of original and reduced data fig = plt.figure(figsize=(9, 8)) ax = plt.subplot(221) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_title("Original Data (2d)") ax.set_xticks(()) ax.set_yticks(()) ax = plt.subplot(222) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, s=50) ax.set_title("PCA reduction (2d) of transformed data (%dd)" % X_transformed.shape[1]) ax.set_xticks(()) ax.set_yticks(()) # Plot the decision in original space. For that, we will assign a color to each # point in the mesh [x_min, m_max] x [y_min, y_max]. h = .01 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # transform grid using RandomTreesEmbedding transformed_grid = hasher.transform(np.c_[xx.ravel(), yy.ravel()]) y_grid_pred = nb.predict_proba(transformed_grid)[:, 1] ax = plt.subplot(223) ax.set_title("Naive Bayes on Transformed data") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) # transform grid using ExtraTreesClassifier y_grid_pred = trees.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] ax = plt.subplot(224) ax.set_title("ExtraTrees predictions") ax.pcolormesh(xx, yy, y_grid_pred.reshape(xx.shape)) ax.scatter(X[:, 0], X[:, 1], c=y, s=50) ax.set_ylim(-1.4, 1.4) ax.set_xlim(-1.4, 1.4) ax.set_xticks(()) ax.set_yticks(()) plt.tight_layout() plt.show()
bsd-3-clause
kazemakase/scikit-learn
examples/decomposition/plot_incremental_pca.py
244
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
droundy/deft
papers/histogram/figs/plot-sticky-wall.py
1
2698
#!/usr/bin/python2 import matplotlib, sys if 'show' not in sys.argv: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy matplotlib.rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) matplotlib.rc('text', usetex=True) import readnew if len(sys.argv) < 5: print(("Usage: python {} 1.3 0.22 100 10".format(sys.argv[0]))) exit(1) ww = float(sys.argv[1]) #arg ww = [1.3] ff = float(sys.argv[2]) #arg ff = [0.1, 0.2, 0.3] lenx = float(sys.argv[3]) #arg lenx = [50, 80, 100] lenyz = float(sys.argv[4]) #arg lenyz = [10] plt.figure() Ts = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 10.0] colors = { 0.1: 'r', 0.5: 'k', 0.6: 'y', 0.7: 'm', 0.8: 'g', 0.9: 'b', 1.0: 'r', 5.0: 'k', 10.0: 'c', } def color(T): try: return colors[T] except: return '' lines = ['-', '--', ':', '-.', '.'] first_method = True the_first_method = '' methods = [ '-tmi3', '-toe3', '-tmmc', '-satmmc', '-sad']#, '-wltmmc-0.8-1e-10'] #, '-tmi'] first_temperature = [True]*len(methods) for i in range(len(methods)): method = methods[i] fbase = 'data/lv/ww%.2f-ff%.2f-%gx%g%s' % (ww, ff, lenx, lenyz, method) fname = fbase + '-density.dat' try: minT = readnew.minT(fname) convergedT = readnew.convergedT(fname) for T in Ts: if T >= minT and T >= convergedT*1.0: density, x = readnew.density_x(fbase, T) plt.plot(x/2, density, color(T)+lines[i]) if first_method or method == the_first_method: if first_temperature[i]: plt.plot(x/2, density, color(T)+lines[i], label='T=%g %s (converged to %.2g)' % (T, method[1:], convergedT)) first_temperature[i] = False else: plt.plot(x/2, density, color(T)+lines[i], label='T=%g' % T) the_first_method = method first_method = False elif first_temperature[i]: plt.plot(x/2, density, color(T)+lines[i], label='T=%g %s (converged to %.2g)' % (T, method[1:], convergedT)) first_temperature[i] = False else: plt.plot(x/2, density, color(T)+lines[i]) except: pass plt.ylim(0) plt.xlabel(r'$z/\sigma$') plt.ylabel(r'$\eta$') plt.legend(loc='best') plt.title(r'$\eta(z)$ with $\lambda = %g$ and $\eta=%g$' % (ww, ff)) plt.savefig('figs/sticky-wall-ww%.2f-ff%.2f-%gx%g.pdf' % (ww, ff, lenx, lenyz)) plt.show()
gpl-2.0
google/dl_bounds
dl_bounds/src/results.py
1
30995
# coding=utf-8 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements visualization of exprimental results.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile from dl_bounds.src.pysqlite_ext import SqliteDB from matplotlib import pyplot as plt import numpy as np import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_enum("do", "plot_hessian_vs_margin", ["plot_hessian_vs_margin", "table_norms", "table_phased"], "Type of result to plot.") tf.flags.DEFINE_string("db", None, "Database location.") tf.flags.DEFINE_string("dataset", None, "Dataset.") tf.flags.DEFINE_string("network", None, "Network.") tf.flags.DEFINE_string("groupby_param", None, "Parameter name.") tf.flags.DEFINE_string("pdf", None, "PDF filename to plot to.") tf.flags.DEFINE_boolean("show", False, "Show plot.") tf.flags.mark_flag_as_required("do") tf.flags.mark_flag_as_required("db") tf.flags.mark_flag_as_required("dataset") tf.flags.mark_flag_as_required("network") tf.flags.mark_flag_as_required("groupby_param") class Results(object): """Retrieves results from Sqlite database.""" def __init__(self, db_filename, mean_metrics=False): """Constructor. Args: db_filename: path to sqlite3 database. mean_metrics: return means of metrics over groupby parameter, passed to getters. """ self.db_filename = db_filename self.common_metrics = [ "train_error", "val_error", "train_zero_one_error", "val_zero_one_error", ] self.norm_metrics = [ "weight_l2_norms", "path_l2_norms", "spectral_products", "spectral_complexities", "cond_numbers", "ratios_of_mean_deep_embeddings", "ratios_of_mean_shallow_embeddings", "soft_margins", "weight_variance", "weight_entropy", "train_grad_norm", "val_grad_norm", ] self.mean_metrics = mean_metrics @staticmethod def records_to_dict(rs, records, name): rs[name] = np.vstack([rec[name] for rec in records]) def extract_metrics(self, rs, records, param_names): for name in param_names: Results.records_to_dict(rs, records, name) def extract_common_metrics(self, rs, records): self.extract_metrics(rs, records, self.common_metrics) if records: rs["pass_numbers"] = records[0]["pass_numbers"] def extract_margins(self, rs, records, margin_eps_index=-1): if records: if records[0]["soft_margins"].ndim == 3: rs["sq_margin"] = np.vstack( [rec["soft_margins"][:, :, margin_eps_index]**2 for rec in records]) elif records[0]["soft_margins"].ndim == 2: rs["sq_margin"] = np.vstack( [rec["soft_margins"][:, margin_eps_index]**2 for rec in records]) def get_metrics(self, dataset, groupby_param_name, metrics, bad_min, extra_constraints=""): """Retrieves list of records, where each record is a dict. Args: dataset: name of a dataset. groupby_param_name: parameter to group results by. metrics: list of metric names to retrieve. bad_min: [bool] retrieve results for "bad" minumum experiment. extra_constraints: extra "WHERE" constraints. Returns: list of dicts, where each dict stands for a record. """ metrics.extend(self.common_metrics) if self.mean_metrics: tf.logging.info("Retrieving means of metrics.") select_metrics = ["mean(%s, 0) as \"%s\"" % (s, s) for s in metrics] select_metrics.extend( ["stddev(%s, 0) as \"stddev_%s\"" % (s, s) for s in metrics]) else: select_metrics = metrics args = dict( dataset=dataset, groupby_param_name=groupby_param_name, metrics=", ".join(select_metrics), metric_constraint=" and ".join(["%s is not null" % m for m in metrics]), bad_min=int(bad_min), extra_constraints=extra_constraints) db = SqliteDB(os.path.join(self.db_filename)) if groupby_param_name in ["width", "depth"]: args["groupby_param_name"] = "network" sql_query = """ SELECT pass_numbers, %(groupby_param_name)s, %(metrics)s FROM rs WHERE dataset = "%(dataset)s" AND bad_min = %(bad_min)s AND %(metric_constraint)s %(extra_constraints)s GROUP by %(groupby_param_name)s ORDER by %(groupby_param_name)s """ % args tf.logging.info(sql_query) rs = db.execute(sql_query) # Handling width and depth parameter (for MLP) in a special way # i.e. parsing the name and convering into integer column if groupby_param_name == "width": for (i, rec) in enumerate(rs): layer_widths = rec["network"].split("_")[1].split("-") assert len(layer_widths) == 2 assert layer_widths[0] == layer_widths[1] rs[i]["width"] = int(layer_widths[0]) rs.sort(key=lambda x: x["width"]) elif groupby_param_name == "depth": for (i, rec) in enumerate(rs): layer_widths = rec["network"].split("_")[1].split("-") rs[i]["depth"] = int(len(layer_widths)) rs.sort(key=lambda x: x["depth"]) return rs def get_sharpness(self, dataset, groupby_param_name, bad_min, extra_constraints): """Get sharpness records. Retrieves records with common metrics (e.g. training/testing error) and sharpness metric. Args: dataset: name of a dataset. groupby_param_name: parameter to group results by. bad_min: [bool] retrieve results for "bad" minumum experiment. extra_constraints: extra "WHERE" constraints. Returns: list of dicts, where each dict stands for a record. """ rs = dict() records = self.get_metrics(dataset, groupby_param_name, ["sharpness", "alpha"], bad_min, extra_constraints) for rec in records: alphas = rec["alpha"] if alphas.ndim == 2: alphas = alphas[0, :] if records[0]["sharpness"].ndim == 3: for i in range(len(alphas)): rs["sharpness_%s" % alphas[i]] = np.vstack( [rec["sharpness"][:, :, i].squeeze() for rec in records]) elif records[0]["sharpness"].ndim == 2: for i in range(len(alphas)): rs["sharpness_%s" % alphas[i]] = np.vstack( [rec["sharpness"][:, i].squeeze() for rec in records]) return rs def get_all_metrics(self, dataset, groupby_param_name, bad_min=False, extra_constraints=""): """Get records for all the metrics. Args: dataset: name of a dataset. groupby_param_name: parameter to group results by. bad_min: [bool] retrieve results for "bad" minumum experiment. extra_constraints: extra "WHERE" constraints. Returns: list of dicts, where each dict stands for a record. """ # Pulling norm-metrics records = self.get_metrics(dataset, groupby_param_name, self.norm_metrics, bad_min, extra_constraints) rs = dict() self.extract_common_metrics(rs, records) self.extract_metrics(rs, records, self.norm_metrics) self.extract_metrics(rs, records, [groupby_param_name]) self.extract_margins(rs, records) # Pulling sharpness sharpness_rs = self.get_sharpness(dataset, groupby_param_name, bad_min, extra_constraints) rs.update(sharpness_rs) # Pulling Hessian spectral norm hessian_records = self.get_metrics(dataset, groupby_param_name, ["hessian_top_sv_means"], bad_min, extra_constraints) self.extract_metrics(rs, hessian_records, ["hessian_top_sv_means"]) return rs def get_hessian(self, dataset, groupby_param_name, bad_min=False, extra_constraints=""): """Get Hessian spectral norm records. Retrieves records with common metrics (e.g. training/testing error) and the Hessian spectral norm metric. Args: dataset: name of a dataset. groupby_param_name: parameter to group results by. bad_min: [bool] retrieve results for "bad" minumum experiment. extra_constraints: extra "WHERE" constraints. Returns: list of dicts, where each dict stands for a record. """ records = self.get_metrics( dataset, groupby_param_name, ["hessian_top_sv_means", "soft_margins", "train_grad_norm"], bad_min, extra_constraints) rs = dict() self.extract_common_metrics(rs, records) self.extract_metrics(rs, records, ["hessian_top_sv_means", "stddev_hessian_top_sv_means", "train_grad_norm"]) self.extract_metrics(rs, records, [groupby_param_name]) self.extract_margins(rs, records) return rs class MetricTable(object): """Implements conversion of metric results to a LaTeX table.""" def __init__(self, db_filename, dataset, groupby_param_name, network, extra_constraints=""): """Constructor. Args: db_filename: path to sqlite3 database. dataset: name of a dataset. groupby_param_name: parameter to group results by. network: network name. extra_constraints: extra "WHERE" constraints. """ rs = Results(db_filename) extra_constraints_sql = ("and network like '%s' %s " % (network, extra_constraints)) self.records_good_min = rs.get_all_metrics( dataset, groupby_param_name, bad_min=False, extra_constraints=extra_constraints_sql) self.records_bad_min = rs.get_all_metrics( dataset, groupby_param_name, bad_min=True, extra_constraints=extra_constraints_sql) self.n_params = self.records_good_min["sq_margin"].shape[0] @staticmethod def format_number(num): """Formats a float. Args: num: float value. Returns: if num is in [1e-2, 1e+3), returns a float with 10^-2 precision. Otherwise returns value in scientific format. """ if 1e-2 <= num < 1e+3: return "$%.2f$" % num elif num == 0.0: return "$0$" else: base, exponent = ("%.1e" % num).split("e") return "$%s \\cdot 10^{%s}$" % (base, int(exponent)) @staticmethod def extract_column(records_good_min_metric, records_bad_min_metric, records_good_min_metric_stddev=None, records_bad_min_metric_stddev=None, bold_col=True): """Formats a column of a LaTeX table. Given a numpy array of records corresponding to good-minumum experiment, and a bad one, formats these into two adjacent columns. Highlights minimal and maximal value in the "bad" column. Args: records_good_min_metric: numpy array of values from a "good" experiment. records_bad_min_metric: numpy array of values from a "bad" experiment. records_good_min_metric_stddev: stddev of "good" experiment. records_bad_min_metric_stddev: stddev of "bad" experiment. bold_col: bolden max. and min. values in the "bad" column otherwise, bolden max. value in the good/bad pair Returns: a string in LaTeX format. """ min_i_bad_min_metric = np.argmin(records_bad_min_metric) max_i_bad_min_metric = np.argmax(records_bad_min_metric) column = [] for (i, z) in enumerate( zip(records_good_min_metric, records_bad_min_metric)): zs = map(MetricTable.format_number, z) if records_bad_min_metric_stddev: z_stddev = ( MetricTable.format_number(records_good_min_metric_stddev[i]), MetricTable.format_number(records_bad_min_metric_stddev[i]) ) zs[0] = "%s $\\pm$ %s" % (zs[0], z_stddev[0]) zs[1] = "%s $\\pm$ %s" % (zs[1], z_stddev[1]) if bold_col: if min_i_bad_min_metric == i or max_i_bad_min_metric == i: column.append("%s & \\boldmath{%s}" % zs) else: column.append("%s & %s" % tuple(map(MetricTable.format_number, z))) else: if z[0] > z[1]: column.append("\\boldmath{%s} & %s" % tuple(zs)) elif z[0] < z[1]: column.append("%s & \\boldmath{%s}" % tuple(zs)) else: column.append("%s & %s" % tuple(zs)) return column @staticmethod def format_good_bad_table(corner_label, col_labels, row_labels, rows, print_full_doc): """Formats a table with every column split for "good" and "bad" metric. Args: corner_label: a label of the top left corner. col_labels: column labels. row_labels: row labels. rows: row content, must be 2 * # of columns. print_full_doc: format full LaTeX doc., ready to compilation. Returns: LaTeX formatted string. """ n_cols = len(col_labels) table_lines = [] if print_full_doc: table_lines.append(r"\documentclass{article}") table_lines.append( r"\usepackage[a4paper, landscape, margin=2mm]{geometry}") table_lines.append( r"\usepackage{amsmath,amssymb,amsfonts,amsthm,graphics}") table_lines.append(r"\begin{document}") table_lines.append(r"\begin{center}") table_lines.append(r"\begin{table}") table_lines.append(r"\scalebox{0.6}{") table_lines.append(r"\begin{tabular}{%s|}" % ("|l" * (2 * (n_cols) + 1))) heads = ([corner_label] + [ r"\multicolumn{2}{|p{3cm}|}{%s}" % col_label for col_label in col_labels ]) table_lines.append(r"\hline") table_lines.append(" & ".join(heads) + r" \\") table_lines.append(r"\hline") table_lines.append(" & ".join([""] + ["Good", "Bad"] * (n_cols)) + r"\\ ") table_lines.append(r"\hline") table_lines.append("\n".join([ " & ".join([row_labels[i]] + list(row)) + r" \\" + "\n\\hline" for (i, row) in enumerate(rows) ])) table_lines.append(r"\end{tabular}") table_lines.append(r"}") table_lines.append(r"\end{table}") if print_full_doc: table_lines.append(r"\end{center}") table_lines.append(r"\end{document}") return "\n".join(table_lines) def print(self, metrics, normalize_by_margin=False, print_full_doc=False): """Formats a latex table for a given set of metrics. Args: metrics: list of metric names. normalize_by_margin: normalize metrics by the squared soft margin. print_full_doc: wrap LaTeX table into the markup ready for compilation. Returns: a table formatted as a LaTeX string. """ pass_numbers = self.records_good_min["pass_numbers"] columns = [] good_sq_soft_margin = self.records_good_min["sq_margin"].squeeze() bad_sq_soft_margin = self.records_bad_min["sq_margin"].squeeze() # Subselect index is passed whenever one record is a vector # e.g. eigenvalues of all layers for (metric_name, metric_label, subselect_index) in metrics: records_good_min_metric = self.records_good_min[metric_name].squeeze() records_bad_min_metric = self.records_bad_min[metric_name].squeeze() # Backwards compatibility # older experiments recorded multiple "bad" minima snapshots # here we are keeping only the last one if records_bad_min_metric.ndim == 2: records_bad_min_metric = records_bad_min_metric[-1, :] if subselect_index: records_good_min_metric = records_good_min_metric[:, subselect_index] records_bad_min_metric = records_bad_min_metric[:, subselect_index] if normalize_by_margin and (metric_name != "sq_margin"): records_good_min_metric /= good_sq_soft_margin records_bad_min_metric /= bad_sq_soft_margin column = MetricTable.extract_column(records_good_min_metric, records_bad_min_metric) columns.append(column) val_error_good = self.records_good_min["val_error"].squeeze() val_error_bad = self.records_bad_min["val_error"].squeeze() train_error_good = self.records_good_min["train_error"].squeeze() train_error_bad = self.records_bad_min["train_error"].squeeze() val_zero_one_error_good = ( self.records_good_min["val_zero_one_error"].squeeze()) val_zero_one_error_bad = ( self.records_bad_min["val_zero_one_error"].squeeze()) train_zero_one_error_good = ( self.records_good_min["train_zero_one_error"].squeeze()) train_zero_one_error_bad = ( self.records_bad_min["train_zero_one_error"].squeeze()) # Backwards compatibility again if val_error_bad.ndim == 2: val_error_bad = val_error_bad[-1, :] train_error_bad = train_error_bad[-1, :] val_zero_one_error_bad = val_zero_one_error_bad[-1, :] train_zero_one_error_bad = train_zero_one_error_bad[-1, :] error_metrics_all = [[(train_error_bad, train_error_good, "Train error"), (val_error_bad, val_error_good, "Val error")], [(train_zero_one_error_bad, train_zero_one_error_good, "Train error (0/1)"), (val_zero_one_error_bad, val_zero_one_error_good, "Val error (0/1)")]] error_labels = [] for (i, error_metrics) in enumerate(error_metrics_all): for (metric_bad, metric_good, label) in error_metrics: column = MetricTable.extract_column(metric_good, metric_bad) columns.append(column) error_labels.append(label) rows = zip(*columns) table_lines = [] if print_full_doc: table_lines.append(r"\documentclass{article}") table_lines.append( r"\usepackage[a4paper, landscape, margin=2mm]{geometry}") table_lines.append( r"\usepackage{amsmath,amssymb,amsfonts,amsthm,graphics}") table_lines.append(r"\begin{document}") table_lines.append(r"\begin{center}") table_lines.append(r"\begin{table}") table_lines.append(r"\scalebox{0.6}{") table_lines.append(r"\begin{tabular}{%s|}" % ("|l" * (2 * (len(metrics) + 4) + 1))) heads = (["Epoch"] + [ r"\multicolumn{2}{|p{3cm}|}{%s}" % metric_label for (_, metric_label, _) in metrics ] + [ r"\multicolumn{2}{|p{3cm}|}{%s}" % error_label for error_label in error_labels ]) table_lines.append(r"\hline") table_lines.append(" & ".join(heads) + r" \\") table_lines.append(r"\hline") table_lines.append(" & ".join([""] + ["Good", "Bad"] * (len(metrics) + 4)) + r"\\ ") table_lines.append(r"\hline") table_lines.append("\n".join([ " & ".join([str(pass_numbers[i])] + list(row)) + r" \\" + "\n\\hline" for (i, row) in enumerate(rows) ])) table_lines.append(r"\end{tabular}") table_lines.append(r"}") table_lines.append(r"\end{table}") if print_full_doc: table_lines.append(r"\end{center}") table_lines.append(r"\end{document}") return "\n".join(table_lines) class MetricVsParamTable(object): def __init__(self, db_filename, dataset, network, groupby_param_name): rs = Results(db_filename, mean_metrics=True) """Constructor. db_filename: path to sqlite3 database. dataset: dataste name. network: network name. groupby_param_name: parameter to group results by. network: network name. """ self.records_good_min = rs.get_all_metrics( dataset, groupby_param_name, bad_min=False, extra_constraints="and network like '%s' " % network) self.records_bad_min = rs.get_all_metrics( dataset, groupby_param_name, bad_min=True, extra_constraints="and network like '%s' " % network) self.groupby_param_name = groupby_param_name self.n_params = self.records_good_min["sq_margin"].shape[0] def print(self, print_full_doc): metrics = [ ("weight_l2_norms", "Weight L2 norm"), ("path_l2_norms", "Path L2 norm"), ("spectral_products", "Lip. const of the network"), ("spectral_complexities", "Spectral complexity"), ("hessian_top_sv_means", "Hessian spectral norm"), ("sharpness_0.0005", "Sharpness\\newline (alpha=0.0005)"), ("train_grad_norm", "Train grad. norm"), ("train_error", "Train error"), ("val_error", "Val. error"), ("train_zero_one_error", "Train (0/1) error"), ("val_zero_one_error", "Val. (0/1) error") ] columns = [] row_labels = [m[1] for m in metrics] col_labels = [x[0] for x in self.records_good_min[self.groupby_param_name]] for param_index in range(self.n_params): col_metric_values_good = [] col_metric_values_bad = [] for (metric_name, _) in metrics: metric_values_good = self.records_good_min[metric_name][param_index, -1] metric_values_bad = self.records_bad_min[metric_name][param_index, -1] col_metric_values_good.append(metric_values_good) col_metric_values_bad.append(metric_values_bad) column = MetricTable.extract_column(np.array(col_metric_values_good), np.array(col_metric_values_bad), bold_col=False) columns.append(column) rows = zip(*columns) table_text = MetricTable.format_good_bad_table( self.groupby_param_name.replace("_", " "), col_labels, row_labels, rows, print_full_doc) return table_text class HessianVsMarginPlot(object): """Plots experimental results with Hessian spectral norm and margin.""" def __init__(self, db_filename, dataset, network, groupby_param_name, figure_path): rs = Results(db_filename, mean_metrics=True) """Constructor. Arranges results into a plot table, where columns are progressions of various metrics over epochs, and rows are different settings of a "groupby" parameter (e.g. a learning rate). db_filename: path to sqlite3 database. dataset: dataste name. network: network name. groupby_param_name: parameter to group results by. network: network name. figure_path: path for a PDF file with resulting figure. """ self.records_good_min = rs.get_hessian( dataset, groupby_param_name, bad_min=False, extra_constraints="and network like '%s' " % network) self.records_bad_min = rs.get_hessian( dataset, groupby_param_name, bad_min=True, extra_constraints="and network like '%s' " % network) self.groupby_param_name = groupby_param_name self.n_params = self.records_good_min["sq_margin"].shape[0] self.figure_path = figure_path def plot_one_setting(self, param_index, legend=True): """Plot results for one "groupby" parameter. Args: param_index: index of a "groupby" parameter. legend: [bool] plot legend. """ pass_numbers = self.records_good_min["pass_numbers"] hessian_sv_good = self.records_good_min["hessian_top_sv_means"][ param_index, :] sq_margin_good = self.records_good_min["sq_margin"][param_index, :] val_error_good = self.records_good_min["val_error"][param_index, :] train_error_good = self.records_good_min["train_error"][param_index, :] val_zero_one_error_good = self.records_good_min["val_zero_one_error"][ param_index, :] train_zero_one_error_good = self.records_good_min["train_zero_one_error"][ param_index, :] train_grad_norm_good = self.records_good_min["train_grad_norm"][ param_index, :] hessian_sv_bad = self.records_bad_min["hessian_top_sv_means"][ param_index, :] sq_margin_bad = self.records_bad_min["sq_margin"][param_index, :] val_error_bad = self.records_bad_min["val_error"][param_index, :] train_error_bad = self.records_bad_min["train_error"][param_index, :] val_zero_one_error_bad = self.records_bad_min["val_zero_one_error"][ param_index, :] train_zero_one_error_bad = self.records_bad_min["train_zero_one_error"][ param_index, :] train_grad_norm_bad = self.records_bad_min["train_grad_norm"][ param_index, :] self.n_cell_rows = 5 title = "%s = %s" % (self.groupby_param_name, self.records_good_min[ self.groupby_param_name][param_index][0]) self.plot_cell( param_index + 1, pass_numbers, hessian_sv_bad, hessian_sv_good, "||Hessian (bad)||_2", "||Hessian (good)||_2", title, plotter=plt.loglog, add_legend=legend) self.plot_cell( param_index + 1, pass_numbers, train_grad_norm_bad, train_grad_norm_good, "||grad (bad)||", "||grad (good)||", title, plotter=plt.loglog, add_legend=legend) self.plot_cell( self.n_params + param_index + 1, pass_numbers, 1.0 / sq_margin_bad, 1.0 / sq_margin_good, "Inv. of margin^2 (bad)", "Inv. of margin^2 (good)", title, plotter=plt.loglog, add_legend=legend) self.plot_cell( 2 * self.n_params + param_index + 1, pass_numbers, train_error_bad, train_error_good, "Train error (bad)", "Train error (good)", title, plotter=plt.semilogx, add_legend=legend) self.plot_cell( 2 * self.n_params + param_index + 1, pass_numbers, val_error_bad, val_error_good, "Val error (bad)", "Val error (good)", title, plotter=plt.semilogx, add_legend=legend) self.plot_cell( 3 * self.n_params + param_index + 1, pass_numbers, train_zero_one_error_bad, train_zero_one_error_good, "Train (0/1) error (bad)", "Train (0/1) error (good)", title, plotter=plt.semilogx, add_legend=legend) self.plot_cell( 3 * self.n_params + param_index + 1, pass_numbers, val_zero_one_error_bad, val_zero_one_error_good, "Val 0/1 error (bad)", "Val 0/1 error (good)", title, plotter=plt.semilogx, add_legend=legend) def plot_cell(self, i, x, y_bad, y_good, label_bad, label_good, title, plotter=plt.plot, add_legend=True): """Plot one cell of a plot table. Args: i: subplot index of a cell. x: values on the x axis. y_bad: values on the y axis, for a "bad" experiment. y_good: values on the y axis, for a "good" experiment. label_bad: corresponding label.n label_good: corresponding label. title: title of a plot. plotter: matplotlib plotting function. add_legend: [bool] plot a legend. """ if any(np.isnan(y_bad)) or any(np.isnan(y_good)): tf.logging.info("i=%d, Cannot plot: contains NaNs." % i) return ax = plt.subplot(self.n_cell_rows, self.n_params, i) ax.set_title(title) plot_rs = plotter(x, y_bad, linewidth=3, label=label_bad) plotter( x, y_good, linewidth=3, label=label_good, color=plot_rs[0].get_color(), linestyle="--") if add_legend: legend = plt.legend(loc="best", fontsize="small") legend = legend.get_frame().set_alpha(0.5) plt.grid(True) def plot(self): plt.figure(figsize=(self.n_params * 10, 10)) for i in range(self.n_params): self.plot_one_setting(i, legend=(i == 0)) tf.logging.info("Saving to %s", self.figure_path) plt.savefig(self.figure_path, tight_layout=True, bbox_inches="tight") def pdflatex(tex, pdf_path): _, fname = tempfile.mkstemp() open(fname, "wt").write(tex) shell = ("pdflatex --jobname='%s' --output-directory='%s' %s" % (os.path.basename(pdf_path).split(".")[0], os.path.dirname(pdf_path), fname)) pdflatex_out = os.popen(shell).read() tf.logging.info(pdflatex_out) def main(_): tf.logging.set_verbosity(tf.logging.INFO) if FLAGS.do == "plot_hessian_vs_margin": plot = HessianVsMarginPlot(FLAGS.db, FLAGS.dataset, FLAGS.network, FLAGS.groupby_param, FLAGS.pdf) plot.plot() if FLAGS.show: plt.show() elif FLAGS.do.startswith("table_"): if FLAGS.do == "table_norms": metrics = [("weight_l2_norms", "Weight L2 norm", None), ("path_l2_norms", "Path L2 norm", None), ("spectral_products", "Prod. of layer\\newline spectral norms", None), ("spectral_complexities", "Spectral\\newline complexity", None), ("train_grad_norm", "Train grad. norm", None), ("val_grad_norm", "Val grad. norm", None)] elif FLAGS.do == "table_phased": metrics = [("weight_variance", "Weight variance", None), ("hessian_top_sv_means", "Hessian\\newline spectral norm", None), ("train_grad_norm", "Train grad. norm", None), ("val_grad_norm", "Val grad. norm", None), ("sharpness_0.0005", "Sharpness\\newline (alpha=0.0005)", None), ("weight_entropy", "Weight entropy\\newline($10^3$ bin hist)", None), ("sq_margin", "Squared\\newline soft margin", None)] table = MetricTable(FLAGS.db, FLAGS.dataset, "bad_min", FLAGS.network, "and learning_rate=0.05") table_text = table.print(metrics, print_full_doc=FLAGS.pdf) if FLAGS.pdf: pdflatex(table_text, FLAGS.pdf) else: print(table_text) if __name__ == "__main__": tf.app.run(main)
apache-2.0
puruckertom/ubertool
ubertool/fellerarley/fellerarley_exe.py
2
3681
import numpy as np import os.path import pandas as pd import sys #find parent directory and import base (travis) parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) sys.path.append(parentddir) from base.uber_model import UberModel, ModelSharedInputs #print(sys.path) #print(os.path) class FellerarleyInputs(ModelSharedInputs): """ Input class for Fellerarley. #(N_o,K,rho,q,E,T) """ def __init__(self): """Class representing the inputs for Fellerarley""" super(FellerarleyInputs, self).__init__() self.init_pop_size = pd.Series([], dtype="float") self.growth_rate = pd.Series([], dtype="float") self.time_steps = pd.Series([], dtype="float") self.death_rate = pd.Series([], dtype="float") self.iteration = pd.Series([], dtype="float") class FellerarleyOutputs(object): """ Output class for Fellerarley. """ def __init__(self): """Class representing the outputs for Fellerarley""" super(FellerarleyOutputs, self).__init__() #dictionary of time, outputs self.out_pop_time_series = [] class Fellerarley(UberModel, FellerarleyInputs, FellerarleyOutputs): """ Fellerarley model for population growth. """ def __init__(self, pd_obj, pd_obj_exp): """Class representing the Fellerarley model and containing all its methods""" super(Fellerarley, self).__init__() self.pd_obj = pd_obj self.pd_obj_exp = pd_obj_exp self.pd_obj_out = None def execute_model(self): """ Callable to execute the running of the model: 1) Populate input parameters 2) Create output DataFrame to hold the model outputs 3) Run the model's methods to generate outputs 4) Fill the output DataFrame with the generated model outputs """ self.populate_inputs(self.pd_obj, self) self.pd_obj_out = self.populate_outputs(self) self.run_methods() self.fill_output_dataframe(self) # Begin model methods def run_methods(self): """ Execute all algorithm methods for model logic """ try: # dictionaries of population time series self.batch_fellerarley() except Exception as e: print(str(e)) def fellerarley_growth(self, idx): #T=self.time_steps #index_set = range(T+1) index_set = range(self.time_steps[idx] + 1) Ite=self.iteration x = np.zeros((Ite,len(index_set))) x_mu = np.zeros(len(index_set)) x_mu[0]=self.init_pop_size[idx] rho=self.growth_rate[idx]/100 beta=self.death_rate[idx]/100 for i in range(0,Ite): x[i][0]=self.init_pop_size[idx] n=0 while n<index_set: x_mu[n+1]=(1+rho-beta)*x_mu[n] if x[i][n]<10000: m=np.random.random(x[i][n]) m1=np.random.random(x[i][n]) n_birth=np.sum(m<rho) n_death=np.sum(m1<beta) x[i][n+1]=x[i][n]+n_birth-n_death if x[i][n+1]<0: x[i][n+1]=0 else: x[i][n+1]=(1+rho-beta)*x[i][n] n=n+1 t = range(0, self.time_steps[idx]) d = dict(zip(t, x)) self.out_pop_time_series[idx].append(d) return # x=x.tolist() # x_mu=x_mu.tolist() # return x, x_mu def batch_fellerarley(self): for idx in enumerate(self.init_pop_size): self.fellerarley_growth(idx) return
unlicense
AndKe/MAVProxy
MAVProxy/modules/lib/live_graph.py
6
3201
#!/usr/bin/env python """ MAVProxy realtime graphing module, partly based on the wx graphing demo by Eli Bendersky ([email protected]) http://eli.thegreenplace.net/files/prog_code/wx_mpl_dynamic_graph.py.txt """ import platform from MAVProxy.modules.lib import mp_util from MAVProxy.modules.lib import multiproc class LiveGraph(): ''' a live graph object using wx and matplotlib All of the GUI work is done in a child process to provide some insulation from the parent mavproxy instance and prevent instability in the GCS New data is sent to the LiveGraph instance via a pipe ''' def __init__(self, fields, title='MAVProxy: LiveGraph', timespan=20.0, tickresolution=0.2, colors=[ 'red', 'green', 'blue', 'orange', 'olive', 'cyan', 'magenta', 'brown', 'violet', 'purple', 'grey', 'black']): self.fields = fields self.colors = colors self.title = title self.timespan = timespan self.tickresolution = tickresolution self.values = [None]*len(self.fields) self.parent_pipe,self.child_pipe = multiproc.Pipe() self.close_graph = multiproc.Event() self.close_graph.clear() self.child = multiproc.Process(target=self.child_task) self.child.start() def child_task(self): '''child process - this holds all the GUI elements''' mp_util.child_close_fds() import matplotlib, platform if platform.system() != "Darwin": # on MacOS we can't set WxAgg here as it conflicts with the MacOS version matplotlib.use('WXAgg') from MAVProxy.modules.lib import wx_processguard from MAVProxy.modules.lib.wx_loader import wx app = wx.App(False) from MAVProxy.modules.lib import live_graph_ui app.frame = live_graph_ui.GraphFrame(state=self) app.frame.Show() app.MainLoop() def add_values(self, values): '''add some data to the graph''' if self.child.is_alive(): self.parent_pipe.send(values) def close(self): '''close the graph''' self.close_graph.set() if self.is_alive(): self.child.join(2) def is_alive(self): '''check if graph is still going''' return self.child.is_alive() if __name__ == "__main__": multiproc.freeze_support() # test the graph import time, math import live_graph livegraph = live_graph.LiveGraph(['sin(t)', 'cos(t)', 'sin(t+1)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'x'], timespan=30, title='Graph Test') while livegraph.is_alive(): t = time.time() livegraph.add_values([math.sin(t), math.cos(t), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+2), math.cos(t+2)]) time.sleep(0.05)
gpl-3.0
ycaihua/scikit-learn
sklearn/tree/export.py
30
4529
""" This module defines export functions for decision trees. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Licence: BSD 3 clause from ..externals import six from . import _tree def export_graphviz(decision_tree, out_file="tree.dot", feature_names=None, max_depth=None): """Export a decision tree in DOT format. This function generates a GraphViz representation of the decision tree, which is then written into `out_file`. Once exported, graphical renderings can be generated using, for example:: $ dot -Tps tree.dot -o tree.ps (PostScript format) $ dot -Tpng tree.dot -o tree.png (PNG format) The sample counts that are shown are weighted with any sample_weights that might be present. Parameters ---------- decision_tree : decision tree classifier The decision tree to be exported to GraphViz. out_file : file object or string, optional (default="tree.dot") Handle or name of the output file. feature_names : list of strings, optional (default=None) Names of each of the features. max_depth : int, optional (default=None) The maximum depth of the representation. If None, the tree is fully generated. Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn import tree >>> clf = tree.DecisionTreeClassifier() >>> iris = load_iris() >>> clf = clf.fit(iris.data, iris.target) >>> tree.export_graphviz(clf, ... out_file='tree.dot') # doctest: +SKIP """ def node_to_str(tree, node_id, criterion): if not isinstance(criterion, six.string_types): criterion = "impurity" value = tree.value[node_id] if tree.n_outputs == 1: value = value[0, :] if tree.children_left[node_id] == _tree.TREE_LEAF: return "%s = %.4f\\nsamples = %s\\nvalue = %s" \ % (criterion, tree.impurity[node_id], tree.n_node_samples[node_id], value) else: if feature_names is not None: feature = feature_names[tree.feature[node_id]] else: feature = "X[%s]" % tree.feature[node_id] return "%s <= %.4f\\n%s = %s\\nsamples = %s" \ % (feature, tree.threshold[node_id], criterion, tree.impurity[node_id], tree.n_node_samples[node_id]) def recurse(tree, node_id, criterion, parent=None, depth=0): if node_id == _tree.TREE_LEAF: raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF) left_child = tree.children_left[node_id] right_child = tree.children_right[node_id] # Add node with description if max_depth is None or depth <= max_depth: out_file.write('%d [label="%s", shape="box"] ;\n' % (node_id, node_to_str(tree, node_id, criterion))) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) if left_child != _tree.TREE_LEAF: recurse(tree, left_child, criterion=criterion, parent=node_id, depth=depth + 1) recurse(tree, right_child, criterion=criterion, parent=node_id, depth=depth + 1) else: out_file.write('%d [label="(...)", shape="box"] ;\n' % node_id) if parent is not None: # Add edge to parent out_file.write('%d -> %d ;\n' % (parent, node_id)) own_file = False try: if isinstance(out_file, six.string_types): if six.PY3: out_file = open(out_file, "w", encoding="utf-8") else: out_file = open(out_file, "wb") own_file = True out_file.write("digraph Tree {\n") if isinstance(decision_tree, _tree.Tree): recurse(decision_tree, 0, criterion="impurity") else: recurse(decision_tree.tree_, 0, criterion=decision_tree.criterion) out_file.write("}") finally: if own_file: out_file.close()
bsd-3-clause
Adai0808/scikit-learn
examples/cluster/plot_affinity_propagation.py
349
2304
""" ================================================= Demo of affinity propagation clustering algorithm ================================================= Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007 """ print(__doc__) from sklearn.cluster import AffinityPropagation from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.5, random_state=0) ############################################################################## # Compute Affinity Propagation af = AffinityPropagation(preference=-50).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean')) ############################################################################## # Plot result import matplotlib.pyplot as plt from itertools import cycle plt.close('all') plt.figure(1) plt.clf() colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk') for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.plot(X[class_members, 0], X[class_members, 1], col + '.') plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_members]: plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
KEHANG/AutoFragmentModeling
ipython/3. reporting/reactant_conversion.py
1
4304
#~/usr/bin/env python #-*- coding: utf-8 -*- import os import numpy as np import matplotlib.pyplot as plt # set global settings def init_plotting(): plt.rcParams['figure.figsize'] = (4, 3) plt.rcParams['font.size'] = 8 plt.rcParams['font.family'] = 'Helvetica' plt.rcParams['axes.labelsize'] = plt.rcParams['font.size'] plt.rcParams['axes.titlesize'] = 1.5*plt.rcParams['font.size'] plt.rcParams['legend.fontsize'] = plt.rcParams['font.size'] plt.rcParams['xtick.labelsize'] = plt.rcParams['font.size'] plt.rcParams['ytick.labelsize'] = plt.rcParams['font.size'] plt.rcParams['savefig.dpi'] = 2*plt.rcParams['savefig.dpi'] plt.rcParams['xtick.major.size'] = 3 plt.rcParams['xtick.minor.size'] = 3 plt.rcParams['xtick.major.width'] = 1 plt.rcParams['xtick.minor.width'] = 1 plt.rcParams['ytick.major.size'] = 3 plt.rcParams['ytick.minor.size'] = 3 plt.rcParams['ytick.major.width'] = 1 plt.rcParams['ytick.minor.width'] = 1 plt.rcParams['legend.frameon'] = True plt.rcParams['legend.loc'] = 'best' plt.rcParams['axes.linewidth'] = 1 plt.gca().spines['right'].set_color('none') plt.gca().spines['top'].set_color('none') plt.gca().xaxis.set_ticks_position('bottom') plt.gca().yaxis.set_ticks_position('left') def load_comparison_data(detailed_model, frag_model1, frag_model2=None): v0_csv = os.path.join('../', 'data', 'pdd_chemistry', 'detailed', detailed_model, 'results', 'reactant_conv.csv') v0_data = [] with open(v0_csv, 'r') as read_in: for line in read_in: tokens = line.split(' ') entries = [float(token) for token in tokens] v0_data.append(entries) assert len(v0_data) == 2 v1_csv = os.path.join('../', 'data', 'pdd_chemistry', frag_model1, 'results', 'reactant_conv.csv') v1_data = [] with open(v1_csv, 'r') as read_in: for line in read_in: tokens = line.split(' ') entries = [float(token) for token in tokens] v1_data.append(entries) assert len(v1_data) == 2 if frag_model2: v2_csv = os.path.join('../', 'data', 'pdd_chemistry', frag_model2, 'results', 'reactant_conv.csv') v2_data = [] with open(v2_csv, 'r') as read_in: for line in read_in: tokens = line.split(' ') entries = [float(token) for token in tokens] v2_data.append(entries) assert len(v2_data) == 2 return np.array(v0_data), np.array(v1_data), np.array(v2_data) else: return np.array(v0_data), np.array(v1_data), None def plot_comparison(v0_data, v1_data, v2_data=None, detailed_model=None, frag_model1=None, frag_model2=None, xlabel='', ylabel='', figure_name='', xlim=10, ylim=1.0): init_plotting() plt.figure() plt.plot(v0_data[0]/3600.0, v0_data[1], label='Detailed: {0}'.format(detailed_model)) plt.plot(v1_data[0]/3600,v1_data[1], label='Fragment: {0}'.format(frag_model1)) if v2_data: plt.plot(v2_data[0]/3600,v2_data[1], label='Fragment: {0}'.format(frag_model2)) plt.gca().set_xscale('log') plt.xlabel(xlabel) plt.ylabel(ylabel) plt.xlim((.1, xlim)) plt.ylim((0, ylim)) plt.gca().legend(scatterpoints=1) plt.tight_layout() plt.savefig(figure_name) detailed_model = 'pdd_2014_pruning4_s4_a3ene_c11' frag_model1 = 'two-sided' frag_model2 = None if frag_model2: figure_name = 'reactant_conversion_{0}_vs_{1}'.format(frag_model1, frag_model2) else: figure_name = 'reactant_conversion_{0}'.format(frag_model1) # plot reactant conversion xlabel = 'Time / hr' ylabel = 'Conversion' detailed, frag1, frag2 = load_comparison_data(detailed_model, frag_model1, frag_model2) plot_comparison(detailed, frag1, frag2, detailed_model, frag_model1, frag_model2, xlabel, ylabel, '{0}.pdf'.format(figure_name), xlim=14)
mit
RachitKansal/scikit-learn
sklearn/cluster/setup.py
263
1449
# Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.cpp'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
ankurankan/scikit-learn
sklearn/linear_model/omp.py
6
29556
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..cross_validation import _check_cv as check_cv from ..externals.joblib import Parallel, delayed import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs L = np.empty((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs L = np.empty((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path ) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path ) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Mathching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Attributes ---------- coef_ : array, shape (n_features,) or (n_features, n_targets) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X = check_array(X) y = np.asarray(y) n_features = X.shape[1] X, y, X_mean, y_mean, X_std, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_mean, y_mean, X_std) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues: array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Mathching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_features, n_targets) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y) cv = check_cv(self.cv, X, y, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause
jsharkey13/dmarc-monitoring
dmarc_analysis.py
1
10932
import datetime import os import argparse from matplotlib import pyplot as plt import matplotlib.dates as mdates import matplotlib.patches as mpatches import numpy as np from dmarc_storage import DMARCStorage def plot_percentage_passing(dates, fail, none, other, passing, category, folder=None): fig = plt.figure(facecolor='white', figsize=(12, 8)) plt.gca().set_title('%s Status of Messages' % category) plt.gca().set_ylabel('Percentage of Messages Received') plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) plt.gca().xaxis.set_minor_locator(mdates.DayLocator()) plt.gca().set_ylim([0, 100]) red_patch = mpatches.Patch(color='#ef3e36', label='FAIL') grey_patch = mpatches.Patch(color='#cccccc', label='NONE') dark_patch = mpatches.Patch(color='#666666', label='OTHER') green_patch = mpatches.Patch(color='#509e2e', label='PASS') auth = [fail] handles = [red_patch] colours = ['#ef3e36'] if none is not None: auth.append(none) handles.append(grey_patch) colours.append('#cccccc') if other is not None: auth.append(other) handles.append(dark_patch) colours.append('#666666') auth.append(passing) handles.append(green_patch) colours.append('#509e2e') handles.reverse() auth_percents = (auth / np.sum(auth, axis=0).astype(float)) * 100 plt.stackplot(dates, auth_percents, colors=colours, edgecolor='none') plt.legend(handles=handles, loc=2) fig.autofmt_xdate() if folder is not None: fname = os.path.join(folder, 'percentage_passing_%s.png' % category) fig.savefig(fname, bbox_inches='tight', dpi=600) def plot_number_passing(dates, fail, none, other, passing, category, folder=None): fig = plt.figure(facecolor='white', figsize=(12, 8)) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%Y')) plt.gca().xaxis.set_minor_locator(mdates.DayLocator()) plt.gca().set_title('%s Status of Messages' % category) plt.gca().set_ylabel('Number of Messages Received') red_patch = mpatches.Patch(color='#ef3e36', label='FAIL') grey_patch = mpatches.Patch(color='#cccccc', label='NONE') dark_patch = mpatches.Patch(color='#666666', label='OTHER') green_patch = mpatches.Patch(color='#509e2e', label='PASS') fail = np.array(fail) # Else the + operator appends rather than summing! # handles = [red_patch] plt.bar(dates, fail, color='#ef3e36', edgecolor='none') bottom = fail if none is not None: plt.bar(dates, none, bottom=bottom, color='#cccccc', edgecolor='none') handles.append(grey_patch) bottom += none if other is not None: plt.bar(dates, other, bottom=bottom, color='#666666', edgecolor='none') handles.append(dark_patch) bottom += other plt.bar(dates, passing, bottom=bottom, color='#509e2e', edgecolor='none') bottom += passing handles.append(green_patch) handles.reverse() # plt.ylim((0, np.around(bottom.max() + 50, -2))) # Round max Y value to nearest 100 plt.legend(handles=handles, loc=2) fig.autofmt_xdate() if folder is not None: fname = os.path.join(folder, 'number_passing_%s.png' % category) fig.savefig(fname, bbox_inches='tight', dpi=600) def generate_report(n_reports, min_time, max_time, by_disposition, by_host, by_receiver, dkim_domains, by_status, folder=None): report = "Isaac Emails From %s to %s\n" % (min_time, max_time) report += "\t %d emails in %d reports\n" % (sum(by_disposition.values()), n_reports) report += "\n\n" TOPN = 25 LJUST = 64 RJUST = 7 LINELENGTH = 74 report += "Of all email sent:\n" report += " - %6d emails have been rejected\n" % by_disposition.get("reject", 0) report += " - %6d emails have been quarantined\n" % by_disposition.get("quarantine", 0) report += " - %6d emails had no policy applied\n" % by_disposition.get("none", 0) if by_disposition.get("reject", 0) + by_disposition.get("quarantine", 0) == 0: report += "Publishing a 'reject' policy would have discarded %d emails.\n" % by_status.get("SPF:fail, DKIM:fail", 0) report += "\n\n" report += "Sender Hostname".ljust(LJUST) + "|" + "Sent".rjust(RJUST) + "\n" report += "=" * LINELENGTH + "\n" for host in sorted(by_host.keys(), key=lambda x: by_host[x], reverse=True)[:TOPN]: report += host.ljust(LJUST) + "|" + str(by_host[host]).rjust(RJUST) + "\n" if len(by_host) > TOPN: report += "...".ljust(LJUST) + "|" + "...".rjust(RJUST) + "\n" others = sum(sorted(by_host.values(), reverse=True)[TOPN:]) report += "[Others]".ljust(LJUST) + "|" + str(others).rjust(RJUST) report += "\n\n\n" report += "Receiver Name".ljust(LJUST) + "|" + "Count".rjust(RJUST) + "\n" report += "=" * LINELENGTH + "\n" for rec in sorted(by_receiver.keys(), key=lambda x: by_receiver[x], reverse=True)[:TOPN]: report += rec.ljust(LJUST) + "|" + str(by_receiver[rec]).rjust(RJUST) + "\n" if len(by_receiver) > TOPN: report += "...".ljust(LJUST) + "|" + "...".rjust(RJUST) + "\n" others = sum(sorted(by_receiver.values(), reverse=True)[TOPN:]) report += "[Others]".ljust(LJUST) + "|" + str(others).rjust(RJUST) + "\n" report += "\n\n\n" report += "DKIM Signing Domain".ljust(LJUST) + "|" + "Count".rjust(RJUST) + "\n" report += "=" * LINELENGTH + "\n" for domain in sorted(dkim_domains.keys(), key=lambda x: dkim_domains[x], reverse=True)[:TOPN]: report += domain.ljust(LJUST) + "|" + str(dkim_domains[domain]).rjust(RJUST) + "\n" if len(dkim_domains) > TOPN: report += "...".ljust(LJUST) + "|" + "...".rjust(RJUST) + "\n" others = sum(sorted(dkim_domains.values(), reverse=True)[TOPN:]) report += "[Others]".ljust(LJUST) + "|" + str(others).rjust(RJUST) + "\n" report += "\n\n\n" report += "DMARC Status".ljust(LJUST) + "|" + "Count".rjust(RJUST) + "\n" report += "=" * LINELENGTH + "\n" for rec in sorted(by_status.keys(), key=lambda x: by_status[x], reverse=True): report += rec.ljust(LJUST) + "|" + str(by_status[rec]).rjust(RJUST) + "\n" report += "\n\n\n" report += "Policy Applied".ljust(LJUST) + "|" + "Count".rjust(RJUST) + "\n" report += "=" * LINELENGTH + "\n" for rec in sorted(by_disposition.keys(), key=lambda x: by_disposition[x], reverse=True): report += rec.ljust(LJUST) + "|" + str(by_disposition[rec]).rjust(RJUST) + "\n" if folder is not None: fname = os.path.join(folder, 'report.txt') with open(fname, "w") as report_file: report_file.write(report) return report def _parse_and_truncate_timestamp(timestamp): # Convert from an interger timestamp to a datetime object: dt = datetime.datetime.utcfromtimestamp(timestamp) # Turn this into just a date, stripping out the time part! return datetime.date(dt.year, dt.month, dt.day) if __name__ == "__main__": # Allow specification of parameters at runtime: options = argparse.ArgumentParser(description="Analyse DMARC reports stored in a databse.") options.add_argument("-w", "--writefiles", help="write reports and graphs to files as well as stdout", action="store_true") options.add_argument("-o", "--outputfolder", help="output report and graphs to specified folder", default="./results") args = options.parse_args() # Choose the output folder: dest_folder = args.outputfolder if args.writefiles else None if dest_folder is None: print "Not saving report or graphs to disk!" if (dest_folder is not None) and (not os.path.exists(dest_folder)): os.makedirs(dest_folder) # Connect to the databse: sqlite_db = DMARCStorage() # Generate a text report summary: n_reports = sqlite_db.get_number_reports() min_t = sqlite_db.get_reporting_start_date() max_t = sqlite_db.get_reporting_end_date() by_disposition = sqlite_db.get_count_by_disposition() by_host = sqlite_db.get_count_by_hostnames() by_receiver = sqlite_db.get_count_by_receiver() dkim_domains = sqlite_db.get_count_by_dkim_domain() by_status = sqlite_db.get_count_by_status_string() print generate_report(n_reports, min_t, max_t, by_disposition, by_host, by_receiver, dkim_domains, by_status, dest_folder) # Produce graphs showing SPF status of messages: res = sqlite_db.get_raw_spf_status_count_by_timestamp() spf_passes = dict() spf_fails = dict() for r in res: date = _parse_and_truncate_timestamp(r[0]) if date not in spf_passes: spf_passes[date] = 0 if date not in spf_fails: spf_fails[date] = 0 if r[1] == 1: spf_passes[date] += r[2] else: spf_fails[date] += r[2] dates = sorted(spf_passes.keys()) spf_passes = [spf_passes[d] for d in dates] spf_fails = [spf_fails[d] for d in dates] plot_number_passing(dates, spf_fails, None, None, spf_passes, "SPF", dest_folder) plot_percentage_passing(dates, spf_fails, None, None, spf_passes, "SPF", dest_folder) # Produce graphs showing DKIM status of messages: res = sqlite_db.get_raw_dkim_status_count_by_timestamp() dkim_passes = dict() dkim_fails = dict() for r in res: date = _parse_and_truncate_timestamp(r[0]) if date not in dkim_passes: dkim_passes[date] = 0 if date not in dkim_fails: dkim_fails[date] = 0 if r[1] == 1: dkim_passes[date] += r[2] else: dkim_fails[date] += r[2] dates = sorted(dkim_passes.keys()) dkim_passes = [dkim_passes[d] for d in dates] dkim_fails = [dkim_fails[d] for d in dates] plot_number_passing(dates, dkim_fails, None, None, dkim_passes, "DKIM", dest_folder) plot_percentage_passing(dates, dkim_fails, None, None, dkim_passes, "DKIM", dest_folder) # Produce graphs showing DMARC status of messages: res = sqlite_db.get_raw_dmarc_status_count_by_timestamp() dmarc_passes = dict() dmarc_fails = dict() for r in res: date = _parse_and_truncate_timestamp(r[0]) if date not in dmarc_passes: dmarc_passes[date] = 0 if date not in dmarc_fails: dmarc_fails[date] = 0 if r[1] > 0: # If one or both of SPF and DKIM passed, DMARC passes dmarc_passes[date] += r[2] else: dmarc_fails[date] += r[2] dates = sorted(dmarc_passes.keys()) dmarc_passes = [dmarc_passes[d] for d in dates] dmarc_fails = [dmarc_fails[d] for d in dates] plot_number_passing(dates, dmarc_fails, None, None, dmarc_passes, "DMARC", dest_folder) plot_percentage_passing(dates, dmarc_fails, None, None, dmarc_passes, "DMARC", dest_folder) # # plt.show()
mit
idlead/scikit-learn
sklearn/ensemble/partial_dependence.py
251
15097
"""Partial dependence plots for tree ensembles. """ # Authors: Peter Prettenhofer # License: BSD 3 clause from itertools import count import numbers import numpy as np from scipy.stats.mstats import mquantiles from ..utils.extmath import cartesian from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import map, range, zip from ..utils import check_array from ..tree._tree import DTYPE from ._gradient_boosting import _partial_dependence_tree from .gradient_boosting import BaseGradientBoosting def _grid_from_X(X, percentiles=(0.05, 0.95), grid_resolution=100): """Generate a grid of points based on the ``percentiles of ``X``. The grid is generated by placing ``grid_resolution`` equally spaced points between the ``percentiles`` of each column of ``X``. Parameters ---------- X : ndarray The data percentiles : tuple of floats The percentiles which are used to construct the extreme values of the grid axes. grid_resolution : int The number of equally spaced points that are placed on the grid. Returns ------- grid : ndarray All data points on the grid; ``grid.shape[1] == X.shape[1]`` and ``grid.shape[0] == grid_resolution * X.shape[1]``. axes : seq of ndarray The axes with which the grid has been created. """ if len(percentiles) != 2: raise ValueError('percentile must be tuple of len 2') if not all(0. <= x <= 1. for x in percentiles): raise ValueError('percentile values must be in [0, 1]') axes = [] for col in range(X.shape[1]): uniques = np.unique(X[:, col]) if uniques.shape[0] < grid_resolution: # feature has low resolution use unique vals axis = uniques else: emp_percentiles = mquantiles(X, prob=percentiles, axis=0) # create axis based on percentiles and grid resolution axis = np.linspace(emp_percentiles[0, col], emp_percentiles[1, col], num=grid_resolution, endpoint=True) axes.append(axis) return cartesian(axes), axes def partial_dependence(gbrt, target_variables, grid=None, X=None, percentiles=(0.05, 0.95), grid_resolution=100): """Partial dependence of ``target_variables``. Partial dependence plots show the dependence between the joint values of the ``target_variables`` and the function represented by the ``gbrt``. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. target_variables : array-like, dtype=int The target features for which the partial dependecy should be computed (size should be smaller than 3 for visual renderings). grid : array-like, shape=(n_points, len(target_variables)) The grid of ``target_variables`` values for which the partial dependecy should be evaluated (either ``grid`` or ``X`` must be specified). X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. It is used to generate a ``grid`` for the ``target_variables``. The ``grid`` comprises ``grid_resolution`` equally spaced points between the two ``percentiles``. percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used create the extreme values for the ``grid``. Only if ``X`` is not None. grid_resolution : int, default=100 The number of equally spaced points on the ``grid``. Returns ------- pdp : array, shape=(n_classes, n_points) The partial dependence function evaluated on the ``grid``. For regression and binary classification ``n_classes==1``. axes : seq of ndarray or None The axes with which the grid has been created or None if the grid has been given. Examples -------- >>> samples = [[0, 0, 2], [1, 0, 0]] >>> labels = [0, 1] >>> from sklearn.ensemble import GradientBoostingClassifier >>> gb = GradientBoostingClassifier(random_state=0).fit(samples, labels) >>> kwargs = dict(X=samples, percentiles=(0, 1), grid_resolution=2) >>> partial_dependence(gb, [0], **kwargs) # doctest: +SKIP (array([[-4.52..., 4.52...]]), [array([ 0., 1.])]) """ if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) if (grid is None and X is None) or (grid is not None and X is not None): raise ValueError('Either grid or X must be specified') target_variables = np.asarray(target_variables, dtype=np.int32, order='C').ravel() if any([not (0 <= fx < gbrt.n_features) for fx in target_variables]): raise ValueError('target_variables must be in [0, %d]' % (gbrt.n_features - 1)) if X is not None: X = check_array(X, dtype=DTYPE, order='C') grid, axes = _grid_from_X(X[:, target_variables], percentiles, grid_resolution) else: assert grid is not None # dont return axes if grid is given axes = None # grid must be 2d if grid.ndim == 1: grid = grid[:, np.newaxis] if grid.ndim != 2: raise ValueError('grid must be 2d but is %dd' % grid.ndim) grid = np.asarray(grid, dtype=DTYPE, order='C') assert grid.shape[1] == target_variables.shape[0] n_trees_per_stage = gbrt.estimators_.shape[1] n_estimators = gbrt.estimators_.shape[0] pdp = np.zeros((n_trees_per_stage, grid.shape[0],), dtype=np.float64, order='C') for stage in range(n_estimators): for k in range(n_trees_per_stage): tree = gbrt.estimators_[stage, k].tree_ _partial_dependence_tree(tree, grid, target_variables, gbrt.learning_rate, pdp[k]) return pdp, axes def plot_partial_dependence(gbrt, X, features, feature_names=None, label=None, n_cols=3, grid_resolution=100, percentiles=(0.05, 0.95), n_jobs=1, verbose=0, ax=None, line_kw=None, contour_kw=None, **fig_kw): """Partial dependence plots for ``features``. The ``len(features)`` plots are arranged in a grid with ``n_cols`` columns. Two-way partial dependence plots are plotted as contour plots. Read more in the :ref:`User Guide <partial_dependence>`. Parameters ---------- gbrt : BaseGradientBoosting A fitted gradient boosting model. X : array-like, shape=(n_samples, n_features) The data on which ``gbrt`` was trained. features : seq of tuples or ints If seq[i] is an int or a tuple with one int value, a one-way PDP is created; if seq[i] is a tuple of two ints, a two-way PDP is created. feature_names : seq of str Name of each feature; feature_names[i] holds the name of the feature with index i. label : object The class label for which the PDPs should be computed. Only if gbrt is a multi-class model. Must be in ``gbrt.classes_``. n_cols : int The number of columns in the grid plot (default: 3). percentiles : (low, high), default=(0.05, 0.95) The lower and upper percentile used to create the extreme values for the PDP axes. grid_resolution : int, default=100 The number of equally spaced points on the axes. n_jobs : int The number of CPUs to use to compute the PDs. -1 means 'all CPUs'. Defaults to 1. verbose : int Verbose output during PD computations. Defaults to 0. ax : Matplotlib axis object, default None An axis object onto which the plots will be drawn. line_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For one-way partial dependence plots. contour_kw : dict Dict with keywords passed to the ``pylab.plot`` call. For two-way partial dependence plots. fig_kw : dict Dict with keywords passed to the figure() call. Note that all keywords not recognized above will be automatically included here. Returns ------- fig : figure The Matplotlib Figure object. axs : seq of Axis objects A seq of Axis objects, one for each subplot. Examples -------- >>> from sklearn.datasets import make_friedman1 >>> from sklearn.ensemble import GradientBoostingRegressor >>> X, y = make_friedman1() >>> clf = GradientBoostingRegressor(n_estimators=10).fit(X, y) >>> fig, axs = plot_partial_dependence(clf, X, [0, (0, 1)]) #doctest: +SKIP ... """ import matplotlib.pyplot as plt from matplotlib import transforms from matplotlib.ticker import MaxNLocator from matplotlib.ticker import ScalarFormatter if not isinstance(gbrt, BaseGradientBoosting): raise ValueError('gbrt has to be an instance of BaseGradientBoosting') if gbrt.estimators_.shape[0] == 0: raise ValueError('Call %s.fit before partial_dependence' % gbrt.__class__.__name__) # set label_idx for multi-class GBRT if hasattr(gbrt, 'classes_') and np.size(gbrt.classes_) > 2: if label is None: raise ValueError('label is not given for multi-class PDP') label_idx = np.searchsorted(gbrt.classes_, label) if gbrt.classes_[label_idx] != label: raise ValueError('label %s not in ``gbrt.classes_``' % str(label)) else: # regression and binary classification label_idx = 0 X = check_array(X, dtype=DTYPE, order='C') if gbrt.n_features != X.shape[1]: raise ValueError('X.shape[1] does not match gbrt.n_features') if line_kw is None: line_kw = {'color': 'green'} if contour_kw is None: contour_kw = {} # convert feature_names to list if feature_names is None: # if not feature_names use fx indices as name feature_names = [str(i) for i in range(gbrt.n_features)] elif isinstance(feature_names, np.ndarray): feature_names = feature_names.tolist() def convert_feature(fx): if isinstance(fx, six.string_types): try: fx = feature_names.index(fx) except ValueError: raise ValueError('Feature %s not in feature_names' % fx) return fx # convert features into a seq of int tuples tmp_features = [] for fxs in features: if isinstance(fxs, (numbers.Integral,) + six.string_types): fxs = (fxs,) try: fxs = np.array([convert_feature(fx) for fx in fxs], dtype=np.int32) except TypeError: raise ValueError('features must be either int, str, or tuple ' 'of int/str') if not (1 <= np.size(fxs) <= 2): raise ValueError('target features must be either one or two') tmp_features.append(fxs) features = tmp_features names = [] try: for fxs in features: l = [] # explicit loop so "i" is bound for exception below for i in fxs: l.append(feature_names[i]) names.append(l) except IndexError: raise ValueError('features[i] must be in [0, n_features) ' 'but was %d' % i) # compute PD functions pd_result = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(partial_dependence)(gbrt, fxs, X=X, grid_resolution=grid_resolution, percentiles=percentiles) for fxs in features) # get global min and max values of PD grouped by plot type pdp_lim = {} for pdp, axes in pd_result: min_pd, max_pd = pdp[label_idx].min(), pdp[label_idx].max() n_fx = len(axes) old_min_pd, old_max_pd = pdp_lim.get(n_fx, (min_pd, max_pd)) min_pd = min(min_pd, old_min_pd) max_pd = max(max_pd, old_max_pd) pdp_lim[n_fx] = (min_pd, max_pd) # create contour levels for two-way plots if 2 in pdp_lim: Z_level = np.linspace(*pdp_lim[2], num=8) if ax is None: fig = plt.figure(**fig_kw) else: fig = ax.get_figure() fig.clear() n_cols = min(n_cols, len(features)) n_rows = int(np.ceil(len(features) / float(n_cols))) axs = [] for i, fx, name, (pdp, axes) in zip(count(), features, names, pd_result): ax = fig.add_subplot(n_rows, n_cols, i + 1) if len(axes) == 1: ax.plot(axes[0], pdp[label_idx].ravel(), **line_kw) else: # make contour plot assert len(axes) == 2 XX, YY = np.meshgrid(axes[0], axes[1]) Z = pdp[label_idx].reshape(list(map(np.size, axes))).T CS = ax.contour(XX, YY, Z, levels=Z_level, linewidths=0.5, colors='k') ax.contourf(XX, YY, Z, levels=Z_level, vmax=Z_level[-1], vmin=Z_level[0], alpha=0.75, **contour_kw) ax.clabel(CS, fmt='%2.2f', colors='k', fontsize=10, inline=True) # plot data deciles + axes labels deciles = mquantiles(X[:, fx[0]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) ylim = ax.get_ylim() ax.vlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_xlabel(name[0]) ax.set_ylim(ylim) # prevent x-axis ticks from overlapping ax.xaxis.set_major_locator(MaxNLocator(nbins=6, prune='lower')) tick_formatter = ScalarFormatter() tick_formatter.set_powerlimits((-3, 4)) ax.xaxis.set_major_formatter(tick_formatter) if len(axes) > 1: # two-way PDP - y-axis deciles + labels deciles = mquantiles(X[:, fx[1]], prob=np.arange(0.1, 1.0, 0.1)) trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) xlim = ax.get_xlim() ax.hlines(deciles, [0], 0.05, transform=trans, color='k') ax.set_ylabel(name[1]) # hline erases xlim ax.set_xlim(xlim) else: ax.set_ylabel('Partial dependence') if len(axes) == 1: ax.set_ylim(pdp_lim[1]) axs.append(ax) fig.subplots_adjust(bottom=0.15, top=0.7, left=0.1, right=0.95, wspace=0.4, hspace=0.3) return fig, axs
bsd-3-clause
pprett/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
lmallin/coverage_test
python_venv/lib/python2.7/site-packages/pandas/tests/tseries/test_holiday.py
6
16104
import pytest from datetime import datetime import pandas.util.testing as tm from pandas import compat from pandas import DatetimeIndex from pandas.tseries.holiday import (USFederalHolidayCalendar, USMemorialDay, USThanksgivingDay, nearest_workday, next_monday_or_tuesday, next_monday, previous_friday, sunday_to_monday, Holiday, DateOffset, MO, SA, Timestamp, AbstractHolidayCalendar, get_calendar, HolidayCalendarFactory, next_workday, previous_workday, before_nearest_workday, EasterMonday, GoodFriday, after_nearest_workday, weekend_to_monday, USLaborDay, USColumbusDay, USMartinLutherKingJr, USPresidentsDay) from pytz import utc class TestCalendar(object): def setup_method(self, method): self.holiday_list = [ datetime(2012, 1, 2), datetime(2012, 1, 16), datetime(2012, 2, 20), datetime(2012, 5, 28), datetime(2012, 7, 4), datetime(2012, 9, 3), datetime(2012, 10, 8), datetime(2012, 11, 12), datetime(2012, 11, 22), datetime(2012, 12, 25)] self.start_date = datetime(2012, 1, 1) self.end_date = datetime(2012, 12, 31) def test_calendar(self): calendar = USFederalHolidayCalendar() holidays = calendar.holidays(self.start_date, self.end_date) holidays_1 = calendar.holidays( self.start_date.strftime('%Y-%m-%d'), self.end_date.strftime('%Y-%m-%d')) holidays_2 = calendar.holidays( Timestamp(self.start_date), Timestamp(self.end_date)) assert list(holidays.to_pydatetime()) == self.holiday_list assert list(holidays_1.to_pydatetime()) == self.holiday_list assert list(holidays_2.to_pydatetime()) == self.holiday_list def test_calendar_caching(self): # Test for issue #9552 class TestCalendar(AbstractHolidayCalendar): def __init__(self, name=None, rules=None): super(TestCalendar, self).__init__(name=name, rules=rules) jan1 = TestCalendar(rules=[Holiday('jan1', year=2015, month=1, day=1)]) jan2 = TestCalendar(rules=[Holiday('jan2', year=2015, month=1, day=2)]) tm.assert_index_equal(jan1.holidays(), DatetimeIndex(['01-Jan-2015'])) tm.assert_index_equal(jan2.holidays(), DatetimeIndex(['02-Jan-2015'])) def test_calendar_observance_dates(self): # Test for issue 11477 USFedCal = get_calendar('USFederalHolidayCalendar') holidays0 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 3)) # <-- same start and end dates holidays1 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 6)) # <-- different start and end dates holidays2 = USFedCal.holidays(datetime(2015, 7, 3), datetime( 2015, 7, 3)) # <-- same start and end dates tm.assert_index_equal(holidays0, holidays1) tm.assert_index_equal(holidays0, holidays2) def test_rule_from_name(self): USFedCal = get_calendar('USFederalHolidayCalendar') assert USFedCal.rule_from_name('Thanksgiving') == USThanksgivingDay class TestHoliday(object): def setup_method(self, method): self.start_date = datetime(2011, 1, 1) self.end_date = datetime(2020, 12, 31) def check_results(self, holiday, start, end, expected): assert list(holiday.dates(start, end)) == expected # Verify that timezone info is preserved. assert (list(holiday.dates(utc.localize(Timestamp(start)), utc.localize(Timestamp(end)))) == [utc.localize(dt) for dt in expected]) def test_usmemorialday(self): self.check_results(holiday=USMemorialDay, start=self.start_date, end=self.end_date, expected=[ datetime(2011, 5, 30), datetime(2012, 5, 28), datetime(2013, 5, 27), datetime(2014, 5, 26), datetime(2015, 5, 25), datetime(2016, 5, 30), datetime(2017, 5, 29), datetime(2018, 5, 28), datetime(2019, 5, 27), datetime(2020, 5, 25), ], ) def test_non_observed_holiday(self): self.check_results( Holiday('July 4th Eve', month=7, day=3), start="2001-01-01", end="2003-03-03", expected=[ Timestamp('2001-07-03 00:00:00'), Timestamp('2002-07-03 00:00:00') ] ) self.check_results( Holiday('July 4th Eve', month=7, day=3, days_of_week=(0, 1, 2, 3)), start="2001-01-01", end="2008-03-03", expected=[ Timestamp('2001-07-03 00:00:00'), Timestamp('2002-07-03 00:00:00'), Timestamp('2003-07-03 00:00:00'), Timestamp('2006-07-03 00:00:00'), Timestamp('2007-07-03 00:00:00'), ] ) def test_easter(self): self.check_results(EasterMonday, start=self.start_date, end=self.end_date, expected=[ Timestamp('2011-04-25 00:00:00'), Timestamp('2012-04-09 00:00:00'), Timestamp('2013-04-01 00:00:00'), Timestamp('2014-04-21 00:00:00'), Timestamp('2015-04-06 00:00:00'), Timestamp('2016-03-28 00:00:00'), Timestamp('2017-04-17 00:00:00'), Timestamp('2018-04-02 00:00:00'), Timestamp('2019-04-22 00:00:00'), Timestamp('2020-04-13 00:00:00'), ], ) self.check_results(GoodFriday, start=self.start_date, end=self.end_date, expected=[ Timestamp('2011-04-22 00:00:00'), Timestamp('2012-04-06 00:00:00'), Timestamp('2013-03-29 00:00:00'), Timestamp('2014-04-18 00:00:00'), Timestamp('2015-04-03 00:00:00'), Timestamp('2016-03-25 00:00:00'), Timestamp('2017-04-14 00:00:00'), Timestamp('2018-03-30 00:00:00'), Timestamp('2019-04-19 00:00:00'), Timestamp('2020-04-10 00:00:00'), ], ) def test_usthanksgivingday(self): self.check_results(USThanksgivingDay, start=self.start_date, end=self.end_date, expected=[ datetime(2011, 11, 24), datetime(2012, 11, 22), datetime(2013, 11, 28), datetime(2014, 11, 27), datetime(2015, 11, 26), datetime(2016, 11, 24), datetime(2017, 11, 23), datetime(2018, 11, 22), datetime(2019, 11, 28), datetime(2020, 11, 26), ], ) def test_holidays_within_dates(self): # Fix holiday behavior found in #11477 # where holiday.dates returned dates outside start/end date # or observed rules could not be applied as the holiday # was not in the original date range (e.g., 7/4/2015 -> 7/3/2015) start_date = datetime(2015, 7, 1) end_date = datetime(2015, 7, 1) calendar = get_calendar('USFederalHolidayCalendar') new_years = calendar.rule_from_name('New Years Day') july_4th = calendar.rule_from_name('July 4th') veterans_day = calendar.rule_from_name('Veterans Day') christmas = calendar.rule_from_name('Christmas') # Holiday: (start/end date, holiday) holidays = {USMemorialDay: ("2015-05-25", "2015-05-25"), USLaborDay: ("2015-09-07", "2015-09-07"), USColumbusDay: ("2015-10-12", "2015-10-12"), USThanksgivingDay: ("2015-11-26", "2015-11-26"), USMartinLutherKingJr: ("2015-01-19", "2015-01-19"), USPresidentsDay: ("2015-02-16", "2015-02-16"), GoodFriday: ("2015-04-03", "2015-04-03"), EasterMonday: [("2015-04-06", "2015-04-06"), ("2015-04-05", [])], new_years: [("2015-01-01", "2015-01-01"), ("2011-01-01", []), ("2010-12-31", "2010-12-31")], july_4th: [("2015-07-03", "2015-07-03"), ("2015-07-04", [])], veterans_day: [("2012-11-11", []), ("2012-11-12", "2012-11-12")], christmas: [("2011-12-25", []), ("2011-12-26", "2011-12-26")]} for rule, dates in compat.iteritems(holidays): empty_dates = rule.dates(start_date, end_date) assert empty_dates.tolist() == [] if isinstance(dates, tuple): dates = [dates] for start, expected in dates: if len(expected): expected = [Timestamp(expected)] self.check_results(rule, start, start, expected) def test_argument_types(self): holidays = USThanksgivingDay.dates(self.start_date, self.end_date) holidays_1 = USThanksgivingDay.dates( self.start_date.strftime('%Y-%m-%d'), self.end_date.strftime('%Y-%m-%d')) holidays_2 = USThanksgivingDay.dates( Timestamp(self.start_date), Timestamp(self.end_date)) tm.assert_index_equal(holidays, holidays_1) tm.assert_index_equal(holidays, holidays_2) def test_special_holidays(self): base_date = [datetime(2012, 5, 28)] holiday_1 = Holiday('One-Time', year=2012, month=5, day=28) holiday_2 = Holiday('Range', month=5, day=28, start_date=datetime(2012, 1, 1), end_date=datetime(2012, 12, 31), offset=DateOffset(weekday=MO(1))) assert base_date == holiday_1.dates(self.start_date, self.end_date) assert base_date == holiday_2.dates(self.start_date, self.end_date) def test_get_calendar(self): class TestCalendar(AbstractHolidayCalendar): rules = [] calendar = get_calendar('TestCalendar') assert TestCalendar == calendar.__class__ def test_factory(self): class_1 = HolidayCalendarFactory('MemorialDay', AbstractHolidayCalendar, USMemorialDay) class_2 = HolidayCalendarFactory('Thansksgiving', AbstractHolidayCalendar, USThanksgivingDay) class_3 = HolidayCalendarFactory('Combined', class_1, class_2) assert len(class_1.rules) == 1 assert len(class_2.rules) == 1 assert len(class_3.rules) == 2 class TestObservanceRules(object): def setup_method(self, method): self.we = datetime(2014, 4, 9) self.th = datetime(2014, 4, 10) self.fr = datetime(2014, 4, 11) self.sa = datetime(2014, 4, 12) self.su = datetime(2014, 4, 13) self.mo = datetime(2014, 4, 14) self.tu = datetime(2014, 4, 15) def test_next_monday(self): assert next_monday(self.sa) == self.mo assert next_monday(self.su) == self.mo def test_next_monday_or_tuesday(self): assert next_monday_or_tuesday(self.sa) == self.mo assert next_monday_or_tuesday(self.su) == self.tu assert next_monday_or_tuesday(self.mo) == self.tu def test_previous_friday(self): assert previous_friday(self.sa) == self.fr assert previous_friday(self.su) == self.fr def test_sunday_to_monday(self): assert sunday_to_monday(self.su) == self.mo def test_nearest_workday(self): assert nearest_workday(self.sa) == self.fr assert nearest_workday(self.su) == self.mo assert nearest_workday(self.mo) == self.mo def test_weekend_to_monday(self): assert weekend_to_monday(self.sa) == self.mo assert weekend_to_monday(self.su) == self.mo assert weekend_to_monday(self.mo) == self.mo def test_next_workday(self): assert next_workday(self.sa) == self.mo assert next_workday(self.su) == self.mo assert next_workday(self.mo) == self.tu def test_previous_workday(self): assert previous_workday(self.sa) == self.fr assert previous_workday(self.su) == self.fr assert previous_workday(self.tu) == self.mo def test_before_nearest_workday(self): assert before_nearest_workday(self.sa) == self.th assert before_nearest_workday(self.su) == self.fr assert before_nearest_workday(self.tu) == self.mo def test_after_nearest_workday(self): assert after_nearest_workday(self.sa) == self.mo assert after_nearest_workday(self.su) == self.tu assert after_nearest_workday(self.fr) == self.mo class TestFederalHolidayCalendar(object): def test_no_mlk_before_1984(self): # see gh-10278 class MLKCalendar(AbstractHolidayCalendar): rules = [USMartinLutherKingJr] holidays = MLKCalendar().holidays(start='1984', end='1988').to_pydatetime().tolist() # Testing to make sure holiday is not incorrectly observed before 1986 assert holidays == [datetime(1986, 1, 20, 0, 0), datetime(1987, 1, 19, 0, 0)] def test_memorial_day(self): class MemorialDay(AbstractHolidayCalendar): rules = [USMemorialDay] holidays = MemorialDay().holidays(start='1971', end='1980').to_pydatetime().tolist() # Fixes 5/31 error and checked manually against Wikipedia assert holidays == [datetime(1971, 5, 31, 0, 0), datetime(1972, 5, 29, 0, 0), datetime(1973, 5, 28, 0, 0), datetime(1974, 5, 27, 0, 0), datetime(1975, 5, 26, 0, 0), datetime(1976, 5, 31, 0, 0), datetime(1977, 5, 30, 0, 0), datetime(1978, 5, 29, 0, 0), datetime(1979, 5, 28, 0, 0)] class TestHolidayConflictingArguments(object): def test_both_offset_observance_raises(self): # see gh-10217 with pytest.raises(NotImplementedError): Holiday("Cyber Monday", month=11, day=1, offset=[DateOffset(weekday=SA(4))], observance=next_monday)
mit
vortex-ape/scikit-learn
sklearn/decomposition/__init__.py
21
1390
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, non_negative_factorization from .pca import PCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'non_negative_factorization', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
amdouglas/OpenPNM
OpenPNM/Network/__GenericNetwork__.py
1
40997
