repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
CompPhysics/ComputationalPhysics2
doc/Programs/BoltzmannMachines/VMC/python/sampling.py
5
8050
from sys import argv from os import mkdir, path import time import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter from matplotlib.font_manager import FontProperties # Timing Decorator def timeFunction(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print '%s Function Took: \t %0.3f s' % (f.func_name.title(), (time2-time1)) return ret return wrap class dataAnalysisClass: # General Init functions def __init__(self, fileName, size=0): self.inputFileName = fileName self.loadData(size) self.createOutputFolder() self.avg = np.average(self.data) self.var = np.var(self.data) self.std = np.std(self.data) def loadData(self, size=0): if size != 0: with open(self.inputFileName) as inputFile: self.data = np.zeros(size) for x in xrange(size): self.data[x] = float(next(inputFile)) else: self.data = np.loadtxt(self.inputFileName) # Statistical Analysis with Multiple Methods def runAllAnalyses(self): if len(self.data) <= 100000: print "Autocorrelation..." self.autocorrelation() print "Bootstrap..." self.bootstrap() print "Jackknife..." self.jackknife() print "Blocking..." self.blocking() # Standard Autocorrelation @timeFunction def autocorrelation(self): self.acf = np.zeros(len(self.data)/2) for k in range(0, len(self.data)/2): self.acf[k] = np.corrcoef(np.array([self.data[0:len(self.data)-k], \ self.data[k:len(self.data)]]))[0,1] # Bootstrap @timeFunction def bootstrap(self, nBoots = 1000): bootVec = np.zeros(nBoots) for k in range(0,nBoots): bootVec[k] = np.average(np.random.choice(self.data, len(self.data))) self.bootAvg = np.average(bootVec) self.bootVar = np.var(bootVec) self.bootStd = np.std(bootVec) # Jackknife @timeFunction def jackknife(self): jackknVec = np.zeros(len(self.data)) for k in range(0,len(self.data)): jackknVec[k] = np.average(np.delete(self.data, k)) self.jackknAvg = self.avg - (len(self.data) - 1) * (np.average(jackknVec) - self.avg) self.jackknVar = float(len(self.data) - 1) * np.var(jackknVec) self.jackknStd = np.sqrt(self.jackknVar) # Blocking @timeFunction def blocking(self, blockSizeMax = 500): blockSizeMin = 1 self.blockSizes = [] self.meanVec = [] self.varVec = [] for i in range(blockSizeMin, blockSizeMax): if(len(self.data) % i != 0): pass#continue blockSize = i meanTempVec = [] varTempVec = [] startPoint = 0 endPoint = blockSize while endPoint <= len(self.data): meanTempVec.append(np.average(self.data[startPoint:endPoint])) startPoint = endPoint endPoint += blockSize mean, var = np.average(meanTempVec), np.var(meanTempVec)/len(meanTempVec) self.meanVec.append(mean) self.varVec.append(var) self.blockSizes.append(blockSize) self.blockingAvg = np.average(self.meanVec[-200:]) self.blockingVar = (np.average(self.varVec[-200:])) self.blockingStd = np.sqrt(self.blockingVar) # Plot of Data, Autocorrelation Function and Histogram def plotAll(self): self.createOutputFolder() if len(self.data) <= 100000: self.plotAutocorrelation() self.plotData() self.plotHistogram() self.plotBlocking() # Create Output Plots Folder def createOutputFolder(self): self.outName = self.inputFileName[:-4] if not path.exists(self.outName): mkdir(self.outName) # Plot the Dataset, Mean and Std def plotData(self): # Far away plot font = {'fontname':'serif'} plt.plot(range(0, len(self.data)), self.data, 'r-', linewidth=1) plt.plot([0, len(self.data)], [self.avg, self.avg], 'b-', linewidth=1) plt.plot([0, len(self.data)], [self.avg + self.std, self.avg + self.std], 'g--', linewidth=1) plt.plot([0, len(self.data)], [self.avg - self.std, self.avg - self.std], 'g--', linewidth=1) plt.ylim(self.avg - 5*self.std, self.avg + 5*self.std) plt.gca().yaxis.set_major_formatter(FormatStrFormatter('%.4f')) plt.xlim(0, len(self.data)) plt.ylabel(self.outName.title() + ' Monte Carlo Evolution', **font) plt.xlabel('MonteCarlo History', **font) plt.title(self.outName.title(), **font) plt.savefig(self.outName + "/data.eps") plt.savefig(self.outName + "/data.png") plt.clf() # Plot Histogram of Dataset and Gaussian around it def plotHistogram(self): binNumber = 50 font = {'fontname':'serif'} count, bins, ignore = plt.hist(self.data, bins=np.linspace(self.avg - 5*self.std, self.avg + 5*self.std, binNumber)) plt.plot([self.avg, self.avg], [0,np.max(count)+10], 'b-', linewidth=1) plt.ylim(0,np.max(count)+10) plt.ylabel(self.outName.title() + ' Histogram', **font) plt.xlabel(self.outName.title() , **font) plt.title('Counts', **font) #gaussian norm = 0 for i in range(0,len(bins)-1): norm += (bins[i+1]-bins[i])*count[i] plt.plot(bins, norm/(self.std * np.sqrt(2 * np.pi)) * np.exp( - (bins - self.avg)**2 / (2 * self.std**2) ), linewidth=1, color='r') plt.savefig(self.outName + "/hist.eps") plt.savefig(self.outName + "/hist.png") plt.clf() # Plot the Autocorrelation Function def plotAutocorrelation(self): font = {'fontname':'serif'} plt.plot(range(1, len(self.data)/2), self.acf[1:], 'r-') plt.ylim(-1, 