# -*- coding: utf-8 -*- """ =============================================================================== GenericNetwork: Abstract class to construct pore networks =============================================================================== """ import scipy as sp import scipy.sparse as sprs import scipy.spatial as sptl import OpenPNM.Utilities.misc as misc from OpenPNM.Utilities import topology from OpenPNM.Base import Core, Controller, Tools, logging logger = logging.getLogger(__name__) ctrl = Controller() topo = topology() class GenericNetwork(Core): r""" GenericNetwork - Base class to construct pore networks Parameters ---------- name : string Unique name for Network object """ def __init__(self, **kwargs): super().__init__(**kwargs) logger.name = self.name # Initialize adjacency and incidence matrix dictionaries self._incidence_matrix = {} self._adjacency_matrix = {} def __setitem__(self, prop, value): if prop == 'throat.conns': if sp.shape(value)[1] != 2: logger.error('Wrong size for throat conns!') else: mask = value[:, 0] > value[:, 1] if mask.any(): logger.debug('The first column in (throat.conns) should be \ smaller than the second one.') v1 = sp.copy(value[:, 0][mask]) v2 = sp.copy(value[:, 1][mask]) value[:, 0][mask] = v2 value[:, 1][mask] = v1 for geom in self._geometries: if (prop in geom.keys()) and ('all' not in prop.split('.')): logger.error(prop + ' is already defined in at least one associated \ Geometry object') return super().__setitem__(prop, value) def __getitem__(self, key): if key.split('.')[-1] == self.name: element = key.split('.')[0] return self[element+'.all'] if key not in self.keys(): logger.debug(key + ' not on Network, constructing data from Geometries') return self._interleave_data(key, self.geometries()) else: return super().__getitem__(key) def _set_net(self, network): pass def _get_net(self): return self _net = property(fset=_set_net, fget=_get_net) def create_adjacency_matrix(self, data=None, sprsfmt='coo', dropzeros=True, sym=True): r""" Generates a weighted adjacency matrix in the desired sparse format Parameters ---------- data : array_like, optional An array containing the throat values to enter into the matrix (in graph theory these are known as the 'weights'). If omitted, ones are used to create a standard adjacency matrix representing connectivity only. sprsfmt : string, optional The sparse storage format to return. Options are: * 'coo' : (default) This is the native format of OpenPNM data * 'lil' : Enables row-wise slice of data * 'csr' : Favored by most linear algebra routines dropzeros : boolean, optional Remove 0 elements from the values, instead of creating 0-weighted links, the default is True. sym : Boolean, optional Makes the matrix symmetric about the diagonal, the default is true. Returns ------- Returns an adjacency matrix in the specified Scipy sparse format Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> vals = sp.rand(pn.num_throats(),) < 0.5 >>> temp = pn.create_adjacency_matrix(data=vals, sprsfmt='csr') """ logger.debug('create_adjacency_matrix: Start of method') Np = self.num_pores() Nt = self.num_throats() # Check if provided data is valid if data is None: data = sp.ones((self.num_throats(),)) elif sp.shape(data)[0] != Nt: raise Exception('Received dataset of incorrect length') # Clear any zero-weighted connections if dropzeros: ind = data > 0 else: ind = sp.ones_like(data, dtype=bool) # Get connectivity info from network conn = self['throat.conns'][ind] row = conn[:, 0] col = conn[:, 1] data = data[ind] # Append row & col to each other, and data to itself if sym: row = sp.append(row, conn[:, 1]) col = sp.append(col, conn[:, 0]) data = sp.append(data, data) # Generate sparse adjacency matrix in 'coo' format temp = sprs.coo_matrix((data, (row, col)), (Np, Np)) # Convert to requested format if sprsfmt == 'coo': pass # temp is already in coo format if sprsfmt == 'csr': temp = temp.tocsr() if sprsfmt == 'lil': temp = temp.tolil() logger.debug('create_adjacency_matrix: End of method') return temp def create_incidence_matrix(self, data=None, sprsfmt='coo', dropzeros=True): r""" Creates an incidence matrix filled with supplied throat values Parameters ---------- data : array_like, optional An array containing the throat values to enter into the matrix (In graph theory these are known as the 'weights'). If omitted, ones are used to create a standard incidence matrix representing connectivity only. sprsfmt : string, optional The sparse storage format to return. Options are: * 'coo' : (default) This is the native format of OpenPNMs data * 'lil' : Enables row-wise slice of data * 'csr' : Favored by most linear algebra routines dropzeros : Boolean, optional Remove 0 elements from values, instead of creating 0-weighted links, the default is True. Returns ------- An incidence matrix (a cousin to the adjacency matrix, useful for finding throats of given a pore) Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> vals = sp.rand(pn.num_throats(),) < 0.5 >>> temp = pn.create_incidence_matrix(data=vals,sprsfmt='csr') """ logger.debug('create_incidence_matrix: Start of method') Nt = self.num_throats() Np = self.num_pores() # Check if provided data is valid if data is None: data = sp.ones((self.num_throats(),)) elif sp.shape(data)[0] != Nt: raise Exception('Received dataset of incorrect length') if dropzeros: ind = data > 0 else: ind = sp.ones_like(data, dtype=bool) conn = self['throat.conns'][ind] row = conn[:, 0] row = sp.append(row, conn[:, 1]) col = self.throats('all')[ind] col = sp.append(col, col) data = sp.append(data[ind], data[ind]) temp = sprs.coo.coo_matrix((data, (row, col)), (Np, Nt)) # Convert to requested format if sprsfmt == 'coo': pass # temp is already in coo format if sprsfmt == 'csr': temp = temp.tocsr() if sprsfmt == 'lil': temp = temp.tolil() logger.debug('create_incidence_matrix: End of method') return temp def find_connected_pores(self, throats=[], flatten=False): r""" Return a list of pores connected to the given list of throats Parameters ---------- throats : array_like List of throats numbers flatten : boolean, optional If flatten is True (default) a 1D array of unique pore numbers is returned. If flatten is False each location in the the returned array contains a sub-arras of neighboring pores for each input throat, in the order they were sent. Returns ------- 1D array (if flatten is True) or ndarray of arrays (if flatten is False) Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.find_connected_pores(throats=[0,1]) array([[0, 1], [0, 5]]) >>> pn.find_connected_pores(throats=[0,1], flatten=True) array([0, 1, 5]) """ Ts = sp.array(throats, ndmin=1) if Ts.dtype == bool: Ts = self.toindices(Ts) if sp.size(Ts) == 0: return sp.ndarray([0, 2], dtype=int) Ps = self['throat.conns'][Ts] if flatten: Ps = sp.unique(sp.hstack(Ps)) return Ps def find_connecting_throat(self, P1, P2): r""" Return the throat number connecting pairs of pores Parameters ---------- P1 , P2 : array_like The pore numbers whose throats are sought. These can be vectors of pore numbers, but must be the same length Returns ------- Tnum : list of list of int Returns throat number(s), or empty array if pores are not connected Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.find_connecting_throat([0, 1, 2], [2, 2, 2]) [[], [3], []] TODO: This now works on 'vector' inputs, but is not actually vectorized in the Numpy sense, so could be slow with large P1,P2 inputs """ P1 = sp.array(P1, ndmin=1) P2 = sp.array(P2, ndmin=1) Ts1 = self.find_neighbor_throats(P1, flatten=False) Ts2 = self.find_neighbor_throats(P2, flatten=False) Ts = [] for row in range(0, len(P1)): if P1[row] == P2[row]: throat = [] else: throat = sp.intersect1d(Ts1[row], Ts2[row]).tolist() Ts.insert(0, throat) Ts.reverse() return Ts def find_neighbor_pores(self, pores, mode='union', flatten=True, excl_self=True): r""" Returns a list of pores neighboring the given pore(s) Parameters ---------- pores : array_like ID numbers of pores whose neighbors are sought. flatten : boolean, optional If flatten is True a 1D array of unique pore ID numbers is returned. If flatten is False the returned array contains arrays of neighboring pores for each input pore, in the order they were sent. excl_self : bool, optional (Default is False) If this is True then the input pores are not included in the returned list. This option only applies when input pores are in fact neighbors to each other, otherwise they are not part of the returned list anyway. mode : string, optional Specifies which neighbors should be returned. The options are: * 'union' : All neighbors of the input pores * 'intersection' : Only neighbors shared by all input pores * 'not_intersection' : Only neighbors not shared by any input pores Returns ------- neighborPs : 1D array (if flatten is True) or ndarray of ndarrays (if flatten if False) Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.find_neighbor_pores(pores=[0, 2]) array([ 1, 3, 5, 7, 25, 27]) >>> pn.find_neighbor_pores(pores=[0, 1]) array([ 2, 5, 6, 25, 26]) >>> pn.find_neighbor_pores(pores=[0, 1], mode='union', excl_self=False) array([ 0, 1, 2, 5, 6, 25, 26]) >>> pn.find_neighbor_pores(pores=[0, 2],flatten=False) array([array([ 1, 5, 25]), array([ 1, 3, 7, 27])], dtype=object) >>> pn.find_neighbor_pores(pores=[0, 2],mode='intersection') array([1]) >>> pn.find_neighbor_pores(pores=[0, 2],mode='not_intersection') array([ 3, 5, 7, 25, 27]) """ pores = sp.array(pores, ndmin=1) if pores.dtype == bool: pores = self.toindices(pores) if sp.size(pores) == 0: return sp.array([], ndmin=1, dtype=int) # Test for existence of incidence matrix try: neighborPs = self._adjacency_matrix['lil'].rows[[pores]] except: temp = self.create_adjacency_matrix(sprsfmt='lil') self._adjacency_matrix['lil'] = temp neighborPs = self._adjacency_matrix['lil'].rows[[pores]] if [sp.asarray(x) for x in neighborPs if x] == []: return sp.array([], ndmin=1) if flatten: # All the empty lists must be removed to maintain data type after # hstack (numpy bug?) neighborPs = [sp.asarray(x) for x in neighborPs if x] neighborPs = sp.hstack(neighborPs) neighborPs = sp.concatenate((neighborPs, pores)) # Remove references to input pores and duplicates if mode == 'not_intersection': neighborPs = sp.array(sp.unique(sp.where( sp.bincount(neighborPs) == 1)[0]), dtype=int) elif mode == 'union': neighborPs = sp.array(sp.unique(neighborPs), int) elif mode == 'intersection': neighborPs = sp.array(sp.unique(sp.where( sp.bincount(neighborPs) > 1)[0]), dtype=int) if excl_self: neighborPs = neighborPs[~sp.in1d(neighborPs, pores)] else: for i in range(0, sp.size(pores)): neighborPs[i] = sp.array(neighborPs[i], dtype=int) return sp.array(neighborPs, ndmin=1) def find_neighbor_throats(self, pores, mode='union', flatten=True): r""" Returns a list of throats neighboring the given pore(s) Parameters ---------- pores : array_like Indices of pores whose neighbors are sought flatten : boolean, optional If flatten is True (default) a 1D array of unique throat ID numbers is returned. If flatten is False the returned array contains arrays of neighboring throat ID numbers for each input pore, in the order they were sent. mode : string, optional Specifies which neighbors should be returned. The options are: * 'union' : All neighbors of the input pores * 'intersection' : Only neighbors shared by all input pores * 'not_intersection' : Only neighbors not shared by any input pores Returns ------- neighborTs : 1D array (if flatten is True) or ndarray of arrays (if flatten if False) Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.find_neighbor_throats(pores=[0, 1]) array([0, 1, 2, 3, 4, 5]) >>> pn.find_neighbor_throats(pores=[0, 1],flatten=False) array([array([0, 1, 2]), array([0, 3, 4, 5])], dtype=object) """ pores = sp.array(pores, ndmin=1) if pores.dtype == bool: pores = self.toindices(pores) if sp.size(pores) == 0: return sp.array([], ndmin=1, dtype=int) # Test for existence of incidence matrix try: neighborTs = self._incidence_matrix['lil'].rows[[pores]] except: temp = self.create_incidence_matrix(sprsfmt='lil') self._incidence_matrix['lil'] = temp neighborTs = self._incidence_matrix['lil'].rows[[pores]] if [sp.asarray(x) for x in neighborTs if x] == []: return sp.array([], ndmin=1) if flatten: # All the empty lists must be removed to maintain data type after # hstack (numpy bug?) neighborTs = [sp.asarray(x) for x in neighborTs if x] neighborTs = sp.hstack(neighborTs) # Remove references to input pores and duplicates if mode == 'not_intersection': neighborTs = sp.unique(sp.where(sp.bincount(neighborTs) == 1)[0]) elif mode == 'union': neighborTs = sp.unique(neighborTs) elif mode == 'intersection': neighborTs = sp.unique(sp.where(sp.bincount(neighborTs) > 1)[0]) else: for i in range(0, sp.size(pores)): neighborTs[i] = sp.array(neighborTs[i]) return sp.array(neighborTs, ndmin=1) def num_neighbors(self, pores, flatten=False): r""" Returns an ndarray containing the number of neigbhor pores for each element in pores Parameters ---------- pores : array_like Pores whose neighbors are to be counted flatten : boolean (optional) If False (default) the number pore neighbors for each input are returned as an array. If True the sum total number of unique neighbors is counted, not including the input pores even if they neighbor each other. Returns ------- num_neighbors : 1D array with number of neighbors in each element Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.num_neighbors(pores=[0, 1], flatten=False) array([3, 4]) >>> pn.num_neighbors(pores=[0, 1], flatten=True) 5 >>> pn.num_neighbors(pores=[0, 2], flatten=True) 6 """ pores = sp.array(pores, ndmin=1) if pores.dtype == bool: pores = self.toindices(pores) if sp.size(pores) == 0: return sp.array([], ndmin=1, dtype=int) # Count number of neighbors if flatten: neighborPs = self.find_neighbor_pores(pores, flatten=True, mode='union', excl_self=True) num = sp.shape(neighborPs)[0] else: neighborPs = self.find_neighbor_pores(pores, flatten=False) num = sp.zeros(sp.shape(neighborPs), dtype=int) for i in range(0, sp.shape(num)[0]): num[i] = sp.size(neighborPs[i]) return num def find_interface_throats(self, labels=[]): r""" Finds the throats that join two pore labels. Parameters ---------- labels : list of strings The labels of the two pore groups whose interface is sought Returns ------- An array of throat numbers that connect the given pore groups Notes ----- This method is meant to find interfaces between TWO groups, regions or clusters of pores (as defined by their label). If the input labels overlap or are not adjacent, an empty array is returned. Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn['pore.domain1'] = False >>> pn['pore.domain2'] = False >>> pn['pore.domain1'][[0, 1, 2]] = True >>> pn['pore.domain2'][[5, 6, 7]] = True >>> pn.find_interface_throats(labels=['domain1', 'domain2']) array([1, 4, 7]) TODO: It might be a good idea to allow overlapping regions """ Tind = sp.array([], ndmin=1) if sp.shape(labels)[0] != 2: logger.error('Exactly two labels must be given') pass else: P1 = self.pores(labels=labels[0]) P2 = self.pores(labels=labels[1]) # Check if labels overlap if sp.sum(sp.in1d(P1, P2)) > 0: logger.error('Some labels overlap, iterface cannot be found') pass else: T1 = self.find_neighbor_throats(P1) T2 = self.find_neighbor_throats(P2) Tmask = sp.in1d(T1, T2) Tind = T1[Tmask] return Tind def find_clusters(self, mask=[]): r""" Identify connected clusters of pores in the network. Parameters ---------- mask : array_like, boolean A list of active nodes. This method will automatically search for clusters based on site or bond connectivity depending on wheather the received mask is Np or Nt long. Returns ------- clusters : array_like An Np long list of clusters numbers """ if sp.size(mask) == self.num_throats(): # Convert to boolean mask if not already temp = sp.zeros((self.num_throats(),), dtype=bool) temp[mask] = True elif sp.size(mask) == self.num_pores(): conns = self.find_connected_pores(throats=self.throats()) conns[:, 0] = mask[conns[:, 0]] conns[:, 1] = mask[conns[:, 1]] temp = sp.array(conns[:, 0]*conns[:, 1], dtype=bool) else: raise Exception('Mask received was neither Nt nor Np long') temp = self.create_adjacency_matrix(data=temp, sprsfmt='csr', dropzeros=True) clusters = sprs.csgraph.connected_components(csgraph=temp, directed=False)[1] return clusters def find_clusters2(self, mask=[], t_labels=False): r""" Identify connected clusters of pores in the network. This method can also return a list of throat labels, which correspond to the pore labels to which the throat is connected. Either site and bond percolation can be consider, see description of input arguments for details. Parameters ---------- mask : array_like, boolean A list of active bonds or sites (throats or pores). If the mask is Np long, then the method will perform a site percolation, while if the mask is Nt long bond percolation will be performed. t_labels : boolean (default id False) Indicates if throat cluster labels should also be returned. If true then a tuple containing both p_clusters and t_clusters is returned. Returns ------- A Np long list of pore clusters numbers, unless t_labels is True in which case a tuple containing both pore and throat cluster labels is returned. The label numbers correspond such that pores and throats with the same label are part of the same cluster. Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.Cubic(shape=[25, 25, 1]) >>> geom = OpenPNM.Geometry.GenericGeometry(network=pn, ... pores=pn.Ps, ... throats=pn.Ts) >>> geom['pore.seed'] = sp.rand(pn.Np) >>> geom['throat.seed'] = sp.rand(pn.Nt) Bond percolation is achieved by sending a list of invaded throats: >>> (p_bond,t_bond) = pn.find_clusters2(mask=geom['throat.seed'] < 0.3, ... t_labels=True) Site percolation is achieved by sending a list of invaded pores: >>> (p_site,t_site) = pn.find_clusters2(mask=geom['pore.seed'] < 0.3, ... t_labels=True) To visualize the invasion pattern, use matplotlib's matshow method along with the Cubic Network's asarray method which converts list based data to square arrays: .. code-block:: python import matplotlib.pyplot as plt im_bond = pn.asarray(p_bond)[:, :, 0] im_site = pn.asarray(p_site)[:, :, 0] plt.subplot(1, 2, 1) plt.imshow(im_site, interpolation='none') plt.subplot(1, 2, 2) plt.imshow(im_bond, interpolation='none') """ # Parse the input arguments mask = sp.array(mask, ndmin=1) if mask.dtype != bool: raise Exception('Mask must be a boolean array of Np or Nt length') # If pore mask was given perform site percolation if sp.size(mask) == self.Np: (p_clusters, t_clusters) = self._site_percolation(mask) # If pore mask was given perform bond percolation elif sp.size(mask) == self.Nt: (p_clusters, t_clusters) = self._bond_percolation(mask) else: raise Exception('Mask received was neither Nt nor Np long') if t_labels: return (p_clusters, t_clusters) else: return p_clusters def _site_percolation(self, pmask): r""" """ # Find throats that produce site percolation conns = sp.copy(self['throat.conns']) conns[:, 0] = pmask[conns[:, 0]] conns[:, 1] = pmask[conns[:, 1]] # Only if both pores are True is the throat set to True tmask = sp.all(conns, axis=1) # Perform the clustering using scipy.csgraph csr = self.create_adjacency_matrix(data=tmask, sprsfmt='csr', dropzeros=True) clusters = sprs.csgraph.connected_components(csgraph=csr, directed=False)[1] # Adjust cluster numbers such that non-invaded pores are labelled -1 # Note: The following line also takes care of assigning cluster numbers # to single isolated invaded pores p_clusters = (clusters + 1)*(pmask) - 1 # Label invaded throats with their neighboring pore's label t_clusters = clusters[self['throat.conns']] ind = (t_clusters[:, 0] == t_clusters[:, 1]) t_clusters = t_clusters[:, 0] # Label non-invaded throats with -1 t_clusters[~ind] = -1 return (p_clusters, t_clusters) def _bond_percolation(self, tmask): r""" """ # Perform the clustering using scipy.csgraph csr = self.create_adjacency_matrix(data=tmask, sprsfmt='csr', dropzeros=True) clusters = sprs.csgraph.connected_components(csgraph=csr, directed=False)[1] # Convert clusters to a more usable output: # Find pores attached to each invaded throats Ps = self.find_connected_pores(throats=tmask, flatten=True) # Adjust cluster numbers such that non-invaded pores are labelled -0 p_clusters = (clusters + 1)*(self.tomask(pores=Ps).astype(int)) - 1 # Label invaded throats with their neighboring pore's label t_clusters = clusters[self['throat.conns']][:, 0] # Label non-invaded throats with -1 t_clusters[~tmask] = -1 return (p_clusters, t_clusters) def find_nearby_pores(self, pores, distance, flatten=False, excl_self=True): r""" Find all pores within a given radial distance of the input pore(s) regardless of whether or not they are toplogically connected. Parameters ---------- pores : array_like The list of pores for whom nearby neighbors are to be found distance : scalar The maximum distance within which the nearby should be found excl_self : bool Controls whether the input pores should be included in the returned list. The default is True which means they are not included. flatten : Returns ------- A list of pores which are within the given spatial distance. If a list of N pores is supplied, then a an N-long list of such lists is returned. The returned lists each contain the pore for which the neighbors were sought. Examples -------- >>> import OpenPNM >>> pn = OpenPNM.Network.TestNet() >>> pn.find_nearby_pores(pores=[0, 1], distance=1) array([array([ 1, 5, 25]), array([ 0, 2, 6, 26])], dtype=object) >>> pn.find_nearby_pores(pores=[0, 1], distance=0.5) array([], shape=(2, 0), dtype=int64) """ # Convert to ND-array pores = sp.array(pores, ndmin=1) # Convert boolean mask to indices if necessary if pores.dtype == bool: pores = self.Ps[pores] # Handle an empty array if given if sp.size(pores) == 0: return sp.array([], dtype=sp.int64) if distance <= 0: logger.error('Provided distances should be greater than 0') if flatten: Pn = sp.array([]) else: Pn = sp.array([sp.array([]) for i in range(0, len(pores))]) return Pn.astype(sp.int64) # Create kdTree objects kd = sptl.cKDTree(self['pore.coords']) kd_pores = sptl.cKDTree(self['pore.coords'][pores]) # Perform search Pn = kd_pores.query_ball_tree(kd, r=distance) # Sort the indices in each list [Pn[i].sort() for i in range(0, sp.size(pores))] if flatten: # Convert list of lists to a flat nd-array temp = [] [temp.extend(Ps) for Ps in Pn] Pn = sp.unique(temp) if excl_self: # Remove inputs if necessary Pn = Pn[~sp.in1d(Pn, pores)] else: # Convert list of lists to an nd-array of nd-arrays if excl_self: # Remove inputs if necessary [Pn[i].remove(pores[i]) for i in range(0, sp.size(pores))] temp = [] [temp.append(sp.array(Pn[i])) for i in range(0, sp.size(pores))] Pn = sp.array(temp) if Pn.dtype == float: Pn = Pn.astype(sp.int64) return Pn def extend(self, pore_coords=[], throat_conns=[], labels=[]): topo.extend(network=self, pore_coords=pore_coords, throat_conns=throat_conns, labels=labels) extend.__doc__ = topo.extend.__doc__ def trim(self, pores=[], throats=[]): topo.trim(network=self, pores=pores, throats=throats) trim.__doc__ = topo.trim.__doc__ def clone_pores(self, pores, apply_label=['clone'], mode='parents'): topo.clone_pores(network=self, pores=pores, apply_label=apply_label, mode=mode) clone_pores.__doc__ = topo.clone_pores.__doc__ def stitch(self, donor, P_donor, P_network, method, len_max=sp.inf, label_suffix=''): topo.stitch(network=self, donor=donor, P_donor=P_donor, P_network=P_network, method=method, len_max=len_max, label_suffix=label_suffix) stitch.__doc__ = topo.stitch.__doc__ def connect_pores(self, pores1, pores2, labels=[]): topo.connect_pores(network=self, pores1=pores1, pores2=pores2, labels=labels) connect_pores.__doc__ = topo.connect_pores.__doc__ def check_network_health(self): r""" This method check the network topological health by checking for: (1) Isolated pores (2) Islands or isolated clusters of pores (3) Duplicate throats (4) Bidirectional throats (ie. symmetrical adjacency matrix) Returns ------- A dictionary containing the offending pores or throat numbers under each named key. It also returns a list of which pores and throats should be trimmed from the network to restore health. This list is a suggestion only, and is based on keeping the largest cluster and trimming the others. Notes ----- - Does not yet check for duplicate pores - Does not yet suggest which throats to remove - This is just a 'check' method and does not 'fix' the problems it finds """ health = Tools.HealthDict() health['disconnected_clusters'] = [] health['isolated_pores'] = [] health['trim_pores'] = [] health['duplicate_throats'] = [] health['bidirectional_throats'] = [] # Check for individual isolated pores Ps = self.num_neighbors(self.pores()) if sp.sum(Ps == 0) > 0: logger.warning(str(sp.sum(Ps == 0)) + ' pores have no neighbors') health['isolated_pores'] = sp.where(Ps == 0)[0] # Check for separated clusters of pores temp = [] Cs = self.find_clusters(self.tomask(throats=self.throats('all'))) if sp.shape(sp.unique(Cs))[0] > 1: logger.warning('Isolated clusters exist in the network') for i in sp.unique(Cs): temp.append(sp.where(Cs == i)[0]) b = sp.array([len(item) for item in temp]) c = sp.argsort(b)[::-1] for i in range(0, len(c)): health['disconnected_clusters'].append(temp[c[i]]) if i > 0: health['trim_pores'].extend(temp[c[i]]) # Check for duplicate throats i = self['throat.conns'][:, 0] j = self['throat.conns'][:, 1] v = sp.array(self['throat.all'], dtype=int) Np = self.num_pores() adjmat = sprs.coo_matrix((v, (i, j)), [Np, Np]) temp = adjmat.tolil() # Convert to lil to combine duplicates # Compile lists of which specfic throats are duplicates # Be VERY careful here, as throats are not in order mergeTs = [] for i in range(0, self.Np): if sp.any(sp.array(temp.data[i]) > 1): ind = sp.where(sp.array(temp.data[i]) > 1)[0] P = sp.array(temp.rows[i])[ind] Ts = self.find_connecting_throat(P1=i, P2=P)[0] mergeTs.append(Ts) health['duplicate_throats'] = mergeTs # Check for bidirectional throats num_full = adjmat.sum() temp = sprs.triu(adjmat, k=1) num_upper = temp.sum() if num_full > num_upper: biTs = sp.where(self['throat.conns'][:, 0] > self['throat.conns'][:, 1])[0] health['bidirectional_throats'] = biTs.tolist() return health def check_geometry_health(self): r""" Perform a check to find pores with overlapping or undefined Geometries """ geoms = self.geometries() Ptemp = sp.zeros((self.Np,)) Ttemp = sp.zeros((self.Nt,)) for item in geoms: Pind = self['pore.'+item] Tind = self['throat.'+item] Ptemp[Pind] = Ptemp[Pind] + 1 Ttemp[Tind] = Ttemp[Tind] + 1 health = Tools.HealthDict() health['overlapping_pores'] = sp.where(Ptemp > 1)[0].tolist() health['undefined_pores'] = sp.where(Ptemp == 0)[0].tolist() health['overlapping_throats'] = sp.where(Ttemp > 1)[0].tolist() health['undefined_throats'] = sp.where(Ttemp == 0)[0].tolist() return health def _update_network(self, mode='clear'): r""" Regenerates the adjacency and incidence matrices Parameters ---------- mode : string Controls the extent of the update. Options are: - 'clear' : Removes exsiting adjacency and incidence matrices - 'regenerate' : Removes the existing matrices and regenerates new ones. Notes ----- The 'regenerate' mode is more time consuming, so repeated calls to this function (ie. during network merges, and adding boundaries) should use the 'clear' mode. The other methods that require these matrices will generate them as needed, so this pushes the 'generation' time to 'on demand'. """ logger.debug('Resetting adjacency and incidence matrices') self._adjacency_matrix['coo'] = {} self._adjacency_matrix['csr'] = {} self._adjacency_matrix['lil'] = {} self._incidence_matrix['coo'] = {} self._incidence_matrix['csr'] = {} self._incidence_matrix['lil'] = {} if mode == 'regenerate': self._adjacency_matrix['coo'] = \ self.create_adjacency_matrix(sprsfmt='coo') self._adjacency_matrix['csr'] = \ self.create_adjacency_matrix(sprsfmt='csr') self._adjacency_matrix['lil'] = \ self.create_adjacency_matrix(sprsfmt='lil') self._incidence_matrix['coo'] = \ self.create_incidence_matrix(sprsfmt='coo') self._incidence_matrix['csr'] = \ self.create_incidence_matrix(sprsfmt='csr') self._incidence_matrix['lil'] = \ self.create_incidence_matrix(sprsfmt='lil') def domain_bulk_volume(self): raise NotImplementedError() def domain_pore_volume(self): raise NotImplementedError() def domain_length(self, face_1, face_2): r""" Calculate the distance between two faces of the network Parameters ---------- face_1 and face_2 : array_like Lists of pores belonging to opposite faces of the network Returns ------- The length of the domain in the specified direction Notes ----- - Does not yet check if input faces are perpendicular to each other """ # Ensure given points are coplanar before proceeding if misc.iscoplanar(self['pore.coords'][face_1]) and \ misc.iscoplanar(self['pore.coords'][face_2]): # Find distance between given faces x = self['pore.coords'][face_1] y = self['pore.coords'][face_2] Ds = misc.dist(x, y) L = sp.median(sp.amin(Ds, axis=0)) else: logger.warning('The supplied pores are not coplanar. Length will be \ approximate.') f1 = self['pore.coords'][face_1] f2 = self['pore.coords'][face_2] distavg = [0, 0, 0] distavg[0] = sp.absolute(sp.average(f1[:, 0])-sp.average(f2[:, 0])) distavg[1] = sp.absolute(sp.average(f1[:, 1])-sp.average(f2[:, 1])) distavg[2] = sp.absolute(sp.average(f1[:, 2])-sp.average(f2[:, 2])) L = max(distavg) return L def domain_area(self, face): r""" Calculate the area of a given network face Parameters ---------- face : array_like List of pores of pore defining the face of interest Returns ------- The area of the specified face """ coords = self['pore.coords'][face] rads = self['pore.diameter'][face] / 2. # Calculate the area of the 3 principle faces of the bounding cuboid dx = max(coords[:, 0]+rads) - min(coords[:, 0] - rads) dy = max(coords[:, 1]+rads) - min(coords[:, 1] - rads) dz = max(coords[:, 2]+rads) - min(coords[:, 2] - rads) yz = dy*dz # x normal xz = dx*dz # y normal xy = dx*dy # z normal # Find the directions parallel to the plane directions = sp.where([yz, xz, xy] != max([yz, xz, xy]))[0] try: # Use the whole network to do the area calculation coords = self['pore.coords'] rads = self['pore.diameter']/2. d0 = max(coords[:, directions[0]] + rads) - \ min(coords[:, directions[0]] - rads) d1 = max(coords[:, directions[1]] + rads) - \ min(coords[:, directions[1]] - rads) A = d0*d1 except: # If that fails, use the max face area of the bounding cuboid A = max([yz, xz, xy]) if not misc.iscoplanar(self['pore.coords'][face]): logger.warning('The supplied pores are not coplanar. Area will be' 'approximate') pass return A def _compress_labels(self, label_array): # Make cluster number contiguous array = sp.array(label_array) if array.dtype != int: raise Exception('label_array must be intergers') min_val = sp.amin(array) if min_val >= 0: min_val = 0 array = array + sp.absolute(min_val) nums = sp.unique(array) temp = sp.zeros((sp.amax(array)+1,)) temp[nums] = sp.arange(0, sp.size(nums)) array = temp[array].astype(array.dtype) return array
mit
theochem/horton
horton/grid/test/test_poisson.py
4
6804
# -*- coding: utf-8 -*- # HORTON: Helpful Open-source Research TOol for N-fermion systems. # Copyright (C) 2011-2017 The HORTON Development Team # # This file is part of HORTON. # # HORTON is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 3 # of the License, or (at your option) any later version. # # HORTON is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/> # # -- from scipy.special import erf import numpy as np from nose.plugins.attrib import attr from horton import * # pylint: disable=wildcard-import,unused-wildcard-import @attr('slow') def test_solve_poisson_becke_n2(): mol = IOData.from_file(context.get_fn('test/n2_hfs_sto3g.fchk')) lmaxmax = 4 # compute hartree potential on a molecular grid molgrid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, random_rotate=False, mode='keep') dm_full = mol.get_dm_full() reference = mol.obasis.compute_grid_hartree_dm(dm_full, molgrid.points) # construct the same potential numerically with Becke's method rho = mol.obasis.compute_grid_density_dm(dm_full, molgrid.points) begin = 0 hds = [] for i in xrange(mol.natom): atgrid = molgrid.subgrids[i] end = begin + atgrid.size becke_weights = molgrid.becke_weights[begin:end] density_decomposition = atgrid.get_spherical_decomposition(rho[begin:end], becke_weights, lmax=lmaxmax) hartree_decomposition = solve_poisson_becke(density_decomposition) hds.append(hartree_decomposition) begin = end # Evaluate the splines obtained with Becke's method on the molecular grid # Increasing angular momenta are used to check the convergence. last_error = None for lmax in xrange(0, lmaxmax+1): result = molgrid.zeros() for i in xrange(mol.natom): molgrid.eval_decomposition(hds[i][:(lmax+1)**2], mol.coordinates[i], result) potential_error = result - reference error = molgrid.integrate(potential_error, potential_error)**0.5 if last_error is not None: assert error < last_error last_error = error if False: worst = molgrid.integrate(reference, reference)**0.5 print 'lmax=%i %12.4e %12.4e' % (lmax, error, worst) for rho_low, rho_high in (0, 1e-8), (1e-8, 1e-4), (1e-4, 1e0), (1e0, 1e4), (1e4, 1e100): mask = ((rho >= rho_low) & (rho < rho_high)).astype(float) error = molgrid.integrate(potential_error, potential_error, mask)**0.5 worst = molgrid.integrate(reference, reference, mask)**0.5 print '%10.2e : %10.2e | %12.4e %12.4e' % (rho_low, rho_high, error, worst) print assert error < 6e-2 if False: # Plot stuff import matplotlib.pyplot as pt linegrid = LineGrid(mol.coordinates[0], mol.coordinates[1], 500, 1) rho = mol.obasis.compute_grid_density_dm(dm_full, linegrid.points) reference = mol.obasis.compute_grid_hartree_dm(dm_full, linegrid.points) for lmax in xrange(0, lmaxmax+1): result = linegrid.zeros() for i in xrange(mol.natom): linegrid.eval_decomposition(hds[i][:(lmax+1)**2], mol.coordinates[i], result) pt.clf() #pt.plot(linegrid.x, reference) #pt.plot(linegrid.x, result) pt.plot(linegrid.x, (result - reference)) pt.ylim(-0.3, 0.3) pt.savefig('test_poisson_%i.png' % lmax) def test_solve_poisson_becke_sa(): sigma = 8.0 rtf = ExpRTransform(1e-4, 1e2, 500) r = rtf.get_radii() rhoy = np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5 rhod = np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5*(-r/sigma)/sigma rho = CubicSpline(rhoy, rhod, rtf) v = solve_poisson_becke([rho])[0] s2s = np.sqrt(2)*sigma soly = erf(r/s2s)/r sold = np.exp(-(r/s2s)**2)*2/np.sqrt(np.pi)/s2s/r - erf(r/s2s)/r**2 if False: import matplotlib.pyplot as pt n = 10 pt.clf() pt.plot(r[:n], soly[:n], label='exact') pt.plot(r[:n], v.y[:n], label='spline') pt.legend(loc=0) pt.savefig('denu.png') assert abs(v.y - soly).max()/abs(soly).max() < 1e-6 assert abs(v.dx - sold).max()/abs(sold).max() < 1e-4 # Test the boundary condition at zero and infinity assert v.extrapolation.l == 0 np.testing.assert_allclose(v.extrapolation.amp_left, np.sqrt(2/np.pi)/sigma) np.testing.assert_allclose(v.extrapolation.amp_right, 1.0) def test_solve_poisson_becke_gaussian_dipole(): sigma = 8.0 rtf = ExpRTransform(1e-4, 8e1, 200) r = rtf.get_radii() # By deriving a Gaussian charge distribution with respect to z, we get # rho(\mathbf{r})=Y_1^0(\Omega) rhoy, with rhoy as given below # Note that rhoy is simply the derivative of a Gaussian charge distribution # with respect to r. rhoy = -r/sigma**2*np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5 rhod = (-1.0+r**2/sigma**2)/sigma**2*np.exp(-0.5*(r/sigma)**2)/sigma**3/(2*np.pi)**1.5 rho = CubicSpline(rhoy, rhod, rtf) v = solve_poisson_becke([rho]*4)[1] # Not interested in first spline, i.e. l=0 s2s = np.sqrt(2)*sigma # The potential corresponding to Y_1^0(\Omega), can be found by deriving # the potential of a Gaussian charge distribution with respect to r soly = np.exp(-(r/s2s)**2)*2/np.sqrt(np.pi)/s2s/r - erf(r/s2s)/r**2 sold = 2.0*erf(r/s2s)/r**3 - 2*2/np.sqrt(np.pi)*np.exp(-(r/s2s)**2)/s2s/r**2 - 2*2/np.sqrt(np.pi)/s2s**3*np.exp(-(r/s2s)**2) if False: import matplotlib.pyplot as pt n = 200 pt.clf() pt.plot(r[:n], -soly[:n], label='exact', marker='*') pt.plot(r[:n], -v.y[:n], label='spline', marker='*') r2 = np.linspace(1e-5, 2e-4, 50) pt.plot(r2, -v(r2), label='spline eval', marker='*') pt.xscale('log') pt.yscale('log') pt.legend(loc=0) pt.savefig('poisson_gdipole.png') assert abs(v.y - soly).max()/abs(soly).max() < 1e-6 assert abs(v.dx - sold).max()/abs(sold).max() < 1e-4 # Test the boundary condition at zero and infinity assert v.extrapolation.l == 1 np.testing.assert_allclose(v.extrapolation.amp_left, -2.0/3.0/np.sqrt(2*np.pi)/sigma**3) np.testing.assert_allclose(v.extrapolation.amp_right, -1.0)
gpl-3.0
camisatx/IntroToPython-Fall-2016
Code/price_extractor/price_extractor_v1.py
1
1862
from datetime import datetime import pandas as pd def download_prices(ticker, start, end, interval='d'): """ Download the historical price data from Yahoo Finance for the provided ticker over the date range. https://stackoverflow.com/questions/35815269/python-requests-text-to-pandas-dataframe http://chart.finance.yahoo.com/table.csv?s=AAPL&a=00&b=1&c=2010&d=10&e=30&f=2016&g=d&ignore=.csv :param ticker: String of ticker :param start: Datetime object of the start date :param end: Datetime object of the end date :param interval: Optional string for the price history interval (d, w, m, v) :return: DataFrame of the raw stock prices """ # Prepare the URL API component strings url_root = 'http://chart.finance.yahoo.com/table.csv?' url_ticker = 's=%s' % ticker url_interval = 'g=%s' % interval url_start = ('a=%s&b=%s&c=%s' % ((start.month - 1), start.day, start.year)) url_end = ('d=%s&e=%s&f=%s' % ((end.month - 1), end.day, end.year)) url_csv = 'ignore=.csv' # Final URL string for this ticker over the date range final_url = (url_root + url_ticker + '&' + url_start + '&' + url_end + '&' + url_interval + '&' + url_csv) # Let pandas download the CSV file and convert it into a DataFrame raw_df = pd.read_csv(final_url, index_col=False) # Move the Date column to the DataFrame index raw_df.set_index(keys='Date', inplace=True) return raw_df if __name__ == '__main__': test_ticker = 'AAPL' test_interval = 'd' test_start = datetime(2010, 1, 1) test_end = datetime.now() # specified date or current date price_df = download_prices(ticker=test_ticker, start=test_start, end=test_end, interval=test_interval) price_df.to_csv('%s_%s.csv' % (test_ticker, test_interval))
agpl-3.0
gtrensch/nest-simulator
pynest/examples/hh_psc_alpha.py
8
2122
# -*- coding: utf-8 -*- # # hh_psc_alpha.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Example using Hodgkin-Huxley neuron ----------------------------------- This example produces a rate-response (FI) curve of the Hodgkin-Huxley neuron ``hh_psc_alpha`` in response to a range of different current (DC) stimulations. The result is plotted using matplotlib. Since a DC input affects only the neuron's channel dynamics, this routine does not yet check correctness of synaptic response. """ import nest import numpy as np import matplotlib.pyplot as plt nest.set_verbosity('M_WARNING') nest.ResetKernel() simtime = 1000 # Amplitude range, in pA dcfrom = 0 dcstep = 20 dcto = 2000 h = 0.1 # simulation step size in mS neuron = nest.Create('hh_psc_alpha') sr = nest.Create('spike_recorder') sr.record_to = 'memory' nest.Connect(neuron, sr, syn_spec={'weight': 1.0, 'delay': h}) # Simulation loop n_data = int(dcto / float(dcstep)) amplitudes = np.zeros(n_data) event_freqs = np.zeros(n_data) for i, amp in enumerate(range(dcfrom, dcto, dcstep)): neuron.I_e = float(amp) print(f"Simulating with current I={amp} pA") nest.Simulate(1000) # one second warm-up time for equilibrium state sr.n_events = 0 # then reset spike counts nest.Simulate(simtime) # another simulation call to record firing rate n_events = sr.n_events amplitudes[i] = amp event_freqs[i] = n_events / (simtime / 1000.) plt.plot(amplitudes, event_freqs) plt.show()
gpl-2.0
julienr/vispy
vispy/color/colormap.py
13
38233
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. from __future__ import division # just to be safe... import inspect import numpy as np from .color_array import ColorArray from ..ext.six import string_types from ..ext.cubehelix import cubehelix from ..ext.husl import husl_to_rgb ############################################################################### # Color maps # Utility functions for interpolation in NumPy. def _vector_or_scalar(x, type='row'): """Convert an object to either a scalar or a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x) if isinstance(x, np.ndarray): assert x.ndim == 1 if type == 'column': x = x[:, None] return x def _vector(x, type='row'): """Convert an object to a row or column vector.""" if isinstance(x, (list, tuple)): x = np.array(x, dtype=np.float32) elif not isinstance(x, np.ndarray): x = np.array([x], dtype=np.float32) assert x.ndim == 1 if type == 'column': x = x[:, None] return x def _find_controls(x, controls=None, clip=None): x_controls = np.clip(np.searchsorted(controls, x) - 1, 0, clip) return x_controls.astype(np.int32) # Normalization def _normalize(x, cmin=None, cmax=None, clip=True): """Normalize an array from the range [cmin, cmax] to [0,1], with optional clipping.""" if not isinstance(x, np.ndarray): x = np.array(x) if cmin is None: cmin = x.min() if cmax is None: cmax = x.max() if cmin == cmax: return .5 * np.ones(x.shape) else: cmin, cmax = float(cmin), float(cmax) y = (x - cmin) * 1. / (cmax - cmin) if clip: y = np.clip(y, 0., 1.) return y # Interpolation functions in NumPy. def _mix_simple(a, b, x): """Mix b (with proportion x) with a.""" x = np.clip(x, 0.0, 1.0) return (1.0 - x)*a + x*b def _interpolate_multi(colors, x, controls): x = x.ravel() n = len(colors) # For each element in x, the control index of its bin's left boundary. x_step = _find_controls(x, controls, n-2) # The length of each bin. controls_length = np.diff(controls).astype(np.float32) # Prevent division by zero error. controls_length[controls_length == 0.] = 1. # Like x, but relative to each bin. _to_clip = x - controls[x_step] _to_clip /= controls_length[x_step] x_rel = np.clip(_to_clip, 0., 1.) return (colors[x_step], colors[x_step + 1], x_rel[:, None]) def mix(colors, x, controls=None): a, b, x_rel = _interpolate_multi(colors, x, controls) return _mix_simple(a, b, x_rel) def smoothstep(edge0, edge1, x): """ performs smooth Hermite interpolation between 0 and 1 when edge0 < x < edge1. """ # Scale, bias and saturate x to 0..1 range x = np.clip((x - edge0)/(edge1 - edge0), 0.0, 1.0) # Evaluate polynomial return x*x*(3 - 2*x) def step(colors, x, controls=None): x = x.ravel() """Step interpolation from a set of colors. x belongs in [0, 1].""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(colors) assert ncolors == len(controls) - 1 assert ncolors >= 2 x_step = _find_controls(x, controls, ncolors-1) return colors[x_step, ...] # GLSL interpolation functions. def _glsl_mix(controls=None): """Generate a GLSL template function from a given interpolation patterns and control points.""" assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) assert ncolors >= 2 if ncolors == 2: s = " return mix($color_0, $color_1, t);\n" else: s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) adj_t = '(t - %s) / %s' % (controls[i], controls[i+1] - controls[i]) s += ("%s {\n return mix($color_%d, $color_%d, %s);\n} " % (ifs, i, i+1, adj_t)) return "vec4 colormap(float t) {\n%s\n}" % s def _glsl_step(controls=None): assert (controls[0], controls[-1]) == (0., 1.) ncolors = len(controls) - 1 assert ncolors >= 2 s = "" for i in range(ncolors-1): if i == 0: ifs = 'if (t < %.6f)' % (controls[i+1]) elif i == (ncolors-2): ifs = 'else' else: ifs = 'else if (t < %.6f)' % (controls[i+1]) s += """%s {\n return $color_%d;\n} """ % (ifs, i) return """vec4 colormap(float t) {\n%s\n}""" % s # Mini GLSL template system for colors. def _process_glsl_template(template, colors): """Replace $color_i by color #i in the GLSL template.""" for i in range(len(colors) - 1, -1, -1): color = colors[i] assert len(color) == 4 vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color) template = template.replace('$color_%d' % i, vec4_color) return template class BaseColormap(object): """Class representing a colormap: t \in [0, 1] --> rgba_color Parameters ---------- colors : list of lists, tuples, or ndarrays The control colors used by the colormap (shape = (ncolors, 4)). Notes ----- Must be overriden. Child classes need to implement: glsl_map : string The GLSL function for the colormap. Use $color_0 to refer to the first color in `colors`, and so on. These are vec4 vectors. map(item) : function Takes a (N, 1) vector of values in [0, 1], and returns a rgba array of size (N, 4). """ # Control colors used by the colormap. colors = None # GLSL string with a function implementing the color map. glsl_map = None def __init__(self, colors=None): # Ensure the colors are arrays. if colors is not None: self.colors = colors if not isinstance(self.colors, ColorArray): self.colors = ColorArray(self.colors) # Process the GLSL map function by replacing $color_i by the if len(self.colors) > 0: self.glsl_map = _process_glsl_template(self.glsl_map, self.colors.rgba) def map(self, item): """Return a rgba array for the requested items. This function must be overriden by child classes. This function doesn't need to implement argument checking on `item`. It can always assume that `item` is a (N, 1) array of values between 0 and 1. Parameters ---------- item : ndarray An array of values in [0,1]. Returns ------- rgba : ndarray An array with rgba values, with one color per item. The shape should be ``item.shape + (4,)``. Notes ----- Users are expected to use a colormap with ``__getitem__()`` rather than ``map()`` (which implements a lower-level API). """ raise NotImplementedError() def __getitem__(self, item): if isinstance(item, tuple): raise ValueError('ColorArray indexing is only allowed along ' 'the first dimension.') # Ensure item is either a scalar or a column vector. item = _vector(item, type='column') # Clip the values in [0, 1]. item = np.clip(item, 0., 1.) colors = self.map(item) return ColorArray(colors) def __setitem__(self, item, value): raise RuntimeError("It is not possible to set items to " "BaseColormap instances.") def _repr_html_(self): n = 100 html = (""" <style> table.vispy_colormap { height: 30px; border: 0; margin: 0; padding: 0; } table.vispy_colormap td { width: 3px; border: 0; margin: 0; padding: 0; } </style> <table class="vispy_colormap"> """ + '\n'.join([(("""<td style="background-color: %s;" title="%s"></td>""") % (color, color)) for color in self[np.linspace(0., 1., n)].hex]) + """ </table> """) return html def _default_controls(ncolors): """Generate linearly spaced control points from a set of colors.""" return np.linspace(0., 1., ncolors) # List the parameters of every supported interpolation mode. _interpolation_info = { 'linear': { 'ncontrols': lambda ncolors: ncolors, # take ncolors as argument 'glsl_map': _glsl_mix, # take 'controls' as argument 'map': mix, }, 'zero': { 'ncontrols': lambda ncolors: (ncolors+1), 'glsl_map': _glsl_step, 'map': step, } } class Colormap(BaseColormap): """A colormap defining several control colors and an interpolation scheme. Parameters ---------- colors : list of colors | ColorArray The list of control colors. If not a ``ColorArray``, a new ``ColorArray`` instance is created from this list. See the documentation of ``ColorArray``. controls : array-like The list of control points for the given colors. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). Examples -------- Here is a basic example: >>> from vispy.color import Colormap >>> cm = Colormap(['r', 'g', 'b']) >>> cm[0.], cm[0.5], cm[np.linspace(0., 1., 100)] """ def __init__(self, colors, controls=None, interpolation='linear'): self.interpolation = interpolation ncontrols = self._ncontrols(len(colors)) # Default controls. if controls is None: controls = _default_controls(ncontrols) assert len(controls) == ncontrols self._controls = np.array(controls, dtype=np.float32) self.glsl_map = self._glsl_map_generator(self._controls) super(Colormap, self).__init__(colors) @property def interpolation(self): """The interpolation mode of the colormap""" return self._interpolation @interpolation.setter def interpolation(self, val): if val not in _interpolation_info: raise ValueError('The interpolation mode can only be one of: ' + ', '.join(sorted(_interpolation_info.keys()))) # Get the information of the interpolation mode. info = _interpolation_info[val] # Get the function that generates the GLSL map, as a function of the # controls array. self._glsl_map_generator = info['glsl_map'] # Number of controls as a function of the number of colors. self._ncontrols = info['ncontrols'] # Python map function. self._map_function = info['map'] self._interpolation = val def map(self, x): """The Python mapping function from the [0,1] interval to a list of rgba colors Parameters ---------- x : array-like The values to map. Returns ------- colors : list List of rgba colors. """ return self._map_function(self.colors.rgba, x, self._controls) class CubeHelixColormap(Colormap): def __init__(self, start=0.5, rot=1, gamma=1.0, reverse=True, nlev=32, minSat=1.2, maxSat=1.2, minLight=0., maxLight=1., **kwargs): """Cube helix colormap A full implementation of Dave Green's "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in D.A. Green, 2011, BASI, 39, 289. http://adsabs.harvard.edu/abs/2011arXiv1108.5083G User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples: Default color map settings produce the standard "cubehelix". Create color map in only blues by setting rot=0 and start=0. Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True. Parameters ---------- start : scalar, optional Sets the starting position in the color space. 0=blue, 1=red, 2=green. Defaults to 0.5. rot : scalar, optional The number of rotations through the rainbow. Can be positive or negative, indicating direction of rainbow. Negative values correspond to Blue->Red direction. Defaults to -1.5 gamma : scalar, optional The gamma correction for intensity. Defaults to 1.0 reverse : boolean, optional Set to True to reverse the color map. Will go from black to white. Good for density plots where shade~density. Defaults to False nlev : scalar, optional Defines the number of discrete levels to render colors at. Defaults to 32. sat : scalar, optional The saturation intensity factor. Defaults to 1.2 NOTE: this was formerly known as "hue" parameter minSat : scalar, optional Sets the minimum-level saturation. Defaults to 1.2 maxSat : scalar, optional Sets the maximum-level saturation. Defaults to 1.2 startHue : scalar, optional Sets the starting color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in start parameter endHue : scalar, optional Sets the ending color, ranging from [0, 360], as in D3 version by @mbostock NOTE: overrides values in rot parameter minLight : scalar, optional Sets the minimum lightness value. Defaults to 0. maxLight : scalar, optional Sets the maximum lightness value. Defaults to 1. """ super(CubeHelixColormap, self).__init__( cubehelix(start=start, rot=rot, gamma=gamma, reverse=reverse, nlev=nlev, minSat=minSat, maxSat=maxSat, minLight=minLight, maxLight=maxLight, **kwargs)) class _Fire(BaseColormap): colors = [(1.0, 1.0, 1.0, 1.0), (1.0, 1.0, 0.0, 1.0), (1.0, 0.0, 0.0, 1.0)] glsl_map = """ vec4 fire(float t) { return mix(mix($color_0, $color_1, t), mix($color_1, $color_2, t*t), t); } """ def map(self, t): a, b, d = self.colors.rgba c = _mix_simple(a, b, t) e = _mix_simple(b, d, t**2) return _mix_simple(c, e, t) class _Grays(BaseColormap): glsl_map = """ vec4 grays(float t) { return vec4(t, t, t, 1.0); } """ def map(self, t): if isinstance(t, np.ndarray): return np.hstack([t, t, t, np.ones(t.shape)]).astype(np.float32) else: return np.array([t, t, t, 1.0], dtype=np.float32) class _Ice(BaseColormap): glsl_map = """ vec4 ice(float t) { return vec4(t, t, 1.0, 1.0); } """ def map(self, t): if isinstance(t, np.ndarray): return np.hstack([t, t, np.ones(t.shape), np.ones(t.shape)]).astype(np.float32) else: return np.array([t, t, 1.0, 1.0], dtype=np.float32) class _Hot(BaseColormap): colors = [(0., .33, .66, 1.0), (.33, .66, 1., 1.0)] glsl_map = """ vec4 hot(float t) { return vec4(smoothstep($color_0.rgb, $color_1.rgb, vec3(t, t, t)), 1.0); } """ def map(self, t): rgba = self.colors.rgba smoothed = smoothstep(rgba[0, :3], rgba[1, :3], t) return np.hstack((smoothed, np.ones((len(t), 1)))) class _Winter(BaseColormap): colors = [(0.0, 0.0, 1.0, 1.0), (0.0, 1.0, 0.5, 1.0)] glsl_map = """ vec4 winter(float t) { return mix($color_0, $color_1, sqrt(t)); } """ def map(self, t): return _mix_simple(self.colors.rgba[0], self.colors.rgba[1], np.sqrt(t)) class _SingleHue(Colormap): """A colormap which is solely defined by the given hue and value. Given the color hue and value, this color map increases the saturation of a color. The start color is almost white but still contains a hint of the given color, and at the end the color is fully saturated. Parameters ---------- hue : scalar, optional The hue refers to a "true" color, without any shading or tinting. Must be in the range [0, 360]. Defaults to 200 (blue). saturation_range : array-like, optional The saturation represents how "pure" a color is. Less saturation means more white light mixed in the color. A fully saturated color means the pure color defined by the hue. No saturation means completely white. This colormap changes the saturation, and with this parameter you can specify the lower and upper bound. Default is [0.2, 0.8]. value : scalar, optional The value defines the "brightness" of a color: a value of 0.0 means completely black while a value of 1.0 means the color defined by the hue without shading. Must be in the range [0, 1.0]. The default value is 1.0. Notes ----- For more information about the hue values see the `wikipedia page`_. .. _wikipedia page: https://en.wikipedia.org/wiki/Hue """ def __init__(self, hue=200, saturation_range=[0.1, 0.8], value=1.0): colors = ColorArray([ (hue, saturation_range[0], value), (hue, saturation_range[1], value) ], color_space='hsv') super(_SingleHue, self).__init__(colors) class _HSL(Colormap): """A colormap which is defined by n evenly spaced points in a circular color space. This means that we change the hue value while keeping the saturation and value constant. Parameters --------- n_colors : int, optional The number of colors to generate. hue_start : int, optional The hue start value. Must be in the range [0, 360], the default is 0. saturation : float, optional The saturation component of the colors to generate. The default is fully saturated (1.0). Must be in the range [0, 1.0]. value : float, optional The value (brightness) component of the colors to generate. Must be in the range [0, 1.0], and the default is 1.0 controls : array-like, optional The list of control points for the colors to generate. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str, optional The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). """ def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=1.0, controls=None, interpolation='linear'): hues = np.linspace(0, 360, ncolors + 1)[:-1] hues += hue_start hues %= 360 colors = ColorArray([(hue, saturation, value) for hue in hues], color_space='hsv') super(_HSL, self).__init__(colors, controls=controls, interpolation=interpolation) class _HUSL(Colormap): """A colormap which is defined by n evenly spaced points in the HUSL hue space. Parameters --------- n_colors : int, optional The number of colors to generate. hue_start : int, optional The hue start value. Must be in the range [0, 360], the default is 0. saturation : float, optional The saturation component of the colors to generate. The default is fully saturated (1.0). Must be in the range [0, 1.0]. value : float, optional The value component of the colors to generate or "brightness". Must be in the range [0, 1.0], and the default is 0.7. controls : array-like, optional The list of control points for the colors to generate. It should be an increasing list of floating-point number between 0.0 and 1.0. The first control point must be 0.0. The last control point must be 1.0. The number of control points depends on the interpolation scheme. interpolation : str, optional The interpolation mode of the colormap. Default: 'linear'. Can also be 'zero'. If 'linear', ncontrols = ncolors (one color per control point). If 'zero', ncontrols = ncolors+1 (one color per bin). Notes ----- For more information about HUSL colors see http://husl-colors.org """ def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=0.7, controls=None, interpolation='linear'): hues = np.linspace(0, 360, ncolors + 1)[:-1] hues += hue_start hues %= 360 saturation *= 99 value *= 99 colors = ColorArray( [husl_to_rgb(hue, saturation, value) for hue in hues], ) super(_HUSL, self).__init__(colors, controls=controls, interpolation=interpolation) class _Diverging(Colormap): def __init__(self, h_pos=20, h_neg=250, saturation=1.0, value=0.7, center="light"): saturation *= 99 value *= 99 start = husl_to_rgb(h_neg, saturation, value) mid = ((0.133, 0.133, 0.133) if center == "dark" else (0.92, 0.92, 0.92)) end = husl_to_rgb(h_pos, saturation, value) colors = ColorArray([start, mid, end]) super(_Diverging, self).__init__(colors) # https://github.com/matplotlib/matplotlib/pull/4707/files#diff-893cf0348279e9f4570488a7a297ab1eR774 # Taken from original Viridis colormap data in matplotlib implementation # Sampled 128 points from the raw data-set of 256 samples. # Sub sampled to 128 points since 256 points causes VisPy to freeze. # HACK: Ideally, all 256 points should be included, with VisPy generating # a 1D texture lookup for ColorMap, rather than branching code. _viridis_data = [[0.267004, 0.004874, 0.329415], [0.268510, 0.009605, 0.335427], [0.269944, 0.014625, 0.341379], [0.271305, 0.019942, 0.347269], [0.272594, 0.025563, 0.353093], [0.273809, 0.031497, 0.358853], [0.274952, 0.037752, 0.364543], [0.276022, 0.044167, 0.370164], [0.277018, 0.050344, 0.375715], [0.277941, 0.056324, 0.381191], [0.278791, 0.062145, 0.386592], [0.279566, 0.067836, 0.391917], [0.280267, 0.073417, 0.397163], [0.280894, 0.078907, 0.402329], [0.281446, 0.084320, 0.407414], [0.281924, 0.089666, 0.412415], [0.282327, 0.094955, 0.417331], [0.282656, 0.100196, 0.422160], [0.282910, 0.105393, 0.426902], [0.283091, 0.110553, 0.431554], [0.283197, 0.115680, 0.436115], [0.283229, 0.120777, 0.440584], [0.283187, 0.125848, 0.444960], [0.283072, 0.130895, 0.449241], [0.282884, 0.135920, 0.453427], [0.282623, 0.140926, 0.457517], [0.282290, 0.145912, 0.461510], [0.281887, 0.150881, 0.465405], [0.281412, 0.155834, 0.469201], [0.280868, 0.160771, 0.472899], [0.280255, 0.165693, 0.476498], [0.279574, 0.170599, 0.479997], [0.278826, 0.175490, 0.483397], [0.278012, 0.180367, 0.486697], [0.277134, 0.185228, 0.489898], [0.276194, 0.190074, 0.493001], [0.275191, 0.194905, 0.496005], [0.274128, 0.199721, 0.498911], [0.273006, 0.204520, 0.501721], [0.271828, 0.209303, 0.504434], [0.270595, 0.214069, 0.507052], [0.269308, 0.218818, 0.509577], [0.267968, 0.223549, 0.512008], [0.266580, 0.228262, 0.514349], [0.265145, 0.232956, 0.516599], [0.263663, 0.237631, 0.518762], [0.262138, 0.242286, 0.520837], [0.260571, 0.246922, 0.522828], [0.258965, 0.251537, 0.524736], [0.257322, 0.256130, 0.526563], [0.255645, 0.260703, 0.528312], [0.253935, 0.265254, 0.529983], [0.252194, 0.269783, 0.531579], [0.250425, 0.274290, 0.533103], [0.248629, 0.278775, 0.534556], [0.246811, 0.283237, 0.535941], [0.244972, 0.287675, 0.537260], [0.243113, 0.292092, 0.538516], [0.241237, 0.296485, 0.539709], [0.239346, 0.300855, 0.540844], [0.237441, 0.305202, 0.541921], [0.235526, 0.309527, 0.542944], [0.233603, 0.313828, 0.543914], [0.231674, 0.318106, 0.544834], [0.229739, 0.322361, 0.545706], [0.227802, 0.326594, 0.546532], [0.225863, 0.330805, 0.547314], [0.223925, 0.334994, 0.548053], [0.221989, 0.339161, 0.548752], [0.220057, 0.343307, 0.549413], [0.218130, 0.347432, 0.550038], [0.216210, 0.351535, 0.550627], [0.214298, 0.355619, 0.551184], [0.212395, 0.359683, 0.551710], [0.210503, 0.363727, 0.552206], [0.208623, 0.367752, 0.552675], [0.206756, 0.371758, 0.553117], [0.204903, 0.375746, 0.553533], [0.203063, 0.379716, 0.553925], [0.201239, 0.383670, 0.554294], [0.199430, 0.387607, 0.554642], [0.197636, 0.391528, 0.554969], [0.195860, 0.395433, 0.555276], [0.194100, 0.399323, 0.555565], [0.192357, 0.403199, 0.555836], [0.190631, 0.407061, 0.556089], [0.188923, 0.410910, 0.556326], [0.187231, 0.414746, 0.556547], [0.185556, 0.418570, 0.556753], [0.183898, 0.422383, 0.556944], [0.182256, 0.426184, 0.557120], [0.180629, 0.429975, 0.557282], [0.179019, 0.433756, 0.557430], [0.177423, 0.437527, 0.557565], [0.175841, 0.441290, 0.557685], [0.174274, 0.445044, 0.557792], [0.172719, 0.448791, 0.557885], [0.171176, 0.452530, 0.557965], [0.169646, 0.456262, 0.558030], [0.168126, 0.459988, 0.558082], [0.166617, 0.463708, 0.558119], [0.165117, 0.467423, 0.558141], [0.163625, 0.471133, 0.558148], [0.162142, 0.474838, 0.558140], [0.160665, 0.478540, 0.558115], [0.159194, 0.482237, 0.558073], [0.157729, 0.485932, 0.558013], [0.156270, 0.489624, 0.557936], [0.154815, 0.493313, 0.557840], [0.153364, 0.497000, 0.557724], [0.151918, 0.500685, 0.557587], [0.150476, 0.504369, 0.557430], [0.149039, 0.508051, 0.557250], [0.147607, 0.511733, 0.557049], [0.146180, 0.515413, 0.556823], [0.144759, 0.519093, 0.556572], [0.143343, 0.522773, 0.556295], [0.141935, 0.526453, 0.555991], [0.140536, 0.530132, 0.555659], [0.139147, 0.533812, 0.555298], [0.137770, 0.537492, 0.554906], [0.136408, 0.541173, 0.554483], [0.135066, 0.544853, 0.554029], [0.133743, 0.548535, 0.553541], [0.132444, 0.552216, 0.553018], [0.131172, 0.555899, 0.552459], [0.129933, 0.559582, 0.551864], [0.128729, 0.563265, 0.551229], [0.127568, 0.566949, 0.550556], [0.126453, 0.570633, 0.549841], [0.125394, 0.574318, 0.549086], [0.124395, 0.578002, 0.548287], [0.123463, 0.581687, 0.547445], [0.122606, 0.585371, 0.546557], [0.121831, 0.589055, 0.545623], [0.121148, 0.592739, 0.544641], [0.120565, 0.596422, 0.543611], [0.120092, 0.600104, 0.542530], [0.119738, 0.603785, 0.541400], [0.119512, 0.607464, 0.540218], [0.119423, 0.611141, 0.538982], [0.119483, 0.614817, 0.537692], [0.119699, 0.618490, 0.536347], [0.120081, 0.622161, 0.534946], [0.120638, 0.625828, 0.533488], [0.121380, 0.629492, 0.531973], [0.122312, 0.633153, 0.530398], [0.123444, 0.636809, 0.528763], [0.124780, 0.640461, 0.527068], [0.126326, 0.644107, 0.525311], [0.128087, 0.647749, 0.523491], [0.130067, 0.651384, 0.521608], [0.132268, 0.655014, 0.519661], [0.134692, 0.658636, 0.517649], [0.137339, 0.662252, 0.515571], [0.140210, 0.665859, 0.513427], [0.143303, 0.669459, 0.511215], [0.146616, 0.673050, 0.508936], [0.150148, 0.676631, 0.506589], [0.153894, 0.680203, 0.504172], [0.157851, 0.683765, 0.501686], [0.162016, 0.687316, 0.499129], [0.166383, 0.690856, 0.496502], [0.170948, 0.694384, 0.493803], [0.175707, 0.697900, 0.491033], [0.180653, 0.701402, 0.488189], [0.185783, 0.704891, 0.485273], [0.191090, 0.708366, 0.482284], [0.196571, 0.711827, 0.479221], [0.202219, 0.715272, 0.476084], [0.208030, 0.718701, 0.472873], [0.214000, 0.722114, 0.469588], [0.220124, 0.725509, 0.466226], [0.226397, 0.728888, 0.462789], [0.232815, 0.732247, 0.459277], [0.239374, 0.735588, 0.455688], [0.246070, 0.738910, 0.452024], [0.252899, 0.742211, 0.448284], [0.259857, 0.745492, 0.444467], [0.266941, 0.748751, 0.440573], [0.274149, 0.751988, 0.436601], [0.281477, 0.755203, 0.432552], [0.288921, 0.758394, 0.428426], [0.296479, 0.761561, 0.424223], [0.304148, 0.764704, 0.419943], [0.311925, 0.767822, 0.415586], [0.319809, 0.770914, 0.411152], [0.327796, 0.773980, 0.406640], [0.335885, 0.777018, 0.402049], [0.344074, 0.780029, 0.397381], [0.352360, 0.783011, 0.392636], [0.360741, 0.785964, 0.387814], [0.369214, 0.788888, 0.382914], [0.377779, 0.791781, 0.377939], [0.386433, 0.794644, 0.372886], [0.395174, 0.797475, 0.367757], [0.404001, 0.800275, 0.362552], [0.412913, 0.803041, 0.357269], [0.421908, 0.805774, 0.351910], [0.430983, 0.808473, 0.346476], [0.440137, 0.811138, 0.340967], [0.449368, 0.813768, 0.335384], [0.458674, 0.816363, 0.329727], [0.468053, 0.818921, 0.323998], [0.477504, 0.821444, 0.318195], [0.487026, 0.823929, 0.312321], [0.496615, 0.826376, 0.306377], [0.506271, 0.828786, 0.300362], [0.515992, 0.831158, 0.294279], [0.525776, 0.833491, 0.288127], [0.535621, 0.835785, 0.281908], [0.545524, 0.838039, 0.275626], [0.555484, 0.840254, 0.269281], [0.565498, 0.842430, 0.262877], [0.575563, 0.844566, 0.256415], [0.585678, 0.846661, 0.249897], [0.595839, 0.848717, 0.243329], [0.606045, 0.850733, 0.236712], [0.616293, 0.852709, 0.230052], [0.626579, 0.854645, 0.223353], [0.636902, 0.856542, 0.216620], [0.647257, 0.858400, 0.209861], [0.657642, 0.860219, 0.203082], [0.668054, 0.861999, 0.196293], [0.678489, 0.863742, 0.189503], [0.688944, 0.865448, 0.182725], [0.699415, 0.867117, 0.175971], [0.709898, 0.868751, 0.169257], [0.720391, 0.870350, 0.162603], [0.730889, 0.871916, 0.156029], [0.741388, 0.873449, 0.149561], [0.751884, 0.874951, 0.143228], [0.762373, 0.876424, 0.137064], [0.772852, 0.877868, 0.131109], [0.783315, 0.879285, 0.125405], [0.793760, 0.880678, 0.120005], [0.804182, 0.882046, 0.114965], [0.814576, 0.883393, 0.110347], [0.824940, 0.884720, 0.106217], [0.835270, 0.886029, 0.102646], [0.845561, 0.887322, 0.099702], [0.855810, 0.888601, 0.097452], [0.866013, 0.889868, 0.095953], [0.876168, 0.891125, 0.095250], [0.886271, 0.892374, 0.095374], [0.896320, 0.893616, 0.096335], [0.906311, 0.894855, 0.098125], [0.916242, 0.896091, 0.100717], [0.926106, 0.897330, 0.104071], [0.935904, 0.898570, 0.108131], [0.945636, 0.899815, 0.112838], [0.955300, 0.901065, 0.118128], [0.964894, 0.902323, 0.123941], [0.974417, 0.903590, 0.130215], [0.983868, 0.904867, 0.136897], [0.993248, 0.906157, 0.143936]] _colormaps = dict( # Some colormap presets autumn=Colormap([(1., 0., 0., 1.), (1., 1., 0., 1.)]), blues=Colormap([(1., 1., 1., 1.), (0., 0., 1., 1.)]), cool=Colormap([(0., 1., 1., 1.), (1., 0., 1., 1.)]), greens=Colormap([(1., 1., 1., 1.), (0., 1., 0., 1.)]), reds=Colormap([(1., 1., 1., 1.), (1., 0., 0., 1.)]), spring=Colormap([(1., 0., 1., 1.), (1., 1., 0., 1.)]), summer=Colormap([(0., .5, .4, 1.), (1., 1., .4, 1.)]), fire=_Fire(), grays=_Grays(), hot=_Hot(), ice=_Ice(), winter=_Winter(), light_blues=_SingleHue(), orange=_SingleHue(hue=35), viridis=Colormap(ColorArray(_viridis_data[::2])), # Diverging presets coolwarm=Colormap(ColorArray( [ (226, 0.59, 0.92), (222, 0.44, 0.99), (218, 0.26, 0.97), (30, 0.01, 0.87), (20, 0.3, 0.96), (15, 0.5, 0.95), (8, 0.66, 0.86) ], color_space="hsv" )), PuGr=_Diverging(145, 280, 0.85, 0.30), GrBu=_Diverging(255, 133, 0.75, 0.6), GrBu_d=_Diverging(255, 133, 0.75, 0.6, "dark"), RdBu=_Diverging(220, 20, 0.75, 0.5), # Configurable colormaps cubehelix=CubeHelixColormap, single_hue=_SingleHue, hsl=_HSL, husl=_HUSL, diverging=_Diverging ) def get_colormap(name, *args, **kwargs): """Obtain a colormap Some colormaps can have additional configuration parameters. Refer to their corresponding documentation for more information. Parameters ---------- name : str | Colormap Colormap name. Can also be a Colormap for pass-through. Examples -------- >>> get_colormap('autumn') >>> get_colormap('single_hue', hue=10) """ if isinstance(name, BaseColormap): cmap = name else: if not isinstance(name, string_types): raise TypeError('colormap must be a Colormap or string name') if name not in _colormaps: raise KeyError('colormap name %s not found' % name) cmap = _colormaps[name] if inspect.isclass(cmap): cmap = cmap(*args, **kwargs) return cmap def get_colormaps(): """Return the list of colormap names.""" return _colormaps.copy()
bsd-3-clause
danking/hail
hail/python/hail/methods/statgen.py
1
151412
import itertools import math import numpy as np from typing import Dict, Callable import builtins import hail import hail as hl import hail.expr.aggregators as agg from hail.expr import (Expression, ExpressionException, expr_float64, expr_call, expr_any, expr_numeric, expr_locus, analyze, check_entry_indexed, check_row_indexed, matrix_table_source, table_source) from hail.expr.types import tbool, tarray, tfloat64, tint32 from hail import ir from hail.genetics.reference_genome import reference_genome_type from hail.linalg import BlockMatrix from hail.matrixtable import MatrixTable from hail.methods.misc import require_biallelic, require_row_key_variant from hail.stats import LinearMixedModel from hail.table import Table from hail.typecheck import (typecheck, nullable, numeric, oneof, sequenceof, enumeration, anytype) from hail.utils import wrap_to_list, new_temp_file, FatalError from hail.utils.java import Env, info, warning from . import relatedness from . import pca from ..backend.spark_backend import SparkBackend pc_relate = relatedness.pc_relate identity_by_descent = relatedness.identity_by_descent _blanczos_pca = pca._blanczos_pca _hwe_normalized_blanczos = pca._hwe_normalized_blanczos hwe_normalized_pca = pca.hwe_normalized_pca pca = pca.pca @typecheck(call=expr_call, aaf_threshold=numeric, include_par=bool, female_threshold=numeric, male_threshold=numeric, aaf=nullable(str)) def impute_sex(call, aaf_threshold=0.0, include_par=False, female_threshold=0.2, male_threshold=0.8, aaf=None) -> Table: r"""Impute sex of samples by calculating inbreeding coefficient on the X chromosome. .. include:: ../_templates/req_tvariant.rst .. include:: ../_templates/req_biallelic.rst Examples -------- Remove samples where imputed sex does not equal reported sex: >>> imputed_sex = hl.impute_sex(dataset.GT) >>> dataset_result = dataset.filter_cols(imputed_sex[dataset.s].is_female != dataset.pheno.is_female, ... keep=False) Notes ----- We have used the same implementation as `PLINK v1.7 <https://zzz.bwh.harvard.edu/plink/summary.shtml#sexcheck>`__. Let `gr` be the the reference genome of the type of the `locus` key (as given by :attr:`.tlocus.reference_genome`) 1. Filter the dataset to loci on the X contig defined by `gr`. 2. Calculate alternate allele frequency (AAF) for each row from the dataset. 3. Filter to variants with AAF above `aaf_threshold`. 4. Remove loci in the pseudoautosomal region, as defined by `gr`, unless `include_par` is ``True`` (it defaults to ``False``) 5. For each row and column with a non-missing genotype call, :math:`E`, the expected number of homozygotes (from population AAF), is computed as :math:`1.0 - (2.0*\mathrm{maf}*(1.0-\mathrm{maf}))`. 6. For each row and column with a non-missing genotype call, :math:`O`, the observed number of homozygotes, is computed interpreting ``0`` as heterozygote and ``1`` as homozygote` 7. For each row and column with a non-missing genotype call, :math:`N` is incremented by 1 8. For each column, :math:`E`, :math:`O`, and :math:`N` are combined across variants 9. For each column, :math:`F` is calculated by :math:`(O - E) / (N - E)` 10. A sex is assigned to each sample with the following criteria: - Female when ``F < 0.2`` - Male when ``F > 0.8`` Use `female_threshold` and `male_threshold` to change this behavior. **Annotations** The returned column-key indexed :class:`.Table` has the following fields in addition to the matrix table's column keys: - **is_female** (:py:data:`.tbool`) -- True if the imputed sex is female, false if male, missing if undetermined. - **f_stat** (:py:data:`.tfloat64`) -- Inbreeding coefficient. - **n_called** (:py:data:`.tint64`) -- Number of variants with a genotype call. - **expected_homs** (:py:data:`.tfloat64`) -- Expected number of homozygotes. - **observed_homs** (:py:data:`.tint64`) -- Observed number of homozygotes. call : :class:`.CallExpression` A genotype call for each row and column. The source dataset's row keys must be [[locus], alleles] with types :class:`.tlocus` and :class:`.tarray` of :obj:`.tstr`. Moreover, the alleles array must have exactly two elements (i.e. the variant must be biallelic). aaf_threshold : :obj:`float` Minimum alternate allele frequency threshold. include_par : :obj:`bool` Include pseudoautosomal regions. female_threshold : :obj:`float` Samples are called females if F < female_threshold. male_threshold : :obj:`float` Samples are called males if F > male_threshold. aaf : :class:`str` or :obj:`None` A field defining the alternate allele frequency for each row. If ``None``, AAF will be computed from `call`. Return ------ :class:`.Table` Sex imputation statistics per sample. """ if aaf_threshold < 0.0 or aaf_threshold > 1.0: raise FatalError("Invalid argument for `aaf_threshold`. Must be in range [0, 1].") mt = call._indices.source mt, _ = mt._process_joins(call) mt = mt.annotate_entries(call=call) mt = require_biallelic(mt, 'impute_sex') if (aaf is None): mt = mt.annotate_rows(aaf=agg.call_stats(mt.call, mt.alleles).AF[1]) aaf = 'aaf' rg = mt.locus.dtype.reference_genome mt = hl.filter_intervals(mt, hl.map(lambda x_contig: hl.parse_locus_interval(x_contig, rg), rg.x_contigs), keep=True) if not include_par: interval_type = hl.tarray(hl.tinterval(hl.tlocus(rg))) mt = hl.filter_intervals(mt, hl.literal(rg.par, interval_type), keep=False) mt = mt.filter_rows((mt[aaf] > aaf_threshold) & (mt[aaf] < (1 - aaf_threshold))) mt = mt.annotate_cols(ib=agg.inbreeding(mt.call, mt[aaf])) kt = mt.select_cols( is_female=hl.if_else(mt.ib.f_stat < female_threshold, True, hl.if_else(mt.ib.f_stat > male_threshold, False, hl.missing(tbool))), **mt.ib).cols() return kt def _get_regression_row_fields(mt, pass_through, method) -> Dict[str, str]: row_fields = dict(zip(mt.row_key.keys(), mt.row_key.keys())) for f in pass_through: if isinstance(f, str): if f not in mt.row: raise ValueError(f"'{method}/pass_through': MatrixTable has no row field {repr(f)}") if f in row_fields: # allow silent pass through of key fields if f in mt.row_key: pass else: raise ValueError(f"'{method}/pass_through': found duplicated field {repr(f)}") row_fields[f] = mt[f] else: assert isinstance(f, Expression) if not f._ir.is_nested_field: raise ValueError(f"'{method}/pass_through': expect fields or nested fields, not complex expressions") if not f._indices == mt._row_indices: raise ExpressionException(f"'{method}/pass_through': require row-indexed fields, found indices {f._indices.axes}") name = f._ir.name if name in row_fields: # allow silent pass through of key fields if not (name in mt.row_key and f._ir == mt[name]._ir): raise ValueError(f"'{method}/pass_through': found duplicated field {repr(name)}") row_fields[name] = f for k in mt.row_key: del row_fields[k] return row_fields @typecheck(y=oneof(expr_float64, sequenceof(expr_float64), sequenceof(sequenceof(expr_float64))), x=expr_float64, covariates=sequenceof(expr_float64), block_size=int, pass_through=sequenceof(oneof(str, Expression))) def linear_regression_rows(y, x, covariates, block_size=16, pass_through=()) -> hail.Table: r"""For each row, test an input variable for association with response variables using linear regression. Examples -------- >>> result_ht = hl.linear_regression_rows( ... y=dataset.pheno.height, ... x=dataset.GT.n_alt_alleles(), ... covariates=[1, dataset.pheno.age, dataset.pheno.is_female]) Warning ------- As in the example, the intercept covariate ``1`` must be included **explicitly** if desired. Warning ------- If `y` is a single value or a list, :func:`.linear_regression_rows` considers the same set of columns (i.e., samples, points) for every response variable and row, namely those columns for which **all** response variables and covariates are defined. If `y` is a list of lists, then each inner list is treated as an independent group, subsetting columns for missingness separately. Notes ----- With the default root and `y` a single expression, the following row-indexed fields are added. - **<row key fields>** (Any) -- Row key fields. - **<pass_through fields>** (Any) -- Row fields in `pass_through`. - **n** (:py:data:`.tint32`) -- Number of columns used. - **sum_x** (:py:data:`.tfloat64`) -- Sum of input values `x`. - **y_transpose_x** (:py:data:`.tfloat64`) -- Dot product of response vector `y` with the input vector `x`. - **beta** (:py:data:`.tfloat64`) -- Fit effect coefficient of `x`, :math:`\hat\beta_1` below. - **standard_error** (:py:data:`.tfloat64`) -- Estimated standard error, :math:`\widehat{\mathrm{se}}_1`. - **t_stat** (:py:data:`.tfloat64`) -- :math:`t`-statistic, equal to :math:`\hat\beta_1 / \widehat{\mathrm{se}}_1`. - **p_value** (:py:data:`.tfloat64`) -- :math:`p`-value. If `y` is a list of expressions, then the last five fields instead have type :class:`.tarray` of :py:data:`.tfloat64`, with corresponding indexing of the list and each array. If `y` is a list of lists of expressions, then `n` and `sum_x` are of type ``array<float64>``, and the last five fields are of type ``array<array<float64>>``. Index into these arrays with ``a[index_in_outer_list, index_in_inner_list]``. For example, if ``y=[[a], [b, c]]`` then the p-value for ``b`` is ``p_value[1][0]``. In the statistical genetics example above, the input variable `x` encodes genotype as the number of alternate alleles (0, 1, or 2). For each variant (row), genotype is tested for association with height controlling for age and sex, by fitting the linear regression model: .. math:: \mathrm{height} = \beta_0 + \beta_1 \, \mathrm{genotype} + \beta_2 \, \mathrm{age} + \beta_3 \, \mathrm{is\_female} + \varepsilon, \quad \varepsilon \sim \mathrm{N}(0, \sigma^2) Boolean covariates like :math:`\mathrm{is\_female}` are encoded as 1 for ``True`` and 0 for ``False``. The null model sets :math:`\beta_1 = 0`. The standard least-squares linear regression model is derived in Section 3.2 of `The Elements of Statistical Learning, 2nd Edition <http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf>`__. See equation 3.12 for the t-statistic which follows the t-distribution with :math:`n - k - 1` degrees of freedom, under the null hypothesis of no effect, with :math:`n` samples and :math:`k` covariates in addition to ``x``. Note ---- Use the `pass_through` parameter to include additional row fields from matrix table underlying ``x``. For example, to include an "rsid" field, set ``pass_through=['rsid']`` or ``pass_through=[mt.rsid]``. Parameters ---------- y : :class:`.Float64Expression` or :obj:`list` of :class:`.Float64Expression` One or more column-indexed response expressions. x : :class:`.Float64Expression` Entry-indexed expression for input variable. covariates : :obj:`list` of :class:`.Float64Expression` List of column-indexed covariate expressions. block_size : :obj:`int` Number of row regressions to perform simultaneously per core. Larger blocks require more memory but may improve performance. pass_through : :obj:`list` of :class:`str` or :class:`.Expression` Additional row fields to include in the resulting table. Returns ------- :class:`.Table` """ if not isinstance(Env.backend(), SparkBackend): return _linear_regression_rows_nd(y, x, covariates, block_size, pass_through) mt = matrix_table_source('linear_regression_rows/x', x) check_entry_indexed('linear_regression_rows/x', x) y_is_list = isinstance(y, list) if y_is_list and len(y) == 0: raise ValueError("'linear_regression_rows': found no values for 'y'") is_chained = y_is_list and isinstance(y[0], list) if is_chained and any(len(lst) == 0 for lst in y): raise ValueError("'linear_regression_rows': found empty inner list for 'y'") y = wrap_to_list(y) for e in (itertools.chain.from_iterable(y) if is_chained else y): analyze('linear_regression_rows/y', e, mt._col_indices) for e in covariates: analyze('linear_regression_rows/covariates', e, mt._col_indices) _warn_if_no_intercept('linear_regression_rows', covariates) x_field_name = Env.get_uid() if is_chained: y_field_names = [[f'__y_{i}_{j}' for j in range(len(y[i]))] for i in range(len(y))] y_dict = dict(zip(itertools.chain.from_iterable(y_field_names), itertools.chain.from_iterable(y))) func = 'LinearRegressionRowsChained' else: y_field_names = list(f'__y_{i}' for i in range(len(y))) y_dict = dict(zip(y_field_names, y)) func = 'LinearRegressionRowsSingle' cov_field_names = list(f'__cov{i}' for i in range(len(covariates))) row_fields = _get_regression_row_fields(mt, pass_through, 'linear_regression_rows') # FIXME: selecting an existing entry field should be emitted as a SelectFields mt = mt._select_all(col_exprs=dict(**y_dict, **dict(zip(cov_field_names, covariates))), row_exprs=row_fields, col_key=[], entry_exprs={x_field_name: x}) config = { 'name': func, 'yFields': y_field_names, 'xField': x_field_name, 'covFields': cov_field_names, 'rowBlockSize': block_size, 'passThrough': [x for x in row_fields if x not in mt.row_key] } ht_result = Table(ir.MatrixToTableApply(mt._mir, config)) if not y_is_list: fields = ['y_transpose_x', 'beta', 'standard_error', 't_stat', 'p_value'] ht_result = ht_result.annotate(**{f: ht_result[f][0] for f in fields}) return ht_result.persist() @typecheck(y=oneof(expr_float64, sequenceof(expr_float64), sequenceof(sequenceof(expr_float64))), x=expr_float64, covariates=sequenceof(expr_float64), block_size=int, pass_through=sequenceof(oneof(str, Expression))) def _linear_regression_rows_nd(y, x, covariates, block_size=16, pass_through=()) -> hail.Table: mt = matrix_table_source('linear_regression_rows_nd/x', x) check_entry_indexed('linear_regression_rows_nd/x', x) y_is_list = isinstance(y, list) if y_is_list and len(y) == 0: raise ValueError("'linear_regression_rows_nd': found no values for 'y'") is_chained = y_is_list and isinstance(y[0], list) if is_chained and any(len(lst) == 0 for lst in y): raise ValueError("'linear_regression_rows': found empty inner list for 'y'") y = wrap_to_list(y) for e in (itertools.chain.from_iterable(y) if is_chained else y): analyze('linear_regression_rows_nd/y', e, mt._col_indices) for e in covariates: analyze('linear_regression_rows_nd/covariates', e, mt._col_indices) _warn_if_no_intercept('linear_regression_rows_nd', covariates) x_field_name = Env.get_uid() if is_chained: y_field_name_groups = [[f'__y_{i}_{j}' for j in range(len(y[i]))] for i in range(len(y))] y_dict = dict(zip(itertools.chain.from_iterable(y_field_name_groups), itertools.chain.from_iterable(y))) else: y_field_name_groups = list(f'__y_{i}' for i in range(len(y))) y_dict = dict(zip(y_field_name_groups, y)) # Wrapping in a list since the code is written for the more general chained case. y_field_name_groups = [y_field_name_groups] cov_field_names = list(f'__cov{i}' for i in range(len(covariates))) row_field_names = _get_regression_row_fields(mt, pass_through, 'linear_regression_rows_nd') # FIXME: selecting an existing entry field should be emitted as a SelectFields mt = mt._select_all(col_exprs=dict(**y_dict, **dict(zip(cov_field_names, covariates))), row_exprs=row_field_names, col_key=[], entry_exprs={x_field_name: x}) entries_field_name = 'ent' sample_field_name = "by_sample" num_y_lists = len(y_field_name_groups) # Given a hail array, get the mean of the nonmissing entries and # return new array where the missing entries are the mean. def mean_impute(hl_array): non_missing_mean = hl.mean(hl_array, filter_missing=True) return hl_array.map(lambda entry: hl.if_else(hl.is_defined(entry), entry, non_missing_mean)) def select_array_indices(hl_array, indices): return indices.map(lambda i: hl_array[i]) def dot_rows_with_themselves(matrix): return (matrix * matrix).sum(1) def no_missing(hail_array): return hail_array.all(lambda element: hl.is_defined(element)) ht_local = mt._localize_entries(entries_field_name, sample_field_name) ht = ht_local.transmute(**{entries_field_name: ht_local[entries_field_name][x_field_name]}) def setup_globals(ht): # cov_arrays is per sample, then per cov. if covariates: ht = ht.annotate_globals(cov_arrays=ht[sample_field_name].map(lambda sample_struct: [sample_struct[cov_name] for cov_name in cov_field_names])) else: ht = ht.annotate_globals(cov_arrays=ht[sample_field_name].map(lambda sample_struct: hl.empty_array(hl.tfloat64))) ht = ht.annotate_globals( y_arrays_per_group=[ht[sample_field_name].map(lambda sample_struct: [sample_struct[y_name] for y_name in one_y_field_name_set]) for one_y_field_name_set in y_field_name_groups] ) all_covs_defined = ht.cov_arrays.map(lambda sample_covs: no_missing(sample_covs)) def get_kept_samples(sample_ys): # sample_ys is an array of samples, with each element being an array of the y_values return hl.enumerate(sample_ys).filter( lambda idx_and_y_values: all_covs_defined[idx_and_y_values[0]] & no_missing(idx_and_y_values[1]) ).map(lambda idx_and_y_values: idx_and_y_values[0]) kept_samples = ht.y_arrays_per_group.map(get_kept_samples) y_nds = hl.zip(kept_samples, ht.y_arrays_per_group).map(lambda sample_indices_and_y_arrays: hl.nd.array(sample_indices_and_y_arrays[0].map(lambda idx: sample_indices_and_y_arrays[1][idx]))) cov_nds = kept_samples.map(lambda group: hl.nd.array(group.map(lambda idx: ht.cov_arrays[idx]))) k = builtins.len(covariates) ns = kept_samples.map(lambda one_sample_set: hl.len(one_sample_set)) cov_Qts = hl.if_else(k > 0, cov_nds.map(lambda one_cov_nd: hl.nd.qr(one_cov_nd)[0].T), ns.map(lambda n: hl.nd.zeros((0, n)))) Qtys = hl.zip(cov_Qts, y_nds).map(lambda cov_qt_and_y: cov_qt_and_y[0] @ cov_qt_and_y[1]) return ht.annotate_globals( kept_samples=kept_samples, __y_nds=y_nds, ns=ns, ds=ns.map(lambda n: n - k - 1), __cov_Qts=cov_Qts, __Qtys=Qtys, __yyps=hl.range(num_y_lists).map(lambda i: dot_rows_with_themselves(y_nds[i].T) - dot_rows_with_themselves(Qtys[i].T))) ht = setup_globals(ht) def process_block(block): rows_in_block = hl.len(block) # Processes one block group based on given idx. Returns a single struct. def process_y_group(idx): X = hl.nd.array(block[entries_field_name].map(lambda row: mean_impute(select_array_indices(row, ht.kept_samples[idx])))).T n = ht.ns[idx] sum_x = X.sum(0) Qtx = ht.__cov_Qts[idx] @ X ytx = ht.__y_nds[idx].T @ X xyp = ytx - (ht.__Qtys[idx].T @ Qtx) xxpRec = (dot_rows_with_themselves(X.T) - dot_rows_with_themselves(Qtx.T)).map(lambda entry: 1 / entry) b = xyp * xxpRec se = ((1.0 / ht.ds[idx]) * (ht.__yyps[idx].reshape((-1, 1)) @ xxpRec.reshape((1, -1)) - (b * b))).map(lambda entry: hl.sqrt(entry)) t = b / se return hl.rbind(t, lambda t: hl.rbind(ht.ds[idx], lambda d: hl.rbind(t.map(lambda entry: 2 * hl.expr.functions.pT(-hl.abs(entry), d, True, False)), lambda p: hl.struct(n=hl.range(rows_in_block).map(lambda i: n), sum_x=sum_x._data_array(), y_transpose_x=ytx.T._data_array(), beta=b.T._data_array(), standard_error=se.T._data_array(), t_stat=t.T._data_array(), p_value=p.T._data_array())))) per_y_list = hl.range(num_y_lists).map(lambda i: process_y_group(i)) key_field_names = [key_field for key_field in ht.key] def build_row(row_idx): # For every field we care about, map across all y's, getting the row_idxth one from each. idxth_keys = {field_name: block[field_name][row_idx] for field_name in key_field_names} computed_row_field_names = ['n', 'sum_x', 'y_transpose_x', 'beta', 'standard_error', 't_stat', 'p_value'] computed_row_fields = { field_name: per_y_list.map(lambda one_y: one_y[field_name][row_idx]) for field_name in computed_row_field_names } pass_through_rows = { field_name: block[field_name][row_idx] for field_name in row_field_names } if not is_chained: computed_row_fields = {key: value[0] for key, value in computed_row_fields.items()} return hl.struct(**{**idxth_keys, **computed_row_fields, **pass_through_rows}) new_rows = hl.range(rows_in_block).map(build_row) return new_rows def process_partition(part): grouped = part.grouped(block_size) return grouped.flatmap(lambda block: process_block(block)) res = ht._map_partitions(process_partition) if not y_is_list: fields = ['y_transpose_x', 'beta', 'standard_error', 't_stat', 'p_value'] res = res.annotate(**{f: res[f][0] for f in fields}) res = res.select_globals() return res @typecheck(test=enumeration('wald', 'lrt', 'score', 'firth'), y=oneof(expr_float64, sequenceof(expr_float64)), x=expr_float64, covariates=sequenceof(expr_float64), pass_through=sequenceof(oneof(str, Expression))) def logistic_regression_rows(test, y, x, covariates, pass_through=()) -> hail.Table: r"""For each row, test an input variable for association with a binary response variable using logistic regression. Examples -------- Run the logistic regression Wald test per variant using a Boolean phenotype, intercept and two covariates stored in column-indexed fields: >>> result_ht = hl.logistic_regression_rows( ... test='wald', ... y=dataset.pheno.is_case, ... x=dataset.GT.n_alt_alleles(), ... covariates=[1, dataset.pheno.age, dataset.pheno.is_female]) Run the logistic regression Wald test per variant using a list of binary (0/1) phenotypes, intercept and two covariates stored in column-indexed fields: >>> result_ht = hl.logistic_regression_rows( ... test='wald', ... y=[dataset.pheno.is_case, dataset.pheno.is_case], # where pheno values are 0, 1, or missing ... x=dataset.GT.n_alt_alleles(), ... covariates=[1, dataset.pheno.age, dataset.pheno.is_female]) Warning ------- :func:`.logistic_regression_rows` considers the same set of columns (i.e., samples, points) for every row, namely those columns for which **all** response variables and covariates are defined. For each row, missing values of `x` are mean-imputed over these columns. As in the example, the intercept covariate ``1`` must be included **explicitly** if desired. Notes ----- This method performs, for each row, a significance test of the input variable in predicting a binary (case-control) response variable based on the logistic regression model. The response variable type must either be numeric (with all present values 0 or 1) or Boolean, in which case true and false are coded as 1 and 0, respectively. Hail supports the Wald test ('wald'), likelihood ratio test ('lrt'), Rao score test ('score'), and Firth test ('firth'). Hail only includes columns for which the response variable and all covariates are defined. For each row, Hail imputes missing input values as the mean of the non-missing values. The example above considers a model of the form .. math:: \mathrm{Prob}(\mathrm{is\_case}) = \mathrm{sigmoid}(\beta_0 + \beta_1 \, \mathrm{gt} + \beta_2 \, \mathrm{age} + \beta_3 \, \mathrm{is\_female} + \varepsilon), \quad \varepsilon \sim \mathrm{N}(0, \sigma^2) where :math:`\mathrm{sigmoid}` is the `sigmoid function`_, the genotype :math:`\mathrm{gt}` is coded as 0 for HomRef, 1 for Het, and 2 for HomVar, and the Boolean covariate :math:`\mathrm{is\_female}` is coded as for ``True`` (female) and 0 for ``False`` (male). The null model sets :math:`\beta_1 = 0`. .. _sigmoid function: https://en.wikipedia.org/wiki/Sigmoid_function The structure of the emitted row field depends on the test statistic as shown in the tables below. ========== ================== ======= ============================================ Test Field Type Value ========== ================== ======= ============================================ Wald `beta` float64 fit effect coefficient, :math:`\hat\beta_1` Wald `standard_error` float64 estimated standard error, :math:`\widehat{\mathrm{se}}` Wald `z_stat` float64 Wald :math:`z`-statistic, equal to :math:`\hat\beta_1 / \widehat{\mathrm{se}}` Wald `p_value` float64 Wald p-value testing :math:`\beta_1 = 0` LRT, Firth `beta` float64 fit effect coefficient, :math:`\hat\beta_1` LRT, Firth `chi_sq_stat` float64 deviance statistic LRT, Firth `p_value` float64 LRT / Firth p-value testing :math:`\beta_1 = 0` Score `chi_sq_stat` float64 score statistic Score `p_value` float64 score p-value testing :math:`\beta_1 = 0` ========== ================== ======= ============================================ For the Wald and likelihood ratio tests, Hail fits the logistic model for each row using Newton iteration and only emits the above fields when the maximum likelihood estimate of the coefficients converges. The Firth test uses a modified form of Newton iteration. To help diagnose convergence issues, Hail also emits three fields which summarize the iterative fitting process: ================ =================== ======= =============================== Test Field Type Value ================ =================== ======= =============================== Wald, LRT, Firth `fit.n_iterations` int32 number of iterations until convergence, explosion, or reaching the max (25 for Wald, LRT; 100 for Firth) Wald, LRT, Firth `fit.converged` bool ``True`` if iteration converged Wald, LRT, Firth `fit.exploded` bool ``True`` if iteration exploded ================ =================== ======= =============================== We consider iteration to have converged when every coordinate of :math:`\beta` changes by less than :math:`10^{-6}`. For Wald and LRT, up to 25 iterations are attempted; in testing we find 4 or 5 iterations nearly always suffice. Convergence may also fail due to explosion, which refers to low-level numerical linear algebra exceptions caused by manipulating ill-conditioned matrices. Explosion may result from (nearly) linearly dependent covariates or complete separation_. .. _separation: https://en.wikipedia.org/wiki/Separation_(statistics) A more common situation in genetics is quasi-complete seperation, e.g. variants that are observed only in cases (or controls). Such variants inevitably arise when testing millions of variants with very low minor allele count. The maximum likelihood estimate of :math:`\beta` under logistic regression is then undefined but convergence may still occur after a large number of iterations due to a very flat likelihood surface. In testing, we find that such variants produce a secondary bump from 10 to 15 iterations in the histogram of number of iterations per variant. We also find that this faux convergence produces large standard errors and large (insignificant) p-values. To not miss such variants, consider using Firth logistic regression, linear regression, or group-based tests. Here's a concrete illustration of quasi-complete seperation in R. Suppose we have 2010 samples distributed as follows for a particular variant: ======= ====== === ====== Status HomRef Het HomVar ======= ====== === ====== Case 1000 10 0 Control 1000 0 0 ======= ====== === ====== The following R code fits the (standard) logistic, Firth logistic, and linear regression models to this data, where ``x`` is genotype, ``y`` is phenotype, and ``logistf`` is from the logistf package: .. code-block:: R x <- c(rep(0,1000), rep(1,1000), rep(1,10) y <- c(rep(0,1000), rep(0,1000), rep(1,10)) logfit <- glm(y ~ x, family=binomial()) firthfit <- logistf(y ~ x) linfit <- lm(y ~ x) The resulting p-values for the genotype coefficient are 0.991, 0.00085, and 0.0016, respectively. The erroneous value 0.991 is due to quasi-complete separation. Moving one of the 10 hets from case to control eliminates this quasi-complete separation; the p-values from R are then 0.0373, 0.0111, and 0.0116, respectively, as expected for a less significant association. The Firth test reduces bias from small counts and resolves the issue of separation by penalizing maximum likelihood estimation by the `Jeffrey's invariant prior <https://en.wikipedia.org/wiki/Jeffreys_prior>`__. This test is slower, as both the null and full model must be fit per variant, and convergence of the modified Newton method is linear rather than quadratic. For Firth, 100 iterations are attempted for the null model and, if that is successful, for the full model as well. In testing we find 20 iterations nearly always suffices. If the null model fails to converge, then the `logreg.fit` fields reflect the null model; otherwise, they reflect the full model. See `Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049324/>`__ for an empirical comparison of the logistic Wald, LRT, score, and Firth tests. The theoretical foundations of the Wald, likelihood ratio, and score tests may be found in Chapter 3 of Gesine Reinert's notes `Statistical Theory <http://www.stats.ox.ac.uk/~reinert/stattheory/theoryshort09.pdf>`__. Firth introduced his approach in `Bias reduction of maximum likelihood estimates, 1993 <http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/GibbsFieldEst/BiasReductionMLE.pdf>`__. Heinze and Schemper further analyze Firth's approach in `A solution to the problem of separation in logistic regression, 2002 <https://cemsiis.meduniwien.ac.at/fileadmin/msi_akim/CeMSIIS/KB/volltexte/Heinze_Schemper_2002_Statistics_in_Medicine.pdf>`__. Hail's logistic regression tests correspond to the ``b.wald``, ``b.lrt``, and ``b.score`` tests in `EPACTS`_. For each variant, Hail imputes missing input values as the mean of non-missing input values, whereas EPACTS subsets to those samples with called genotypes. Hence, Hail and EPACTS results will currently only agree for variants with no missing genotypes. .. _EPACTS: http://genome.sph.umich.edu/wiki/EPACTS#Single_Variant_Tests Note ---- Use the `pass_through` parameter to include additional row fields from matrix table underlying ``x``. For example, to include an "rsid" field, set ``pass_through=['rsid']`` or ``pass_through=[mt.rsid]``. Parameters ---------- test : {'wald', 'lrt', 'score', 'firth'} Statistical test. y : :class:`.Float64Expression` or :obj:`list` of :class:`.Float64Expression` One or more column-indexed response expressions. All non-missing values must evaluate to 0 or 1. Note that a :class:`.BooleanExpression` will be implicitly converted to a :class:`.Float64Expression` with this property. x : :class:`.Float64Expression` Entry-indexed expression for input variable. covariates : :obj:`list` of :class:`.Float64Expression` Non-empty list of column-indexed covariate expressions. pass_through : :obj:`list` of :class:`str` or :class:`.Expression` Additional row fields to include in the resulting table. Returns ------- :class:`.Table` """ if len(covariates) == 0: raise ValueError('logistic regression requires at least one covariate expression') mt = matrix_table_source('logistic_regresion_rows/x', x) check_entry_indexed('logistic_regresion_rows/x', x) y_is_list = isinstance(y, list) if y_is_list and len(y) == 0: raise ValueError("'logistic_regression_rows': found no values for 'y'") y = wrap_to_list(y) for e in covariates: analyze('logistic_regression_rows/covariates', e, mt._col_indices) _warn_if_no_intercept('logistic_regression_rows', covariates) x_field_name = Env.get_uid() y_field = [f'__y_{i}' for i in range(len(y))] y_dict = dict(zip(y_field, y)) cov_field_names = [f'__cov{i}' for i in range(len(covariates))] row_fields = _get_regression_row_fields(mt, pass_through, 'logistic_regression_rows') # FIXME: selecting an existing entry field should be emitted as a SelectFields mt = mt._select_all(col_exprs=dict(**y_dict, **dict(zip(cov_field_names, covariates))), row_exprs=row_fields, col_key=[], entry_exprs={x_field_name: x}) config = { 'name': 'LogisticRegression', 'test': test, 'yFields': y_field, 'xField': x_field_name, 'covFields': cov_field_names, 'passThrough': [x for x in row_fields if x not in mt.row_key] } result = Table(ir.MatrixToTableApply(mt._mir, config)) if not y_is_list: result = result.transmute(**result.logistic_regression[0]) return result.persist() # Helpers for logreg: def mean_impute(hl_array): non_missing_mean = hl.mean(hl_array, filter_missing=True) return hl_array.map(lambda entry: hl.if_else(hl.is_defined(entry), entry, non_missing_mean)) def sigmoid(hl_nd): return hl_nd.map(lambda x: hl.if_else(x > 0, hl.rbind(hl.exp(x), lambda exped: exped / (exped + 1)), 1 / (1 + hl.exp(-x)))) def nd_max(hl_nd): return hl.max(hl_nd.reshape(-1)._data_array()) def logreg_fit(X, y, null_fit=None, max_iter=25, tol=1E-6): assert(X.ndim == 2) assert(y.ndim == 1) # X is samples by covs. # y is length num samples, for one cov. n = X.shape[0] m = X.shape[1] if null_fit is None: avg = y.sum() / n logit_avg = hl.log(avg / (1 - avg)) b = hl.nd.hstack([hl.nd.array([logit_avg]), hl.nd.zeros((hl.int32(m - 1)))]) mu = sigmoid(X @ b) score = X.T @ (y - mu) # Reshape so we do a rowwise multiply fisher = X.T @ (X * (mu * (1 - mu)).reshape(-1, 1)) else: # num covs used to fit null model. m0 = null_fit.b.shape[0] m_diff = m - m0 X0 = X[:, 0:m0] X1 = X[:, m0:] b = hl.nd.hstack([null_fit.b, hl.nd.zeros((m_diff,))]) mu = sigmoid(X @ b) score = hl.nd.hstack([null_fit.score, X1.T @ (y - mu)]) fisher00 = null_fit.fisher fisher01 = X0.T @ (X1 * (mu * (1 - mu)).reshape(-1, 1)) fisher10 = fisher01.T fisher11 = X1.T @ (X1 * (mu * (1 - mu)).reshape(-1, 1)) fisher = hl.nd.vstack([ hl.nd.hstack([fisher00, fisher01]), hl.nd.hstack([fisher10, fisher11]) ]) # Useful type abbreviations tvector64 = hl.tndarray(hl.tfloat64, 1) tmatrix64 = hl.tndarray(hl.tfloat64, 2) search_return_type = hl.tstruct(b=tvector64, score=tvector64, fisher=tmatrix64, num_iter=hl.tint32, log_lkhd=hl.tfloat64, converged=hl.tbool, exploded=hl.tbool) def na(field_name): return hl.missing(search_return_type[field_name]) # Need to do looping now. def search(recur, cur_iter, b, mu, score, fisher): delta_b_struct = hl.nd.solve(fisher, score, no_crash=True) exploded = delta_b_struct.failed delta_b = delta_b_struct.solution max_delta_b = nd_max(delta_b.map(lambda e: hl.abs(e))) log_lkhd = ((y * mu) + (1 - y) * (1 - mu)).map(lambda e: hl.log(e)).sum() def compute_next_iter(cur_iter, b, mu, score, fisher): cur_iter = cur_iter + 1 b = b + delta_b mu = sigmoid(X @ b) score = X.T @ (y - mu) fisher = X.T @ (X * (mu * (1 - mu)).reshape(-1, 1)) return recur(cur_iter, b, mu, score, fisher) return (hl.case() .when(exploded | hl.is_nan(delta_b[0]), hl.struct(b=na('b'), score=na('score'), fisher=na('fisher'), num_iter=cur_iter, log_lkhd=log_lkhd, converged=False, exploded=True)) .when(cur_iter > max_iter, hl.struct(b=na('b'), score=na('score'), fisher=na('fisher'), num_iter=cur_iter, log_lkhd=log_lkhd, converged=False, exploded=False)) .when(max_delta_b < tol, hl.struct(b=b, score=score, fisher=fisher, num_iter=cur_iter, log_lkhd=log_lkhd, converged=True, exploded=False)) .default(compute_next_iter(cur_iter, b, mu, score, fisher))) res_struct = hl.experimental.loop(search, search_return_type, 1, b, mu, score, fisher) return res_struct def wald_test(X, y, null_fit, link): assert (link == "logistic") fit = logreg_fit(X, y, null_fit) se = hl.nd.diagonal(hl.nd.inv(fit.fisher)).map(lambda e: hl.sqrt(e)) z = fit.b / se p = z.map(lambda e: 2 * hl.pnorm(-hl.abs(e))) return hl.struct( beta=fit.b[X.shape[1] - 1], standard_error=se[X.shape[1] - 1], z_stat=z[X.shape[1] - 1], p_value=p[X.shape[1] - 1], fit=hl.struct(n_iterations=fit.num_iter, converged=fit.converged, exploded=fit.exploded)) def lrt_test(X, y, null_fit, link): assert (link == "logistic") fit = logreg_fit(X, y, null_fit) chi_sq = hl.if_else(~fit.converged, hl.missing(hl.tfloat64), 2 * (fit.log_lkhd - null_fit.log_lkhd)) p = hl.pchisqtail(chi_sq, X.shape[1] - null_fit.b.shape[0]) return hl.struct( beta=fit.b[X.shape[1] - 1], chi_sq_stat=chi_sq, p_value=p, fit=hl.struct(n_iterations=fit.num_iter, converged=fit.converged, exploded=fit.exploded)) @typecheck(test=enumeration('wald', 'lrt', 'score', 'firth'), y=oneof(expr_float64, sequenceof(expr_float64)), x=expr_float64, covariates=sequenceof(expr_float64), pass_through=sequenceof(oneof(str, Expression))) def _logistic_regression_rows_nd(test, y, x, covariates, pass_through=()) -> hail.Table: r"""For each row, test an input variable for association with a binary response variable using logistic regression. Examples -------- Run the logistic regression Wald test per variant using a Boolean phenotype, intercept and two covariates stored in column-indexed fields: >>> result_ht = hl.logistic_regression_rows( ... test='wald', ... y=dataset.pheno.is_case, ... x=dataset.GT.n_alt_alleles(), ... covariates=[1, dataset.pheno.age, dataset.pheno.is_female]) Run the logistic regression Wald test per variant using a list of binary (0/1) phenotypes, intercept and two covariates stored in column-indexed fields: >>> result_ht = hl.logistic_regression_rows( ... test='wald', ... y=[dataset.pheno.is_case, dataset.pheno.is_case], # where pheno values are 0, 1, or missing ... x=dataset.GT.n_alt_alleles(), ... covariates=[1, dataset.pheno.age, dataset.pheno.is_female]) Warning ------- :func:`.logistic_regression_rows` considers the same set of columns (i.e., samples, points) for every row, namely those columns for which **all** response variables and covariates are defined. For each row, missing values of `x` are mean-imputed over these columns. As in the example, the intercept covariate ``1`` must be included **explicitly** if desired. Notes ----- This method performs, for each row, a significance test of the input variable in predicting a binary (case-control) response variable based on the logistic regression model. The response variable type must either be numeric (with all present values 0 or 1) or Boolean, in which case true and false are coded as 1 and 0, respectively. Hail supports the Wald test ('wald'), likelihood ratio test ('lrt'), Rao score test ('score'), and Firth test ('firth'). Hail only includes columns for which the response variable and all covariates are defined. For each row, Hail imputes missing input values as the mean of the non-missing values. The example above considers a model of the form .. math:: \mathrm{Prob}(\mathrm{is\_case}) = \mathrm{sigmoid}(\beta_0 + \beta_1 \, \mathrm{gt} + \beta_2 \, \mathrm{age} + \beta_3 \, \mathrm{is\_female} + \varepsilon), \quad \varepsilon \sim \mathrm{N}(0, \sigma^2) where :math:`\mathrm{sigmoid}` is the `sigmoid function`_, the genotype :math:`\mathrm{gt}` is coded as 0 for HomRef, 1 for Het, and 2 for HomVar, and the Boolean covariate :math:`\mathrm{is\_female}` is coded as for ``True`` (female) and 0 for ``False`` (male). The null model sets :math:`\beta_1 = 0`. .. _sigmoid function: https://en.wikipedia.org/wiki/Sigmoid_function The structure of the emitted row field depends on the test statistic as shown in the tables below. ========== ================== ======= ============================================ Test Field Type Value ========== ================== ======= ============================================ Wald `beta` float64 fit effect coefficient, :math:`\hat\beta_1` Wald `standard_error` float64 estimated standard error, :math:`\widehat{\mathrm{se}}` Wald `z_stat` float64 Wald :math:`z`-statistic, equal to :math:`\hat\beta_1 / \widehat{\mathrm{se}}` Wald `p_value` float64 Wald p-value testing :math:`\beta_1 = 0` LRT, Firth `beta` float64 fit effect coefficient, :math:`\hat\beta_1` LRT, Firth `chi_sq_stat` float64 deviance statistic LRT, Firth `p_value` float64 LRT / Firth p-value testing :math:`\beta_1 = 0` Score `chi_sq_stat` float64 score statistic Score `p_value` float64 score p-value testing :math:`\beta_1 = 0` ========== ================== ======= ============================================ For the Wald and likelihood ratio tests, Hail fits the logistic model for each row using Newton iteration and only emits the above fields when the maximum likelihood estimate of the coefficients converges. The Firth test uses a modified form of Newton iteration. To help diagnose convergence issues, Hail also emits three fields which summarize the iterative fitting process: ================ =================== ======= =============================== Test Field Type Value ================ =================== ======= =============================== Wald, LRT, Firth `fit.n_iterations` int32 number of iterations until convergence, explosion, or reaching the max (25 for Wald, LRT; 100 for Firth) Wald, LRT, Firth `fit.converged` bool ``True`` if iteration converged Wald, LRT, Firth `fit.exploded` bool ``True`` if iteration exploded ================ =================== ======= =============================== We consider iteration to have converged when every coordinate of :math:`\beta` changes by less than :math:`10^{-6}`. For Wald and LRT, up to 25 iterations are attempted; in testing we find 4 or 5 iterations nearly always suffice. Convergence may also fail due to explosion, which refers to low-level numerical linear algebra exceptions caused by manipulating ill-conditioned matrices. Explosion may result from (nearly) linearly dependent covariates or complete separation_. .. _separation: https://en.wikipedia.org/wiki/Separation_(statistics) A more common situation in genetics is quasi-complete seperation, e.g. variants that are observed only in cases (or controls). Such variants inevitably arise when testing millions of variants with very low minor allele count. The maximum likelihood estimate of :math:`\beta` under logistic regression is then undefined but convergence may still occur after a large number of iterations due to a very flat likelihood surface. In testing, we find that such variants produce a secondary bump from 10 to 15 iterations in the histogram of number of iterations per variant. We also find that this faux convergence produces large standard errors and large (insignificant) p-values. To not miss such variants, consider using Firth logistic regression, linear regression, or group-based tests. Here's a concrete illustration of quasi-complete seperation in R. Suppose we have 2010 samples distributed as follows for a particular variant: ======= ====== === ====== Status HomRef Het HomVar ======= ====== === ====== Case 1000 10 0 Control 1000 0 0 ======= ====== === ====== The following R code fits the (standard) logistic, Firth logistic, and linear regression models to this data, where ``x`` is genotype, ``y`` is phenotype, and ``logistf`` is from the logistf package: .. code-block:: R x <- c(rep(0,1000), rep(1,1000), rep(1,10) y <- c(rep(0,1000), rep(0,1000), rep(1,10)) logfit <- glm(y ~ x, family=binomial()) firthfit <- logistf(y ~ x) linfit <- lm(y ~ x) The resulting p-values for the genotype coefficient are 0.991, 0.00085, and 0.0016, respectively. The erroneous value 0.991 is due to quasi-complete separation. Moving one of the 10 hets from case to control eliminates this quasi-complete separation; the p-values from R are then 0.0373, 0.0111, and 0.0116, respectively, as expected for a less significant association. The Firth test reduces bias from small counts and resolves the issue of separation by penalizing maximum likelihood estimation by the `Jeffrey's invariant prior <https://en.wikipedia.org/wiki/Jeffreys_prior>`__. This test is slower, as both the null and full model must be fit per variant, and convergence of the modified Newton method is linear rather than quadratic. For Firth, 100 iterations are attempted for the null model and, if that is successful, for the full model as well. In testing we find 20 iterations nearly always suffices. If the null model fails to converge, then the `logreg.fit` fields reflect the null model; otherwise, they reflect the full model. See `Recommended joint and meta-analysis strategies for case-control association testing of single low-count variants <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049324/>`__ for an empirical comparison of the logistic Wald, LRT, score, and Firth tests. The theoretical foundations of the Wald, likelihood ratio, and score tests may be found in Chapter 3 of Gesine Reinert's notes `Statistical Theory <http://www.stats.ox.ac.uk/~reinert/stattheory/theoryshort09.pdf>`__. Firth introduced his approach in `Bias reduction of maximum likelihood estimates, 1993 <http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/GibbsFieldEst/BiasReductionMLE.pdf>`__. Heinze and Schemper further analyze Firth's approach in `A solution to the problem of separation in logistic regression, 2002 <https://cemsiis.meduniwien.ac.at/fileadmin/msi_akim/CeMSIIS/KB/volltexte/Heinze_Schemper_2002_Statistics_in_Medicine.pdf>`__. Hail's logistic regression tests correspond to the ``b.wald``, ``b.lrt``, and ``b.score`` tests in `EPACTS`_. For each variant, Hail imputes missing input values as the mean of non-missing input values, whereas EPACTS subsets to those samples with called genotypes. Hence, Hail and EPACTS results will currently only agree for variants with no missing genotypes. .. _EPACTS: http://genome.sph.umich.edu/wiki/EPACTS#Single_Variant_Tests Note ---- Use the `pass_through` parameter to include additional row fields from matrix table underlying ``x``. For example, to include an "rsid" field, set ``pass_through=['rsid']`` or ``pass_through=[mt.rsid]``. Parameters ---------- test : {'wald', 'lrt', 'score', 'firth'} Statistical test. y : :class:`.Float64Expression` or :obj:`list` of :class:`.Float64Expression` One or more column-indexed response expressions. All non-missing values must evaluate to 0 or 1. Note that a :class:`.BooleanExpression` will be implicitly converted to a :class:`.Float64Expression` with this property. x : :class:`.Float64Expression` Entry-indexed expression for input variable. covariates : :obj:`list` of :class:`.Float64Expression` Non-empty list of column-indexed covariate expressions. pass_through : :obj:`list` of :class:`str` or :class:`.Expression` Additional row fields to include in the resulting table. Returns ------- :class:`.Table` """ if len(covariates) == 0: raise ValueError('logistic regression requires at least one covariate expression') mt = matrix_table_source('logistic_regresion_rows/x', x) check_entry_indexed('logistic_regresion_rows/x', x) y_is_list = isinstance(y, list) if y_is_list and len(y) == 0: raise ValueError("'logistic_regression_rows': found no values for 'y'") y = wrap_to_list(y) for e in covariates: analyze('logistic_regression_rows/covariates', e, mt._col_indices) # _warn_if_no_intercept('logistic_regression_rows', covariates) x_field_name = Env.get_uid() y_field_names = [f'__y_{i}' for i in range(len(y))] num_y_fields = len(y_field_names) y_dict = dict(zip(y_field_names, y)) cov_field_names = [f'__cov{i}' for i in range(len(covariates))] row_fields = _get_regression_row_fields(mt, pass_through, 'logistic_regression_rows') # Handle filtering columns with missing values: mt = mt.filter_cols(hl.array(y + covariates).all(hl.is_defined)) # FIXME: selecting an existing entry field should be emitted as a SelectFields mt = mt._select_all(col_exprs=dict(**y_dict, **dict(zip(cov_field_names, covariates))), row_exprs=row_fields, col_key=[], entry_exprs={x_field_name: x}) sample_field_name = "samples" ht = mt._localize_entries("entries", sample_field_name) # cov_nd rows are samples, columns are the different covariates if covariates: ht = ht.annotate_globals(cov_nd=hl.nd.array(ht[sample_field_name].map(lambda sample_struct: [sample_struct[cov_name] for cov_name in cov_field_names]))) else: ht = ht.annotate_globals(cov_nd=hl.nd.array(ht[sample_field_name].map(lambda sample_struct: hl.empty_array(hl.tfloat64)))) # y_nd rows are samples, columns are the various dependent variables. ht = ht.annotate_globals(y_nd=hl.nd.array(ht[sample_field_name].map(lambda sample_struct: [sample_struct[y_name] for y_name in y_field_names]))) # Fit null models, which means doing a logreg fit with just the covariates for each phenotype. null_models = hl.range(num_y_fields).map(lambda idx: logreg_fit(ht.cov_nd, ht.y_nd[:, idx])) ht = ht.annotate_globals(nulls=null_models) ht = ht.transmute(x=hl.nd.array(mean_impute(ht.entries[x_field_name]))) if test == "wald": # For each y vector, need to do wald test. covs_and_x = hl.nd.hstack([ht.cov_nd, ht.x.reshape((-1, 1))]) wald_structs = hl.range(num_y_fields).map(lambda idx: wald_test(covs_and_x, ht.y_nd[:, idx], ht.nulls[idx], "logistic")) ht = ht.annotate(logistic_regression=wald_structs) elif test == "lrt": covs_and_x = hl.nd.hstack([ht.cov_nd, ht.x.reshape((-1, 1))]) lrt_structs = hl.range(num_y_fields).map(lambda idx: lrt_test(covs_and_x, ht.y_nd[:, idx], ht.nulls[idx], "logistic")) ht = ht.annotate(logistic_regression=lrt_structs) else: raise ValueError("Only support wald and lrt so far") if not y_is_list: ht = ht.transmute(**ht.logistic_regression[0]) ht = ht.drop("x") return ht @typecheck(test=enumeration('wald', 'lrt', 'score'), y=expr_float64, x=expr_float64, covariates=sequenceof(expr_float64), pass_through=sequenceof(oneof(str, Expression))) def poisson_regression_rows(test, y, x, covariates, pass_through=()) -> Table: r"""For each row, test an input variable for association with a count response variable using `Poisson regression <https://en.wikipedia.org/wiki/Poisson_regression>`__. Notes ----- See :func:`.logistic_regression_rows` for more info on statistical tests of general linear models. Note ---- Use the `pass_through` parameter to include additional row fields from matrix table underlying ``x``. For example, to include an "rsid" field, set ``pass_through=['rsid']`` or ``pass_through=[mt.rsid]``. Parameters ---------- y : :class:`.Float64Expression` Column-indexed response expression. All non-missing values must evaluate to a non-negative integer. x : :class:`.Float64Expression` Entry-indexed expression for input variable. covariates : :obj:`list` of :class:`.Float64Expression` Non-empty list of column-indexed covariate expressions. pass_through : :obj:`list` of :class:`str` or :class:`.Expression` Additional row fields to include in the resulting table. Returns ------- :class:`.Table` """ if len(covariates) == 0: raise ValueError('Poisson regression requires at least one covariate expression') mt = matrix_table_source('poisson_regression_rows/x', x) check_entry_indexed('poisson_regression_rows/x', x) analyze('poisson_regression_rows/y', y, mt._col_indices) all_exprs = [y] for e in covariates: all_exprs.append(e) analyze('poisson_regression_rows/covariates', e, mt._col_indices) _warn_if_no_intercept('poisson_regression_rows', covariates) x_field_name = Env.get_uid() y_field_name = '__y' cov_field_names = list(f'__cov{i}' for i in range(len(covariates))) row_fields = _get_regression_row_fields(mt, pass_through, 'poisson_regression_rows') # FIXME: selecting an existing entry field should be emitted as a SelectFields mt = mt._select_all(col_exprs=dict(**{y_field_name: y}, **dict(zip(cov_field_names, covariates))), row_exprs=row_fields, col_key=[], entry_exprs={x_field_name: x}) config = { 'name': 'PoissonRegression', 'test': test, 'yField': y_field_name, 'xField': x_field_name, 'covFields': cov_field_names, 'passThrough': [x for x in row_fields if x not in mt.row_key] } return Table(ir.MatrixToTableApply(mt._mir, config)).persist() @typecheck(y=expr_float64, x=sequenceof(expr_float64), z_t=nullable(expr_float64), k=nullable(np.ndarray), p_path=nullable(str), overwrite=bool, standardize=bool, mean_impute=bool) def linear_mixed_model(y, x, z_t=None, k=None, p_path=None, overwrite=False, standardize=True, mean_impute=True): r"""Initialize a linear mixed model from a matrix table. Examples -------- Initialize a model using three fixed effects (including intercept) and genetic marker random effects: >>> marker_ds = dataset.filter_rows(dataset.use_as_marker) # doctest: +SKIP >>> model, _ = hl.linear_mixed_model( # doctest: +SKIP ... y=marker_ds.pheno.height, ... x=[1, marker_ds.pheno.age, marker_ds.pheno.is_female], ... z_t=marker_ds.GT.n_alt_alleles(), ... p_path='output/p.bm') Fit the model and examine :math:`h^2`: >>> model.fit() # doctest: +SKIP >>> model.h_sq # doctest: +SKIP Sanity-check the normalized likelihood of :math:`h^2` over the percentile grid: >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> plt.plot(range(101), model.h_sq_normalized_lkhd()) # doctest: +SKIP For this value of :math:`h^2`, test each variant for association: >>> result_table = hl.linear_mixed_regression_rows(dataset.GT.n_alt_alleles(), model) # doctest: +SKIP Alternatively, one can define a full-rank model using a pre-computed kinship matrix :math:`K` in ndarray form. When :math:`K` is the realized relationship matrix defined by the genetic markers, we obtain the same model as above with :math:`P` written as a block matrix but returned as an ndarray: >>> rrm = hl.realized_relationship_matrix(marker_ds.GT).to_numpy() # doctest: +SKIP >>> model, p = hl.linear_mixed_model( # doctest: +SKIP ... y=dataset.pheno.height, ... x=[1, dataset.pheno.age, dataset.pheno.is_female], ... k=rrm, ... p_path='output/p.bm', ... overwrite=True) Notes ----- See :class:`.LinearMixedModel` for details on the model and notation. Exactly one of `z_t` and `k` must be set. If `z_t` is set, the model is low-rank if the number of samples :math:`n` exceeds the number of random effects :math:`m`. At least one dimension must be less than or equal to 46300. If `standardize` is true, each random effect is first standardized to have mean 0 and variance :math:`\frac{1}{m}`, so that the diagonal values of the kinship matrix :math:`K = ZZ^T` are 1.0 in expectation. This kinship matrix corresponds to the :meth:`realized_relationship_matrix` in genetics. See :meth:`.LinearMixedModel.from_random_effects` and :meth:`.BlockMatrix.svd` for more details. If `k` is set, the model is full-rank. For correct results, the indices of `k` **must be aligned** with columns of the source of `y`. Set `p_path` if you plan to use the model in :func:`.linear_mixed_regression_rows`. `k` must be positive semi-definite; symmetry is not checked as only the lower triangle is used. See :meth:`.LinearMixedModel.from_kinship` for more details. Missing, nan, or infinite values in `y` or `x` will raise an error. If set, `z_t` may only have missing values if `mean_impute` is true, in which case missing values of are set to the row mean. We recommend setting `mean_impute` to false if you expect no missing values, both for performance and as a sanity check. Warning ------- If the rows of the matrix table have been filtered to a small fraction, then :meth:`.MatrixTable.repartition` before this method to improve performance. Parameters ---------- y: :class:`.Float64Expression` Column-indexed expression for the observations (rows of :math:`y`). Must have no missing values. x: :obj:`list` of :class:`.Float64Expression` Non-empty list of column-indexed expressions for the fixed effects (rows of :math:`X`). Each expression must have the same source as `y` or no source (e.g., the intercept ``1.0``). Must have no missing values. z_t: :class:`.Float64Expression`, optional Entry-indexed expression for each mixed effect. These values are row-standardized to variance :math:`1 / m` to form the entries of :math:`Z^T`. If `mean_impute` is false, must have no missing values. Exactly one of `z_t` and `k` must be set. k: :class:`numpy.ndarray`, optional Kinship matrix :math:`K`. Exactly one of `z_t` and `k` must be set. p_path: :class:`str`, optional Path at which to write the projection :math:`P` as a block matrix. Required if `z_t` is set. overwrite: :obj:`bool` If ``True``, overwrite an existing file at `p_path`. standardize: :obj:`bool` If ``True``, standardize `z_t` by row to mean 0 and variance :math:`\frac{1}{m}`. mean_impute: :obj:`bool` If ``True``, mean-impute missing values of `z_t` by row. Returns ------- model: :class:`.LinearMixedModel` Linear mixed model ready to be fit. p: :class:`numpy.ndarray` or :class:`.BlockMatrix` Matrix :math:`P` whose rows are the eigenvectors of :math:`K`. The type is block matrix if the model is low rank (i.e., if `z_t` is set and :math:`n > m`). """ source = matrix_table_source('linear_mixed_model/y', y) if ((z_t is None and k is None) or (z_t is not None and k is not None)): raise ValueError("linear_mixed_model: set exactly one of 'z_t' and 'k'") if len(x) == 0: raise ValueError("linear_mixed_model: 'x' must include at least one fixed effect") _warn_if_no_intercept('linear_mixed_model', x) # collect x and y in one pass mt = source.select_cols(xy=hl.array(x + [y])).key_cols_by() xy = np.array(mt.xy.collect(), dtype=np.float64) xy = xy.reshape(xy.size // (len(x) + 1), len(x) + 1) x_nd = np.copy(xy[:, :-1]) y_nd = np.copy(xy[:, -1]) n = y_nd.size del xy if not np.all(np.isfinite(y_nd)): raise ValueError("linear_mixed_model: 'y' has missing, nan, or infinite values") if not np.all(np.isfinite(x_nd)): raise ValueError("linear_mixed_model: 'x' has missing, nan, or infinite values") if z_t is None: model, p = LinearMixedModel.from_kinship(y_nd, x_nd, k, p_path, overwrite) else: check_entry_indexed('from_matrix_table: z_t', z_t) if matrix_table_source('linear_mixed_model/z_t', z_t) != source: raise ValueError("linear_mixed_model: 'y' and 'z_t' must " "have the same source") z_bm = BlockMatrix.from_entry_expr(z_t, mean_impute=mean_impute, center=standardize, normalize=standardize).T # variance is 1 / n m = z_bm.shape[1] model, p = LinearMixedModel.from_random_effects(y_nd, x_nd, z_bm, p_path, overwrite) if standardize: model.s = model.s * (n / m) # now variance is 1 / m if model.low_rank and isinstance(p, np.ndarray): assert n > m p = BlockMatrix.read(p_path) return model, p @typecheck(entry_expr=expr_float64, model=LinearMixedModel, pa_t_path=nullable(str), a_t_path=nullable(str), mean_impute=bool, partition_size=nullable(int), pass_through=sequenceof(oneof(str, Expression))) def linear_mixed_regression_rows(entry_expr, model, pa_t_path=None, a_t_path=None, mean_impute=True, partition_size=None, pass_through=()): """For each row, test an input variable for association using a linear mixed model. Examples -------- See the example in :meth:`linear_mixed_model` and section below on efficiently testing multiple responses or sets of fixed effects. Notes ----- See :class:`.LinearMixedModel` for details on the model and notation. This method packages up several steps for convenience: 1. Read the transformation :math:`P` from ``model.p_path``. 2. Write `entry_expr` at `a_t_path` as the block matrix :math:`A^T` with block size that of :math:`P`. The parallelism is ``n_rows / block_size``. 3. Multiply and write :math:`A^T P^T` at `pa_t_path`. The parallelism is the number of blocks in :math:`(PA)^T`, which equals ``(n_rows / block_size) * (model.r / block_size)``. 4. Compute regression results per row with :meth:`.LinearMixedModel.fit_alternatives`. The parallelism is ``n_rows / partition_size``. If `pa_t_path` and `a_t_path` are not set, temporary files are used. `entry_expr` may only have missing values if `mean_impute` is true, in which case missing values of are set to the row mean. We recommend setting `mean_impute` to false if you expect no missing values, both for performance and as a sanity check. **Efficiently varying the response or set of fixed effects** Computing :math:`K`, :math:`P`, :math:`S`, :math:`A^T`, and especially the product :math:`(PA)^T` may require significant compute when :math:`n` and/or :math:`m` is large. However these quantities are all independent of the response :math:`y` or fixed effects :math:`X`! And with the model diagonalized, Step 4 above is fast and scalable. So having run linear mixed regression once, we can compute :math:`h^2` and regression statistics for another response or set of fixed effects on the **same samples** at the roughly the speed of :func:`.linear_regression_rows`. For example, having collected another `y` and `x` as ndarrays, one can construct a new linear mixed model directly. Supposing the model is full-rank and `p` is an ndarray: >>> model = hl.stats.LinearMixedModel(p @ y, p @ x, s) # doctest: +SKIP >>> model.fit() # doctest: +SKIP >>> result_ht = model.fit_alternatives(pa_t_path) # doctest: +SKIP Supposing the model is low-rank and `p` is a block matrix: >>> p = BlockMatrix.read(p_path) # doctest: +SKIP >>> py, px = (p @ y).to_numpy(), (p @ x).to_numpy() # doctest: +SKIP >>> model = LinearMixedModel(py, px, s, y, x) # doctest: +SKIP >>> model.fit() # doctest: +SKIP >>> result_ht = model.fit_alternatives(pa_t_path, a_t_path) # doctest: +SKIP In either case, one can easily loop through many responses or conditional analyses. To join results back to the matrix table: >>> dataset = dataset.add_row_index() # doctest: +SKIP >>> dataset = dataset.annotate_rows(lmmreg=result_ht[dataset.row_idx]]) # doctest: +SKIP Warning ------- For correct results, the column-index of `entry_expr` must correspond to the sample index of the model. This will be true, for example, if `model` was created with :func:`.linear_mixed_model` using (a possibly row-filtered version of) the source of `entry_expr`, or if `y` and `x` were collected to arrays from this source. Hail will raise an error if the number of columns does not match ``model.n``, but will not detect, for example, permuted samples. The warning on :meth:`.BlockMatrix.write_from_entry_expr` applies to this method when the number of samples is large. Note ---- Use the `pass_through` parameter to include additional row fields from matrix table underlying ``entry_expr``. For example, to include an "rsid" field, set` pass_through=['rsid']`` or ``pass_through=[mt.rsid]``. Parameters ---------- entry_expr: :class:`.Float64Expression` Entry-indexed expression for input variable. If mean_impute is false, must have no missing values. model: :class:`.LinearMixedModel` Fit linear mixed model with ``path_p`` set. pa_t_path: :class:`str`, optional Path at which to store the transpose of :math:`PA`. If not set, a temporary file is used. a_t_path: :class:`str`, optional Path at which to store the transpose of :math:`A`. If not set, a temporary file is used. mean_impute: :obj:`bool` Mean-impute missing values of `entry_expr` by row. partition_size: :obj:`int` Number of rows to process per partition. Default given by block size of :math:`P`. pass_through : :obj:`list` of :class:`str` or :class:`.Expression` Additional row fields to include in the resulting table. Returns ------- :class:`.Table` """ mt = matrix_table_source('linear_mixed_regression_rows', entry_expr) n = mt.count_cols() check_entry_indexed('linear_mixed_regression_rows', entry_expr) if not model._fitted: raise ValueError("linear_mixed_regression_rows: 'model' has not been fit " "using 'fit()'") if model.p_path is None: raise ValueError("linear_mixed_regression_rows: 'model' property 'p_path' " "was not set at initialization") if model.n != n: raise ValueError(f"linear_mixed_regression_rows: linear mixed model expects {model.n} samples, " f"\n but 'entry_expr' source has {n} columns.") pa_t_path = new_temp_file() if pa_t_path is None else pa_t_path a_t_path = new_temp_file() if a_t_path is None else a_t_path p = BlockMatrix.read(model.p_path) BlockMatrix.write_from_entry_expr(entry_expr, a_t_path, mean_impute=mean_impute, block_size=p.block_size) a_t = BlockMatrix.read(a_t_path) (a_t @ p.T).write(pa_t_path, force_row_major=True) ht = model.fit_alternatives(pa_t_path, a_t_path if model.low_rank else None, partition_size) row_fields = _get_regression_row_fields(mt, pass_through, 'linear_mixed_regression_rows') mt_keys = mt.select_rows(**row_fields).add_row_index('__row_idx').rows().add_index('__row_idx').key_by('__row_idx') return mt_keys.annotate(**ht[mt_keys['__row_idx']]).key_by(*mt.row_key).drop('__row_idx') @typecheck(key_expr=expr_any, weight_expr=expr_float64, y=expr_float64, x=expr_float64, covariates=sequenceof(expr_float64), logistic=bool, max_size=int, accuracy=numeric, iterations=int) def skat(key_expr, weight_expr, y, x, covariates, logistic=False, max_size=46340, accuracy=1e-6, iterations=10000) -> Table: r"""Test each keyed group of rows for association by linear or logistic SKAT test. Examples -------- Test each gene for association using the linear sequence kernel association test: >>> skat_table = hl.skat(key_expr=burden_ds.gene, ... weight_expr=burden_ds.weight, ... y=burden_ds.burden.pheno, ... x=burden_ds.GT.n_alt_alleles(), ... covariates=[1, burden_ds.burden.cov1, burden_ds.burden.cov2]) .. caution:: By default, the Davies algorithm iterates up to 10k times until an accuracy of 1e-6 is achieved. Hence a reported p-value of zero with no issues may truly be as large as 1e-6. The accuracy and maximum number of iterations may be controlled by the corresponding function parameters. In general, higher accuracy requires more iterations. .. caution:: To process a group with :math:`m` rows, several copies of an :math:`m \times m` matrix of doubles must fit in worker memory. Groups with tens of thousands of rows may exhaust worker memory causing the entire job to fail. In this case, use the `max_size` parameter to skip groups larger than `max_size`. Warning ------- :func:`.skat` considers the same set of columns (i.e., samples, points) for every group, namely those columns for which **all** covariates are defined. For each row, missing values of `x` are mean-imputed over these columns. As in the example, the intercept covariate ``1`` must be included **explicitly** if desired. Notes ----- This method provides a scalable implementation of the score-based variance-component test originally described in `Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3135811/>`__. Row weights must be non-negative. Rows with missing weights are ignored. In the R package ``skat``---which assumes rows are variants---default weights are given by evaluating the Beta(1, 25) density at the minor allele frequency. To replicate these weights in Hail using alternate allele frequencies stored in a row-indexed field `AF`, one can use the expression: >>> hl.dbeta(hl.min(ds2.AF), 1.0, 25.0) ** 2 In the logistic case, the response `y` must either be numeric (with all present values 0 or 1) or Boolean, in which case true and false are coded as 1 and 0, respectively. The resulting :class:`.Table` provides the group's key (`id`), thenumber of rows in the group (`size`), the variance component score `q_stat`, the SKAT `p-value`, and a `fault` flag. For the toy example above, the table has the form: +-------+------+--------+---------+-------+ | id | size | q_stat | p_value | fault | +=======+======+========+=========+=======+ | geneA | 2 | 4.136 | 0.205 | 0 | +-------+------+--------+---------+-------+ | geneB | 1 | 5.659 | 0.195 | 0 | +-------+------+--------+---------+-------+ | geneC | 3 | 4.122 | 0.192 | 0 | +-------+------+--------+---------+-------+ Groups larger than `max_size` appear with missing `q_stat`, `p_value`, and `fault`. The hard limit on the number of rows in a group is 46340. Note that the variance component score `q_stat` agrees with ``Q`` in the R package ``skat``, but both differ from :math:`Q` in the paper by the factor :math:`\frac{1}{2\sigma^2}` in the linear case and :math:`\frac{1}{2}` in the logistic case, where :math:`\sigma^2` is the unbiased estimator of residual variance for the linear null model. The R package also applies a "small-sample adjustment" to the null distribution in the logistic case when the sample size is less than 2000. Hail does not apply this adjustment. The fault flag is an integer indicating whether any issues occurred when running the Davies algorithm to compute the p-value as the right tail of a weighted sum of :math:`\chi^2(1)` distributions. +-------------+-----------------------------------------+ | fault value | Description | +=============+=========================================+ | 0 | no issues | +------+------+-----------------------------------------+ | 1 | accuracy NOT achieved | +------+------+-----------------------------------------+ | 2 | round-off error possibly significant | +------+------+-----------------------------------------+ | 3 | invalid parameters | +------+------+-----------------------------------------+ | 4 | unable to locate integration parameters | +------+------+-----------------------------------------+ | 5 | out of memory | +------+------+-----------------------------------------+ Parameters ---------- key_expr : :class:`.Expression` Row-indexed expression for key associated to each row. weight_expr : :class:`.Float64Expression` Row-indexed expression for row weights. y : :class:`.Float64Expression` Column-indexed response expression. If `logistic` is ``True``, all non-missing values must evaluate to 0 or 1. Note that a :class:`.BooleanExpression` will be implicitly converted to a :class:`.Float64Expression` with this property. x : :class:`.Float64Expression` Entry-indexed expression for input variable. covariates : :obj:`list` of :class:`.Float64Expression` List of column-indexed covariate expressions. logistic : :obj:`bool` If true, use the logistic test rather than the linear test. max_size : :obj:`int` Maximum size of group on which to run the test. accuracy : :obj:`float` Accuracy achieved by the Davies algorithm if fault value is zero. iterations : :obj:`int` Maximum number of iterations attempted by the Davies algorithm. Returns ------- :class:`.Table` Table of SKAT results. """ mt = matrix_table_source('skat/x', x) check_entry_indexed('skat/x', x) analyze('skat/key_expr', key_expr, mt._row_indices) analyze('skat/weight_expr', weight_expr, mt._row_indices) analyze('skat/y', y, mt._col_indices) all_exprs = [key_expr, weight_expr, y] for e in covariates: all_exprs.append(e) analyze('skat/covariates', e, mt._col_indices) _warn_if_no_intercept('skat', covariates) # FIXME: remove this logic when annotation is better optimized if x in mt._fields_inverse: x_field_name = mt._fields_inverse[x] entry_expr = {} else: x_field_name = Env.get_uid() entry_expr = {x_field_name: x} y_field_name = '__y' weight_field_name = '__weight' key_field_name = '__key' cov_field_names = list(f'__cov{i}' for i in range(len(covariates))) mt = mt._select_all(col_exprs=dict(**{y_field_name: y}, **dict(zip(cov_field_names, covariates))), row_exprs={weight_field_name: weight_expr, key_field_name: key_expr}, entry_exprs=entry_expr) config = { 'name': 'Skat', 'keyField': key_field_name, 'weightField': weight_field_name, 'xField': x_field_name, 'yField': y_field_name, 'covFields': cov_field_names, 'logistic': logistic, 'maxSize': max_size, 'accuracy': accuracy, 'iterations': iterations } return Table(ir.MatrixToTableApply(mt._mir, config)) @typecheck(p_value=expr_numeric, approximate=bool) def lambda_gc(p_value, approximate=True): """ Compute genomic inflation factor (lambda GC) from an Expression of p-values. .. include:: ../_templates/experimental.rst Parameters ---------- p_value : :class:`.NumericExpression` Row-indexed numeric expression of p-values. approximate : :obj:`bool` If False, computes exact lambda GC (slower and uses more memory). Returns ------- :obj:`float` Genomic inflation factor (lambda genomic control). """ check_row_indexed('lambda_gc', p_value) t = table_source('lambda_gc', p_value) med_chisq = _lambda_gc_agg(p_value, approximate) return t.aggregate(med_chisq) @typecheck(p_value=expr_numeric, approximate=bool) def _lambda_gc_agg(p_value, approximate=True): chisq = hl.qchisqtail(p_value, 1) if approximate: med_chisq = hl.agg.filter(~hl.is_nan(p_value), hl.agg.approx_quantiles(chisq, 0.5)) else: med_chisq = hl.agg.filter(~hl.is_nan(p_value), hl.median(hl.agg.collect(chisq))) return med_chisq / hl.qchisqtail(0.5, 1) @typecheck(ds=oneof(Table, MatrixTable), keep_star=bool, left_aligned=bool, permit_shuffle=bool) def split_multi(ds, keep_star=False, left_aligned=False, *, permit_shuffle=False): """Split multiallelic variants. Warning ------- In order to support a wide variety of data types, this function splits only the variants on a :class:`.MatrixTable`, but **not the genotypes**. Use :func:`.split_multi_hts` if possible, or split the genotypes yourself using one of the entry modification methods: :meth:`.MatrixTable.annotate_entries`, :meth:`.MatrixTable.select_entries`, :meth:`.MatrixTable.transmute_entries`. The resulting dataset will be keyed by the split locus and alleles. :func:`.split_multi` adds the following fields: - `was_split` (*bool*) -- ``True`` if this variant was originally multiallelic, otherwise ``False``. - `a_index` (*int*) -- The original index of this alternate allele in the multiallelic representation (NB: 1 is the first alternate allele or the only alternate allele in a biallelic variant). For example, 1:100:A:T,C splits into two variants: 1:100:A:T with ``a_index = 1`` and 1:100:A:C with ``a_index = 2``. - `old_locus` (*locus*) -- The original, unsplit locus. - `old_alleles` (*array<str>*) -- The original, unsplit alleles. All other fields are left unchanged. Warning ------- This method assumes `ds` contains one non-split variant per locus. This assumption permits the most efficient implementation of this method. If each locus in `ds` contains one multiallelic variant and one or more biallelic variants, you can filter to the multiallelic variants, split those, and then combine the split variants with the original biallelic variants. For example, the following code splits a dataset `mt` which contains a mixture of split and non-split variants. >>> bi = mt.filter_rows(hl.len(mt.alleles) == 2) >>> bi = bi.annotate_rows(was_split=False) >>> multi = mt.filter_rows(hl.len(mt.alleles) > 2) >>> split = hl.split_multi_hts(multi) >>> mt = split.union_rows(bi) Example ------- :func:`.split_multi_hts`, which splits multiallelic variants for the HTS genotype schema and updates the entry fields by downcoding the genotype, is implemented as: >>> sm = hl.split_multi(ds) >>> pl = hl.or_missing( ... hl.is_defined(sm.PL), ... (hl.range(0, 3).map(lambda i: hl.min(hl.range(0, hl.len(sm.PL)) ... .filter(lambda j: hl.downcode(hl.unphased_diploid_gt_index_call(j), sm.a_index) == hl.unphased_diploid_gt_index_call(i)) ... .map(lambda j: sm.PL[j]))))) >>> split_ds = sm.annotate_entries( ... GT=hl.downcode(sm.GT, sm.a_index), ... AD=hl.or_missing(hl.is_defined(sm.AD), ... [hl.sum(sm.AD) - sm.AD[sm.a_index], sm.AD[sm.a_index]]), ... DP=sm.DP, ... PL=pl, ... GQ=hl.gq_from_pl(pl)).drop('old_locus', 'old_alleles') See Also -------- :func:`.split_multi_hts` Parameters ---------- ds : :class:`.MatrixTable` or :class:`.Table` An unsplit dataset. keep_star : :obj:`bool` Do not filter out * alleles. left_aligned : :obj:`bool` If ``True``, variants are assumed to be left aligned and have unique loci. This avoids a shuffle. If the assumption is violated, an error is generated. permit_shuffle : :obj:`bool` If ``True``, permit a data shuffle to sort out-of-order split results. This will only be required if input data has duplicate loci, one of which contains more than one alternate allele. Returns ------- :class:`.MatrixTable` or :class:`.Table` """ require_row_key_variant(ds, "split_multi") new_id = Env.get_uid() is_table = isinstance(ds, Table) old_row = ds.row if is_table else ds._rvrow kept_alleles = hl.range(1, hl.len(old_row.alleles)) if not keep_star: kept_alleles = kept_alleles.filter(lambda i: old_row.alleles[i] != "*") def new_struct(variant, i): return hl.struct(alleles=variant.alleles, locus=variant.locus, a_index=i, was_split=hl.len(old_row.alleles) > 2) def split_rows(expr, rekey): if isinstance(ds, MatrixTable): mt = (ds.annotate_rows(**{new_id: expr}) .explode_rows(new_id)) if rekey: mt = mt.key_rows_by() else: mt = mt.key_rows_by('locus') new_row_expr = mt._rvrow.annotate(locus=mt[new_id]['locus'], alleles=mt[new_id]['alleles'], a_index=mt[new_id]['a_index'], was_split=mt[new_id]['was_split'], old_locus=mt.locus, old_alleles=mt.alleles).drop(new_id) mt = mt._select_rows('split_multi', new_row_expr) if rekey: return mt.key_rows_by('locus', 'alleles') else: return MatrixTable(ir.MatrixKeyRowsBy(mt._mir, ['locus', 'alleles'], is_sorted=True)) else: assert isinstance(ds, Table) ht = (ds.annotate(**{new_id: expr}) .explode(new_id)) if rekey: ht = ht.key_by() else: ht = ht.key_by('locus') new_row_expr = ht.row.annotate(locus=ht[new_id]['locus'], alleles=ht[new_id]['alleles'], a_index=ht[new_id]['a_index'], was_split=ht[new_id]['was_split'], old_locus=ht.locus, old_alleles=ht.alleles).drop(new_id) ht = ht._select('split_multi', new_row_expr) if rekey: return ht.key_by('locus', 'alleles') else: return Table(ir.TableKeyBy(ht._tir, ['locus', 'alleles'], is_sorted=True)) if left_aligned: def make_struct(i): def error_on_moved(v): return (hl.case() .when(v.locus == old_row.locus, new_struct(v, i)) .or_error("Found non-left-aligned variant in split_multi")) return hl.bind(error_on_moved, hl.min_rep(old_row.locus, [old_row.alleles[0], old_row.alleles[i]])) return split_rows(hl.sorted(kept_alleles.map(make_struct)), permit_shuffle) else: def make_struct(i, cond): def struct_or_empty(v): return (hl.case() .when(cond(v.locus), hl.array([new_struct(v, i)])) .or_missing()) return hl.bind(struct_or_empty, hl.min_rep(old_row.locus, [old_row.alleles[0], old_row.alleles[i]])) def make_array(cond): return hl.sorted(kept_alleles.flatmap(lambda i: make_struct(i, cond))) left = split_rows(make_array(lambda locus: locus == ds['locus']), permit_shuffle) moved = split_rows(make_array(lambda locus: locus != ds['locus']), True) return left.union(moved) if is_table else left.union_rows(moved, _check_cols=False) @typecheck(ds=oneof(Table, MatrixTable), keep_star=bool, left_aligned=bool, vep_root=str, permit_shuffle=bool) def split_multi_hts(ds, keep_star=False, left_aligned=False, vep_root='vep', *, permit_shuffle=False): """Split multiallelic variants for datasets that contain one or more fields from a standard high-throughput sequencing entry schema. .. code-block:: text struct { GT: call, AD: array<int32>, DP: int32, GQ: int32, PL: array<int32>, PGT: call, PID: str } For other entry fields, write your own splitting logic using :meth:`.MatrixTable.annotate_entries`. Examples -------- >>> hl.split_multi_hts(dataset).write('output/split.mt') Warning ------- This method assumes `ds` contains one non-split variant per locus. This assumption permits the most efficient implementation of this method. If each locus in `ds` contains one multiallelic variant and one or more biallelic variants, you can filter to the multiallelic variants, split those, and then combine the split variants with the original biallelic variants. For example, the following code splits a dataset `mt` which contains a mixture of split and non-split variants. >>> bi = mt.filter_rows(hl.len(mt.alleles) == 2) >>> bi = bi.annotate_rows(was_split=False) >>> multi = mt.filter_rows(hl.len(mt.alleles) > 2) >>> split = hl.split_multi_hts(multi) >>> mt = split.union_rows(bi) Notes ----- We will explain by example. Consider a hypothetical 3-allelic variant: .. code-block:: text A C,T 0/2:7,2,6:15:45:99,50,99,0,45,99 :func:`.split_multi_hts` will create two biallelic variants (one for each alternate allele) at the same position .. code-block:: text A C 0/0:13,2:15:45:0,45,99 A T 0/1:9,6:15:50:50,0,99 Each multiallelic `GT` or `PGT` field is downcoded once for each alternate allele. A call for an alternate allele maps to 1 in the biallelic variant corresponding to itself and 0 otherwise. For example, in the example above, 0/2 maps to 0/0 and 0/1. The genotype 1/2 maps to 0/1 and 0/1. The biallelic alt `AD` entry is just the multiallelic `AD` entry corresponding to the alternate allele. The ref AD entry is the sum of the other multiallelic entries. The biallelic `DP` is the same as the multiallelic `DP`. The biallelic `PL` entry for a genotype g is the minimum over `PL` entries for multiallelic genotypes that downcode to g. For example, the `PL` for (A, T) at 0/1 is the minimum of the PLs for 0/1 (50) and 1/2 (45), and thus 45. Fixing an alternate allele and biallelic variant, downcoding gives a map from multiallelic to biallelic alleles and genotypes. The biallelic `AD` entry for an allele is just the sum of the multiallelic `AD` entries for alleles that map to that allele. Similarly, the biallelic `PL` entry for a genotype is the minimum over multiallelic `PL` entries for genotypes that map to that genotype. `GQ` is recomputed from `PL` if `PL` is provided and is not missing. If not, it is copied from the original GQ. Here is a second example for a het non-ref .. code-block:: text A C,T 1/2:2,8,6:16:45:99,50,99,45,0,99 splits as .. code-block:: text A C 0/1:8,8:16:45:45,0,99 A T 0/1:10,6:16:50:50,0,99 **VCF Info Fields** Hail does not split fields in the info field. This means that if a multiallelic site with `info.AC` value ``[10, 2]`` is split, each split site will contain the same array ``[10, 2]``. The provided allele index field `a_index` can be used to select the value corresponding to the split allele's position: >>> split_ds = hl.split_multi_hts(dataset) >>> split_ds = split_ds.filter_rows(split_ds.info.AC[split_ds.a_index - 1] < 10, ... keep = False) VCFs split by Hail and exported to new VCFs may be incompatible with other tools, if action is not taken first. Since the "Number" of the arrays in split multiallelic sites no longer matches the structure on import ("A" for 1 per allele, for example), Hail will export these fields with number ".". If the desired output is one value per site, then it is possible to use annotate_variants_expr to remap these values. Here is an example: >>> split_ds = hl.split_multi_hts(dataset) >>> split_ds = split_ds.annotate_rows(info = split_ds.info.annotate(AC = split_ds.info.AC[split_ds.a_index - 1])) >>> hl.export_vcf(split_ds, 'output/export.vcf') # doctest: +SKIP The info field AC in *data/export.vcf* will have ``Number=1``. **New Fields** :func:`.split_multi_hts` adds the following fields: - `was_split` (*bool*) -- ``True`` if this variant was originally multiallelic, otherwise ``False``. - `a_index` (*int*) -- The original index of this alternate allele in the multiallelic representation (NB: 1 is the first alternate allele or the only alternate allele in a biallelic variant). For example, 1:100:A:T,C splits into two variants: 1:100:A:T with ``a_index = 1`` and 1:100:A:C with ``a_index = 2``. See Also -------- :func:`.split_multi` Parameters ---------- ds : :class:`.MatrixTable` or :class:`.Table` An unsplit dataset. keep_star : :obj:`bool` Do not filter out * alleles. left_aligned : :obj:`bool` If ``True``, variants are assumed to be left aligned and have unique loci. This avoids a shuffle. If the assumption is violated, an error is generated. vep_root : :class:`str` Top-level location of vep data. All variable-length VEP fields (intergenic_consequences, motif_feature_consequences, regulatory_feature_consequences, and transcript_consequences) will be split properly (i.e. a_index corresponding to the VEP allele_num). permit_shuffle : :obj:`bool` If ``True``, permit a data shuffle to sort out-of-order split results. This will only be required if input data has duplicate loci, one of which contains more than one alternate allele. Returns ------- :class:`.MatrixTable` or :class:`.Table` A biallelic variant dataset. """ split = split_multi(ds, keep_star=keep_star, left_aligned=left_aligned, permit_shuffle=permit_shuffle) row_fields = set(ds.row) update_rows_expression = {} if vep_root in row_fields: update_rows_expression[vep_root] = split[vep_root].annotate(**{ x: split[vep_root][x].filter(lambda csq: csq.allele_num == split.a_index) for x in ('intergenic_consequences', 'motif_feature_consequences', 'regulatory_feature_consequences', 'transcript_consequences')}) if isinstance(ds, Table): return split.annotate(**update_rows_expression).drop('old_locus', 'old_alleles') split = split.annotate_rows(**update_rows_expression) entry_fields = ds.entry expected_field_types = { 'GT': hl.tcall, 'AD': hl.tarray(hl.tint), 'DP': hl.tint, 'GQ': hl.tint, 'PL': hl.tarray(hl.tint), 'PGT': hl.tcall, 'PID': hl.tstr } bad_fields = [] for field in entry_fields: if field in expected_field_types and entry_fields[field].dtype != expected_field_types[field]: bad_fields.append((field, entry_fields[field].dtype, expected_field_types[field])) if bad_fields: msg = '\n '.join([f"'{x[0]}'\tfound: {x[1]}\texpected: {x[2]}" for x in bad_fields]) raise TypeError("'split_multi_hts': Found invalid types for the following fields:\n " + msg) update_entries_expression = {} if 'GT' in entry_fields: update_entries_expression['GT'] = hl.downcode(split.GT, split.a_index) if 'DP' in entry_fields: update_entries_expression['DP'] = split.DP if 'AD' in entry_fields: update_entries_expression['AD'] = hl.or_missing(hl.is_defined(split.AD), [hl.sum(split.AD) - split.AD[split.a_index], split.AD[split.a_index]]) if 'PL' in entry_fields: pl = hl.or_missing( hl.is_defined(split.PL), (hl.range(0, 3).map(lambda i: hl.min((hl.range(0, hl.triangle(split.old_alleles.length())) .filter(lambda j: hl.downcode(hl.unphased_diploid_gt_index_call(j), split.a_index).unphased_diploid_gt_index() == i ).map(lambda j: split.PL[j])))))) if 'GQ' in entry_fields: update_entries_expression['PL'] = pl update_entries_expression['GQ'] = hl.or_else(hl.gq_from_pl(pl), split.GQ) else: update_entries_expression['PL'] = pl else: if 'GQ' in entry_fields: update_entries_expression['GQ'] = split.GQ if 'PGT' in entry_fields: update_entries_expression['PGT'] = hl.downcode(split.PGT, split.a_index) if 'PID' in entry_fields: update_entries_expression['PID'] = split.PID return split.annotate_entries(**update_entries_expression).drop('old_locus', 'old_alleles') @typecheck(call_expr=expr_call) def genetic_relatedness_matrix(call_expr) -> BlockMatrix: r"""Compute the genetic relatedness matrix (GRM). Examples -------- >>> grm = hl.genetic_relatedness_matrix(dataset.GT) Notes ----- The genetic relationship matrix (GRM) :math:`G` encodes genetic correlation between each pair of samples. It is defined by :math:`G = MM^T` where :math:`M` is a standardized version of the genotype matrix, computed as follows. Let :math:`C` be the :math:`n \times m` matrix of raw genotypes in the variant dataset, with rows indexed by :math:`n` samples and columns indexed by :math:`m` bialellic autosomal variants; :math:`C_{ij}` is the number of alternate alleles of variant :math:`j` carried by sample :math:`i`, which can be 0, 1, 2, or missing. For each variant :math:`j`, the sample alternate allele frequency :math:`p_j` is computed as half the mean of the non-missing entries of column :math:`j`. Entries of :math:`M` are then mean-centered and variance-normalized as .. math:: M_{ij} = \frac{C_{ij}-2p_j}{\sqrt{2p_j(1-p_j)m}}, with :math:`M_{ij} = 0` for :math:`C_{ij}` missing (i.e. mean genotype imputation). This scaling normalizes genotype variances to a common value :math:`1/m` for variants in Hardy-Weinberg equilibrium and is further motivated in the paper `Patterson, Price and Reich, 2006 <http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020190>`__. (The resulting amplification of signal from the low end of the allele frequency spectrum will also introduce noise for rare variants; common practice is to filter out variants with minor allele frequency below some cutoff.) The factor :math:`1/m` gives each sample row approximately unit total variance (assuming linkage equilibrium) so that the diagonal entries of the GRM are approximately 1. Equivalently, .. math:: G_{ik} = \frac{1}{m} \sum_{j=1}^m \frac{(C_{ij}-2p_j)(C_{kj}-2p_j)}{2 p_j (1-p_j)} This method drops variants with :math:`p_j = 0` or :math:`p_j = 1` before computing kinship. Parameters ---------- call_expr : :class:`.CallExpression` Entry-indexed call expression with columns corresponding to samples. Returns ------- :class:`.BlockMatrix` Genetic relatedness matrix for all samples. Row and column indices correspond to matrix table column index. """ mt = matrix_table_source('genetic_relatedness_matrix/call_expr', call_expr) check_entry_indexed('genetic_relatedness_matrix/call_expr', call_expr) mt = mt.select_entries(__gt=call_expr.n_alt_alleles()).unfilter_entries() mt = mt.select_rows(__AC=agg.sum(mt.__gt), __n_called=agg.count_where(hl.is_defined(mt.__gt))) mt = mt.filter_rows((mt.__AC > 0) & (mt.__AC < 2 * mt.__n_called)) mt = mt.select_rows(__mean_gt=mt.__AC / mt.__n_called) mt = mt.annotate_rows(__hwe_scaled_std_dev=hl.sqrt(mt.__mean_gt * (2 - mt.__mean_gt))) normalized_gt = hl.or_else((mt.__gt - mt.__mean_gt) / mt.__hwe_scaled_std_dev, 0.0) bm = BlockMatrix.from_entry_expr(normalized_gt) return (bm.T @ bm) / (bm.n_rows / 2.0) @typecheck(call_expr=expr_call) def realized_relationship_matrix(call_expr) -> BlockMatrix: r"""Computes the realized relationship matrix (RRM). Examples -------- >>> rrm = hl.realized_relationship_matrix(dataset.GT) Notes ----- The realized relationship matrix (RRM) is defined as follows. Consider the :math:`n \times m` matrix :math:`C` of raw genotypes, with rows indexed by :math:`n` samples and columns indexed by the :math:`m` bialellic autosomal variants; :math:`C_{ij}` is the number of alternate alleles of variant :math:`j` carried by sample :math:`i`, which can be 0, 1, 2, or missing. For each variant :math:`j`, the sample alternate allele frequency :math:`p_j` is computed as half the mean of the non-missing entries of column :math:`j`. Entries of :math:`M` are then mean-centered and variance-normalized as .. math:: M_{ij} = \frac{C_{ij}-2p_j} {\sqrt{\frac{m}{n} \sum_{k=1}^n (C_{ij}-2p_j)^2}}, with :math:`M_{ij} = 0` for :math:`C_{ij}` missing (i.e. mean genotype imputation). This scaling normalizes each variant column to have empirical variance :math:`1/m`, which gives each sample row approximately unit total variance (assuming linkage equilibrium) and yields the :math:`n \times n` sample correlation or realized relationship matrix (RRM) :math:`K` as simply .. math:: K = MM^T Note that the only difference between the realized relationship matrix and the genetic relatedness matrix (GRM) used in :func:`.realized_relationship_matrix` is the variant (column) normalization: where RRM uses empirical variance, GRM uses expected variance under Hardy-Weinberg Equilibrium. This method drops variants with zero variance before computing kinship. Parameters ---------- call_expr : :class:`.CallExpression` Entry-indexed call expression on matrix table with columns corresponding to samples. Returns ------- :class:`.BlockMatrix` Realized relationship matrix for all samples. Row and column indices correspond to matrix table column index. """ mt = matrix_table_source('realized_relationship_matrix/call_expr', call_expr) check_entry_indexed('realized_relationship_matrix/call_expr', call_expr) mt = mt.select_entries(__gt=call_expr.n_alt_alleles()).unfilter_entries() mt = mt.select_rows(__AC=agg.sum(mt.__gt), __ACsq=agg.sum(mt.__gt * mt.__gt), __n_called=agg.count_where(hl.is_defined(mt.__gt))) mt = mt.select_rows(__mean_gt=mt.__AC / mt.__n_called, __centered_length=hl.sqrt(mt.__ACsq - (mt.__AC ** 2) / mt.__n_called)) fmt = mt.filter_rows(mt.__centered_length > 0.1) # truly non-zero values are at least sqrt(0.5) normalized_gt = hl.or_else((fmt.__gt - fmt.__mean_gt) / fmt.__centered_length, 0.0) try: bm = BlockMatrix.from_entry_expr(normalized_gt) return (bm.T @ bm) / (bm.n_rows / bm.n_cols) except FatalError as fe: raise FatalError("Could not convert MatrixTable to BlockMatrix. It's possible all variants were dropped by variance filter.\n" "Check that the input MatrixTable has at least two samples in it: mt.count_cols().") from fe @typecheck(entry_expr=expr_float64, block_size=nullable(int)) def row_correlation(entry_expr, block_size=None) -> BlockMatrix: """Computes the correlation matrix between row vectors. Examples -------- Consider the following dataset with three variants and four samples: >>> data = [{'v': '1:1:A:C', 's': 'a', 'GT': hl.Call([0, 0])}, ... {'v': '1:1:A:C', 's': 'b', 'GT': hl.Call([0, 0])}, ... {'v': '1:1:A:C', 's': 'c', 'GT': hl.Call([0, 1])}, ... {'v': '1:1:A:C', 's': 'd', 'GT': hl.Call([1, 1])}, ... {'v': '1:2:G:T', 's': 'a', 'GT': hl.Call([0, 1])}, ... {'v': '1:2:G:T', 's': 'b', 'GT': hl.Call([1, 1])}, ... {'v': '1:2:G:T', 's': 'c', 'GT': hl.Call([0, 1])}, ... {'v': '1:2:G:T', 's': 'd', 'GT': hl.Call([0, 0])}, ... {'v': '1:3:C:G', 's': 'a', 'GT': hl.Call([0, 1])}, ... {'v': '1:3:C:G', 's': 'b', 'GT': hl.Call([0, 0])}, ... {'v': '1:3:C:G', 's': 'c', 'GT': hl.Call([1, 1])}, ... {'v': '1:3:C:G', 's': 'd', 'GT': hl.missing(hl.tcall)}] >>> ht = hl.Table.parallelize(data, hl.dtype('struct{v: str, s: str, GT: call}')) >>> mt = ht.to_matrix_table(row_key=['v'], col_key=['s']) Compute genotype correlation between all pairs of variants: >>> ld = hl.row_correlation(mt.GT.n_alt_alleles()) >>> ld.to_numpy() array([[ 1. , -0.85280287, 0.42640143], [-0.85280287, 1. , -0.5 ], [ 0.42640143, -0.5 , 1. ]]) Compute genotype correlation between consecutively-indexed variants: >>> ld.sparsify_band(lower=0, upper=1).to_numpy() array([[ 1. , -0.85280287, 0. ], [ 0. , 1. , -0.5 ], [ 0. , 0. , 1. ]]) Warning ------- Rows with a constant value (i.e., zero variance) will result `nan` correlation values. To avoid this, first check that all rows vary or filter out constant rows (for example, with the help of :func:`.aggregators.stats`). Notes ----- In this method, each row of entries is regarded as a vector with elements defined by `entry_expr` and missing values mean-imputed per row. The ``(i, j)`` element of the resulting block matrix is the correlation between rows ``i`` and ``j`` (as 0-indexed by order in the matrix table; see :meth:`~hail.MatrixTable.add_row_index`). The correlation of two vectors is defined as the `Pearson correlation coeffecient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`__ between the corresponding empirical distributions of elements, or equivalently as the cosine of the angle between the vectors. This method has two stages: - writing the row-normalized block matrix to a temporary file on persistent disk with :meth:`.BlockMatrix.from_entry_expr`. The parallelism is ``n_rows / block_size``. - reading and multiplying this block matrix by its transpose. The parallelism is ``(n_rows / block_size)^2`` if all blocks are computed. Warning ------- See all warnings on :meth:`.BlockMatrix.from_entry_expr`. In particular, for large matrices, it may be preferable to run the two stages separately, saving the row-normalized block matrix to a file on external storage with :meth:`.BlockMatrix.write_from_entry_expr`. The resulting number of matrix elements is the square of the number of rows in the matrix table, so computing the full matrix may be infeasible. For example, ten million rows would produce 800TB of float64 values. The block-sparse representation on BlockMatrix may be used to work efficiently with regions of such matrices, as in the second example above and :meth:`ld_matrix`. To prevent excessive re-computation, be sure to write and read the (possibly block-sparsified) result before multiplication by another matrix. Parameters ---------- entry_expr : :class:`.Float64Expression` Entry-indexed numeric expression on matrix table. block_size : :obj:`int`, optional Block size. Default given by :meth:`.BlockMatrix.default_block_size`. Returns ------- :class:`.BlockMatrix` Correlation matrix between row vectors. Row and column indices correspond to matrix table row index. """ bm = BlockMatrix.from_entry_expr(entry_expr, mean_impute=True, center=True, normalize=True, block_size=block_size) return bm @ bm.T @typecheck(entry_expr=expr_float64, locus_expr=expr_locus(), radius=oneof(int, float), coord_expr=nullable(expr_float64), block_size=nullable(int)) def ld_matrix(entry_expr, locus_expr, radius, coord_expr=None, block_size=None) -> BlockMatrix: """Computes the windowed correlation (linkage disequilibrium) matrix between variants. Examples -------- Consider the following dataset consisting of three variants with centimorgan coordinates and four samples: >>> data = [{'v': '1:1:A:C', 'cm': 0.1, 's': 'a', 'GT': hl.Call([0, 0])}, ... {'v': '1:1:A:C', 'cm': 0.1, 's': 'b', 'GT': hl.Call([0, 0])}, ... {'v': '1:1:A:C', 'cm': 0.1, 's': 'c', 'GT': hl.Call([0, 1])}, ... {'v': '1:1:A:C', 'cm': 0.1, 's': 'd', 'GT': hl.Call([1, 1])}, ... {'v': '1:2000000:G:T', 'cm': 0.9, 's': 'a', 'GT': hl.Call([0, 1])}, ... {'v': '1:2000000:G:T', 'cm': 0.9, 's': 'b', 'GT': hl.Call([1, 1])}, ... {'v': '1:2000000:G:T', 'cm': 0.9, 's': 'c', 'GT': hl.Call([0, 1])}, ... {'v': '1:2000000:G:T', 'cm': 0.9, 's': 'd', 'GT': hl.Call([0, 0])}, ... {'v': '2:1:C:G', 'cm': 0.2, 's': 'a', 'GT': hl.Call([0, 1])}, ... {'v': '2:1:C:G', 'cm': 0.2, 's': 'b', 'GT': hl.Call([0, 0])}, ... {'v': '2:1:C:G', 'cm': 0.2, 's': 'c', 'GT': hl.Call([1, 1])}, ... {'v': '2:1:C:G', 'cm': 0.2, 's': 'd', 'GT': hl.missing(hl.tcall)}] >>> ht = hl.Table.parallelize(data, hl.dtype('struct{v: str, s: str, cm: float64, GT: call}')) >>> ht = ht.transmute(**hl.parse_variant(ht.v)) >>> mt = ht.to_matrix_table(row_key=['locus', 'alleles'], col_key=['s'], row_fields=['cm']) Compute linkage disequilibrium between all pairs of variants on the same contig and within two megabases: >>> ld = hl.ld_matrix(mt.GT.n_alt_alleles(), mt.locus, radius=2e6) >>> ld.to_numpy() array([[ 1. , -0.85280287, 0. ], [-0.85280287, 1. , 0. ], [ 0. , 0. , 1. ]]) Within one megabases: >>> ld = hl.ld_matrix(mt.GT.n_alt_alleles(), mt.locus, radius=1e6) >>> ld.to_numpy() array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) Within one centimorgan: >>> ld = hl.ld_matrix(mt.GT.n_alt_alleles(), mt.locus, radius=1.0, coord_expr=mt.cm) >>> ld.to_numpy() array([[ 1. , -0.85280287, 0. ], [-0.85280287, 1. , 0. ], [ 0. , 0. , 1. ]]) Within one centimorgan, and only calculate the upper triangle: >>> ld = hl.ld_matrix(mt.GT.n_alt_alleles(), mt.locus, radius=1.0, coord_expr=mt.cm) >>> ld = ld.sparsify_triangle() >>> ld.to_numpy() array([[ 1. , -0.85280287, 0. ], [ 0. , 1. , 0. ], [ 0. , 0. , 1. ]]) Notes ----- This method sparsifies the result of :meth:`row_correlation` using :func:`.linalg.utils.locus_windows` and :meth:`.BlockMatrix.sparsify_row_intervals` in order to only compute linkage disequilibrium between nearby variants. Use :meth:`row_correlation` directly to calculate correlation without windowing. More precisely, variants are 0-indexed by their order in the matrix table (see :meth:`~hail.MatrixTable.add_row_index`). Each variant is regarded as a vector of elements defined by `entry_expr`, typically the number of alternate alleles or genotype dosage. Missing values are mean-imputed within variant. The method produces a symmetric block-sparse matrix supported in a neighborhood of the diagonal. If variants :math:`i` and :math:`j` are on the same contig and within `radius` base pairs (inclusive) then the :math:`(i, j)` element is their `Pearson correlation coefficient <https://en.wikipedia.org/wiki/Pearson_correlation_coefficient>`__. Otherwise, the :math:`(i, j)` element is ``0.0``. Rows with a constant value (i.e., zero variance) will result in ``nan`` correlation values. To avoid this, first check that all variants vary or filter out constant variants (for example, with the help of :func:`.aggregators.stats`). If the :meth:`.global_position` on `locus_expr` is not in ascending order, this method will fail. Ascending order should hold for a matrix table keyed by locus or variant (and the associated row table), or for a table that's been ordered by `locus_expr`. Set `coord_expr` to use a value other than position to define the windows. This row-indexed numeric expression must be non-missing, non-``nan``, on the same source as `locus_expr`, and ascending with respect to locus position for each contig; otherwise the method will raise an error. Warning ------- See the warnings in :meth:`row_correlation`. In particular, for large matrices it may be preferable to run its stages separately. `entry_expr` and `locus_expr` are implicitly aligned by row-index, though they need not be on the same source. If their sources differ in the number of rows, an error will be raised; otherwise, unintended misalignment may silently produce unexpected results. Parameters ---------- entry_expr : :class:`.Float64Expression` Entry-indexed numeric expression on matrix table. locus_expr : :class:`.LocusExpression` Row-indexed locus expression on a table or matrix table that is row-aligned with the matrix table of `entry_expr`. radius: :obj:`int` or :obj:`float` Radius of window for row values. coord_expr: :class:`.Float64Expression`, optional Row-indexed numeric expression for the row value on the same table or matrix table as `locus_expr`. By default, the row value is given by the locus position. block_size : :obj:`int`, optional Block size. Default given by :meth:`.BlockMatrix.default_block_size`. Returns ------- :class:`.BlockMatrix` Windowed correlation matrix between variants. Row and column indices correspond to matrix table variant index. """ starts_and_stops = hl.linalg.utils.locus_windows(locus_expr, radius, coord_expr, _localize=False) starts_and_stops = hl.tuple([starts_and_stops[0].map(lambda i: hl.int64(i)), starts_and_stops[1].map(lambda i: hl.int64(i))]) ld = hl.row_correlation(entry_expr, block_size) return ld._sparsify_row_intervals_expr(starts_and_stops, blocks_only=False) @typecheck(n_populations=int, n_samples=int, n_variants=int, n_partitions=nullable(int), pop_dist=nullable(sequenceof(numeric)), fst=nullable(sequenceof(numeric)), af_dist=nullable(expr_any), reference_genome=reference_genome_type, mixture=bool) def balding_nichols_model(n_populations, n_samples, n_variants, n_partitions=None, pop_dist=None, fst=None, af_dist=None, reference_genome='default', mixture=False) -> MatrixTable: r"""Generate a matrix table of variants, samples, and genotypes using the Balding-Nichols or Pritchard-Stephens-Donnelly model. Examples -------- Generate a matrix table of genotypes with 1000 variants and 100 samples across 3 populations: >>> bn_ds = hl.balding_nichols_model(3, 100, 1000, reference_genome='GRCh37') Generate a matrix table using 4 populations, 40 samples, 150 variants, 3 partitions, population distribution ``[0.1, 0.2, 0.3, 0.4]``, :math:`F_{ST}` values ``[.02, .06, .04, .12]``, ancestral allele frequencies drawn from a truncated beta distribution with ``a = 0.01`` and ``b = 0.05`` over the interval ``[0.05, 1]``, and random seed 1: >>> hl.set_global_seed(1) >>> bn_ds = hl.balding_nichols_model(4, 40, 150, 3, ... pop_dist=[0.1, 0.2, 0.3, 0.4], ... fst=[.02, .06, .04, .12], ... af_dist=hl.rand_beta(a=0.01, b=2.0, lower=0.05, upper=1.0)) To guarantee reproducibility, we set the Hail global seed with :func:`.set_global_seed` immediately prior to generating the dataset. Notes ----- This method simulates a matrix table of variants, samples, and genotypes using the Balding-Nichols model, which we now define. - :math:`K` populations are labeled by integers :math:`0, 1, \dots, K - 1`. - :math:`N` samples are labeled by strings :math:`0, 1, \dots, N - 1`. - :math:`M` variants are defined as ``1:1:A:C``, ``1:2:A:C``, ..., ``1:M:A:C``. - The default distribution for population assignment :math:`\pi` is uniform. - The default ancestral frequency distribution :math:`P_0` is uniform on :math:`[0.1, 0.9]`. All three classes are located in ``hail.stats``. - The default :math:`F_{ST}` values are all :math:`0.1`. The Balding-Nichols model models genotypes of individuals from a structured population comprising :math:`K` homogeneous modern populations that have each diverged from a single ancestral population (a `star phylogeny`). Each sample is assigned a population by sampling from the categorical distribution :math:`\pi`. Note that the actual size of each population is random. Variants are modeled as biallelic and unlinked. Ancestral allele frequencies are drawn independently for each variant from a frequency spectrum :math:`P_0`. The extent of genetic drift of each modern population from the ancestral population is defined by the corresponding :math:`F_{ST}` parameter :math:`F_k` (here and below, lowercase indices run over a range bounded by the corresponding uppercase parameter, e.g. :math:`k = 1, \ldots, K`). For each variant and population, allele frequencies are drawn from a `beta distribution <https://en.wikipedia.org/wiki/Beta_distribution>`__ whose parameters are determined by the ancestral allele frequency and :math:`F_{ST}` parameter. The beta distribution gives a continuous approximation of the effect of genetic drift. We denote sample population assignments by :math:`k_n`, ancestral allele frequencies by :math:`p_m`, population allele frequencies by :math:`p_{k, m}`, and diploid, unphased genotype calls by :math:`g_{n, m}` (0, 1, and 2 correspond to homozygous reference, heterozygous, and homozygous variant, respectively). The generative model is then given by: .. math:: \begin{aligned} k_n \,&\sim\, \pi \\ p_m \,&\sim\, P_0 \\ p_{k,m} \mid p_m\,&\sim\, \mathrm{Beta}(\mu = p_m,\, \sigma^2 = F_k p_m (1 - p_m)) \\ g_{n,m} \mid k_n, p_{k, m} \,&\sim\, \mathrm{Binomial}(2, p_{k_n, m}) \end{aligned} The beta distribution by its mean and variance above; the usual parameters are :math:`a = (1 - p) \frac{1 - F}{F}` and :math:`b = p \frac{1 - F}{F}` with :math:`F = F_k` and :math:`p = p_m`. The resulting dataset has the following fields. Global fields: - `bn.n_populations` (:py:data:`.tint32`) -- Number of populations. - `bn.n_samples` (:py:data:`.tint32`) -- Number of samples. - `bn.n_variants` (:py:data:`.tint32`) -- Number of variants. - `bn.n_partitions` (:py:data:`.tint32`) -- Number of partitions. - `bn.pop_dist` (:class:`.tarray` of :py:data:`.tfloat64`) -- Population distribution indexed by population. - `bn.fst` (:class:`.tarray` of :py:data:`.tfloat64`) -- :math:`F_{ST}` values indexed by population. - `bn.seed` (:py:data:`.tint32`) -- Random seed. - `bn.mixture` (:py:data:`.tbool`) -- Value of `mixture` parameter. Row fields: - `locus` (:class:`.tlocus`) -- Variant locus (key field). - `alleles` (:class:`.tarray` of :py:data:`.tstr`) -- Variant alleles (key field). - `ancestral_af` (:py:data:`.tfloat64`) -- Ancestral allele frequency. - `af` (:class:`.tarray` of :py:data:`.tfloat64`) -- Modern allele frequencies indexed by population. Column fields: - `sample_idx` (:py:data:`.tint32`) - Sample index (key field). - `pop` (:py:data:`.tint32`) -- Population of sample. Entry fields: - `GT` (:py:data:`.tcall`) -- Genotype call (diploid, unphased). For the `Pritchard-Stephens-Donnelly model <http://www.genetics.org/content/155/2/945.long>`__, set the `mixture` to true to treat `pop_dist` as the parameters of the Dirichlet distribution describing admixture between the modern populations. In this case, the type of `pop` is :class:`.tarray` of :py:data:`.tfloat64` and the value is the mixture proportions. Parameters ---------- n_populations : :obj:`int` Number of modern populations. n_samples : :obj:`int` Total number of samples. n_variants : :obj:`int` Number of variants. n_partitions : :obj:`int`, optional Number of partitions. Default is 1 partition per million entries or 8, whichever is larger. pop_dist : :obj:`list` of :obj:`float`, optional Unnormalized population distribution, a list of length `n_populations` with non-negative values. Default is ``[1, ..., 1]``. fst : :obj:`list` of :obj:`float`, optional :math:`F_{ST}` values, a list of length `n_populations` with values in (0, 1). Default is ``[0.1, ..., 0.1]``. af_dist : :class:`.Float64Expression`, optional Representing a random function. Ancestral allele frequency distribution. Default is :func:`.rand_unif` over the range `[0.1, 0.9]` with seed 0. reference_genome : :class:`str` or :class:`.ReferenceGenome` Reference genome to use. mixture : :obj:`bool` Treat `pop_dist` as the parameters of a Dirichlet distribution, as in the Prichard-Stevens-Donnelly model. Returns ------- :class:`.MatrixTable` Simulated matrix table of variants, samples, and genotypes. """ if pop_dist is None: pop_dist = [1 for _ in range(n_populations)] if fst is None: fst = [0.1 for _ in range(n_populations)] if af_dist is None: af_dist = hl.rand_unif(0.1, 0.9, seed=0) if n_partitions is None: n_partitions = max(8, int(n_samples * n_variants / (128 * 1024 * 1024))) # verify args for name, var in {"populations": n_populations, "samples": n_samples, "variants": n_variants, "partitions": n_partitions}.items(): if var < 1: raise ValueError("n_{} must be positive, got {}".format(name, var)) for name, var in {"pop_dist": pop_dist, "fst": fst}.items(): if len(var) != n_populations: raise ValueError("{} must be of length n_populations={}, got length {}" .format(name, n_populations, len(var))) if any(x < 0 for x in pop_dist): raise ValueError("pop_dist must be non-negative, got {}" .format(pop_dist)) if any(x <= 0 or x >= 1 for x in fst): raise ValueError("elements of fst must satisfy 0 < x < 1, got {}" .format(fst)) # verify af_dist if not af_dist._is_scalar: raise ExpressionException('balding_nichols_model expects af_dist to ' + 'have scalar arguments: found expression ' + 'from source {}' .format(af_dist._indices.source)) if af_dist.dtype != tfloat64: raise ValueError("af_dist must be a hail function with return type tfloat64.") info("balding_nichols_model: generating genotypes for {} populations, {} samples, and {} variants..." .format(n_populations, n_samples, n_variants)) # generate matrix table bn = hl.utils.range_matrix_table(n_variants, n_samples, n_partitions) bn = bn.annotate_globals( bn=hl.struct(n_populations=n_populations, n_samples=n_samples, n_variants=n_variants, n_partitions=n_partitions, pop_dist=pop_dist, fst=fst, mixture=mixture)) # col info pop_f = hl.rand_dirichlet if mixture else hl.rand_cat bn = bn.key_cols_by(sample_idx=bn.col_idx) bn = bn.select_cols(pop=pop_f(pop_dist)) # row info bn = bn.key_rows_by(locus=hl.locus_from_global_position(bn.row_idx, reference_genome=reference_genome), alleles=['A', 'C']) bn = bn.select_rows(ancestral_af=af_dist, af=hl.bind(lambda ancestral: hl.array([(1 - x) / x for x in fst]) .map(lambda x: hl.rand_beta(ancestral * x, (1 - ancestral) * x)), af_dist)) # entry info p = hl.sum(bn.pop * bn.af) if mixture else bn.af[bn.pop] idx = hl.rand_cat([(1 - p) ** 2, 2 * p * (1 - p), p ** 2]) return bn.select_entries(GT=hl.unphased_diploid_gt_index_call(idx)) @typecheck(mt=MatrixTable, f=anytype) def filter_alleles(mt: MatrixTable, f: Callable) -> MatrixTable: """Filter alternate alleles. .. include:: ../_templates/req_tvariant.rst Examples -------- Keep SNPs: >>> ds_result = hl.filter_alleles(ds, lambda allele, i: hl.is_snp(ds.alleles[0], allele)) Keep alleles with AC > 0: >>> ds_result = hl.filter_alleles(ds, lambda a, allele_index: ds.info.AC[allele_index - 1] > 0) Update the AC field of the resulting dataset: >>> updated_info = ds_result.info.annotate(AC = ds_result.new_to_old.map(lambda i: ds_result.info.AC[i-1])) >>> ds_result = ds_result.annotate_rows(info = updated_info) Notes ----- The following new fields are generated: - `old_locus` (``locus``) -- The old locus, before filtering and computing the minimal representation. - `old_alleles` (``array<str>``) -- The old alleles, before filtering and computing the minimal representation. - `old_to_new` (``array<int32>``) -- An array that maps old allele index to new allele index. Its length is the same as `old_alleles`. Alleles that are filtered are missing. - `new_to_old` (``array<int32>``) -- An array that maps new allele index to the old allele index. Its length is the same as the modified `alleles` field. If all alternate alleles of a variant are filtered out, the variant itself is filtered out. **Using** `f` The `f` argument is a function or lambda evaluated per alternate allele to determine whether that allele is kept. If `f` evaluates to ``True``, the allele is kept. If `f` evaluates to ``False`` or missing, the allele is removed. `f` is a function that takes two arguments: the allele string (of type :class:`.StringExpression`) and the allele index (of type :class:`.Int32Expression`), and returns a boolean expression. This can be either a defined function or a lambda. For example, these two usages are equivalent: (with a lambda) >>> ds_result = hl.filter_alleles(ds, lambda allele, i: hl.is_snp(ds.alleles[0], allele)) (with a defined function) >>> def filter_f(allele, allele_index): ... return hl.is_snp(ds.alleles[0], allele) >>> ds_result = hl.filter_alleles(ds, filter_f) Warning ------- :func:`.filter_alleles` does not update any fields other than `locus` and `alleles`. This means that row fields like allele count (AC) and entry fields like allele depth (AD) can become meaningless unless they are also updated. You can update them with :meth:`.annotate_rows` and :meth:`.annotate_entries`. See Also -------- :func:`.filter_alleles_hts` Parameters ---------- mt : :class:`.MatrixTable` Dataset. f : callable Function from (allele: :class:`.StringExpression`, allele_index: :class:`.Int32Expression`) to :class:`.BooleanExpression` Returns ------- :class:`.MatrixTable` """ require_row_key_variant(mt, 'filter_alleles') inclusion = hl.range(0, hl.len(mt.alleles)).map(lambda i: (i == 0) | hl.bind(lambda ii: f(mt.alleles[ii], ii), i)) # old locus, old alleles, new to old, old to new mt = mt.annotate_rows(__allele_inclusion=inclusion, old_locus=mt.locus, old_alleles=mt.alleles) new_to_old = (hl.enumerate(mt.__allele_inclusion) .filter(lambda elt: elt[1]) .map(lambda elt: elt[0])) old_to_new_dict = (hl.dict(hl.enumerate(hl.enumerate(mt.alleles) .filter(lambda elt: mt.__allele_inclusion[elt[0]])) .map(lambda elt: (elt[1][1], elt[0])))) old_to_new = hl.bind(lambda d: mt.alleles.map(lambda a: d.get(a)), old_to_new_dict) mt = mt.annotate_rows(old_to_new=old_to_new, new_to_old=new_to_old) new_locus_alleles = hl.min_rep(mt.locus, mt.new_to_old.map(lambda i: mt.alleles[i])) mt = mt.annotate_rows(__new_locus=new_locus_alleles.locus, __new_alleles=new_locus_alleles.alleles) mt = mt.filter_rows(hl.len(mt.__new_alleles) > 1) left = mt.filter_rows((mt.locus == mt.__new_locus) & (mt.alleles == mt.__new_alleles)) right = mt.filter_rows((mt.locus != mt.__new_locus) | (mt.alleles != mt.__new_alleles)) right = right.key_rows_by(locus=right.__new_locus, alleles=right.__new_alleles) return left.union_rows(right, _check_cols=False).drop('__allele_inclusion', '__new_locus', '__new_alleles') @typecheck(mt=MatrixTable, f=anytype, subset=bool) def filter_alleles_hts(mt: MatrixTable, f: Callable, subset: bool = False) -> MatrixTable: """Filter alternate alleles and update standard GATK entry fields. Examples -------- Filter to SNP alleles using the subset strategy: >>> ds_result = hl.filter_alleles_hts( ... ds, ... lambda allele, _: hl.is_snp(ds.alleles[0], allele), ... subset=True) Update the AC field of the resulting dataset: >>> updated_info = ds_result.info.annotate(AC = ds_result.new_to_old.map(lambda i: ds_result.info.AC[i-1])) >>> ds_result = ds_result.annotate_rows(info = updated_info) Notes ----- For usage of the `f` argument, see the :func:`.filter_alleles` documentation. :func:`.filter_alleles_hts` requires the dataset have the GATK VCF schema, namely the following entry fields in this order: .. code-block:: text GT: call AD: array<int32> DP: int32 GQ: int32 PL: array<int32> Use :meth:`.MatrixTable.select_entries` to rearrange these fields if necessary. The following new fields are generated: - `old_locus` (``locus``) -- The old locus, before filtering and computing the minimal representation. - `old_alleles` (``array<str>``) -- The old alleles, before filtering and computing the minimal representation. - `old_to_new` (``array<int32>``) -- An array that maps old allele index to new allele index. Its length is the same as `old_alleles`. Alleles that are filtered are missing. - `new_to_old` (``array<int32>``) -- An array that maps new allele index to the old allele index. Its length is the same as the modified `alleles` field. **Downcode algorithm** We will illustrate the behavior on the example genotype below when filtering the first alternate allele (allele 1) at a site with 1 reference allele and 2 alternate alleles. .. code-block:: text GT: 1/2 GQ: 10 AD: 0,50,35 0 | 1000 1 | 1000 10 2 | 1000 0 20 +----------------- 0 1 2 The downcode algorithm recodes occurances of filtered alleles to occurances of the reference allele (e.g. 1 -> 0 in our example). So the depths of filtered alleles in the AD field are added to the depth of the reference allele. Where downcoding filtered alleles merges distinct genotypes, the minimum PL is used (since PL is on a log scale, this roughly corresponds to adding probabilities). The PLs are then re-normalized (shifted) so that the most likely genotype has a PL of 0, and GT is set to this genotype. If an allele is filtered, this algorithm acts similarly to :func:`.split_multi_hts`. The downcode algorithm would produce the following: .. code-block:: text GT: 0/1 GQ: 10 AD: 35,50 0 | 20 1 | 0 10 +----------- 0 1 In summary: - GT: Downcode filtered alleles to reference. - AD: Columns of filtered alleles are eliminated and their values are added to the reference column, e.g., filtering alleles 1 and 2 transforms ``25,5,10,20`` to ``40,20``. - DP: No change. - PL: Downcode filtered alleles to reference, combine PLs using minimum for each overloaded genotype, and shift so the overall minimum PL is 0. - GQ: The second-lowest PL (after shifting). **Subset algorithm** We will illustrate the behavior on the example genotype below when filtering the first alternate allele (allele 1) at a site with 1 reference allele and 2 alternate alleles. .. code-block:: text GT: 1/2 GQ: 10 AD: 0,50,35 0 | 1000 1 | 1000 10 2 | 1000 0 20 +----------------- 0 1 2 The subset algorithm subsets the AD and PL arrays (i.e. removes entries corresponding to filtered alleles) and then sets GT to the genotype with the minimum PL. Note that if the genotype changes (as in the example), the PLs are re-normalized (shifted) so that the most likely genotype has a PL of 0. Qualitatively, subsetting corresponds to the belief that the filtered alleles are not real so we should discard any probability mass associated with them. The subset algorithm would produce the following: .. code-block:: text GT: 1/1 GQ: 980 AD: 0,50 0 | 980 1 | 980 0 +----------- 0 1 In summary: - GT: Set to most likely genotype based on the PLs ignoring the filtered allele(s). - AD: The filtered alleles' columns are eliminated, e.g., filtering alleles 1 and 2 transforms ``25,5,10,20`` to ``25,20``. - DP: Unchanged. - PL: Columns involving filtered alleles are eliminated and the remaining columns' values are shifted so the minimum value is 0. - GQ: The second-lowest PL (after shifting). Warning ------- :func:`.filter_alleles_hts` does not update any row fields other than `locus` and `alleles`. This means that row fields like allele count (AC) can become meaningless unless they are also updated. You can update them with :meth:`.annotate_rows`. See Also -------- :func:`.filter_alleles` Parameters ---------- mt : :class:`.MatrixTable` f : callable Function from (allele: :class:`.StringExpression`, allele_index: :class:`.Int32Expression`) to :class:`.BooleanExpression` subset : :obj:`.bool` Subset PL field if ``True``, otherwise downcode PL field. The calculation of GT and GQ also depend on whether one subsets or downcodes the PL. Returns ------- :class:`.MatrixTable` """ if mt.entry.dtype != hl.hts_entry_schema: raise FatalError("'filter_alleles_hts': entry schema must be the HTS entry schema:\n" " found: {}\n" " expected: {}\n" " Use 'hl.filter_alleles' to split entries with non-HTS entry fields.".format( mt.entry.dtype, hl.hts_entry_schema)) mt = filter_alleles(mt, f) if subset: newPL = hl.if_else( hl.is_defined(mt.PL), hl.bind( lambda unnorm: unnorm - hl.min(unnorm), hl.range(0, hl.triangle(mt.alleles.length())).map( lambda newi: hl.bind( lambda newc: mt.PL[hl.call(mt.new_to_old[newc[0]], mt.new_to_old[newc[1]]).unphased_diploid_gt_index()], hl.unphased_diploid_gt_index_call(newi)))), hl.missing(tarray(tint32))) return mt.annotate_entries( GT=hl.unphased_diploid_gt_index_call(hl.argmin(newPL, unique=True)), AD=hl.if_else( hl.is_defined(mt.AD), hl.range(0, mt.alleles.length()).map( lambda newi: mt.AD[mt.new_to_old[newi]]), hl.missing(tarray(tint32))), # DP unchanged GQ=hl.gq_from_pl(newPL), PL=newPL) # otherwise downcode else: mt = mt.annotate_rows(__old_to_new_no_na=mt.old_to_new.map(lambda x: hl.or_else(x, 0))) newPL = hl.if_else( hl.is_defined(mt.PL), (hl.range(0, hl.triangle(hl.len(mt.alleles))) .map(lambda newi: hl.min(hl.range(0, hl.triangle(hl.len(mt.old_alleles))) .filter(lambda oldi: hl.bind( lambda oldc: hl.call(mt.__old_to_new_no_na[oldc[0]], mt.__old_to_new_no_na[oldc[1]]) == hl.unphased_diploid_gt_index_call(newi), hl.unphased_diploid_gt_index_call(oldi))) .map(lambda oldi: mt.PL[oldi])))), hl.missing(tarray(tint32))) return mt.annotate_entries( GT=hl.call(mt.__old_to_new_no_na[mt.GT[0]], mt.__old_to_new_no_na[mt.GT[1]]), AD=hl.if_else( hl.is_defined(mt.AD), (hl.range(0, hl.len(mt.alleles)) .map(lambda newi: hl.sum(hl.range(0, hl.len(mt.old_alleles)) .filter(lambda oldi: mt.__old_to_new_no_na[oldi] == newi) .map(lambda oldi: mt.AD[oldi])))), hl.missing(tarray(tint32))), # DP unchanged GQ=hl.gq_from_pl(newPL), PL=newPL).drop('__old_to_new_no_na') @typecheck(mt=MatrixTable, call_field=str, r2=numeric, bp_window_size=int, memory_per_core=int) def _local_ld_prune(mt, call_field, r2=0.2, bp_window_size=1000000, memory_per_core=256): bytes_per_core = memory_per_core * 1024 * 1024 fraction_memory_to_use = 0.25 variant_byte_overhead = 50 genotypes_per_pack = 32 n_samples = mt.count_cols() min_bytes_per_core = math.ceil((1 / fraction_memory_to_use) * 8 * n_samples + variant_byte_overhead) if bytes_per_core < min_bytes_per_core: raise ValueError("memory_per_core must be greater than {} MB".format(min_bytes_per_core // (1024 * 1024))) bytes_per_variant = math.ceil(8 * n_samples / genotypes_per_pack) + variant_byte_overhead bytes_available_per_core = bytes_per_core * fraction_memory_to_use max_queue_size = int(max(1.0, math.ceil(bytes_available_per_core / bytes_per_variant))) info(f'ld_prune: running local pruning stage with max queue size of {max_queue_size} variants') return Table(ir.MatrixToTableApply(mt._mir, { 'name': 'LocalLDPrune', 'callField': call_field, 'r2Threshold': float(r2), 'windowSize': bp_window_size, 'maxQueueSize': max_queue_size })) @typecheck(call_expr=expr_call, r2=numeric, bp_window_size=int, memory_per_core=int, keep_higher_maf=bool, block_size=nullable(int)) def ld_prune(call_expr, r2=0.2, bp_window_size=1000000, memory_per_core=256, keep_higher_maf=True, block_size=None): """Returns a maximal subset of variants that are nearly uncorrelated within each window. .. include:: ../_templates/req_diploid_gt.rst .. include:: ../_templates/req_biallelic.rst .. include:: ../_templates/req_tvariant.rst Examples -------- Prune variants in linkage disequilibrium by filtering a dataset to those variants returned by :func:`.ld_prune`. If the dataset contains multiallelic variants, the multiallelic variants must be filtered out or split before being passed to :func:`.ld_prune`. >>> biallelic_dataset = dataset.filter_rows(hl.len(dataset.alleles) == 2) >>> pruned_variant_table = hl.ld_prune(biallelic_dataset.GT, r2=0.2, bp_window_size=500000) >>> filtered_ds = dataset.filter_rows(hl.is_defined(pruned_variant_table[dataset.row_key])) Notes ----- This method finds a maximal subset of variants such that the squared Pearson correlation coefficient :math:`r^2` of any pair at most `bp_window_size` base pairs apart is strictly less than `r2`. Each variant is represented as a vector over samples with elements given by the (mean-imputed) number of alternate alleles. In particular, even if present, **phase information is ignored**. Variants that do not vary across samples are dropped. The method prunes variants in linkage disequilibrium in three stages. - The first, "local pruning" stage prunes correlated variants within each partition, using a local variant queue whose size is determined by `memory_per_core`. A larger queue may facilitate more local pruning in this stage. Minor allele frequency is not taken into account. The parallelism is the number of matrix table partitions. - The second, "global correlation" stage uses block-sparse matrix multiplication to compute correlation between each pair of remaining variants within `bp_window_size` base pairs, and then forms a graph of correlated variants. The parallelism of writing the locally-pruned matrix table as a block matrix is ``n_locally_pruned_variants / block_size``. - The third, "global pruning" stage applies :func:`.maximal_independent_set` to prune variants from this graph until no edges remain. This algorithm iteratively removes the variant with the highest vertex degree. If `keep_higher_maf` is true, then in the case of a tie for highest degree, the variant with lowest minor allele frequency is removed. Warning ------- The locally-pruned matrix table and block matrix are stored as temporary files on persistent disk. See the warnings on `BlockMatrix.from_entry_expr` with regard to memory and Hadoop replication errors. Parameters ---------- call_expr : :class:`.CallExpression` Entry-indexed call expression on a matrix table with row-indexed variants and column-indexed samples. r2 : :obj:`float` Squared correlation threshold (exclusive upper bound). Must be in the range [0.0, 1.0]. bp_window_size: :obj:`int` Window size in base pairs (inclusive upper bound). memory_per_core : :obj:`int` Memory in MB per core for local pruning queue. keep_higher_maf: :obj:`int` If ``True``, break ties at each step of the global pruning stage by preferring to keep variants with higher minor allele frequency. block_size: :obj:`int`, optional Block size for block matrices in the second stage. Default given by :meth:`.BlockMatrix.default_block_size`. Returns ------- :class:`.Table` Table of a maximal independent set of variants. """ if block_size is None: block_size = BlockMatrix.default_block_size() if not 0.0 <= r2 <= 1: raise ValueError(f'r2 must be in the range [0.0, 1.0], found {r2}') if bp_window_size < 0: raise ValueError(f'bp_window_size must be non-negative, found {bp_window_size}') check_entry_indexed('ld_prune/call_expr', call_expr) mt = matrix_table_source('ld_prune/call_expr', call_expr) require_row_key_variant(mt, 'ld_prune') # FIXME: remove once select_entries on a field is free if call_expr in mt._fields_inverse: field = mt._fields_inverse[call_expr] else: field = Env.get_uid() mt = mt.select_entries(**{field: call_expr}) mt = mt.select_rows().select_cols() mt = mt.distinct_by_row() locally_pruned_table_path = new_temp_file() (_local_ld_prune(require_biallelic(mt, 'ld_prune'), field, r2, bp_window_size, memory_per_core) .write(locally_pruned_table_path, overwrite=True)) locally_pruned_table = hl.read_table(locally_pruned_table_path).add_index() mt = mt.annotate_rows(info=locally_pruned_table[mt.row_key]) mt = mt.filter_rows(hl.is_defined(mt.info)).unfilter_entries() std_gt_bm = BlockMatrix.from_entry_expr( hl.or_else( (mt[field].n_alt_alleles() - mt.info.mean) * mt.info.centered_length_rec, 0.0), block_size=block_size) r2_bm = (std_gt_bm @ std_gt_bm.T) ** 2 _, stops = hl.linalg.utils.locus_windows(locally_pruned_table.locus, bp_window_size) entries = r2_bm.sparsify_row_intervals(range(stops.size), stops, blocks_only=True).entries(keyed=False) entries = entries.filter((entries.entry >= r2) & (entries.i < entries.j)) entries = entries.select(i=hl.int32(entries.i), j=hl.int32(entries.j)) if keep_higher_maf: fields = ['mean', 'locus'] else: fields = ['locus'] info = locally_pruned_table.aggregate( hl.agg.collect(locally_pruned_table.row.select('idx', *fields)), _localize=False) info = hl.sorted(info, key=lambda x: x.idx) entries = entries.annotate_globals(info=info) entries = entries.filter( (entries.info[entries.i].locus.contig == entries.info[entries.j].locus.contig) & (entries.info[entries.j].locus.position - entries.info[entries.i].locus.position <= bp_window_size)) if keep_higher_maf: entries = entries.annotate( i=hl.struct(idx=entries.i, twice_maf=hl.min(entries.info[entries.i].mean, 2.0 - entries.info[entries.i].mean)), j=hl.struct(idx=entries.j, twice_maf=hl.min(entries.info[entries.j].mean, 2.0 - entries.info[entries.j].mean))) def tie_breaker(left, right): return hl.sign(right.twice_maf - left.twice_maf) else: tie_breaker = None variants_to_remove = hl.maximal_independent_set( entries.i, entries.j, keep=False, tie_breaker=tie_breaker, keyed=False) locally_pruned_table = locally_pruned_table.annotate_globals( variants_to_remove=variants_to_remove.aggregate( hl.agg.collect_as_set(variants_to_remove.node.idx), _localize=False)) return locally_pruned_table.filter( locally_pruned_table.variants_to_remove.contains(hl.int32(locally_pruned_table.idx)), keep=False ).select().persist() def _warn_if_no_intercept(caller, covariates): if all([e._indices.axes for e in covariates]): warning(f'{caller}: model appears to have no intercept covariate.' '\n To include an intercept, add 1.0 to the list of covariates.') return True return False