1) plt.xlim(0, len(self.data)/2) plt.ylabel('Autocorrelation Function', **font) plt.xlabel('Lag', **font) plt.title('Autocorrelation', **font) plt.savefig(self.outName + "/autocorrelation.eps") plt.savefig(self.outName + "/autocorrelation.png") plt.clf() def plotBlocking(self): font = {'fontname':'serif'} plt.plot(self.blockSizes, self.varVec, 'r-') plt.ylabel('Variance', **font) plt.xlabel('Block Size', **font) plt.title('Blocking', **font) plt.savefig(self.outName + "/blocking.eps") plt.savefig(self.outName + "/blocking.png") plt.clf() # Print Stuff to the Terminal def printOutput(self): print "\nSample Size: \t", len(self.data) print "\n=========================================\n" print "Sample Average: \t", self.avg print "Sample Variance:\t", self.var print "Sample Std: \t", self.std print "\n=========================================\n" print "Bootstrap Average: \t", self.bootAvg print "Bootstrap Variance:\t", self.bootVar print "Bootstrap Error: \t", self.bootStd print "\n=========================================\n" print "Jackknife Average: \t", self.jackknAvg print "Jackknife Variance:\t", self.jackknVar print "Jackknife Error: \t", self.jackknStd print "\n=========================================\n" print "Blocking Average: \t", self.blockingAvg print "Blocking Variance:\t", self.blockingVar print "Blocking Error: \t", self.blockingStd, "\n" # Initialize the class if len(argv) > 2: dataAnalysis = dataAnalysisClass(argv[1], int(argv[2])) else: dataAnalysis = dataAnalysisClass(argv[1]) # Run Analyses dataAnalysis.runAllAnalyses() # Plot the data dataAnalysis.plotAll() # Print Some Output dataAnalysis.printOutput()
cc0-1.0
srowen/spark
python/pyspark/pandas/tests/test_series.py
9
118972
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from collections import defaultdict from distutils.version import LooseVersion import inspect from itertools import product from datetime import datetime, timedelta import numpy as np import pandas as pd from pyspark.ml.linalg import SparseVector from pyspark import pandas as ps from pyspark.testing.pandasutils import ( have_tabulate, PandasOnSparkTestCase, SPARK_CONF_ARROW_ENABLED, tabulate_requirement_message, ) from pyspark.testing.sqlutils import SQLTestUtils from pyspark.pandas.exceptions import PandasNotImplementedError from pyspark.pandas.missing.series import MissingPandasLikeSeries from pyspark.pandas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) class SeriesTest(PandasOnSparkTestCase, SQLTestUtils): @property def pser(self): return pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") @property def psser(self): return ps.from_pandas(self.pser) def test_series_ops(self): pser = self.pser psser = self.psser self.assert_eq(psser + 1 + 10 * psser, pser + 1 + 10 * pser) self.assert_eq(psser + 1 + 10 * psser.index, pser + 1 + 10 * pser.index) self.assert_eq(psser.index + 1 + 10 * psser, pser.index + 1 + 10 * pser) def test_series_tuple_name(self): pser = self.pser pser.name = ("x", "a") psser = ps.from_pandas(pser) self.assert_eq(psser, pser) self.assert_eq(psser.name, pser.name) pser.name = ("y", "z") psser.name = ("y", "z") self.assert_eq(psser, pser) self.assert_eq(psser.name, pser.name) def test_repr_cache_invalidation(self): # If there is any cache, inplace operations should invalidate it. s = ps.range(10)["id"] s.__repr__() s.rename("a", inplace=True) self.assertEqual(s.__repr__(), s.rename("a").__repr__()) def _check_extension(self, psser, pser): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(psser, pser, check_exact=False) self.assertTrue(isinstance(psser.dtype, extension_dtypes)) else: self.assert_eq(psser, pser) def test_empty_series(self): pser_a = pd.Series([], dtype="i1") pser_b = pd.Series([], dtype="str") self.assert_eq(ps.from_pandas(pser_a), pser_a) psser_b = ps.from_pandas(pser_b) self.assert_eq(psser_b, pser_b) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(ps.from_pandas(pser_a), pser_a) self.assert_eq(ps.from_pandas(pser_b), pser_b) def test_all_null_series(self): pser_a = pd.Series([None, None, None], dtype="float64") pser_b = pd.Series([None, None, None], dtype="str") self.assert_eq(ps.from_pandas(pser_a), pser_a) psser_b = ps.from_pandas(pser_b) self.assert_eq(psser_b, pser_b) with self.sql_conf({SPARK_CONF_ARROW_ENABLED: False}): self.assert_eq(ps.from_pandas(pser_a), pser_a) self.assert_eq(ps.from_pandas(pser_b), pser_b) def test_head(self): psser = self.psser pser = self.pser self.assert_eq(psser.head(3), pser.head(3)) self.assert_eq(psser.head(0), pser.head(0)) self.assert_eq(psser.head(-3), pser.head(-3)) self.assert_eq(psser.head(-10), pser.head(-10)) def test_last(self): with self.assertRaises(TypeError): self.psser.last("1D") index = pd.date_range("2018-04-09", periods=4, freq="2D") pser = pd.Series([1, 2, 3, 4], index=index) psser = ps.from_pandas(pser) self.assert_eq(psser.last("1D"), pser.last("1D")) def test_first(self): with self.assertRaises(TypeError): self.psser.first("1D") index = pd.date_range("2018-04-09", periods=4, freq="2D") pser = pd.Series([1, 2, 3, 4], index=index) psser = ps.from_pandas(pser) self.assert_eq(psser.first("1D"), pser.first("1D")) def test_rename(self): pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) pser.name = "renamed" psser.name = "renamed" self.assertEqual(psser.name, "renamed") self.assert_eq(psser, pser) pser.name = None psser.name = None self.assertEqual(psser.name, None) self.assert_eq(psser, pser) pidx = pser.index psidx = psser.index pidx.name = "renamed" psidx.name = "renamed" self.assertEqual(psidx.name, "renamed") self.assert_eq(psidx, pidx) expected_error_message = "Series.name must be a hashable type" with self.assertRaisesRegex(TypeError, expected_error_message): psser.name = ["renamed"] with self.assertRaisesRegex(TypeError, expected_error_message): psser.name = ["0", "1"] with self.assertRaisesRegex(TypeError, expected_error_message): ps.Series([1, 2, 3], name=["0", "1"]) def test_rename_method(self): # Series name pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.rename("y"), pser.rename("y")) self.assertEqual(psser.name, "x") # no mutation self.assert_eq(psser.rename(), pser.rename()) self.assert_eq((psser.rename("y") + 1).head(), (pser.rename("y") + 1).head()) psser.rename("z", inplace=True) pser.rename("z", inplace=True) self.assertEqual(psser.name, "z") self.assert_eq(psser, pser) expected_error_message = "Series.name must be a hashable type" with self.assertRaisesRegex(TypeError, expected_error_message): psser.rename(["0", "1"]) # Series index # pser = pd.Series(['a', 'b', 'c', 'd', 'e', 'f', 'g'], name='x') # psser = ps.from_pandas(s) # TODO: index # res = psser.rename(lambda x: x ** 2) # self.assert_eq(res, pser.rename(lambda x: x ** 2)) # res = psser.rename(pser) # self.assert_eq(res, pser.rename(pser)) # res = psser.rename(psser) # self.assert_eq(res, pser.rename(pser)) # res = psser.rename(lambda x: x**2, inplace=True) # self.assertis(res, psser) # s.rename(lambda x: x**2, inplace=True) # self.assert_eq(psser, pser) def test_rename_axis(self): index = pd.Index(["A", "B", "C"], name="index") pser = pd.Series([1.0, 2.0, 3.0], index=index, name="name") psser = ps.from_pandas(pser) self.assert_eq( pser.rename_axis("index2").sort_index(), psser.rename_axis("index2").sort_index(), ) self.assert_eq( (pser + 1).rename_axis("index2").sort_index(), (psser + 1).rename_axis("index2").sort_index(), ) pser2 = pser.copy() psser2 = psser.copy() pser2.rename_axis("index2", inplace=True) psser2.rename_axis("index2", inplace=True) self.assert_eq(pser2.sort_index(), psser2.sort_index()) self.assertRaises(ValueError, lambda: psser.rename_axis(["index2", "index3"])) self.assertRaises(TypeError, lambda: psser.rename_axis(mapper=["index2"], index=["index3"])) # index/columns parameters and dict_like/functions mappers introduced in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): self.assert_eq( pser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index(), psser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index(), ) self.assert_eq( pser.rename_axis(index=str.upper).sort_index(), psser.rename_axis(index=str.upper).sort_index(), ) else: expected = psser expected.index.name = "index2" result = psser.rename_axis(index={"index": "index2", "missing": "index4"}).sort_index() self.assert_eq(expected, result) expected = psser expected.index.name = "INDEX" result = psser.rename_axis(index=str.upper).sort_index() self.assert_eq(expected, result) index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) pser = pd.Series([1.0, 2.0, 3.0], index=index, name="name") psser = ps.from_pandas(pser) self.assert_eq( pser.rename_axis(["index3", "index4"]).sort_index(), psser.rename_axis(["index3", "index4"]).sort_index(), ) self.assertRaises(ValueError, lambda: psser.rename_axis(["index3", "index4", "index5"])) # index/columns parameters and dict_like/functions mappers introduced in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): self.assert_eq( pser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index(), psser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index(), ) self.assert_eq( pser.rename_axis(index=str.upper).sort_index(), psser.rename_axis(index=str.upper).sort_index(), ) else: expected = psser expected.index.names = ["index3", "index4"] result = psser.rename_axis( index={"index1": "index3", "index2": "index4", "missing": "index5"} ).sort_index() self.assert_eq(expected, result) expected.index.names = ["INDEX1", "INDEX2"] result = psser.rename_axis(index=str.upper).sort_index() self.assert_eq(expected, result) def test_or(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["left"] | psdf["right"], pdf["left"] | pdf["right"]) self.assert_eq(psdf["left"] | True, pdf["left"] | True) self.assert_eq(psdf["left"] | False, pdf["left"] | False) self.assert_eq(psdf["left"] | None, pdf["left"] | None) self.assert_eq(True | psdf["right"], True | pdf["right"]) self.assert_eq(False | psdf["right"], False | pdf["right"]) self.assert_eq(None | psdf["right"], None | pdf["right"]) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_or_extenstion_dtypes(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ).astype("boolean") psdf = ps.from_pandas(pdf) self._check_extension(psdf["left"] | psdf["right"], pdf["left"] | pdf["right"]) self._check_extension(psdf["left"] | True, pdf["left"] | True) self._check_extension(psdf["left"] | False, pdf["left"] | False) self._check_extension(psdf["left"] | pd.NA, pdf["left"] | pd.NA) self._check_extension(True | psdf["right"], True | pdf["right"]) self._check_extension(False | psdf["right"], False | pdf["right"]) self._check_extension(pd.NA | psdf["right"], pd.NA | pdf["right"]) def test_and(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ) psdf = ps.from_pandas(pdf) self.assert_eq(psdf["left"] & psdf["right"], pdf["left"] & pdf["right"]) self.assert_eq(psdf["left"] & True, pdf["left"] & True) self.assert_eq(psdf["left"] & False, pdf["left"] & False) self.assert_eq(psdf["left"] & None, pdf["left"] & None) self.assert_eq(True & psdf["right"], True & pdf["right"]) self.assert_eq(False & psdf["right"], False & pdf["right"]) self.assert_eq(None & psdf["right"], None & pdf["right"]) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_and_extenstion_dtypes(self): pdf = pd.DataFrame( { "left": [True, False, True, False, np.nan, np.nan, True, False, np.nan], "right": [True, False, False, True, True, False, np.nan, np.nan, np.nan], } ).astype("boolean") psdf = ps.from_pandas(pdf) self._check_extension(psdf["left"] & psdf["right"], pdf["left"] & pdf["right"]) self._check_extension(psdf["left"] & True, pdf["left"] & True) self._check_extension(psdf["left"] & False, pdf["left"] & False) self._check_extension(psdf["left"] & pd.NA, pdf["left"] & pd.NA) self._check_extension(True & psdf["right"], True & pdf["right"]) self._check_extension(False & psdf["right"], False & pdf["right"]) self._check_extension(pd.NA & psdf["right"], pd.NA & pdf["right"]) def test_to_numpy(self): pser = pd.Series([1, 2, 3, 4, 5, 6, 7], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.to_numpy(), pser.values) def test_isin(self): pser = pd.Series(["lama", "cow", "lama", "beetle", "lama", "hippo"], name="animal") psser = ps.from_pandas(pser) self.assert_eq(psser.isin(["cow", "lama"]), pser.isin(["cow", "lama"])) self.assert_eq(psser.isin(np.array(["cow", "lama"])), pser.isin(np.array(["cow", "lama"]))) self.assert_eq(psser.isin({"cow"}), pser.isin({"cow"})) pser = pd.Series([np.int64(1), np.int32(1), 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.isin([np.int64(1)]), pser.isin([np.int64(1)])) msg = "only list-like objects are allowed to be passed to isin()" with self.assertRaisesRegex(TypeError, msg): psser.isin(1) def test_drop_duplicates(self): pdf = pd.DataFrame({"animal": ["lama", "cow", "lama", "beetle", "lama", "hippo"]}) psdf = ps.from_pandas(pdf) pser = pdf.animal psser = psdf.animal self.assert_eq(psser.drop_duplicates().sort_index(), pser.drop_duplicates().sort_index()) self.assert_eq( psser.drop_duplicates(keep="last").sort_index(), pser.drop_duplicates(keep="last").sort_index(), ) # inplace psser.drop_duplicates(keep=False, inplace=True) pser.drop_duplicates(keep=False, inplace=True) self.assert_eq(psser.sort_index(), pser.sort_index()) self.assert_eq(psdf, pdf) def test_reindex(self): index = ["A", "B", "C", "D", "E"] pser = pd.Series([1.0, 2.0, 3.0, 4.0, None], index=index, name="x") psser = ps.from_pandas(pser) self.assert_eq(pser, psser) self.assert_eq( pser.reindex(["A", "B"]).sort_index(), psser.reindex(["A", "B"]).sort_index(), ) self.assert_eq( pser.reindex(["A", "B", "2", "3"]).sort_index(), psser.reindex(["A", "B", "2", "3"]).sort_index(), ) self.assert_eq( pser.reindex(["A", "E", "2"], fill_value=0).sort_index(), psser.reindex(["A", "E", "2"], fill_value=0).sort_index(), ) self.assertRaises(TypeError, lambda: psser.reindex(index=123)) def test_reindex_like(self): data = [1.0, 2.0, None] index = pd.Index(["A", "B", "C"], name="index1") pser = pd.Series(data=data, index=index, name="name1") psser = ps.from_pandas(pser) # Reindexing single Index on single Index data2 = [3.0, None, 4.0] index2 = pd.Index(["A", "C", "D"], name="index2") pser2 = pd.Series(data=data2, index=index2, name="name2") psser2 = ps.from_pandas(pser2) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) self.assert_eq( (pser + 1).reindex_like(pser2).sort_index(), (psser + 1).reindex_like(psser2).sort_index(), ) # Reindexing MultiIndex on single Index index2 = pd.MultiIndex.from_tuples( [("A", "G"), ("C", "D"), ("I", "J")], names=["index3", "index4"] ) pser2 = pd.Series(data=data2, index=index2, name="name2") psser2 = ps.from_pandas(pser2) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) self.assertRaises(TypeError, lambda: psser.reindex_like(index2)) self.assertRaises(AssertionError, lambda: psser2.reindex_like(psser)) # Reindexing MultiIndex on MultiIndex index = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["index1", "index2"] ) pser = pd.Series(data=data, index=index, name="name1") psser = ps.from_pandas(pser) self.assert_eq( pser.reindex_like(pser2).sort_index(), psser.reindex_like(psser2).sort_index(), ) # Reindexing with DataFrame index2 = pd.MultiIndex.from_tuples( [("A", "B"), ("C", "D"), ("E", "F")], names=["name3", "name4"] ) pdf = pd.DataFrame(data=data, index=index2) psdf = ps.from_pandas(pdf) self.assert_eq( pser.reindex_like(pdf).sort_index(), psser.reindex_like(psdf).sort_index(), ) def test_fillna(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(np.nan).fillna(0), pser.fillna(np.nan).fillna(0)) psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) # test considering series does not have NA/NaN values psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) psser = psdf.x.rename("y") pser = pdf.x.rename("y") psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser.head(), pser.head()) pser = pd.Series([1, 2, 3, 4, 5, 6], name="x") psser = ps.from_pandas(pser) pser.loc[3] = np.nan psser.loc[3] = np.nan self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(method="ffill"), pser.fillna(method="ffill")) self.assert_eq(psser.fillna(method="bfill"), pser.fillna(method="bfill")) # inplace fillna on non-nullable column pdf = pd.DataFrame({"a": [1, 2, None], "b": [1, 2, 3]}) psdf = ps.from_pandas(pdf) pser = pdf.b psser = psdf.b self.assert_eq(psser.fillna(0), pser.fillna(0)) self.assert_eq(psser.fillna(np.nan).fillna(0), pser.fillna(np.nan).fillna(0)) psser.fillna(0, inplace=True) pser.fillna(0, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_dropna(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.dropna(), pser.dropna()) pser.dropna(inplace=True) psser.dropna(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_nunique(self): pser = pd.Series([1, 2, 1, np.nan]) psser = ps.from_pandas(pser) # Assert NaNs are dropped by default nunique_result = psser.nunique() self.assertEqual(nunique_result, 2) self.assert_eq(nunique_result, pser.nunique()) # Assert including NaN values nunique_result = psser.nunique(dropna=False) self.assertEqual(nunique_result, 3) self.assert_eq(nunique_result, pser.nunique(dropna=False)) # Assert approximate counts self.assertEqual(ps.Series(range(100)).nunique(approx=True), 103) self.assertEqual(ps.Series(range(100)).nunique(approx=True, rsd=0.01), 100) def test_value_counts(self): # this is also containing test for Index & MultiIndex pser = pd.Series( [1, 2, 1, 3, 3, np.nan, 1, 4, 2, np.nan, 3, np.nan, 3, 1, 3], index=[1, 2, 1, 3, 3, np.nan, 1, 4, 2, np.nan, 3, np.nan, 3, 1, 3], name="x", ) psser = ps.from_pandas(pser) exp = pser.value_counts() res = psser.value_counts() self.assertEqual(res.name, exp.name) self.assert_eq(res, exp) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) with self.assertRaisesRegex( NotImplementedError, "value_counts currently does not support bins" ): psser.value_counts(bins=3) pser.name = "index" psser.name = "index" self.assert_eq(psser.value_counts(), pser.value_counts()) # Series from DataFrame pdf = pd.DataFrame({"a": [2, 2, 3], "b": [None, 1, None]}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.value_counts(normalize=True), pdf.a.value_counts(normalize=True)) self.assert_eq(psdf.a.value_counts(ascending=True), pdf.a.value_counts(ascending=True)) self.assert_eq( psdf.a.value_counts(normalize=True, dropna=False), pdf.a.value_counts(normalize=True, dropna=False), ) self.assert_eq( psdf.a.value_counts(ascending=True, dropna=False), pdf.a.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) # Series with NaN index pser = pd.Series([3, 2, 3, 1, 2, 3], index=[2.0, None, 5.0, 5.0, None, 5.0]) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True) ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True) ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), ) # Series with MultiIndex pser.index = pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) # Series with MultiIndex some of index has NaN pser.index = pd.MultiIndex.from_tuples( [("x", "a"), ("x", None), ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) # Series with MultiIndex some of index is NaN. # This test only available for pandas >= 0.24. if LooseVersion(pd.__version__) >= LooseVersion("0.24"): pser.index = pd.MultiIndex.from_tuples( [("x", "a"), None, ("y", "c"), ("x", "a"), ("y", "c"), ("x", "a")] ) psser = ps.from_pandas(pser) self.assert_eq(psser.value_counts(normalize=True), pser.value_counts(normalize=True)) self.assert_eq(psser.value_counts(ascending=True), pser.value_counts(ascending=True)) self.assert_eq( psser.value_counts(normalize=True, dropna=False), pser.value_counts(normalize=True, dropna=False), ) self.assert_eq( psser.value_counts(ascending=True, dropna=False), pser.value_counts(ascending=True, dropna=False), ) # FIXME: MultiIndex.value_counts returns wrong indices. self.assert_eq( psser.index.value_counts(normalize=True), pser.index.value_counts(normalize=True), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True), pser.index.value_counts(ascending=True), almost=True, ) self.assert_eq( psser.index.value_counts(normalize=True, dropna=False), pser.index.value_counts(normalize=True, dropna=False), almost=True, ) self.assert_eq( psser.index.value_counts(ascending=True, dropna=False), pser.index.value_counts(ascending=True, dropna=False), almost=True, ) def