mit
RodericDay/MiniPNM
minipnm/graphics.py
1
8311
from __future__ import print_function from tempfile import NamedTemporaryFile from subprocess import call import itertools as it import numpy as np import matplotlib as mpl from matplotlib import cm try: import vtk except ImportError: vtk = type("vtk module missing. functionality unavailable!", (), {'vtkActor': object}) class Actor(vtk.vtkActor): callable = print def __init__(self): raise NotImplementedError() def set_points(self, points): pointArray = vtk.vtkPoints() for x,y,z in points: pointArray.InsertNextPoint(x, y, z) self.polydata.SetPoints(pointArray) def set_lines(self, lines): cellArray = vtk.vtkCellArray() for ids in lines: idList = vtk.vtkIdList() for i in ids: idList.InsertNextId(i) cellArray.InsertNextCell(idList) self.polydata.SetLines(cellArray) def set_scalars(self, values): floats = vtk.vtkFloatArray() for v in values: floats.InsertNextValue(v) self.polydata.GetPointData().SetScalars(floats) def update(self, t=0): i = t % len(self.script) self.set_scalars(self.script[i]) class Wires(Actor): ''' Points and lines. The script determines the color of the lines. ''' def __init__(self, points, pairs, values=None, cmap=None, alpha=1, vmin=None, vmax=None): self.polydata = vtk.vtkPolyData() self.set_points(points) self.set_lines(pairs) self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInput(self.polydata) self.SetMapper(self.mapper) self.GetProperty().SetOpacity(alpha) if values is None: values = np.ones(len(points))*0.5 vmin, vmax = 0, 1 self.script = np.atleast_2d(values) cmap = cm.get_cmap(cmap if cmap is not None else 'coolwarm') vmin = vmin if vmin is not None else self.script.min() vmax = vmax if vmax is not None else self.script.max() norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax) self.cmapper = cm.ScalarMappable(norm=norm, cmap=cmap) self.update() def set_scalars(self, values): colors = vtk.vtkUnsignedCharArray() colors.SetNumberOfComponents(3) for r,g,b,a in 255*self.cmapper.to_rgba(values): colors.InsertNextTuple3(r,g,b) self.polydata.GetPointData().SetScalars(colors) class Spheres(Actor): def __init__(self, centers, radii=1, alpha=1, color=(1,1,1)): self.polydata = vtk.vtkPolyData() self.set_points(centers) self.source = vtk.vtkSphereSource() self.glyph3D = vtk.vtkGlyph3D() self.glyph3D.SetSourceConnection(self.source.GetOutputPort()) self.glyph3D.SetInput(self.polydata) self.glyph3D.GeneratePointIdsOn() self.glyph3D.Update() self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInputConnection(self.glyph3D.GetOutputPort()) self.SetMapper(self.mapper) self.script = 2*np.atleast_2d(np.ones(len(centers)))*radii self.GetProperty().SetOpacity(alpha) r,g,b = color self.mapper.ScalarVisibilityOff() self.GetProperty().SetColor(r,g,b) self.update() class Tubes(Actor): def __init__(self, centers, vectors, radii, alpha=1, cmap=None): tails = centers - np.divide(vectors, 2.) heads = centers + np.divide(vectors, 2.) points = np.vstack(zip(tails, heads)) pairs = np.arange(len(centers)*2).reshape(-1, 2) radii = np.repeat(radii, 2) assert (points.size/3. == pairs.size) assert (pairs.size == radii.size) self.polydata = vtk.vtkPolyData() self.set_points(points) self.set_lines(pairs) self.set_scalars(radii) self.tubeFilter = vtk.vtkTubeFilter() self.tubeFilter.SetInput(self.polydata) self.tubeFilter.SetVaryRadiusToVaryRadiusByAbsoluteScalar() self.tubeFilter.SetNumberOfSides(10) # self.tubeFilter.CappingOn() self.mapper = vtk.vtkPolyDataMapper() self.mapper.SetInputConnection(self.tubeFilter.GetOutputPort()) self.mapper.ScalarVisibilityOff() self.SetMapper(self.mapper) self.GetProperty().SetOpacity(alpha) self.script = [0] def update(self, t=0): pass class Scene(object): ticks = it.count(0) def __init__(self, parent=None, fix_camera=True, background=None, size=None): ''' fix_camera : more sensible default ''' if parent is not None: self.renWin = parent.GetRenderWindow() self.iren = self.renWin.GetInteractor() else: self.renWin = vtk.vtkRenderWindow() if size is None: self.renWin.SetSize(800, 600) self.iren = vtk.vtkRenderWindowInteractor() self.iren.SetRenderWindow(self.renWin) self.ren = vtk.vtkRenderer() if background == 'white': self.ren.SetBackground(1, 1, 1) self.renWin.AddRenderer(self.ren) if fix_camera: camera = vtk.vtkInteractorStyleTrackballCamera() camera.SetCurrentRenderer(self.ren) self.iren.SetInteractorStyle(camera) self.picker = vtk.vtkCellPicker() self.iren.SetPicker(self.picker) self.picker.AddObserver("EndPickEvent", self.handle_pick) def __iter__(self): for aid in range(self.ren.VisibleActorCount()): actor = self.ren.GetActors().GetItemAsObject(aid) if hasattr(actor, 'script'): yield actor @property def count(self): return len([actor for actor in self]) def __len__(self): if self.count==0: return 0 return max(len(actor.script) for actor in self) def handle_pick(self, obj, event): actor = self.picker.GetActor() glyph3D = actor.glyph3D pointIds = glyph3D.GetOutput().GetPointData().GetArray("InputPointIds") selectedId = int(pointIds.GetTuple1(self.picker.GetPointId())) actor.callable(selectedId) actor.polydata.Modified() self.renWin.Render() def update_all(self, obj=None, event=None, t=None): if t is None: t = next(self.ticks) for actor in self: actor.update(t) self.renWin.Render() def save(self, frames, outfile='animated.mp4'): ''' takes a snapshot of the frames at given t, and returns the paths ''' windowToImage = vtk.vtkWindowToImageFilter() windowToImage.SetInput(self.renWin) writer = vtk.vtkPNGWriter() writer.SetInput(windowToImage.GetOutput()) slide_paths = [] for t in frames: # f = NamedTemporaryFile(suffix='.png', delete=False) f = open("img{:0>3}.png".format(t), 'w') self.update_all(t=t) windowToImage.Modified() writer.SetFileName(f.name) writer.Write() slide_paths.append( f.name ) if len(slide_paths)==1: if not outfile.endswith('.png'): raise Exception("Cannot save single snapshot videos") call(["mv","img000.png",outfile]) elif outfile.endswith('.mp4'): call(["rm","-f", outfile]) call(["/usr/local/bin/ffmpeg", "-i","img%03d.png", "-c:v","libx264","-r","30", "-pix_fmt","yuv420p", outfile]) call(["rm"]+slide_paths) def play(self, timeout=1): self.iren.Initialize() if timeout is not None: self.iren.AddObserver('TimerEvent', self.update_all) self.timer = self.iren.CreateRepeatingTimer(timeout) self.update_all() self.iren.Start() def add_actors(self, list_of_actors, label=False): for actor in list_of_actors: self.ren.AddActor(actor) if label: labelMapper = vtk.vtkLabeledDataMapper() labelMapper.SetInput(actor.polydata) labelActor = vtk.vtkActor2D() labelActor.SetMapper(labelMapper) self.ren.AddActor(labelActor)
mit
idlead/scikit-learn
examples/classification/plot_classification_probability.py
138
2871
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting, and Gaussian process classification. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial'), 'GPC': GaussianProcessClassifier(kernel) } n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
daodaoliang/neural-network-animation
matplotlib/tests/test_rcparams.py
9
10258
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys import warnings import matplotlib as mpl from matplotlib.tests import assert_str_equal from matplotlib.testing.decorators import cleanup, knownfailureif from nose.tools import assert_true, assert_raises, assert_equal from nose.plugins.skip import SkipTest import nose from itertools import chain import numpy as np from matplotlib.rcsetup import (validate_bool_maybe_none, validate_stringlist, validate_bool, validate_nseq_int, validate_nseq_float) mpl.rc('text', usetex=False) mpl.rc('lines', linewidth=22) fname = os.path.join(os.path.dirname(__file__), 'test_rcparams.rc') def test_rcparams(): usetex = mpl.rcParams['text.usetex'] linewidth = mpl.rcParams['lines.linewidth'] # test context given dictionary with mpl.rc_context(rc={'text.usetex': not usetex}): assert mpl.rcParams['text.usetex'] == (not usetex) assert mpl.rcParams['text.usetex'] == usetex # test context given filename (mpl.rc sets linewdith to 33) with mpl.rc_context(fname=fname): assert mpl.rcParams['lines.linewidth'] == 33 assert mpl.rcParams['lines.linewidth'] == linewidth # test context given filename and dictionary with mpl.rc_context(fname=fname, rc={'lines.linewidth': 44}): assert mpl.rcParams['lines.linewidth'] == 44 assert mpl.rcParams['lines.linewidth'] == linewidth # test rc_file try: mpl.rc_file(fname) assert mpl.rcParams['lines.linewidth'] == 33 finally: mpl.rcParams['lines.linewidth'] = linewidth def test_RcParams_class(): rc = mpl.RcParams({'font.cursive': ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'], 'font.family': 'sans-serif', 'font.weight': 'normal', 'font.size': 12}) if six.PY3: expected_repr = """ RcParams({'font.cursive': ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'], 'font.family': ['sans-serif'], 'font.size': 12.0, 'font.weight': 'normal'})""".lstrip() else: expected_repr = """ RcParams({u'font.cursive': [u'Apple Chancery', u'Textile', u'Zapf Chancery', u'cursive'], u'font.family': [u'sans-serif'], u'font.size': 12.0, u'font.weight': u'normal'})""".lstrip() assert_str_equal(expected_repr, repr(rc)) if six.PY3: expected_str = """ font.cursive: ['Apple Chancery', 'Textile', 'Zapf Chancery', 'cursive'] font.family: ['sans-serif'] font.size: 12.0 font.weight: normal""".lstrip() else: expected_str = """ font.cursive: [u'Apple Chancery', u'Textile', u'Zapf Chancery', u'cursive'] font.family: [u'sans-serif'] font.size: 12.0 font.weight: normal""".lstrip() assert_str_equal(expected_str, str(rc)) # test the find_all functionality assert ['font.cursive', 'font.size'] == sorted(rc.find_all('i[vz]').keys()) assert ['font.family'] == list(six.iterkeys(rc.find_all('family'))) # remove know failure + warnings after merging to master @knownfailureif(not (sys.version_info[:2] < (2, 7))) def test_rcparams_update(): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager " "not supported with Python < 2.7") rc = mpl.RcParams({'figure.figsize': (3.5, 42)}) bad_dict = {'figure.figsize': (3.5, 42, 1)} # make sure validation happens on input with assert_raises(ValueError): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(validate)', category=UserWarning) rc.update(bad_dict) # remove know failure + warnings after merging to master @knownfailureif(not (sys.version_info[:2] < (2, 7))) def test_rcparams_init(): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager " "not supported with Python < 2.7") with assert_raises(ValueError): with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(validate)', category=UserWarning) mpl.RcParams({'figure.figsize': (3.5, 42, 1)}) @cleanup def test_Bug_2543(): # Test that it possible to add all values to itself / deepcopy # This was not possible because validate_bool_maybe_none did not # accept None as an argument. # https://github.com/matplotlib/matplotlib/issues/2543 # We filter warnings at this stage since a number of them are raised # for deprecated rcparams as they should. We dont want these in the # printed in the test suite. with warnings.catch_warnings(): warnings.filterwarnings('ignore', message='.*(deprecated|obsolete)', category=UserWarning) with mpl.rc_context(): _copy = mpl.rcParams.copy() for key in six.iterkeys(_copy): mpl.rcParams[key] = _copy[key] mpl.rcParams['text.dvipnghack'] = None with mpl.rc_context(): from copy import deepcopy _deep_copy = deepcopy(mpl.rcParams) # real test is that this does not raise assert_true(validate_bool_maybe_none(None) is None) assert_true(validate_bool_maybe_none("none") is None) _fonttype = mpl.rcParams['svg.fonttype'] assert_true(_fonttype == mpl.rcParams['svg.embed_char_paths']) with mpl.rc_context(): mpl.rcParams['svg.embed_char_paths'] = False assert_true(mpl.rcParams['svg.fonttype'] == "none") @cleanup def test_Bug_2543_newer_python(): # only split from above because of the usage of assert_raises # as a context manager, which only works in 2.7 and above if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager not supported with Python < 2.7") from matplotlib.rcsetup import validate_bool_maybe_none, validate_bool with assert_raises(ValueError): validate_bool_maybe_none("blah") with assert_raises(ValueError): validate_bool(None) with assert_raises(ValueError): with mpl.rc_context(): mpl.rcParams['svg.fonttype'] = True if __name__ == '__main__': nose.runmodule(argv=['-s', '--with-doctest'], exit=False) def _validation_test_helper(validator, arg, target): res = validator(arg) assert_equal(res, target) def _validation_fail_helper(validator, arg, exception_type): if sys.version_info[:2] < (2, 7): raise nose.SkipTest("assert_raises as context manager not " "supported with Python < 2.7") with assert_raises(exception_type): validator(arg) def test_validators(): validation_tests = ( {'validator': validate_bool, 'success': chain(((_, True) for _ in ('t', 'y', 'yes', 'on', 'true', '1', 1, True)), ((_, False) for _ in ('f', 'n', 'no', 'off', 'false', '0', 0, False))), 'fail': ((_, ValueError) for _ in ('aardvark', 2, -1, [], ))}, {'validator': validate_stringlist, 'success': (('', []), ('a,b', ['a', 'b']), ('aardvark', ['aardvark']), ('aardvark, ', ['aardvark']), ('aardvark, ,', ['aardvark']), (['a', 'b'], ['a', 'b']), (('a', 'b'), ['a', 'b']), ((1, 2), ['1', '2'])), 'fail': ((dict(), AssertionError), (1, AssertionError),) }, {'validator': validate_nseq_int(2), 'success': ((_, [1, 2]) for _ in ('1, 2', [1.5, 2.5], [1, 2], (1, 2), np.array((1, 2)))), 'fail': ((_, ValueError) for _ in ('aardvark', ('a', 1), (1, 2, 3) )) }, {'validator': validate_nseq_float(2), 'success': ((_, [1.5, 2.5]) for _ in ('1.5, 2.5', [1.5, 2.5], [1.5, 2.5], (1.5, 2.5), np.array((1.5, 2.5)))), 'fail': ((_, ValueError) for _ in ('aardvark', ('a', 1), (1, 2, 3) )) } ) for validator_dict in validation_tests: validator = validator_dict['validator'] for arg, target in validator_dict['success']: yield _validation_test_helper, validator, arg, target for arg, error_type in validator_dict['fail']: yield _validation_fail_helper, validator, arg, error_type def test_keymaps(): key_list = [k for k in mpl.rcParams if 'keymap' in k] for k in key_list: assert(isinstance(mpl.rcParams[k], list)) def test_rcparams_reset_after_fail(): # There was previously a bug that meant that if rc_context failed and # raised an exception due to issues in the supplied rc parameters, the # global rc parameters were left in a modified state. if sys.version_info[:2] >= (2, 7): from collections import OrderedDict else: raise SkipTest("Test can only be run in Python >= 2.7 as it requires OrderedDict") with mpl.rc_context(rc={'text.usetex': False}): assert mpl.rcParams['text.usetex'] is False with assert_raises(KeyError): with mpl.rc_context(rc=OrderedDict([('text.usetex', True),('test.blah', True)])): pass assert mpl.rcParams['text.usetex'] is False
mit
lazywei/scikit-learn
sklearn/cluster/tests/test_dbscan.py
114
11393
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.ones((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 2)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
hugobowne/scikit-learn
examples/calibration/plot_calibration.py
33
4794
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
walterreade/scikit-learn
sklearn/__check_build/__init__.py
345
1671
""" Module to give helpful messages to the user that did not compile the scikit properly. """ import os INPLACE_MSG = """ It appears that you are importing a local scikit-learn source tree. For this, you need to have an inplace install. Maybe you are in the source directory and you need to try from another location.""" STANDARD_MSG = """ If you have used an installer, please check that it is suited for your Python version, your operating system and your platform.""" def raise_build_error(e): # Raise a comprehensible error and list the contents of the # directory to help debugging on the mailing list. local_dir = os.path.split(__file__)[0] msg = STANDARD_MSG if local_dir == "sklearn/__check_build": # Picking up the local install: this will work only if the # install is an 'inplace build' msg = INPLACE_MSG dir_content = list() for i, filename in enumerate(os.listdir(local_dir)): if ((i + 1) % 3): dir_content.append(filename.ljust(26)) else: dir_content.append(filename + '\n') raise ImportError("""%s ___________________________________________________________________________ Contents of %s: %s ___________________________________________________________________________ It seems that scikit-learn has not been built correctly. If you have installed scikit-learn from source, please do not forget to build the package before using it: run `python setup.py install` or `make` in the source directory. %s""" % (e, local_dir, ''.join(dir_content).strip(), msg)) try: from ._check_build import check_build except ImportError as e: raise_build_error(e)
bsd-3-clause
ipashchenko/ml4vs
ml4vs/nnet.py
1
12347
# -*- coding: utf-8 -*- import glob import os import numpy as np import pandas as pd from sklearn_evaluation.plot import confusion_matrix as plot_cm # from data_load import load_data import numpy from keras import callbacks from keras.models import Sequential from keras.layers import Dense from keras.layers import Dropout from keras.constraints import maxnorm from keras.optimizers import SGD from keras.wrappers.scikit_learn import KerasClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.cross_validation import cross_val_score from sklearn.cross_validation import StratifiedShuffleSplit, StratifiedKFold from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from sklearn.preprocessing import Imputer from sklearn.metrics import confusion_matrix from utils import print_cm_summary import matplotlib.pyplot as plt def shift_log_transform(df, name, shift): df[name] = np.log(df[name] + shift) def load_data(fnames, names, names_to_delete): """ Function that loads data from series of files where first file contains class of zeros and other files - classes of ones. :param fnames: Iterable of file names. :param names: Names of columns in files. :param names_to_delete: Column names to delete. :return: X, y - ``sklearn`` arrays of features & responces. """ # Load data dfs = list() for fn in fnames: dfs.append(pd.read_table(fn, names=names, engine='python', na_values='+inf', sep=r"\s*", usecols=range(30))) # Remove meaningless features delta = list() for df in dfs: delta.append(df['CSSD'].min()) delta = np.min([d for d in delta if not np.isinf(d)]) print "delta = {}".format(delta) for df in dfs: for name in names_to_delete: del df[name] try: shift_log_transform(df, 'CSSD', -delta + 0.1) except KeyError: pass # List of feature names features_names = list(dfs[0]) # Count number of NaN for each feature for i, df in enumerate(dfs): print("File {}".format(i)) for feature in features_names: print("Feature {} has {} NaNs".format(feature, df[feature].isnull().sum())) print("=======================") # Convert to numpy arrays # Features X = list() for df in dfs: X.append(np.array(df[list(features_names)].values, dtype=float)) X = np.vstack(X) # Responses y = np.zeros(len(X)) y[len(dfs[0]):] = np.ones(len(X) - len(dfs[0])) df = pd.concat(dfs) df['variable'] = y return X, y, df, features_names, delta def load_data_tgt(fname, names, names_to_delete, delta): """ Function that loads target data for classification. :param fname: Target data file. :param names: Names of columns in files. :param names_to_delete: Column names to delete. :return: X, ``sklearn`` array of features, list of feature names """ # Load data df = pd.read_table(fname, names=names, engine='python', na_values='+inf', sep=r"\s*", usecols=range(30)) for name in names_to_delete: del df[name] try: shift_log_transform(df, 'CSSD', -delta + 0.1) except KeyError: pass # List of feature names features_names = list(df) # Count number of NaN for each feature for feature in features_names: print("Feature {} has {} NaNs".format(feature, df[feature].isnull().sum())) print("=======================") # Convert to numpy arrays # Features X = np.array(df[list(features_names)].values, dtype=float) # Original data df = pd.read_table(fname, names=names, engine='python', na_values='+inf', sep=r"\s*", usecols=range(30)) return X, features_names, df remote = callbacks.RemoteMonitor(root='http://localhost:9000') # fix random seed for reproducibility seed = 1 numpy.random.seed(seed) # load dataset data_dir = '/home/ilya/code/ml4vs/data/dataset_OGLE/indexes_normalized' file_1 = 'vast_lightcurve_statistics_normalized_variables_only.log' file_0 = 'vast_lightcurve_statistics_normalized_constant_only.log' file_0 = os.path.join(data_dir, file_0) file_1 = os.path.join(data_dir, file_1) names = ['Magnitude', 'clipped_sigma', 'meaningless_1', 'meaningless_2', 'star_ID', 'weighted_sigma', 'skew', 'kurt', 'I', 'J', 'K', 'L', 'Npts', 'MAD', 'lag1', 'RoMS', 'rCh2', 'Isgn', 'Vp2p', 'Jclp', 'Lclp', 'Jtim', 'Ltim', 'CSSD', 'Ex', 'inv_eta', 'E_A', 'S_B', 'NXS', 'IQR'] names_to_delete = ['Magnitude', 'meaningless_1', 'meaningless_2', 'star_ID', 'Npts'] X, y, df, feature_names, delta = load_data([file_0, file_1], names, names_to_delete) n_cv_iter = 5 def create_baseline(): # create model model = Sequential() model.add(Dense(25, input_dim=25, init='normal', activation='relu', W_constraint=maxnorm(3))) model.add(Dropout(0.1)) model.add(Dense(25, init='normal', activation='relu', W_constraint=maxnorm(3))) model.add(Dropout(0.1)) model.add(Dense(13, init='normal', activation='relu')) model.add(Dropout(0.1)) model.add(Dense(1, init='normal', activation='sigmoid')) # Compile model learning_rate = 0.1 decay_rate = learning_rate / epochs momentum = 0.90 sgd = SGD(lr=learning_rate, decay=decay_rate, momentum=momentum, nesterov=False) model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy']) return model epochs = 50 # epochs = 125 batch_size = 12 estimators = list() estimators.append(('imputer', Imputer(missing_values='NaN', strategy='median', axis=0, verbose=2))) estimators.append(('scaler', StandardScaler())) estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, nb_epoch=epochs, batch_size=batch_size, verbose=0))) skf = StratifiedKFold(y, n_folds=4, shuffle=True, random_state=seed) pipeline = Pipeline(estimators) results = cross_val_score(pipeline, X, y, cv=skf, scoring='f1', n_jobs=3) print("\n") print(results) print("\n") print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) print("\n") results = cross_val_score(pipeline, X, y, cv=skf, scoring='roc_auc', n_jobs=3) print("\n") print(results) print("\n") print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) print("\n") # Load blind test data file_tgt = 'LMC_SC19_PSF_Pgood98__vast_lightcurve_statistics_normalized.log' file_tgt = os.path.join(data_dir, file_tgt) X_tgt, feature_names, df = load_data_tgt(file_tgt, names, names_to_delete, delta) pipeline.fit(X, y, mlp__batch_size=batch_size, mlp__nb_epoch=epochs) model = pipeline.named_steps['mlp'] y_pred = model.predict(X_tgt) y_probs = model.predict_proba(X_tgt) idx = y_probs[:, 1] > 0.5 idx_ = y_probs[:, 1] < 0.5 nns_no = list(df['star_ID'][idx_]) print("Found {} variables".format(np.count_nonzero(idx))) with open('nn_results.txt', 'w') as fo: for line in list(df['star_ID'][idx]): fo.write(line + '\n') # Found negatives nns_no = set([line.strip().split('_')[4].split('.')[0] for line in nns_no]) with open('clean_list_of_new_variables.txt', 'r') as fo: news = fo.readlines() news = [line.strip().split(' ')[1] for line in news] with open('nn_results.txt', 'r') as fo: nns = fo.readlines() nns = [line.strip().split('_')[4].split('.')[0] for line in nns] nns = set(nns) # New variables discovered by GBC news = set(news) # 11 new variables are found len(news.intersection(nns)) # It was found '181193' in nns with open('candidates_50perc_threshold.txt', 'r') as fo: c50 = fo.readlines() c50 = [line.strip("\", ', \", \n, }, {") for line in c50] with open('variables_not_in_catalogs.txt', 'r') as fo: not_in_cat = fo.readlines() nic = [line.strip().split(' ')[1] for line in not_in_cat] # Catalogue variables cat_vars = set(c50).difference(set(nic)) # Non-catalogue variable noncat_vars = set([line.strip().split(' ')[1] for line in not_in_cat if 'CST' not in line]) # All variables all_vars = news.union(cat_vars).union(noncat_vars) # Number of true positives # 145 len(all_vars.intersection(nns)) # Number of false negatives # 43 len(nns_no.intersection(all_vars)) # # Check overfitting # sss = StratifiedShuffleSplit(y, n_iter=1, test_size=1. / n_cv_iter, # random_state=seed) # for train_index, test_index in sss: # X_train, X_test = X[train_index], X[test_index] # y_train, y_test = y[train_index], y[test_index] # # import keras # history = keras.callbacks.History() # print("Fitting...") # X_test_ = X_test.copy() # X_train_ = X_train.copy() # for name, transform in pipeline.steps[:-1]: # print(name, transform) # transform.fit(X_train_) # X_test_ = transform.transform(X_test_) # X_train_ = transform.transform(X_train_) # pipeline.fit(X_train, y_train, mlp__validation_data=(X_test_, y_test), # mlp__batch_size=batch_size, mlp__nb_epoch=epochs, # mlp__callbacks=[history]) # model = pipeline.named_steps['mlp'] # # y_pred = model.predict(X_test_) # y_pred[y_pred < 0.5] = 0. # y_pred[y_pred >= 0.5] = 1. # y_probs = model.predict_proba(X_test_) # cm = confusion_matrix(y_test, y_pred) # print_cm_summary(cm) # # plt.plot(history.history['acc']) # plt.plot(history.history['val_acc']) # plt.title('model accuracy') # plt.ylabel('accuracy') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() # # summarize history for loss # plt.plot(history.history['loss']) # plt.plot(history.history['val_loss']) # plt.title('model loss') # plt.ylabel('loss') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() # # Build several cm # skf = StratifiedKFold(y, n_folds=4, shuffle=True, random_state=seed) # for train_index, test_index in skf: # X_train, X_test = X[train_index], X[test_index] # y_train, y_test = y[train_index], y[test_index] # # import keras # history = keras.callbacks.History() # print("Fitting...") # X_test_ = X_test.copy() # X_train_ = X_train.copy() # estimators = list() # estimators.append(('imputer', Imputer(missing_values='NaN', strategy='mean', # axis=0, verbose=2))) # estimators.append(('scaler', StandardScaler())) # estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, # nb_epoch=epochs, # batch_size=batch_size, # verbose=0))) # pipeline = Pipeline(estimators) # for name, transform in pipeline.steps[:-1]: # print(name, transform) # transform.fit(X_train_) # X_test_ = transform.transform(X_test_) # X_train_ = transform.transform(X_train_) # pipeline.fit(X_train, y_train, mlp__validation_data=(X_test_, y_test), # mlp__batch_size=batch_size, mlp__nb_epoch=epochs, # mlp__callbacks=[history]) # model = pipeline.named_steps['mlp'] # # y_pred = model.predict(X_test_) # y_pred[y_pred < 0.5] = 0. # y_pred[y_pred >= 0.5] = 1. # y_probs = model.predict_proba(X_test_) # cm = confusion_matrix(y_test, y_pred) # print_cm_summary(cm) # # # summarize history for loss # plt.plot(history.history['acc']) # plt.plot(history.history['val_acc']) # plt.title('model accuracy') # plt.ylabel('accuracy') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show() # plt.plot(history.history['loss']) # plt.plot(history.history['val_loss']) # plt.title('model loss') # plt.ylabel('loss') # plt.xlabel('epoch') # plt.legend(['train', 'test'], loc='upper left') # plt.show()
mit
haraldschilly/smc
src/smc_sagews/smc_sagews/sage_server.py
3
69396
#!/usr/bin/env python """ sage_server.py -- unencrypted forking TCP server. Note: I wrote functionality so this can run as root, create accounts on the fly, and serve sage as those accounts. Doing this is horrendous from a security point of view, and I'm definitely not doing this. None of that functionality is actually used in https://cloud.sagemath.com! For debugging, this may help: killemall sage_server.py && sage --python sage_server.py -p 6000 """ # NOTE: This file is GPL'd # because it imports the Sage library. This file is not directly # imported by anything else in Salvus; the Python process it runs is # used over a TCP connection. ######################################################################################### # Copyright (C) 2013 William Stein <[email protected]> # # # # Distributed under the terms of the GNU General Public License (GPL), version 2+ # # # # http://www.gnu.org/licenses/ # ######################################################################################### # Add the path that contains this file to the Python load path, so we # can import other files from there. import os, sys, time # used for clearing pylab figure pylab = None # Maximum number of distinct (non-once) output messages per cell; when this number is # exceeded, an exception is raised; this reduces the chances of the user creating # a huge unusable worksheet. MAX_OUTPUT_MESSAGES = 256 # stdout, stderr, html, etc. that exceeds this many characters will be truncated to avoid # killing the client. MAX_STDOUT_SIZE = MAX_STDERR_SIZE = MAX_CODE_SIZE = MAX_HTML_SIZE = MAX_MD_SIZE = MAX_TEX_SIZE = 40000 MAX_OUTPUT = 150000 # We import the notebook interact, which we will monkey patch below, # first, since importing later causes trouble in sage>=5.6. import sagenb.notebook.interact # Standard imports. import json, resource, shutil, signal, socket, struct, \ tempfile, time, traceback, pwd import sage_parsing, sage_salvus uuid = sage_salvus.uuid def unicode8(s): # I evidently don't understand Python unicode... Do the following for now: # TODO: see http://stackoverflow.com/questions/21897664/why-does-unicodeu-passed-an-errors-parameter-raise-typeerror for how to fix. try: return unicode(s, 'utf8') except: try: return unicode(s) except: return s LOGFILE = os.path.realpath(__file__)[:-3] + ".log" PID = os.getpid() from datetime import datetime def log(*args): #print "logging to %s"%LOGFILE try: debug_log = open(LOGFILE, 'a') mesg = "%s (%s): %s\n"%(PID, datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S.%f')[:-3], ' '.join([unicode8(x) for x in args])) debug_log.write(mesg) debug_log.flush() except: log("an error writing a log message (ignoring)") # Determine the info object, if available. There's no good reason # it wouldn't be available, unless a user explicitly deleted it, but # we may as well try to be robust to this, especially if somebody # were to try to use this server outside of cloud.sagemath.com. _info_path = os.path.join(os.environ['SMC'], 'info.json') if os.path.exists(_info_path): INFO = json.loads(open(_info_path).read()) else: INFO = {} if 'base_url' not in INFO: INFO['base_url'] = '' # Configure logging #logging.basicConfig() #log = logging.getLogger('sage_server') #log.setLevel(logging.INFO) # A CoffeeScript version of this function is in misc_node.coffee. import hashlib def uuidsha1(data): sha1sum = hashlib.sha1() sha1sum.update(data) s = sha1sum.hexdigest() t = 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx' r = list(t) j = 0 for i in range(len(t)): if t[i] == 'x': r[i] = s[j]; j += 1 elif t[i] == 'y': # take 8 + low order 3 bits of hex number. r[i] = hex( (int(s[j],16)&0x3) |0x8)[-1]; j += 1 return ''.join(r) # A tcp connection with support for sending various types of messages, especially JSON. class ConnectionJSON(object): def __init__(self, conn): assert not isinstance(conn, ConnectionJSON) # avoid common mistake -- conn is supposed to be from socket.socket... self._conn = conn def close(self): self._conn.close() def _send(self, s): length_header = struct.pack(">L", len(s)) self._conn.send(length_header + s) def send_json(self, m): m = json.dumps(m) log(u"sending message '", truncate_text(m, 256), u"'") self._send('j' + m) return len(m) def send_blob(self, blob): s = uuidsha1(blob) self._send('b' + s + blob) return s def send_file(self, filename): log("sending file '%s'"%filename) f = open(filename, 'rb') data = f.read() f.close() return self.send_blob(data) def _recv(self, n): #print "_recv(%s)"%n for i in range(20): # see http://stackoverflow.com/questions/3016369/catching-blocking-sigint-during-system-call try: #print "blocking recv (i = %s), pid=%s"%(i, os.getpid()) r = self._conn.recv(n) #log("n=%s; received: '%s' of len %s"%(n,r, len(r))) return r except socket.error as (errno, msg): #print "socket.error, msg=%s"%msg if errno != 4: raise raise EOFError def recv(self): n = self._recv(4) if len(n) < 4: raise EOFError n = struct.unpack('>L', n)[0] # big endian 32 bits s = self._recv(n) while len(s) < n: t = self._recv(n - len(s)) if len(t) == 0: raise EOFError s += t if s[0] == 'j': try: return 'json', json.loads(s[1:]) except Exception, msg: log("Unable to parse JSON '%s'"%s[1:]) raise elif s[0] == 'b': return 'blob', s[1:] raise ValueError("unknown message type '%s'"%s[0]) TRUNCATE_MESG = "WARNING: Output truncated. Type 'smc?' to learn how to raise the output limit." def truncate_text(s, max_size): if len(s) > max_size: return s[:max_size] + "[...]", True else: return s, False class Message(object): def _new(self, event, props={}): m = {'event':event} for key, val in props.iteritems(): if key != 'self': m[key] = val return m def start_session(self): return self._new('start_session') def session_description(self, pid): return self._new('session_description', {'pid':pid}) def send_signal(self, pid, signal=signal.SIGINT): return self._new('send_signal', locals()) def terminate_session(self, done=True): return self._new('terminate_session', locals()) def execute_code(self, id, code, preparse=True): return self._new('execute_code', locals()) def execute_javascript(self, code, obj=None, coffeescript=False): return self._new('execute_javascript', locals()) def output(self, id, stdout = None, stderr = None, code = None, html = None, javascript = None, coffeescript = None, interact = None, md = None, tex = None, d3 = None, file = None, raw_input = None, obj = None, done = None, once = None, hide = None, show = None, auto = None, events = None, clear = None, delete_last = None): m = self._new('output') m['id'] = id t = truncate_text did_truncate = False import sage_server # we do this so that the user can customize the MAX's below. if code is not None: code['source'], did_truncate = t(code['source'], sage_server.MAX_CODE_SIZE) m['code'] = code if stderr is not None and len(stderr) > 0: m['stderr'], did_truncate = t(stderr, sage_server.MAX_STDERR_SIZE) if stdout is not None and len(stdout) > 0: m['stdout'], did_truncate = t(stdout, sage_server.MAX_STDOUT_SIZE) if html is not None and len(html) > 0: m['html'], did_truncate = t(html, sage_server.MAX_HTML_SIZE) if md is not None and len(md) > 0: m['md'], did_truncate = t(md, sage_server.MAX_MD_SIZE) if tex is not None and len(tex)>0: tex['tex'], did_truncate = t(tex['tex'], sage_server.MAX_TEX_SIZE) m['tex'] = tex if javascript is not None: m['javascript'] = javascript if coffeescript is not None: m['coffeescript'] = coffeescript if interact is not None: m['interact'] = interact if d3 is not None: m['d3'] = d3 if obj is not None: m['obj'] = json.dumps(obj) if file is not None: m['file'] = file # = {'filename':..., 'uuid':...} if raw_input is not None: m['raw_input'] = raw_input if done is not None: m['done'] = done if once is not None: m['once'] = once if hide is not None: m['hide'] = hide if show is not None: m['show'] = show if auto is not None: m['auto'] = auto if events is not None: m['events'] = events if clear is not None: m['clear'] = clear if delete_last is not None: m['delete_last'] = delete_last if did_truncate: if 'stderr' in m: m['stderr'] += '\n' + TRUNCATE_MESG else: m['stderr'] = '\n' + TRUNCATE_MESG return m def introspect_completions(self, id, completions, target): m = self._new('introspect_completions', locals()) m['id'] = id return m def introspect_docstring(self, id, docstring, target): m = self._new('introspect_docstring', locals()) m['id'] = id return m def introspect_source_code(self, id, source_code, target): m = self._new('introspect_source_code', locals()) m['id'] = id return m message = Message() whoami = os.environ['USER'] def client1(port, hostname): conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn.connect((hostname, int(port))) conn = ConnectionJSON(conn) conn.send_json(message.start_session()) typ, mesg = conn.recv() pid = mesg['pid'] print "PID = %s"%pid id = 0 while True: try: code = sage_parsing.get_input('sage [%s]: '%id) if code is None: # EOF break conn.send_json(message.execute_code(code=code, id=id)) while True: typ, mesg = conn.recv() if mesg['event'] == 'terminate_session': return elif mesg['event'] == 'output': if 'stdout' in mesg: sys.stdout.write(mesg['stdout']); sys.stdout.flush() if 'stderr' in mesg: print '! ' + '\n! '.join(mesg['stderr'].splitlines()) if 'done' in mesg and mesg['id'] >= id: break id += 1 except KeyboardInterrupt: print "Sending interrupt signal" conn2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) conn2.connect((hostname, int(port))) conn2 = ConnectionJSON(conn2) conn2.send_json(message.send_signal(pid)) del conn2 id += 1 conn.send_json(message.terminate_session()) print "\nExiting Sage client." class BufferedOutputStream(object): def __init__(self, f, flush_size=4096, flush_interval=.1): self._f = f self._buf = '' self._flush_size = flush_size self._flush_interval = flush_interval self.reset() def reset(self): self._last_flush_time = time.time() def fileno(self): return 0 def write(self, output): self._buf += output #self.flush() t = time.time() if ((len(self._buf) >= self._flush_size) or (t - self._last_flush_time >= self._flush_interval)): self.flush() self._last_flush_time = t def flush(self, done=False): if not self._buf and not done: # no point in sending an empty message return self._f(self._buf, done=done) self._buf = '' def isatty(self): return False # This will *have* to be re-done using Cython for speed. class Namespace(dict): def __init__(self, x): self._on_change = {} self._on_del = {} dict.__init__(self, x) def on(self, event, x, f): if event == 'change': if x not in self._on_change: self._on_change[x] = [] self._on_change[x].append(f) elif event == 'del': if x not in self._on_del: self._on_del[x] = [] self._on_del[x].append(f) def remove(self, event, x, f): if event == 'change' and self._on_change.has_key(x): v = self._on_change[x] i = v.find(f) if i != -1: del v[i] if len(v) == 0: del self._on_change[x] elif event == 'del' and self._on_del.has_key(x): v = self._on_del[x] i = v.find(f) if i != -1: del v[i] if len(v) == 0: del self._on_del[x] def __setitem__(self, x, y): dict.__setitem__(self, x, y) try: if self._on_change.has_key(x): for f in self._on_change[x]: f(y) if self._on_change.has_key(None): for f in self._on_change[None]: f(x, y) except Exception, mesg: print mesg def __delitem__(self, x): try: if self._on_del.has_key(x): for f in self._on_del[x]: f() if self._on_del.has_key(None): for f in self._on_del[None]: f(x) except Exception, mesg: print mesg dict.__delitem__(self, x) def set(self, x, y, do_not_trigger=None): dict.__setitem__(self, x, y) if self._on_change.has_key(x): if do_not_trigger is None: do_not_trigger = [] for f in self._on_change[x]: if f not in do_not_trigger: f(y) if self._on_change.has_key(None): for f in self._on_change[None]: f(x,y) class TemporaryURL: def __init__(self, url, ttl): self.url = url self.ttl = ttl def __repr__(self): return repr(self.url) def __str__(self): return self.url namespace = Namespace({}) class Salvus(object): """ Cell execution state object and wrapper for access to special SageMathCloud functionality. An instance of this object is created each time you execute a cell. It has various methods for sending different types of output messages, links to files, etc. Type 'help(smc)' for more details. OUTPUT LIMITATIONS -- There is an absolute limit on the number of messages output for a given cell, and also the size of the output message for each cell. You can access or change those limits dynamically in a worksheet as follows by viewing or changing any of the following variables:: sage_server.MAX_STDOUT_SIZE # max length of each stdout output message sage_server.MAX_STDERR_SIZE # max length of each stderr output message sage_server.MAX_MD_SIZE # max length of each md (markdown) output message sage_server.MAX_HTML_SIZE # max length of each html output message sage_server.MAX_TEX_SIZE # max length of tex output message sage_server.MAX_OUTPUT_MESSAGES # max number of messages output for a cell. And:: sage_server.MAX_OUTPUT # max total character output for a single cell; computation # terminated/truncated if sum of above exceeds this. """ Namespace = Namespace _prefix = '' _postfix = '' _default_mode = 'sage' def _flush_stdio(self): """ Flush the standard output streams. This should be called before sending any message that produces output. """ sys.stdout.flush() sys.stderr.flush() def __repr__(self): return '' def __init__(self, conn, id, data=None, cell_id=None, message_queue=None): self._conn = conn self._num_output_messages = 0 self._total_output_length = 0 self._output_warning_sent = False self._id = id self._done = True # done=self._done when last execute message is sent; e.g., set self._done = False to not close cell on code term. self.data = data self.cell_id = cell_id self.namespace = namespace self.message_queue = message_queue self.code_decorators = [] # gets reset if there are code decorators # Alias: someday remove all references to "salvus" and instead use smc. # For now this alias is easier to think of and use. namespace['smc'] = namespace['salvus'] = self # beware of circular ref? # Monkey patch in our "require" command. namespace['require'] = self.require # Make the salvus object itself available when doing "from sage.all import *". import sage.all sage.all.salvus = self def _send_output(self, *args, **kwds): if self._output_warning_sent: raise KeyboardInterrupt mesg = message.output(*args, **kwds) if not mesg.get('once',False): self._num_output_messages += 1 import sage_server if self._num_output_messages > sage_server.MAX_OUTPUT_MESSAGES: self._output_warning_sent = True err = "\nToo many output messages (at most %s per cell -- type 'smc?' to learn how to raise this limit): attempting to terminate..."%sage_server.MAX_OUTPUT_MESSAGES self._conn.send_json(message.output(stderr=err, id=self._id, once=False, done=True)) raise KeyboardInterrupt n = self._conn.send_json(mesg) self._total_output_length += n if self._total_output_length > sage_server.MAX_OUTPUT: self._output_warning_sent = True err = "\nOutput too long -- MAX_OUTPUT (=%s) exceed (type 'smc?' to learn how to raise this limit): attempting to terminate..."%sage_server.MAX_OUTPUT self._conn.send_json(message.output(stderr=err, id=self._id, once=False, done=True)) raise KeyboardInterrupt def obj(self, obj, done=False): self._send_output(obj=obj, id=self._id, done=done) return self def link(self, filename, label=None, foreground=True, cls=''): """ Output a clickable link to a file somewhere in this project. The filename path must be relative to the current working directory of the Python process. The simplest way to use this is salvus.link("../name/of/file") # any relative path to any file This creates a link, which when clicked on, opens that file in the foreground. If the filename is the name of a directory, clicking will instead open the file browser on that directory: salvus.link("../name/of/directory") # clicking on the resulting link opens a directory If you would like a button instead of a link, pass cls='btn'. You can use any of the standard Bootstrap button classes, e.g., btn-small, btn-large, btn-success, etc. If you would like to change the text in the link (or button) to something besides the default (filename), just pass arbitrary HTML to the label= option. INPUT: - filename -- a relative path to a file or directory - label -- (default: the filename) html label for the link - foreground -- (default: True); if True, opens link in the foreground - cls -- (default: '') optional CSS classes, such as 'btn'. EXAMPLES: Use as a line decorator:: %salvus.link name/of/file.foo Make a button:: salvus.link("foo/bar/", label="The Bar Directory", cls='btn') Make two big blue buttons with plots in them:: plot(sin, 0, 20).save('sin.png') plot(cos, 0, 20).save('cos.png') for img in ['sin.png', 'cos.png']: salvus.link(img, label="<img width='150px' src='%s'>"%salvus.file(img, show=False), cls='btn btn-large btn-primary') """ path = os.path.abspath(filename)[len(os.environ['HOME'])+1:] if label is None: label = filename id = uuid() self.html("<a class='%s' style='cursor:pointer'; id='%s'></a>"%(cls, id)) s = "$('#%s').html(obj.label).click(function() {%s; return false;});"%(id, self._action(path, foreground)) self.javascript(s, obj={'label':label, 'path':path, 'foreground':foreground}, once=False) def _action(self, path, foreground): if os.path.isdir(path): action = "worksheet.project_page.chdir(obj.path);" if foreground: action += "worksheet.project_page.display_tab('project-file-listing');" else: action = "worksheet.project_page.open_file({'path':obj.path, 'foreground': obj.foreground});" return action def open_tab(self, filename, foreground=True): """ Open a new file (or directory) document in another tab. See the documentation for salvus.link. """ path = os.path.abspath(filename)[len(os.environ['HOME'])+1:] self.javascript(self._action(path, foreground), obj = {'path':path, 'foreground':foreground}, once=True) def close_tab(self, filename): """ Open an open file tab. The filename is relative to the current working directory. """ self.javascript("worksheet.editor.close(obj)", obj = filename, once=True) def threed(self, g, # sage Graphic3d object. width = None, height = None, frame = True, # True/False or {'color':'black', 'thickness':.4, 'labels':True, 'fontsize':14, 'draw':True, # 'xmin':?, 'xmax':?, 'ymin':?, 'ymax':?, 'zmin':?, 'zmax':?} background = None, foreground = None, spin = False, aspect_ratio = None, frame_aspect_ratio = None, # synonym for aspect_ratio done = False, renderer = None, # None, 'webgl', or 'canvas' ): from graphics import graphics3d_to_jsonable, json_float as f # process options, combining ones set explicitly above with ones inherited from 3d scene opts = { 'width':width, 'height':height, 'background':background, 'foreground':foreground, 'spin':spin, 'aspect_ratio':aspect_ratio, 'renderer':renderer} extra_kwds = {} if g._extra_kwds is None else g._extra_kwds # clean up and normalize aspect_ratio option if aspect_ratio is None: if frame_aspect_ratio is not None: aspect_ratio = frame_aspect_ratio elif 'frame_aspect_ratio' in extra_kwds: aspect_ratio = extra_kwds['frame_aspect_ratio'] elif 'aspect_ratio' in extra_kwds: aspect_ratio = extra_kwds['aspect_ratio'] if aspect_ratio is not None: if aspect_ratio == 1 or aspect_ratio == "automatic": aspect_ratio = None elif not (isinstance(aspect_ratio, (list, tuple)) and len(aspect_ratio) == 3): raise TypeError("aspect_ratio must be None, 1 or a 3-tuple, but it is '%s'"%(aspect_ratio,)) else: aspect_ratio = [f(x) for x in aspect_ratio] opts['aspect_ratio'] = aspect_ratio for k in ['spin', 'height', 'width', 'background', 'foreground', 'renderer']: if k in extra_kwds and not opts.get(k,None): opts[k] = extra_kwds[k] if not isinstance(opts['spin'], bool): opts['spin'] = f(opts['spin']) opts['width'] = f(opts['width']) opts['height'] = f(opts['height']) # determine the frame b = g.bounding_box() xmin, xmax, ymin, ymax, zmin, zmax = b[0][0], b[1][0], b[0][1], b[1][1], b[0][2], b[1][2] fr = opts['frame'] = {'xmin':f(xmin), 'xmax':f(xmax), 'ymin':f(ymin), 'ymax':f(ymax), 'zmin':f(zmin), 'zmax':f(zmax)} if isinstance(frame, dict): for k in fr.keys(): if k in frame: fr[k] = f(frame[k]) fr['draw'] = frame.get('draw', True) fr['color'] = frame.get('color', None) fr['thickness'] = f(frame.get('thickness', None)) fr['labels'] = frame.get('labels', None) if 'fontsize' in frame: fr['fontsize'] = int(frame['fontsize']) elif isinstance(frame, bool): fr['draw'] = frame # convert the Sage graphics object to a JSON object that can be rendered scene = {'opts' : opts, 'obj' : graphics3d_to_jsonable(g)} # Store that object in the database, rather than sending it directly as an output message. # We do this since obj can easily be quite large/complicated, and managing it as part of the # document is too slow and doesn't scale. blob = json.dumps(scene, separators=(',', ':')) uuid = self._conn.send_blob(blob) # flush output (so any text appears before 3d graphics, in case they are interleaved) self._flush_stdio() # send message pointing to the 3d 'file', which will get downloaded from database self._send_output(id=self._id, file={'filename':unicode8("%s.sage3d"%uuid), 'uuid':uuid}, done=done) def d3_graph(self, g, **kwds): from graphics import graph_to_d3_jsonable self._send_output(id=self._id, d3={"viewer":"graph", "data":graph_to_d3_jsonable(g, **kwds)}) def file(self, filename, show=True, done=False, download=False, once=False, events=None, raw=False): """ Display or provide a link to the given file. Raises a RuntimeError if this is not possible, e.g, if the file is too large. If show=True (the default), the browser will show the file, or provide a clickable link to it if there is no way to show it. If show=False, this function returns an object T such that T.url (or str(t)) is a string of the form "/blobs/filename?uuid=the_uuid" that can be used to access the file even if the file is immediately deleted after calling this function (the file is stored in a database). Also, T.ttl is the time to live (in seconds) of the object. A ttl of 0 means the object is permanently available. raw=False (the default): If you use the URL /blobs/filename?uuid=the_uuid&download then the server will include a header that tells the browser to download the file to disk instead of displaying it. Only relatively small files can be made available this way. However, they remain available (for a day) even *after* the file is deleted. NOTE: It is safe to delete the file immediately after this function (salvus.file) returns. raw=True: Instead, the URL is to the raw file, which is served directly from the project: /project-id/raw/path/to/filename This will only work if the file is not deleted; however, arbitrarily large files can be streamed this way. This function creates an output message {file:...}; if the user saves a worksheet containing this message, then any referenced blobs are made permanent in the database. The uuid is based on the Sha-1 hash of the file content (it is computed using the function sage_server.uuidsha1). Any two files with the same content have the same Sha1 hash. """ filename = unicode8(filename) if raw: info = self.project_info() path = os.path.abspath(filename) home = os.environ[u'HOME'] + u'/' if path.startswith(home): path = path[len(home):] else: raise ValueError(u"can only send raw files in your home directory") url = os.path.join(u'/',info['base_url'].strip('/'), info['project_id'], u'raw', path.lstrip('/')) if show: self._flush_stdio() self._send_output(id=self._id, once=once, file={'filename':filename, 'url':url, 'show':show}, events=events, done=done) return else: return TemporaryURL(url=url, ttl=0) file_uuid = self._conn.send_file(filename) mesg = None while mesg is None: self.message_queue.recv() for i, (typ, m) in enumerate(self.message_queue.queue): if typ == 'json' and m.get('event') == 'save_blob' and m.get('sha1') == file_uuid: mesg = m del self.message_queue[i] break if 'error' in mesg: raise RuntimeError("error saving blob -- %s"%mesg['error']) self._flush_stdio() self._send_output(id=self._id, once=once, file={'filename':filename, 'uuid':file_uuid, 'show':show}, events=events, done=done) if not show: info = self.project_info() url = u"%s/blobs/%s?uuid=%s"%(info['base_url'], filename, file_uuid) if download: url += u'?download' return TemporaryURL(url=url, ttl=mesg.get('ttl',0)) def default_mode(self, mode=None): """ Set the default mode for cell evaluation. This is equivalent to putting %mode at the top of any cell that does not start with %. Use salvus.default_mode() to return the current mode. Use salvus.default_mode("") to have no default mode. This is implemented using salvus.cell_prefix. """ if mode is None: return Salvus._default_mode Salvus._default_mode = mode if mode == "sage": self.cell_prefix("") else: self.cell_prefix("%" + mode) def cell_prefix(self, prefix=None): """ Make it so that the given prefix code is textually prepending to the input before evaluating any cell, unless the first character of the cell is a %. To append code at the end, use cell_postfix. INPUT: - ``prefix`` -- None (to return prefix) or a string ("" to disable) EXAMPLES: Make it so every cell is timed: salvus.cell_prefix('%time') Make it so cells are typeset using latex, and latex comments are allowed even as the first line. salvus.cell_prefix('%latex') %sage salvus.cell_prefix('') Evaluate each cell using GP (Pari) and display the time it took: salvus.cell_prefix('%time\n%gp') %sage salvus.cell_prefix('') # back to normal """ if prefix is None: return Salvus._prefix else: Salvus._prefix = prefix def cell_postfix(self, postfix=None): """ Make it so that the given code is textually appended to the input before evaluating a cell. To prepend code at the beginning, use cell_prefix. INPUT: - ``postfix`` -- None (to return postfix) or a string ("" to disable) EXAMPLES: Print memory usage after evaluating each cell: salvus.cell_postfix('print "%s MB used"%int(get_memory_usage())') Return to normal salvus.set_cell_postfix('') """ if postfix is None: return Salvus._postfix else: Salvus._postfix = postfix def execute(self, code, namespace=None, preparse=True, locals=None): if namespace is None: namespace = self.namespace # clear pylab figure (takes a few microseconds) if pylab is not None: pylab.clf() #code = sage_parsing.strip_leading_prompts(code) # broken -- wrong on "def foo(x):\n print x" blocks = sage_parsing.divide_into_blocks(code) for start, stop, block in blocks: if preparse: block = sage_parsing.preparse_code(block) sys.stdout.reset(); sys.stderr.reset() try: b = block.rstrip() if b.endswith('??'): p = sage_parsing.introspect(block, namespace=namespace, preparse=False) self.code(source = p['result'], mode = "python") elif b.endswith('?'): p = sage_parsing.introspect(block, namespace=namespace, preparse=False) self.code(source = p['result'], mode = "text/x-rst") else: exec compile(block+'\n', '', 'single') in namespace, locals sys.stdout.flush() sys.stderr.flush() except: sys.stdout.flush() sys.stderr.write('Error in lines %s-%s\n'%(start+1, stop+1)) traceback.print_exc() sys.stderr.flush() break def execute_with_code_decorators(self, code_decorators, code, preparse=True, namespace=None, locals=None): """ salvus.execute_with_code_decorators is used when evaluating code blocks that are set to any non-default code_decorator. """ import sage # used below as a code decorator if isinstance(code_decorators, (str, unicode)): code_decorators = [code_decorators] if preparse: code_decorators = map(sage_parsing.preparse_code, code_decorators) code_decorators = [eval(code_decorator, self.namespace) for code_decorator in code_decorators] # The code itself may want to know exactly what code decorators are in effect. # For example, r.eval can do extra things when being used as a decorator. self.code_decorators = code_decorators for i, code_decorator in enumerate(code_decorators): # eval is for backward compatibility if not hasattr(code_decorator, 'eval') and hasattr(code_decorator, 'before'): code_decorators[i] = code_decorator.before(code) for code_decorator in reversed(code_decorators): if hasattr(code_decorator, 'eval'): # eval is for backward compatibility print code_decorator.eval(code, locals=self.namespace), code = '' elif code_decorator is sage: # special case -- the sage module (i.e., %sage) should do nothing. pass else: code = code_decorator(code) if code is None: code = '' if code != '' and isinstance(code, (str, unicode)): self.execute(code, preparse=preparse, namespace=namespace, locals=locals) for code_decorator in code_decorators: if not hasattr(code_decorator, 'eval') and hasattr(code_decorator, 'after'): code_decorator.after(code) def html(self, html, done=False, once=None): """ Display html in the output stream. EXAMPLE: salvus.html("<b>Hi</b>") """ self._flush_stdio() self._send_output(html=unicode8(html), id=self._id, done=done, once=once) def md(self, md, done=False, once=None): """ Display markdown in the output stream. EXAMPLE: salvus.md("**Hi**") """ self._flush_stdio() self._send_output(md=unicode8(md), id=self._id, done=done, once=once) def pdf(self, filename, **kwds): sage_salvus.show_pdf(filename, **kwds) def tex(self, obj, display=False, done=False, once=None, **kwds): """ Display obj nicely using TeX rendering. INPUT: - obj -- latex string or object that is automatically be converted to TeX - display -- (default: False); if True, typeset as display math (so centered, etc.) """ self._flush_stdio() tex = obj if isinstance(obj, str) else self.namespace['latex'](obj, **kwds) self._send_output(tex={'tex':tex, 'display':display}, id=self._id, done=done, once=once) return self def start_executing(self): self._send_output(done=False, id=self._id) def clear(self, done=False): self._send_output(clear=True, id=self._id, done=done) def delete_last_output(self, done=False): self._send_output(delete_last=True, id=self._id, done=done) def stdout(self, output, done=False, once=None): """ Send the string output (or unicode8(output) if output is not a string) to the standard output stream of the compute cell. INPUT: - output -- string or object """ stdout = output if isinstance(output, (str, unicode)) else unicode8(output) self._send_output(stdout=stdout, done=done, id=self._id, once=once) return self def stderr(self, output, done=False, once=None): """ Send the string output (or unicode8(output) if output is not a string) to the standard error stream of the compute cell. INPUT: - output -- string or object """ stderr = output if isinstance(output, (str, unicode)) else unicode8(output) self._send_output(stderr=stderr, done=done, id=self._id, once=once) return self def code(self, source, # actual source code mode = None, # the syntax highlight codemirror mode filename = None, # path of file it is contained in (if applicable) lineno = -1, # line number where source starts (0-based) done=False, once=None): """ Send a code message, which is to be rendered as code by the client, with appropriate syntax highlighting, maybe a link to open the source file, etc. """ source = source if isinstance(source, (str, unicode)) else unicode8(source) code = {'source' : source, 'filename' : filename, 'lineno' : int(lineno), 'mode' : mode} self._send_output(code=code, done=done, id=self._id, once=once) return self def _execute_interact(self, id, vals): if id not in sage_salvus.interacts: print "(Evaluate this cell to use this interact.)" #raise RuntimeError, "Error: No interact with id %s"%id else: sage_salvus.interacts[id](vals) def interact(self, f, done=False, once=None, **kwds): I = sage_salvus.InteractCell(f, **kwds) self._flush_stdio() self._send_output(interact = I.jsonable(), id=self._id, done=done, once=once) return sage_salvus.InteractFunction(I) def javascript(self, code, once=False, coffeescript=False, done=False, obj=None): """ Execute the given Javascript code as part of the output stream. This same code will be executed (at exactly this point in the output stream) every time the worksheet is rendered. See the docs for the top-level javascript function for more details. INPUT: - code -- a string - once -- boolean (default: FAlse); if True the Javascript is only executed once, not every time the cell is loaded. This is what you would use if you call salvus.stdout, etc. Use once=False, e.g., if you are using javascript to make a DOM element draggable (say). WARNING: If once=True, then the javascript is likely to get executed before other output to a given cell is even rendered. - coffeescript -- boolean (default: False); if True, the input code is first converted from CoffeeScript to Javascript. At least the following Javascript objects are defined in the scope in which the code is evaluated:: - cell -- jQuery wrapper around the current compute cell - salvus.stdout, salvus.stderr, salvus.html, salvus.tex -- all allow you to write additional output to the cell - worksheet - jQuery wrapper around the current worksheet DOM object - obj -- the optional obj argument, which is passed via JSON serialization """ if obj is None: obj = {} self._send_output(javascript={'code':code, 'coffeescript':coffeescript}, id=self._id, done=done, obj=obj, once=once) def coffeescript(self, *args, **kwds): """ This is the same as salvus.javascript, but with coffeescript=True. See the docs for the top-level javascript function for more details. """ kwds['coffeescript'] = True self.javascript(*args, **kwds) def raw_input(self, prompt='', default='', placeholder='', input_width=None, label_width=None, done=False, type=None): # done is ignored here self._flush_stdio() m = {'prompt':unicode8(prompt)} if input_width is not None: m['input_width'] = unicode8(input_width) if label_width is not None: m['label_width'] = unicode8(label_width) if default: m['value'] = unicode8(default) if placeholder: m['placeholder'] = unicode8(placeholder) self._send_output(raw_input=m, id=self._id) typ, mesg = self.message_queue.next_mesg() if typ == 'json' and mesg['event'] == 'codemirror_sage_raw_input': # everything worked out perfectly self.delete_last_output() m['value'] = mesg['value'] # as unicode! m['submitted'] = True self._send_output(raw_input=m, id=self._id) value = mesg['value'] if type is not None: if type == 'sage': value = sage_salvus.sage_eval(value) else: try: value = type(value) except TypeError: # Some things in Sage are clueless about unicode for some reason... # Let's at least try, in case the unicode can convert to a string. value = type(str(value)) return value else: raise KeyboardInterrupt("raw_input interrupted by another action") def _check_component(self, component): if component not in ['input', 'output']: raise ValueError("component must be 'input' or 'output'") def hide(self, component): """ Hide the given component ('input' or 'output') of the cell. """ self._check_component(component) self._send_output(self._id, hide=component) def show(self, component): """ Show the given component ('input' or 'output') of the cell. """ self._check_component(component) self._send_output(self._id, show=component) def auto(self, state=True): """ Set whether or not the current cells is automatically executed when the Sage process restarts. """ self._send_output(self._id, auto=state) def notify(self, **kwds): """ Display a graphical notification using the pnotify Javascript library. INPUTS: - `title: false` - The notice's title. - `title_escape: false` - Whether to escape the content of the title. (Not allow HTML.) - `text: false` - The notice's text. - `text_escape: false` - Whether to escape the content of the text. (Not allow HTML.) - `styling: "bootstrap"` - What styling classes to use. (Can be either jqueryui or bootstrap.) - `addclass: ""` - Additional classes to be added to the notice. (For custom styling.) - `cornerclass: ""` - Class to be added to the notice for corner styling. - `nonblock: false` - Create a non-blocking notice. It lets the user click elements underneath it. - `nonblock_opacity: .2` - The opacity of the notice (if it's non-blocking) when the mouse is over it. - `history: true` - Display a pull down menu to redisplay previous notices, and place the notice in the history. - `auto_display: true` - Display the notice when it is created. Turn this off to add notifications to the history without displaying them. - `width: "300px"` - Width of the notice. - `min_height: "16px"` - Minimum height of the notice. It will expand to fit content. - `type: "notice"` - Type of the notice. "notice", "info", "success", or "error". - `icon: true` - Set icon to true to use the default icon for the selected style/type, false for no icon, or a string for your own icon class. - `animation: "fade"` - The animation to use when displaying and hiding the notice. "none", "show", "fade", and "slide" are built in to jQuery. Others require jQuery UI. Use an object with effect_in and effect_out to use different effects. - `animate_speed: "slow"` - Speed at which the notice animates in and out. "slow", "def" or "normal", "fast" or number of milliseconds. - `opacity: 1` - Opacity of the notice. - `shadow: true` - Display a drop shadow. - `closer: true` - Provide a button for the user to manually close the notice. - `closer_hover: true` - Only show the closer button on hover. - `sticker: true` - Provide a button for the user to manually stick the notice. - `sticker_hover: true` - Only show the sticker button on hover. - `hide: true` - After a delay, remove the notice. - `delay: 8000` - Delay in milliseconds before the notice is removed. - `mouse_reset: true` - Reset the hide timer if the mouse moves over the notice. - `remove: true` - Remove the notice's elements from the DOM after it is removed. - `insert_brs: true` - Change new lines to br tags. """ obj = {} for k, v in kwds.iteritems(): obj[k] = sage_salvus.jsonable(v) self.javascript("$.pnotify(obj)", once=True, obj=obj) def execute_javascript(self, code, coffeescript=False, obj=None): """ Tell the browser to execute javascript. Basically the same as salvus.javascript with once=True (the default), except this isn't tied to a particular cell. There is a worksheet object defined in the scope of the evaluation. See the docs for the top-level javascript function for more details. """ self._conn.send_json(message.execute_javascript(code, coffeescript=coffeescript, obj=json.dumps(obj,separators=(',', ':')))) def execute_coffeescript(self, *args, **kwds): """ This is the same as salvus.execute_javascript, but with coffeescript=True. See the docs for the top-level javascript function for more details. """ kwds['coffeescript'] = True self.execute_javascript(*args, **kwds) def _cython(self, filename, **opts): """ Return module obtained by compiling the Cython code in the given file. INPUT: - filename -- name of a Cython file - all other options are passed to sage.misc.cython.cython unchanged, except for use_cache which defaults to True (instead of False) OUTPUT: - a module """ if 'use_cache' not in opts: opts['use_cache'] = True import sage.misc.cython modname, path = sage.misc.cython.cython(filename, **opts) import sys try: sys.path.insert(0,path) module = __import__(modname) finally: del sys.path[0] return module def _import_code(self, content, **opts): while True: py_file_base = uuid().replace('-','_') if not os.path.exists(py_file_base + '.py'): break try: open(py_file_base+'.py', 'w').write(content) import sys try: sys.path.insert(0, os.path.abspath('.')) mod = __import__(py_file_base) finally: del sys.path[0] finally: os.unlink(py_file_base+'.py') os.unlink(py_file_base+'.pyc') return mod def _sage(self, filename, **opts): import sage.misc.preparser content = "from sage.all import *\n" + sage.misc.preparser.preparse_file(open(filename).read()) return self._import_code(content, **opts) def _spy(self, filename, **opts): import sage.misc.preparser content = "from sage.all import Integer, RealNumber, PolynomialRing\n" + sage.misc.preparser.preparse_file(open(filename).read()) return self._import_code(content, **opts) def _py(self, filename, **opts): return __import__(filename) def require(self, filename, **opts): if not os.path.exists(filename): raise ValueError("file '%s' must exist"%filename) base,ext = os.path.splitext(filename) if ext == '.pyx' or ext == '.spyx': return self._cython(filename, **opts) if ext == ".sage": return self._sage(filename, **opts) if ext == ".spy": return self._spy(filename, **opts) if ext == ".py": return self._py(filename, **opts) raise NotImplementedError("require file of type %s not implemented"%ext) def typeset_mode(self, on=True): sage_salvus.typeset_mode(on) def project_info(self): """ Return a dictionary with information about the project in which this code is running. EXAMPLES:: sage: salvus.project_info() {"stdout":"{u'project_id': u'...', u'location': {u'username': u'teaAuZ9M', u'path': u'.', u'host': u'localhost', u'port': 22}, u'base_url': u'/...'}\n"} """ return INFO Salvus.pdf.__func__.__doc__ = sage_salvus.show_pdf.__doc__ Salvus.raw_input.__func__.__doc__ = sage_salvus.raw_input.__doc__ Salvus.clear.__func__.__doc__ = sage_salvus.clear.__doc__ Salvus.delete_last_output.__func__.__doc__ = sage_salvus.delete_last_output.__doc__ def execute(conn, id, code, data, cell_id, preparse, message_queue): salvus = Salvus(conn=conn, id=id, data=data, message_queue=message_queue, cell_id=cell_id) #salvus.start_executing() # with our new mainly client-side execution this isn't needed; not doing this makes evaluation roundtrip around 100ms instead of 200ms too, which is a major win. try: # initialize the salvus output streams streams = (sys.stdout, sys.stderr) sys.stdout = BufferedOutputStream(salvus.stdout) sys.stderr = BufferedOutputStream(salvus.stderr) try: # initialize more salvus functionality sage_salvus.salvus = salvus namespace['sage_salvus'] = sage_salvus except: traceback.print_exc() if salvus._prefix: if not code.startswith("%"): code = salvus._prefix + '\n' + code if salvus._postfix: code += '\n' + salvus._postfix salvus.execute(code, namespace=namespace, preparse=preparse) finally: # there must be exactly one done message, unless salvus._done is False. if sys.stderr._buf: if sys.stdout._buf: sys.stdout.flush() sys.stderr.flush(done=salvus._done) else: sys.stdout.flush(done=salvus._done) (sys.stdout, sys.stderr) = streams def drop_privileges(id, home, transient, username): gid = id uid = id if transient: os.chown(home, uid, gid) os.setgid(gid) os.setuid(uid) os.environ['DOT_SAGE'] = home mpl = os.environ['MPLCONFIGDIR'] os.environ['MPLCONFIGDIR'] = home + mpl[5:] os.environ['HOME'] = home os.environ['IPYTHON_DIR'] = home os.environ['USERNAME'] = username os.environ['USER'] = username os.chdir(home) # Monkey patch the Sage library and anything else that does not # deal well with changing user. This sucks, but it is work that # simply must be done because we're not importing the library from # scratch (which would take a long time). import sage.misc.misc sage.misc.misc.DOT_SAGE = home + '/.sage/' class MessageQueue(list): def __init__(self, conn): self.queue = [] self.conn = conn def __repr__(self): return "Sage Server Message Queue" def __getitem__(self, i): return self.queue[i] def __delitem__(self, i): del self.queue[i] def next_mesg(self): """ Remove oldest message from the queue and return it. If the queue is empty, wait for a message to arrive and return it (does not place it in the queue). """ if self.queue: return self.queue.pop() else: return self.conn.recv() def recv(self): """ Wait until one message is received and enqueue it. Also returns the mesg. """ mesg = self.conn.recv() self.queue.insert(0,mesg) return mesg def session(conn): """ This is run by the child process that is forked off on each new connection. It drops privileges, then handles the complete compute session. INPUT: - ``conn`` -- the TCP connection """ mq = MessageQueue(conn) pid = os.getpid() # seed the random number generator(s) import sage.all; sage.all.set_random_seed() import random; random.seed(sage.all.initial_seed()) # get_memory_usage is not aware of being forked... import sage.misc.getusage sage.misc.getusage._proc_status = "/proc/%s/status"%os.getpid() cnt = 0 while True: try: typ, mesg = mq.next_mesg() #print 'INFO:child%s: received message "%s"'%(pid, mesg) log("handling message ", truncate_text(unicode8(mesg), 400)[0]) event = mesg['event'] if event == 'terminate_session': return elif event == 'execute_code': try: execute(conn = conn, id = mesg['id'], code = mesg['code'], data = mesg.get('data',None), cell_id = mesg.get('cell_id',None), preparse = mesg['preparse'], message_queue = mq) except Exception, err: log("ERROR -- exception raised '%s' when executing '%s'"%(err, mesg['code'])) elif event == 'introspect': try: introspect(conn=conn, id=mesg['id'], line=mesg['line'], preparse=mesg['preparse']) except: pass else: raise RuntimeError("invalid message '%s'"%mesg) except: # When hub connection dies, loop goes crazy. # Unfortunately, just catching SIGINT doesn't seem to # work, and leads to random exits during a # session. Howeer, when connection dies, 10000 iterations # happen almost instantly. Ugly, but it works. cnt += 1 if cnt > 10000: sys.exit(0) else: pass def introspect(conn, id, line, preparse): salvus = Salvus(conn=conn, id=id) # so salvus.[tab] works -- note that Salvus(...) modifies namespace. z = sage_parsing.introspect(line, namespace=namespace, preparse=preparse) if z['get_completions']: mesg = message.introspect_completions(id=id, completions=z['result'], target=z['target']) elif z['get_help']: mesg = message.introspect_docstring(id=id, docstring=z['result'], target=z['expr']) elif z['get_source']: mesg = message.introspect_source_code(id=id, source_code=z['result'], target=z['expr']) conn.send_json(mesg) def handle_session_term(signum, frame): while True: try: pid, exit_status = os.waitpid(-1, os.WNOHANG) except: return if not pid: return secret_token = None secret_token_path = os.path.join(os.environ['SMC'], 'secret_token') def unlock_conn(conn): global secret_token if secret_token is None: try: secret_token = open(secret_token_path).read().strip() except: conn.send('n') conn.send("Unable to accept connection, since Sage server doesn't yet know the secret token; unable to read from '%s'"%secret_token_path) conn.close() n = len(secret_token) token = '' while len(token) < n: token += conn.recv(n) if token != secret_token[:len(token)]: break # definitely not right -- don't try anymore if token != secret_token: log("token='%s'; secret_token='%s'"%(token, secret_token)) conn.send('n') # no -- invalid login conn.send("Invalid secret token.") conn.close() return False else: conn.send('y') # yes -- valid login return True def serve_connection(conn): global PID PID = os.getpid() # First the client *must* send the secret shared token. If they # don't, we return (and the connection will have been destroyed by # unlock_conn). log("Serving a connection") log("Waiting for client to unlock the connection...") # TODO -- put in a timeout (?) if not unlock_conn(conn): log("Client failed to unlock connection. Dumping them.") return log("Connection unlocked.") try: conn = ConnectionJSON(conn) typ, mesg = conn.recv() log("Received message %s"%mesg) except Exception, err: log("Error receiving message: %s (connection terminated)"%str(err)) raise if mesg['event'] == 'send_signal': if mesg['pid'] == 0: log("invalid signal mesg (pid=0)") else: log("Sending a signal") os.kill(mesg['pid'], mesg['signal']) return if mesg['event'] != 'start_session': log("Received an unknown message event = %s; terminating session."%mesg['event']) return log("Starting a session") desc = message.session_description(os.getpid()) log("child sending session description back: %s"%desc) conn.send_json(desc) session(conn=conn) def serve(port, host, extra_imports=False): #log.info('opening connection on port %s', port) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # check for children that have finished every few seconds, so # we don't end up with zombies. s.settimeout(5) s.bind((host, port)) log('Sage server %s:%s'%(host, port)) # Enabling the following signal completely breaks subprocess pexpect in many cases, which is # obviously totally unacceptable. #signal.signal(signal.SIGCHLD, handle_session_term) def init_library(): tm = time.time() log("pre-importing the sage library...") # FOR testing purposes. ##log("fake 40 second pause to slow things down for testing....") ##time.sleep(40) ##log("done with pause") # Monkey patching interact using the new and improved Salvus # implementation of interact. import sagenb.notebook.interact sagenb.notebook.interact.interact = sage_salvus.interact # Actually import sage now. This must happen after the interact # import because of library interacts. log("import sage...") import sage.all log("imported sage.") # Monkey patch the html command. import sage.interacts.library sage.all.html = sage.misc.html.html = sage.interacts.library.html = sage_salvus.html # Set a useful figsize default; the matplotlib one is not notebook friendly. import sage.plot.graphics sage.plot.graphics.Graphics.SHOW_OPTIONS['figsize']=[8,4] # Monkey patch latex.eval, so that %latex works in worksheets sage.misc.latex.latex.eval = sage_salvus.latex0 # Plot, integrate, etc., -- so startup time of worksheets is minimal. cmds = ['from sage.all import *', 'from sage.calculus.predefined import x', 'import pylab'] if extra_imports: cmds.extend(['import scipy', 'import sympy', "plot(sin).save('%s/a.png'%os.environ['SMC'], figsize=2)", 'integrate(sin(x**2),x)']) tm0 = time.time() for cmd in cmds: log(cmd) exec cmd in namespace global pylab pylab = namespace['pylab'] # used for clearing log('imported sage library and other components in %s seconds'%(time.time() - tm)) for k,v in sage_salvus.interact_functions.iteritems(): namespace[k] = sagenb.notebook.interact.__dict__[k] = v namespace['_salvus_parsing'] = sage_parsing for name in ['coffeescript', 'javascript', 'time', 'timeit', 'capture', 'cython', 'script', 'python', 'python3', 'perl', 'ruby', 'sh', 'prun', 'show', 'auto', 'hide', 'hideall', 'cell', 'fork', 'exercise', 'dynamic', 'var', 'reset', 'restore', 'md', 'load', 'runfile', 'typeset_mode', 'default_mode', 'sage_chat', 'fortran', 'magics', 'go', 'julia', 'pandoc', 'wiki', 'plot3d_using_matplotlib', 'mediawiki', 'help', 'raw_input', 'clear', 'delete_last_output', 'sage_eval']: namespace[name] = getattr(sage_salvus, name) namespace['sage_server'] = sys.modules[__name__] # http://stackoverflow.com/questions/1676835/python-how-do-i-get-a-reference-to-a-module-inside-the-module-itself # alias pretty_print_default to typeset_mode, since sagenb has/uses that. namespace['pretty_print_default'] = namespace['typeset_mode'] # and monkey patch it sage.misc.latex.pretty_print_default = namespace['pretty_print_default'] sage_salvus.default_namespace = dict(namespace) log("setup namespace with extra functions") # Sage's pretty_print and view are both ancient and a mess sage.all.pretty_print = sage.misc.latex.pretty_print = namespace['pretty_print'] = namespace['view'] = namespace['show'] # this way client code can tell it is running as a Sage Worksheet. namespace['__SAGEWS__'] = True log("Initialize sage library.") init_library() t = time.time() s.listen(128) i = 0 children = {} log("Starting server listening for connections") try: while True: i += 1 #print i, time.time()-t, 'cps: ', int(i/(time.time()-t)) # do not use log.info(...) in the server loop; threads = race conditions that hang server every so often!! try: if children: for pid in children.keys(): if os.waitpid(pid, os.WNOHANG) != (0,0): log("subprocess %s terminated, closing connection"%pid) conn.close() del children[pid] try: conn, addr = s.accept() log("Accepted a connection from", addr) except: # this will happen periodically since we did s.settimeout above, so # that we wait for children above periodically. continue except socket.error, msg: continue child_pid = os.fork() if child_pid: # parent log("forked off child with pid %s to handle this connection"%child_pid) children[child_pid] = conn else: # child global PID PID = os.getpid() log("child process, will now serve this new connection") serve_connection(conn) # end while except Exception, err: log("Error taking connection: ", err) traceback.print_exc(file=sys.stdout) #log.error("error: %s %s", type(err), str(err)) finally: log("closing socket") #s.shutdown(0) s.close() def run_server(port, host, pidfile, logfile=None): global LOGFILE if logfile: LOGFILE = logfile if pidfile: open(pidfile,'w').write(str(os.getpid())) log("run_server: port=%s, host=%s, pidfile='%s', logfile='%s'"%(port, host, pidfile, LOGFILE)) try: serve(port, host) finally: if pidfile: os.unlink(pidfile) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Run Sage server") parser.add_argument("-p", dest="port", type=int, default=0, help="port to listen on (default: 0); 0 = automatically allocated; saved to $SMC/data/sage_server.port") parser.add_argument("-l", dest='log_level', type=str, default='INFO', help="log level (default: INFO) useful options include WARNING and DEBUG") parser.add_argument("-d", dest="daemon", default=False, action="store_const", const=True, help="daemon mode (default: False)") parser.add_argument("--host", dest="host", type=str, default='127.0.0.1', help="host interface to bind to -- default is 127.0.0.1") parser.add_argument("--pidfile", dest="pidfile", type=str, default='', help="store pid in this file") parser.add_argument("--logfile", dest="logfile", type=str, default='', help="store log in this file (default: '' = don't log to a file)") parser.add_argument("-c", dest="client", default=False, action="store_const", const=True, help="run in test client mode number 1 (command line)") parser.add_argument("--hostname", dest="hostname", type=str, default='', help="hostname to connect to in client mode") parser.add_argument("--portfile", dest="portfile", type=str, default='', help="write port to this file") args = parser.parse_args() if args.daemon and not args.pidfile: print "%s: must specify pidfile in daemon mode"%sys.argv[0] sys.exit(1) if args.log_level: pass #level = getattr(logging, args.log_level.upper()) #log.setLevel(level) if args.client: client1(port=args.port if args.port else int(open(args.portfile).read()), hostname=args.hostname) sys.exit(0) if not args.port: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM); s.bind(('',0)) # pick a free port args.port = s.getsockname()[1] del s if args.portfile: open(args.portfile,'w').write(str(args.port)) pidfile = os.path.abspath(args.pidfile) if args.pidfile else '' logfile = os.path.abspath(args.logfile) if args.logfile else '' if logfile: LOGFILE = logfile open(LOGFILE, 'w') # for now we clear it on restart... log("setting logfile to %s"%LOGFILE) main = lambda: run_server(port=args.port, host=args.host, pidfile=pidfile) if args.daemon and args.pidfile: import daemon daemon.daemonize(args.pidfile) main() else: main()
gpl-3.0
michalkurka/h2o-3
h2o-py/tests/testdir_algos/rf/pyunit_smallcatRF.py
8
1954
import sys sys.path.insert(1,"../../../") import h2o from tests import pyunit_utils from h2o.estimators.random_forest import H2ORandomForestEstimator import numpy as np from sklearn import ensemble from sklearn.metrics import roc_auc_score def smallcatRF(): # Training set has 26 categories from A to Z # Categories A, C, E, G, ... are perfect predictors of y = 1 # Categories B, D, F, H, ... are perfect predictors of y = 0 #Log.info("Importing alphabet_cattest.csv data...\n") alphabet = h2o.import_file(path=pyunit_utils.locate("smalldata/gbm_test/alphabet_cattest.csv")) alphabet["y"] = alphabet["y"].asfactor() #Log.info("Summary of alphabet_cattest.csv from H2O:\n") #alphabet.summary() # Prepare data for scikit use trainData = np.loadtxt(pyunit_utils.locate("smalldata/gbm_test/alphabet_cattest.csv"), delimiter=',', skiprows=1, converters={0:lambda s: ord(s.decode().split("\"")[1])}) trainDataResponse = trainData[:,1] trainDataFeatures = trainData[:,0] # Train H2O GBM Model: #Log.info("H2O GBM (Naive Split) with parameters:\nntrees = 1, max_depth = 1, nbins = 100\n") rf_h2o = H2ORandomForestEstimator(ntrees=1, max_depth=1, nbins=100) rf_h2o.train(x='X', y="y", training_frame=alphabet) # Train scikit GBM Model: # Log.info("scikit GBM with same parameters:") rf_sci = ensemble.RandomForestClassifier(n_estimators=1, criterion='entropy', max_depth=1) rf_sci.fit(trainDataFeatures[:,np.newaxis],trainDataResponse) # h2o rf_perf = rf_h2o.model_performance(alphabet) auc_h2o = rf_perf.auc() # scikit auc_sci = roc_auc_score(trainDataResponse, rf_sci.predict_proba(trainDataFeatures[:,np.newaxis])[:,1]) #Log.info(paste("scikit AUC:", auc_sci, "\tH2O AUC:", auc_h2o)) assert auc_h2o >= auc_sci, "h2o (auc) performance degradation, with respect to scikit" if __name__ == "__main__": pyunit_utils.standalone_test(smallcatRF) else: smallcatRF()
apache-2.0
lancezlin/ml_template_py
lib/python2.7/site-packages/sklearn/neural_network/tests/test_stochastic_optimizers.py
146
4310
import numpy as np from sklearn.neural_network._stochastic_optimizers import (BaseOptimizer, SGDOptimizer, AdamOptimizer) from sklearn.utils.testing import (assert_array_equal, assert_true, assert_false, assert_equal) shapes = [(4, 6), (6, 8), (7, 8, 9)] def test_base_optimizer(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = BaseOptimizer(params, lr) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_no_momentum(): params = [np.zeros(shape) for shape in shapes] for lr in [10 ** i for i in range(-3, 4)]: optimizer = SGDOptimizer(params, lr, momentum=0, nesterov=False) grads = [np.random.random(shape) for shape in shapes] expected = [param - lr * grad for param, grad in zip(params, grads)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=False) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_sgd_optimizer_trigger_stopping(): params = [np.zeros(shape) for shape in shapes] lr = 2e-6 optimizer = SGDOptimizer(params, lr, lr_schedule='adaptive') assert_false(optimizer.trigger_stopping('', False)) assert_equal(lr / 5, optimizer.learning_rate) assert_true(optimizer.trigger_stopping('', False)) def test_sgd_optimizer_nesterovs_momentum(): params = [np.zeros(shape) for shape in shapes] lr = 0.1 for momentum in np.arange(0.5, 0.9, 0.1): optimizer = SGDOptimizer(params, lr, momentum=momentum, nesterov=True) velocities = [np.random.random(shape) for shape in shapes] optimizer.velocities = velocities grads = [np.random.random(shape) for shape in shapes] updates = [momentum * velocity - lr * grad for velocity, grad in zip(velocities, grads)] updates = [momentum * update - lr * grad for update, grad in zip(updates, grads)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param) def test_adam_optimizer(): params = [np.zeros(shape) for shape in shapes] lr = 0.001 epsilon = 1e-8 for beta_1 in np.arange(0.9, 1.0, 0.05): for beta_2 in np.arange(0.995, 1.0, 0.001): optimizer = AdamOptimizer(params, lr, beta_1, beta_2, epsilon) ms = [np.random.random(shape) for shape in shapes] vs = [np.random.random(shape) for shape in shapes] t = 10 optimizer.ms = ms optimizer.vs = vs optimizer.t = t - 1 grads = [np.random.random(shape) for shape in shapes] ms = [beta_1 * m + (1 - beta_1) * grad for m, grad in zip(ms, grads)] vs = [beta_2 * v + (1 - beta_2) * (grad ** 2) for v, grad in zip(vs, grads)] learning_rate = lr * np.sqrt(1 - beta_2 ** t) / (1 - beta_1**t) updates = [-learning_rate * m / (np.sqrt(v) + epsilon) for m, v in zip(ms, vs)] expected = [param + update for param, update in zip(params, updates)] optimizer.update_params(grads) for exp, param in zip(expected, optimizer.params): assert_array_equal(exp, param)
mit
spatialaudio/improved_driving_functions_for_rectangular_loudspeaker_arrays
diffraction_edge.py
1
1057
""" Generates Figure 1b of the paper Sascha Spors, Frank Schultz, and Till Rettberg. Improved Driving Functions for Rectangular Loudspeaker Arrays Driven by Sound Field Synthesis. In German Annual Conference on Acoustics (DAGA), March 2016. 2D scattering of a line source at an semi-infinte edge. (c) Sascha Spors 2016, MIT Licence """ import numpy as np import sfs import matplotlib.pyplot as plt f = 500 # frequency omega = 2 * np.pi * f # angular frequency alpha = 270/180*np.pi # outer angle of edge xs = [-2, 2, 0] # position of line source Nc = 400 # max number of circular harmonics # compute field grid = sfs.util.xyz_grid([-3, 5], [-5, 3], 0, spacing=0.02) p = sfs.mono.source.line_dirichlet_edge(omega, xs, grid, Nc=Nc) # plot field plt.style.use(('paper.mplstyle', 'paper_box.mplstyle')) fig = plt.figure() ax = fig.gca() sfs.plot.soundfield(30*p, grid, colorbar=False) ax.plot((0, 0), (-5, 0), 'k-', lw=2) ax.plot((0, 5), (0, 0), 'k-', lw=2) plt.axis('off') fig.savefig('../paper/figs/scattering_edge_500Hz.pdf')
mit
bjornsturmberg/NumBAT
JOSAB_tutorial/simo-josab-BSBS-acbands-450x200nmrectwg-Si.py
1
3781
""" Calculate dispersion diagram of the acoustic modes in a rectangular Si waveguide """ # Import the necessary packages import time import datetime import numpy as np import sys import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt sys.path.append("../backend/") import materials import objects import mode_calcs import integration import plotting from fortran import NumBAT start = time.time() # Geometric Parameters - all in nm. wl_nm = 1550 unitcell_x = 3.01*wl_nm unitcell_y = unitcell_x inc_a_x = 450 # Waveguide widths. inc_a_y = 200 inc_shape = 'rectangular' # Choose modes to include. num_modes_EM_pump = 20 num_modes_EM_Stokes = num_modes_EM_pump num_modes_AC = 100 EM_ival_pump = 0 EM_ival_Stokes = EM_ival_pump AC_ival = 'All' # Use all specified parameters to create a waveguide object wguide = objects.Struct(unitcell_x,inc_a_x,unitcell_y,inc_a_y,inc_shape, material_bkg=materials.materials_dict["Vacuum"], material_a=materials.materials_dict["Si_2021_Poulton"], lc_bkg=0.05, # mesh coarseness in background, larger lc_bkg = coarser along horizontal outer edge lc_refine_1=20.0, # mesh refinement factor near the interface of waveguide, larger = finer along horizontal interface lc_refine_2=30.0, # mesh refinement factor near the origin/centre of waveguide plt_mesh=False, # creates png file of geometry and mesh in backend/fortran/msh/ check_mesh=False) # note requires x-windows configuration to work # Expected effective index of fundamental guided mode. n_eff = wguide.material_a.n-0.1 # Calculate Electromagnetic modes. sim_EM_pump = wguide.calc_EM_modes(num_modes_EM_pump, wl_nm, n_eff) sim_EM_Stokes = mode_calcs.bkwd_Stokes_modes(sim_EM_pump) # Print EM mode info print('\n k_z of EM modes \n', np.round(np.real(sim_EM_pump.Eig_values),4)) n_eff_sim = np.real(sim_EM_pump.Eig_values[EM_ival_pump]*((wl_nm*1e-9)/(2.*np.pi))) print("\n Fundamental optical mode ") print(" n_eff = ", np.round(n_eff_sim, 4)) # k_AC of backward SBS. k_AC = np.real(sim_EM_pump.Eig_values[EM_ival_pump] - sim_EM_Stokes.Eig_values[EM_ival_Stokes]) # Number of wavevectors steps. nu_ks = 50 plt.clf() plt.figure(figsize=(10,6)) ax = plt.subplot(1,1,1) for i_ac, q_ac in enumerate(np.linspace(0.0,k_AC,nu_ks)): sim_AC = wguide.calc_AC_modes(num_modes_AC, q_ac, EM_sim=sim_EM_pump) prop_AC_modes = np.array([np.real(x) for x in sim_AC.Eig_values if abs(np.real(x)) > abs(np.imag(x))]) sym_list = integration.symmetries(sim_AC) for i in range(len(prop_AC_modes)): Om = prop_AC_modes[i]*1e-9 if sym_list[i][0] == 1 and sym_list[i][1] == 1 and sym_list[i][2] == 1: sym_A, = plt.plot(np.real(q_ac/k_AC), Om, 'or') if sym_list[i][0] == -1 and sym_list[i][1] == 1 and sym_list[i][2] == -1: sym_B1, = plt.plot(np.real(q_ac/k_AC), Om, 'vc') if sym_list[i][0] == 1 and sym_list[i][1] == -1 and sym_list[i][2] == -1: sym_B2, = plt.plot(np.real(q_ac/k_AC), Om, 'sb') if sym_list[i][0] == -1 and sym_list[i][1] == -1 and sym_list[i][2] == 1: sym_B3, = plt.plot(np.real(q_ac/k_AC), Om, '^g') print("Wavevector loop", i_ac+1, "/", nu_ks) ax.set_ylim(0,15) ax.set_xlim(0,1) plt.legend([sym_A, sym_B1, sym_B2, sym_B3],['A',r'B$_1$',r'B$_2$',r'B$_3$'], loc='lower right') plt.xlabel(r'Axial wavevector (normalised)') plt.ylabel(r'Frequency (GHz)') plt.savefig('dispersioncurves_classified.png', bbox_inches='tight') plt.close() end = time.time() print("\n Simulation time (sec.)", (end - start))
gpl-3.0
theoryno3/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
292
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
sahilshekhawat/pydy
bin/benchmark_pydy_code_gen.py
4
3648
#!/usr/bin/env python # standard library import time # external libraries from numpy import hstack, ones, pi, linspace, array, zeros, zeros_like import matplotlib.pyplot as plt from pydy.models import n_link_pendulum_on_cart from sympy import symbols def run_benchmark(max_num_links, num_time_steps=1000): """Runs the n link pendulum derivation, code generation, and integration for each n up to the max number provided and generates a plot of the results.""" methods = ['lambdify', 'theano', 'cython'] link_numbers = range(1, max_num_links + 1) derivation_times = zeros(len(link_numbers)) integration_times = zeros((max_num_links, len(methods))) code_generation_times = zeros_like(integration_times) for j, n in enumerate(link_numbers): title = "Pendulum with {} links.".format(n) print(title) print('=' * len(title)) start = time.time() sys = n_link_pendulum_on_cart(n, cart_force=False) m = symbols('m:{}'.format(n + 1)) l = symbols('l:{}'.format(n)) g = symbols('g') derivation_times[j] = time.time() - start print('The derivation took {:1.5f} seconds.\n'.format(derivation_times[j])) # Define the numerical values: parameters, time, and initial conditions arm_length = 1. / n bob_mass = 0.01 / n parameter_vals = [9.81, 0.01 / n] for i in range(n): parameter_vals += [arm_length, bob_mass] times = linspace(0, 10, num_time_steps) sys.times = times x0 = hstack( (0, pi / 2 * ones(len(sys.coordinates) - 1), 1e-3 * ones(len(sys.speeds)))) sys.initial_conditions = dict(zip(sys.states, x0)) constants = [g, m[0]] for i in range(n): constants += [l[i], m[i + 1]] sys.constants = dict(zip(constants, array(parameter_vals))) for k, method in enumerate(methods): subtitle = "Generating with {} method.".format(method) print(subtitle) print('-' * len(subtitle)) start = time.time() sys.generate_ode_function(generator=method) code_generation_times[j, k] = time.time() - start print('The code generation took {:1.5f} seconds.'.format( code_generation_times[j, k])) start = time.time() sys.integrate() integration_times[j, k] = time.time() - start print('ODE integration took {:1.5f} seconds.\n'.format( integration_times[j, k])) del sys # plot the results fig, ax = plt.subplots(3, 1, sharex=True) ax[0].plot(link_numbers, derivation_times) ax[0].set_title('Symbolic Derivation Time') ax[1].plot(link_numbers, code_generation_times) ax[1].set_title('Code Generation Time') ax[1].legend(methods, loc=2) ax[2].plot(link_numbers, integration_times) ax[2].set_title('Integration Time') ax[2].legend(methods, loc=2) for a in ax.flatten(): a.set_ylabel('Time [s]') ax[-1].set_xlabel('Number of links') plt.tight_layout() fig.savefig('benchmark-results.png') if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description='Run the n link pendulum benchmark.') parser.add_argument('max_num_links', type=int, help="The maximum number of links to compute.") parser.add_argument('num_time_steps', type=int, help="The number of integration time steps.") args = parser.parse_args() run_benchmark(args.max_num_links, args.num_time_steps)
bsd-3-clause
LCAS/zoidbot
vrep_teleop/scripts/replay_trajectories.py
1
4607
#!/usr/bin/env python # run the ReplaySavedTrajectory.ttt file on Vrep before running this import numpy as np import glob import errno import matplotlib.pyplot as plt import rospy from sensor_msgs.msg import JointState from std_msgs.msg import Header from std_msgs.msg import Float64 class Trajectory: trajectory_number = 0 def __init__(self, filename): self.__class__.trajectory_number = self.__class__.trajectory_number + 1 self.input_file = filename self.read_count = 0 self.phase = None self.joint_positions = None self.joint_velocities = None self.box_positions = None self.box_orientations = None self.context = None self.read() def read(self): with open(self.input_file) as f_in: content = f_in.readlines() new_content = [line.strip().split(' ') for line in content] data_dict = {} for line_pie in new_content: feature_name = line_pie.pop(0) this_v = [float(v) for v in line_pie] if feature_name not in data_dict: data_dict[feature_name] = [] data_dict[feature_name].append(this_v) ts = np.array(data_dict['simTime'])[:, 0] ts = (ts - ts[0]) self.read_count = len(ts) self.phase = ts / ts[self.read_count - 1] self.joint_positions = np.array(data_dict['currentPos']) self.joint_velocities = np.array(data_dict['currentVel']) self.box_positions = np.array(data_dict['boxPosition']) self.box_orientations = np.array(data_dict['boxOrientation']) # function to play a trajectory in vrep given the trajectory joint positions and initial box data def baxter_play(traj, box_data): pub1 = rospy.Publisher('/replay/joint_states', JointState, queue_size=10) rate_value = 250 rate1 = rospy.Rate(rate_value) pub2 = rospy.Publisher('/stopSim', Float64, queue_size=1) rate2 = rospy.Rate(160) prev_pos = traj[0] for pos in traj: replay = JointState() replay.header = Header() replay.header.stamp = rospy.Time.now() replay.name = ['ljoint1', 'ljoint2', 'ljoint3', 'ljoint4', 'ljoint5', 'ljoint6', 'ljoint7', 'rjoint1', 'rjoint2', 'rjoint3', 'rjoint4', 'rjoint5', 'rjoint6', 'rjoint7'] replay.position = pos replay.velocity = (pos - prev_pos) * rate_value replay.effort = box_data prev_pos = pos pub1.publish(replay) rate1.sleep() # for vrep to know when a trajectory ends and to keep the joints from moving randomly for i in range(0, 5): replay = JointState() replay.header = Header() replay.header.stamp = rospy.Time.now() replay.name = ['ljoint1', 'ljoint2', 'ljoint3', 'ljoint4', 'ljoint5', 'ljoint6', 'ljoint7', 'rjoint1', 'rjoint2', 'rjoint3', 'rjoint4', 'rjoint5', 'rjoint6', 'rjoint7'] replay.position = pos replay.velocity = (pos - pos) # to send 0s so that the joints don't go haywire replay.effort = [] pub1.publish(replay) pub2.publish(data=1) rate2.sleep() def plot(trajectory_list, joints_list): for j in joints_list: plt.figure(j * 2) plt.title('left_arm joint'+str(j+1)) for i in range(0, len(trajectory_list)): y = trajectory_list[i].joint_positions[:, j] x = trajectory_list[i].phase plt.plot(x, y) plt.figure(j * 2 + 1) plt.title('right_arm joint' + str(j + 1)) for i in range(0, len(trajectory_list)): y = trajectory_list[i].joint_positions[:, j + 7] x = trajectory_list[i].phase plt.plot(x, y) plt.show() if __name__ == '__main__': rospy.init_node('trajectory_replay', anonymous=True) input_files = glob.glob('/home/akhil/Data/box_40_15_15/turnDemoSlave_c_5_t_*_r.txt') trajectory_list = [] for name in input_files: try: trajectory_list.append(Trajectory(name)) except IOError as exc: # Not sure what error this is if exc.errno != errno.EISDIR: raise for i in range(0, len(trajectory_list)): baxter_play(trajectory_list[i].joint_positions, np.concatenate((trajectory_list[i].box_positions[0], trajectory_list[i].box_orientations[0]), axis=0)) joints_to_plot = [0, 1, 2, 3, 4, 5, 6] plot(trajectory_list, joints_to_plot) print('end')
mit
Sapphirine/Salary-Engine
SalaryEngine,Python/train.py
1
1831
import data_io from features import FeatureMapper, SimpleTransform import numpy as np import pickle from sklearn.ensemble import RandomForestRegressor from sklearn.feature_extraction.text import CountVectorizer from sklearn.pipeline import Pipeline def feature_extractor(): features = [('FullDescription-Bag of Words', 'FullDescription', CountVectorizer(max_features=100)), ('Title-Bag of Words', 'Title', CountVectorizer(max_features=100)), ('LocationRaw-Bag of Words', 'LocationRaw', CountVectorizer(max_features=100)), ('LocationNormalized-Bag of Words', 'LocationNormalized', CountVectorizer(max_features=100))] combined = FeatureMapper(features) return combined def get_pipeline(): features = feature_extractor() steps = [("extract_features", features), ("classify", RandomForestRegressor(n_estimators=50, #The number of trees in the forest. verbose=2,#Controls the verbosity of the tree building process. n_jobs=1,#The number of jobs to run in parallel for both fit and predict. min_samples_split=30, #The minimum number of samples required to split an internal node. random_state=3465343 #seed used by the random number generator ))] return Pipeline(steps) def main(): print("Reading in the training data") train = data_io.get_train_df() print("Extracting features and training model") classifier = get_pipeline() classifier.fit(train, train["SalaryNormalized"]) print("Saving the classifier") data_io.save_model(classifier) if __name__=="__main__": main()
apache-2.0
bassio/omicexperiment
omicexperiment/transforms/observation.py
1
7727
import numpy as np from omicexperiment.transforms.transform import Transform from omicexperiment.transforms.general import Rarefaction from pandas import DataFrame, concat from collections import OrderedDict def number_unique_obs(series): return (series > 0).sum() class ObservationSumCounts(Transform): def __dapply__(self, experiment): return experiment.data_df.sum(axis=1).to_frame("sum_counts") def __eapply__(self, experiment): sums_df = self.__dapply__(experiment) return experiment.with_data_df(sums_df) class NumberUniqueObservations(Transform): name = 'number_unique_obs' @staticmethod def _number_unique_obs(series): return (series > 0).sum() @classmethod def __dapply__(cls, experiment): transformed_series = (experiment.data_df > 0).sum().transpose() transformed_series.name = cls.name transposed_transformed_df = DataFrame(transformed_series).transpose() return transposed_transformed_df @classmethod def __eapply__(cls, experiment): transposed_transformed_df = cls.__dapply__(experiment) return experiment.with_data_df(transposed_transformed_df) class ClusterObservations(Transform): def __init__(self, clusters_df, aggfunc=np.sum): self.clusters_df = clusters_df self.clusters_df.set_index('observation', inplace=True) self.aggfunc = aggfunc def clusters_df_dict(self): return self.clusters_df.to_dict()['cluster'] def __dapply__(self, experiment): #rename the observations according to their clusters new_data_df = experiment.data_df.rename(index=self.clusters_df_dict()) #apply the aggregation new_data_df.index.rename('cluster', inplace=True) new_data_df_agg = new_data_df.groupby(level='cluster').agg(self.aggfunc) del new_data_df return new_data_df_agg def __eapply__(self, experiment): new_data_df = self.__dapply__(experiment) return experiment.with_data_df(new_data_df) class BinObservations(ClusterObservations): def __init__(self, observations_to_bin, groupnames='Other', aggfunc=np.sum): if isinstance(groupnames, list) \ and len(groupnames) != len(observations_to_bin): raise Exception("The groupnames argument must be of same length as observations_to_bin.") clusters_df = DataFrame({'observation': observations_to_bin, 'cluster': groupnames}) clusters_df.index.name = 'observation' ClusterObservations.__init__(self, clusters_df, aggfunc) class AbundanceFilteringWangEtAl(ClusterObservations): @staticmethod def _bootstrap_series_concatenate(series, num_reps=1): series_sum = series.sum() rarefy = Rarefaction._rarefy_series series_list = [rarefy(series, series_sum, num_reps=1) for i in range(num_reps)] return concat(series_list, axis=1).fillna(0) @staticmethod def calculate_af_threshold(counts_series, num_reps=1000): series = counts_series.sort_values(ascending=False) bootstrap_df = AbundanceFilteringWangEtAl._bootstrap_series_concatenate(series, num_reps) bootstrap_df_transposed = bootstrap_df.transpose() abund_real = series abund_boot = bootstrap_df_transposed.mean().sort_values(ascending=False) abund_995 = bootstrap_df_transposed.quantile(0.995) abund_005 = bootstrap_df_transposed.quantile(0.005) abund_adj = (2 * abund_real) - abund_boot abund_adj = abund_adj.sort_values(ascending=False).fillna(0) ci99_higher = abund_adj + (abund_995 - abund_boot) ci99_higher = ci99_higher.sort_values(ascending=False).fillna(0) ci99_lower = abund_adj - (abund_boot - abund_005) ci99_lower = ci99_lower.sort_values(ascending=False) unreliable = ci99_lower[ci99_lower <= 0].index if unreliable.shape[0] > 0: threshold = int(series[unreliable].max()) else: threshold = 0 return threshold @staticmethod def abundance_filter_dataframe(counts_df, num_reps=1000): calculate_threshold = AbundanceFilteringWangEtAl.calculate_af_threshold new_df_dict = OrderedDict() for col in counts_df.columns: counts_column = counts_df[col] threshold = calculate_threshold(counts_column, num_reps) sequences_to_keep = counts_df[counts_column > threshold].index new_df_dict[col] = counts_column.reindex(sequences_to_keep) return DataFrame.from_dict(new_df_dict).fillna(0) @classmethod def __dapply__(cls, experiment): counts_df = experiment.data return AbundanceFilteringWangEtAl.abundance_filter_dataframe(counts_df) @classmethod def __eapply__(cls, experiment): filtered_df = cls.__dapply__(experiment) return experiment.with_data_df(filtered_df) class AbundancePrevalenceStatistics(Transform): def __init__(self, absence_presence_cutoff=1): self.absence_presence_cutoff = absence_presence_cutoff def __dapply__(self, experiment): rel_abund_df = experiment.counts_df.sum(axis=1).sort_values(ascending=False).to_frame(name="mean_relative_abundance") rel_abund_df = rel_abund_df.apply(lambda c: c / c.sum() * 100, axis=0) absence_presence_cutoff = self.absence_presence_cutoff prev_df = (experiment.counts_df >= absence_presence_cutoff).astype(int).apply(lambda c: c.sum() / c.count() * 100, axis=1).sort_values(ascending=False).to_frame("prevalence") abund_prev_df = rel_abund_df.join(prev_df) return abund_prev_df def __eapply__(self, experiment): new_data_df = self.__dapply__(experiment) return experiment.with_data_df(new_data_df) class AbundancePrevalenceRankStatistics(AbundancePrevalenceStatistics): def __init__(self, absence_presence_cutoff=1, ascending=False): super().__init__(absence_presence_cutoff) self.ascending = ascending def __dapply__(self, experiment): abund_prev_df = super().__dapply__(experiment) ranked_abund_df = abund_prev_df['mean_relative_abundance'].sort_values(ascending=self.ascending).rank(ascending=self.ascending).to_frame() ranked_prev_df = abund_prev_df['prevalence'].sort_values(ascending=self.ascending).rank(ascending=self.ascending).to_frame() joined_ranked_df = ranked_abund_df.join(ranked_prev_df) if self.ascending: return joined_ranked_df.iloc[::-1] #reverse the dataframe else: return joined_ranked_df class TopAbundantObservations(Transform): def __init__(self, n): self.n = n @staticmethod def top_abundant_taxa(experiment, n): abund_prev_df = experiment.apply(AbundancePrevalenceStatistics()).data_df abund_series = abund_prev_df['mean_relative_abundance'] top_taxa = list(abund_series.head(n).index) return top_taxa def __dapply__(self, experiment): top_taxa = TopAbundantObservations.top_abundant_taxa(experiment, self.n) other_taxa = list(experiment.data_df.index.difference(top_taxa)) experiment_other = experiment.apply(BinObservations(other_taxa, groupnames='Other')) return experiment_other.data_df def __eapply__(self, experiment): new_data_df = self.__dapply__(experiment) return experiment.with_data_df(new_data_df)
bsd-3-clause
dfm/lfi
exoabc/data.py
1
3105
# -*- coding: utf-8 -*- import os import requests import numpy as np import pandas as pd from io import BytesIO # Python 3 only! __all__ = ["get_catalog", "get_sample", "get_q1_q17_dr24_injections"] def get_q1_q17_dr24_injections(basepath=None, clobber=False): if basepath is None: basepath = os.environ.get("EXOABC_DATA", "data") fn = os.path.join(basepath, "q1_q17_dr24_injection_robovetter_join.csv") if os.path.exists(fn) and not clobber: return pd.read_csv(fn) if not os.path.exists(basepath): os.makedirs(basepath) url = ("https://zenodo.org/record/163405/files/" "q1_q17_dr24_injection_robovetter_join.csv") r = requests.get(url) if r.status_code != requests.codes.ok: r.raise_for_status() fh = BytesIO(r.content) df = pd.read_csv(fh) df.to_csv(fn, index=False) return df def get_catalog(name, prefix="q1_q16", basepath=None, clobber=False): """ Download a catalog from the Exoplanet Archive by name and save it as a Pandas HDF5 file. :param name: the table name :param basepath: the directory where the downloaded files should be saved (default: ``data`` in the current working directory) """ if basepath is None: basepath = os.environ.get("EXOABC_DATA", "data") basepath = os.path.join(basepath, prefix) fn = os.path.join(basepath, "{0}.h5".format(name)) if os.path.exists(fn) and not clobber: return pd.read_hdf(fn, name) if not os.path.exists(basepath): os.makedirs(basepath) fullname = prefix+"_"+name print("Downloading {0}...".format(fullname)) url = ("http://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/" "nph-nstedAPI?table={0}&select=*").format(fullname) r = requests.get(url) if r.status_code != requests.codes.ok: r.raise_for_status() fh = BytesIO(r.content) df = pd.read_csv(fh) df.to_hdf(fn, name, format="t") return df def get_sample(name, prefix="q1_q16", basepath=None, clobber=False, join=None, join_on="kepid", **kwargs): df = get_catalog(name, prefix=prefix, basepath=basepath, clobber=clobber) if join is not None: df = pd.merge(df, join, on=join_on, how="inner") m = np.ones(len(df), dtype=bool) for column, value in kwargs.items(): # Special values and strings: if value == "finite": m &= np.isfinite(df[column]) continue if isinstance(value, str): m &= df[column] == value continue # Single values: try: len(value) except TypeError: m &= df[column] == value continue # Ranges: if len(value) != 2: raise ValueError("unrecognized argument: {0} = {1}".format( column, value )) m &= np.isfinite(df[column]) if value[0] is not None: m &= value[0] <= df[column] if value[1] is not None: m &= df[column] < value[1] return pd.DataFrame(df[m])
mit
saketkc/statsmodels
statsmodels/tsa/statespace/tests/test_tools.py
6
12534
""" Tests for tools Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd from statsmodels.tsa.statespace import tools from statsmodels.tsa.api import acovf # from .results import results_sarimax from numpy.testing import ( assert_allclose, assert_equal, assert_array_equal, assert_almost_equal, assert_raises ) class TestCompanionMatrix(object): cases = [ (2, np.array([[0,1],[0,0]])), ([1,-1,-2], np.array([[1,1], [2,0]])), ([1,-1,-2,-3], np.array([[1,1,0], [2,0,1], [3,0,0]])), ([1,-np.array([[1,2],[3,4]]),-np.array([[5,6],[7,8]])], np.array([[1,2,5,6], [3,4,7,8], [1,0,0,0], [0,1,0,0]]).T) ] def test_cases(self): for polynomial, result in self.cases: assert_equal(tools.companion_matrix(polynomial), result) class TestDiff(object): x = np.arange(10) cases = [ # diff = 1 ([1,2,3], 1, None, 1, [1, 1]), # diff = 2 (x, 2, None, 1, [0]*8), # diff = 1, seasonal_diff=1, k_seasons=4 (x, 1, 1, 4, [0]*5), (x**2, 1, 1, 4, [8]*5), (x**3, 1, 1, 4, [60, 84, 108, 132, 156]), # diff = 1, seasonal_diff=2, k_seasons=2 (x, 1, 2, 2, [0]*5), (x**2, 1, 2, 2, [0]*5), (x**3, 1, 2, 2, [24]*5), (x**4, 1, 2, 2, [240, 336, 432, 528, 624]), ] def test_cases(self): # Basic cases for series, diff, seasonal_diff, k_seasons, result in self.cases: # Test numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Series series = pd.Series(series) # Rewrite to test as n-dimensional array series = np.c_[series, series] result = np.c_[result, result] # Test Numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Dataframe series = pd.DataFrame(series) x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) class TestIsInvertible(object): cases = [ ([1, -0.5], True), ([1, 1-1e-9], True), ([1, 1], False), ([1, 0.9,0.1], True), (np.array([1,0.9,0.1]), True), (pd.Series([1,0.9,0.1]), True) ] def test_cases(self): for polynomial, invertible in self.cases: assert_equal(tools.is_invertible(polynomial), invertible) class TestConstrainStationaryUnivariate(object): cases = [ (np.array([2.]), -2./((1+2.**2)**0.5)) ] def test_cases(self): for unconstrained, constrained in self.cases: result = tools.constrain_stationary_univariate(unconstrained) assert_equal(result, constrained) class TestUnconstrainStationaryUnivariate(object): cases = [ (np.array([-2./((1+2.**2)**0.5)]), np.array([2.])) ] def test_cases(self): for constrained, unconstrained in self.cases: result = tools.unconstrain_stationary_univariate(constrained) assert_allclose(result, unconstrained) class TestStationaryUnivariate(object): # Test that the constraint and unconstraint functions are inverses constrained_cases = [ np.array([0]), np.array([0.1]), np.array([-0.5]), np.array([0.999])] unconstrained_cases = [ np.array([10.]), np.array([-40.42]), np.array([0.123])] def test_cases(self): for constrained in self.constrained_cases: unconstrained = tools.unconstrain_stationary_univariate(constrained) reconstrained = tools.constrain_stationary_univariate(unconstrained) assert_allclose(reconstrained, constrained) for unconstrained in self.unconstrained_cases: constrained = tools.constrain_stationary_univariate(unconstrained) reunconstrained = tools.unconstrain_stationary_univariate(constrained) assert_allclose(reunconstrained, unconstrained) class TestValidateMatrixShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,2), 5, 2, None), ('TEST', (5,2), 5, 2, 10), ('TEST', (5,2,10), 5, 2, 10), ] invalid = [ ('TEST', (5,), 5, None, None), ('TEST', (5,1,1,1), 5, 1, None), ('TEST', (5,2), 10, 2, None), ('TEST', (5,2), 5, 1, None), ('TEST', (5,2,10), 5, 2, None), ('TEST', (5,2,10), 5, 2, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_matrix_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_matrix_shape, *args ) class TestValidateVectorShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,), 5, None), ('TEST', (5,), 5, 10), ('TEST', (5,10), 5, 10), ] invalid = [ ('TEST', (5,2,10), 5, 10), ('TEST', (5,), 10, None), ('TEST', (5,10), 5, None), ('TEST', (5,10), 5, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_vector_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_vector_shape, *args ) def test_multivariate_acovf(): _acovf = tools._compute_multivariate_acovf_from_coefficients # Test for a VAR(1) process. From Lutkepohl (2007), pages 27-28. # See (2.1.14) for Phi_1, (2.1.33) for Sigma_u, and (2.1.34) for Gamma_0 Sigma_u = np.array([[2.25, 0, 0], [0, 1.0, 0.5], [0, 0.5, 0.74]]) Phi_1 = np.array([[0.5, 0, 0], [0.1, 0.1, 0.3], [0, 0.2, 0.3]]) Gamma_0 = np.array([[3.0, 0.161, 0.019], [0.161, 1.172, 0.674], [0.019, 0.674, 0.954]]) assert_allclose(_acovf([Phi_1], Sigma_u)[0], Gamma_0, atol=1e-3) # Test for a VAR(2) process. From Lutkepohl (2007), pages 28-29 # See (2.1.40) for Phi_1, Phi_2, (2.1.14) for Sigma_u, and (2.1.42) for # Gamma_0, Gamma_1 Sigma_u = np.diag([0.09, 0.04]) Phi_1 = np.array([[0.5, 0.1], [0.4, 0.5]]) Phi_2 = np.array([[0, 0], [0.25, 0]]) Gamma_0 = np.array([[0.131, 0.066], [0.066, 0.181]]) Gamma_1 = np.array([[0.072, 0.051], [0.104, 0.143]]) Gamma_2 = np.array([[0.046, 0.040], [0.113, 0.108]]) Gamma_3 = np.array([[0.035, 0.031], [0.093, 0.083]]) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=0), [Gamma_0], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=1), [Gamma_0, Gamma_1], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u), [Gamma_0, Gamma_1], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=2), [Gamma_0, Gamma_1, Gamma_2], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=3), [Gamma_0, Gamma_1, Gamma_2, Gamma_3], atol=1e-3) # Test sample acovf in the univariate case against sm.tsa.acovf x = np.arange(20)*1.0 assert_allclose( np.squeeze(tools._compute_multivariate_sample_acovf(x, maxlag=4)), acovf(x)[:5]) def test_multivariate_pacf(): # Test sample acovf in the univariate case against sm.tsa.acovf np.random.seed(1234) x = np.arange(10000) y = np.random.normal(size=10000) # Note: could make this test more precise with higher nobs, but no need to assert_allclose( tools._compute_multivariate_sample_pacf(np.c_[x, y], maxlag=1)[0], np.diag([1, 0]), atol=1e-2) class TestConstrainStationaryMultivariate(object): cases = [ # This is the same test as the univariate case above, except notice # the sign difference; this is an array input / output (np.array([[2.]]), np.eye(1), np.array([[2./((1+2.**2)**0.5)]])), # Same as above, but now a list input / output ([np.array([[2.]])], np.eye(1), [np.array([[2./((1+2.**2)**0.5)]])]) ] eigval_cases = [ [np.array([[0]])], [np.array([[100]]), np.array([[50]])], [np.array([[30, 1], [-23, 15]]), np.array([[10, .3], [.5, -30]])], ] def test_cases(self): # Test against known results for unconstrained, error_variance, constrained in self.cases: result = tools.constrain_stationary_multivariate( unconstrained, error_variance) assert_allclose(result[0], constrained) # Test that the constrained results correspond to companion matrices # with eigenvalues less than 1 in modulus for unconstrained in self.eigval_cases: if type(unconstrained) == list: cov = np.eye(unconstrained[0].shape[0]) else: cov = np.eye(unconstrained.shape[0]) constrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov) companion = tools.companion_matrix( [1] + [-constrained[i] for i in range(len(constrained))] ).T assert_equal(np.max(np.abs(np.linalg.eigvals(companion))) < 1, True) class TestUnconstrainStationaryMultivariate(object): cases = [ # This is the same test as the univariate case above, except notice # the sign difference; this is an array input / output (np.array([[2./((1+2.**2)**0.5)]]), np.eye(1), np.array([[2.]])), # Same as above, but now a list input / output ([np.array([[2./((1+2.**2)**0.5)]])], np.eye(1), [np.array([[2.]])]) ] def test_cases(self): for constrained, error_variance, unconstrained in self.cases: result = tools.unconstrain_stationary_multivariate( constrained, error_variance) assert_allclose(result[0], unconstrained) class TestStationaryMultivariate(object): # Test that the constraint and unconstraint functions are inverses constrained_cases = [ np.array([[0]]), np.array([[0.1]]), np.array([[-0.5]]), np.array([[0.999]]), [np.array([[0]])], np.array([[0.8, -0.2]]), [np.array([[0.8]]), np.array([[-0.2]])], [np.array([[0.3, 0.01], [-0.23, 0.15]]), np.array([[0.1, 0.03], [0.05, -0.3]])], np.array([[0.3, 0.01, 0.1, 0.03], [-0.23, 0.15, 0.05, -0.3]]) ] unconstrained_cases = [ np.array([[0]]), np.array([[-40.42]]), np.array([[0.123]]), [np.array([[0]])], np.array([[100, 50]]), [np.array([[100]]), np.array([[50]])], [np.array([[30, 1], [-23, 15]]), np.array([[10, .3], [.5, -30]])], np.array([[30, 1, 10, .3], [-23, 15, .5, -30]]) ] def test_cases(self): for constrained in self.constrained_cases: if type(constrained) == list: cov = np.eye(constrained[0].shape[0]) else: cov = np.eye(constrained.shape[0]) unconstrained, _ = tools.unconstrain_stationary_multivariate(constrained, cov) reconstrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov) assert_allclose(reconstrained, constrained) for unconstrained in self.unconstrained_cases: if type(unconstrained) == list: cov = np.eye(unconstrained[0].shape[0]) else: cov = np.eye(unconstrained.shape[0]) constrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov) reunconstrained, _ = tools.unconstrain_stationary_multivariate(constrained, cov) # Note: low tolerance comes from last example in unconstrained_cases, # but is not a real problem assert_allclose(reunconstrained, unconstrained, atol=1e-4)
bsd-3-clause
thientu/scikit-learn
sklearn/utils/extmath.py
70
21951
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) or (M, ) Argument to the logistic function out: array-like, shape: (M, N) or (M, ), optional: Preallocated output array. Returns ------- out: array, shape (M, N) or (M, ) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function copy: bool, optional Copy X or not. Returns ------- out: array, shape (M, N) Softmax function evaluated at every point in x """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
Upward-Spiral-Science/team1
other/scatterplot_synapses.py
1
2150
"""make a 3d scatterplot of the synapses currently the program only looks at data points with synapses > mean synapses and then randomly samples from that data set since if there are too many data points the 3d grapher runs very slowly -Jay Miller """ from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt import numpy as np filter_less_than_avg = True # filter out data points where # number of synapses is less than avg samples = 1000 # how many random samples? def check_condition(row): if row[-1] == 0: return False return True def synapse_filt(row, avg): if row[-1] > avg: return True return False csv = np.genfromtxt('output.csv', delimiter=",")[1:] a = np.apply_along_axis(check_condition, 1, csv) a = np.where(a == True)[0] nonzero_rows = csv[a, :] avg_synapse = np.mean(nonzero_rows[:, -1]) xyz_only = nonzero_rows[:, [0, 1, 2]] print xyz_only.shape if filter_less_than_avg: filter_avg_synapse = np.apply_along_axis(synapse_filt, 1, nonzero_rows, avg_synapse) a = np.where(filter_avg_synapse == True)[0] nonzero_filtered = nonzero_rows[a, :] xyz_only = nonzero_filtered[:, [0, 1, 2]] print xyz_only.shape # randomly sample perm = np.random.permutation(xrange(1, len(xyz_only[:]))) xyz_only = xyz_only[perm[:samples]] # get range for graphing x_min = np.amin(xyz_only[:, 0]) x_max = np.amax(xyz_only[:, 0]) y_max = np.amax(xyz_only[:, 1]) y_min = np.amin(xyz_only[:, 1]) z_min = np.amin(xyz_only[:, 2]) z_max = np.amax(xyz_only[:, 2]) # following code adopted from # https://www.getdatajoy.com/examples/python-plots/3d-scatter-plot fig = plt.figure() ax = fig.gca(projection='3d') ax.set_title('3D Scatter Plot') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_zlim(z_min, z_max) ax.view_init() ax.dist = 10 # distance ax.scatter( xyz_only[:, 0], xyz_only[:, 1], xyz_only[:, 2], # data c='blue', # marker colour marker='o', # marker shape s=30 # marker size ) plt.show() # render the plot
apache-2.0
natasasdj/OpenWPM
analysis_parallel/00_statistics.py
1
3731
#TODO: number of successfully loaded sites #TODO: number of successfully loaded links import pandas as pd import sqlite3 import os import sys from statsmodels.distributions.empirical_distribution import ECDF import matplotlib.pyplot as plt res_dir = '/home/nsarafij/project/OpenWPM/analysis_parallel/results' db = os.path.join(res_dir,'site_visits.sqlite') conn = sqlite3.connect(db) query = 'SELECT * FROM site_visits' sv = pd.read_sql_query(query,conn) # total number of pages visites sv.shape[0] #1000619 #4351318 # number of home sites visited sv0 = sv.query('link_id==0') sv0.shape[0] #10000 #37999 for i in range(1,38001): if i in sv0['site_id'].values: continue print "missing site_id:", i # missing site_id: 6800 # number of successfully loaded home sites sv0['success'].sum() # 34716 sv0['success'].sum() / float(sv0.shape[0]) #0.9136 # numer of first links visited sv1 = sv.query('link_id<>0') sv1.shape[0] #990619 #4313319 # number of successfully loaded first links sv1['success'].sum() #964315 #4313319 sv1['success'].sum() / float(sv1.shape[0]) # 1 # number of successfully loaded pages sv['success'].sum() #4347837 sv['success'].sum() / float(sv.shape[0]) #0.9992 # average number of the first links in a successfully loaded sites float(sv1.shape[0])/sv0.shape[0] #113.51138187847049 # distribution of the number of links # distribution of the response time for the home sites # distribution of the response time for the links def ecdf_for_plot(sample): #x = np.linspace(min(sample), max(sample)) print "sample: ",type(sample) x = sample.sort_values(ascending = False) ecdf = ECDF(x) # print ecdf print "ecdf: ",type(ecdf) y = ecdf(x) #print y print "y: ", type(y) return (x,y) resp_time_sites = df0['resp_time_3'].fillna(91) resp_time_links = df1['resp_time_2'].fillna(61) (x1,y1) = ecdf_for_plot(resp_time_sites) (x2,y2) = ecdf_for_plot(resp_time_links) no_links = df0['no_links'][df0['resp_time_3'].notnull()] (x3,y3) = ecdf_for_plot(no_links) fig_dir = '/home/nsarafij/project/OpenWPM/analysis/figs_10k' plt.figure() plt.step(x1,y1,label='sites') plt.step(x2,y2,label='first links') plt.title('CDF of the response time') plt.xlabel('time [s]') plt.legend(loc='lower right',shadow=True) plt.grid(True) plt.savefig(os.path.join(fig_dir,'resp_time_cdf.png')) plt.show() plt.figure() plt.step(x3,y3) plt.title('CDF of the number of links for the home sites') plt.xlabel('number of links') plt.grid(True) plt.savefig(os.path.join(fig_dir,'no_links_cdf.png')) no_links_counts = no_links.value_counts(sort = False).sort_index() no_links_cumSum = (no_links_counts * no_links_counts.index).cumsum() no_links_cumPerc = no_links_cumSum/no_links_cumSum.iloc[-1] from matplotlib.ticker import FuncFormatter # function for formating numbers in images def thousands(x, pos): if x>=1e9: return '%.1fB' % (x*1e-9) elif x>=1e6: return '%.1fM' % (x*1e-6) elif x>=1e3: return '%.1fK' % (x*1e-3) else: return x formatter = FuncFormatter(thousands) fig, ax = plt.subplots() plt.plot(no_links_cumSum) plt.title('Cumulative sum of the number of links for the home sites') plt.ylabel('cumulative sum') plt.xlabel('number of links') plt.grid(True) ax.yaxis.set_major_formatter(formatter) plt.tight_layout() plt.savefig(os.path.join(fig_dir,'no_links_cumSum.png')) plt.figure() plt.plot(no_links_cumPerc) plt.title('Cumulative percentage of the number of links for the home sites') plt.xlabel('number of links') plt.ylabel('cumulative percentage of the total number of links') plt.grid(True) plt.tight_layout() plt.savefig(os.path.join(fig_dir,'no_links_cumPerc.png')) plt.show()
gpl-3.0
jslhs/sunpy
sunpy/util/util.py
1
4272
"""Provides utility programs. Notes: The astronomy-type utilities should probably be separated out into another file. --schriste """ from __future__ import absolute_import from scipy.constants import constants as con __all__ = ["toggle_pylab", "degrees_to_hours", "degrees_to_arc", "kelvin_to_keV", "keV_to_kelvin", "unique", "print_table", "to_angstrom"] from matplotlib import pyplot import numpy as np from itertools import izip, imap def to_signed(dtype): """ Return dtype that can hold data of passed dtype but is signed. Raise ValueError if no such dtype exists. Parameters ---------- dtype : np.dtype dtype whose values the new dtype needs to be able to represent. """ if dtype.kind == "u": if dtype.itemsize == 8: raise ValueError("Cannot losslessy convert uint64 to int.") dtype = "int%d" % (min(dtype.itemsize * 2 * 8, 64)) return np.dtype(dtype) def toggle_pylab(fn): """ A decorator to prevent functions from opening matplotlib windows unexpectedly when sunpy is run in interactive shells like ipython --pylab. Toggles the value of matplotlib.pyplot.isinteractive() to preserve the users' expections of pylab's behaviour in general. """ if pyplot.isinteractive(): def fn_itoggle(*args, **kwargs): pyplot.ioff() ret = fn(*args, **kwargs) pyplot.ion() return ret return fn_itoggle else: return fn def degrees_to_hours(angle): """Converts an angle from the degree notation to the hour, arcmin, arcsec notation (returned as a tuple).""" hour = int(np.floor(angle / 15)) remainder = angle / 15.0 - hour arcminute = int(np.floor(remainder * 60)) remainder = remainder * 60 - arcminute arcsecond = remainder * 60.0 return [hour, arcminute, arcsecond] def degrees_to_arc(angle): """Converts decimal degrees to degree, arcminute, arcsecond (returned as a tuple).""" degree = int(np.floor(angle)) remainder = angle - degree arcminute = int(np.floor(remainder * 60)) remainder = remainder * 60 - arcminute arcsecond = remainder * 60.0 return [degree, arcminute, arcsecond] wavelength = [ ('Angstrom', 1e-10), ('nm', 1e-9), ('micron', 1e-6), ('micrometer', 1e-6), ('mm', 1e-3), ('cm', 1e-2), ('m', 1e-6), ] energy = [ ('eV', 1), ('keV', 1e3), ('MeV', 1e6), ] frequency = [ ('Hz', 1), ('kHz', 1e3), ('MHz', 1e6), ('GHz', 1e9), ] units = {} for k, v in wavelength: units[k] = ('wavelength', v) for k, v in energy: units[k] = ('energy', v) for k, v in frequency: units[k] = ('frequency', v) def to_angstrom(value, unit): C = 299792458. ANGSTROM = units['Angstrom'][1] try: type_, n = units[unit] except KeyError: raise ValueError('Cannot convert %s to Angstrom' % unit) if type_ == 'wavelength': x = n / ANGSTROM return value / x elif type_ == 'frequency': x = 1 / ANGSTROM / n return x * (C / value) elif type_ == 'energy': x = 1 / (ANGSTROM / 1e-2) / n return x * (1 / (8065.53 * value)) else: raise ValueError('Unable to convert %s to Angstrom' % type_) def kelvin_to_keV(temperature): """Convert from temperature expressed in Kelvin to a temperature expressed in keV""" return temperature / (con.e / con.k * 1000.0) def keV_to_kelvin(temperature): """Convert from temperature expressed in keV to a temperature expressed in Kelvin""" return temperature * (con.e / con.k * 1000.0) def unique(itr, key=None): items = set() if key is None: for elem in itr: if elem not in items: yield elem items.add(elem) else: for elem in itr: x = key(elem) if x not in items: yield elem items.add(x) def print_table(lst, colsep=' ', linesep='\n'): width = [max(imap(len, col)) for col in izip(*lst)] return linesep.join( colsep.join( col.ljust(n) for n, col in izip(width, row) ) for row in lst )
bsd-2-clause
ftan84/twitter-influence-analytics
twitter-influence-analytics.py
1
4876
import twitter import pandas import time import json import os.path import sys import itertools import csv def jsonUnicodeConvert(input): '''Converts unicode JSON to str.''' if isinstance(input, dict): return {jsonUnicodeConvert(key): jsonUnicodeConvert(value) for key, value in input.iteritems()} elif isinstance(input, list): return [jsonUnicodeConvert(element) for element in input] elif isinstance(input, unicode): return input.encode('utf-8') else: return input spinner = itertools.cycle(['|', '/', '-', '\\']) def spin(): sys.stdout.write('\b{}'.format(spinner.next())) sys.stdout.flush() # Load the config.json file with open('config.json', 'r') as f: jsonData = f.read() config = json.loads(jsonData) # Create the twitter object tw = twitter.Twitter(auth=twitter.OAuth(config['access_token'], config['access_token_secret'], config['consumer_key'], config['consumer_secret'])) # Prompt the user userinput = raw_input('Enter a comma-separated list of Twitter screen names to analyze: ') userinput = userinput.replace(' ', '').split(',') query = raw_input('Enter your query: ') # The first query print 'Running query...' results = tw.search.tweets(q=query, count=100, until=time.strftime('%Y-%m-%d')) results = jsonUnicodeConvert(results) df = pandas.DataFrame(results['statuses']) df['user_id'] = [r['user']['id_str'] for r in results['statuses']] with open('data.csv', mode='w') as f: df.to_csv(f, encoding='UTF-8') counter = 100 # Loop the query while not df.empty and counter > 0: spin() counter -= 1 minId = min(df.id) - 1 results = tw.search.tweets(q=query, count=100, max_id=str(minId)) df = pandas.DataFrame(results['statuses']) df['user_id'] = [r['user']['id_str'] for r in results['statuses']] with open('data.csv', mode='a') as f: df.to_csv(f, encoding='UTF-8', header=False) print '\nCompleted query' # twitter_accounts = ['catiewayne', 'Animalists'] print 'Determining influence...' twitter_accounts = userinput followers = [] for sn in twitter_accounts: spin() if os.path.isfile('save.dat'): with open('save.dat', 'r') as f: next_cursor = json.loads(f.read()) else: next_cursor = -1 max_list = 100000 / 5000 # Put a limit to how many followers we want to get while next_cursor and max_list >= 0: max_list -= 1 x = tw.application.rate_limit_status(resources='followers') # print(x['resources']['followers']['/followers/ids']) # Wait 10 minutes for the rate limit to reset if x['resources']['followers']['/followers/ids']['remaining'] <= 5: time.sleep(60 * 10) results = tw.followers.ids(screen_name=sn, cursor=next_cursor, stringify_ids=True) next_cursor = results['next_cursor'] followers += results['ids'] with open('followers.csv', 'a') as f: writer = csv.writer(f) for id in results['ids']: writer.writerow([id.encode('utf8')]) with open('save.dat', 'w') as f: f.write('{"followers_next_cursor":"%s"}' % next_cursor) tweetData = pandas.DataFrame.from_csv('data.csv') counter = 0 influencers = [] for user in followers: spin() if not tweetData[tweetData.user_id == int(user)].empty: counter += 1 influencers.append(user) # print(counter) # print(len(followers)) impressions = 0 for user in influencers: spin() impressions += tw.users.lookup(user_id=user)[0]['followers_count'] print '\nComplete!' # userPrettyPrint = '' # if len(twitter_accounts) == 1: # userPrettyPrint = twitter_accounts[0] # elif len(twitter_accounts) == 2: # userPrettyPrint = twitter_accounts[0] + ' and ' + twitter_accounts[1] # elif len(twitter_accounts) > 2: # for i in range(len(twitter_accounts) - 1): # userPrettyPrint += twitter_accounts[i] + ',' userPrettyPrint = '' if len(twitter_accounts) == 1: userPrettyPrint = '@' + twitter_accounts[0] elif len(twitter_accounts) == 2: userPrettyPrint = '@' + twitter_accounts[0] + ' and @' + twitter_accounts[1] elif len(twitter_accounts) > 2: for i in range(len(twitter_accounts) - 1): userPrettyPrint += '@' + twitter_accounts[i] + ', ' userPrettyPrint = userPrettyPrint[:-2] + ' and @' + twitter_accounts[-1] print 'Twitter users {} have a total of {} followers.'.format(userPrettyPrint, len(followers)) print 'Of those {} followers, {} were engaged in the topic of {} in the past seven days.'.format(len(followers), len(influencers), query) print 'Those {} have {} followers of their own.'.format(len(influencers), impressions) print 'Your impressions have gone from {} to {}!'.format(len(followers), len(followers) + impressions) # print impressions # print len(influencers) # print len(followers) #
mit
rexshihaoren/scikit-learn
examples/text/mlcomp_sparse_document_classification.py
292
4498
""" ======================================================== Classification of text documents: using a MLComp dataset ======================================================== This is an example showing how the scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. The dataset used in this example is the 20 newsgroups dataset and should be downloaded from the http://mlcomp.org (free registration required): http://mlcomp.org/datasets/379 Once downloaded unzip the archive somewhere on your filesystem. For instance in:: % mkdir -p ~/data/mlcomp % cd ~/data/mlcomp % unzip /path/to/dataset-379-20news-18828_XXXXX.zip You should get a folder ``~/data/mlcomp/379`` with a file named ``metadata`` and subfolders ``raw``, ``train`` and ``test`` holding the text documents organized by newsgroups. Then set the ``MLCOMP_DATASETS_HOME`` environment variable pointing to the root folder holding the uncompressed archive:: % export MLCOMP_DATASETS_HOME="~/data/mlcomp" Then you are ready to run this example using your favorite python shell:: % ipython examples/mlcomp_sparse_document_classification.py """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from time import time import sys import os import numpy as np import scipy.sparse as sp import pylab as pl from sklearn.datasets import load_mlcomp from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import SGDClassifier from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.naive_bayes import MultinomialNB print(__doc__) if 'MLCOMP_DATASETS_HOME' not in os.environ: print("MLCOMP_DATASETS_HOME not set; please follow the above instructions") sys.exit(0) # Load the training set print("Loading 20 newsgroups training set... ") news_train = load_mlcomp('20news-18828', 'train') print(news_train.DESCR) print("%d documents" % len(news_train.filenames)) print("%d categories" % len(news_train.target_names)) print("Extracting features from the dataset using a sparse vectorizer") t0 = time() vectorizer = TfidfVectorizer(encoding='latin1') X_train = vectorizer.fit_transform((open(f).read() for f in news_train.filenames)) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_train.shape) assert sp.issparse(X_train) y_train = news_train.target print("Loading 20 newsgroups test set... ") news_test = load_mlcomp('20news-18828', 'test') t0 = time() print("done in %fs" % (time() - t0)) print("Predicting the labels of the test set...") print("%d documents" % len(news_test.filenames)) print("%d categories" % len(news_test.target_names)) print("Extracting features from the dataset using the same vectorizer") t0 = time() X_test = vectorizer.transform((open(f).read() for f in news_test.filenames)) y_test = news_test.target print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X_test.shape) ############################################################################### # Benchmark classifiers def benchmark(clf_class, params, name): print("parameters:", params) t0 = time() clf = clf_class(**params).fit(X_train, y_train) print("done in %fs" % (time() - t0)) if hasattr(clf, 'coef_'): print("Percentage of non zeros coef: %f" % (np.mean(clf.coef_ != 0) * 100)) print("Predicting the outcomes of the testing set") t0 = time() pred = clf.predict(X_test) print("done in %fs" % (time() - t0)) print("Classification report on test set for classifier:") print(clf) print() print(classification_report(y_test, pred, target_names=news_test.target_names)) cm = confusion_matrix(y_test, pred) print("Confusion matrix:") print(cm) # Show confusion matrix pl.matshow(cm) pl.title('Confusion matrix of the %s classifier' % name) pl.colorbar() print("Testbenching a linear classifier...") parameters = { 'loss': 'hinge', 'penalty': 'l2', 'n_iter': 50, 'alpha': 0.00001, 'fit_intercept': True, } benchmark(SGDClassifier, parameters, 'SGD') print("Testbenching a MultinomialNB classifier...") parameters = {'alpha': 0.01} benchmark(MultinomialNB, parameters, 'MultinomialNB') pl.show()
bsd-3-clause
nelango/ViralityAnalysis
model/lib/sklearn/utils/setup.py
296
2884
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
mit
louisLouL/pair_trading
capstone_env/lib/python3.6/site-packages/matplotlib/artist.py
2
45464
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from collections import OrderedDict, namedtuple from functools import wraps import inspect import re import warnings import numpy as np import matplotlib from . import cbook, docstring, rcParams from .path import Path from .transforms import (Bbox, IdentityTransform, Transform, TransformedBbox, TransformedPatchPath, TransformedPath) # Note, matplotlib artists use the doc strings for set and get # methods to enable the introspection methods of setp and getp. Every # set_* method should have a docstring containing the line # # ACCEPTS: [ legal | values ] # # and aliases for setters and getters should have a docstring that # starts with 'alias for ', as in 'alias for set_somemethod' # # You may wonder why we use so much boiler-plate manually defining the # set_alias and get_alias functions, rather than using some clever # python trick. The answer is that I need to be able to manipulate # the docstring, and there is no clever way to do that in python 2.2, # as far as I can see - see # # https://mail.python.org/pipermail/python-list/2004-October/242925.html def allow_rasterization(draw): """ Decorator for Artist.draw method. Provides routines that run before and after the draw call. The before and after functions are useful for changing artist-dependent renderer attributes or making other setup function calls, such as starting and flushing a mixed-mode renderer. """ # the axes class has a second argument inframe for its draw method. @wraps(draw) def draw_wrapper(artist, renderer, *args, **kwargs): try: if artist.get_rasterized(): renderer.start_rasterizing() if artist.get_agg_filter() is not None: renderer.start_filter() return draw(artist, renderer, *args, **kwargs) finally: if artist.get_agg_filter() is not None: renderer.stop_filter(artist.get_agg_filter()) if artist.get_rasterized(): renderer.stop_rasterizing() draw_wrapper._supports_rasterization = True return draw_wrapper def _stale_axes_callback(self, val): if self.axes: self.axes.stale = val _XYPair = namedtuple("_XYPair", "x y") class Artist(object): """ Abstract base class for someone who renders into a :class:`FigureCanvas`. """ aname = 'Artist' zorder = 0 # order of precedence when bulk setting/updating properties # via update. The keys should be property names and the values # integers _prop_order = dict(color=-1) def __init__(self): self._stale = True self.stale_callback = None self._axes = None self.figure = None self._transform = None self._transformSet = False self._visible = True self._animated = False self._alpha = None self.clipbox = None self._clippath = None self._clipon = True self._label = '' self._picker = None self._contains = None self._rasterized = None self._agg_filter = None self._mouseover = False self.eventson = False # fire events only if eventson self._oid = 0 # an observer id self._propobservers = {} # a dict from oids to funcs try: self.axes = None except AttributeError: # Handle self.axes as a read-only property, as in Figure. pass self._remove_method = None self._url = None self._gid = None self._snap = None self._sketch = rcParams['path.sketch'] self._path_effects = rcParams['path.effects'] self._sticky_edges = _XYPair([], []) def __getstate__(self): d = self.__dict__.copy() # remove the unpicklable remove method, this will get re-added on load # (by the axes) if the artist lives on an axes. d['_remove_method'] = None d['stale_callback'] = None return d def remove(self): """ Remove the artist from the figure if possible. The effect will not be visible until the figure is redrawn, e.g., with :meth:`matplotlib.axes.Axes.draw_idle`. Call :meth:`matplotlib.axes.Axes.relim` to update the axes limits if desired. Note: :meth:`~matplotlib.axes.Axes.relim` will not see collections even if the collection was added to axes with *autolim* = True. Note: there is no support for removing the artist's legend entry. """ # There is no method to set the callback. Instead the parent should # set the _remove_method attribute directly. This would be a # protected attribute if Python supported that sort of thing. The # callback has one parameter, which is the child to be removed. if self._remove_method is not None: self._remove_method(self) # clear stale callback self.stale_callback = None _ax_flag = False if hasattr(self, 'axes') and self.axes: # remove from the mouse hit list self.axes.mouseover_set.discard(self) # mark the axes as stale self.axes.stale = True # decouple the artist from the axes self.axes = None _ax_flag = True if self.figure: self.figure = None if not _ax_flag: self.figure = True else: raise NotImplementedError('cannot remove artist') # TODO: the fix for the collections relim problem is to move the # limits calculation into the artist itself, including the property of # whether or not the artist should affect the limits. Then there will # be no distinction between axes.add_line, axes.add_patch, etc. # TODO: add legend support def have_units(self): 'Return *True* if units are set on the *x* or *y* axes' ax = self.axes if ax is None or ax.xaxis is None: return False return ax.xaxis.have_units() or ax.yaxis.have_units() def convert_xunits(self, x): """For artists in an axes, if the xaxis has units support, convert *x* using xaxis unit type """ ax = getattr(self, 'axes', None) if ax is None or ax.xaxis is None: return x return ax.xaxis.convert_units(x) def convert_yunits(self, y): """For artists in an axes, if the yaxis has units support, convert *y* using yaxis unit type """ ax = getattr(self, 'axes', None) if ax is None or ax.yaxis is None: return y return ax.yaxis.convert_units(y) @property def axes(self): """ The :class:`~matplotlib.axes.Axes` instance the artist resides in, or *None*. """ return self._axes @axes.setter def axes(self, new_axes): if (new_axes is not None and self._axes is not None and new_axes != self._axes): raise ValueError("Can not reset the axes. You are probably " "trying to re-use an artist in more than one " "Axes which is not supported") self._axes = new_axes if new_axes is not None and new_axes is not self: self.stale_callback = _stale_axes_callback return new_axes @property def stale(self): """ If the artist is 'stale' and needs to be re-drawn for the output to match the internal state of the artist. """ return self._stale @stale.setter def stale(self, val): self._stale = val # if the artist is animated it does not take normal part in the # draw stack and is not expected to be drawn as part of the normal # draw loop (when not saving) so do not propagate this change if self.get_animated(): return if val and self.stale_callback is not None: self.stale_callback(self, val) def get_window_extent(self, renderer): """ Get the axes bounding box in display space. Subclasses should override for inclusion in the bounding box "tight" calculation. Default is to return an empty bounding box at 0, 0. Be careful when using this function, the results will not update if the artist window extent of the artist changes. The extent can change due to any changes in the transform stack, such as changing the axes limits, the figure size, or the canvas used (as is done when saving a figure). This can lead to unexpected behavior where interactive figures will look fine on the screen, but will save incorrectly. """ return Bbox([[0, 0], [0, 0]]) def add_callback(self, func): """ Adds a callback function that will be called whenever one of the :class:`Artist`'s properties changes. Returns an *id* that is useful for removing the callback with :meth:`remove_callback` later. """ oid = self._oid self._propobservers[oid] = func self._oid += 1 return oid def remove_callback(self, oid): """ Remove a callback based on its *id*. .. seealso:: :meth:`add_callback` For adding callbacks """ try: del self._propobservers[oid] except KeyError: pass def pchanged(self): """ Fire an event when property changed, calling all of the registered callbacks. """ for oid, func in six.iteritems(self._propobservers): func(self) def is_transform_set(self): """ Returns *True* if :class:`Artist` has a transform explicitly set. """ return self._transformSet def set_transform(self, t): """ Set the :class:`~matplotlib.transforms.Transform` instance used by this artist. ACCEPTS: :class:`~matplotlib.transforms.Transform` instance """ self._transform = t self._transformSet = True self.pchanged() self.stale = True def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance used by this artist. """ if self._transform is None: self._transform = IdentityTransform() elif (not isinstance(self._transform, Transform) and hasattr(self._transform, '_as_mpl_transform')): self._transform = self._transform._as_mpl_transform(self.axes) return self._transform def hitlist(self, event): """ List the children of the artist which contain the mouse event *event*. """ L = [] try: hascursor, info = self.contains(event) if hascursor: L.append(self) except: import traceback traceback.print_exc() print("while checking", self.__class__) for a in self.get_children(): L.extend(a.hitlist(event)) return L def get_children(self): """ Return a list of the child :class:`Artist`s this :class:`Artist` contains. """ return [] def contains(self, mouseevent): """Test whether the artist contains the mouse event. Returns the truth value and a dictionary of artist specific details of selection, such as which points are contained in the pick radius. See individual artists for details. """ if callable(self._contains): return self._contains(self, mouseevent) warnings.warn("'%s' needs 'contains' method" % self.__class__.__name__) return False, {} def set_contains(self, picker): """ Replace the contains test used by this artist. The new picker should be a callable function which determines whether the artist is hit by the mouse event:: hit, props = picker(artist, mouseevent) If the mouse event is over the artist, return *hit* = *True* and *props* is a dictionary of properties you want returned with the contains test. ACCEPTS: a callable function """ self._contains = picker def get_contains(self): """ Return the _contains test used by the artist, or *None* for default. """ return self._contains def pickable(self): 'Return *True* if :class:`Artist` is pickable.' return (self.figure is not None and self.figure.canvas is not None and self._picker is not None) def pick(self, mouseevent): """ Process pick event each child artist will fire a pick event if *mouseevent* is over the artist and the artist has picker set """ # Pick self if self.pickable(): picker = self.get_picker() if callable(picker): inside, prop = picker(self, mouseevent) else: inside, prop = self.contains(mouseevent) if inside: self.figure.canvas.pick_event(mouseevent, self, **prop) # Pick children for a in self.get_children(): # make sure the event happened in the same axes ax = getattr(a, 'axes', None) if (mouseevent.inaxes is None or ax is None or mouseevent.inaxes == ax): # we need to check if mouseevent.inaxes is None # because some objects associated with an axes (e.g., a # tick label) can be outside the bounding box of the # axes and inaxes will be None # also check that ax is None so that it traverse objects # which do no have an axes property but children might a.pick(mouseevent) def set_picker(self, picker): """ Set the epsilon for picking used by this artist *picker* can be one of the following: * *None*: picking is disabled for this artist (default) * A boolean: if *True* then picking will be enabled and the artist will fire a pick event if the mouse event is over the artist * A float: if picker is a number it is interpreted as an epsilon tolerance in points and the artist will fire off an event if it's data is within epsilon of the mouse event. For some artists like lines and patch collections, the artist may provide additional data to the pick event that is generated, e.g., the indices of the data within epsilon of the pick event * A function: if picker is callable, it is a user supplied function which determines whether the artist is hit by the mouse event:: hit, props = picker(artist, mouseevent) to determine the hit test. if the mouse event is over the artist, return *hit=True* and props is a dictionary of properties you want added to the PickEvent attributes. ACCEPTS: [None|float|boolean|callable] """ self._picker = picker def get_picker(self): 'Return the picker object used by this artist' return self._picker def is_figure_set(self): """ Returns True if the artist is assigned to a :class:`~matplotlib.figure.Figure`. """ return self.figure is not None def get_url(self): """ Returns the url """ return self._url def set_url(self, url): """ Sets the url for the artist ACCEPTS: a url string """ self._url = url def get_gid(self): """ Returns the group id """ return self._gid def set_gid(self, gid): """ Sets the (group) id for the artist ACCEPTS: an id string """ self._gid = gid def get_snap(self): """ Returns the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center Only supported by the Agg and MacOSX backends. """ if rcParams['path.snap']: return self._snap else: return False def set_snap(self, snap): """ Sets the snap setting which may be: * True: snap vertices to the nearest pixel center * False: leave vertices as-is * None: (auto) If the path contains only rectilinear line segments, round to the nearest pixel center Only supported by the Agg and MacOSX backends. """ self._snap = snap self.stale = True def get_sketch_params(self): """ Returns the sketch parameters for the artist. Returns ------- sketch_params : tuple or `None` A 3-tuple with the following elements: * `scale`: The amplitude of the wiggle perpendicular to the source line. * `length`: The length of the wiggle along the line. * `randomness`: The scale factor by which the length is shrunken or expanded. May return `None` if no sketch parameters were set. """ return self._sketch def set_sketch_params(self, scale=None, length=None, randomness=None): """ Sets the sketch parameters. Parameters ---------- scale : float, optional The amplitude of the wiggle perpendicular to the source line, in pixels. If scale is `None`, or not provided, no sketch filter will be provided. length : float, optional The length of the wiggle along the line, in pixels (default 128.0) randomness : float, optional The scale factor by which the length is shrunken or expanded (default 16.0) """ if scale is None: self._sketch = None else: self._sketch = (scale, length or 128.0, randomness or 16.0) self.stale = True def set_path_effects(self, path_effects): """ set path_effects, which should be a list of instances of matplotlib.patheffect._Base class or its derivatives. """ self._path_effects = path_effects self.stale = True def get_path_effects(self): return self._path_effects def get_figure(self): """ Return the :class:`~matplotlib.figure.Figure` instance the artist belongs to. """ return self.figure def set_figure(self, fig): """ Set the :class:`~matplotlib.figure.Figure` instance the artist belongs to. ACCEPTS: a :class:`matplotlib.figure.Figure` instance """ # if this is a no-op just return if self.figure is fig: return # if we currently have a figure (the case of both `self.figure` # and `fig` being none is taken care of above) we then user is # trying to change the figure an artist is associated with which # is not allowed for the same reason as adding the same instance # to more than one Axes if self.figure is not None: raise RuntimeError("Can not put single artist in " "more than one figure") self.figure = fig if self.figure and self.figure is not self: self.pchanged() self.stale = True def set_clip_box(self, clipbox): """ Set the artist's clip :class:`~matplotlib.transforms.Bbox`. ACCEPTS: a :class:`matplotlib.transforms.Bbox` instance """ self.clipbox = clipbox self.pchanged() self.stale = True def set_clip_path(self, path, transform=None): """ Set the artist's clip path, which may be: - a :class:`~matplotlib.patches.Patch` (or subclass) instance; or - a :class:`~matplotlib.path.Path` instance, in which case a :class:`~matplotlib.transforms.Transform` instance, which will be applied to the path before using it for clipping, must be provided; or - ``None``, to remove a previously set clipping path. For efficiency, if the path happens to be an axis-aligned rectangle, this method will set the clipping box to the corresponding rectangle and set the clipping path to ``None``. ACCEPTS: [ (:class:`~matplotlib.path.Path`, :class:`~matplotlib.transforms.Transform`) | :class:`~matplotlib.patches.Patch` | None ] """ from matplotlib.patches import Patch, Rectangle success = False if transform is None: if isinstance(path, Rectangle): self.clipbox = TransformedBbox(Bbox.unit(), path.get_transform()) self._clippath = None success = True elif isinstance(path, Patch): self._clippath = TransformedPatchPath(path) success = True elif isinstance(path, tuple): path, transform = path if path is None: self._clippath = None success = True elif isinstance(path, Path): self._clippath = TransformedPath(path, transform) success = True elif isinstance(path, TransformedPatchPath): self._clippath = path success = True elif isinstance(path, TransformedPath): self._clippath = path success = True if not success: raise TypeError( "Invalid arguments to set_clip_path, of type {} and {}" .format(type(path).__name__, type(transform).__name__)) # This may result in the callbacks being hit twice, but guarantees they # will be hit at least once. self.pchanged() self.stale = True def get_alpha(self): """ Return the alpha value used for blending - not supported on all backends """ return self._alpha def get_visible(self): "Return the artist's visiblity" return self._visible def get_animated(self): "Return the artist's animated state" return self._animated def get_clip_on(self): 'Return whether artist uses clipping' return self._clipon def get_clip_box(self): 'Return artist clipbox' return self.clipbox def get_clip_path(self): 'Return artist clip path' return self._clippath def get_transformed_clip_path_and_affine(self): ''' Return the clip path with the non-affine part of its transformation applied, and the remaining affine part of its transformation. ''' if self._clippath is not None: return self._clippath.get_transformed_path_and_affine() return None, None def set_clip_on(self, b): """ Set whether artist uses clipping. When False artists will be visible out side of the axes which can lead to unexpected results. ACCEPTS: [True | False] """ self._clipon = b # This may result in the callbacks being hit twice, but ensures they # are hit at least once self.pchanged() self.stale = True def _set_gc_clip(self, gc): 'Set the clip properly for the gc' if self._clipon: if self.clipbox is not None: gc.set_clip_rectangle(self.clipbox) gc.set_clip_path(self._clippath) else: gc.set_clip_rectangle(None) gc.set_clip_path(None) def get_rasterized(self): "return True if the artist is to be rasterized" return self._rasterized def set_rasterized(self, rasterized): """ Force rasterized (bitmap) drawing in vector backend output. Defaults to None, which implies the backend's default behavior ACCEPTS: [True | False | None] """ if rasterized and not hasattr(self.draw, "_supports_rasterization"): warnings.warn("Rasterization of '%s' will be ignored" % self) self._rasterized = rasterized def get_agg_filter(self): "return filter function to be used for agg filter" return self._agg_filter def set_agg_filter(self, filter_func): """ set agg_filter function. """ self._agg_filter = filter_func self.stale = True def draw(self, renderer, *args, **kwargs): 'Derived classes drawing method' if not self.get_visible(): return self.stale = False def set_alpha(self, alpha): """ Set the alpha value used for blending - not supported on all backends. ACCEPTS: float (0.0 transparent through 1.0 opaque) """ self._alpha = alpha self.pchanged() self.stale = True def set_visible(self, b): """ Set the artist's visiblity. ACCEPTS: [True | False] """ self._visible = b self.pchanged() self.stale = True def set_animated(self, b): """ Set the artist's animation state. ACCEPTS: [True | False] """ if self._animated != b: self._animated = b self.pchanged() def update(self, props): """ Update the properties of this :class:`Artist` from the dictionary *prop*. """ def _update_property(self, k, v): """sorting out how to update property (setter or setattr) Parameters ---------- k : str The name of property to update v : obj The value to assign to the property Returns ------- ret : obj or None If using a `set_*` method return it's return, else None. """ k = k.lower() # white list attributes we want to be able to update through # art.update, art.set, setp if k in {'axes'}: return setattr(self, k, v) else: func = getattr(self, 'set_' + k, None) if not callable(func): raise AttributeError('Unknown property %s' % k) return func(v) store = self.eventson self.eventson = False try: ret = [_update_property(self, k, v) for k, v in props.items()] finally: self.eventson = store if len(ret): self.pchanged() self.stale = True return ret def get_label(self): """ Get the label used for this artist in the legend. """ return self._label def set_label(self, s): """ Set the label to *s* for auto legend. ACCEPTS: string or anything printable with '%s' conversion. """ if s is not None: self._label = '%s' % (s, ) else: self._label = None self.pchanged() self.stale = True def get_zorder(self): """ Return the :class:`Artist`'s zorder. """ return self.zorder def set_zorder(self, level): """ Set the zorder for the artist. Artists with lower zorder values are drawn first. ACCEPTS: any number """ self.zorder = level self.pchanged() self.stale = True @property def sticky_edges(self): """ `x` and `y` sticky edge lists. When performing autoscaling, if a data limit coincides with a value in the corresponding sticky_edges list, then no margin will be added--the view limit "sticks" to the edge. A typical usecase is histograms, where one usually expects no margin on the bottom edge (0) of the histogram. This attribute cannot be assigned to; however, the `x` and `y` lists can be modified in place as needed. Examples -------- >>> artist.sticky_edges.x[:] = (xmin, xmax) >>> artist.sticky_edges.y[:] = (ymin, ymax) """ return self._sticky_edges def update_from(self, other): 'Copy properties from *other* to *self*.' self._transform = other._transform self._transformSet = other._transformSet self._visible = other._visible self._alpha = other._alpha self.clipbox = other.clipbox self._clipon = other._clipon self._clippath = other._clippath self._label = other._label self._sketch = other._sketch self._path_effects = other._path_effects self.sticky_edges.x[:] = other.sticky_edges.x[:] self.sticky_edges.y[:] = other.sticky_edges.y[:] self.pchanged() self.stale = True def properties(self): """ return a dictionary mapping property name -> value for all Artist props """ return ArtistInspector(self).properties() def set(self, **kwargs): """A property batch setter. Pass *kwargs* to set properties. """ props = OrderedDict( sorted(kwargs.items(), reverse=True, key=lambda x: (self._prop_order.get(x[0], 0), x[0]))) return self.update(props) def findobj(self, match=None, include_self=True): """ Find artist objects. Recursively find all :class:`~matplotlib.artist.Artist` instances contained in self. *match* can be - None: return all objects contained in artist. - function with signature ``boolean = match(artist)`` used to filter matches - class instance: e.g., Line2D. Only return artists of class type. If *include_self* is True (default), include self in the list to be checked for a match. """ if match is None: # always return True def matchfunc(x): return True elif isinstance(match, type) and issubclass(match, Artist): def matchfunc(x): return isinstance(x, match) elif callable(match): matchfunc = match else: raise ValueError('match must be None, a matplotlib.artist.Artist ' 'subclass, or a callable') artists = sum([c.findobj(matchfunc) for c in self.get_children()], []) if include_self and matchfunc(self): artists.append(self) return artists def get_cursor_data(self, event): """ Get the cursor data for a given event. """ return None def format_cursor_data(self, data): """ Return *cursor data* string formatted. """ try: data[0] except (TypeError, IndexError): data = [data] return ', '.join('{:0.3g}'.format(item) for item in data if isinstance(item, (np.floating, np.integer, int, float))) @property def mouseover(self): return self._mouseover @mouseover.setter def mouseover(self, val): val = bool(val) self._mouseover = val ax = self.axes if ax: if val: ax.mouseover_set.add(self) else: ax.mouseover_set.discard(self) class ArtistInspector(object): """ A helper class to inspect an :class:`~matplotlib.artist.Artist` and return information about it's settable properties and their current values. """ def __init__(self, o): """ Initialize the artist inspector with an :class:`~matplotlib.artist.Artist` or iterable of :class:`Artists`. If an iterable is used, we assume it is a homogeneous sequence (all :class:`Artists` are of the same type) and it is your responsibility to make sure this is so. """ if cbook.iterable(o): # Wrapped in list instead of doing try-except around next(iter(o)) o = list(o) if len(o): o = o[0] self.oorig = o if not inspect.isclass(o): o = type(o) self.o = o self.aliasd = self.get_aliases() def get_aliases(self): """ Get a dict mapping *fullname* -> *alias* for each *alias* in the :class:`~matplotlib.artist.ArtistInspector`. e.g., for lines:: {'markerfacecolor': 'mfc', 'linewidth' : 'lw', } """ names = [name for name in dir(self.o) if name.startswith(('set_', 'get_')) and callable(getattr(self.o, name))] aliases = {} for name in names: func = getattr(self.o, name) if not self.is_alias(func): continue docstring = func.__doc__ fullname = docstring[10:] aliases.setdefault(fullname[4:], {})[name[4:]] = None return aliases _get_valid_values_regex = re.compile( r"\n\s*ACCEPTS:\s*((?:.|\n)*?)(?:$|(?:\n\n))" ) def get_valid_values(self, attr): """ Get the legal arguments for the setter associated with *attr*. This is done by querying the docstring of the function *set_attr* for a line that begins with ACCEPTS: e.g., for a line linestyle, return "[ ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'steps'`` | ``'None'`` ]" """ name = 'set_%s' % attr if not hasattr(self.o, name): raise AttributeError('%s has no function %s' % (self.o, name)) func = getattr(self.o, name) docstring = func.__doc__ if docstring is None: return 'unknown' if docstring.startswith('alias for '): return None match = self._get_valid_values_regex.search(docstring) if match is not None: return re.sub("\n *", " ", match.group(1)) return 'unknown' def _get_setters_and_targets(self): """ Get the attribute strings and a full path to where the setter is defined for all setters in an object. """ setters = [] for name in dir(self.o): if not name.startswith('set_'): continue func = getattr(self.o, name) if not callable(func): continue if six.PY2: nargs = len(inspect.getargspec(func)[0]) else: nargs = len(inspect.getfullargspec(func)[0]) if nargs < 2 or self.is_alias(func): continue source_class = self.o.__module__ + "." + self.o.__name__ for cls in self.o.mro(): if name in cls.__dict__: source_class = cls.__module__ + "." + cls.__name__ break setters.append((name[4:], source_class + "." + name)) return setters def get_setters(self): """ Get the attribute strings with setters for object. e.g., for a line, return ``['markerfacecolor', 'linewidth', ....]``. """ return [prop for prop, target in self._get_setters_and_targets()] def is_alias(self, o): """ Return *True* if method object *o* is an alias for another function. """ ds = o.__doc__ if ds is None: return False return ds.startswith('alias for ') def aliased_name(self, s): """ return 'PROPNAME or alias' if *s* has an alias, else return PROPNAME. e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc' and for the transform property, which does not, return 'transform' """ if s in self.aliasd: return s + ''.join([' or %s' % x for x in sorted(self.aliasd[s])]) else: return s def aliased_name_rest(self, s, target): """ return 'PROPNAME or alias' if *s* has an alias, else return PROPNAME formatted for ReST e.g., for the line markerfacecolor property, which has an alias, return 'markerfacecolor or mfc' and for the transform property, which does not, return 'transform' """ if s in self.aliasd: aliases = ''.join([' or %s' % x for x in sorted(self.aliasd[s])]) else: aliases = '' return ':meth:`%s <%s>`%s' % (s, target, aliases) def pprint_setters(self, prop=None, leadingspace=2): """ If *prop* is *None*, return a list of strings of all settable properies and their valid values. If *prop* is not *None*, it is a valid property name and that property will be returned as a string of property : valid values. """ if leadingspace: pad = ' ' * leadingspace else: pad = '' if prop is not None: accepts = self.get_valid_values(prop) return '%s%s: %s' % (pad, prop, accepts) attrs = self._get_setters_and_targets() attrs.sort() lines = [] for prop, path in attrs: accepts = self.get_valid_values(prop) name = self.aliased_name(prop) lines.append('%s%s: %s' % (pad, name, accepts)) return lines def pprint_setters_rest(self, prop=None, leadingspace=2): """ If *prop* is *None*, return a list of strings of all settable properies and their valid values. Format the output for ReST If *prop* is not *None*, it is a valid property name and that property will be returned as a string of property : valid values. """ if leadingspace: pad = ' ' * leadingspace else: pad = '' if prop is not None: accepts = self.get_valid_values(prop) return '%s%s: %s' % (pad, prop, accepts) attrs = self._get_setters_and_targets() attrs.sort() lines = [] ######## names = [self.aliased_name_rest(prop, target) for prop, target in attrs] accepts = [self.get_valid_values(prop) for prop, target in attrs] col0_len = max(len(n) for n in names) col1_len = max(len(a) for a in accepts) table_formatstr = pad + '=' * col0_len + ' ' + '=' * col1_len lines.append('') lines.append(table_formatstr) lines.append(pad + 'Property'.ljust(col0_len + 3) + 'Description'.ljust(col1_len)) lines.append(table_formatstr) lines.extend([pad + n.ljust(col0_len + 3) + a.ljust(col1_len) for n, a in zip(names, accepts)]) lines.append(table_formatstr) lines.append('') return lines def properties(self): """ return a dictionary mapping property name -> value """ o = self.oorig getters = [name for name in dir(o) if name.startswith('get_') and callable(getattr(o, name))] getters.sort() d = dict() for name in getters: func = getattr(o, name) if self.is_alias(func): continue try: with warnings.catch_warnings(): warnings.simplefilter('ignore') val = func() except: continue else: d[name[4:]] = val return d def pprint_getters(self): """ Return the getters and actual values as list of strings. """ lines = [] for name, val in sorted(six.iteritems(self.properties())): if getattr(val, 'shape', ()) != () and len(val) > 6: s = str(val[:6]) + '...' else: s = str(val) s = s.replace('\n', ' ') if len(s) > 50: s = s[:50] + '...' name = self.aliased_name(name) lines.append(' %s = %s' % (name, s)) return lines def getp(obj, property=None): """ Return the value of object's property. *property* is an optional string for the property you want to return Example usage:: getp(obj) # get all the object properties getp(obj, 'linestyle') # get the linestyle property *obj* is a :class:`Artist` instance, e.g., :class:`~matplotllib.lines.Line2D` or an instance of a :class:`~matplotlib.axes.Axes` or :class:`matplotlib.text.Text`. If the *property* is 'somename', this function returns obj.get_somename() :func:`getp` can be used to query all the gettable properties with ``getp(obj)``. Many properties have aliases for shorter typing, e.g. 'lw' is an alias for 'linewidth'. In the output, aliases and full property names will be listed as: property or alias = value e.g.: linewidth or lw = 2 """ if property is None: insp = ArtistInspector(obj) ret = insp.pprint_getters() print('\n'.join(ret)) return func = getattr(obj, 'get_' + property) return func() # alias get = getp def setp(obj, *args, **kwargs): """ Set a property on an artist object. matplotlib supports the use of :func:`setp` ("set property") and :func:`getp` to set and get object properties, as well as to do introspection on the object. For example, to set the linestyle of a line to be dashed, you can do:: >>> line, = plot([1,2,3]) >>> setp(line, linestyle='--') If you want to know the valid types of arguments, you can provide the name of the property you want to set without a value:: >>> setp(line, 'linestyle') linestyle: [ '-' | '--' | '-.' | ':' | 'steps' | 'None' ] If you want to see all the properties that can be set, and their possible values, you can do:: >>> setp(line) ... long output listing omitted You may specify another output file to `setp` if `sys.stdout` is not acceptable for some reason using the `file` keyword-only argument:: >>> with fopen('output.log') as f: >>> setp(line, file=f) :func:`setp` operates on a single instance or a iterable of instances. If you are in query mode introspecting the possible values, only the first instance in the sequence is used. When actually setting values, all the instances will be set. e.g., suppose you have a list of two lines, the following will make both lines thicker and red:: >>> x = arange(0,1.0,0.01) >>> y1 = sin(2*pi*x) >>> y2 = sin(4*pi*x) >>> lines = plot(x, y1, x, y2) >>> setp(lines, linewidth=2, color='r') :func:`setp` works with the MATLAB style string/value pairs or with python kwargs. For example, the following are equivalent:: >>> setp(lines, 'linewidth', 2, 'color', 'r') # MATLAB style >>> setp(lines, linewidth=2, color='r') # python style """ if not cbook.iterable(obj): objs = [obj] else: objs = list(cbook.flatten(obj)) if not objs: return insp = ArtistInspector(objs[0]) # file has to be popped before checking if kwargs is empty printArgs = {} if 'file' in kwargs: printArgs['file'] = kwargs.pop('file') if not kwargs and len(args) < 2: if args: print(insp.pprint_setters(prop=args[0]), **printArgs) else: print('\n'.join(insp.pprint_setters()), **printArgs) return if len(args) % 2: raise ValueError('The set args must be string, value pairs') # put args into ordereddict to maintain order funcvals = OrderedDict() for i in range(0, len(args) - 1, 2): funcvals[args[i]] = args[i + 1] ret = [o.update(funcvals) for o in objs] ret.extend([o.set(**kwargs) for o in objs]) return [x for x in cbook.flatten(ret)] def kwdoc(a): hardcopy = matplotlib.rcParams['docstring.hardcopy'] if hardcopy: return '\n'.join(ArtistInspector(a).pprint_setters_rest( leadingspace=2)) else: return '\n'.join(ArtistInspector(a).pprint_setters(leadingspace=2)) docstring.interpd.update(Artist=kwdoc(Artist)) _get_axes_msg = """{0} has been deprecated in mpl 1.5, please use the axes property. A removal date has not been set."""
mit
jakobworldpeace/scikit-learn
sklearn/linear_model/coordinate_descent.py
1
80266
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import _preprocess_data from ..utils import check_array, check_X_y from ..utils.validation import check_random_state from ..model_selection import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..exceptions import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 < l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. (currently not supported) ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio <1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ if l1_ratio == 0: raise ValueError("Automatic alpha grid generation is not supported for" " l1_ratio=0. Please supply a grid by providing " "your estimator with the appropriate `alphas=` " "argument.") n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = _preprocess_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_offset, _, X_scale = _preprocess_data(X, y, fit_intercept, normalize, return_mean=True) mean_dot = X_offset * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_scale[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, return_n_iter=return_n_iter, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. check_input : bool, default True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1], dtype=X.dtype)) else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations.' + ' Fitting data with very small alpha' + ' may cause precision problems.', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for the exact mathematical meaning of this parameter.``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : True | False | array-like Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if isinstance(self.precompute, six.string_types): raise ValueError('precompute should be one of True, False or' ' array-like. Got %r' % self.precompute) # We expect X and y to be float64 or float32 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', order='F', dtype=[np.float64, np.float32], copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) y = check_array(y, order='F', copy=False, dtype=X.dtype.type, ensure_2d=False) X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or not hasattr(self, "coef_"): coef_ = np.zeros((n_targets, n_features), dtype=X.dtype, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=X.dtype) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_offset=X_offset, X_scale=X_scale, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_offset, y_offset, X_scale) # workaround since _set_intercept will cast self.coef_ into X.dtype self.coef_ = np.asarray(self.coef_, dtype=X.dtype) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted ``coef_`` """ return sparse.csr_matrix(self.coef_) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the ``Lasso`` object is not advised. Given this, you should use the :class:`LinearRegression` object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | array-like, default=False Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_offset'] = X_offset path_params['X_scale'] = X_scale path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_offset = np.atleast_1d(y_offset) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_scale) coefs[:, nonzeros] /= X_scale[nonzeros][:, np.newaxis] intercepts = y_offset[:, np.newaxis] - np.dot(X_offset, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matrices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = check_array(y, copy=False, dtype=[np.float64, np.float32], ensure_2d=False) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if (hasattr(reference_to_old_X, "data") and not np.may_share_memory(reference_to_old_X.data, X.data)): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv.split(X)) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=X.dtype.type) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float or array of floats, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/plot_lasso_model_selection.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_elastic_net>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array. Note that ``coef_`` stores the transpose of ``W``, ``W.T``. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskElasticNet model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ X = check_array(X, dtype=[np.float64, np.float32], order='F', copy=self.copy_X and self.fit_intercept) y = check_array(y, dtype=X.dtype.type, ensure_2d=False) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_offset, y_offset, X_scale = _preprocess_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=X.dtype.type, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_offset, y_offset, X_scale) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations', ConvergenceWarning) # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``. alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
weinbe58/QuSpin
examples/scripts/example7.py
3
6214
from __future__ import print_function, division import sys,os # line 4 and line 5 below are for development purposes and can be removed qspin_path = os.path.join(os.getcwd(),"../../") sys.path.insert(0,qspin_path) ##################################################################### # example 7 # # In this script we demonstrate how to use QuSpin's to create # # a ladder geometry and study quanch dynamics in the Bose-Hubbard # # model. We also show how to compute the entanglement entropy of # # bosonic systems. Last, we demonstrate how to use the block_ops # # tool to decompose a state in the symemtry sectors of a # # Hamiltonian, evolve the separate parts, and put back the state # # in the end. # ##################################################################### from quspin.operators import hamiltonian # Hamiltonians and operators from quspin.basis import boson_basis_1d # bosonic Hilbert space from quspin.tools.block_tools import block_ops # dynamics in symmetry blocks import numpy as np # general math functions import matplotlib.pyplot as plt # plotting library import matplotlib.animation as animation # animating movie of dynamics # ##### define model parameters # initial seed for random number generator np.random.seed(0) # seed is 0 to produce plots from QuSpin2 paper # setting up parameters of simulation L = 6 # length of chain N = 2*L # number of sites nb = 0.5 # density of bosons sps = 3 # number of states per site J_par_1 = 1.0 # top side of ladder hopping J_par_2 = 1.0 # bottom side of ladder hopping J_perp = 0.5 # rung hopping U = 20.0 # Hubbard interaction # ##### set up Hamiltonian and observables # define site-coupling lists int_list_1 = [[-0.5*U,i] for i in range(N)] # interaction $-U/2 \sum_i n_i$ int_list_2 = [[0.5*U,i,i] for i in range(N)] # interaction: $U/2 \num_i n_i^2$ # setting up hopping lists hop_list = [[-J_par_1,i,(i+2)%N] for i in range(0,N,2)] # PBC bottom leg hop_list.extend([[-J_par_2,i,(i+2)%N] for i in range(1,N,2)]) # PBC top leg hop_list.extend([[-J_perp,i,i+1] for i in range(0,N,2)]) # perp/rung hopping hop_list_hc = [[J.conjugate(),i,j] for J,i,j in hop_list] # add h.c. terms # set up static and dynamic lists static = [ ["+-",hop_list], # hopping ["-+",hop_list_hc], # hopping h.c. ["nn",int_list_2], # U n_i^2 ["n",int_list_1] # -U n_i ] dynamic = [] # no dynamic operators # create block_ops object blocks=[dict(kblock=kblock) for kblock in range(L)] # blocks to project on to baisis_args = (N,) # boson_basis_1d manditory arguments basis_kwargs = dict(nb=nb,sps=sps,a=2) # boson_basis_1d optional args get_proj_kwargs = dict(pcon=True) # set projection to full particle basis H_block = block_ops(blocks,static,dynamic,boson_basis_1d,baisis_args,np.complex128, basis_kwargs=basis_kwargs,get_proj_kwargs=get_proj_kwargs) # setting up local Fock basis basis = boson_basis_1d(N,nb=nb,sps=sps) # setting up observables no_checks = dict(check_herm=False,check_symm=False,check_pcon=False) n_list = [hamiltonian([["n",[[1.0,i]]]],[],basis=basis,dtype=np.float64,**no_checks) for i in range(N)] ##### do time evolution # set up initial state i0 = np.random.randint(basis.Ns) # pick random state from basis set psi = np.zeros(basis.Ns,dtype=np.float64) psi[i0] = 1.0 # print info about setup state_str = "".join(str(int((basis[i0]//basis.sps**(L-i-1)))%basis.sps) for i in range(N)) print("total H-space size: {}, initial state: |{}>".format(basis.Ns,state_str)) # setting up parameters for evolution start,stop,num = 0,30,301 # 0.1 equally spaced points times = np.linspace(start,stop,num) # calculating the evolved states n_jobs = 1 # paralelisation: increase to see if calculation runs faster! psi_t = H_block.expm(psi,a=-1j,start=start,stop=stop,num=num,block_diag=False,n_jobs=n_jobs) # calculating the local densities as a function of time expt_n_t = np.vstack([n.expt_value(psi_t).real for n in n_list]).T # reshape data for plotting n_t = np.zeros((num,2,L)) n_t[:,0,:] = expt_n_t[:,0::2] n_t[:,1,:] = expt_n_t[:,1::2] # calculating entanglement entropy sub_sys_A = range(0,N,2) # bottom side of ladder gen = (basis.ent_entropy(psi,sub_sys_A=sub_sys_A)["Sent_A"] for psi in psi_t.T[:]) ent_t = np.fromiter(gen,dtype=np.float64,count=num) # plotting static figures #""" fig, ax = plt.subplots(nrows=5,ncols=1) im=[] im_ind = [] for i,t in enumerate(np.logspace(-1,np.log10(stop-1),5,base=10)): j = times.searchsorted(t) im_ind.append(j) im.append(ax[i].imshow(n_t[j],cmap="hot",vmax=n_t.max(),vmin=0)) ax[i].tick_params(labelbottom=False,labelleft=False) cax = fig.add_axes([0.85, 0.1, 0.03, 0.8]) fig.colorbar(im[2],cax) plt.savefig("boson_density.pdf") plt.figure() plt.plot(times,ent_t,lw=2) plt.plot(times[im_ind],ent_t[im_ind],marker="o",linestyle="",color="red") plt.xlabel("$Jt$",fontsize=20) plt.ylabel("$s_\\mathrm{ent}(t)$",fontsize=20) plt.grid() plt.savefig("boson_entropy.pdf") #plt.show() plt.close() #""" # setting up two plots to animate side by side fig, (ax1,ax2) = plt.subplots(1,2) fig.set_size_inches(10, 5) ax1.set_xlabel(r"$Jt$",fontsize=18) ax1.set_ylabel(r"$s_\mathrm{ent}$",fontsize=18) ax1.grid() line1, = ax1.plot(times, ent_t, lw=2) line1.set_data([],[]) im = ax2.matshow(n_t[0],cmap="hot") fig.colorbar(im) def run(i): # function to update frame # set new data for plots if i==num-1: exit() # comment this line to retain last plot line1.set_data(times[:i],ent_t[:i]) im.set_data(n_t[i]) return im, line1 # define and display animation ani = animation.FuncAnimation(fig, run, range(num),interval=50,repeat=False) plt.show() plt.close() # """ ###### ladder lattice # hopping coupling parameters: # - : J_par_1 # = : J_par_2 # | : J_perp # # lattice graph # = 1 = 3 = 5 = 7 = 9 = | | | | | - 0 - 2 - 4 - 6 - 8 - # # translations along leg-direction (i -> i+2): # = 9 = 1 = 3 = 5 = 7 = | | | | | - 8 - 0 - 2 - 4 - 6 - # # if J_par_1=J_par_2, one can use regular chain parity (i -> N - i) as combination # of the two ladder parity operators: # - 8 - 6 - 4 - 2 - 0 - | | | | | - 9 - 7 - 5 - 3 - 1 - """
bsd-3-clause
aewhatley/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
joergkappes/opengm
src/interfaces/python/examples/visu/full.py
14
1157
import numpy import opengm import matplotlib.pyplot as plt f1=numpy.ones([2]) f2=numpy.ones([2,2]) """ Full Connected (non-shared): - all possible pairwise connections - functions are *non* - shared """ numVar=4 gm=opengm.gm([2]*numVar) for vi0 in xrange(numVar): for vi1 in xrange(vi0+1,numVar): gm.addFactor(gm.addFunction(f2),[vi0,vi1]) opengm.visualizeGm( gm,show=False,layout='neato', iterations=1000,plotFunctions=True, plotNonShared=True,relNodeSize=0.4) plt.savefig("full_non_shared.png",bbox_inches='tight',dpi=300) plt.close() """ Full Connected (shared): - 5 variables - 10 second order factors (all possible pairwise connections) - functions are *non* - shared """ numVar=4 gm=opengm.gm([2]*numVar) fid2=gm.addFunction(f2) for vi0 in xrange(numVar): for vi1 in xrange(vi0+1,numVar): gm.addFactor(fid2,[vi0,vi1]) opengm.visualizeGm( gm,show=False,layout='neato', iterations=1000,plotFunctions=True, plotNonShared=True,relNodeSize=0.4) plt.savefig("full_shared.png",bbox_inches='tight',dpi=300) plt.close()
mit
Stargrazer82301/CAAPR
CAAPR/CAAPR_AstroMagic/PTS/pts/do/modeling/seba/plotDataset.py
1
10887
import aplpy import pyparsing import pyregion import pyfits import matplotlib.pyplot as pyplot import matplotlib as mpl path = 'FinalRun/' fig = pyplot.figure(figsize=(9,10)) fig.text(0.385,0.97,"Offset from centre (degrees)",color='black',size='16',weight='bold') fig.text(0.02,0.615,"Offset from centre (degrees)",color='black',size='16',weight='bold',rotation='vertical') def standard_setup(sp): sp.set_frame_color('black') sp.set_tick_labels_font(size='10') sp.set_axis_labels_font(size='12') #sp.set_tick_labels_format(xformat='hh:mm',yformat='dd:mm') sp.set_xaxis_coord_type('scalar') sp.set_yaxis_coord_type('scalar') sp.set_tick_color('black') sp.recenter(x=0.0, y=0.0,width=3.,height=0.6) sp.set_tick_xspacing(0.4) sp.set_tick_yspacing(0.25) sp.set_system_latex(True) sp.tick_labels.hide() sp.axis_labels.hide() plotloc = [[0.09,0.825,0.3,0.115],[0.39,0.825,0.3,0.115],[0.69,0.825,0.3,0.115], [0.09,0.710,0.3,0.115],[0.39,0.710,0.3,0.115],[0.69,0.710,0.3,0.115], [0.09,0.595,0.3,0.115],[0.39,0.595,0.3,0.115],[0.69,0.595,0.3,0.115], [0.09,0.480,0.3,0.115],[0.39,0.480,0.3,0.115],[0.69,0.480,0.3,0.115], [0.09,0.365,0.3,0.115],[0.39,0.365,0.3,0.115],[0.69,0.365,0.3,0.115], [0.09,0.250,0.3,0.115],[0.39,0.250,0.3,0.115],[0.69,0.250,0.3,0.115], [0.09,0.135,0.3,0.115],[0.39,0.135,0.3,0.115],[0.69,0.135,0.3,0.115], [0.09,0.020,0.3,0.115]] # First row f1 = aplpy.FITSFigure(path+'maps/plotimFUVJy.fits', figure=fig, subplot=plotloc[0]) standard_setup(f1) #f1.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f1.show_colorscale(vmin=0, vmax=0.00025, cmap='hot') f1.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f1.axis_labels.show_y() f1.tick_labels.set_xposition('top') f1.tick_labels.show() f2 = aplpy.FITSFigure(path+'maps/plotimNUVJy.fits', figure=fig, subplot=plotloc[1]) standard_setup(f2) #f2.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f2.show_colorscale(vmin=0, vmax=0.0004, cmap='hot') f2.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f2.tick_labels.set_xposition('top') f2.tick_labels.show_x() f3 = aplpy.FITSFigure(path+'maps/plotimuJy.fits', figure=fig, subplot=plotloc[2]) standard_setup(f3) #f3.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f3.show_colorscale(vmin=0, vmax=0.004, cmap='hot') f3.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f3.tick_labels.set_xposition('top') f3.tick_labels.show_x() # Next rows f4 = aplpy.FITSFigure(path+'maps/plotimgJy.fits', figure=fig, subplot=plotloc[3]) standard_setup(f4) #f4.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f4.show_colorscale(vmin=0, vmax=0.015, cmap='hot') f4.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f4.axis_labels.show_y() f4.tick_labels.show_y() f5 = aplpy.FITSFigure(path+'maps/plotimrJy.fits', figure=fig, subplot=plotloc[4]) standard_setup(f5) #f5.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f5.show_colorscale(vmin=0, vmax=0.045, cmap='hot') f5.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f6 = aplpy.FITSFigure(path+'maps/plotimiJy.fits', figure=fig, subplot=plotloc[5]) standard_setup(f6) #f6.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f6.show_colorscale(vmin=0, vmax=0.05, cmap='hot') f6.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f7 = aplpy.FITSFigure(path+'maps/plotimzJy.fits', figure=fig, subplot=plotloc[6]) standard_setup(f7) #f7.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f7.show_colorscale(vmin=0, vmax=0.07, cmap='hot') f7.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f7.axis_labels.show_y() f7.tick_labels.show_y() f8 = aplpy.FITSFigure(path+'maps/plotimW1Jy.fits', figure=fig, subplot=plotloc[7]) standard_setup(f8) #f8.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f8.show_colorscale(vmin=0, vmax=0.075, cmap='hot') f8.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f9 = aplpy.FITSFigure(path+'maps/plotim3.6Jy.fits', figure=fig, subplot=plotloc[8]) standard_setup(f9) #f9.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f9.show_colorscale(vmin=0, vmax=0.075, cmap='hot') f9.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f10 = aplpy.FITSFigure(path+'maps/plotim4.5Jy.fits', figure=fig, subplot=plotloc[9]) standard_setup(f10) #f10.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f10.show_colorscale(vmin=0, vmax=0.055, cmap='hot') f10.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f10.axis_labels.show_y() f10.tick_labels.show_y() f11 = aplpy.FITSFigure(path+'maps/plotimW2Jy.fits', figure=fig, subplot=plotloc[10]) standard_setup(f11) #f11.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f11.show_colorscale(vmin=0, vmax=0.055, cmap='hot') f11.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f12 = aplpy.FITSFigure(path+'maps/plotim5.8Jy.fits', figure=fig, subplot=plotloc[11]) standard_setup(f12) #f12.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f12.show_colorscale(vmin=0, vmax=0.075, cmap='hot') f12.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f13 = aplpy.FITSFigure(path+'maps/plotim8Jy.fits', figure=fig, subplot=plotloc[12]) standard_setup(f13) #f13.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f13.show_colorscale(vmin=0, vmax=0.08, cmap='hot') f13.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f13.axis_labels.show_y() f13.tick_labels.show_y() f14 = aplpy.FITSFigure(path+'maps/plotimW3Jy.fits', figure=fig, subplot=plotloc[13]) standard_setup(f14) #f14.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f14.show_colorscale(vmin=0, vmax=0.06, cmap='hot') f14.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f15 = aplpy.FITSFigure(path+'maps/plotimW4Jy.fits', figure=fig, subplot=plotloc[14]) standard_setup(f15) #f15.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f15.show_colorscale(vmin=0, vmax=0.05, cmap='hot') f15.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f16 = aplpy.FITSFigure(path+'maps/plotim24Jy.fits', figure=fig, subplot=plotloc[15]) standard_setup(f16) #f16.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f16.show_colorscale(vmin=0, vmax=0.035, cmap='hot') f16.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f16.axis_labels.show_y() f16.tick_labels.show_y() f17 = aplpy.FITSFigure(path+'maps/plotim70Jy.fits', figure=fig, subplot=plotloc[16]) standard_setup(f17) #f17.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f17.show_colorscale(vmin=0, vmax=0.35, cmap='hot') f17.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f18 = aplpy.FITSFigure(path+'maps/plotim100Jy.fits', figure=fig, subplot=plotloc[17]) standard_setup(f18) #f18.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f18.show_colorscale(vmin=0, vmax=0.7, cmap='hot') f18.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') f19 = aplpy.FITSFigure(path+'maps/plotim160Jy.fits', figure=fig, subplot=plotloc[18]) standard_setup(f19) #f19.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f19.show_colorscale(vmin=0, vmax=1.3, cmap='hot') f19.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f19.axis_labels.show_y() f19.tick_labels.show_y() f20 = aplpy.FITSFigure(path+'maps/plotim250Jy.fits', figure=fig, subplot=plotloc[19]) standard_setup(f20) #f20.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f20.show_colorscale(vmin=0, vmax=1.3, cmap='hot') f20.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f20.axis_labels.show_x() f20.tick_labels.show_x() f21 = aplpy.FITSFigure(path+'maps/plotim350Jy.fits', figure=fig, subplot=plotloc[20]) standard_setup(f21) #f21.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f21.show_colorscale(vmin=0, vmax=0.6, cmap='hot') f21.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f21.axis_labels.show_x() f21.tick_labels.show_x() f22 = aplpy.FITSFigure(path+'maps/plotim500Jy.fits', figure=fig, subplot=plotloc[21]) standard_setup(f22) #f22.show_colorscale(pmax=99.25, pmin=0.50, cmap='hot') f22.show_colorscale(vmin=0, vmax=0.3, cmap='hot') f22.show_beam(major=0.01, minor=0.01, angle=0,fill=True,color='white') #f22.axis_labels.show() f22.tick_labels.show() # Add a colourbar axisf3 = fig.add_axes([0.45,0.07,0.5,0.02]) cmapf3 = mpl.cm.hot normf3 = mpl.colors.Normalize(vmin=0, vmax=1) cbf3 = mpl.colorbar.ColorbarBase(axisf3, cmap=cmapf3, norm=normf3, orientation='horizontal') cbf3.set_label('Flux (arbitrary units)') # Add labels fig.text(0.38,0.915,"FUV",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.915,"NUV",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.915,"u",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.8,"g",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.8,"r",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.8,"i",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.685,"z",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.685,"W1",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.685,"3.6",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.57,"4.5",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.57,"W2",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.57,"5.8",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.455,"8",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.455,"W3",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.455,"W4",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.34,"24",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.34,"70",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.34,"100",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.225,"160",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.68,0.225,"250",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.98,0.225,"350",color='white',size='14',weight='bold', horizontalalignment='right') fig.text(0.38,0.11,"500",color='white',size='14',weight='bold', horizontalalignment='right') fig.patch.set_facecolor('#3f3f3f') fig.canvas.draw() #fig.savefig("ngc891_figure.eps", dpi=300) fig.savefig(path+"dataset.eps", dpi=600) #fig.savefig("ngc891_figure.png", dpi=300) pyplot.show()
mit
rupakc/Kaggle-Compendium
Santander Product Recommendation/santander-baseline.py
1
3394
import pandas as pd from sklearn.multiclass import OutputCodeClassifier from sklearn.multiclass import OneVsOneClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import Imputer from sklearn.ensemble import RandomForestClassifier import numpy as np def get_multioutput_classifier(classifier): multi = MultiOutputClassifier(estimator=classifier) return [multi], ["Multioutput Classifier"] def get_multiclass_classifier(base_estimator): output_code = OutputCodeClassifier(base_estimator,random_state=42) one_vs_one = OneVsOneClassifier(base_estimator) one_vs_all = OneVsRestClassifier(base_estimator) return [output_code,one_vs_one,one_vs_all], ['Output Code','One Vs One','One Vs All'] def label_encode_frame(dataframe): columns = dataframe.columns encoder = LabelEncoder() for column in columns: if type(dataframe[column][0]) is np.nan: for i in range(len(dataframe)): if i > 1000: break if type(dataframe[column][i]) is str: dataframe[column] = encoder.fit_transform(dataframe[column].values) break elif type(dataframe[column][0]) is str: dataframe[column] = encoder.fit_transform(dataframe[column].values) return dataframe def spilt_date(list_of_date_string,separator='-',format='yyyy-mm-dd'): month_list = list([]) day_list = list([]) year_list = list([]) for date_string in list_of_date_string: date_list = str(date_string).strip().split(separator) month_list.append(date_list[1]) day_list.append(date_list[2]) year_list.append(date_list[0]) return month_list,day_list,year_list def print_evaluation_metrics(trained_model,trained_model_name,X_test,y_test): print '--------- For Model : ', trained_model_name, ' ---------------\n' predicted_values = trained_model.predict(X_test) print predicted_values[0] print '---------' print y_test[0] print metrics.classification_report(y_test,predicted_values) print "Accuracy Score : ",metrics.accuracy_score(y_test,predicted_values) print "---------------------------------------\n" reco_frame = pd.read_csv('train_ver2.csv') reco_value_frame = reco_frame[list(reco_frame.columns[25:49])] columns_reco = list(range(21,44)) impute = Imputer() reco_frame.drop(reco_frame.columns[[5,8,11,15]],axis=1,inplace=True) reco_frame.drop(reco_frame.columns[columns_reco],axis=1,inplace=True) del reco_frame['fecha_dato'] del reco_frame['fecha_alta'] encoded_frame = label_encode_frame(reco_frame) encoded_frame = encoded_frame.head(1000) imputed_values = impute.fit_transform(encoded_frame.values) rf = RandomForestClassifier(n_estimators=101,min_samples_split=5,min_samples_leaf=7,random_state=42) X_train,X_test,y_train,y_test = train_test_split(imputed_values,reco_value_frame.values,test_size=0.2,random_state=42) classifier_list, classifier_name_list = get_multiclass_classifier(rf) for classifier,classifier_name in zip(classifier_list,classifier_name_list): classifier.fit(X_train,y_train) print_evaluation_metrics(classifier,classifier_name,X_test,y_test)
mit
crichardson17/starburst_atlas
Low_resolution_sims/DustFree_LowRes/Padova_cont_fullelines/MoreLines2.py
3
7229
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith(".grd"): inputfile = file for file in os.listdir('.'): if file.endswith(".txt"): inputfile2 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid = []; with open(inputfile, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid.append(row); grid = asarray(grid) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines = []; with open(inputfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines.append(row); dataEmissionlines = asarray(dataEmissionlines) print "import files complete" # --------------------------------------------------- #for grid phi_values = grid[1:len(dataEmissionlines)+1,6] hdens_values = grid[1:len(dataEmissionlines)+1,7] #for lines headers = headers[1:] Emissionlines = dataEmissionlines[:, 1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(Emissionlines[0]),4)) #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = Emissionlines[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(Emissionlines),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] #change desired lines here! line = [112,113,114,115,116,117,118,119,120,121,122,123,124,125,126] #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("More Lines 2", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('MoreLines2.pdf') plt.clf()
gpl-2.0
ycaihua/scikit-learn
sklearn/manifold/locally_linear.py
21
24928
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = np.asarray(X) Z = np.asarray(Z) n_samples, n_neighbors = X.shape[0], Z.shape[1] if X.dtype.kind == 'i': X = X.astype(np.float) if Z.dtype.kind == 'i': Z = Z.astype(np.float) B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) v0 = random_state.rand(M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None): """Perform a Locally Linear Embedding analysis on the data. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) #build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] #find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) #choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] #find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] #calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) #find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues #Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float) for i in range(N): s_i = s_range[i] #select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) #compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h #Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) #Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] #We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) #Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) #We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
jseabold/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
bnaul/scikit-learn
sklearn/preprocessing/_discretization.py
3
13192
# -*- coding: utf-8 -*- # Author: Henry Lin <[email protected]> # Tom Dupré la Tour # License: BSD import numbers import numpy as np import warnings from . import OneHotEncoder from ..base import BaseEstimator, TransformerMixin from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _deprecate_positional_args class KBinsDiscretizer(TransformerMixin, BaseEstimator): """ Bin continuous data into intervals. Read more in the :ref:`User Guide <preprocessing_discretization>`. .. versionadded:: 0.20 Parameters ---------- n_bins : int or array-like, shape (n_features,) (default=5) The number of bins to produce. Raises ValueError if ``n_bins < 2``. encode : {'onehot', 'onehot-dense', 'ordinal'}, (default='onehot') Method used to encode the transformed result. onehot Encode the transformed result with one-hot encoding and return a sparse matrix. Ignored features are always stacked to the right. onehot-dense Encode the transformed result with one-hot encoding and return a dense array. Ignored features are always stacked to the right. ordinal Return the bin identifier encoded as an integer value. strategy : {'uniform', 'quantile', 'kmeans'}, (default='quantile') Strategy used to define the widths of the bins. uniform All bins in each feature have identical widths. quantile All bins in each feature have the same number of points. kmeans Values in each bin have the same nearest center of a 1D k-means cluster. dtype : {np.float32, np.float64}, default=None The desired data-type for the output. If None, output dtype is consistent with input dtype. Only np.float32 and np.float64 are supported. Attributes ---------- n_bins_ : int array, shape (n_features,) Number of bins per feature. Bins whose width are too small (i.e., <= 1e-8) are removed with a warning. bin_edges_ : array of arrays, shape (n_features, ) The edges of each bin. Contain arrays of varying shapes ``(n_bins_, )`` Ignored features will have empty arrays. See Also -------- sklearn.preprocessing.Binarizer : Class used to bin values as ``0`` or ``1`` based on a parameter ``threshold``. Notes ----- In bin edges for feature ``i``, the first and last values are used only for ``inverse_transform``. During transform, bin edges are extended to:: np.concatenate([-np.inf, bin_edges_[i][1:-1], np.inf]) You can combine ``KBinsDiscretizer`` with :class:`~sklearn.compose.ColumnTransformer` if you only want to preprocess part of the features. ``KBinsDiscretizer`` might produce constant features (e.g., when ``encode = 'onehot'`` and certain bins do not contain any data). These features can be removed with feature selection algorithms (e.g., :class:`~sklearn.feature_selection.VarianceThreshold`). Examples -------- >>> X = [[-2, 1, -4, -1], ... [-1, 2, -3, -0.5], ... [ 0, 3, -2, 0.5], ... [ 1, 4, -1, 2]] >>> est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform') >>> est.fit(X) KBinsDiscretizer(...) >>> Xt = est.transform(X) >>> Xt # doctest: +SKIP array([[ 0., 0., 0., 0.], [ 1., 1., 1., 0.], [ 2., 2., 2., 1.], [ 2., 2., 2., 2.]]) Sometimes it may be useful to convert the data back into the original feature space. The ``inverse_transform`` function converts the binned data into the original feature space. Each value will be equal to the mean of the two bin edges. >>> est.bin_edges_[0] array([-2., -1., 0., 1.]) >>> est.inverse_transform(Xt) array([[-1.5, 1.5, -3.5, -0.5], [-0.5, 2.5, -2.5, -0.5], [ 0.5, 3.5, -1.5, 0.5], [ 0.5, 3.5, -1.5, 1.5]]) """ @_deprecate_positional_args def __init__(self, n_bins=5, encode='onehot', strategy='quantile', dtype=None): self.n_bins = n_bins self.encode = encode self.strategy = strategy self.dtype = dtype def fit(self, X, y=None): """ Fit the estimator. Parameters ---------- X : numeric array-like, shape (n_samples, n_features) Data to be discretized. y : None Ignored. This parameter exists only for compatibility with :class:`~sklearn.pipeline.Pipeline`. Returns ------- self """ X = self._validate_data(X, dtype='numeric') supported_dtype = (np.float64, np.float32) if self.dtype in supported_dtype: output_dtype = self.dtype elif self.dtype is None: output_dtype = X.dtype else: raise ValueError( f"Valid options for 'dtype' are " f"{supported_dtype + (None,)}. Got dtype={self.dtype} " f" instead." ) valid_encode = ('onehot', 'onehot-dense', 'ordinal') if self.encode not in valid_encode: raise ValueError("Valid options for 'encode' are {}. " "Got encode={!r} instead." .format(valid_encode, self.encode)) valid_strategy = ('uniform', 'quantile', 'kmeans') if self.strategy not in valid_strategy: raise ValueError("Valid options for 'strategy' are {}. " "Got strategy={!r} instead." .format(valid_strategy, self.strategy)) n_features = X.shape[1] n_bins = self._validate_n_bins(n_features) bin_edges = np.zeros(n_features, dtype=object) for jj in range(n_features): column = X[:, jj] col_min, col_max = column.min(), column.max() if col_min == col_max: warnings.warn("Feature %d is constant and will be " "replaced with 0." % jj) n_bins[jj] = 1 bin_edges[jj] = np.array([-np.inf, np.inf]) continue if self.strategy == 'uniform': bin_edges[jj] = np.linspace(col_min, col_max, n_bins[jj] + 1) elif self.strategy == 'quantile': quantiles = np.linspace(0, 100, n_bins[jj] + 1) bin_edges[jj] = np.asarray(np.percentile(column, quantiles)) elif self.strategy == 'kmeans': from ..cluster import KMeans # fixes import loops # Deterministic initialization with uniform spacing uniform_edges = np.linspace(col_min, col_max, n_bins[jj] + 1) init = (uniform_edges[1:] + uniform_edges[:-1])[:, None] * 0.5 # 1D k-means procedure km = KMeans(n_clusters=n_bins[jj], init=init, n_init=1) centers = km.fit(column[:, None]).cluster_centers_[:, 0] # Must sort, centers may be unsorted even with sorted init centers.sort() bin_edges[jj] = (centers[1:] + centers[:-1]) * 0.5 bin_edges[jj] = np.r_[col_min, bin_edges[jj], col_max] # Remove bins whose width are too small (i.e., <= 1e-8) if self.strategy in ('quantile', 'kmeans'): mask = np.ediff1d(bin_edges[jj], to_begin=np.inf) > 1e-8 bin_edges[jj] = bin_edges[jj][mask] if len(bin_edges[jj]) - 1 != n_bins[jj]: warnings.warn('Bins whose width are too small (i.e., <= ' '1e-8) in feature %d are removed. Consider ' 'decreasing the number of bins.' % jj) n_bins[jj] = len(bin_edges[jj]) - 1 self.bin_edges_ = bin_edges self.n_bins_ = n_bins if 'onehot' in self.encode: self._encoder = OneHotEncoder( categories=[np.arange(i) for i in self.n_bins_], sparse=self.encode == 'onehot', dtype=output_dtype) # Fit the OneHotEncoder with toy datasets # so that it's ready for use after the KBinsDiscretizer is fitted self._encoder.fit(np.zeros((1, len(self.n_bins_)))) return self def _validate_n_bins(self, n_features): """Returns n_bins_, the number of bins per feature. """ orig_bins = self.n_bins if isinstance(orig_bins, numbers.Number): if not isinstance(orig_bins, numbers.Integral): raise ValueError("{} received an invalid n_bins type. " "Received {}, expected int." .format(KBinsDiscretizer.__name__, type(orig_bins).__name__)) if orig_bins < 2: raise ValueError("{} received an invalid number " "of bins. Received {}, expected at least 2." .format(KBinsDiscretizer.__name__, orig_bins)) return np.full(n_features, orig_bins, dtype=int) n_bins = check_array(orig_bins, dtype=int, copy=True, ensure_2d=False) if n_bins.ndim > 1 or n_bins.shape[0] != n_features: raise ValueError("n_bins must be a scalar or array " "of shape (n_features,).") bad_nbins_value = (n_bins < 2) | (n_bins != orig_bins) violating_indices = np.where(bad_nbins_value)[0] if violating_indices.shape[0] > 0: indices = ", ".join(str(i) for i in violating_indices) raise ValueError("{} received an invalid number " "of bins at indices {}. Number of bins " "must be at least 2, and must be an int." .format(KBinsDiscretizer.__name__, indices)) return n_bins def transform(self, X): """ Discretize the data. Parameters ---------- X : numeric array-like, shape (n_samples, n_features) Data to be discretized. Returns ------- Xt : numeric array-like or sparse matrix Data in the binned space. """ check_is_fitted(self) # check input and attribute dtypes dtype = (np.float64, np.float32) if self.dtype is None else self.dtype Xt = check_array(X, copy=True, dtype=dtype) n_features = self.n_bins_.shape[0] if Xt.shape[1] != n_features: raise ValueError("Incorrect number of features. Expecting {}, " "received {}.".format(n_features, Xt.shape[1])) bin_edges = self.bin_edges_ for jj in range(Xt.shape[1]): # Values which are close to a bin edge are susceptible to numeric # instability. Add eps to X so these values are binned correctly # with respect to their decimal truncation. See documentation of # numpy.isclose for an explanation of ``rtol`` and ``atol``. rtol = 1.e-5 atol = 1.e-8 eps = atol + rtol * np.abs(Xt[:, jj]) Xt[:, jj] = np.digitize(Xt[:, jj] + eps, bin_edges[jj][1:]) np.clip(Xt, 0, self.n_bins_ - 1, out=Xt) if self.encode == 'ordinal': return Xt dtype_init = None if 'onehot' in self.encode: dtype_init = self._encoder.dtype self._encoder.dtype = Xt.dtype try: Xt_enc = self._encoder.transform(Xt) finally: # revert the initial dtype to avoid modifying self. self._encoder.dtype = dtype_init return Xt_enc def inverse_transform(self, Xt): """ Transform discretized data back to original feature space. Note that this function does not regenerate the original data due to discretization rounding. Parameters ---------- Xt : numeric array-like, shape (n_sample, n_features) Transformed data in the binned space. Returns ------- Xinv : numeric array-like Data in the original feature space. """ check_is_fitted(self) if 'onehot' in self.encode: Xt = self._encoder.inverse_transform(Xt) Xinv = check_array(Xt, copy=True, dtype=(np.float64, np.float32)) n_features = self.n_bins_.shape[0] if Xinv.shape[1] != n_features: raise ValueError("Incorrect number of features. Expecting {}, " "received {}.".format(n_features, Xinv.shape[1])) for jj in range(n_features): bin_edges = self.bin_edges_[jj] bin_centers = (bin_edges[1:] + bin_edges[:-1]) * 0.5 Xinv[:, jj] = bin_centers[np.int_(Xinv[:, jj])] return Xinv
bsd-3-clause
rohanp/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
181
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
mmottahedi/nilmtk
nilmtk/tests/test_combinatorial_optimisation.py
5
1396
#!/usr/bin/python from __future__ import print_function, division import unittest from os.path import join from os import remove import pandas as pd from datetime import timedelta from testingtools import data_dir from nilmtk.datastore import HDFDataStore from nilmtk import TimeFrame from nilmtk import DataSet, TimeFrame from nilmtk.disaggregate import CombinatorialOptimisation from nilmtk import HDFDataStore class TestCO(unittest.TestCase): @classmethod def setUpClass(cls): filename = join(data_dir(), 'co_test.h5') cls.dataset = DataSet(filename) @classmethod def tearDownClass(cls): cls.dataset.store.close() def test_co_correctness(self): elec = self.dataset.buildings[1].elec co = CombinatorialOptimisation() co.train(elec) mains = elec.mains() output = HDFDataStore('output.h5', 'w') co.disaggregate(mains, output, resample_seconds=1) for meter in range(2, 4): df1 = output.store.get('/building1/elec/meter{}'.format(meter)) df2 = self.dataset.store.store.get( '/building1/elec/meter{}'.format(meter)) self.assertEqual((df1 == df2).sum().values[0], len(df1.index)) self.assertEqual(len(df1.index), len(df2.index)) output.close() remove("output.h5") if __name__ == '__main__': unittest.main()
apache-2.0
nolanliou/tensorflow
tensorflow/contrib/distributions/python/ops/mixture.py
8
20696
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Mixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util as distribution_utils from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import categorical from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util class Mixture(distribution.Distribution): """Mixture distribution. The `Mixture` object implements batched mixture distributions. The mixture model is defined by a `Categorical` distribution (the mixture) and a python list of `Distribution` objects. Methods supported include `log_prob`, `prob`, `mean`, `sample`, and `entropy_lower_bound`. #### Examples ```python # Create a mixture of two Gaussians: tfd = tf.contrib.distributions mix = 0.3 bimix_gauss = tfd.Mixture( cat=tfd.Categorical(probs=[mix, 1.-mix]), components=[ tfd.Normal(loc=-1., scale=0.1), tfd.Normal(loc=+1., scale=0.5), ]) # Plot the PDF. import matplotlib.pyplot as plt x = tf.linspace(-2., 3., int(1e4)).eval() plt.plot(x, bimix_gauss.prob(x).eval()); ``` """ def __init__(self, cat, components, validate_args=False, allow_nan_stats=True, use_static_graph=False, name="Mixture"): """Initialize a Mixture distribution. A `Mixture` is defined by a `Categorical` (`cat`, representing the mixture probabilities) and a list of `Distribution` objects all having matching dtype, batch shape, event shape, and continuity properties (the components). The `num_classes` of `cat` must be possible to infer at graph construction time and match `len(components)`. Args: cat: A `Categorical` distribution instance, representing the probabilities of `distributions`. components: A list or tuple of `Distribution` instances. Each instance must have the same type, be defined on the same domain, and have matching `event_shape` and `batch_shape`. validate_args: Python `bool`, default `False`. If `True`, raise a runtime error if batch or event ranks are inconsistent between cat and any of the distributions. This is only checked if the ranks cannot be determined statically at graph construction time. allow_nan_stats: Boolean, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. use_static_graph: Calls to `sample` will not rely on dynamic tensor indexing, allowing for some static graph compilation optimizations, but at the expense of sampling all underlying distributions in the mixture. (Possibly useful when running on TPUs). Default value: `False` (i.e., use dynamic indexing). name: A name for this distribution (optional). Raises: TypeError: If cat is not a `Categorical`, or `components` is not a list or tuple, or the elements of `components` are not instances of `Distribution`, or do not have matching `dtype`. ValueError: If `components` is an empty list or tuple, or its elements do not have a statically known event rank. If `cat.num_classes` cannot be inferred at graph creation time, or the constant value of `cat.num_classes` is not equal to `len(components)`, or all `components` and `cat` do not have matching static batch shapes, or all components do not have matching static event shapes. """ parameters = locals() if not isinstance(cat, categorical.Categorical): raise TypeError("cat must be a Categorical distribution, but saw: %s" % cat) if not components: raise ValueError("components must be a non-empty list or tuple") if not isinstance(components, (list, tuple)): raise TypeError("components must be a list or tuple, but saw: %s" % components) if not all(isinstance(c, distribution.Distribution) for c in components): raise TypeError( "all entries in components must be Distribution instances" " but saw: %s" % components) dtype = components[0].dtype if not all(d.dtype == dtype for d in components): raise TypeError("All components must have the same dtype, but saw " "dtypes: %s" % [(d.name, d.dtype) for d in components]) static_event_shape = components[0].event_shape static_batch_shape = cat.batch_shape for d in components: static_event_shape = static_event_shape.merge_with(d.event_shape) static_batch_shape = static_batch_shape.merge_with(d.batch_shape) if static_event_shape.ndims is None: raise ValueError( "Expected to know rank(event_shape) from components, but " "none of the components provide a static number of ndims") # Ensure that all batch and event ndims are consistent. with ops.name_scope(name, values=[cat.logits]): num_components = cat.event_size static_num_components = tensor_util.constant_value(num_components) if static_num_components is None: raise ValueError( "Could not infer number of classes from cat and unable " "to compare this value to the number of components passed in.") # Possibly convert from numpy 0-D array. static_num_components = int(static_num_components) if static_num_components != len(components): raise ValueError("cat.num_classes != len(components): %d vs. %d" % (static_num_components, len(components))) cat_batch_shape = cat.batch_shape_tensor() cat_batch_rank = array_ops.size(cat_batch_shape) if validate_args: batch_shapes = [d.batch_shape_tensor() for d in components] batch_ranks = [array_ops.size(bs) for bs in batch_shapes] check_message = ("components[%d] batch shape must match cat " "batch shape") self._assertions = [ check_ops.assert_equal( cat_batch_rank, batch_ranks[di], message=check_message % di) for di in range(len(components)) ] self._assertions += [ check_ops.assert_equal( cat_batch_shape, batch_shapes[di], message=check_message % di) for di in range(len(components)) ] else: self._assertions = [] self._cat = cat self._components = list(components) self._num_components = static_num_components self._static_event_shape = static_event_shape self._static_batch_shape = static_batch_shape self._use_static_graph = use_static_graph if use_static_graph and static_num_components is None: raise ValueError("Number of categories must be known statically when " "`static_sample=True`.") # We let the Mixture distribution access _graph_parents since its arguably # more like a baseclass. graph_parents = self._cat._graph_parents # pylint: disable=protected-access for c in self._components: graph_parents += c._graph_parents # pylint: disable=protected-access super(Mixture, self).__init__( dtype=dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=graph_parents, name=name) @property def cat(self): return self._cat @property def components(self): return self._components @property def num_components(self): return self._num_components def _batch_shape_tensor(self): return self._cat.batch_shape_tensor() def _batch_shape(self): return self._static_batch_shape def _event_shape_tensor(self): return self._components[0].event_shape_tensor() def _event_shape(self): return self._static_event_shape def _expand_to_event_rank(self, x): """Expand the rank of x up to static_event_rank times for broadcasting. The static event rank was checked to not be None at construction time. Args: x: A tensor to expand. Returns: The expanded tensor. """ expanded_x = x for _ in range(self.event_shape.ndims): expanded_x = array_ops.expand_dims(expanded_x, -1) return expanded_x def _mean(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] cat_probs = self._cat_probs(log_probs=False) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] partial_means = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_means) ] # These should all be the same shape by virtue of matching # batch_shape and event_shape. return math_ops.add_n(partial_means) def _stddev(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] distribution_devs = [d.stddev() for d in self.components] cat_probs = self._cat_probs(log_probs=False) stacked_means = array_ops.stack(distribution_means, axis=-1) stacked_devs = array_ops.stack(distribution_devs, axis=-1) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] broadcasted_cat_probs = (array_ops.stack(cat_probs, axis=-1) * array_ops.ones_like(stacked_means)) batched_dev = distribution_utils.mixture_stddev( array_ops.reshape(broadcasted_cat_probs, [-1, len(self.components)]), array_ops.reshape(stacked_means, [-1, len(self.components)]), array_ops.reshape(stacked_devs, [-1, len(self.components)])) # I.e. re-shape to list(batch_shape) + list(event_shape). return array_ops.reshape(batched_dev, array_ops.shape(broadcasted_cat_probs)[:-1]) def _log_prob(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_probs = [d.log_prob(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_probs = [ cat_lp + d_lp for (cat_lp, d_lp) in zip(cat_log_probs, distribution_log_probs) ] concat_log_probs = array_ops.stack(final_log_probs, 0) log_sum_exp = math_ops.reduce_logsumexp(concat_log_probs, [0]) return log_sum_exp def _log_cdf(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_cdfs = [d.log_cdf(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_cdfs = [ cat_lp + d_lcdf for (cat_lp, d_lcdf) in zip(cat_log_probs, distribution_log_cdfs) ] concatted_log_cdfs = array_ops.stack(final_log_cdfs, axis=0) mixture_log_cdf = math_ops.reduce_logsumexp(concatted_log_cdfs, [0]) return mixture_log_cdf def _sample_n(self, n, seed=None): if self._use_static_graph: # This sampling approach is almost the same as the approach used by # `MixtureSameFamily`. The differences are due to having a list of # `Distribution` objects rather than a single object, and maintaining # random seed management that is consistent with the non-static code path. samples = [] cat_samples = self.cat.sample(n, seed=seed) for c in range(self.num_components): seed = distribution_util.gen_new_seed(seed, "mixture") samples.append(self.components[c].sample(n, seed=seed)) x = array_ops.stack( samples, -self._static_event_shape.ndims - 1) # [n, B, k, E] npdt = x.dtype.as_numpy_dtype mask = array_ops.one_hot( indices=cat_samples, # [n, B] depth=self._num_components, # == k on_value=np.ones([], dtype=npdt), off_value=np.zeros([], dtype=npdt)) # [n, B, k] mask = distribution_utils.pad_mixture_dimensions( mask, self, self._cat, self._static_event_shape.ndims) # [n, B, k, [1]*e] return math_ops.reduce_sum( x * mask, axis=-1 - self._static_event_shape.ndims) # [n, B, E] with ops.control_dependencies(self._assertions): n = ops.convert_to_tensor(n, name="n") static_n = tensor_util.constant_value(n) n = int(static_n) if static_n is not None else n cat_samples = self.cat.sample(n, seed=seed) static_samples_shape = cat_samples.get_shape() if static_samples_shape.is_fully_defined(): samples_shape = static_samples_shape.as_list() samples_size = static_samples_shape.num_elements() else: samples_shape = array_ops.shape(cat_samples) samples_size = array_ops.size(cat_samples) static_batch_shape = self.batch_shape if static_batch_shape.is_fully_defined(): batch_shape = static_batch_shape.as_list() batch_size = static_batch_shape.num_elements() else: batch_shape = self.batch_shape_tensor() batch_size = math_ops.reduce_prod(batch_shape) static_event_shape = self.event_shape if static_event_shape.is_fully_defined(): event_shape = np.array(static_event_shape.as_list(), dtype=np.int32) else: event_shape = self.event_shape_tensor() # Get indices into the raw cat sampling tensor. We will # need these to stitch sample values back out after sampling # within the component partitions. samples_raw_indices = array_ops.reshape( math_ops.range(0, samples_size), samples_shape) # Partition the raw indices so that we can use # dynamic_stitch later to reconstruct the samples from the # known partitions. partitioned_samples_indices = data_flow_ops.dynamic_partition( data=samples_raw_indices, partitions=cat_samples, num_partitions=self.num_components) # Copy the batch indices n times, as we will need to know # these to pull out the appropriate rows within the # component partitions. batch_raw_indices = array_ops.reshape( array_ops.tile(math_ops.range(0, batch_size), [n]), samples_shape) # Explanation of the dynamic partitioning below: # batch indices are i.e., [0, 1, 0, 1, 0, 1] # Suppose partitions are: # [1 1 0 0 1 1] # After partitioning, batch indices are cut as: # [batch_indices[x] for x in 2, 3] # [batch_indices[x] for x in 0, 1, 4, 5] # i.e. # [1 1] and [0 0 0 0] # Now we sample n=2 from part 0 and n=4 from part 1. # For part 0 we want samples from batch entries 1, 1 (samples 0, 1), # and for part 1 we want samples from batch entries 0, 0, 0, 0 # (samples 0, 1, 2, 3). partitioned_batch_indices = data_flow_ops.dynamic_partition( data=batch_raw_indices, partitions=cat_samples, num_partitions=self.num_components) samples_class = [None for _ in range(self.num_components)] for c in range(self.num_components): n_class = array_ops.size(partitioned_samples_indices[c]) seed = distribution_util.gen_new_seed(seed, "mixture") samples_class_c = self.components[c].sample(n_class, seed=seed) # Pull out the correct batch entries from each index. # To do this, we may have to flatten the batch shape. # For sample s, batch element b of component c, we get the # partitioned batch indices from # partitioned_batch_indices[c]; and shift each element by # the sample index. The final lookup can be thought of as # a matrix gather along locations (s, b) in # samples_class_c where the n_class rows correspond to # samples within this component and the batch_size columns # correspond to batch elements within the component. # # Thus the lookup index is # lookup[c, i] = batch_size * s[i] + b[c, i] # for i = 0 ... n_class[c] - 1. lookup_partitioned_batch_indices = ( batch_size * math_ops.range(n_class) + partitioned_batch_indices[c]) samples_class_c = array_ops.reshape( samples_class_c, array_ops.concat([[n_class * batch_size], event_shape], 0)) samples_class_c = array_ops.gather( samples_class_c, lookup_partitioned_batch_indices, name="samples_class_c_gather") samples_class[c] = samples_class_c # Stitch back together the samples across the components. lhs_flat_ret = data_flow_ops.dynamic_stitch( indices=partitioned_samples_indices, data=samples_class) # Reshape back to proper sample, batch, and event shape. ret = array_ops.reshape(lhs_flat_ret, array_ops.concat([samples_shape, self.event_shape_tensor()], 0)) ret.set_shape( tensor_shape.TensorShape(static_samples_shape).concatenate( self.event_shape)) return ret def entropy_lower_bound(self, name="entropy_lower_bound"): r"""A lower bound on the entropy of this mixture model. The bound below is not always very tight, and its usefulness depends on the mixture probabilities and the components in use. A lower bound is useful for ELBO when the `Mixture` is the variational distribution: \\( \log p(x) >= ELBO = \int q(z) \log p(x, z) dz + H[q] \\) where \\( p \\) is the prior distribution, \\( q \\) is the variational, and \\( H[q] \\) is the entropy of \\( q \\). If there is a lower bound \\( G[q] \\) such that \\( H[q] \geq G[q] \\) then it can be used in place of \\( H[q] \\). For a mixture of distributions \\( q(Z) = \sum_i c_i q_i(Z) \\) with \\( \sum_i c_i = 1 \\), by the concavity of \\( f(x) = -x \log x \\), a simple lower bound is: \\( \begin{align} H[q] & = - \int q(z) \log q(z) dz \\\ & = - \int (\sum_i c_i q_i(z)) \log(\sum_i c_i q_i(z)) dz \\\ & \geq - \sum_i c_i \int q_i(z) \log q_i(z) dz \\\ & = \sum_i c_i H[q_i] \end{align} \\) This is the term we calculate below for \\( G[q] \\). Args: name: A name for this operation (optional). Returns: A lower bound on the Mixture's entropy. """ with self._name_scope(name, values=[self.cat.logits]): with ops.control_dependencies(self._assertions): distribution_entropies = [d.entropy() for d in self.components] cat_probs = self._cat_probs(log_probs=False) partial_entropies = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_entropies) ] # These are all the same shape by virtue of matching batch_shape return math_ops.add_n(partial_entropies) def _cat_probs(self, log_probs): """Get a list of num_components batchwise probabilities.""" which_softmax = nn_ops.log_softmax if log_probs else nn_ops.softmax cat_probs = which_softmax(self.cat.logits) cat_probs = array_ops.unstack(cat_probs, num=self.num_components, axis=-1) return cat_probs
apache-2.0
Barmaley-exe/scikit-learn
sklearn/linear_model/logistic.py
3
55888
""" Logistic Regression """ # Author: Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Manoj Kumar <[email protected]> # Lars Buitinck # Simon Wu <[email protected]> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, squared_norm) from ..utils.optimize import newton_cg from ..utils.validation import (as_float_array, DataConversionWarning, check_X_y) from ..utils.fixes import expit from ..externals.joblib import Parallel, delayed from ..cross_validation import _check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c return w, c, y * z def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ _, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_loss_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the logistic loss, gradient and the Hessian. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return out, grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_loss_grad_hess(w, X, Y, alpha, sample_weight): """ Provides multinomial loss, gradient, and a function for computing hessian vector product. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : ndarray, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return loss, grad, hessp def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=True, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr'): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when logistic_regression_path is called repeatedly with the same data, as y is modified along the path. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. Notes ----- You might get slighly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class can be either 'multinomial' or 'ovr'" "got %s" % multi_class) if solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg and lbfgs solvers. got %s" % solver) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s cannot solve problems with " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("newton-cg and lbfgs solvers support only " "l2 penalties, got %s penalty." % penalty) if dual: raise ValueError("newton-cg and lbfgs solvers support only " "dual=False, got dual=%s" % dual) # Preprocessing. X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) _, n_features = X.shape check_consistent_length(X, y) classes = np.unique(y) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "auto", then # the class_weights are assigned after masking the labels with a OvR. sample_weight = np.ones(X.shape[0]) le = LabelEncoder() if isinstance(class_weight, dict): if solver == "liblinear": if classes.size == 2: # Reconstruct the weights with keys 1 and -1 temp = {1: class_weight[pos_class], -1: class_weight[classes[0]]} class_weight = temp.copy() else: raise ValueError("In LogisticRegressionCV the liblinear " "solver cannot handle multiclass with " "class_weight of type dict. Use the lbfgs, " "newton-cg solvers or set " "class_weight='auto'") else: class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight = class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = [-1, 1] mask = (y == pos_class) y[mask] = 1 y[~mask] = -1 # To take care of object dtypes, i.e 1 and -1 are in the form of # strings. y = as_float_array(y, copy=False) else: lbin = LabelBinarizer() Y_bin = lbin.fit_transform(y) if Y_bin.shape[1] == 1: Y_bin = np.hstack([1 - Y_bin, Y_bin]) w0 = np.zeros((Y_bin.shape[1], n_features + int(fit_intercept)), order='F') mask_classes = classes if class_weight == "auto": class_weight_ = compute_class_weight(class_weight, mask_classes, y) sample_weight = class_weight_[le.fit_transform(y)] if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size) ) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_vectors = classes.size if n_vectors == 2: n_vectors = 1 if (coef.shape[0] != n_vectors or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1 ) ) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. w0 = w0.ravel() target = Y_bin if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_loss_grad_hess else: target = y if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_loss_grad_hess coefs = list() for C in Cs: if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter ) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol ) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0 = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, _, = _fit_liblinear( X, y, C, fit_intercept, intercept_scaling, class_weight, penalty, dual, verbose, max_iter, tol, ) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0) return coefs, np.array(Cs) # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, copy=True, intercept_scaling=1., multi_class='ovr'): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. copy : bool, default True Whether or not to produce a copy of the data. Setting this to True will be useful in cases, when ``_log_reg_scoring_path`` is called repeatedly with the same data, as y is modified along the path. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. """ log_reg = LogisticRegression(fit_intercept=fit_intercept) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test[mask] = 1 y_test[~mask] = -1 # To deal with object dtypes, we need to convert into an array of floats. y_test = as_float_array(y_test, copy=False) coefs, Cs = logistic_regression_path(X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, copy=copy, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores) class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr' and uses the cross-entropy loss, if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs' and 'newton-cg' solvers.) This class implements regularized logistic regression using the `liblinear` library, newton-cg and lbfgs solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Parameters ---------- penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, optional (default=1.0) Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. intercept_scaling : float, default: 1 Useful only if solver is liblinear. when self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. max_iter : int Useful only for the newton-cg and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : int Maximum of the actual number of iterations across all classes. Valid only for the liblinear solver. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf See also -------- sklearn.linear_model.SGDClassifier """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") self.classes_ = np.unique(y) if self.solver not in ['liblinear', 'newton-cg', 'lbfgs']: raise ValueError( "Logistic Regression supports only liblinear, newton-cg and " "lbfgs solvers, Got solver=%s" % self.solver ) if self.solver == 'liblinear' and self.multi_class == 'multinomial': raise ValueError("Solver %s does not support a multinomial " "backend." % self.solver) if self.multi_class not in ['ovr', 'multinomial']: raise ValueError("multi_class should be either ovr or multinomial " "got %s" % self.multi_class) if self.solver == 'liblinear': self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol ) return self n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] for ind, class_ in enumerate(classes_): coef_, _ = logistic_regression_path( X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight) self.coef_.append(coef_[0]) self.coef_ = np.squeeze(self.coef_) # For the binary case, this get squeezed to a 1-D array. if self.coef_.ndim == 1: self.coef_ = self.coef_[np.newaxis, :] self.coef_ = np.asarray(self.coef_) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return self._predict_proba_lr(X) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg or LBFGS optimizer. The newton-cg and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so in general it is supposed to be faster. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added the decision function. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.cross_validation` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The newton-cg and lbfgs solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear'} Algorithm to use in the optimization problem. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. class_weight : {dict, 'auto'}, optional Over-/undersamples the samples of each class according to the given weights. If not given, all classes are supposed to have weight one. The 'auto' mode selects weights inversely proportional to class frequencies in the training set. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' solver. intercept_scaling : float, default 1. Useful only if solver is liblinear. This parameter is useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr'): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. Returns ------- self : object Returns self. """ if self.solver != 'liblinear': if self.penalty != 'l2': raise ValueError("newton-cg and lbfgs solvers support only " "l2 penalties.") if self.dual: raise ValueError("newton-cg and lbfgs solvers support only " "the primal form.") X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, dtype=None) if self.multi_class not in ['ovr', 'multinomial']: raise ValueError("multi_class backend should be either " "'ovr' or 'multinomial'" " got %s" % self.multi_class) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning ) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = _check_cv(self.cv, X, y, classifier=True) folds = list(cv) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight == 'auto'): raise ValueError("class_weight provided should be a " "dict or 'auto'") path_func = delayed(_log_reg_scoring_path) fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=self.class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] else: coefs_paths, Cs, scores = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, class_weight=self.class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1)) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([ coefs_paths[i][best_indices[i]] for i in range(len(folds)) ], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
jcrudy/sklearntools
sklearntools/sym/adapters/isotonic_regression.py
1
3641
import bisect from nose.tools import assert_almost_equal from sympy.core.numbers import RealNumber from sympy.functions.elementary.piecewise import Piecewise from sklearntools.sym.syms import syms, register_syms from sklearntools.sym.base import NAN from sympy.core.symbol import Symbol from sklearntools.sym.printers import model_to_code, exec_module from sklearntools.sym.sym_predict import register_sym_predict from sklearn.isotonic import IsotonicRegression from numpy.testing.utils import assert_array_almost_equal import numpy as np from ..input_size import register_input_size @register_syms(IsotonicRegression) def syms_isotonic_regression(estimator): return [Symbol('x')] @register_input_size(IsotonicRegression) def input_size_isotonic_regression(estimator): return 1 def sym_linear_interp(variable, lower_x, upper_x, lower_y, upper_y): slope = RealNumber((upper_y - lower_y) / (upper_x - lower_x)) return slope * (variable - RealNumber(lower_x)) + RealNumber(lower_y) @register_sym_predict(IsotonicRegression) def sym_predict_isotonic_regression(estimator): variable = syms(estimator)[0] pieces = [] try: x_upper = estimator.f_.x[0] y_upper = estimator.f_.y[0] except AttributeError: return RealNumber(estimator.f_(np.array([0.]))[0]) i = 0 n = len(estimator.f_.x) if estimator.out_of_bounds == 'clip': pieces.append((y_upper, variable < RealNumber(x_upper))) elif estimator.out_of_bounds == 'nan': pieces.append((NAN(), variable < RealNumber(x_upper))) else: raise ValueError('out_of_bounds=%s not supported.' % estimator.out_of_bounds) while i < (n-1): i += 1 x_lower = x_upper y_lower = y_upper x_upper = estimator.f_.x[i] y_upper = estimator.f_.y[i] pieces.append((sym_linear_interp(variable, x_lower, x_upper, y_lower, y_upper), (RealNumber(x_lower) <= variable) & (variable <= RealNumber(x_upper)))) if estimator.out_of_bounds == 'clip': pieces.append((y_upper, variable >= RealNumber(x_upper))) elif estimator.out_of_bounds == 'nan': pieces.append((NAN(), variable > RealNumber(x_upper))) else: raise ValueError('out_of_bounds=%s not supported.' % estimator.out_of_bounds) return Piecewise(*pieces) def predict_isotonic(estimator, value): i = bisect.bisect(estimator.f_.x, value) if i == 0: return estimator.f_.y[0] elif i>=len(estimator.f_.y): return estimator.f_.y[-1] else: lower_y = estimator.f_.y[i-1] upper_y = estimator.f_.y[i] lower_x = estimator.f_.x[i-1] upper_x = estimator.f_.x[i] slope = (upper_y - lower_y) / (upper_x - lower_x) return lower_y + slope * (value - lower_x) # if __name__ == '__main__': # from sklearntools.calibration import IsotonicRegressor # import numpy as np # X = np.random.normal(size=1000) + 100 # y = np.random.normal(X ** 2, .1) # estimator = IsotonicRegressor(out_of_bounds='clip').fit(X, y) # for v in np.arange(-10,10,.1): # assert_almost_equal(predict_isotonic(estimator, v), estimator.predict([v])[0]) # # code = model_to_code(estimator, 'numpy', 'predict', 'test_model') # numpy_test_module = exec_module('numpy_test_module', code) # y_pred_numpy = numpy_test_module.test_model(x=np.ravel(np.asarray(X))) # y_pred = estimator.predict(np.ravel(np.asarray(X))) # y_pred_test = [predict_isotonic(estimator, v) for v in X] # assert_array_almost_equal(np.ravel(y_pred_numpy), np.ravel(y_pred)) # print('Success!') #
bsd-3-clause
pratapvardhan/scikit-learn
sklearn/linear_model/passive_aggressive.py
60
10566
# Authors: Rob Zinkov, Mathieu Blondel # License: BSD 3 clause from .stochastic_gradient import BaseSGDClassifier from .stochastic_gradient import BaseSGDRegressor from .stochastic_gradient import DEFAULT_EPSILON class PassiveAggressiveClassifier(BaseSGDClassifier): """Passive Aggressive Classifier Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. fit_intercept : bool, default=False Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. loss : string, optional The loss function to be used: hinge: equivalent to PA-I in the reference paper. squared_hinge: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` .. versionadded:: 0.17 parameter *class_weight* to automatically weight samples. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDClassifier Perceptron References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="hinge", n_jobs=1, random_state=None, warm_start=False, class_weight=None): super(PassiveAggressiveClassifier, self).__init__( penalty=None, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, eta0=1.0, warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs) self.C = C self.loss = loss def partial_fit(self, X, y, classes=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of the training data y : numpy array of shape [n_samples] Subset of the target values classes : array, shape = [n_classes] Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. Returns ------- self : returns an instance of self. """ if self.class_weight == 'balanced': raise ValueError("class_weight 'balanced' is not supported for " "partial_fit. For 'balanced' weights, use " "`sklearn.utils.compute_class_weight` with " "`class_weight='balanced'`. In place of y you " "can use a large enough subset of the full " "training set target to properly estimate the " "class frequency distributions. Pass the " "resulting weights as the class_weight " "parameter.") lr = "pa1" if self.loss == "hinge" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, n_iter=1, classes=classes, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_classes,n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [n_classes] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "hinge" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="hinge", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init) class PassiveAggressiveRegressor(BaseSGDRegressor): """Passive Aggressive Regressor Read more in the :ref:`User Guide <passive_aggressive>`. Parameters ---------- C : float Maximum step size (regularization). Defaults to 1.0. epsilon : float If the difference between the current prediction and the correct label is below this threshold, the model is not updated. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). Defaults to 5. shuffle : bool, default=True Whether or not the training data should be shuffled after each epoch. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level loss : string, optional The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Attributes ---------- coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes,\ n_features] Weights assigned to the features. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- SGDRegressor References ---------- Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006) """ def __init__(self, C=1.0, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, loss="epsilon_insensitive", epsilon=DEFAULT_EPSILON, random_state=None, warm_start=False): super(PassiveAggressiveRegressor, self).__init__( penalty=None, l1_ratio=0, epsilon=epsilon, eta0=1.0, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, random_state=random_state, warm_start=warm_start) self.C = C self.loss = loss def partial_fit(self, X, y): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Subset of training data y : numpy array of shape [n_samples] Subset of target values Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._partial_fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, n_iter=1, sample_weight=None, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None): """Fit linear model with Passive Aggressive algorithm. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : numpy array of shape [n_samples] Target values coef_init : array, shape = [n_features] The initial coefficients to warm-start the optimization. intercept_init : array, shape = [1] The initial intercept to warm-start the optimization. Returns ------- self : returns an instance of self. """ lr = "pa1" if self.loss == "epsilon_insensitive" else "pa2" return self._fit(X, y, alpha=1.0, C=self.C, loss="epsilon_insensitive", learning_rate=lr, coef_init=coef_init, intercept_init=intercept_init)
bsd-3-clause
henridwyer/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
sunyihuan326/DeltaLab
shuwei_fengge/practice_five/model/main.py
1
2519
# coding:utf-8 ''' Created on 2018/1/15. @author: chk01 ''' from shuwei_fengge.practice_two.load_data.utils import * from PIL import Image, ImageDraw import tensorflow as tf import matplotlib.pyplot as plt def get_face_box(points): X = points[:, 0] Y = points[:, 1] min_x = min(X) max_x = max(X) min_y = min(Y) max_y = max(Y) wid = max(max_y - min_y, max_x - min_x) wid = 1.8 * wid new_x = min_x - (wid - (max_x - min_x)) // 2 new_y = min_y - (wid - (max_y - min_y)) // 2 p = 0.2 region = [new_x, new_y - p * wid, new_x + wid, new_y + (1 - p) * wid] return region, wid def main(): img_path = '7.jpg' image = Image.open(img_path).convert("L") points = get_landmark72(img_path) region, width = get_face_box(points) new_x = region[0] new_y = region[1] res = np.array(image.crop(region).resize([64, 64])) tt = np.squeeze(predict(res)).reshape(-1, 2) * width / 64 + [new_x, new_y] plt.scatter(points[:, 0], -points[:, 1]) plt.scatter(tt[:, 0], -tt[:, 1]) plt.axis('equal') plt.show() drawSurface = ImageDraw.Draw(image) landmark72 = tuple(tuple(t) for t in tt) rr = tuple(tuple(t) for t in points) drawSurface.line(rr[:13], fill=255, width=5) # drawSurface.polygon([landmark72[2:5],landmark72[-3]], fill=255) drawSurface.line(landmark72, fill=255,width=5) image.save(img_path.replace('.jpg', 'res.png')) image.show() def predict(trX): # file = '../data/face_top_9.mat' # data = scio.loadmat(file) tf.reset_default_graph() # graph saver = tf.train.import_meta_graph("save/model-2000-2.ckpt.meta") # value # a = tf.train.NewCheckpointReader('save/model.ckpt.index') # saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, "save/model-2000-2.ckpt") graph = tf.get_default_graph() predict_op = graph.get_tensor_by_name("output/BiasAdd:0") X = graph.get_tensor_by_name("Placeholder:0") # dp = graph.get_tensor_by_name("Placeholder_2:0") resY = predict_op.eval({X: trX.reshape(1, -1) / 255.}) # resY=[[31,10]] print(resY) # resY = [[14.34780979, 32.37727928, 17.39715767, 22.06736565, 23.70981216, # 17.21895123, 29.31753731, 16.67663288, 31.93413925, 14.36086273, # 48.92932129, 29.01085472, 45.96300888, 21.74747467, 42.84361649, # 17.86888313, 34.78334045, 14.6940918]] return resY if __name__ == '__main__': main()
mit
bretttegart/treadmill
lib/python/treadmill/cli/scheduler/__init__.py
1
2585
"""Top level command for Treadmill reports. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import json import click import pandas as pd import tabulate from six.moves import urllib_parse from treadmill import cli from treadmill import context from treadmill import plugin_manager from treadmill import restclient def fetch_report(cell_api, report_type, match=None, partition=None): """Fetch a report of the given type and return it as a DataFrame.""" api_urls = context.GLOBAL.cell_api(cell_api) path = '/scheduler/{}'.format(report_type) query = {} if match: query['match'] = match if partition: query['partition'] = partition if query: path += '?' + urllib_parse.urlencode(query) response = restclient.get(api_urls, path).json() return pd.DataFrame(response['data'], columns=response['columns']) def print_report(frame): """Pretty-print the report.""" if cli.OUTPUT_FORMAT is None: frame.replace(True, ' ', inplace=True) frame.replace(False, 'X', inplace=True) dict_ = frame.to_dict(orient='split') del dict_['index'] cli.out( tabulate.tabulate( dict_['data'], dict_['columns'], tablefmt='simple' ) ) cli.echo_green('\nX: designates the factor that prohibits scheduling ' 'the instance on the given server') elif cli.OUTPUT_FORMAT == 'yaml': fmt = plugin_manager.load('treadmill.formatters', 'yaml') cli.out(fmt.format(frame.to_dict(orient='records'))) elif cli.OUTPUT_FORMAT == 'json': cli.out(frame.to_json(orient='records')) elif cli.OUTPUT_FORMAT == 'csv': cli.out(frame.to_csv(index=False)) else: cli.out(tabulate.tabulate(frame, frame.columns, tablefmt='simple')) def init(): """Return top level command handler.""" @click.group(cls=cli.make_commands(__name__)) @click.option( '--cell', help='Treadmill cell', envvar='TREADMILL_CELL', callback=cli.handle_context_opt, expose_value=False, required=True ) @click.option( '--api', help='Cell API URL', metavar='URL', envvar='TREADMILL_CELLAPI' ) @click.pass_context def run(ctx, api): """Report scheduler state.""" if not ctx.obj: ctx.obj = {} # Doesn't seem to exist in testing ctx.obj['api'] = api return run
apache-2.0
daodaoliang/neural-network-animation
matplotlib/tests/test_backend_pdf.py
10
2894
# -*- encoding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import six import io import os import numpy as np from matplotlib import cm, rcParams from matplotlib import pyplot as plt from matplotlib.testing.decorators import (image_comparison, knownfailureif, cleanup) if 'TRAVIS' not in os.environ: @image_comparison(baseline_images=['pdf_use14corefonts'], extensions=['pdf']) def test_use14corefonts(): rcParams['pdf.use14corefonts'] = True rcParams['font.family'] = 'sans-serif' rcParams['font.size'] = 8 rcParams['font.sans-serif'] = ['Helvetica'] rcParams['pdf.compression'] = 0 text = '''A three-line text positioned just above a blue line and containing some French characters and the euro symbol: "Merci pépé pour les 10 €"''' @cleanup def test_type42(): rcParams['pdf.fonttype'] = 42 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(io.BytesIO()) @cleanup def test_multipage_pagecount(): from matplotlib.backends.backend_pdf import PdfPages with PdfPages(io.BytesIO()) as pdf: assert pdf.get_pagecount() == 0 fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) fig.savefig(pdf, format="pdf") assert pdf.get_pagecount() == 1 pdf.savefig() assert pdf.get_pagecount() == 2 @cleanup def test_multipage_keep_empty(): from matplotlib.backends.backend_pdf import PdfPages from tempfile import NamedTemporaryFile ### test empty pdf files # test that an empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name assert os.path.exists(filename) os.remove(filename) # test if an empty pdf is deleting itself afterwards with keep_empty=False with PdfPages(filename, keep_empty=False) as pdf: pass assert not os.path.exists(filename) ### test pdf files with content, they should never be deleted fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, 2, 3]) # test that a non-empty pdf is left behind with keep_empty=True (default) with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename) # test that a non-empty pdf is left behind with keep_empty=False with NamedTemporaryFile(delete=False) as tmp: with PdfPages(tmp, keep_empty=False) as pdf: filename = pdf._file.fh.name pdf.savefig() assert os.path.exists(filename) os.remove(filename)
mit
ryfeus/lambda-packs
Pandas_numpy/source/pandas/io/parquet.py
1
8906
""" parquet compat """ from warnings import catch_warnings from distutils.version import LooseVersion from pandas import DataFrame, RangeIndex, Int64Index, get_option from pandas.compat import string_types from pandas.core.common import AbstractMethodError from pandas.io.common import get_filepath_or_buffer def get_engine(engine): """ return our implementation """ if engine == 'auto': engine = get_option('io.parquet.engine') if engine == 'auto': # try engines in this order try: return PyArrowImpl() except ImportError: pass try: return FastParquetImpl() except ImportError: pass raise ImportError("Unable to find a usable engine; " "tried using: 'pyarrow', 'fastparquet'.\n" "pyarrow or fastparquet is required for parquet " "support") if engine not in ['pyarrow', 'fastparquet']: raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") if engine == 'pyarrow': return PyArrowImpl() elif engine == 'fastparquet': return FastParquetImpl() class BaseImpl(object): api = None # module @staticmethod def validate_dataframe(df): if not isinstance(df, DataFrame): raise ValueError("to_parquet only supports IO with DataFrames") # must have value column names (strings only) if df.columns.inferred_type not in {'string', 'unicode'}: raise ValueError("parquet must have string column names") # index level names must be strings valid_names = all( isinstance(name, string_types) for name in df.index.names if name is not None ) if not valid_names: raise ValueError("Index level names must be strings") def write(self, df, path, compression, **kwargs): raise AbstractMethodError(self) def read(self, path, columns=None, **kwargs): raise AbstractMethodError(self) class PyArrowImpl(BaseImpl): def __init__(self): # since pandas is a dependency of pyarrow # we need to import on first use try: import pyarrow import pyarrow.parquet except ImportError: raise ImportError( "pyarrow is required for parquet support\n\n" "you can install via conda\n" "conda install pyarrow -c conda-forge\n" "\nor via pip\n" "pip install -U pyarrow\n" ) if LooseVersion(pyarrow.__version__) < '0.4.1': raise ImportError( "pyarrow >= 0.4.1 is required for parquet support\n\n" "you can install via conda\n" "conda install pyarrow -c conda-forge\n" "\nor via pip\n" "pip install -U pyarrow\n" ) self._pyarrow_lt_060 = ( LooseVersion(pyarrow.__version__) < LooseVersion('0.6.0')) self._pyarrow_lt_070 = ( LooseVersion(pyarrow.__version__) < LooseVersion('0.7.0')) self.api = pyarrow def write(self, df, path, compression='snappy', coerce_timestamps='ms', **kwargs): self.validate_dataframe(df) if self._pyarrow_lt_070: self._validate_write_lt_070(df) path, _, _ = get_filepath_or_buffer(path) if self._pyarrow_lt_060: table = self.api.Table.from_pandas(df, timestamps_to_ms=True) self.api.parquet.write_table( table, path, compression=compression, **kwargs) else: table = self.api.Table.from_pandas(df) self.api.parquet.write_table( table, path, compression=compression, coerce_timestamps=coerce_timestamps, **kwargs) def read(self, path, columns=None, **kwargs): path, _, _ = get_filepath_or_buffer(path) if self._pyarrow_lt_070: return self.api.parquet.read_pandas(path, columns=columns, **kwargs).to_pandas() kwargs['use_pandas_metadata'] = True return self.api.parquet.read_table(path, columns=columns, **kwargs).to_pandas() def _validate_write_lt_070(self, df): # Compatibility shim for pyarrow < 0.7.0 # TODO: Remove in pandas 0.22.0 from pandas.core.indexes.multi import MultiIndex if isinstance(df.index, MultiIndex): msg = ( "Multi-index DataFrames are only supported " "with pyarrow >= 0.7.0" ) raise ValueError(msg) # Validate index if not isinstance(df.index, Int64Index): msg = ( "pyarrow < 0.7.0 does not support serializing {} for the " "index; you can .reset_index() to make the index into " "column(s), or install the latest version of pyarrow or " "fastparquet." ) raise ValueError(msg.format(type(df.index))) if not df.index.equals(RangeIndex(len(df))): raise ValueError( "pyarrow < 0.7.0 does not support serializing a non-default " "index; you can .reset_index() to make the index into " "column(s), or install the latest version of pyarrow or " "fastparquet." ) if df.index.name is not None: raise ValueError( "pyarrow < 0.7.0 does not serialize indexes with a name; you " "can set the index.name to None or install the latest version " "of pyarrow or fastparquet." ) class FastParquetImpl(BaseImpl): def __init__(self): # since pandas is a dependency of fastparquet # we need to import on first use try: import fastparquet except ImportError: raise ImportError( "fastparquet is required for parquet support\n\n" "you can install via conda\n" "conda install fastparquet -c conda-forge\n" "\nor via pip\n" "pip install -U fastparquet" ) if LooseVersion(fastparquet.__version__) < '0.1.0': raise ImportError( "fastparquet >= 0.1.0 is required for parquet " "support\n\n" "you can install via conda\n" "conda install fastparquet -c conda-forge\n" "\nor via pip\n" "pip install -U fastparquet" ) self.api = fastparquet def write(self, df, path, compression='snappy', **kwargs): self.validate_dataframe(df) # thriftpy/protocol/compact.py:339: # DeprecationWarning: tostring() is deprecated. # Use tobytes() instead. path, _, _ = get_filepath_or_buffer(path) with catch_warnings(record=True): self.api.write(path, df, compression=compression, **kwargs) def read(self, path, columns=None, **kwargs): path, _, _ = get_filepath_or_buffer(path) parquet_file = self.api.ParquetFile(path) return parquet_file.to_pandas(columns=columns, **kwargs) def to_parquet(df, path, engine='auto', compression='snappy', **kwargs): """ Write a DataFrame to the parquet format. Parameters ---------- df : DataFrame path : string File path engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet reader library to use. If 'auto', then the option 'io.parquet.engine' is used. If 'auto', then the first library to be installed is used. compression : str, optional, default 'snappy' compression method, includes {'gzip', 'snappy', 'brotli'} kwargs Additional keyword arguments passed to the engine """ impl = get_engine(engine) return impl.write(df, path, compression=compression, **kwargs) def read_parquet(path, engine='auto', columns=None, **kwargs): """ Load a parquet object from the file path, returning a DataFrame. .. versionadded 0.21.0 Parameters ---------- path : string File path columns: list, default=None If not None, only these columns will be read from the file. .. versionadded 0.21.1 engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet reader library to use. If 'auto', then the option 'io.parquet.engine' is used. If 'auto', then the first library to be installed is used. kwargs are passed to the engine Returns ------- DataFrame """ impl = get_engine(engine) return impl.read(path, columns=columns, **kwargs)
mit
JudoWill/ResearchNotebooks
TreeingFunctions.py
1
22362
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> %load_ext autoreload %autoreload 2 # <codecell> from pandas import DataFrame, Series, merge, read_csv, MultiIndex, Index, concat from subprocess import check_call from tempfile import NamedTemporaryFile as NTF import os, os.path import numpy as np from scipy.stats import ttest_ind from itertools import groupby,combinations from operator import itemgetter from Bio import Phylo import networkx from random import shuffle import csv, shlex, shutil os.chdir('/home/will/Dropbox/HIVseqs/') sys.path.append('/home/will/HIVReportGen/AnalysisCode/') from SeqProcessTools import read_pat_seq_data, load_training_seq_data, align_seq_data_frame # <codecell> import glob pat_files = glob.glob('/home/will/HIVReportGen/Data/PatientFasta/*.fasta') pat_seq = read_pat_seq_data(pat_files, '/home/will/HIVReportGen/Data/BlastDB/ConBseqs.txt') training_files = glob.glob('/home/will/HIVReportGen/Data/TrainingSequences/*.fasta') training_data = load_training_seq_data(training_files) align_lanl = align_seq_data_frame(training_data, '/home/will/HIVReportGen/Data/BlastDB/ConBseqs.txt') all_seqs = concat([pat_seq, align_lanl]) # <codecell> def get_pairwise_distances(seq_series, tree_file = None, seq_file = None): if seq_file is None: fasta_handle = NTF() if tree_file is None: tree_handle = NTF() else: tree_handle = open(tree_file, 'w') for (pat, visit), seq in zip(seq_series.index, seq_series.values): nheader = '%s-%s' % (pat, visit) fasta_handle.write('>%s\n%s\n' % (nheader, ''.join(seq))) fasta_handle.flush() os.fsync(fasta_handle.fileno()) cmd = 'muscle -in %(ifile)s -tree2 %(treefile)s -gapopen -2.9' cmdlist = shlex.split(cmd % { 'ifile':fasta_handle.name, 'treefile':tree_handle.name }) t = check_call(cmdlist) tree = Phylo.read(open(tree_handle.name), 'newick') seq_names = tree.get_terminals() dmat = {} for p1, p2 in combinations(seq_names, 2): d = tree.distance(p1, p2) dmat[(p1.name, p2.name)] = d dmat[(p2.name, p1.name)] = d return dmat def extract_region(seq_series, start, stop): nseqs = seq_series.map(lambda x: x[start:stop]) return nseqs # <codecell> def check_distance_pvals(mat_data, trop_dict): nreps = 500 frac = 0.5 g1dist = [] g2dist = [] for (key1, key2), dist in mat_data.items(): if trop_dict[key1] and trop_dict[key2]: g1dist.append(dist) elif not trop_dict[key1] and not trop_dict[key2]: g2dist.append(dist) nitems = int(min(frac*len(g1dist), frac*len(g2dist))) _, raw_pval = ttest_ind(g1dist, g2dist) cor_pvals = [] for _ in range(nreps): shuffle(g1dist) shuffle(g2dist) _, pval = ttest_ind(g1dist[:nitems], g2dist[:nitems]) cor_pvals.append(pval) return raw_pval, np.mean(cor_pvals), np.mean(g1dist), np.mean(g2dist), np.std(g1dist), np.std(g2dist) # <codecell> pssm_data = read_csv('/home/will/HIVReportGen/Data/TrainingSequences/pssm_data.csv', index_col = [0,1]) def decide_tropism(inval): if inval < -6.95: return True elif inval > -2.88: return False return np.nan tropism_data = pssm_data['score'].map(decide_tropism).dropna() trop_dict = {} for (pat, visit), val in zip(tropism_data.index, tropism_data.values): trop_dict[pat+'-'+visit] = val benj_selected = [] with open('BensTropismLabels.csv') as handle: reader = csv.DictReader(handle) for row in reader: trop_dict['%s-%s' % (row['Patient ID'], row['Visit'])] = row['Prediction'] == 'TRUE' benj_selected.append((row['Patient ID'], row['Visit'])) benj_selected_index = MultiIndex.from_tuples(benj_selected, names = ['Patient ID', 'Visit number']) # <codecell> pure_seqs = MultiIndex.from_tuples([ ('A0001','R00'),#R5 XX ('A0107','R05'),#X4 XX ('A0017','R02'),#X4 XX ('AB286955','RN'),#R5 XX ('AB287367','RN'),#R5 XX ('AB480695','RN'),#X4 XX ('AB485642','RN'),#X4 XX ('AB604946','RN'),#X4 XX ('AF042101','RN'),#X4 XX ('AY835766','RN'),#R5 XX ('AY835779','RN'),#X4 XX ('AY352275','RN'),#X4 ('AY970950','RN'),#R5 XX ('DQ358809','RN'),#R5 XX ('EF057102','RN'),#X4 XX ('EF363123','RN'),#R5 XX ('JQ316126','RN'),#X4 XX ('GU647196','RN'),#X4 XX ('DQ990880','RN'),#X4 XX ], names = ['Patient ID', 'Visit number']) equal_pure_seqs = MultiIndex.from_tuples([ ('A0001','R00'),#R5 XX ('A0107','R05'),#X4 XX ('A0017','R02'),#X4 XX ('AB286955','RN'),#R5 XX ('AB287367','RN'),#R5 XX ('AB480695','RN'),#X4 XX ('AB485642','RN'),#X4 XX ('AB604946','RN'),#X4 XX ('AF042101','RN'),#X4 XX ('AY835766','RN'),#R5 XX ('AY835779','RN'),#X4 XX ('AY352275','RN'),#X4 ('AY970950','RN'),#R5 XX ('DQ358809','RN'),#R5 XX ('EF057102','RN'),#X4 XX ('EF363123','RN'),#R5 XX ('JQ316126','RN'),#X4 XX #('GU647196','RN'),#X4 XX ('DQ990880','RN'),#X4 XX ], names = ['Patient ID', 'Visit number']) # <codecell> def make_tree_figure(wanted_seqs, trop_dict, tree_file): mat_data = get_pairwise_distances(wanted_seqs, tree_file = tree_file) tree = Phylo.read(open(tree_file), 'newick') net = Phylo.to_networkx(tree) node_mapping = {} clade = 1 for node in net.nodes(): if node.name is None: node_mapping[node] = 'Clade-%i' % clade clade += 1 else: node_mapping[node] = node.name new_net = networkx.relabel_nodes(net, node_mapping) colors = [] for node in new_net.nodes(): if node.startswith('Clade'): colors.append('w') elif trop_dict[node]: colors.append('g') elif not trop_dict[node]: colors.append('r') else: print node #print colors, len(colors), len(new_net.nodes()) pos = networkx.graphviz_layout(new_net, 'twopi') networkx.draw_networkx(new_net, pos, with_labels = False, node_color = colors) # <codecell> check_regions = [#('Tat-seq-align', 'The Acidic domain', 0, 20), #('Tat-seq-align', 'Cysteine rich domain', 21, 36), #('Tat-seq-align', 'Core domain', 37, 47), #('Tat-seq-align', 'TAR binding domain', 48, 56), #('Tat-seq-align', 'Domain V-72', 57, 71), #('Tat-seq-align', 'Domain V-86', 57, 85), #('Tat-seq-align', 'Exon II 73', 72, 100), #('Tat-seq-align', 'Exon II 87', 86, 100), #('Tat-seq-align', 'Transactivation', 0, 47), #('Tat-seq-align', 'Co-factor binding', 21, 48), #('Tat-seq-align', 'SP1 binding', 29, 54), #('Tat-seq-align', 'Basic Region', 48, 71), #('Tat-seq-align', 'CEBP binding', 46, 66), #('Tat-seq-align', 'NFAT binding', 0, 25), #('Tat-seq-align', 'DNA-PK binding', 55, 100), #('Vpr-seq-align', 'Nuclear localization', 10, 39), #('Vpr-seq-align', 'Cell Cycle Progression', 14, 34), #('Vpr-seq-align', 'Tansactivation', 13, 21), #('Vpr-seq-align', 'Viron Packaging', 28, 39), #('Vpr-seq-align', 'Nuclear localizations', 53, 74), #('Vpr-seq-align', 'Transactivation', 73, 80), #('Vpr-seq-align', 'G2 arrest', 74, 94), #('Vpr-seq-align', 'DNA binding', 84, 92), ('LTR-seq-align', 'U3', 0, 455), ('LTR-seq-align', 'R', 456, 559), ('LTR-seq-align', 'U5', 560, 612), ('LTR-seq-align', 'TAR', 454, 544), ('LTR-seq-align', 'Integration', 0, 70), ('LTR-seq-align', 'AP1-COUPs', 60, 250), ('LTR-seq-align', 'CEBP-Lef-1s', 280, 330), ('LTR-seq-align', 'SP-sites', 376, 408), ('LTR-seq-align', 'AP1-CREB', 539, 616), ('LTR-seq-align', 'Pre-SP-I', 408, 454), ('LTR-seq-align', 'Pre-SP-I-upstream-half', 408, 431), ('LTR-seq-align', 'Pre-SP-I-downstream-half', 431, 454), ('LTR-seq-align', 'GC-Box', 376, 408), ('LTR-seq-align', 'SP-I', 398, 408), ('LTR-seq-align', 'SP-II', 387, 398), ('LTR-seq-align', 'SP-III', 376, 386), ('LTR-seq-align', 'NfKB-SP-III', 349, 386), ('LTR-seq-align', 'NfKB-II-SP-III', 362, 386), ('LTR-seq-align', 'CEBP-I-NF2', 337, 359), ('LTR-seq-align', 'ATF-CREB-CEBP', 329, 349), ('LTR-seq-align', 'LEF1-CREB', 317, 337), ('LTR-seq-align', 'LEF-1', 317, 330), ('LTR-seq-align', 'ATF-CREB',329, 337), ('LTR-seq-align', 'CEBP-I', 337, 344), ('LTR-seq-align', 'ETS-1', 304, 313), ('LTR-seq-align', 'CEBP-II-USF-1', 280, 294), ('LTR-seq-align', 'AP-I-to-CEBP-II', 221, 280), ('LTR-seq-align', 'AP-I-promixal-half', 221, 251), ('LTR-seq-align', 'CEBP-II-promixal-half', 251, 280), ('LTR-seq-align', 'AP-I', 213, 221), ('LTR-seq-align', 'GRE', 191, 207), ('LTR-seq-align', 'AP-II-to-GRE', 162, 191), ('LTR-seq-align', 'AP-II', 154, 162), ('LTR-seq-align', 'COUP-to-AP-II', 131, 154), ('LTR-seq-align', 'COUP', 93, 131), ('LTR-seq-align', 'Pre-COUP', 0, 93), ('LTR-seq-align', 'Pre-COUP-upstream-half', 0, 45), ('LTR-seq-align', 'Pre-COUP-downstream-half', 45, 93), ('LTR-seq-align', 'NfKB-I', 362, 373), ('LTR-seq-align', 'NfKB-II', 349, 359), ('LTR-seq-align', 'NfKB-I-NfKB-II', 349, 373), ('LTR-seq-align', 'CEBP-I', 337, 349), ('LTR-seq-align', 'CEBP-II', 280, 289), ('LTR-seq-align', 'COUP-I', 116, 130), ('LTR-seq-align', 'COUP-II', 105, 124), ('LTR-seq-align', 'COUP-III', 92, 111), ('LTR-seq-align', 'AP-III', 118, 125), ('LTR-seq-align', 'AP-IV', 103, 110), ] indexes = [#('All LANL Seqs', tropism_data.index), #('BenJ Selected', benj_selected_index), #('Benj Pure Seq', pure_seqs), ('Benj Pure Equal Seq', equal_pure_seqs), ] # <codecell> from itertools import product results = [] for (ind_name, inds), (seq_col, name, start, stop) in product(indexes, check_regions): wanted = extract_region(all_seqs.ix[inds][seq_col].dropna(), start, stop) #print wanted.index #print('Treeing') prot_name = seq_col.split('-')[0] treename = 'fixeddomaintrees/%s-%s-%s-%i.nwk' % (ind_name, prot_name, name, start) treename = treename.replace(' ', '-') mat_data = get_pairwise_distances(wanted, tree_file=treename) #print('Testing') raw_p, cor_p, r5mean, x4mean, r5std, x4std = check_distance_pvals(mat_data, trop_dict) if seq_col.startswith('LTR'): start = start-454 stop = stop-454 print ind_name, name, start, raw_p, cor_p results.append((ind_name, prot_name, name,start+1, stop+1, cor_p, r5mean, x4mean, r5std, x4std)) #pat_wanted = extract_region(pat_seq.ix[tropism_data.index][seq_col].dropna(), start, stop) #fname = '/home/will/BenSeqs/Trees/' + name.replace(' ', '-') #plt.figure(figsize = (20,20)) #make_tree_figure(wanted, trop_dict, fname + '.tree') #plt.title(name) #plt.savefig( fname + '_pure_seqs.png') # <codecell> with open('fixed_domain_analysis_with_new_ltr.csv', 'w') as handle: writer = csv.writer(handle) fields = ['Sequence Set', 'Protein Name', 'Domain Name', 'Region Start', 'Region Stop', 'p-value', 'R5-Mean', 'X4-Mean', 'R5-std', 'X4-std'] writer.writerow(fields) writer.writerows(results) # <codecell> #widths = [5,10,15,20,25,30,35,45,50] #indexes = [('BenJ Selected', benj_selected_index), # ('All LANL Seqs', tropism_data.index), # ] #('Benj Pure Seq', pure_seqs) #['Sequence Set', 'Protein Name', width, 'midpoint', 'p-value'] #large_results = [] #prots = [('Vpr-seq-align', 'Vpr',range(96))] #for (ind_name, inds), width, (seq_col, prot, positions) in product(indexes, widths, prots): # # for mid in positions: # print ind_name, width, prot, mid # start = max(int(mid-(width/2)),0) # stop = min(int(mid+(width/2)),positions[-1]) # wanted = extract_region(all_seqs.ix[inds][seq_col].dropna(), start, stop) # mat_data = get_pairwise_distances(wanted) # raw_p, cor_p, r5mean, x4mean = check_distance_pvals(mat_data, trop_dict) # # large_results.append((ind_name, prot, width,start+1, stop+1, cor_p, r5mean, x4mean)) # <codecell> import contextlib from tempfile import mkdtemp @contextlib.contextmanager def tmp_directory(*args, **kwargs): """A context manager which changes the working directory to the given path, and then changes it back to its previous value on exit. """ path = mkdtemp(*args, **kwargs) try: yield path + '/' finally: #shutil.rmtree(path) pass # <codecell> from StringIO import StringIO from subprocess import check_output from Bio.Seq import Seq from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.Seq import IUPAC def write_nexus_alignment(seq_series, handle): seqs = [] tmp_handle = StringIO() for (pi, vn), seq in zip(seq_series.index, seq_series.values): nseq = ''.join(seq).replace('O', '-') bseq = SeqRecord(Seq(nseq, alphabet=IUPAC.protein), id = '%s-%s' % (pi, vn)) seqs.append(bseq) SeqIO.write(seqs, tmp_handle, 'nexus') tmp_handle.seek(0) strdata = tmp_handle.read().replace("'", '') handle.write(strdata) def write_mrbayes_commands(handle, alignment_path, output_path): cmd = """begin mrbayes; set autoclose=yes nowarn=yes; execute %(align)s; prset aamodelpr = mixed; mcmc nchains = 3 ngen = 50000 samplefreq=1000 diagnfreq=100000 printfreq=100000 file=%(out)s; sump; sumt; end;""" tdict = {'align':alignment_path, 'out':output_path} handle.write(cmd % tdict) def run_mrbayes(cmd_path): cmd = '/home/will/mb ' + cmd_path check_output(shlex.split(cmd)) def reformat_nexus(inhandle, outhandle, trop_dict): def process_tree_line(line): parts = line.strip().split() return 'tree %s [&R] %s\n' % (parts[1], parts[-1]) for line in inhandle: #get ri of junk if line.strip() == 'begin trees;': break _ = inhandle.next() #get rid of the 'translate' line outhandle.write('#NEXUS\n\n\n') outhandle.write('begin states;\n') for line in inhandle: nline = line.strip() if nline.startswith('tree'): first_tree = process_tree_line(line) break num, seqname = nline[:-1].split(' ', 1) try: if trop_dict[seqname.replace('.copy', '')]: trop = 'R5' else: trop = 'X4' except KeyError: print 'Missing ' + seqname + ' !!' trop = 'R5' outhandle.write('%s %s\n' % (num, trop)) outhandle.write('End;\n\n') outhandle.write('begin trees;\n') tree_lines = [first_tree] + [process_tree_line(line) for line in inhandle if line.strip() != 'end;'] for line in tree_lines: outhandle.write(line) outhandle.write('end;\n') def run_bats(formated_nexus_path, nreps = 5000): cmd = 'java -Xmx3000M -jar /home/will/BaTS_beta_build2.jar single %s %i %i' out = check_output(shlex.split(cmd % (formated_nexus_path, nreps, 2))) handle = StringIO(out) for line in handle: if line.startswith('Stat'): headers = line.strip().split('\t') break return list(csv.DictReader(handle, fieldnames=headers, delimiter = '\t'))[:-2] def run_MrBats_analysis(seq_series, trop_dict, tree_file): with tmp_directory(dir = '/home/will/tmpstuf/') as tmpdir: align_file = tmpdir + 'seqalign.nxs' mrbayes_cmd_file = tmpdir + 'analysis.nxs' cons_file = tmpdir + 'seqalign.nxs.con.tre' multi_prob = tmpdir + 'seqalign.nxs.trprobs' multi_mod = tmpdir + 'seqalign.nxs.trprobs.modified' #print align_file with open(align_file, 'w') as handle: #print align_file, len(seq_series) write_nexus_alignment(seq_series, handle) with open(mrbayes_cmd_file, 'w') as handle: write_mrbayes_commands(handle, align_file, align_file) run_mrbayes(mrbayes_cmd_file) with open(multi_prob) as inhandle: with open(multi_mod, 'w') as ohandle: reformat_nexus(inhandle, ohandle, trop_dict) out = run_bats(multi_mod) #out = [{}] if tree_file: shutil.copy(cons_file, tree_file) return out # <codecell> from copy import deepcopy from concurrent.futures import ThreadPoolExecutor from itertools import chain, imap, product indexes = [#('BenJ Selected', benj_selected_index), ('Benj Pure Seq', pure_seqs), ('Benj Pure Equal Seq', equal_pure_seqs), #('All LANL Seqs', tropism_data.index), ] def linker_code(tup): wanted_seqs, treename, extra_dict = tup out = run_MrBats_analysis(wanted_seqs, trop_dict, tree_file = treename) final = [] for row in out: row.update(extra_dict) final.append(row) return final #(ind_name, prot_name, name,start+1, stop+1, cor_p, r5mean, x4mean) new_method_inputs = [] for (ind_name, inds), (seq_col, name, start, stop) in product(indexes, check_regions): wanted = extract_region(all_seqs.ix[inds][seq_col].dropna(), start, stop) #print wanted.index #print('Treeing') prot_name = seq_col.split('-')[0] treename = 'newdomaintrees/%s-%s-%s-%i.nwk' % (ind_name, prot_name, name, start) extra_dict = { 'IndName':ind_name, 'ProtName':prot_name, 'Domain':name, 'Start':start, 'Stop':stop, } treename = treename.replace(' ', '-') #print treename, len(wanted) if len(wanted)>10: new_method_inputs.append((wanted.copy(), treename, deepcopy(extra_dict))) #raise KeyError #results_so_far = [] with ThreadPoolExecutor(max_workers = 30) as executor: res = executor.map(linker_code, new_method_inputs) for row in chain.from_iterable(res): print row['Domain'], row['IndName'], row['Statistic'] ,row['significance'] #results_so_far.append(row) # <codecell> tmp = DataFrame(results_so_far) tmp.to_csv('new_method_results.csv') # <codecell> from itertools import islice widths = [5,10,15,20,25,30,35,45,50] indexes = [('BenJ Selected', benj_selected_index), ('All LANL Seqs', tropism_data.index), ('Benj Pure Seq', pure_seqs), ] prots = [('Vpr-seq-align', 'Vpr',range(96))] def take(n, iterable): "Return first n items of the iterable as a list" return list(islice(iterable, n)) def yield_regions(indexes, widths, prots): for (ind_name, inds), width, (seq_col, prot, positions) in product(indexes, widths, prots): for mid in positions: #print ind_name, width, prot, mid start = max(int(mid-(width/2)),0) stop = min(int(mid+(width/2)),positions[-1]) wanted = extract_region(all_seqs.ix[inds][seq_col].dropna(), start, stop) extra_dict = { 'IndName':ind_name, 'ProtName':prot, 'Start':start, 'Stop':stop, 'Mid':mid, 'width':width } if len(wanted)>10: yield (wanted.copy(), None, deepcopy(extra_dict)) #['Sequence Set', 'Protein Name', 'width', 'midpoint', 'p-value'] vpr_window_results = [] block_size = 500 with ThreadPoolExecutor(max_workers = 30) as executor: iterable = yield_regions(indexes, widths, prots) block = take(block_size, iterable) while block: res = executor.map(linker_code, block) for row in chain.from_iterable(res): print row['width'], row['IndName'], row['Statistic'] ,row['significance'] vpr_window_results.append(row) block = take(block_size, iterable) # <codecell> windowed_df = DataFrame(vpr_window_results) # <codecell> windowed_df.head() # <codecell> import dendropy fixtrees = glob.glob('newdomaintrees/*.nwk') for f in fixtrees: if 'Equal' not in f: continue with open(f) as handle: tree = dendropy.Tree.get_from_stream(open(f), 'nexus') tree.deroot() rmnodes = [tree.prune_subtree(t, update_splits = True) for t in tree.leaf_nodes() if t.get_node_str().endswith("copy'")] #tree.prune_taxa(rmnodes) nf = f.replace('newdomaintrees', 'unrootedtrees-equal') with open(nf, 'w') as handle: tree.write_to_stream(handle, 'newick') # <codecell> tmp = list(tree.leaf_nodes()) # <codecell> labels = [n.get_node_str() for n in rmnodes] tree.prune_taxa_with_labels(labels, update_splits = True) # <codecell> [tree.prune_subtree(t) for t in tree.leaf_nodes() if t.get_node_str().endswith("copy'")] # <codecell> with open('/home/will/tmpstuf/tmpyw6FXN/seqalign.nxs.trprobs') as handle: treeL = dendropy.TreeList.get_from_stream(handle, 'nexus') # <codecell> print treeL[0].description() # <codecell> with open('/home/will/tmpstuf/tmpyw6FXN/tmptree.nxs', 'w') as handle: treeL.write_to_stream(handle, 'nexus') # <codecell> for tree in treeL: for leaf in tree.leaf_iter(): print str(leaf.taxon) # <codecell>
mit
glenn20/mollie-robot
rpi/rpipidtune.py
1
4575
#!/usr/bin/env python """ An interface to manage an Arduino controlled robot. Classes: ArduinoRobot: The manager of the Arduino robot. """ from __future__ import print_function import itertools import time import json import sys, tty, termios import paho.mqtt.client as mqtt import numpy as np import matplotlib.pyplot as plt import pandas as pd class RobotState: def __init__( self ): self.time = 0 self.head = [0,0] self.setspeed = [0,0] self.speed = [0,0] self.counts = [0,0] self.power = [0,0] self.pid = [0.7, 0.0, 0.0 ] def update( self, s ): print( "Line =", s, end="\r\n" ) d = json.loads( s ) self.__dict__.update( d ) # print( "Robot =", self.__dict__, end="\r\n" ) return d def listofvalues( self ): return list( itertools.chain( [self.time], self.head, self.setspeed, self.speed, self.counts, self.power, self.pid ) ) def listofkeys( self ): return [ "time", "headX", "headY", "setspeedL", "setspeedR", "speedL", "speedR", "countsL", "countsR", "powerL", "powerR", "Kp", "Ki", "Kd" ] def state( self, d ): s = json.dumps( d, separators=(',',':') ) self.__dict__.update( d ) self.time = time.time() # print( "Target=", self.__dict__, end="\r\n" ) return s def json( self ): return json.dumps( self.__dict__, separators=(',',':') ) class MqRobot( mqtt.Client ): """ A simple wrapper to send robot status messages to the MQTT broker """ def __init__( self, clientid = None ): super( MqRobot, self ).__init__( clientid ) self.robotstate = RobotState() self.df = pd.DataFrame( columns=self.robotstate.listofkeys() ) self.on_connect = self._on_connect self.on_subscribe = self._on_subscribe self.on_message = self._on_message self.savedata = False # self.on_log = self._on_log self.connect( "192.168.0.30", 1883, 60 ) self.loop_start() self.send( {"power": [0,0], "setspeed": [0,0]} ) self.send( {"pid": [0.7, 0.0, 0.0]} ) plt.ion() def _on_connect( self, mqttc, obj, flags, rc ): print( "MQTT: Connected: rc: " + str( rc ), end="\r\n" ) self.subscribe( "/mollie-robot/state", 1 ) def _on_subscribe( self, mqttc, obj, mid, granted_qos ): print( "MQTT: Subscribed: " + str( mid ) + " " + str( granted_qos ), end="\r\n" ) def _on_message( self, mqttc, obj, msg ): #print( "MQTT: " + msg.topic + " " + # str( msg.qos ) + " " + str( msg.payload ), # end="\r\n" ) # Update the robot state self.robotstate.state( json.loads( msg.payload ) ) if (self.savedata): self.df.loc[len(self.df)] = self.robotstate.listofvalues() def _on_log( self, mqttc, obj, level, string ): print( "MQTT: " + string ) def close( self ): self.loop_stop() self.disconnect() def update( self, state ): return self.publish( "/mollie-robot/target", state, qos=0, retain=True ) def send( self, d ): return self.update( json.dumps( d, separators=(',',':') ) ) def pidcheck( self, K ): self.df = pd.DataFrame( columns=self.robotstate.listofkeys() ) self.savedata = True self.send( {"pid": [K[0], K[1], K[2]]} ) self.send( {"setspeed": [6, 6]} ) time.sleep( 4 ) self.send( {"setspeed": [18, 18]} ) time.sleep( 5 ) self.send( {"setspeed": [6, 6]} ) time.sleep( 5 ) self.savedata = False self.send( {"setspeed": [0, 0]} ) self.df.plot( x="time", y=["setspeedR", "speedR", "powerR"], secondary_y=["powerR"] #, linestyle='-', marker='o' ) self.df.plot( x="time", y=["setspeedL", "speedL", "powerL"], secondary_y=["powerL"] #, style="o-" ) plt.draw() # self.df.to_csv( "pidtune-%.1f-%.1f-%.1f.csv" % (K[0], K[1], K[2]) ) if __name__ == "__main__": robbie = MqRobot() robbie.pidcheck( [4.0, 0.5, 1.0] ) robbie.close()
gpl-2.0
walterreade/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
rnowling/pop-gen-models
bernoulli_nb/bnb_predict.py
1
1645
import sys from sklearn.naive_bayes import BernoulliNB as BNB import matplotlib.pyplot as plt import numpy as np def read_variants(flname): fl = open(flname) markers = [] individuals = [] population_ids = [] population = -1 for ln in fl: if "Marker" in ln: if len(individuals) == 0: continue marker = dict() marker["individuals"] = np.array(individuals) marker["population_labels"] = np.array(population_ids) markers.append(marker) population = -1 population_ids = [] individuals = [] elif "Population" in ln: population += 1 else: individual = map(float, ln.strip().split()) individuals.append(individual) population_ids.append(population) if len(individuals) != 0: marker = dict() marker["individuals"] = np.array(individuals) marker["population_labels"] = np.array(population_ids) markers.append(marker) fl.close() return markers def predict_scores(markers, threshold=0.05): scores = [] for i, marker in enumerate(markers): try: bnb = BNB() bnb.fit(marker["individuals"], marker["population_labels"]) scores.append((bnb.score(marker["individuals"], marker["population_labels"]), i)) except: scores.append((0.0, i)) scores.sort() scores.reverse() cutoff_idx = int(threshold * len(scores)) return scores[:cutoff_idx] def write_scores(scores, flname): fl = open(flname, "w") for loci, score in scores: fl.write("%s %s\n" % (loci, score)) fl.close() if __name__ == "__main__": variants_fl = sys.argv[1] scores_flname = sys.argv[2] variants = read_variants(variants_fl) scores = predict_scores(variants) write_scores(scores, scores_flname)
apache-2.0
Erotemic/ibeis
ibeis/algo/hots/toy_nan_rf.py
1
12134
import numpy as np import utool as ut def get_toydata(rng): if ut.get_argflag('--toy2'): X_true, X, y = toydata2(rng) else: X_true, X, y = toydata1(rng) return X_true, X, y def toydata2(rng): from sklearn.datasets import samples_generator n_samples = 1000 n_features = 2 n_classes = 2 n_informative = 2 n_clusters_per_class = int((2 ** n_informative) // n_classes) hypercube = False samplekw = dict( flip_y=0.00, class_sep=1.0, shift=[-10, 10], scale=1.0, n_redundant=0, n_repeated=0, hypercube=hypercube, n_samples=n_samples, n_informative=n_informative, n_classes=n_classes, n_clusters_per_class=n_clusters_per_class, weights=None, shuffle=True, n_features=n_features, random_state=rng) X_true, y = samples_generator.make_classification(**samplekw) with_extra = ut.get_argflag('--extra') # make very informative nan dimension if with_extra: n_informative_nan = 100 # extra_x = (rng.randn(n_informative_nan, 2) / 2 + [[12, -8]]) extra_x = (rng.randn(n_informative_nan, 2) / 2 + [[10, -12]]) X_true = np.vstack((X_true, extra_x)) y = np.append(y, [0] * n_informative_nan) # Randomly drop datapoints X = X_true.copy() nanrate = ut.get_argval('--nanrate', default=.01) if nanrate: # TODO: # * informative nan # * random nan # * random nan + informative nan X.ravel()[rng.rand(X.size) < nanrate] = np.nan if with_extra: if True: X.T[1][-n_informative_nan:] = np.nan else: X.T[0][-n_informative_nan:-n_informative_nan // 2] = np.nan X.T[1][-n_informative_nan // 2:] = np.nan return X_true, X, y def toydata1(rng): """ **Description of Plot** You'll notice that there are 4 plots. This is necessary to visualize a grid with nans. Each plot shows points in the 2-dimensional grid with corners at (0, 0) and (40, 40). The top left plot has these coordinates labeled. The other 3 plots correspond to the top left grid, but in these plots at least one of the dimensions has been "nanned". In the top right the x-dimension is "nanned". In the bottom left the y-dimension is "nanned", and in the bottom right both dimensions are "nanned". Even though all plots are drawn as a 2d-surface only the topleft plot is truly a surface with 2 degrees of freedom. The top right and bottom left plots are really lines with 1 degree of freedom, and the bottom right plot is actually just a single point with 0 degrees of freedom. In this example I create 10 Gaussian blobs where the first 9 have their means laid out in a 3x3 grid and the last one has its mean in the center, but I gave it a high standard deviation. I'll refer to the high std cluster as 9, and label the other clusters at the grid means (to agree with the demo code) like this: ``` 6 7 8 3 4 5 0 1 2 ``` Looking at the top left plot you can see clusters 0, 1, 2, 4, 6, and 8. The reason the other cluster do not appear in this grid is because I've set at least one of their dimensions to be nan. Specifically, cluster 3 had its y dimension set to nan; cluster 5 and 7 had their x dimension set to nan; and cluster 9 had both x and y dimensions set to nan. For clusters 3, 5, and 7, I plot "nanned" points as lines along the nanned dimension to show that only the non-nan dimensions can be used to distinguish these points. I also plot the original position before I "nanned" it for visualization purposes, but the learning algorithm never sees this. For cluster 9, I only plot the original positions because all of this data collapses to a single point [nan, nan]. Red points are of class 0, and blue points are of class 1. Points in each plot represent the training data. The colored background of each plot represents the classification surface. """ from sklearn.datasets import samples_generator import functools step = 20 n_samples = 100 blob = functools.partial(samples_generator.make_blobs, n_samples=n_samples, random_state=rng) Xy_blobs = [ (0, blob(centers=[[0 * step, 0 * step]])[0]), (1, blob(centers=[[1 * step, 0 * step]])[0]), (0, blob(centers=[[2 * step, 0 * step]])[0]), (1, blob(centers=[[0 * step, 1 * step]])[0]), (0, blob(centers=[[1 * step, 1 * step]])[0]), (0, blob(centers=[[2 * step, 1 * step]])[0]), (0, blob(centers=[[0 * step, 2 * step]])[0]), (1, blob(centers=[[1 * step, 2 * step]])[0]), (0, blob(centers=[[2 * step, 2 * step]])[0]), (1, blob(centers=[[1 * step, 1 * step]], cluster_std=5)[0]), ] X_blobs = [Xy[1] for Xy in Xy_blobs] X_true = np.vstack(X_blobs) y_blobs = [np.full(len(X), y_, dtype=np.int) for y_, X in Xy_blobs] # nanify some values if True: X_blobs[3][:, 1] = np.nan X_blobs[7][:, 0] = np.nan X_blobs[5][:, 0] = np.nan X_blobs[-1][:, :] = np.nan X = np.vstack(X_blobs) y = np.hstack(y_blobs) return X_true, X, y def show_nan_decision_function_2d(X, y, X_true, clf): import numpy as np print('Drawing') # Now plot the decision boundary using a fine mesh as input to a # filled contour plot plot_step = 1.0 x_min, x_max = X_true[:, 0].min() - 1, X_true[:, 0].max() + 1 y_min, y_max = X_true[:, 1].min() - 1, X_true[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) yynan = np.full(yy.shape, fill_value=np.nan) xxnan = np.full(yy.shape, fill_value=np.nan) # Get prediction surface in the non-nan-zone Z_nonnan = clf.predict_proba( np.c_[xx.ravel(), yy.ravel()]).T[1].reshape(xx.shape) # Get prediction surface in the xnan-zone Z_xnan = clf.predict_proba( np.c_[xxnan.ravel(), yy.ravel()]).T[1].reshape(xx.shape) # Get prediction surface in the ynan-zone Z_ynan = clf.predict_proba( np.c_[xx.ravel(), yynan.ravel()]).T[1].reshape(xx.shape) # Get prediction surface for all-nan-zone Z_fullnan = clf.predict_proba( np.c_[xxnan.ravel(), yynan.ravel()]).T[1].reshape(xx.shape) is_nonnan = np.logical_and(~np.isnan(X.T[0]), ~np.isnan(X.T[1])) is_xnan = np.logical_and(np.isnan(X.T[0]), ~np.isnan(X.T[1])) is_ynan = np.logical_and(~np.isnan(X.T[0]), np.isnan(X.T[1])) is_fullnan = np.logical_and(np.isnan(X.T[0]), np.isnan(X.T[1])) # Draw surfaces and support points in different axes import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt gs = gridspec.GridSpec(17, 17) pnum1 = (gs[0:8, 0:8],) pnum2 = (gs[0:8, 8:16],) pnum3 = (gs[9:17, 0:8],) pnum4 = (gs[9:17, 8:16],) fig = plt.figure() cmap = plt.cm.RdYlBu norm = plt.Normalize(vmin=0, vmax=1) sm = plt.cm.ScalarMappable(cmap=cmap) sm.set_array(np.linspace(0, 1)) color0 = cmap(0) print('color0 = %r' % (color0,)) color1 = cmap(1.0) print('color1 = %r' % (color1,)) def draw_line_segments(pts1, pts2, ax=None, **kwargs): import matplotlib as mpl if ax is None: ax = plt.gca() assert len(pts1) == len(pts2), 'unaligned' segments = [(xy1, xy2) for xy1, xy2 in zip(pts1, pts2)] linewidth = kwargs.pop('lw', kwargs.pop('linewidth', 1.0)) alpha = kwargs.pop('alpha', 1.0) line_group = mpl.collections.LineCollection(segments, linewidth, alpha=alpha, **kwargs) ax.add_collection(line_group) def draw_single_nan_lines(X_true, y, flags, nan_dim): if not np.any(flags): return nandim_min = np.nanmin(X_true.T[nan_dim]) nandim_max = np.nanmax(X_true.T[nan_dim]) num_dim = 1 - nan_dim # 2d only numdim_pts = X[flags].T[num_dim] pts1 = np.empty((flags.sum(), 2)) pts2 = np.empty((flags.sum(), 2)) pts1[:, nan_dim] = nandim_min pts2[:, nan_dim] = nandim_max pts1[:, num_dim] = numdim_pts pts2[:, num_dim] = numdim_pts y_ = y[flags] draw_line_segments(pts1[y_ == 0], pts2[y_ == 0], color=color0, linestyle='-', alpha=1.0) draw_line_segments(pts1[y_ == 1], pts2[y_ == 1], color=color1, linestyle='-', alpha=1.0) def draw_train_points(X_true, y, flags): plt.plot(X_true[flags].T[0][y[flags] == 0], X_true[flags].T[1][y[flags] == 0], 'o', color=color0, markeredgecolor='w') plt.plot(X_true[flags].T[0][y[flags] == 1], X_true[flags].T[1][y[flags] == 1], 'o', color=color1, markeredgecolor='w') def _contour(Z): plt.contourf(xx, yy, Z, cmap=cmap, norm=norm, alpha=1.0) fig.add_subplot(*pnum1) _contour(Z_nonnan) flags = is_nonnan draw_train_points(X_true, y, flags) plt.title('non-nan decision surface') plt.gca().set_aspect('equal') fig.add_subplot(*pnum2) _contour(Z_xnan) flags = is_xnan draw_train_points(X_true, y, flags) draw_single_nan_lines(X_true, y, flags, 0) plt.gca().set_xticks([]) plt.gca().set_xlabel('nan') plt.title('x-nan decision surface') plt.gca().set_aspect('equal') fig.add_subplot(*pnum3) _contour(Z_ynan) flags = is_ynan draw_train_points(X_true, y, flags) # make nan-lines draw_single_nan_lines(X_true, y, flags, 1) plt.title('y-nan decision surface') plt.gca().set_aspect('equal') plt.gca().set_yticks([]) plt.gca().set_ylabel('nan') fig.add_subplot(*pnum4) _contour(Z_fullnan) flags = is_fullnan draw_train_points(X_true, y, flags) plt.title('full-nan decision surface') plt.gca().set_aspect('equal') plt.gca().set_xticks([]) plt.gca().set_yticks([]) plt.gca().set_xlabel('nan') plt.gca().set_ylabel('nan') plt.gcf().suptitle('RandomForestClassifier With NaN decision criteria') gs = gridspec.GridSpec(1, 16) subspec = gs[:, -1:] cax = plt.subplot(subspec) plt.colorbar(sm, cax) cax.set_ylabel('probability class 1') new_subplotpars = fig.subplotpars.__dict__.copy() del new_subplotpars['validate'] new_subplotpars.update(left=.001, right=.9, top=.9, bottom=.05, hspace=1.0, wspace=1.0) plt.subplots_adjust(**new_subplotpars) def main(): r""" SeeAlso: python -m sklearn.ensemble.tests.test_forest test_multioutput CommandLine: python -m ibeis toy_classify_nans python -m ibeis toy_classify_nans --toy1 --save "rf_nan_toy1.jpg" --figsize=10,10 python -m ibeis toy_classify_nans --toy2 --save "rf_nan_toy2.jpg" --figsize=10,10 python -m ibeis toy_classify_nans --toy2 --save "rf_nan_toy3.jpg" --figsize=10,10 --extra python -m ibeis toy_classify_nans --toy2 --save "rf_nan_toy4.jpg" --figsize=10,10 --extra --nanrate=0 python -m ibeis toy_classify_nans --toy2 --save "rf_nan_toy5.jpg" --figsize=10,10 --nanrate=0 Example: >>> # DISABLE_DOCTEST >>> result = toy_classify_nans() """ from sklearn.ensemble import RandomForestClassifier rng = np.random.RandomState(42) print('Creating test data') X_true, X, y = get_toydata(rng) assert len(X) == len(y) print('Fitting RF on %d points' % (len(X),)) # Train uncalibrated random forest classifier on train data clf = RandomForestClassifier(n_estimators=64, random_state=42, criterion='gini', missing_values=np.nan, bootstrap=False) # import pprint # pprint.pprint(clf.__dict__) clf.fit(X, y) # pprint.pprint(clf.__dict__) show_nan_decision_function_2d(X, y, X_true, clf) if __name__ == '__main__': r""" CommandLine: python -m ibeis.algo.hots.toy_nan_rf --show """ main() import matplotlib.pyplot as plt plt.show()
apache-2.0
GuessWhoSamFoo/pandas
pandas/tests/io/formats/test_to_excel.py
3
10955
"""Tests formatting as writer-agnostic ExcelCells ExcelFormatter is tested implicitly in pandas/tests/io/test_excel.py """ import pytest import pandas.util.testing as tm from pandas.io.formats.css import CSSWarning from pandas.io.formats.excel import CSSToExcelConverter @pytest.mark.parametrize('css,expected', [ # FONT # - name ('font-family: foo,bar', {'font': {'name': 'foo'}}), ('font-family: "foo bar",baz', {'font': {'name': 'foo bar'}}), ('font-family: foo,\nbar', {'font': {'name': 'foo'}}), ('font-family: foo, bar, baz', {'font': {'name': 'foo'}}), ('font-family: bar, foo', {'font': {'name': 'bar'}}), ('font-family: \'foo bar\', baz', {'font': {'name': 'foo bar'}}), ('font-family: \'foo \\\'bar\', baz', {'font': {'name': 'foo \'bar'}}), ('font-family: "foo \\"bar", baz', {'font': {'name': 'foo "bar'}}), ('font-family: "foo ,bar", baz', {'font': {'name': 'foo ,bar'}}), # - family ('font-family: serif', {'font': {'name': 'serif', 'family': 1}}), ('font-family: Serif', {'font': {'name': 'serif', 'family': 1}}), ('font-family: roman, serif', {'font': {'name': 'roman', 'family': 1}}), ('font-family: roman, sans-serif', {'font': {'name': 'roman', 'family': 2}}), ('font-family: roman, sans serif', {'font': {'name': 'roman'}}), ('font-family: roman, sansserif', {'font': {'name': 'roman'}}), ('font-family: roman, cursive', {'font': {'name': 'roman', 'family': 4}}), ('font-family: roman, fantasy', {'font': {'name': 'roman', 'family': 5}}), # - size ('font-size: 1em', {'font': {'size': 12}}), ('font-size: xx-small', {'font': {'size': 6}}), ('font-size: x-small', {'font': {'size': 7.5}}), ('font-size: small', {'font': {'size': 9.6}}), ('font-size: medium', {'font': {'size': 12}}), ('font-size: large', {'font': {'size': 13.5}}), ('font-size: x-large', {'font': {'size': 18}}), ('font-size: xx-large', {'font': {'size': 24}}), ('font-size: 50%', {'font': {'size': 6}}), # - bold ('font-weight: 100', {'font': {'bold': False}}), ('font-weight: 200', {'font': {'bold': False}}), ('font-weight: 300', {'font': {'bold': False}}), ('font-weight: 400', {'font': {'bold': False}}), ('font-weight: normal', {'font': {'bold': False}}), ('font-weight: lighter', {'font': {'bold': False}}), ('font-weight: bold', {'font': {'bold': True}}), ('font-weight: bolder', {'font': {'bold': True}}), ('font-weight: 700', {'font': {'bold': True}}), ('font-weight: 800', {'font': {'bold': True}}), ('font-weight: 900', {'font': {'bold': True}}), # - italic ('font-style: italic', {'font': {'italic': True}}), ('font-style: oblique', {'font': {'italic': True}}), # - underline ('text-decoration: underline', {'font': {'underline': 'single'}}), ('text-decoration: overline', {}), ('text-decoration: none', {}), # - strike ('text-decoration: line-through', {'font': {'strike': True}}), ('text-decoration: underline line-through', {'font': {'strike': True, 'underline': 'single'}}), ('text-decoration: underline; text-decoration: line-through', {'font': {'strike': True}}), # - color ('color: red', {'font': {'color': 'FF0000'}}), ('color: #ff0000', {'font': {'color': 'FF0000'}}), ('color: #f0a', {'font': {'color': 'FF00AA'}}), # - shadow ('text-shadow: none', {'font': {'shadow': False}}), ('text-shadow: 0px -0em 0px #CCC', {'font': {'shadow': False}}), ('text-shadow: 0px -0em 0px #999', {'font': {'shadow': False}}), ('text-shadow: 0px -0em 0px', {'font': {'shadow': False}}), ('text-shadow: 2px -0em 0px #CCC', {'font': {'shadow': True}}), ('text-shadow: 0px -2em 0px #CCC', {'font': {'shadow': True}}), ('text-shadow: 0px -0em 2px #CCC', {'font': {'shadow': True}}), ('text-shadow: 0px -0em 2px', {'font': {'shadow': True}}), ('text-shadow: 0px -2em', {'font': {'shadow': True}}), # FILL # - color, fillType ('background-color: red', {'fill': {'fgColor': 'FF0000', 'patternType': 'solid'}}), ('background-color: #ff0000', {'fill': {'fgColor': 'FF0000', 'patternType': 'solid'}}), ('background-color: #f0a', {'fill': {'fgColor': 'FF00AA', 'patternType': 'solid'}}), # BORDER # - style ('border-style: solid', {'border': {'top': {'style': 'medium'}, 'bottom': {'style': 'medium'}, 'left': {'style': 'medium'}, 'right': {'style': 'medium'}}}), ('border-style: solid; border-width: thin', {'border': {'top': {'style': 'thin'}, 'bottom': {'style': 'thin'}, 'left': {'style': 'thin'}, 'right': {'style': 'thin'}}}), ('border-top-style: solid; border-top-width: thin', {'border': {'top': {'style': 'thin'}}}), ('border-top-style: solid; border-top-width: 1pt', {'border': {'top': {'style': 'thin'}}}), ('border-top-style: solid', {'border': {'top': {'style': 'medium'}}}), ('border-top-style: solid; border-top-width: medium', {'border': {'top': {'style': 'medium'}}}), ('border-top-style: solid; border-top-width: 2pt', {'border': {'top': {'style': 'medium'}}}), ('border-top-style: solid; border-top-width: thick', {'border': {'top': {'style': 'thick'}}}), ('border-top-style: solid; border-top-width: 4pt', {'border': {'top': {'style': 'thick'}}}), ('border-top-style: dotted', {'border': {'top': {'style': 'mediumDashDotDot'}}}), ('border-top-style: dotted; border-top-width: thin', {'border': {'top': {'style': 'dotted'}}}), ('border-top-style: dashed', {'border': {'top': {'style': 'mediumDashed'}}}), ('border-top-style: dashed; border-top-width: thin', {'border': {'top': {'style': 'dashed'}}}), ('border-top-style: double', {'border': {'top': {'style': 'double'}}}), # - color ('border-style: solid; border-color: #0000ff', {'border': {'top': {'style': 'medium', 'color': '0000FF'}, 'right': {'style': 'medium', 'color': '0000FF'}, 'bottom': {'style': 'medium', 'color': '0000FF'}, 'left': {'style': 'medium', 'color': '0000FF'}}}), ('border-top-style: double; border-top-color: blue', {'border': {'top': {'style': 'double', 'color': '0000FF'}}}), ('border-top-style: solid; border-top-color: #06c', {'border': {'top': {'style': 'medium', 'color': '0066CC'}}}), # ALIGNMENT # - horizontal ('text-align: center', {'alignment': {'horizontal': 'center'}}), ('text-align: left', {'alignment': {'horizontal': 'left'}}), ('text-align: right', {'alignment': {'horizontal': 'right'}}), ('text-align: justify', {'alignment': {'horizontal': 'justify'}}), # - vertical ('vertical-align: top', {'alignment': {'vertical': 'top'}}), ('vertical-align: text-top', {'alignment': {'vertical': 'top'}}), ('vertical-align: middle', {'alignment': {'vertical': 'center'}}), ('vertical-align: bottom', {'alignment': {'vertical': 'bottom'}}), ('vertical-align: text-bottom', {'alignment': {'vertical': 'bottom'}}), # - wrap_text ('white-space: nowrap', {'alignment': {'wrap_text': False}}), ('white-space: pre', {'alignment': {'wrap_text': False}}), ('white-space: pre-line', {'alignment': {'wrap_text': False}}), ('white-space: normal', {'alignment': {'wrap_text': True}}), # NUMBER FORMAT ('number-format: 0%', {'number_format': {'format_code': '0%'}}), ]) def test_css_to_excel(css, expected): convert = CSSToExcelConverter() assert expected == convert(css) def test_css_to_excel_multiple(): convert = CSSToExcelConverter() actual = convert(''' font-weight: bold; text-decoration: underline; color: red; border-width: thin; text-align: center; vertical-align: top; unused: something; ''') assert {"font": {"bold": True, "underline": "single", "color": "FF0000"}, "border": {"top": {"style": "thin"}, "right": {"style": "thin"}, "bottom": {"style": "thin"}, "left": {"style": "thin"}}, "alignment": {"horizontal": "center", "vertical": "top"}} == actual @pytest.mark.parametrize('css,inherited,expected', [ ('font-weight: bold', '', {'font': {'bold': True}}), ('', 'font-weight: bold', {'font': {'bold': True}}), ('font-weight: bold', 'font-style: italic', {'font': {'bold': True, 'italic': True}}), ('font-style: normal', 'font-style: italic', {'font': {'italic': False}}), ('font-style: inherit', '', {}), ('font-style: normal; font-style: inherit', 'font-style: italic', {'font': {'italic': True}}), ]) def test_css_to_excel_inherited(css, inherited, expected): convert = CSSToExcelConverter(inherited) assert expected == convert(css) @pytest.mark.parametrize("input_color,output_color", ( [(name, rgb) for name, rgb in CSSToExcelConverter.NAMED_COLORS.items()] + [("#" + rgb, rgb) for rgb in CSSToExcelConverter.NAMED_COLORS.values()] + [("#F0F", "FF00FF"), ("#ABC", "AABBCC")]) ) def test_css_to_excel_good_colors(input_color, output_color): # see gh-18392 css = ("border-top-color: {color}; " "border-right-color: {color}; " "border-bottom-color: {color}; " "border-left-color: {color}; " "background-color: {color}; " "color: {color}").format(color=input_color) expected = dict() expected["fill"] = { "patternType": "solid", "fgColor": output_color } expected["font"] = { "color": output_color } expected["border"] = { k: { "color": output_color, } for k in ("top", "right", "bottom", "left") } with tm.assert_produces_warning(None): convert = CSSToExcelConverter() assert expected == convert(css) @pytest.mark.parametrize("input_color", [None, "not-a-color"]) def test_css_to_excel_bad_colors(input_color): # see gh-18392 css = ("border-top-color: {color}; " "border-right-color: {color}; " "border-bottom-color: {color}; " "border-left-color: {color}; " "background-color: {color}; " "color: {color}").format(color=input_color) expected = dict() if input_color is not None: expected["fill"] = { "patternType": "solid" } with tm.assert_produces_warning(CSSWarning): convert = CSSToExcelConverter() assert expected == convert(css)
bsd-3-clause
gracecox/MagPySV
setup.py
1
1993
"""minimal package setup""" import os from setuptools import setup, find_packages # Utility function to read the README file. def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name="magpysv", version="2.1", author="Grace Cox", author_email="[email protected]", license="MIT", url="https://github.com/gracecox/MagPySV", description="Download, process and denoise geomagnetic observatory data", long_description=read('readme.rst'), packages=find_packages(), include_package_data=True, package_data={"magpysv": ["baseline_records"]}, classifiers=["Programming Language :: Python :: 3"], zip_safe=False, install_requires=['aacgmv2>=2.5.2', 'cartopy>=0.17.0', 'chaosmagpy', 'datetime', 'glob2', 'jupyter>=1.0.0', 'matplotlib>=2.0.0', 'notebook>=4.3.1', 'numpy>=1.12.0', 'pandas>=0.19.2', 'requests>=2.12.4', 'scikit-learn>=0.18.1', 'scipy>=0.18.1', 'gmdata_webinterface'], extras_require={'develop': ['jupyter>=1.0.0', 'matplotlib>=2.0.0', 'notebook>=4.3.1', 'numpy>=1.12.0', 'pandas>=0.19.2', 'requests>=2.12.4', 'scikit-learn>=0.18.1', 'scipy>=0.18.1', 'prospector>=0.12.7', 'pytest>=3.0.6', 'pytest-cov<2.6', 'Sphinx>=1.5.1', 'sphinx-rtd-theme>=0.1.9', 'gmdata_webinterface']} )
mit
ryfeus/lambda-packs
Tensorflow_Pandas_Numpy/source3.6/pandas/compat/numpy/function.py
10
13077
""" For compatibility with numpy libraries, pandas functions or methods have to accept '*args' and '**kwargs' parameters to accommodate numpy arguments that are not actually used or respected in the pandas implementation. To ensure that users do not abuse these parameters, validation is performed in 'validators.py' to make sure that any extra parameters passed correspond ONLY to those in the numpy signature. Part of that validation includes whether or not the user attempted to pass in non-default values for these extraneous parameters. As we want to discourage users from relying on these parameters when calling the pandas implementation, we want them only to pass in the default values for these parameters. This module provides a set of commonly used default arguments for functions and methods that are spread throughout the codebase. This module will make it easier to adjust to future upstream changes in the analogous numpy signatures. """ from numpy import ndarray from pandas.util._validators import (validate_args, validate_kwargs, validate_args_and_kwargs) from pandas.errors import UnsupportedFunctionCall from pandas.core.dtypes.common import is_integer, is_bool from pandas.compat import OrderedDict class CompatValidator(object): def __init__(self, defaults, fname=None, method=None, max_fname_arg_count=None): self.fname = fname self.method = method self.defaults = defaults self.max_fname_arg_count = max_fname_arg_count def __call__(self, args, kwargs, fname=None, max_fname_arg_count=None, method=None): if args or kwargs: fname = self.fname if fname is None else fname max_fname_arg_count = (self.max_fname_arg_count if max_fname_arg_count is None else max_fname_arg_count) method = self.method if method is None else method if method == 'args': validate_args(fname, args, max_fname_arg_count, self.defaults) elif method == 'kwargs': validate_kwargs(fname, kwargs, self.defaults) elif method == 'both': validate_args_and_kwargs(fname, args, kwargs, max_fname_arg_count, self.defaults) else: raise ValueError("invalid validation method " "'{method}'".format(method=method)) ARGMINMAX_DEFAULTS = dict(out=None) validate_argmin = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmin', method='both', max_fname_arg_count=1) validate_argmax = CompatValidator(ARGMINMAX_DEFAULTS, fname='argmax', method='both', max_fname_arg_count=1) def process_skipna(skipna, args): if isinstance(skipna, ndarray) or skipna is None: args = (skipna,) + args skipna = True return skipna, args def validate_argmin_with_skipna(skipna, args, kwargs): """ If 'Series.argmin' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmin(args, kwargs) return skipna def validate_argmax_with_skipna(skipna, args, kwargs): """ If 'Series.argmax' is called via the 'numpy' library, the third parameter in its signature is 'out', which takes either an ndarray or 'None', so check if the 'skipna' parameter is either an instance of ndarray or is None, since 'skipna' itself should be a boolean """ skipna, args = process_skipna(skipna, args) validate_argmax(args, kwargs) return skipna ARGSORT_DEFAULTS = OrderedDict() ARGSORT_DEFAULTS['axis'] = -1 ARGSORT_DEFAULTS['kind'] = 'quicksort' ARGSORT_DEFAULTS['order'] = None validate_argsort = CompatValidator(ARGSORT_DEFAULTS, fname='argsort', max_fname_arg_count=0, method='both') # two different signatures of argsort, this second validation # for when the `kind` param is supported ARGSORT_DEFAULTS_KIND = OrderedDict() ARGSORT_DEFAULTS_KIND['axis'] = -1 ARGSORT_DEFAULTS_KIND['order'] = None validate_argsort_kind = CompatValidator(ARGSORT_DEFAULTS_KIND, fname='argsort', max_fname_arg_count=0, method='both') def validate_argsort_with_ascending(ascending, args, kwargs): """ If 'Categorical.argsort' is called via the 'numpy' library, the first parameter in its signature is 'axis', which takes either an integer or 'None', so check if the 'ascending' parameter has either integer type or is None, since 'ascending' itself should be a boolean """ if is_integer(ascending) or ascending is None: args = (ascending,) + args ascending = True validate_argsort_kind(args, kwargs, max_fname_arg_count=3) return ascending CLIP_DEFAULTS = dict(out=None) validate_clip = CompatValidator(CLIP_DEFAULTS, fname='clip', method='both', max_fname_arg_count=3) def validate_clip_with_axis(axis, args, kwargs): """ If 'NDFrame.clip' is called via the numpy library, the third parameter in its signature is 'out', which can takes an ndarray, so check if the 'axis' parameter is an instance of ndarray, since 'axis' itself should either be an integer or None """ if isinstance(axis, ndarray): args = (axis,) + args axis = None validate_clip(args, kwargs) return axis COMPRESS_DEFAULTS = OrderedDict() COMPRESS_DEFAULTS['axis'] = None COMPRESS_DEFAULTS['out'] = None validate_compress = CompatValidator(COMPRESS_DEFAULTS, fname='compress', method='both', max_fname_arg_count=1) CUM_FUNC_DEFAULTS = OrderedDict() CUM_FUNC_DEFAULTS['dtype'] = None CUM_FUNC_DEFAULTS['out'] = None validate_cum_func = CompatValidator(CUM_FUNC_DEFAULTS, method='both', max_fname_arg_count=1) validate_cumsum = CompatValidator(CUM_FUNC_DEFAULTS, fname='cumsum', method='both', max_fname_arg_count=1) def validate_cum_func_with_skipna(skipna, args, kwargs, name): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'dtype', which takes either a 'numpy' dtype or 'None', so check if the 'skipna' parameter is a boolean or not """ if not is_bool(skipna): args = (skipna,) + args skipna = True validate_cum_func(args, kwargs, fname=name) return skipna ALLANY_DEFAULTS = OrderedDict() ALLANY_DEFAULTS['dtype'] = None ALLANY_DEFAULTS['out'] = None validate_all = CompatValidator(ALLANY_DEFAULTS, fname='all', method='both', max_fname_arg_count=1) validate_any = CompatValidator(ALLANY_DEFAULTS, fname='any', method='both', max_fname_arg_count=1) LOGICAL_FUNC_DEFAULTS = dict(out=None) validate_logical_func = CompatValidator(LOGICAL_FUNC_DEFAULTS, method='kwargs') MINMAX_DEFAULTS = dict(out=None) validate_min = CompatValidator(MINMAX_DEFAULTS, fname='min', method='both', max_fname_arg_count=1) validate_max = CompatValidator(MINMAX_DEFAULTS, fname='max', method='both', max_fname_arg_count=1) RESHAPE_DEFAULTS = dict(order='C') validate_reshape = CompatValidator(RESHAPE_DEFAULTS, fname='reshape', method='both', max_fname_arg_count=1) REPEAT_DEFAULTS = dict(axis=None) validate_repeat = CompatValidator(REPEAT_DEFAULTS, fname='repeat', method='both', max_fname_arg_count=1) ROUND_DEFAULTS = dict(out=None) validate_round = CompatValidator(ROUND_DEFAULTS, fname='round', method='both', max_fname_arg_count=1) SORT_DEFAULTS = OrderedDict() SORT_DEFAULTS['axis'] = -1 SORT_DEFAULTS['kind'] = 'quicksort' SORT_DEFAULTS['order'] = None validate_sort = CompatValidator(SORT_DEFAULTS, fname='sort', method='kwargs') STAT_FUNC_DEFAULTS = OrderedDict() STAT_FUNC_DEFAULTS['dtype'] = None STAT_FUNC_DEFAULTS['out'] = None validate_stat_func = CompatValidator(STAT_FUNC_DEFAULTS, method='kwargs') validate_sum = CompatValidator(STAT_FUNC_DEFAULTS, fname='sort', method='both', max_fname_arg_count=1) validate_mean = CompatValidator(STAT_FUNC_DEFAULTS, fname='mean', method='both', max_fname_arg_count=1) STAT_DDOF_FUNC_DEFAULTS = OrderedDict() STAT_DDOF_FUNC_DEFAULTS['dtype'] = None STAT_DDOF_FUNC_DEFAULTS['out'] = None validate_stat_ddof_func = CompatValidator(STAT_DDOF_FUNC_DEFAULTS, method='kwargs') TAKE_DEFAULTS = OrderedDict() TAKE_DEFAULTS['out'] = None TAKE_DEFAULTS['mode'] = 'raise' validate_take = CompatValidator(TAKE_DEFAULTS, fname='take', method='kwargs') def validate_take_with_convert(convert, args, kwargs): """ If this function is called via the 'numpy' library, the third parameter in its signature is 'axis', which takes either an ndarray or 'None', so check if the 'convert' parameter is either an instance of ndarray or is None """ if isinstance(convert, ndarray) or convert is None: args = (convert,) + args convert = True validate_take(args, kwargs, max_fname_arg_count=3, method='both') return convert TRANSPOSE_DEFAULTS = dict(axes=None) validate_transpose = CompatValidator(TRANSPOSE_DEFAULTS, fname='transpose', method='both', max_fname_arg_count=0) def validate_transpose_for_generic(inst, kwargs): try: validate_transpose(tuple(), kwargs) except ValueError as e: klass = type(inst).__name__ msg = str(e) # the Panel class actual relies on the 'axes' parameter if called # via the 'numpy' library, so let's make sure the error is specific # about saying that the parameter is not supported for particular # implementations of 'transpose' if "the 'axes' parameter is not supported" in msg: msg += " for {klass} instances".format(klass=klass) raise ValueError(msg) def validate_window_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .{func}() directly instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_rolling_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .rolling(...).{func}() instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_expanding_func(name, args, kwargs): numpy_args = ('axis', 'dtype', 'out') msg = ("numpy operations are not " "valid with window objects. " "Use .expanding(...).{func}() instead ".format(func=name)) if len(args) > 0: raise UnsupportedFunctionCall(msg) for arg in numpy_args: if arg in kwargs: raise UnsupportedFunctionCall(msg) def validate_groupby_func(name, args, kwargs, allowed=None): """ 'args' and 'kwargs' should be empty, except for allowed kwargs because all of their necessary parameters are explicitly listed in the function signature """ if allowed is None: allowed = [] kwargs = set(kwargs) - set(allowed) if len(args) + len(kwargs) > 0: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with groupby. Use .groupby(...)." "{func}() instead".format(func=name))) RESAMPLER_NUMPY_OPS = ('min', 'max', 'sum', 'prod', 'mean', 'std', 'var') def validate_resampler_func(method, args, kwargs): """ 'args' and 'kwargs' should be empty because all of their necessary parameters are explicitly listed in the function signature """ if len(args) + len(kwargs) > 0: if method in RESAMPLER_NUMPY_OPS: raise UnsupportedFunctionCall(( "numpy operations are not valid " "with resample. Use .resample(...)." "{func}() instead".format(func=method))) else: raise TypeError("too many arguments passed in")
mit
joshamilton/Hamilton_acI_2017
code/mapping/02coverage.py
1
12720
#%%############################################################################# # coverage.py # Copyright (c) 2017, Joshua J Hamilton and Katherine D McMahon # Affiliation: Department of Bacteriology # University of Wisconsin-Madison, Madison, Wisconsin, USA # URL: http://http://mcmahonlab.wisc.edu/ # All rights reserved. ################################################################################ # This function plots coverage of each contig and genome ################################################################################ #%%############################################################################# ### Import packages ################################################################################ from Bio import SeqIO import math import os import pandas as pd import subprocess #%%############################################################################# ### Static folder structure ################################################################################ # Define fixed input and output files concatFolder = '../../data/refGenomes/concat' genomeFolder = '../../data/refGenomes/fnaKBase' gffFolder = '../../data/refGenomes/gff' sampleFolder = '../../data/sequences' mapFolder = '../../data/mapping' bamFolder = '../../data/mapping/bamFiles' coverageFolder = '../../data/mapping/coverage-pooled' # Check that the new output directory exists and create if it doesn't if not os.path.exists(mapFolder): os.makedirs(mapFolder) if not os.path.exists(bamFolder): os.makedirs(bamFolder) if not os.path.exists(coverageFolder): os.makedirs(coverageFolder) #%%############################################################################# ### Read in sample and genome lists. ################################################################################ sampleList = [] for sample in os.listdir(sampleFolder): if sample.endswith('.fastq'): sampleList.append(sample) sampleList = [sample.replace('.fastq', '') for sample in sampleList] genomeList = [] for genome in os.listdir(genomeFolder): if genome.endswith('.fna'): genomeList.append(genome) genomeList = [genome.replace('.fna', '') for genome in genomeList] concatList = [] for concat in os.listdir(concatFolder): if concat.endswith('.fna'): concatList.append(concat) concatList = [concat.replace('.fna', '') for concat in concatList] #%%############################################################################# ### Compute coverage of each individual genome in each sample ### Part 1: Compute SAM to BAM ################################################################################ # Using bamtools, compute the depth of each position along the chromosome ## First convert sam to indexed bam for sample in sampleList: print('Indexing sample '+str(sample)) for concat in concatList: subprocess.call('samtools view -bS '+bamFolder+'/'+sample+'-'+concat+'.sam | samtools sort -o '+bamFolder+'/'+sample+'-'+concat+'.bam', shell=True) #%%############################################################################# ### Compute coverage of each individual genome in each sample ### Part 2: Compute depth of each base ################################################################################ ## Compute depth for each sample for sample in sampleList: print('Depth calculations for sample '+str(sample)) for concat in concatList: subprocess.call('samtools depth '+bamFolder+'/'+sample+'-'+concat+'.bam > '+coverageFolder+'/'+sample+'-'+concat+'.depth', shell=True) #%%############################################################################# ### Compute coverage of each individual genome ### Part 3: Compute coverage of each contig and genome ################################################################################ # Using FASTA files (contigs in each genome), compute average coverage of each genome and contig ## Create dataframe to store genome coverage on a per-sample basis coverageDF = pd.DataFrame(index = genomeList, columns=['% Covered', 'Coverage']) for concat in concatList: for genome in genomeList: print('Contig coverage for genome '+str(genome)) # Create a dataframe to store contig depth, length, and coverage # Create a dataframe to store the % covered - must track each base on each contig contigList = [] coverContigList = [] coverPositionList = [] for curSeq in SeqIO.parse(genomeFolder+'/'+genome+'.fna', 'fasta'): contigList.append(curSeq.id) coverContigList = coverContigList + ([curSeq.id] * len(curSeq)) coverPositionList = coverPositionList + list(range(1,len(curSeq)+1)) contigDF = pd.DataFrame(0, index = contigList, columns=['Covered', 'Depth', 'Length', '% Covered', 'Coverage']) coverDF = pd.DataFrame(0, index = pd.MultiIndex.from_tuples(list(zip(*[coverContigList, coverPositionList]))), columns=['Depth']) for sample in sampleList: # Make a depth file for the genome subprocess.call('grep '+genome+' '+coverageFolder+'/'+sample+'-'+concat+'.depth > '+coverageFolder+'/'+sample+'-'+genome+'.depth', shell=True) # Import the depth file (if it exists) if os.stat(coverageFolder+'/'+sample+'-'+genome+'.depth').st_size > 0: depthDF = pd.read_csv(coverageFolder+'/'+sample+'-'+genome+'.depth', index_col = [0,1], names = ['Depth'], sep='\t') # Store depth of each base across samples #coverDF['Depth'] = coverDF['Depth'] + depthDF['Depth'] coverDF = coverDF.add(depthDF, axis=1, fill_value=0) # Compute the depth of each contig for curIndex in depthDF.index.levels[0]: contigDF.loc[curIndex, 'Depth'] = contigDF.loc[curIndex, 'Depth'] + depthDF.loc[curIndex].sum()[0] # Store the length of each contig for curSeq in SeqIO.parse(genomeFolder+'/'+genome+'.fna', 'fasta'): contigDF.loc[curSeq.id, 'Length'] = len(curSeq) # Compute the coverage of each contig across all samples contigDF['Coverage'] = contigDF['Depth'] / contigDF['Length'] # Compute the % covered of each contig across all samples for curIndex in coverDF.index.levels[0]: # Subset the coverDF belonging to this contig subsetCoverDF = coverDF.loc[curIndex] # Subset the coverDF having nonzero depth subsetCoverDF = subsetCoverDF.loc[subsetCoverDF['Depth']>0] contigDF.loc[curIndex, 'Covered'] = len(subsetCoverDF) # Check to see if contig is covered. Update coverage appropriately. if len(subsetCoverDF) > 0: contigDF.loc[curIndex, '% Covered'] = contigDF.loc[curIndex, 'Covered'] / contigDF.loc[curIndex, 'Length'] else: contigDF.loc[curIndex, '% Covered'] = 0 contigDF.to_csv(coverageFolder+'/'+genome+'.contig.coverage') # Update coverage and % covered for the entire genome coverageDF.loc[genome, 'Coverage'] = float(contigDF['Depth'].sum()) / contigDF['Length'].sum() coverageDF.loc[genome, '% Covered'] = float(contigDF['Covered'].sum()) / contigDF['Length'].sum() coverageDF.to_csv(coverageFolder+'/coverage.csv') #%%############################################################################# ### Compute coverage of each individual genome ### Part 4: Compute coverage of each individual gene in each genome ################################################################################ # Using GFF files (contigs in each genome), compute average coverage of each gene for concat in concatList: for genome in genomeList: print('Gene coverage for genome '+str(genome)) # Create a dataframe to store gene depth, length, and coverage geneDF = pd.DataFrame(columns=['Contig', 'Start', 'Stop', 'Length', 'Covered', 'Depth', '% Covered', 'Coverage', 'Evenness']) # Import the GFF file and use its values to populate the geneDF with open(gffFolder+'/'+genome+'.gff', 'r') as gffFile: next(gffFile) for line in gffFile: gffArray = line.split('\t') contig = gffArray[0] start = int(gffArray[3]) stop = int(gffArray[4]) locusArray = gffArray[8].split(';') locus = locusArray[0].split('=')[1] # Populate the geneDF dataframe using these values geneDF.loc[locus, 'Contig'] = contig geneDF.loc[locus, 'Start'] = start geneDF.loc[locus, 'Stop'] = stop geneDF.loc[locus, 'Length'] = stop - start + 1 # Create a dataframe to store contig depth at each position contigList = [] coverContigList = [] coverPositionList = [] for curSeq in SeqIO.parse(genomeFolder+'/'+genome+'.fna', 'fasta'): contigList.append(curSeq.id) coverContigList = coverContigList + ([curSeq.id] * len(curSeq)) coverPositionList = coverPositionList + list(range(1,len(curSeq)+1)) coverDF = pd.DataFrame(0, index = pd.MultiIndex.from_tuples(list(zip(*[coverContigList, coverPositionList]))), columns=['Depth']) for sample in sampleList: # Make a depth file for the genome subprocess.call('grep '+genome+' '+coverageFolder+'/'+sample+'-'+concat+'.depth > '+coverageFolder+'/'+sample+'-'+genome+'.depth', shell=True) # Import the depth file (if it exists) if os.stat(coverageFolder+'/'+sample+'-'+genome+'.depth').st_size > 0: depthDF = pd.read_csv(coverageFolder+'/'+sample+'-'+genome+'.depth', index_col = [0,1], names = ['Depth'], sep='\t') # Store depth of each base across samples #coverDF['Depth'] = coverDF['Depth'] + depthDF['Depth'] coverDF = coverDF.add(depthDF, axis=1, fill_value=0) # Compute the depth and coverage of each gene for curIndex in geneDF.index: contig = geneDF.loc[curIndex]['Contig'] start = geneDF.loc[curIndex]['Start'] stop = geneDF.loc[curIndex]['Stop'] # If the depth file exists: if os.stat(coverageFolder+'/'+sample+'-'+genome+'.depth').st_size > 0: # Subset the depthDF belonging to this contig and range subsetCoverDF = coverDF.loc[(contig, start):(contig, stop)] # Subset the depthDF having nonzero depth subsetCoverDF = subsetCoverDF.loc[subsetCoverDF['Depth']>0] # Update the geneDF with coverage and depth of each gene geneDF.loc[curIndex, 'Covered'] = len(subsetCoverDF) geneDF.loc[curIndex, 'Depth'] = subsetCoverDF.sum()[0] # Compute the coverage of each gene geneDF.loc[curIndex, '% Covered'] = float(geneDF.loc[curIndex, 'Covered']) / float(geneDF.loc[curIndex, 'Length']) geneDF.loc[curIndex, 'Coverage'] = float(geneDF.loc[curIndex, 'Depth']) / float(geneDF.loc[curIndex, 'Length']) # If the gene is covered... # Compute the evenness of coverage using Pielou's eveness if len(subsetCoverDF) > 0: countList = subsetCoverDF['Depth'].value_counts().tolist() # Account for unmapped loci if (geneDF.loc[curIndex]['Stop'] - geneDF.loc[curIndex]['Start'] + 1) > sum(countList): countList.append((geneDF.loc[curIndex]['Stop'] - geneDF.loc[curIndex]['Start'] + 1) - sum(countList)) freqDist = [float(x) / sum(countList) for x in countList] Hprime = 0 for freq in freqDist: Hprime = Hprime + freq*math.log(freq) # If only one frequency, assign an evenness of 1 if len(freqDist) == 1: geneDF.loc[curIndex, 'Evenness'] = 1 else: Hprime_max = math.log(len(freqDist)) geneDF.loc[curIndex, 'Evenness'] = - Hprime / Hprime_max # Simplify the dataframe and write to file geneDF = geneDF.drop(['Contig', 'Start', 'Stop', 'Length', 'Covered', 'Depth'], 1) geneDF.to_csv(coverageFolder+'/'+genome+'.gene.coverage')
mit
automl/paramsklearn
tests/components/data_preprocessing/test_balancing.py
1
7836
__author__ = 'feurerm' import unittest import numpy as np import sklearn.metrics from ParamSklearn.components.data_preprocessing.balancing import Balancing from ParamSklearn.classification import ParamSklearnClassifier from ParamSklearn.components.classification.adaboost import AdaboostClassifier from ParamSklearn.components.classification.decision_tree import DecisionTree from ParamSklearn.components.classification.extra_trees import ExtraTreesClassifier from ParamSklearn.components.classification.gradient_boosting import GradientBoostingClassifier from ParamSklearn.components.classification.random_forest import RandomForest from ParamSklearn.components.classification.liblinear_svc import LibLinear_SVC from ParamSklearn.components.classification.libsvm_svc import LibSVM_SVC from ParamSklearn.components.classification.sgd import SGD from ParamSklearn.components.feature_preprocessing\ .extra_trees_preproc_for_classification import ExtraTreesPreprocessor from ParamSklearn.components.feature_preprocessing.liblinear_svc_preprocessor import LibLinear_Preprocessor from ParamSklearn.components.feature_preprocessing.random_trees_embedding import RandomTreesEmbedding from ParamSklearn.util import get_dataset class BalancingComponentTest(unittest.TestCase): def test_balancing_get_weights_treed_single_label(self): Y = np.array([0] * 80 + [1] * 20) balancing = Balancing(strategy='weighting') init_params, fit_params = balancing.get_weights( Y, 'adaboost', None, None, None) self.assertTrue(np.allclose(fit_params['classifier:sample_weight'], np.array([0.4] * 80 + [1.6] * 20))) #init_params, fit_params = balancing.get_weights( # Y, None, 'extra_trees_preproc_for_classification', None, None) #self.assertTrue(np.allclose(fit_params['preprocessor:sample_weight'], # np.array([0.4] * 80 + [1.6] * 20))) def test_balancing_get_weights_treed_multilabel(self): Y = np.array([[0, 0, 0]] * 100 + [[1, 0, 0]] * 100 + [[0, 1, 0]] * 100 + [[1, 1, 0]] * 100 + [[0, 0, 1]] * 100 + [[1, 0, 1]] * 10) balancing = Balancing(strategy='weighting') init_params, fit_params = balancing.get_weights( Y, 'adaboost', None, None, None) self.assertTrue(np.allclose(fit_params['classifier:sample_weight'], np.array([0.4] * 500 + [4.0] * 10))) #init_params, fit_params = balancing.get_weights( # Y, None, 'extra_trees_preproc_for_classification', None, None) #self.assertTrue(np.allclose(fit_params['preprocessor:sample_weight'], # np.array([0.4] * 500 + [4.0] * 10))) def test_balancing_get_weights_svm_sgd(self): Y = np.array([0] * 80 + [1] * 20) balancing = Balancing(strategy='weighting') init_params, fit_params = balancing.get_weights( Y, 'libsvm_svc', None, None, None) self.assertEqual(("classifier:class_weight", "auto"), list(init_params.items())[0]) init_params, fit_params = balancing.get_weights( Y, None, 'liblinear_svc_preprocessor', None, None) self.assertEqual(("preprocessor:class_weight", "auto"), list(init_params.items())[0]) def test_weighting_effect(self): for name, clf, acc_no_weighting, acc_weighting in \ [('adaboost', AdaboostClassifier, 0.692, 0.719), ('decision_tree', DecisionTree, 0.712, 0.668), ('extra_trees', ExtraTreesClassifier, 0.901, 0.919), ('gradient_boosting', GradientBoostingClassifier, 0.879, 0.883), ('random_forest', RandomForest, 0.886, 0.885), ('libsvm_svc', LibSVM_SVC, 0.915, 0.937), ('liblinear_svc', LibLinear_SVC, 0.920, 0.923), ('sgd', SGD, 0.811, 0.902)]: for strategy, acc in [('none', acc_no_weighting), ('weighting', acc_weighting)]: # Fit X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') cs = ParamSklearnClassifier.get_hyperparameter_search_space( include={'classifier': [name]}) default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy classifier = ParamSklearnClassifier(default, random_state=1) predictor = classifier.fit(X_train, Y_train) predictions = predictor.predict(X_test) self.assertAlmostEqual(acc, sklearn.metrics.accuracy_score(predictions, Y_test), places=3) # pre_transform and fit_estimator X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') cs = ParamSklearnClassifier.get_hyperparameter_search_space( include={'classifier': [name]}) default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy classifier = ParamSklearnClassifier(default, random_state=1) Xt, fit_params = classifier.pre_transform(X_train, Y_train) classifier.fit_estimator(Xt, Y_train, fit_params=fit_params) predictions = classifier.predict(X_test) self.assertAlmostEqual(acc, sklearn.metrics.accuracy_score( predictions, Y_test), places=3) for name, pre, acc_no_weighting, acc_weighting in \ [('extra_trees_preproc_for_classification', ExtraTreesPreprocessor, 0.892, 0.910), ('liblinear_svc_preprocessor', LibLinear_Preprocessor, 0.906, 0.909)]: for strategy, acc in [('none', acc_no_weighting), ('weighting', acc_weighting)]: X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') cs = ParamSklearnClassifier.get_hyperparameter_search_space( include={'classifier': ['sgd'], 'preprocessor': [name]}) default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy classifier = ParamSklearnClassifier(default, random_state=1) predictor = classifier.fit(X_train, Y_train) predictions = predictor.predict(X_test) self.assertAlmostEqual(acc, sklearn.metrics.accuracy_score( predictions, Y_test), places=3) # pre_transform and fit_estimator X_train, Y_train, X_test, Y_test = get_dataset(dataset='digits') cs = ParamSklearnClassifier.get_hyperparameter_search_space( include={'classifier': ['sgd'], 'preprocessor': [name]}) default = cs.get_default_configuration() default._values['balancing:strategy'] = strategy classifier = ParamSklearnClassifier(default, random_state=1) Xt, fit_params = classifier.pre_transform(X_train, Y_train) classifier.fit_estimator(Xt, Y_train, fit_params=fit_params) predictions = classifier.predict(X_test) self.assertAlmostEqual(acc, sklearn.metrics.accuracy_score( predictions, Y_test), places=3)
bsd-3-clause
q1ang/scikit-learn
sklearn/gaussian_process/gaussian_process.py
78
34552
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
imaculate/scikit-learn
examples/cluster/plot_birch_vs_minibatchkmeans.py
333
3694
""" ================================= Compare BIRCH and MiniBatchKMeans ================================= This example compares the timing of Birch (with and without the global clustering step) and MiniBatchKMeans on a synthetic dataset having 100,000 samples and 2 features generated using make_blobs. If ``n_clusters`` is set to None, the data is reduced from 100,000 samples to a set of 158 clusters. This can be viewed as a preprocessing step before the final (global) clustering step that further reduces these 158 clusters to 100 clusters. """ # Authors: Manoj Kumar <[email protected] # Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) from itertools import cycle from time import time import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from sklearn.preprocessing import StandardScaler from sklearn.cluster import Birch, MiniBatchKMeans from sklearn.datasets.samples_generator import make_blobs # Generate centers for the blobs so that it forms a 10 X 10 grid. xx = np.linspace(-22, 22, 10) yy = np.linspace(-22, 22, 10) xx, yy = np.meshgrid(xx, yy) n_centres = np.hstack((np.ravel(xx)[:, np.newaxis], np.ravel(yy)[:, np.newaxis])) # Generate blobs to do a comparison between MiniBatchKMeans and Birch. X, y = make_blobs(n_samples=100000, centers=n_centres, random_state=0) # Use all colors that matplotlib provides by default. colors_ = cycle(colors.cnames.keys()) fig = plt.figure(figsize=(12, 4)) fig.subplots_adjust(left=0.04, right=0.98, bottom=0.1, top=0.9) # Compute clustering with Birch with and without the final clustering step # and plot. birch_models = [Birch(threshold=1.7, n_clusters=None), Birch(threshold=1.7, n_clusters=100)] final_step = ['without global clustering', 'with global clustering'] for ind, (birch_model, info) in enumerate(zip(birch_models, final_step)): t = time() birch_model.fit(X) time_ = time() - t print("Birch %s as the final step took %0.2f seconds" % ( info, (time() - t))) # Plot result labels = birch_model.labels_ centroids = birch_model.subcluster_centers_ n_clusters = np.unique(labels).size print("n_clusters : %d" % n_clusters) ax = fig.add_subplot(1, 3, ind + 1) for this_centroid, k, col in zip(centroids, range(n_clusters), colors_): mask = labels == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') if birch_model.n_clusters is None: ax.plot(this_centroid[0], this_centroid[1], '+', markerfacecolor=col, markeredgecolor='k', markersize=5) ax.set_ylim([-25, 25]) ax.set_xlim([-25, 25]) ax.set_autoscaley_on(False) ax.set_title('Birch %s' % info) # Compute clustering with MiniBatchKMeans. mbk = MiniBatchKMeans(init='k-means++', n_clusters=100, batch_size=100, n_init=10, max_no_improvement=10, verbose=0, random_state=0) t0 = time() mbk.fit(X) t_mini_batch = time() - t0 print("Time taken to run MiniBatchKMeans %0.2f seconds" % t_mini_batch) mbk_means_labels_unique = np.unique(mbk.labels_) ax = fig.add_subplot(1, 3, 3) for this_centroid, k, col in zip(mbk.cluster_centers_, range(n_clusters), colors_): mask = mbk.labels_ == k ax.plot(X[mask, 0], X[mask, 1], 'w', markerfacecolor=col, marker='.') ax.plot(this_centroid[0], this_centroid[1], '+', markeredgecolor='k', markersize=5) ax.set_xlim([-25, 25]) ax.set_ylim([-25, 25]) ax.set_title("MiniBatchKMeans") ax.set_autoscaley_on(False) plt.show()
bsd-3-clause
ankanch/tieba-zhuaqu
user-application/KCrawlerControal/Debug/plugins/wordstimeline/lib/graphicsData.py
10
2672
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties import numpy font_set = FontProperties(fname=r"c:\\windows\\fonts\\simsun.ttc", size=15) #基本柱形统计图 def barGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='图例',xWidth=0.5): lbwidth = [] x = 1 for item in xValueList: lbwidth.append(x) x += xWidth plt.title(graphicTitle,fontproperties=font_set) plt.xlabel(xLabel,fontproperties=font_set) plt.ylabel(yLabel,fontproperties=font_set) plt.xticks(lbwidth,xValueList,fontproperties=font_set) rect = plt.bar(left = lbwidth,height = yValueList,width = xWidth,align="center",yerr=0.000001) autolabel(rect) plt.show() #折线图:蓝色粗线 def linePlotGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='图例'): with plt.style.context('fivethirtyeight'): plt.title(graphicTitle,fontproperties=font_set,fontsize=20) plt.xlabel(xLabel,fontproperties=font_set) plt.ylabel(yLabel,fontproperties=font_set) plt.xticks(numpy.arange(len(xValueList)),xValueList,rotation=45,fontproperties=font_set) plt.plot(yValueList) yValueList.sort() #设置y轴区间以及图像最低端距x轴距离 print("len(yValueList)=",len(yValueList)) plt.ylim(-1.0, yValueList[len(yValueList)-1]+1) plt.subplots_adjust(bottom=0.15,left=0.05,right=0.98,top=0.92) #下面的代码用来设置网格线 ax = plt.gca() ax.get_xaxis().tick_bottom() #仅显示下面的x轴的ticks ax.get_yaxis().tick_left() ax.grid(b=False,axis='x') axis = ax.xaxis for line in axis.get_ticklines(): line.set_color("gray") line.set_markersize(6) line.set_markeredgewidth(1) #显示折线图 plt.show() #plt.savefig('percent-bachelors-degrees-women-usa.png', bbox_inches='tight') #散点图:蓝色点 def scatterPlotsGraphics(xLabel,yLabel,xValueList,yValueList,graphicTitle='图例'): with plt.style.context('fivethirtyeight'): plt.plot(xValueList, yValueList,'o') plt.show() #用来显示柱形图顶部的数字标识 def autolabel(rects): for rect in rects: height = rect.get_height() plt.text(rect.get_x()+rect.get_width()/2., 1.03*height, '%s' % int(height)) #barGraphics('等级','数量',['A','B','C','D','E','F'],[29,30,40,47,38,23],'测试图例') #linePlotGraphics("xLabel","yLabel",[1,2,3,4,5,6,7,8,9,10],[1.1,1.9,2.6,3.6,9.8,14,24,40,80,150],graphicTitle='图例') #scatterPlotsGraphics("xLabel","yLabel",[1,2,3,4,5,6,7,8,9,10],[1,11.9,2,6.3,6,9.8,14,4,8,5],graphicTitle='图例')
gpl-3.0
tillahoffmann/tensorflow
tensorflow/examples/learn/text_classification_character_cnn.py
29
5666
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of using convolutional networks over characters for DBpedia dataset. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf FLAGS = None MAX_DOCUMENT_LENGTH = 100 N_FILTERS = 10 FILTER_SHAPE1 = [20, 256] FILTER_SHAPE2 = [20, N_FILTERS] POOLING_WINDOW = 4 POOLING_STRIDE = 2 MAX_LABEL = 15 CHARS_FEATURE = 'chars' # Name of the input character feature. def char_cnn_model(features, labels, mode): """Character level convolutional neural network model to predict classes.""" features_onehot = tf.one_hot(features[CHARS_FEATURE], 256) input_layer = tf.reshape( features_onehot, [-1, MAX_DOCUMENT_LENGTH, 256, 1]) with tf.variable_scope('CNN_Layer1'): # Apply Convolution filtering on input sequence. conv1 = tf.layers.conv2d( input_layer, filters=N_FILTERS, kernel_size=FILTER_SHAPE1, padding='VALID', # Add a ReLU for non linearity. activation=tf.nn.relu) # Max pooling across output of Convolution+Relu. pool1 = tf.layers.max_pooling2d( conv1, pool_size=POOLING_WINDOW, strides=POOLING_STRIDE, padding='SAME') # Transpose matrix so that n_filters from convolution becomes width. pool1 = tf.transpose(pool1, [0, 1, 3, 2]) with tf.variable_scope('CNN_Layer2'): # Second level of convolution filtering. conv2 = tf.layers.conv2d( pool1, filters=N_FILTERS, kernel_size=FILTER_SHAPE2, padding='VALID') # Max across each filter to get useful features for classification. pool2 = tf.squeeze(tf.reduce_max(conv2, 1), squeeze_dims=[1]) # Apply regular WX + B and classification. logits = tf.layers.dense(pool2, MAX_LABEL, activation=None) predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec( mode=mode, predictions={ 'class': predicted_classes, 'prob': tf.nn.softmax(logits) }) onehot_labels = tf.one_hot(labels, MAX_LABEL, 1, 0) loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) if mode == tf.estimator.ModeKeys.TRAIN: optimizer = tf.train.AdamOptimizer(learning_rate=0.01) train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): # Prepare training and testing data dbpedia = tf.contrib.learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data, size='large') x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = tf.contrib.learn.preprocessing.ByteProcessor( MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) x_train = x_train.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) x_test = x_test.reshape([-1, MAX_DOCUMENT_LENGTH, 1, 1]) # Build model classifier = tf.estimator.Estimator(model_fn=char_cnn_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_train}, y=y_train, batch_size=len(x_train), num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=100) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={CHARS_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
vigilv/scikit-learn
examples/exercises/plot_cv_digits.py
232
1206
""" ============================================= Cross-validation on Digits Dataset Exercise ============================================= A tutorial exercise using Cross-validation with an SVM on the Digits dataset. This exercise is used in the :ref:`cv_generators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np from sklearn import cross_validation, datasets, svm digits = datasets.load_digits() X = digits.data y = digits.target svc = svm.SVC(kernel='linear') C_s = np.logspace(-10, 0, 10) scores = list() scores_std = list() for C in C_s: svc.C = C this_scores = cross_validation.cross_val_score(svc, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) # Do the plotting import matplotlib.pyplot as plt plt.figure(1, figsize=(4, 3)) plt.clf() plt.semilogx(C_s, scores) plt.semilogx(C_s, np.array(scores) + np.array(scores_std), 'b--') plt.semilogx(C_s, np.array(scores) - np.array(scores_std), 'b--') locs, labels = plt.yticks() plt.yticks(locs, list(map(lambda x: "%g" % x, locs))) plt.ylabel('CV score') plt.xlabel('Parameter C') plt.ylim(0, 1.1) plt.show()
bsd-3-clause
zihua/scikit-learn
examples/bicluster/bicluster_newsgroups.py
142
7183
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. Output:: Vectorizing... Coclustering... Done in 9.53s. V-measure: 0.4455 MiniBatchKMeans... Done in 12.00s. V-measure: 0.3309 Best biclusters: ---------------- bicluster 0 : 1951 documents, 4373 words categories : 23% talk.politics.guns, 19% talk.politics.misc, 14% sci.med words : gun, guns, geb, banks, firearms, drugs, gordon, clinton, cdt, amendment bicluster 1 : 1165 documents, 3304 words categories : 29% talk.politics.mideast, 26% soc.religion.christian, 25% alt.atheism words : god, jesus, christians, atheists, kent, sin, morality, belief, resurrection, marriage bicluster 2 : 2219 documents, 2830 words categories : 18% comp.sys.mac.hardware, 16% comp.sys.ibm.pc.hardware, 16% comp.graphics words : voltage, dsp, board, receiver, circuit, shipping, packages, stereo, compression, package bicluster 3 : 1860 documents, 2745 words categories : 26% rec.motorcycles, 23% rec.autos, 13% misc.forsale words : bike, car, dod, engine, motorcycle, ride, honda, cars, bmw, bikes bicluster 4 : 12 documents, 155 words categories : 100% rec.sport.hockey words : scorer, unassisted, reichel, semak, sweeney, kovalenko, ricci, audette, momesso, nedved """ from __future__ import print_function print(__doc__) from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], cols].sum() but # much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
hbp-unibi/SNABSuite
plot/2dim_plot.py
1
5552
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # SNABSuite -- Spiking Neural Architecture Benchmark Suite # Copyright (C) 2017 Andreas Stöckel, Christoph Jenzen # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/> """ Plots data for two dimensional sweeps """ from __future__ import division from builtins import range from past.utils import old_div import argparse parser = argparse.ArgumentParser(description='Plot two-dimensional images') # Optional arguments parser.add_argument("--zmin", type=float, help="minimal z-value") parser.add_argument("--zmax", type=float, help="maximal z-value") parser.add_argument( "-nl", type=int, help="Number of levels/ticks in z", default=11) parser.add_argument("-q", help="qualitative Colormap", action="store_true") parser.add_argument("-c", help="draw contour lines", action="store_true") # Required Parameters parser.add_argument("-z", type=int, required=True, help="Column of z-values") parser.add_argument("files", metavar="Files", nargs='+', help="files to plot") args = parser.parse_args() import numpy as np import matplotlib.pyplot as plt import matplotlib.colorbar import sys import os from dim_labels import * def cm2inch(value): return value / 2.54 def round_to_divisable(value, divisable): if value == 0: return 0 temp = np.abs(value) a = 0 while temp < divisable: temp *= 10.0 a += 1 if temp % divisable == 0: return value res = old_div((temp - (temp % divisable) + divisable), (10.0**a)) if value < 0: return -res return res def plot_measure2d(xs, ys, zs, xlabel, ylabel, zlabel="", zmin=None, zmax=None, qualitative=False, contour=True, title=None): fig = plt.figure(figsize=(cm2inch(5.5), cm2inch(5.5))) ax1 = fig.add_axes([0.0, 0.25, 1.0, 0.85]) if title is not None: plt.title(title) ax2 = fig.add_axes([0.0, 0.0, 1.0, 0.05]) _, steps_x = np.unique(xs, return_counts=True) _, steps_y = np.unique(ys, return_counts=True) steps_x = np.max(steps_x) steps_y = np.max(steps_y) xs = xs.reshape((steps_y, steps_x)) ys = ys.reshape((steps_y, steps_x)) zs = zs.reshape((steps_y, steps_x)) zs = zs.transpose() # Auto-scale idcs = np.isfinite(zs) if np.sum(idcs) == 0: return if zmin is None: zmin = np.min(zs[idcs]) if 0 < zmin < 1: zmin = 0 else: zmin = int(zmin) if zmax is None: zmax = round_to_divisable(np.max(zs[idcs]), args.nl - 1) if zmin > 0: zmax = zmax + zmin if 0 < zmax < 1: zmax = 1 # Select the colormap if qualitative: cmap = plt.cm.rainbow else: #cmap = plt.cm.Purples # if zmin < 0.0: cmap = plt.cm.PuOr cmap.set_bad('black', 1.) extent = (np.min(xs), np.max(xs), np.min(ys), np.max(ys)) ax1.imshow(zs, aspect='auto', origin='lower', extent=extent, cmap=cmap, vmin=zmin, vmax=zmax, interpolation="none") levels = np.linspace(zmin, zmax, args.nl) zs = zs.transpose() if contour: CS2 = ax1.contour(xs, ys, zs, levels, linewidths=0.25, colors='k', vmin=zmin, vmax=zmax) ax1.grid(color='black', linestyle=':', linewidth=0.25) ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) cbar = matplotlib.colorbar.ColorbarBase(ax2, cmap=cmap, orientation='horizontal', ticks=levels, norm=matplotlib.colors.Normalize(zmin, zmax)) cbar.set_label(zlabel) return fig if not os.path.exists("images"): os.mkdir("images") for target_file in args.files: simulator = target_file.split('_')[-1].split('.csv')[0] experiment = target_file.split('/')[-1].split(simulator)[0] #import data results = np.genfromtxt(target_file, delimiter=',', names=True) keys = results.dtype.names data = np.zeros((results.shape[0], len(keys))) for i in range(0, len(results)): data[i] = np.array(list(results[i])) fig = plot_measure2d(data[:, 0], data[:, 1], data[:, args.z], xlabel=get_label(keys[0]), ylabel=get_label(keys[1]), zlabel=get_label(keys[args.z]), zmin=args.zmin, zmax=args.zmax, qualitative=args.q, contour=args.c, title=SIMULATOR_LABELS[simulator]) if target_file.split('/')[-2]: if not os.path.exists("images/" + target_file.split('/')[-2]): os.mkdir("images/" + target_file.split('/')[-2]) fig.savefig("images/" + target_file.split('/')[-2] + "/" + experiment + simulator + ".pdf", format='pdf', bbox_inches='tight') else: fig.savefig("images/" + experiment + simulator + ".pdf", format='pdf', bbox_inches='tight')
gpl-3.0
paultcochrane/bokeh
bokeh/compat/mplexporter/exporter.py
32
12403
""" Matplotlib Exporter =================== This submodule contains tools for crawling a matplotlib figure and exporting relevant pieces to a renderer. """ import warnings import io from . import utils import matplotlib from matplotlib import transforms from matplotlib.backends.backend_agg import FigureCanvasAgg class Exporter(object): """Matplotlib Exporter Parameters ---------- renderer : Renderer object The renderer object called by the exporter to create a figure visualization. See mplexporter.Renderer for information on the methods which should be defined within the renderer. close_mpl : bool If True (default), close the matplotlib figure as it is rendered. This is useful for when the exporter is used within the notebook, or with an interactive matplotlib backend. """ def __init__(self, renderer, close_mpl=True): self.close_mpl = close_mpl self.renderer = renderer def run(self, fig): """ Run the exporter on the given figure Parmeters --------- fig : matplotlib.Figure instance The figure to export """ # Calling savefig executes the draw() command, putting elements # in the correct place. if fig.canvas is None: fig.canvas = FigureCanvasAgg(fig) fig.savefig(io.BytesIO(), format='png', dpi=fig.dpi) if self.close_mpl: import matplotlib.pyplot as plt plt.close(fig) self.crawl_fig(fig) @staticmethod def process_transform(transform, ax=None, data=None, return_trans=False, force_trans=None): """Process the transform and convert data to figure or data coordinates Parameters ---------- transform : matplotlib Transform object The transform applied to the data ax : matplotlib Axes object (optional) The axes the data is associated with data : ndarray (optional) The array of data to be transformed. return_trans : bool (optional) If true, return the final transform of the data force_trans : matplotlib.transform instance (optional) If supplied, first force the data to this transform Returns ------- code : string Code is either "data", "axes", "figure", or "display", indicating the type of coordinates output. transform : matplotlib transform the transform used to map input data to output data. Returned only if return_trans is True new_data : ndarray Data transformed to match the given coordinate code. Returned only if data is specified """ if isinstance(transform, transforms.BlendedGenericTransform): warnings.warn("Blended transforms not yet supported. " "Zoom behavior may not work as expected.") if force_trans is not None: if data is not None: data = (transform - force_trans).transform(data) transform = force_trans code = "display" if ax is not None: for (c, trans) in [("data", ax.transData), ("axes", ax.transAxes), ("figure", ax.figure.transFigure), ("display", transforms.IdentityTransform())]: if transform.contains_branch(trans): code, transform = (c, transform - trans) break if data is not None: if return_trans: return code, transform.transform(data), transform else: return code, transform.transform(data) else: if return_trans: return code, transform else: return code def crawl_fig(self, fig): """Crawl the figure and process all axes""" with self.renderer.draw_figure(fig=fig, props=utils.get_figure_properties(fig)): for ax in fig.axes: self.crawl_ax(ax) def crawl_ax(self, ax): """Crawl the axes and process all elements within""" with self.renderer.draw_axes(ax=ax, props=utils.get_axes_properties(ax)): for line in ax.lines: self.draw_line(ax, line) for text in ax.texts: self.draw_text(ax, text) for (text, ttp) in zip([ax.xaxis.label, ax.yaxis.label, ax.title], ["xlabel", "ylabel", "title"]): if(hasattr(text, 'get_text') and text.get_text()): self.draw_text(ax, text, force_trans=ax.transAxes, text_type=ttp) for artist in ax.artists: # TODO: process other artists if isinstance(artist, matplotlib.text.Text): self.draw_text(ax, artist) for patch in ax.patches: self.draw_patch(ax, patch) for collection in ax.collections: self.draw_collection(ax, collection) for image in ax.images: self.draw_image(ax, image) legend = ax.get_legend() if legend is not None: props = utils.get_legend_properties(ax, legend) with self.renderer.draw_legend(legend=legend, props=props): if props['visible']: self.crawl_legend(ax, legend) def crawl_legend(self, ax, legend): """ Recursively look through objects in legend children """ legendElements = list(utils.iter_all_children(legend._legend_box, skipContainers=True)) legendElements.append(legend.legendPatch) for child in legendElements: # force a large zorder so it appears on top child.set_zorder(1E6 + child.get_zorder()) try: # What kind of object... if isinstance(child, matplotlib.patches.Patch): self.draw_patch(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.text.Text): if not (child is legend.get_children()[-1] and child.get_text() == 'None'): self.draw_text(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.lines.Line2D): self.draw_line(ax, child, force_trans=ax.transAxes) elif isinstance(child, matplotlib.collections.Collection): self.draw_collection(ax, child, force_pathtrans=ax.transAxes) else: warnings.warn("Legend element %s not impemented" % child) except NotImplementedError: warnings.warn("Legend element %s not impemented" % child) def draw_line(self, ax, line, force_trans=None): """Process a matplotlib line and call renderer.draw_line""" coordinates, data = self.process_transform(line.get_transform(), ax, line.get_xydata(), force_trans=force_trans) linestyle = utils.get_line_style(line) if linestyle['dasharray'] is None: linestyle = None markerstyle = utils.get_marker_style(line) if (markerstyle['marker'] in ['None', 'none', None] or markerstyle['markerpath'][0].size == 0): markerstyle = None label = line.get_label() if markerstyle or linestyle: self.renderer.draw_marked_line(data=data, coordinates=coordinates, linestyle=linestyle, markerstyle=markerstyle, label=label, mplobj=line) def draw_text(self, ax, text, force_trans=None, text_type=None): """Process a matplotlib text object and call renderer.draw_text""" content = text.get_text() if content: transform = text.get_transform() position = text.get_position() coords, position = self.process_transform(transform, ax, position, force_trans=force_trans) style = utils.get_text_style(text) self.renderer.draw_text(text=content, position=position, coordinates=coords, text_type=text_type, style=style, mplobj=text) def draw_patch(self, ax, patch, force_trans=None): """Process a matplotlib patch object and call renderer.draw_path""" vertices, pathcodes = utils.SVG_path(patch.get_path()) transform = patch.get_transform() coordinates, vertices = self.process_transform(transform, ax, vertices, force_trans=force_trans) linestyle = utils.get_path_style(patch, fill=patch.get_fill()) self.renderer.draw_path(data=vertices, coordinates=coordinates, pathcodes=pathcodes, style=linestyle, mplobj=patch) def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): """Process a matplotlib collection and call renderer.draw_collection""" (transform, transOffset, offsets, paths) = collection._prepare_points() offset_coords, offsets = self.process_transform( transOffset, ax, offsets, force_trans=force_offsettrans) path_coords = self.process_transform( transform, ax, force_trans=force_pathtrans) processed_paths = [utils.SVG_path(path) for path in paths] processed_paths = [(self.process_transform( transform, ax, path[0], force_trans=force_pathtrans)[1], path[1]) for path in processed_paths] path_transforms = collection.get_transforms() try: # matplotlib 1.3: path_transforms are transform objects. # Convert them to numpy arrays. path_transforms = [t.get_matrix() for t in path_transforms] except AttributeError: # matplotlib 1.4: path transforms are already numpy arrays. pass styles = {'linewidth': collection.get_linewidths(), 'facecolor': collection.get_facecolors(), 'edgecolor': collection.get_edgecolors(), 'alpha': collection._alpha, 'zorder': collection.get_zorder()} offset_dict = {"data": "before", "screen": "after"} offset_order = offset_dict[collection.get_offset_position()] self.renderer.draw_path_collection(paths=processed_paths, path_coordinates=path_coords, path_transforms=path_transforms, offsets=offsets, offset_coordinates=offset_coords, offset_order=offset_order, styles=styles, mplobj=collection) def draw_image(self, ax, image): """Process a matplotlib image object and call renderer.draw_image""" self.renderer.draw_image(imdata=utils.image_to_base64(image), extent=image.get_extent(), coordinates="data", style={"alpha": image.get_alpha(), "zorder": image.get_zorder()}, mplobj=image)
bsd-3-clause
xiaoweih/DLV
networks/twoDcurve.py
1
5180
#!/usr/bin/env python """ For Xiaowei to train MLP for regression """ import sys import time import numpy as np import scipy.io as sio import matplotlib.pyplot as plt # keras from keras.models import Model, Sequential from keras.layers import Input, Dense import keras.optimizers # visualisation from keras.utils.visualize_util import plot # #import analyze as analyzeNN #import display import basics from math import sqrt TWO_PI = 2 * np.pi studyRangeLow = [0,0] studyRangeHigh = [TWO_PI,TWO_PI] def target_fun(x): # function to regress #p = 3*np.sin(10*x[0]) + 0.2*(x[0]**2) + 1 p = 1 + sqrt(10*(abs(x[0]-3))) return p def LABELS(index): labels = ['0', '1'] return labels[index] def save(layer,image,filename): """ Render a given numpy.uint8 2D array of pixel data. """ plt.plot(np.linspace(studyRangeLow[0], studyRangeHigh[0]), [target_fun([x]) for x in np.linspace(studyRangeLow[0], studyRangeHigh[0])], 'r') if layer == -1: color = 'g.' elif layer == 0: color = 'r.' elif layer == 1: color = 'b.' elif layer == 2: color = 'y.' elif layer == 3: color = 'c.' else: color = 'b.' plt.plot([image[0]], [image[1]], color) plt.savefig(filename) """ def regression(): if len(sys.argv) > 1: if sys.argv[1] == '0': fromFile = False else: fromFile = True else: fromFile = False N_samples = 5000 N_tests = 1000 # load data x_train, y_train, x_test, y_test = NN.load_data(N_samples,N_tests) if fromFile == False: # define and construct model print "Building network model ......" model = NN.build_model() plot(model, to_file='model.png') # visualisation # configure learning process sgd = keras.optimizers.SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss={'output': 'mse'}) model.summary() start_time = time.time() model.fit({'data': x_train}, {'output': y_train}, nb_epoch=3000, validation_split=0.1, verbose=0) print("Fitting time: --- %s seconds ---" % (time.time() - start_time)) print("Training finished!") # save model json_string = model.to_json() open('MLP.json', 'w').write(json_string) model.save_weights('MLP.h5', overwrite=True) sio.savemat('MLP.mat', {'weights': model.get_weights()}) print("Model saved!") else: print("Start loading model ... ") model = basics.read_model_from_file('MLP.mat','MLP.json') model.summary() #display.print_structure("MLP.h5") print("Start analyzing model ... ") start_time = time.time() model1 = analyzeNN.analyze(model, x_train, y_train, [studyRangeLow[0],studyRangeHigh[0]], [studyRangeLow[1],studyRangeHigh[1]], plt) print("Analyzing time: --- %s seconds ---" % (time.time() - start_time)) model1.save_weights('MLP1.h5', overwrite=True) #analyzeNN.print_structure("MLP1.h5") # prediction after training y_predicted = model.predict(x_test) y_predicted1 = model1.predict(x_test) # display results plt.plot(np.linspace(studyRangeLow[0], studyRangeHigh[0]), [basics.target_fun([x]) for x in np.linspace(studyRangeLow[0], studyRangeHigh[0])], 'r') train_set = zip(x_train,y_train) train_set_high = [ x for (x,y) in train_set if y[0] == 1] train_set_low = [ x for (x,y) in train_set if y[0] == 0] (x_train_high, y_train_high) = zip(*train_set_high) (x_train_low, y_train_low) = zip(*train_set_low) plt.plot(x_train_high, y_train_high, 'g.') plt.plot(x_train_low, y_train_low, 'y.') threshold = 0.5 dangerThreshold = 0.9 plt.savefig("pic/result.png") plt.show() """ """ test_set = zip(x_test,y_test,y_predicted) test_set_high = [ x for (x,y,z) in test_set if y[0] == True and z[0] >= threshold ] test_set_low = [ x for (x,y,z) in test_set if y[0] == False and z[0] <= 1 - threshold ] test_set_wrong = [ x for (x,y,z) in test_set if ~(y[0] == True and z[0] >= threshold) and ~(y[0] == False and z[0] <= 1 - threshold) ] test_set_wrong2 = [ x for (x,y,z) in test_set if (y[0] == True and z[0] <= 1- dangerThreshold) or (y[0] == False and z[0] >= dangerThreshold) ] print str(len(test_set_wrong)) + " testing samples are classified wrong, among all " + str(len(test_set)) +" samples " print str(len(test_set_wrong2)) + " testing samples are classified wrong in a definite way, among all " + str(len(test_set)) +" samples " if len(test_set_high) > 0: (x_test_high, y_test_high) = zip(*test_set_high) plt.plot(x_test_high, y_test_high, 'c.') if len(test_set_low) > 0: (x_test_low, y_test_low) = zip(*test_set_low) plt.plot(x_test_low, y_test_low, 'b.') (x_test_wrong, y_test_wrong) = zip(*test_set_wrong) plt.plot(x_test_wrong, y_test_wrong, 'r.') """ #plt.legend(['Target line', 'Training samples high', 'Training samples low', 'Testing samples high', 'Testing samples low', 'Testing samples wrong' ])
gpl-3.0
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/tseries/tests/test_converter.py
13
5611
from datetime import datetime, time, timedelta, date import sys import os import nose import numpy as np from numpy.testing import assert_almost_equal as np_assert_almost_equal from pandas import Timestamp, Period from pandas.compat import u import pandas.util.testing as tm from pandas.tseries.offsets import Second, Milli, Micro try: import pandas.tseries.converter as converter except ImportError: raise nose.SkipTest("no pandas.tseries.converter, skipping") def test_timtetonum_accepts_unicode(): assert(converter.time2num("00:01") == converter.time2num(u("00:01"))) class TestDateTimeConverter(tm.TestCase): def setUp(self): self.dtc = converter.DatetimeConverter() self.tc = converter.TimeFormatter(None) def test_convert_accepts_unicode(self): r1 = self.dtc.convert("12:22", None, None) r2 = self.dtc.convert(u("12:22"), None, None) assert(r1 == r2), "DatetimeConverter.convert should accept unicode" def test_conversion(self): rs = self.dtc.convert(['2012-1-1'], None, None)[0] xp = datetime(2012, 1, 1).toordinal() self.assertEqual(rs, xp) rs = self.dtc.convert('2012-1-1', None, None) self.assertEqual(rs, xp) rs = self.dtc.convert(date(2012, 1, 1), None, None) self.assertEqual(rs, xp) rs = self.dtc.convert(datetime(2012, 1, 1).toordinal(), None, None) self.assertEqual(rs, xp) rs = self.dtc.convert('2012-1-1', None, None) self.assertEqual(rs, xp) rs = self.dtc.convert(Timestamp('2012-1-1'), None, None) self.assertEqual(rs, xp) # also testing datetime64 dtype (GH8614) rs = self.dtc.convert(np.datetime64('2012-01-01'), None, None) self.assertEqual(rs, xp) rs = self.dtc.convert(np.datetime64('2012-01-01 00:00:00+00:00'), None, None) self.assertEqual(rs, xp) rs = self.dtc.convert(np.array([np.datetime64('2012-01-01 00:00:00+00:00'), np.datetime64('2012-01-02 00:00:00+00:00')]), None, None) self.assertEqual(rs[0], xp) def test_conversion_float(self): decimals = 9 rs = self.dtc.convert(Timestamp('2012-1-1 01:02:03', tz='UTC'), None, None) xp = converter.dates.date2num(Timestamp('2012-1-1 01:02:03', tz='UTC')) np_assert_almost_equal(rs, xp, decimals) rs = self.dtc.convert(Timestamp('2012-1-1 09:02:03', tz='Asia/Hong_Kong'), None, None) np_assert_almost_equal(rs, xp, decimals) rs = self.dtc.convert(datetime(2012, 1, 1, 1, 2, 3), None, None) np_assert_almost_equal(rs, xp, decimals) def test_time_formatter(self): self.tc(90000) def test_dateindex_conversion(self): decimals = 9 for freq in ('B', 'L', 'S'): dateindex = tm.makeDateIndex(k = 10, freq = freq) rs = self.dtc.convert(dateindex, None, None) xp = converter.dates.date2num(dateindex._mpl_repr()) np_assert_almost_equal(rs, xp, decimals) def test_resolution(self): def _assert_less(ts1, ts2): val1 = self.dtc.convert(ts1, None, None) val2 = self.dtc.convert(ts2, None, None) if not val1 < val2: raise AssertionError('{0} is not less than {1}.'.format(val1, val2)) # Matplotlib's time representation using floats cannot distinguish intervals smaller # than ~10 microsecond in the common range of years. ts = Timestamp('2012-1-1') _assert_less(ts, ts + Second()) _assert_less(ts, ts + Milli()) _assert_less(ts, ts + Micro(50)) class TestPeriodConverter(tm.TestCase): def setUp(self): self.pc = converter.PeriodConverter() class Axis(object): pass self.axis = Axis() self.axis.freq = 'D' def test_convert_accepts_unicode(self): r1 = self.pc.convert("2012-1-1", None, self.axis) r2 = self.pc.convert(u("2012-1-1"), None, self.axis) self.assert_equal(r1, r2, "PeriodConverter.convert should accept unicode") def test_conversion(self): rs = self.pc.convert(['2012-1-1'], None, self.axis)[0] xp = Period('2012-1-1').ordinal self.assertEqual(rs, xp) rs = self.pc.convert('2012-1-1', None, self.axis) self.assertEqual(rs, xp) rs = self.pc.convert([date(2012, 1, 1)], None, self.axis)[0] self.assertEqual(rs, xp) rs = self.pc.convert(date(2012, 1, 1), None, self.axis) self.assertEqual(rs, xp) rs = self.pc.convert([Timestamp('2012-1-1')], None, self.axis)[0] self.assertEqual(rs, xp) rs = self.pc.convert(Timestamp('2012-1-1'), None, self.axis) self.assertEqual(rs, xp) # FIXME # rs = self.pc.convert(np.datetime64('2012-01-01'), None, self.axis) # self.assertEqual(rs, xp) # # rs = self.pc.convert(np.datetime64('2012-01-01 00:00:00+00:00'), None, self.axis) # self.assertEqual(rs, xp) # # rs = self.pc.convert(np.array([np.datetime64('2012-01-01 00:00:00+00:00'), # np.datetime64('2012-01-02 00:00:00+00:00')]), None, self.axis) # self.assertEqual(rs[0], xp) def test_integer_passthrough(self): # GH9012 rs = self.pc.convert([0, 1], None, self.axis) xp = [0, 1] self.assertEqual(rs, xp) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-2.0
ycaihua/scikit-learn
sklearn/ensemble/gradient_boosting.py
2
60872
"""Gradient Boosted Regression Trees This module contains methods for fitting gradient boosted regression trees for both classification and regression. The module structure is the following: - The ``BaseGradientBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ in the concrete ``LossFunction`` used. - ``GradientBoostingClassifier`` implements gradient boosting for classification problems. - ``GradientBoostingRegressor`` implements gradient boosting for regression problems. """ # Authors: Peter Prettenhofer, Scott White, Gilles Louppe, Emanuele Olivetti, # Arnaud Joly # License: BSD 3 clause from __future__ import print_function from __future__ import division from abc import ABCMeta, abstractmethod from time import time import numbers import numpy as np from scipy import stats from .base import BaseEnsemble from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..utils import check_random_state, check_array, check_X_y, column_or_1d from ..utils import check_consistent_length from ..utils.extmath import logsumexp from ..utils.fixes import expit from ..utils.stats import _weighted_percentile from ..utils.validation import check_is_fitted, NotFittedError from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..tree.tree import DecisionTreeRegressor from ..tree._tree import DTYPE, TREE_LEAF from ..tree._tree import PresortBestSplitter from ..tree._tree import FriedmanMSE from ._gradient_boosting import predict_stages from ._gradient_boosting import predict_stage from ._gradient_boosting import _random_sample_mask class QuantileEstimator(BaseEstimator): """An estimator predicting the alpha-quantile of the training targets.""" def __init__(self, alpha=0.9): if not 0 < alpha < 1.0: raise ValueError("`alpha` must be in (0, 1.0) but was %r" % alpha) self.alpha = alpha def fit(self, X, y, sample_weight=None): if sample_weight is None: self.quantile = stats.scoreatpercentile(y, self.alpha * 100.0) else: self.quantile = _weighted_percentile(y, sample_weight, self.alpha * 100.0) def predict(self, X): check_is_fitted(self, 'quantile') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.quantile) return y class MeanEstimator(BaseEstimator): """An estimator predicting the mean of the training targets.""" def fit(self, X, y, sample_weight=None): if sample_weight is None: self.mean = np.mean(y) else: self.mean = np.average(y, weights=sample_weight) def predict(self, X): check_is_fitted(self, 'mean') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.mean) return y class LogOddsEstimator(BaseEstimator): """An estimator predicting the log odds ratio.""" scale = 1.0 def fit(self, X, y, sample_weight=None): # pre-cond: pos, neg are encoded as 1, 0 if sample_weight is None: pos = np.sum(y) neg = y.shape[0] - pos else: pos = np.sum(sample_weight * y) neg = np.sum(sample_weight * (1 - y)) if neg == 0 or pos == 0: raise ValueError('y contains non binary labels.') self.prior = self.scale * np.log(pos / neg) def predict(self, X): check_is_fitted(self, 'prior') y = np.empty((X.shape[0], 1), dtype=np.float64) y.fill(self.prior) return y class ScaledLogOddsEstimator(LogOddsEstimator): """Log odds ratio scaled by 0.5 -- for exponential loss. """ scale = 0.5 class PriorProbabilityEstimator(BaseEstimator): """An estimator predicting the probability of each class in the training data. """ def fit(self, X, y, sample_weight=None): if sample_weight is None: sample_weight = np.ones_like(y, dtype=np.float) class_counts = np.bincount(y, weights=sample_weight) self.priors = class_counts / class_counts.sum() def predict(self, X): check_is_fitted(self, 'priors') y = np.empty((X.shape[0], self.priors.shape[0]), dtype=np.float64) y[:] = self.priors return y class ZeroEstimator(BaseEstimator): """An estimator that simply predicts zero. """ def fit(self, X, y, sample_weight=None): if np.issubdtype(y.dtype, int): # classification self.n_classes = np.unique(y).shape[0] if self.n_classes == 2: self.n_classes = 1 else: # regression self.n_classes = 1 def predict(self, X): check_is_fitted(self, 'n_classes') y = np.empty((X.shape[0], self.n_classes), dtype=np.float64) y.fill(0.0) return y class LossFunction(six.with_metaclass(ABCMeta, object)): """Abstract base class for various loss functions. Attributes ---------- K : int The number of regression trees to be induced; 1 for regression and binary classification; ``n_classes`` for multi-class classification. """ is_multi_class = False def __init__(self, n_classes): self.K = n_classes def init_estimator(self): """Default ``init`` estimator for loss function. """ raise NotImplementedError() @abstractmethod def __call__(self, y, pred, sample_weight=None): """Compute the loss of prediction ``pred`` and ``y``. """ @abstractmethod def negative_gradient(self, y, y_pred, **kargs): """Compute the negative gradient. Parameters --------- y : np.ndarray, shape=(n,) The target labels. y_pred : np.ndarray, shape=(n,): The predictions. """ def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Update the terminal regions (=leaves) of the given tree and updates the current predictions of the model. Traverses tree and invokes template method `_update_terminal_region`. Parameters ---------- tree : tree.Tree The tree object. X : ndarray, shape=(n, m) The data array. y : ndarray, shape=(n,) The target labels. residual : ndarray, shape=(n,) The residuals (usually the negative gradient). y_pred : ndarray, shape=(n,) The predictions. sample_weight : ndarray, shape=(n,) The weight of each sample. sample_mask : ndarray, shape=(n,) The sample mask to be used. learning_rate : float, default=0.1 learning rate shrinks the contribution of each tree by ``learning_rate``. k : int, default 0 The index of the estimator being updated. """ # compute leaf for each sample in ``X``. terminal_regions = tree.apply(X) # mask all which are not in sample mask. masked_terminal_regions = terminal_regions.copy() masked_terminal_regions[~sample_mask] = -1 # update each leaf (= perform line search) for leaf in np.where(tree.children_left == TREE_LEAF)[0]: self._update_terminal_region(tree, masked_terminal_regions, leaf, X, y, residual, y_pred[:, k], sample_weight) # update predictions (both in-bag and out-of-bag) y_pred[:, k] += (learning_rate * tree.value[:, 0, 0].take(terminal_regions, axis=0)) @abstractmethod def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Template method for updating terminal regions (=leaves). """ class RegressionLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for regression loss functions. """ def __init__(self, n_classes): if n_classes != 1: raise ValueError("``n_classes`` must be 1 for regression but " "was %r" % n_classes) super(RegressionLossFunction, self).__init__(n_classes) class LeastSquaresError(RegressionLossFunction): """Loss function for least squares (LS) estimation. Terminal regions need not to be updated for least squares. """ def init_estimator(self): return MeanEstimator() def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.mean((y - pred.ravel()) ** 2.0) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * ((y - pred.ravel()) ** 2.0))) def negative_gradient(self, y, pred, **kargs): return y - pred.ravel() def update_terminal_regions(self, tree, X, y, residual, y_pred, sample_weight, sample_mask, learning_rate=1.0, k=0): """Least squares does not need to update terminal regions. But it has to update the predictions. """ # update predictions y_pred[:, k] += learning_rate * tree.predict(X).ravel() def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): pass class LeastAbsoluteError(RegressionLossFunction): """Loss function for least absolute deviation (LAD) regression. """ def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): if sample_weight is None: return np.abs(y - pred.ravel()).mean() else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.abs(y - pred.ravel()))) def negative_gradient(self, y, pred, **kargs): """1.0 if y - pred > 0.0 else -1.0""" pred = pred.ravel() return 2.0 * (y - pred > 0.0) - 1.0 def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """LAD updates terminal regions to median estimates. """ terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) diff = y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0) tree.value[leaf, 0, 0] = _weighted_percentile(diff, sample_weight, percentile=50) class HuberLossFunction(RegressionLossFunction): """Huber loss function for robust regression. M-Regression proposed in Friedman 2001. References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. """ def __init__(self, n_classes, alpha=0.9): super(HuberLossFunction, self).__init__(n_classes) self.alpha = alpha self.gamma = None def init_estimator(self): return QuantileEstimator(alpha=0.5) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred gamma = self.gamma if gamma is None: if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma if sample_weight is None: sq_loss = np.sum(0.5 * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / y.shape[0] else: sq_loss = np.sum(0.5 * sample_weight[gamma_mask] * diff[gamma_mask] ** 2.0) lin_loss = np.sum(gamma * sample_weight[~gamma_mask] * (np.abs(diff[~gamma_mask]) - gamma / 2.0)) loss = (sq_loss + lin_loss) / sample_weight.sum() return loss def negative_gradient(self, y, pred, sample_weight=None, **kargs): pred = pred.ravel() diff = y - pred if sample_weight is None: gamma = stats.scoreatpercentile(np.abs(diff), self.alpha * 100) else: gamma = _weighted_percentile(np.abs(diff), sample_weight, self.alpha * 100) gamma_mask = np.abs(diff) <= gamma residual = np.zeros((y.shape[0],), dtype=np.float64) residual[gamma_mask] = diff[gamma_mask] residual[~gamma_mask] = gamma * np.sign(diff[~gamma_mask]) self.gamma = gamma return residual def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] sample_weight = sample_weight.take(terminal_region, axis=0) gamma = self.gamma diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) median = _weighted_percentile(diff, sample_weight, percentile=50) diff_minus_median = diff - median tree.value[leaf, 0] = median + np.mean( np.sign(diff_minus_median) * np.minimum(np.abs(diff_minus_median), gamma)) class QuantileLossFunction(RegressionLossFunction): """Loss function for quantile regression. Quantile regression allows to estimate the percentiles of the conditional distribution of the target. """ def __init__(self, n_classes, alpha=0.9): super(QuantileLossFunction, self).__init__(n_classes) assert 0 < alpha < 1.0 self.alpha = alpha self.percentile = alpha * 100.0 def init_estimator(self): return QuantileEstimator(self.alpha) def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() diff = y - pred alpha = self.alpha mask = y > pred if sample_weight is None: loss = (alpha * diff[mask].sum() + (1.0 - alpha) * diff[~mask].sum()) / y.shape[0] else: loss = ((alpha * np.sum(sample_weight[mask] * diff[mask]) + (1.0 - alpha) * np.sum(sample_weight[~mask] * diff[~mask])) / sample_weight.sum()) return loss def negative_gradient(self, y, pred, **kargs): alpha = self.alpha pred = pred.ravel() mask = y > pred return (alpha * mask) - ((1.0 - alpha) * ~mask) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] diff = (y.take(terminal_region, axis=0) - pred.take(terminal_region, axis=0)) sample_weight = sample_weight.take(terminal_region, axis=0) val = _weighted_percentile(diff, sample_weight, self.percentile) tree.value[leaf, 0] = val class ClassificationLossFunction(six.with_metaclass(ABCMeta, LossFunction)): """Base class for classification loss functions. """ def _score_to_proba(self, score): """Template method to convert scores to probabilities. If the loss does not support probabilites raises AttributeError. """ raise TypeError('%s does not support predict_proba' % type(self).__name__) @abstractmethod def _score_to_decision(self, score): """Template method to convert scores to decisions. Returns int arrays. """ class BinomialDeviance(ClassificationLossFunction): """Binomial deviance loss function for binary classification. Binary classification is a special case; here, we only need to fit one tree instead of ``n_classes`` trees. """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(BinomialDeviance, self).__init__(1) def init_estimator(self): return LogOddsEstimator() def __call__(self, y, pred, sample_weight=None): """Compute the deviance (= 2 * negative log-likelihood). """ # logaddexp(0, v) == log(1.0 + exp(v)) pred = pred.ravel() if sample_weight is None: return -2.0 * np.mean((y * pred) - np.logaddexp(0.0, pred)) else: return (-2.0 / sample_weight.sum() * np.sum(sample_weight * ((y * pred) - np.logaddexp(0.0, pred)))) def negative_gradient(self, y, pred, **kargs): """Compute the residual (= negative gradient). """ return y - expit(pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. our node estimate is given by: sum(w * (y - prob)) / sum(w * prob * (1 - prob)) we take advantage that: y - prob = residual """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) denominator = np.sum(sample_weight * (y - residual) * (1 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = 1.0 / (1.0 + np.exp(-score.ravel())) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class MultinomialDeviance(ClassificationLossFunction): """Multinomial deviance loss function for multi-class classification. For multi-class classification we need to fit ``n_classes`` trees at each stage. """ is_multi_class = True def __init__(self, n_classes): if n_classes < 3: raise ValueError("{0:s} requires more than 2 classes.".format( self.__class__.__name__)) super(MultinomialDeviance, self).__init__(n_classes) def init_estimator(self): return PriorProbabilityEstimator() def __call__(self, y, pred, sample_weight=None): # create one-hot label encoding Y = np.zeros((y.shape[0], self.K), dtype=np.float64) for k in range(self.K): Y[:, k] = y == k if sample_weight is None: return np.sum(-1 * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) else: return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) + logsumexp(pred, axis=1)) def negative_gradient(self, y, pred, k=0, **kwargs): """Compute negative gradient for the ``k``-th class. """ return y - np.nan_to_num(np.exp(pred[:, k] - logsumexp(pred, axis=1))) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): """Make a single Newton-Raphson step. """ terminal_region = np.where(terminal_regions == leaf)[0] residual = residual.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) numerator = np.sum(sample_weight * residual) numerator *= (self.K - 1) / self.K denominator = np.sum(sample_weight * (y - residual) * (1.0 - y + residual)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): return np.nan_to_num( np.exp(score - (logsumexp(score, axis=1)[:, np.newaxis]))) def _score_to_decision(self, score): proba = self._score_to_proba(score) return np.argmax(proba, axis=1) class ExponentialLoss(ClassificationLossFunction): """Exponential loss function for binary classification. Same loss as AdaBoost. References ---------- Greg Ridgeway, Generalized Boosted Models: A guide to the gbm package, 2007 """ def __init__(self, n_classes): if n_classes != 2: raise ValueError("{0:s} requires 2 classes.".format( self.__class__.__name__)) # we only need to fit one tree for binary clf. super(ExponentialLoss, self).__init__(1) def init_estimator(self): return ScaledLogOddsEstimator() def __call__(self, y, pred, sample_weight=None): pred = pred.ravel() if sample_weight is None: return np.mean(np.exp(-(2. * y - 1.) * pred)) else: return (1.0 / sample_weight.sum() * np.sum(sample_weight * np.exp(-(2 * y - 1) * pred))) def negative_gradient(self, y, pred, **kargs): y_ = -(2. * y - 1.) return y_ * np.exp(y_ * pred.ravel()) def _update_terminal_region(self, tree, terminal_regions, leaf, X, y, residual, pred, sample_weight): terminal_region = np.where(terminal_regions == leaf)[0] pred = pred.take(terminal_region, axis=0) y = y.take(terminal_region, axis=0) sample_weight = sample_weight.take(terminal_region, axis=0) y_ = 2. * y - 1. numerator = np.sum(y_ * sample_weight * np.exp(-y_ * pred)) denominator = np.sum(sample_weight * np.exp(-y_ * pred)) if denominator == 0.0: tree.value[leaf, 0, 0] = 0.0 else: tree.value[leaf, 0, 0] = numerator / denominator def _score_to_proba(self, score): proba = np.ones((score.shape[0], 2), dtype=np.float64) proba[:, 1] = 1.0 / (1.0 + np.exp(-2.0 * score.ravel())) proba[:, 0] -= proba[:, 1] return proba def _score_to_decision(self, score): return (score.ravel() >= 0.0).astype(np.int) LOSS_FUNCTIONS = {'ls': LeastSquaresError, 'lad': LeastAbsoluteError, 'huber': HuberLossFunction, 'quantile': QuantileLossFunction, 'deviance': None, # for both, multinomial and binomial 'exponential': ExponentialLoss, } INIT_ESTIMATORS = {'zero': ZeroEstimator} class VerboseReporter(object): """Reports verbose output to stdout. If ``verbose==1`` output is printed once in a while (when iteration mod verbose_mod is zero).; if larger than 1 then output is printed for each update. """ def __init__(self, verbose): self.verbose = verbose def init(self, est, begin_at_stage=0): # header fields and line format str header_fields = ['Iter', 'Train Loss'] verbose_fmt = ['{iter:>10d}', '{train_score:>16.4f}'] # do oob? if est.subsample < 1: header_fields.append('OOB Improve') verbose_fmt.append('{oob_impr:>16.4f}') header_fields.append('Remaining Time') verbose_fmt.append('{remaining_time:>16s}') # print the header line print(('%10s ' + '%16s ' * (len(header_fields) - 1)) % tuple(header_fields)) self.verbose_fmt = ' '.join(verbose_fmt) # plot verbose info each time i % verbose_mod == 0 self.verbose_mod = 1 self.start_time = time() self.begin_at_stage = begin_at_stage def update(self, j, est): """Update reporter with new iteration. """ do_oob = est.subsample < 1 # we need to take into account if we fit additional estimators. i = j - self.begin_at_stage # iteration relative to the start iter if (i + 1) % self.verbose_mod == 0: oob_impr = est.oob_improvement_[j] if do_oob else 0 remaining_time = ((est.n_estimators - (j + 1)) * (time() - self.start_time) / float(i + 1)) if remaining_time > 60: remaining_time = '{0:.2f}m'.format(remaining_time / 60.0) else: remaining_time = '{0:.2f}s'.format(remaining_time) print(self.verbose_fmt.format(iter=j + 1, train_score=est.train_score_[j], oob_impr=oob_impr, remaining_time=remaining_time)) if self.verbose == 1 and ((i + 1) // (self.verbose_mod * 10) > 0): # adjust verbose frequency (powers of 10) self.verbose_mod *= 10 class BaseGradientBoosting(six.with_metaclass(ABCMeta, BaseEnsemble, _LearntSelectorMixin)): """Abstract base class for Gradient Boosting. """ @abstractmethod def __init__(self, loss, learning_rate, n_estimators, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, init, subsample, max_features, random_state, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False): self.n_estimators = n_estimators self.learning_rate = learning_rate self.loss = loss self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.subsample = subsample self.max_features = max_features self.max_depth = max_depth self.init = init self.random_state = random_state self.alpha = alpha self.verbose = verbose self.max_leaf_nodes = max_leaf_nodes self.warm_start = warm_start self.estimators_ = np.empty((0, 0), dtype=np.object) def _fit_stage(self, i, X, y, y_pred, sample_weight, sample_mask, criterion, splitter, random_state): """Fit another stage of ``n_classes_`` trees to the boosting model. """ assert sample_mask.dtype == np.bool loss = self.loss_ original_y = y for k in range(loss.K): if loss.is_multi_class: y = np.array(original_y == k, dtype=np.float64) residual = loss.negative_gradient(y, y_pred, k=k, sample_weight=sample_weight) # induce regression tree on residuals tree = DecisionTreeRegressor( criterion=criterion, splitter=splitter, max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_features=self.max_features, max_leaf_nodes=self.max_leaf_nodes, random_state=random_state) if self.subsample < 1.0: # no inplace multiplication! sample_weight = sample_weight * sample_mask.astype(np.float64) tree.fit(X, residual, sample_weight=sample_weight, check_input=False) # update tree leaves loss.update_terminal_regions(tree.tree_, X, y, residual, y_pred, sample_weight, sample_mask, self.learning_rate, k=k) # add tree to ensemble self.estimators_[i, k] = tree return y_pred def _check_params(self): """Check validity of parameters and raise ValueError if not valid. """ if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than 0 but " "was %r" % self.n_estimators) if self.learning_rate <= 0.0: raise ValueError("learning_rate must be greater than 0 but " "was %r" % self.learning_rate) if (self.loss not in self._SUPPORTED_LOSS or self.loss not in LOSS_FUNCTIONS): raise ValueError("Loss '{0:s}' not supported. ".format(self.loss)) if self.loss == 'deviance': loss_class = (MultinomialDeviance if len(self.classes_) > 2 else BinomialDeviance) else: loss_class = LOSS_FUNCTIONS[self.loss] if self.loss in ('huber', 'quantile'): self.loss_ = loss_class(self.n_classes_, self.alpha) else: self.loss_ = loss_class(self.n_classes_) if not (0.0 < self.subsample <= 1.0): raise ValueError("subsample must be in (0,1] but " "was %r" % self.subsample) if self.init is not None: if isinstance(self.init, six.string_types): if self.init not in INIT_ESTIMATORS: raise ValueError('init="%s" is not supported' % self.init) else: if (not hasattr(self.init, 'fit') or not hasattr(self.init, 'predict')): raise ValueError("init=%r must be valid BaseEstimator " "and support both fit and " "predict" % self.init) if not (0.0 < self.alpha < 1.0): raise ValueError("alpha must be in (0.0, 1.0) but " "was %r" % self.alpha) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": # if is_classification if self.n_classes_ > 1: max_features = max(1, int(np.sqrt(self.n_features))) else: # is regression max_features = self.n_features elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features))) else: raise ValueError("Invalid value for max_features: %r. " "Allowed string values are 'auto', 'sqrt' " "or 'log2'." % self.max_features) elif self.max_features is None: max_features = self.n_features elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float max_features = int(self.max_features * self.n_features) self.max_features_ = max_features def _init_state(self): """Initialize model state and allocate model state data structures. """ if self.init is None: self.init_ = self.loss_.init_estimator() elif isinstance(self.init, six.string_types): self.init_ = INIT_ESTIMATORS[self.init]() else: self.init_ = self.init self.estimators_ = np.empty((self.n_estimators, self.loss_.K), dtype=np.object) self.train_score_ = np.zeros((self.n_estimators,), dtype=np.float64) # do oob? if self.subsample < 1.0: self.oob_improvement_ = np.zeros((self.n_estimators), dtype=np.float64) def _clear_state(self): """Clear the state of the gradient boosting model. """ if hasattr(self, 'estimators_'): self.estimators_ = np.empty((0, 0), dtype=np.object) if hasattr(self, 'train_score_'): del self.train_score_ if hasattr(self, 'oob_improvement_'): del self.oob_improvement_ if hasattr(self, 'init_'): del self.init_ def _resize_state(self): """Add additional ``n_estimators`` entries to all attributes. """ # self.n_estimators is the number of additional est to fit total_n_estimators = self.n_estimators if total_n_estimators < self.estimators_.shape[0]: raise ValueError('resize with smaller n_estimators %d < %d' % (total_n_estimators, self.estimators_[0])) self.estimators_.resize((total_n_estimators, self.loss_.K)) self.train_score_.resize(total_n_estimators) if (self.subsample < 1 or hasattr(self, 'oob_improvement_')): # if do oob resize arrays or create new if not available if hasattr(self, 'oob_improvement_'): self.oob_improvement_.resize(total_n_estimators) else: self.oob_improvement_ = np.zeros((total_n_estimators,), dtype=np.float64) def _is_initialized(self): return len(getattr(self, 'estimators_', [])) > 0 def fit(self, X, y, sample_weight=None, monitor=None): """Fit the gradient boosting model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values (integers in classification, real numbers in regression) For classification, labels must correspond to classes. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. monitor : callable, optional The monitor is called after each iteration with the current iteration, a reference to the estimator and the local variables of ``_fit_stages`` as keyword arguments ``callable(i, self, locals())``. If the callable returns ``True`` the fitting procedure is stopped. The monitor can be used for various things such as computing held-out estimates, early stopping, model introspect, and snapshoting. Returns ------- self : object Returns self. """ # if not warmstart - clear the estimator state if not self.warm_start: self._clear_state() # Check input X, y = check_X_y(X, y, dtype=DTYPE) n_samples, self.n_features = X.shape if sample_weight is None: sample_weight = np.ones(n_samples, dtype=np.float32) else: sample_weight = column_or_1d(sample_weight, warn=True) check_consistent_length(X, y, sample_weight) y = self._validate_y(y) random_state = check_random_state(self.random_state) self._check_params() if not self._is_initialized(): # init state self._init_state() # fit initial model - FIXME make sample_weight optional self.init_.fit(X, y, sample_weight) # init predictions y_pred = self.init_.predict(X) begin_at_stage = 0 else: # add more estimators to fitted model # invariant: warm_start = True if self.n_estimators < self.estimators_.shape[0]: raise ValueError('n_estimators=%d must be larger or equal to ' 'estimators_.shape[0]=%d when ' 'warm_start==True' % (self.n_estimators, self.estimators_.shape[0])) begin_at_stage = self.estimators_.shape[0] y_pred = self._decision_function(X) self._resize_state() # fit the boosting stages n_stages = self._fit_stages(X, y, y_pred, sample_weight, random_state, begin_at_stage, monitor) # change shape of arrays after fit (early-stopping or additional ests) if n_stages != self.estimators_.shape[0]: self.estimators_ = self.estimators_[:n_stages] self.train_score_ = self.train_score_[:n_stages] if hasattr(self, 'oob_improvement_'): self.oob_improvement_ = self.oob_improvement_[:n_stages] return self def _fit_stages(self, X, y, y_pred, sample_weight, random_state, begin_at_stage=0, monitor=None): """Iteratively fits the stages. For each stage it computes the progress (OOB, train score) and delegates to ``_fit_stage``. Returns the number of stages fit; might differ from ``n_estimators`` due to early stopping. """ n_samples = X.shape[0] do_oob = self.subsample < 1.0 sample_mask = np.ones((n_samples, ), dtype=np.bool) n_inbag = max(1, int(self.subsample * n_samples)) loss_ = self.loss_ # init criterion and splitter criterion = FriedmanMSE(1) splitter = PresortBestSplitter(criterion, self.max_features_, self.min_samples_leaf, self.min_weight_fraction_leaf, random_state) if self.verbose: verbose_reporter = VerboseReporter(self.verbose) verbose_reporter.init(self, begin_at_stage) # perform boosting iterations i = begin_at_stage for i in range(begin_at_stage, self.n_estimators): # subsampling if do_oob: sample_mask = _random_sample_mask(n_samples, n_inbag, random_state) # OOB score before adding this stage old_oob_score = loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask]) # fit next stage of trees y_pred = self._fit_stage(i, X, y, y_pred, sample_weight, sample_mask, criterion, splitter, random_state) # track deviance (= loss) if do_oob: self.train_score_[i] = loss_(y[sample_mask], y_pred[sample_mask], sample_weight[sample_mask]) self.oob_improvement_[i] = (old_oob_score - loss_(y[~sample_mask], y_pred[~sample_mask], sample_weight[~sample_mask])) else: # no need to fancy index w/ no subsampling self.train_score_[i] = loss_(y, y_pred, sample_weight) if self.verbose > 0: verbose_reporter.update(i, self) if monitor is not None: early_stopping = monitor(i, self, locals()) if early_stopping: break return i + 1 def _make_estimator(self, append=True): # we don't need _make_estimator raise NotImplementedError() def _init_decision_function(self, X): """Check input and compute prediction of ``init``. """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, call `fit`" " before making predictions`.") if X.shape[1] != self.n_features: raise ValueError("X.shape[1] should be {0:d}, not {1:d}.".format( self.n_features, X.shape[1])) score = self.init_.predict(X).astype(np.float64) return score def _decision_function(self, X): # for use in inner loop, not raveling the output in single-class case, # not doing input validation. score = self._init_decision_function(X) predict_stages(self.estimators_, X, self.learning_rate, score) return score def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : array, shape = [n_samples, n_classes] or [n_samples] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification produce an array of shape [n_samples]. """ X = check_array(X, dtype=DTYPE, order="C") score = self._decision_function(X) if score.shape[1] == 1: return score.ravel() return score def staged_decision_function(self, X): """Compute decision function of ``X`` for each iteration. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of the classes corresponds to that in the attribute `classes_`. Regression and binary classification are special cases with ``k == 1``, otherwise ``k==n_classes``. """ X = check_array(X, dtype=DTYPE, order="C") score = self._init_decision_function(X) for i in range(self.estimators_.shape[0]): predict_stage(self.estimators_, i, X, self.learning_rate, score) yield score @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") total_sum = np.zeros((self.n_features, ), dtype=np.float64) for stage in self.estimators_: stage_sum = sum(tree.feature_importances_ for tree in stage) / len(stage) total_sum += stage_sum importances = total_sum / len(self.estimators_) return importances def _validate_y(self, y): self.n_classes_ = 1 # Default implementation return y class GradientBoostingClassifier(BaseGradientBoosting, ClassifierMixin): """Gradient Boosting for classification. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage ``n_classes_`` regression trees are fit on the negative gradient of the binomial or multinomial deviance loss function. Binary classification is a special case where only a single regression tree is induced. Parameters ---------- loss : {'deviance', 'exponential'}, optional (default='deviance') loss function to be optimized. 'deviance' refers to deviance (= logistic regression) for classification with probabilistic outputs. For loss 'exponential' gradient boosting recovers the AdaBoost algorithm. learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. `init` : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. See also -------- sklearn.tree.DecisionTreeClassifier, RandomForestClassifier AdaBoostClassifier References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('deviance', 'exponential') def __init__(self, loss='deviance', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False): super(GradientBoostingClassifier, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start) def _validate_y(self, y): self.classes_, y = np.unique(y, return_inverse=True) self.n_classes_ = len(self.classes_) return y def predict(self, X): """Predict class for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y: array of shape = ["n_samples] The predicted values. """ score = self.decision_function(X) decisions = self.loss_._score_to_decision(score) return self.classes_.take(decisions, axis=0) def staged_predict(self, X): """Predict class at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for score in self.staged_decision_function(X): decisions = self.loss_._score_to_decision(score) yield self.classes_.take(decisions, axis=0) def predict_proba(self, X): """Predict class probabilities for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Raises ------ AttributeError If the ``loss`` does not support probabilities. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ score = self.decision_function(X) try: return self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) def staged_predict_proba(self, X): """Predict class probabilities at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ try: for score in self.staged_decision_function(X): yield self.loss_._score_to_proba(score) except NotFittedError: raise except AttributeError: raise AttributeError('loss=%r does not support predict_proba' % self.loss) class GradientBoostingRegressor(BaseGradientBoosting, RegressorMixin): """Gradient Boosting for regression. GB builds an additive model in a forward stage-wise fashion; it allows for the optimization of arbitrary differentiable loss functions. In each stage a regression tree is fit on the negative gradient of the given loss function. Parameters ---------- loss : {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls') loss function to be optimized. 'ls' refers to least squares regression. 'lad' (least absolute deviation) is a highly robust loss function solely based on order information of the input variables. 'huber' is a combination of the two. 'quantile' allows quantile regression (use `alpha` to specify the quantile). learning_rate : float, optional (default=0.1) learning rate shrinks the contribution of each tree by `learning_rate`. There is a trade-off between learning_rate and n_estimators. n_estimators : int (default=100) The number of boosting stages to perform. Gradient boosting is fairly robust to over-fitting so a large number usually results in better performance. max_depth : integer, optional (default=3) maximum depth of the individual regression estimators. The maximum depth limits the number of nodes in the tree. Tune this parameter for best performance; the best value depends on the interaction of the input variables. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : integer, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : integer, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. subsample : float, optional (default=1.0) The fraction of samples to be used for fitting the individual base learners. If smaller than 1.0 this results in Stochastic Gradient Boosting. `subsample` interacts with the parameter `n_estimators`. Choosing `subsample < 1.0` leads to a reduction of variance and an increase in bias. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Choosing `max_features < n_features` leads to a reduction of variance and an increase in bias. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_leaf_nodes : int or None, optional (default=None) Grow trees with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. alpha : float (default=0.9) The alpha-quantile of the huber loss function and the quantile loss function. Only if ``loss='huber'`` or ``loss='quantile'``. init : BaseEstimator, None, optional (default=None) An estimator object that is used to compute the initial predictions. ``init`` has to provide ``fit`` and ``predict``. If None it uses ``loss.init_estimator``. verbose : int, default: 0 Enable verbose output. If 1 then it prints progress and performance once in a while (the more trees the lower the frequency). If greater than 1 then it prints progress and performance for every tree. warm_start : bool, default: False When set to ``True``, reuse the solution of the previous call to fit and add more estimators to the ensemble, otherwise, just erase the previous solution. Attributes ---------- feature_importances_ : array, shape = [n_features] The feature importances (the higher, the more important the feature). oob_improvement_ : array, shape = [n_estimators] The improvement in loss (= deviance) on the out-of-bag samples relative to the previous iteration. ``oob_improvement_[0]`` is the improvement in loss of the first stage over the ``init`` estimator. train_score_ : array, shape = [n_estimators] The i-th score ``train_score_[i]`` is the deviance (= loss) of the model at iteration ``i`` on the in-bag sample. If ``subsample == 1`` this is the deviance on the training data. loss_ : LossFunction The concrete ``LossFunction`` object. `init` : BaseEstimator The estimator that provides the initial predictions. Set via the ``init`` argument or ``loss.init_estimator``. estimators_ : list of DecisionTreeRegressor The collection of fitted sub-estimators. See also -------- DecisionTreeRegressor, RandomForestRegressor References ---------- J. Friedman, Greedy Function Approximation: A Gradient Boosting Machine, The Annals of Statistics, Vol. 29, No. 5, 2001. J. Friedman, Stochastic Gradient Boosting, 1999 T. Hastie, R. Tibshirani and J. Friedman. Elements of Statistical Learning Ed. 2, Springer, 2009. """ _SUPPORTED_LOSS = ('ls', 'lad', 'huber', 'quantile') def __init__(self, loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False): super(GradientBoostingRegressor, self).__init__( loss=loss, learning_rate=learning_rate, n_estimators=n_estimators, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_depth=max_depth, init=init, subsample=subsample, max_features=max_features, random_state=random_state, alpha=alpha, verbose=verbose, max_leaf_nodes=max_leaf_nodes, warm_start=warm_start) def predict(self, X): """Predict regression target for X. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : array of shape = [n_samples] The predicted values. """ return self.decision_function(X).ravel() def staged_predict(self, X): """Predict regression target at each stage for X. This method allows monitoring (i.e. determine error on testing set) after each stage. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array of shape = [n_samples] The predicted value of the input samples. """ for y in self.staged_decision_function(X): yield y.ravel()
bsd-3-clause
swirlingsand/self-driving-car-nanodegree-nd013
p3-behavioral-cloning-project/model.py
1
17800
import tensorflow as tf from keras.models import Sequential from keras.layers.core import Dense, Flatten, Dropout, Lambda from keras.layers.convolutional import Convolution2D from keras.layers.advanced_activations import ELU from keras.optimizers import Adam import numpy as np import cv2 import matplotlib.pyplot as plt from pandas.io.parsers import read_csv from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint tf.python.control_flow_ops = tf print('Modules loaded.') """ Hyperparemters """ # Nerual Network Training EPOCHS = 12 SAMPLES_EPOCH = 10000 VALIDATION_SAMPLES = 3000 LEARNING_RATE = .0001 BATCH_SIZE = 2 # Size of batch # 3*BATCH_SIZE*FEATURE_GENERATION_MULTIPLE == total_batch size # Recovery control # Float, handled as absolute value, valid range from 0 -> 1 RECOVERY_OFFSET = .25 # Preprocessing FEATURE_GENERATION_MULTIPLE = 1 # Data balancing UNIFORM_TEST_MAX = .7 # Max absolute value of data balanced ZEROS = .50 # Percent chance of getting zeros, higher chance of getting zeros # NOTE as we add (+/-) for recover angles, the net number of zeros # will be ~ ZEROS / 3 ie .5 zeros setting will result in ~.16 # The program relies on a variety of random functions # For detailed testing, use the seed value as needed # A seed of 8373 should return 91 on the test below SEED = 8373 custom_random = np.random.RandomState(seed=SEED) print(custom_random.randint(0, 100)) """ Test suite """ # run_once credit # http://stackoverflow.com/questions/4103773/efficient-way-of-having-a-function-only-execute-once-in-a-loop def run_once(f): def wrapper(*args, **kwargs): if not wrapper.has_run: wrapper.has_run = True return f(*args, **kwargs) wrapper.has_run = False return wrapper @run_once def check_Shape(check_text, X_train, y_train): print(check_text, X_train.shape, y_train.shape) # TODO add further testing functions here """ Pre processing pipeline """ # Track angles is used to help keep track of angles generated throughout track_angles = [] def augment_brightness_camera_images(image): """ Purpose: Adjust brightness of image Inputs: A 3D matrix, generall in the form [x,y,colours] Outputs: Same """ # credit https://medium.com/@vivek.yadav image = image.astype(np.uint8) image1 = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) random_bright = .25 + np.random.uniform() # print(random_bright) image1[:, :, 2] = image1[:, :, 2] * random_bright image1 = cv2.cvtColor(image1, cv2.COLOR_HSV2RGB) return image1 def transform_image(img, ang_range, shear_range, trans_range): ''' This function transforms images to generate new images. The function takes in following arguments, 1- Image 2- ang_range: Range of angles for rotation 3- shear_range: Range of values to apply affine transform to 4- trans_range: Range of values to apply translations over. A Random uniform distribution is used to generate different parameters for transformation ''' # Rotation ang_rot = np.random.uniform(ang_range) - ang_range / 2 # updated to reflect gray pipeline rows, cols, ch = img.shape Rot_M = cv2.getRotationMatrix2D((cols / 2, rows / 2), ang_rot, 1) # Translation tr_x = trans_range * np.random.uniform() - trans_range / 2 tr_y = trans_range * np.random.uniform() - trans_range / 2 Trans_M = np.float32([[1, 0, tr_x], [0, 1, tr_y]]) # Shear pts1 = np.float32([[5, 5], [20, 5], [5, 20]]) pt1 = 5 + shear_range * np.random.uniform() - shear_range / 2 pt2 = 20 + shear_range * np.random.uniform() - shear_range / 2 pts2 = np.float32([[pt1, 5], [pt2, pt1], [5, pt2]]) shear_M = cv2.getAffineTransform(pts1, pts2) img = cv2.warpAffine(img, Rot_M, (cols, rows)) img = cv2.warpAffine(img, Trans_M, (cols, rows)) img = cv2.warpAffine(img, shear_M, (cols, rows)) # added for brightness img = augment_brightness_camera_images(img) return img def balance_data(data): """ Purpose: Balance the data given a random distribution Inputs: A CSV file Outputs: A line of the data file This format allow for a sigfnicant amount of flexablity, for example, it takes an arbitrary length of data and returns a randomized line, following the settings specified by the user. Additionally, the user could fairly easily change "uniform" to another numpy distribution to test how different distributions effect results. """ uniform_test_max = UNIFORM_TEST_MAX max_tries = 1 # This is a starting value for a timeout function zero_flag = False data_length = len(data) # Test if zero is less than flag set in settings if custom_random.random_sample(1) <= ZEROS: zero_flag = True # Main loop entry while True: # This block performs balance test and selects steering angle uniform_test = (custom_random.uniform(0, uniform_test_max)) line_number = custom_random.randint(len(data)) line = data[line_number] steering_angle = line[3] # Return steering angle if zero flag is true, else resume loop if zero_flag is True: if steering_angle == 0: return line else: continue else: # Handle non-zero angles if steering_angle != 0 and abs(steering_angle) <= uniform_test: return line else: # Handle exceptions if max_tries > data_length: print("Exceeded search time, skipping angle:", steering_angle, "Data length:", data_length) return line else: continue def recovery(line): """ Purpose: Create a "recovery" angle based off left/right images Inputs: A line, preferably given by balance_data() Outputs: Y_train, a [3, 1] matrix """ y_train = np.empty([0, 1]) # Create a new placeholder matrix y_single_sample = line[3] # Select a line from the data y_single_sample = round(y_single_sample, 3) # Round sample to smooth data # print(y_single_sample) assert type(y_single_sample) == float # print(type(y_single_sample)) new_labels = [] for i in range(3): # left angles if i == 1: # print("Left", line[i]) #Refactor to an ASSERT steering_adjust = +RECOVERY_OFFSET # print(type(steering_adjust)) steering_correction = min( 1, y_single_sample + steering_adjust) assert steering_correction != 1.01, steering_correction != -1 # print(steering_correction) # Right angles elif i == 2: # print("Right", line[i]) steering_adjust = -RECOVERY_OFFSET steering_correction = max(-1, y_single_sample + steering_adjust) assert steering_correction != -1.01, steering_correction != +1 # Center angles elif i == 0: # print("Center", line[i]) steering_correction = y_single_sample track_angles.append(steering_correction) new_labels.append([steering_correction]) # print("new labels", new_labels) y_train = np.append(y_train, new_labels, axis=0) # print(y_train) return y_train def chop_images(line): """ Purpose: Discard less important information Inputs: A line, preferably given by balance_data() Outputs: X_train, a [3, 80, 320, 3] tensor """ X_train = np.empty([0, 80, 320, 3]) # Create a new placeholder tensor for i in range(3): imgname = line[i].strip() # Use strip to fix whitespace issue X_single_sample = cv2.imread(imgname) # open image with CV2 # IMPORTANT. CV2 will read teh image in BGR colour space # Uncomment to test x shape # print("X original shape", X_single_sample.shape) # Perform chop, 40% off the top, 10% off the bottom. top = int(.4 * X_single_sample.shape[0]) bottom = int(.1 * X_single_sample.shape[0]) X_single_sample = X_single_sample[top:-bottom, :] # print("X new shape", X_single_sample.shape) # save images for visualization if required # scipy.misc.imsave( # 'figs/orginal' + str(np.random.randint(999)) + '.jpg', X_single_sample) X_train = np.append(X_train, [X_single_sample], axis=0) return X_train def adjust_colours(X_train): """ Purpose: Change colour space to RGB Inputs: X_train, a [3, 80, 320, 3] tensor Outputs: X_train, a [3, 80, 320, 3] tensor """ for feature in X_train: feature = feature.astype(np.uint8) # fix error 215 feature = cv2.cvtColor(feature, cv2.COLOR_BGR2RGB) # scipy.misc.imsave( #'figs2/adjust-colours' + str(np.random.randint(10000)) + '.jpg', feature) return X_train def flip_images(X_train, y_train): """ Purpose: Flip images left to right and invert angles This is to help the model generalize better. Inputs: X_train, a [3, 80, 320, 3] tensor and y_train, a [3, 1] matrix Outputs: X_train, a [3, 80, 320, 3] tensor and y_train, a [3, 1] matrix """ for feature in X_train: feature = np.fliplr(feature) for angle in y_train: angle = -angle return X_train, y_train def generate_features(X_train, y_train): """ Purpose: Generate new features Inputs: X_train, a [3, 80, 320, 3] tensor and y_train, a [3, 1] matrix Outputs: X_train, a [ZZZ, 80, 320, 3] tensor and y_train, a [ZZZ, 1] matrix Where ZZZ = (FEATURE_GENERATION_MULTIPLE * 3) + 3 """ new_features = [] # Create placeholder arrays new_labels = [] for i in range(FEATURE_GENERATION_MULTIPLE): for feature in X_train: # Settings for transofmr images function feature = transform_image(feature, 10, 1, 1) # credit https://github.com/navoshta/behavioral-cloning # switched to used custom random function # Adding shadows h, w = feature.shape[0], feature.shape[1] [x1, x2] = custom_random.choice(w, 2, replace=False) k = h / (x2 - x1) b = - k * x1 for j in range(h): c = int((j - b) / k) feature[j, :c, :] = (feature[j, :c, :] * .5).astype(np.int32) # scipy.misc.imsave('figs2/gen-features' + str(np.random.randint(10000)) + '.jpg', feature) new_features.append(feature) for label in y_train: new_labels.append(label) track_angles.append(label) X_train = np.append(X_train, new_features, axis=0) y_train = np.append(y_train, new_labels, axis=0) return X_train, y_train def process_line(data): """ Purpose: Main entry point for processing intial data Inputs: A CSV file of data. Outputs: X_train, a [3, 80, 320, 3] tensor and y_train, a [3, 1] matrix """ # Please see functions above for further definition balanced_line = balance_data(data) X_train = chop_images(balanced_line) X_train = adjust_colours(X_train) y_train = recovery(balanced_line) if custom_random.random_sample(1) <= .6: flip_images(X_train, y_train) # Check_text = "After image generation, shapes: " # check_Shape(Check_text, X_train, y_train) return X_train, y_train def generate_arrays_from_file(path): """ Purpose: Yield tensor batches to fit_generator function Inputs: A file path Outputs: X_train, a [AHH, 80, 320, 3] tensor and y_train, a [AHH, 1] matrix Where AHH = ((FEATURE_GENERATION_MULTIPLE * 3) + 3) * BATCH_SIZE """ batch_tracker = 0 while 1: for batch in range(BATCH_SIZE): # load the labels and file paths to images data = read_csv(path).values X_train, y_train = process_line(data) # Process existing data X_train, y_train = generate_features(X_train, y_train) X_train = np.append(X_train, X_train, axis=0) y_train = np.append(y_train, y_train, axis=0) # print(batch_tracker) batch_tracker = batch_tracker + 1 Check_text = "Batch shape: " check_Shape(Check_text, X_train, y_train) yield X_train, y_train """ Model architecture This model generally follows the Nvidia architecture as described here: https://arxiv.org/abs/1604.07316 Using glorot_uniform based on this research: https://github.com/fchollet/keras/issues/52 Decided to use expontential linear units for activation based on https://github.com/commaai/research/blob/master/train_steering_model.py and further reading of https://arxiv.org/abs/1511.07289 Dropout is used to help generalize the network. """ # Use this control to easil test different intializations. init_type = "glorot_uniform" border_mode_type = "valid" row, col, ch = 80, 320, 3 model = Sequential() # Normalization # Can use a negative range thanks to ELU model.add(Lambda(lambda X_train: X_train / 127.5 - 1, input_shape=(row, col, ch), output_shape=(row, col, ch))) model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode=border_mode_type, init=init_type)) model.add(ELU()) model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode=border_mode_type, init=init_type)) model.add(ELU()) model.add(Convolution2D(48, 5, 5, subsample=(2, 2), border_mode=border_mode_type, init=init_type)) model.add(ELU()) model.add(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode=border_mode_type, init=init_type)) model.add(ELU()) model.add(Convolution2D(64, 3, 3, subsample=(2, 2), border_mode=border_mode_type, init=init_type)) model.add(ELU()) model.add(Flatten()) model.add(Dropout(.2)) model.add(Dense(1164, init=init_type)) model.add(ELU()) model.add(Dropout(.3)) model.add(Dense(100, init=init_type)) model.add(ELU()) model.add(Dense(50, init=init_type)) model.add(ELU()) model.add(Dense(10, init=init_type)) model.add(ELU()) model.add(Dense(1)) # Using the ADAM optimizer with a custom starting learning rate optimizer_settings = Adam(lr=LEARNING_RATE) # As this is a continous regression problem we are using mean squared error model.compile(optimizer=optimizer_settings, loss='mse') # Early stopping to help test longer epochs early_stopping = EarlyStopping(monitor='val_loss', patience=2) # saves the model weights after each epoch if the validation loss decreased # https://keras.io/callbacks/#create-a-callback checkpointer = ModelCheckpoint( filepath="temp-model/weights.hdf5", verbose=1, save_best_only=True) if __name__ == "__main__": print("Training") """ Train architecture Using fit_generator allows the CPU to process images "on demand" while the GPU is processing the network. We are using a validation set to help understand the networks ability to generalize. """ history = model.fit_generator( generate_arrays_from_file('driving_log.csv'), samples_per_epoch=SAMPLES_EPOCH, nb_epoch=EPOCHS, verbose=2, callbacks=[early_stopping, checkpointer], validation_data=generate_arrays_from_file('validation_log2.csv'), nb_val_samples=VALIDATION_SAMPLES) """ Save model """ model.save('my_model.h5') print("Model saved.") # This presents a summary of stats from Keras model.summary() print("Complete.") plt_number = custom_random.randint(0, 10000) """ Graph model training and validation loss performance. """ plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') fig2 = plt.gcf() plt.show() fig2.savefig('testing-figures/loss-history' + str(plt_number) + '.png') """ Graph steering angles used by the model """ track_angles = np.asarray(track_angles) print("Length of track angles: ", len(track_angles)) plt.hist(track_angles, bins='auto') plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") fig = plt.gcf() plt.show() fig.savefig('testing-figures/angle-histogram' + str(plt_number) + '.png') print(min(track_angles)) print(max(track_angles)) non_zero_count = (np.count_nonzero(track_angles)) zeros_counter = len(track_angles) - non_zero_count np_unique_angles, np_unique_counts = np.unique( track_angles, return_counts=True) # Provide stats print("Non zero angles:", non_zero_count) print("Number of zeros: ", zeros_counter) print("Percent zero angle", zeros_counter / len(track_angles)) print("Number of original zeros (Before Recovery +/-): ", zeros_counter * 3) print("Unique angles, non recovery:", len(np.unique(track_angles)) / 3) print("Non zero, non recovery angles:", len( track_angles) - zeros_counter * 3) print(np_unique_angles, np_unique_counts) plt.hist(np.unique(track_angles), bins='auto') plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") fig = plt.gcf() plt.show() fig.savefig('testing-figures/unique-angles-histogram' + str(plt_number) + '.png')
mit
asantinc/translation-decoding
aligner/q3.py
1
3359
#!/usr/bin/env python import optparse import sys import operator import math from collections import defaultdict import numpy as np import matplotlib.pyplot as plt optparser = optparse.OptionParser() optparser.add_option("-b", "--bitext", dest="bitext", default="data/dev-test-train.de-en", help="Parallel corpus (default data/dev-test-train.de-en)") optparser.add_option("-t", "--threshold", dest="threshold", default=0.5, type="float", help="Threshold for aligning with Dice's coefficient (default=0.5)") optparser.add_option("-n", "--num_sentences", dest="num_sents", default=200, type="int", help="Number of sentences to use for training and alignment") optparser.add_option("-i", "--max_iters", dest="max_iters", default=10, type="int", help="Number of iterations in EM algorithm") (opts, _) = optparser.parse_args() bitext = [[sentence.strip().split() for sentence in pair.split(' ||| ')] for pair in open(opts.bitext)][:opts.num_sents] # initialise the parameters P(f|e) theta = defaultdict(float) french_dict = defaultdict(int) english_dict = defaultdict(int) french = set() for (f,e) in bitext: french |= set(f) for (f,e) in bitext: for fw in f: for ew in e: theta[(fw,ew)] = 1.00/len(french) # Count the number of distinct words in each language for (f,e) in bitext: for fw in f: french_dict[fw] += 1 for ew in e: english_dict[ew]+= 1 # Find the 5 most common and least common English words sorted_french = sorted(french_dict.items(), key=operator.itemgetter(1)) sorted_english = sorted(english_dict.items(), key=operator.itemgetter(1)) bot_5 = sorted_english[:5] top_5 = sorted_english[-5:] ind = int(round(len(sorted_english)/2)) mid_5 = sorted_english[ind:(ind+5)] print 'French words: ' + str(len(sorted_french)) + '\n' # start the counter k = 0 while k < opts.max_iters: # increment k += 1 # restart the counts fe_count = defaultdict(float) e_count = defaultdict(float) # compute expected counts for (n, (f,e)) in enumerate(bitext): for fw in f: # initialise and compute normalisation constant Z = 0 for ew in e: th = theta[(fw,ew)] Z += th for ew in e: th = theta[(fw,ew)] # compute expected count c = th/Z # increment the counts by this amount fe_count[(fw,ew)] += c e_count[ew] += c if n % 100 == 0: sys.stderr.write(".") for (fw,ew) in fe_count.keys(): # M-step: recalculate the parameter P(f|e) theta[(fw,ew)] = math.exp(math.log(fe_count[(fw,ew)]) - math.log(e_count[ew])) #countryF = open('q3/morph-country.csv', 'w') countryL = [] for fw in sorted_french: th = theta[(fw[0], 'country')] countryL.append((fw, th)) #countryF.write('%.20f, ' % (th)) #countryF.write('\n') sorted_country = sorted(countryL, key=lambda tup: tup[1], reverse = True) print sorted_country[:10] #countriesF = open('q3/morph-countries.csv', 'w') countriesL = [] for fw in sorted_french: th = theta[(fw[0], 'countries')] countriesL.append((fw, th)) #countriesF.write('%.20f, ' % (th)) #countriesF.write('\n') sorted_countries = sorted(countriesL, key=lambda tup: tup[1], reverse = True) print sorted_countries[:10]
mit
lukovkin/ufcnn-keras
models/rl/DataStore.py
1
8165
import numpy as np import pandas as pd import os import glob import re import time import datetime import itertools class DataStore(object): """ Load and Store Data from the Trading Competition """ def __init__(self, sequence_length=500, features_list=[1,2,3,4], path='./training_data_large/', training_days=0, testing_days = 0, mean = None, std = None): """ if data is already stored in pickle format, read it from dist, otherwise create it path ... where to find the training data to load training_days ... how many days are needed for training testing_days ... how many days are needed for testing, is 0 if only training is used if testing_days <> 0, then test data will be loaded """ self.sequence_length = sequence_length self.Xdf_array_list = [] self.XdfBidAsk_array_list = [] self.Xdf_array_day = [] self.features_length = len(features_list) + 2 # Bid & Ask get appended onto the features list if testing_days == 0: if mean is not None or std is not None: print(" When specifiying traiing days only, mean and std must not be given. Aborting.") raise ValueError if testing_days != 0: if mean is None or std is None: print(" When specifiying testing days, mean and std must be given. Aborting.") raise ValueError ## Are there already files given output_file_name = path + "/TradcomSave"+str(training_days)+"_"+str(testing_days)+".pickle" Xdf = pd.DataFrame() if os.path.isfile(output_file_name): Xdf = pd.read_pickle(output_file_name) else: # We need to create the file ourselves... file_list = sorted(glob.glob(path+'/prod_data_*v.txt')) if len(file_list) == 0: print ("Files "+path+"prod_data_*txt are needed. Please copy them into "+path+". Aborting.") raise ValueError if testing_days != 0: start = training_days end = training_days + testing_days else: start = 0 end = training_days for filename in file_list[start:end]: print("Working on Input file: ",filename) # get the date... r = re.compile('^\D*(\d*)\D*', re.UNICODE) date = re.search(r, filename).group(1) print("Date is ",date) date_ux = time.mktime(datetime.datetime.strptime(date,"%Y%m%d").timetuple()) # load dataframes and reindex Xdf_loc = pd.read_csv(filename, sep=" ", header = None,) # print(Xdf_loc.iloc[:3]) Xdf_loc['Milliseconds'] = Xdf_loc[0] Xdf_loc['Date'] = pd.to_datetime(date_ux*1000*1000*1000) Xdf_loc = Xdf_loc.set_index(['Date', 'Milliseconds'], append=False, drop=True) # print(Xdf_loc.iloc[:3]) Xdf = pd.concat([Xdf, Xdf_loc]) #print(Xdf.index[0]) #print(Xdf.index[-1]) ## Store all the data in the file Xdf.to_pickle(output_file_name) #select by features_list colgroups = [[2, 4], [3, 5]] Xdf = Xdf[features_list] # keep the bid and ask unmodified unmodified_group = [2,4] self.Xdf, self.mean, self.std = self.standardize_inputs(Xdf, colgroups=colgroups, mean=mean, std=std, unmodified_group=unmodified_group) self.XdfBidAsk = self.Xdf[[2,4,'U2','U4']] # split the Xdf along the days... #print (self.Xdf) for date_idx in self.Xdf.index.get_level_values(0).unique(): self.Xdf_array_list.append(self.Xdf.loc[date_idx].values) self.XdfBidAsk_array_list.append(self.XdfBidAsk.loc[date_idx].values) self.Xdf_array_day.append(date_idx) ## TODO remove ? self.Xdf['U2'] = 0. self.Xdf['U4'] = 0. def standardize_columns(self, colgroup): """ Standardize group of columns together colgroup: Pandas.DataFrame returns: Pandas.DataFrames: Colum Group standardized, Mean of the colgroup, stddeviation of the colgroup """ _me = np.mean(colgroup.values.flatten()) centered = colgroup.sub(_me) me = pd.DataFrame(np.full(len(colgroup.columns),_me), index=colgroup.columns) _st = np.std(colgroup.values.flatten()) standardized = centered.div(_st) st = pd.DataFrame(np.full(len(colgroup.columns),_st), index=colgroup.columns) return standardized, me, st def standardize_inputs(self, Xdf, colgroups=None, mean=None, std=None, unmodified_group=None): """ Standardize input features. Groups of features could be listed in order to be standardized together. Xdf: Pandas.DataFrame colgroups: list of lists of groups of features to be standardized together (e.g. bid/ask price, bid/ask size) returns Xdf ...Pandas.DataFrame, mean ...Pandas.DataFrame, std ...Pandas.DataFrame """ new_unmod_group = [] for unmod in unmodified_group: # copy the unmodified column group new_name = 'U'+str(unmod) Xdf[new_name] = Xdf[unmod] new_unmod_group.append(new_name) df = pd.DataFrame() me = pd.DataFrame() st = pd.DataFrame() for colgroup in colgroups: _df,_me,_st = self.standardize_columns(Xdf[colgroup]) # if mean & std are given, do not multiply with colgroup mean if mean is not None and std is not None: _df = Xdf[colgroup] df = pd.concat([df, _df], axis=1) me = pd.concat([me, _me]) st = pd.concat([st, _st]) # _temp_list = list(itertools.chain.from_iterable(colgroups)) separate_features = [col for col in Xdf.columns if col not in list(itertools.chain.from_iterable(colgroups))] if mean is None and std is None: _me = Xdf[separate_features].mean() _me[new_unmod_group] = 0. _df = Xdf[separate_features].sub(_me) _st = Xdf[separate_features].std() _st[new_unmod_group] = 1. _df = _df[separate_features].div(_st) else: _df = Xdf[separate_features] df = pd.concat([df, _df], axis=1) me = pd.concat([me, _me]) st = pd.concat([st, _st]) me = pd.Series(me[0]) st = pd.Series(st[0]) if mean is not None and std is not None: mean[new_unmod_group] = 0. std[new_unmod_group] = 1. df = df.sub(mean) df = df.div(std) return df, me, st def get_number_days(self): """ number of days """ return len(self.Xdf_array_list) def get_day_length(self, day_index=0): """ Find out how many index entries are available for this day """ arr = self.Xdf_array_list[day_index] return len(arr) def get_sequence(self, day_index=0, line_id=None): """ get the last sequence_length elements from the Xdf by the index id """ #return self.Xdf.ix[id-self.sequence_length:id].values if day_index > len(self.Xdf_array_list): raise ValueError arr = self.Xdf_array_list[day_index] return arr[line_id-self.sequence_length+1:line_id+1] def get_bid_ask(self, day_index=0, line_id = None): """ returns Bid normalized, Bid, Ask normalized, Ask """ arr = self.XdfBidAsk_array_list[day_index] return arr[line_id][0], arr[line_id][2], arr[line_id][1], arr[line_id][3] def get_day(self, day_index=0): """ get the last sequence_length elements from the Xdf by the index id """ return self.Xdf_array_day[day_index] def get_features_length(self): return self.features_length
mit
ARudiuk/mne-python
examples/inverse/plot_covariance_whitening_dspm.py
9
7201
# doc:slow-example """ =================================================== Demonstrate impact of whitening on source estimates =================================================== This example demonstrates the relationship between the noise covariance estimate and the MNE / dSPM source amplitudes. It computes source estimates for the SPM faces data and compares proper regularization with insufficient regularization based on the methods described in [1]_. The example demonstrates that improper regularization can lead to overestimation of source amplitudes. This example makes use of the previous, non-optimized code path that was used before implementing the suggestions presented in [1]_. Please do not copy the patterns presented here for your own analysis, this is example is purely illustrative. .. note:: This example does quite a bit of processing, so even on a fast machine it can take a couple of minutes to complete. References ---------- .. [1] Engemann D. and Gramfort A. (2015) Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals, vol. 108, 328-342, NeuroImage. """ # Author: Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import os import os.path as op import numpy as np from scipy.misc import imread import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import spm_face from mne.minimum_norm import apply_inverse, make_inverse_operator from mne.cov import compute_covariance print(__doc__) ############################################################################## # Get data data_path = spm_face.data_path() subjects_dir = data_path + '/subjects' raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds' raw = io.read_raw_ctf(raw_fname % 1) # Take first run # To save time and memory for this demo, we'll just use the first # 2.5 minutes (all we need to get 30 total events) and heavily # resample 480->60 Hz (usually you wouldn't do either of these!) raw = raw.crop(0, 150.).load_data().resample(60, npad='auto') picks = mne.pick_types(raw.info, meg=True, exclude='bads') raw.filter(1, None, method='iir', n_jobs=1) events = mne.find_events(raw, stim_channel='UPPT001') event_ids = {"faces": 1, "scrambled": 2} tmin, tmax = -0.2, 0.5 baseline = None # no baseline as high-pass is applied reject = dict(mag=3e-12) # Make source space trans = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces1_3D_raw-trans.fif' src = mne.setup_source_space('spm', fname=None, spacing='oct6', subjects_dir=subjects_dir, add_dist=False) bem = data_path + '/subjects/spm/bem/spm-5120-5120-5120-bem-sol.fif' forward = mne.make_forward_solution(raw.info, trans, src, bem) forward = mne.convert_forward_solution(forward, surf_ori=True) del src # inverse parameters conditions = 'faces', 'scrambled' snr = 3.0 lambda2 = 1.0 / snr ** 2 method = 'dSPM' clim = dict(kind='value', lims=[0, 2.5, 5]) ############################################################################### # Estimate covariances samples_epochs = 5, 15, method = 'empirical', 'shrunk' colors = 'steelblue', 'red' evokeds = list() stcs = list() methods_ordered = list() for n_train in samples_epochs: # estimate covs based on a subset of samples # make sure we have the same number of conditions. events_ = np.concatenate([events[events[:, 2] == id_][:n_train] for id_ in [event_ids[k] for k in conditions]]) epochs_train = mne.Epochs(raw, events_, event_ids, tmin, tmax, picks=picks, baseline=baseline, preload=True, reject=reject) epochs_train.equalize_event_counts(event_ids, copy=False) assert len(epochs_train) == 2 * n_train noise_covs = compute_covariance( epochs_train, method=method, tmin=None, tmax=0, # baseline only return_estimators=True) # returns list # prepare contrast evokeds = [epochs_train[k].average() for k in conditions] del epochs_train, events_ # do contrast # We skip empirical rank estimation that we introduced in response to # the findings in reference [1] to use the naive code path that # triggered the behavior described in [1]. The expected true rank is # 274 for this dataset. Please do not do this with your data but # rely on the default rank estimator that helps regularizing the # covariance. stcs.append(list()) methods_ordered.append(list()) for cov in noise_covs: inverse_operator = make_inverse_operator(evokeds[0].info, forward, cov, loose=0.2, depth=0.8, rank=274) stc_a, stc_b = (apply_inverse(e, inverse_operator, lambda2, "dSPM", pick_ori=None) for e in evokeds) stc = stc_a - stc_b methods_ordered[-1].append(cov['method']) stcs[-1].append(stc) del inverse_operator, evokeds, cov, noise_covs, stc, stc_a, stc_b del raw, forward # save some memory ############################################################################## # Show the resulting source estimates fig, (axes1, axes2) = plt.subplots(2, 3, figsize=(9.5, 6)) def brain_to_mpl(brain): """convert image to be usable with matplotlib""" tmp_path = op.abspath(op.join(op.curdir, 'my_tmp')) brain.save_imageset(tmp_path, views=['ven']) im = imread(tmp_path + '_ven.png') os.remove(tmp_path + '_ven.png') return im for ni, (n_train, axes) in enumerate(zip(samples_epochs, (axes1, axes2))): # compute stc based on worst and best ax_dynamics = axes[1] for stc, ax, method, kind, color in zip(stcs[ni], axes[::2], methods_ordered[ni], ['best', 'worst'], colors): brain = stc.plot(subjects_dir=subjects_dir, hemi='both', clim=clim) brain.set_time(175) im = brain_to_mpl(brain) brain.close() del brain ax.axis('off') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.imshow(im) ax.set_title('{0} ({1} epochs)'.format(kind, n_train * 2)) # plot spatial mean stc_mean = stc.data.mean(0) ax_dynamics.plot(stc.times * 1e3, stc_mean, label='{0} ({1})'.format(method, kind), color=color) # plot spatial std stc_var = stc.data.std(0) ax_dynamics.fill_between(stc.times * 1e3, stc_mean - stc_var, stc_mean + stc_var, alpha=0.2, color=color) # signal dynamics worst and best ax_dynamics.set_title('{0} epochs'.format(n_train * 2)) ax_dynamics.set_xlabel('Time (ms)') ax_dynamics.set_ylabel('Source Activation (dSPM)') ax_dynamics.set_xlim(tmin * 1e3, tmax * 1e3) ax_dynamics.set_ylim(-3, 3) ax_dynamics.legend(loc='upper left', fontsize=10) fig.subplots_adjust(hspace=0.4, left=0.03, right=0.98, wspace=0.07) fig.canvas.draw() fig.show()
bsd-3-clause
chris-chris/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/transforms/in_memory_source.py
82
6157
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sources for numpy arrays and pandas DataFrames.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.dataframe import transform from tensorflow.contrib.learn.python.learn.dataframe.queues import feeding_functions class BaseInMemorySource(transform.TensorFlowTransform): """Abstract parent class for NumpySource and PandasSource.""" def __init__(self, data, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="in_memory_data"): super(BaseInMemorySource, self).__init__() self._data = data self._num_threads = 1 if num_threads is None else num_threads self._batch_size = (32 if batch_size is None else batch_size) self._enqueue_size = max(1, int(self._batch_size / self._num_threads) ) if enqueue_size is None else enqueue_size self._queue_capacity = (self._batch_size * 10 if queue_capacity is None else queue_capacity) self._shuffle = shuffle self._min_after_dequeue = (batch_size if min_after_dequeue is None else min_after_dequeue) self._seed = seed self._data_name = data_name @transform.parameter def data(self): return self._data @transform.parameter def num_threads(self): return self._num_threads @transform.parameter def enqueue_size(self): return self._enqueue_size @transform.parameter def batch_size(self): return self._batch_size @transform.parameter def queue_capacity(self): return self._queue_capacity @transform.parameter def shuffle(self): return self._shuffle @transform.parameter def min_after_dequeue(self): return self._min_after_dequeue @transform.parameter def seed(self): return self._seed @transform.parameter def data_name(self): return self._data_name @property def input_valency(self): return 0 def _apply_transform(self, transform_input, **kwargs): queue = feeding_functions.enqueue_data(self.data, self.queue_capacity, self.shuffle, self.min_after_dequeue, num_threads=self.num_threads, seed=self.seed, name=self.data_name, enqueue_size=self.enqueue_size, num_epochs=kwargs.get("num_epochs")) dequeued = queue.dequeue_many(self.batch_size) # TODO(jamieas): dequeue and dequeue_many will soon return a list regardless # of the number of enqueued tensors. Remove the following once that change # is in place. if not isinstance(dequeued, (tuple, list)): dequeued = (dequeued,) # pylint: disable=not-callable return self.return_type(*dequeued) class NumpySource(BaseInMemorySource): """A zero-input Transform that produces a single column from a numpy array.""" @property def name(self): return "NumpySource" @property def _output_names(self): return ("index", "value") class OrderedDictNumpySource(BaseInMemorySource): """A zero-input Transform that produces Series from a dict of numpy arrays.""" def __init__(self, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in ordered_dict_of_arrays.keys(): raise ValueError("Column name `index` is reserved.") super(OrderedDictNumpySource, self).__init__(ordered_dict_of_arrays, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "OrderedDictNumpySource" @property def _output_names(self): return tuple(["index"] + list(self._data.keys())) class PandasSource(BaseInMemorySource): """A zero-input Transform that produces Series from a DataFrame.""" def __init__(self, dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, shuffle=False, min_after_dequeue=None, seed=None, data_name="pandas_data"): if "index" in dataframe.columns: raise ValueError("Column name `index` is reserved.") super(PandasSource, self).__init__(dataframe, num_threads, enqueue_size, batch_size, queue_capacity, shuffle, min_after_dequeue, seed, data_name) @property def name(self): return "PandasSource" @property def _output_names(self): return tuple(["index"] + self._data.columns.tolist())
apache-2.0
ChristianSch/skml
test/test_br.py
1
1816
from chai import Chai from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.metrics import hamming_loss import numpy as np import scipy.sparse as sp from skml.problem_transformation import BinaryRelevance from skml.datasets import load_dataset X, y = load_dataset('yeast') class TestBR(Chai): def test_br_fit_predict(self): clf = BinaryRelevance(RandomForestClassifier()) clf.fit(X, y) y_pred = clf.predict(X) hamming_loss(y, y_pred) def test_br_pipeline(self): pl = Pipeline([("br", BinaryRelevance(RandomForestClassifier()))]) pl.fit(X, y) def test_br_gridsearch(self): br = BinaryRelevance(RandomForestClassifier()) cv = GridSearchCV(br, {'estimator__n_estimators': [10, 20]}, n_jobs=-1) cv.fit(X, y) def test_br_always_present(self): # Test that br works with classes that are always present or absent. clf = BinaryRelevance(RandomForestClassifier()) X_2 = np.array([[2, 3], [4, 0]]) y_2 = np.array([[1, 1], [1, 0]]) clf.fit(X, y) def test_br_predict_multi_instances(self): clf = BinaryRelevance(RandomForestClassifier()) clf.fit(X, y) y_pred = clf.predict(X) assert_true(y_pred.shape[0] == y.shape[0]) def test_br_fit_predict_sparse(self): # test fit/predict of sparse matrices for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix, sp.lil_matrix]: clf = BinaryRelevance(RandomForestClassifier()) clf.fit(X, sparse(y)) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred))
mit