test_nsmallest(self): sample_lst = [1, 2, 3, 4, np.nan, 6] pser = pd.Series(sample_lst, name="x") psser = ps.Series(sample_lst, name="x") self.assert_eq(psser.nsmallest(n=3), pser.nsmallest(n=3)) self.assert_eq(psser.nsmallest(), pser.nsmallest()) self.assert_eq((psser + 1).nsmallest(), (pser + 1).nsmallest()) def test_nlargest(self): sample_lst = [1, 2, 3, 4, np.nan, 6] pser = pd.Series(sample_lst, name="x") psser = ps.Series(sample_lst, name="x") self.assert_eq(psser.nlargest(n=3), pser.nlargest(n=3)) self.assert_eq(psser.nlargest(), pser.nlargest()) self.assert_eq((psser + 1).nlargest(), (pser + 1).nlargest()) def test_notnull(self): pser = pd.Series([1, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) self.assert_eq(psser.notnull(), pser.notnull()) pser = self.pser psser = self.psser self.assert_eq(psser.notnull(), pser.notnull()) def test_all(self): for pser in [ pd.Series([True, True], name="x"), pd.Series([True, False], name="x"), pd.Series([0, 1], name="x"), pd.Series([1, 2, 3], name="x"), pd.Series([True, True, None], name="x"), pd.Series([True, False, None], name="x"), pd.Series([], name="x"), pd.Series([np.nan], name="x"), ]: psser = ps.from_pandas(pser) self.assert_eq(psser.all(), pser.all()) pser = pd.Series([1, 2, 3, 4], name="x") psser = ps.from_pandas(pser) self.assert_eq((psser % 2 == 0).all(), (pser % 2 == 0).all()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psser.all(axis=1) def test_any(self): for pser in [ pd.Series([False, False], name="x"), pd.Series([True, False], name="x"), pd.Series([0, 1], name="x"), pd.Series([1, 2, 3], name="x"), pd.Series([True, True, None], name="x"), pd.Series([True, False, None], name="x"), pd.Series([], name="x"), pd.Series([np.nan], name="x"), ]: psser = ps.from_pandas(pser) self.assert_eq(psser.any(), pser.any()) pser = pd.Series([1, 2, 3, 4], name="x") psser = ps.from_pandas(pser) self.assert_eq((psser % 2 == 0).any(), (pser % 2 == 0).any()) with self.assertRaisesRegex( NotImplementedError, 'axis should be either 0 or "index" currently.' ): psser.any(axis=1) def test_reset_index(self): pdf = pd.DataFrame({"foo": [1, 2, 3, 4]}, index=pd.Index(["a", "b", "c", "d"], name="idx")) psdf = ps.from_pandas(pdf) pser = pdf.foo psser = psdf.foo self.assert_eq(psser.reset_index(), pser.reset_index()) self.assert_eq(psser.reset_index(name="values"), pser.reset_index(name="values")) self.assert_eq(psser.reset_index(drop=True), pser.reset_index(drop=True)) # inplace psser.reset_index(drop=True, inplace=True) pser.reset_index(drop=True, inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_reset_index_with_default_index_types(self): pser = pd.Series([1, 2, 3], name="0", index=np.random.rand(3)) psser = ps.from_pandas(pser) with ps.option_context("compute.default_index_type", "sequence"): self.assert_eq(psser.reset_index(), pser.reset_index()) with ps.option_context("compute.default_index_type", "distributed-sequence"): # the order might be changed. self.assert_eq(psser.reset_index().sort_index(), pser.reset_index()) with ps.option_context("compute.default_index_type", "distributed"): # the index is different. self.assert_eq( psser.reset_index().to_pandas().reset_index(drop=True), pser.reset_index() ) def test_index_to_series_reset_index(self): def check(psser, pser): self.assert_eq(psser.reset_index(), pser.reset_index()) self.assert_eq(psser.reset_index(drop=True), pser.reset_index(drop=True)) pser.reset_index(drop=True, inplace=True) psser.reset_index(drop=True, inplace=True) self.assert_eq(psser, pser) pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=np.random.rand(9), ) psdf = ps.from_pandas(pdf) check(psdf.index.to_series(), pdf.index.to_series()) check(psdf.index.to_series(name="a"), pdf.index.to_series(name="a")) check(psdf.index.to_series(name=("x", "a")), pdf.index.to_series(name=("x", "a"))) def test_sort_values(self): pdf = pd.DataFrame({"x": [1, 2, 3, 4, 5, None, 7]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.sort_values(), pser.sort_values()) self.assert_eq(psser.sort_values(ascending=False), pser.sort_values(ascending=False)) self.assert_eq( psser.sort_values(na_position="first"), pser.sort_values(na_position="first") ) self.assertRaises(ValueError, lambda: psser.sort_values(na_position="invalid")) # inplace # pandas raises an exception when the Series is derived from DataFrame psser.sort_values(inplace=True) self.assert_eq(psser, pser.sort_values()) self.assert_eq(psdf, pdf) pser = pdf.x.copy() psser = psdf.x.copy() psser.sort_values(inplace=True) pser.sort_values(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) def test_sort_index(self): pdf = pd.DataFrame({"x": [2, 1, np.nan]}, index=["b", "a", np.nan]) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x # Assert invalid parameters self.assertRaises(NotImplementedError, lambda: psser.sort_index(axis=1)) self.assertRaises(NotImplementedError, lambda: psser.sort_index(kind="mergesort")) self.assertRaises(ValueError, lambda: psser.sort_index(na_position="invalid")) # Assert default behavior without parameters self.assert_eq(psser.sort_index(), pser.sort_index()) # Assert sorting descending self.assert_eq(psser.sort_index(ascending=False), pser.sort_index(ascending=False)) # Assert sorting NA indices first self.assert_eq(psser.sort_index(na_position="first"), pser.sort_index(na_position="first")) # Assert sorting inplace # pandas sorts pdf.x by the index and update the column only # when the Series is derived from DataFrame. psser.sort_index(inplace=True) self.assert_eq(psser, pser.sort_index()) self.assert_eq(psdf, pdf) pser = pdf.x.copy() psser = psdf.x.copy() psser.sort_index(inplace=True) pser.sort_index(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) # Assert multi-indices pser = pd.Series(range(4), index=[["b", "b", "a", "a"], [1, 0, 1, 0]], name="0") psser = ps.from_pandas(pser) self.assert_eq(psser.sort_index(), pser.sort_index()) self.assert_eq(psser.sort_index(level=[1, 0]), pser.sort_index(level=[1, 0])) self.assert_eq(psser.reset_index().sort_index(), pser.reset_index().sort_index()) def test_to_datetime(self): pser = pd.Series(["3/11/2000", "3/12/2000", "3/13/2000"] * 100) psser = ps.from_pandas(pser) self.assert_eq( pd.to_datetime(pser, infer_datetime_format=True), ps.to_datetime(psser, infer_datetime_format=True), ) def test_missing(self): psser = self.psser missing_functions = inspect.getmembers(MissingPandasLikeSeries, inspect.isfunction) unsupported_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "unsupported_function" ] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Series.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psser, name)() deprecated_functions = [ name for (name, type_) in missing_functions if type_.__name__ == "deprecated_function" ] for name in deprecated_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Series.*{}.*is deprecated".format(name) ): getattr(psser, name)() missing_properties = inspect.getmembers( MissingPandasLikeSeries, lambda o: isinstance(o, property) ) unsupported_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "unsupported_property" ] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Series.*{}.*not implemented( yet\\.|\\. .+)".format(name), ): getattr(psser, name) deprecated_properties = [ name for (name, type_) in missing_properties if type_.fget.__name__ == "deprecated_property" ] for name in deprecated_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Series.*{}.*is deprecated".format(name) ): getattr(psser, name) def test_clip(self): pser = pd.Series([0, 2, 4], index=np.random.rand(3)) psser = ps.from_pandas(pser) # Assert list-like values are not accepted for 'lower' and 'upper' msg = "List-like value are not supported for 'lower' and 'upper' at the moment" with self.assertRaises(TypeError, msg=msg): psser.clip(lower=[1]) with self.assertRaises(TypeError, msg=msg): psser.clip(upper=[1]) # Assert no lower or upper self.assert_eq(psser.clip(), pser.clip()) # Assert lower only self.assert_eq(psser.clip(1), pser.clip(1)) # Assert upper only self.assert_eq(psser.clip(upper=3), pser.clip(upper=3)) # Assert lower and upper self.assert_eq(psser.clip(1, 3), pser.clip(1, 3)) # Assert behavior on string values str_psser = ps.Series(["a", "b", "c"]) self.assert_eq(str_psser.clip(1, 3), str_psser) def test_compare(self): if LooseVersion(pd.__version__) >= LooseVersion("1.1"): pser = pd.Series([1, 2]) psser = ps.from_pandas(pser) res_psdf = psser.compare(psser) self.assertTrue(res_psdf.empty) self.assert_eq(res_psdf.columns, pd.Index(["self", "other"])) self.assert_eq( pser.compare(pser + 1).sort_index(), psser.compare(psser + 1).sort_index() ) pser = pd.Series([1, 2], index=["x", "y"]) psser = ps.from_pandas(pser) self.assert_eq( pser.compare(pser + 1).sort_index(), psser.compare(psser + 1).sort_index() ) else: psser = ps.Series([1, 2]) res_psdf = psser.compare(psser) self.assertTrue(res_psdf.empty) self.assert_eq(res_psdf.columns, pd.Index(["self", "other"])) expected = ps.DataFrame([[1, 2], [2, 3]], columns=["self", "other"]) self.assert_eq(expected, psser.compare(psser + 1).sort_index()) psser = ps.Series([1, 2], index=["x", "y"]) expected = ps.DataFrame([[1, 2], [2, 3]], index=["x", "y"], columns=["self", "other"]) self.assert_eq(expected, psser.compare(psser + 1).sort_index()) def test_is_unique(self): # We can't use pandas' is_unique for comparison. pandas 0.23 ignores None pser = pd.Series([1, 2, 2, None, None]) psser = ps.from_pandas(pser) self.assertEqual(False, psser.is_unique) self.assertEqual(False, (psser + 1).is_unique) pser = pd.Series([1, None, None]) psser = ps.from_pandas(pser) self.assertEqual(False, psser.is_unique) self.assertEqual(False, (psser + 1).is_unique) pser = pd.Series([1]) psser = ps.from_pandas(pser) self.assertEqual(pser.is_unique, psser.is_unique) self.assertEqual((pser + 1).is_unique, (psser + 1).is_unique) pser = pd.Series([1, 1, 1]) psser = ps.from_pandas(pser) self.assertEqual(pser.is_unique, psser.is_unique) self.assertEqual((pser + 1).is_unique, (psser + 1).is_unique) def test_to_list(self): self.assert_eq(self.psser.tolist(), self.pser.tolist()) def test_append(self): pser1 = pd.Series([1, 2, 3], name="0") pser2 = pd.Series([4, 5, 6], name="0") pser3 = pd.Series([4, 5, 6], index=[3, 4, 5], name="0") psser1 = ps.from_pandas(pser1) psser2 = ps.from_pandas(pser2) psser3 = ps.from_pandas(pser3) self.assert_eq(psser1.append(psser2), pser1.append(pser2)) self.assert_eq(psser1.append(psser3), pser1.append(pser3)) self.assert_eq( psser1.append(psser2, ignore_index=True), pser1.append(pser2, ignore_index=True) ) psser1.append(psser3, verify_integrity=True) msg = "Indices have overlapping values" with self.assertRaises(ValueError, msg=msg): psser1.append(psser2, verify_integrity=True) def test_map(self): pser = pd.Series(["cat", "dog", None, "rabbit"]) psser = ps.from_pandas(pser) # Currently Koalas doesn't return NaN as pandas does. self.assert_eq(psser.map({}), pser.map({}).replace({pd.np.nan: None})) d = defaultdict(lambda: "abc") self.assertTrue("abc" in repr(psser.map(d))) self.assert_eq(psser.map(d), pser.map(d)) def tomorrow(date) -> datetime: return date + timedelta(days=1) pser = pd.Series([datetime(2019, 10, 24)]) psser = ps.from_pandas(pser) self.assert_eq(psser.map(tomorrow), pser.map(tomorrow)) def test_add_prefix(self): pser = pd.Series([1, 2, 3, 4], name="0") psser = ps.from_pandas(pser) self.assert_eq(pser.add_prefix("item_"), psser.add_prefix("item_")) pser = pd.Series( [1, 2, 3], name="0", index=pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("B", "X")]), ) psser = ps.from_pandas(pser) self.assert_eq(pser.add_prefix("item_"), psser.add_prefix("item_")) def test_add_suffix(self): pser = pd.Series([1, 2, 3, 4], name="0") psser = ps.from_pandas(pser) self.assert_eq(pser.add_suffix("_item"), psser.add_suffix("_item")) pser = pd.Series( [1, 2, 3], name="0", index=pd.MultiIndex.from_tuples([("A", "X"), ("A", "Y"), ("B", "X")]), ) psser = ps.from_pandas(pser) self.assert_eq(pser.add_suffix("_item"), psser.add_suffix("_item")) def test_cummin(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cummin(), psser.cummin()) self.assert_eq(pser.cummin(skipna=False), psser.cummin(skipna=False)) self.assert_eq(pser.cummin().sum(), psser.cummin().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cummin(), psser.cummin()) self.assert_eq(pser.cummin(skipna=False), psser.cummin(skipna=False)) def test_cummax(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cummax(), psser.cummax()) self.assert_eq(pser.cummax(skipna=False), psser.cummax(skipna=False)) self.assert_eq(pser.cummax().sum(), psser.cummax().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cummax(), psser.cummax()) self.assert_eq(pser.cummax(skipna=False), psser.cummax(skipna=False)) def test_cumsum(self): pser = pd.Series([1.0, None, 0.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum(), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False), psser.cumsum(skipna=False)) self.assert_eq(pser.cumsum().sum(), psser.cumsum().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum(), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False), psser.cumsum(skipna=False)) # bool pser = pd.Series([True, True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumsum().astype(int), psser.cumsum()) self.assert_eq(pser.cumsum(skipna=False).astype(int), psser.cumsum(skipna=False)) def test_cumprod(self): pser = pd.Series([1.0, None, 1.0, 4.0, 9.0]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) self.assert_eq(pser.cumprod().sum(), psser.cumprod().sum()) # with integer type pser = pd.Series([1, 10, 1, 4, 9]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) self.assert_eq(pser.cumprod().sum(), psser.cumprod().sum()) # with reversed index pser.index = [4, 3, 2, 1, 0] psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # including zero pser = pd.Series([1, 2, 0, 3]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # including negative values pser = pd.Series([1, -1, -2]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False), psser.cumprod(skipna=False)) # bool pser = pd.Series([True, True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.cumprod(), psser.cumprod()) self.assert_eq(pser.cumprod(skipna=False).astype(int), psser.cumprod(skipna=False)) def test_median(self): with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).median(accuracy="a") def test_rank(self): pser = pd.Series([1, 2, 3, 1], name="x") psser = ps.from_pandas(pser) self.assert_eq(pser.rank(), psser.rank().sort_index()) self.assert_eq(pser.rank().sum(), psser.rank().sum()) self.assert_eq(pser.rank(ascending=False), psser.rank(ascending=False).sort_index()) self.assert_eq(pser.rank(method="min"), psser.rank(method="min").sort_index()) self.assert_eq(pser.rank(method="max"), psser.rank(method="max").sort_index()) self.assert_eq(pser.rank(method="first"), psser.rank(method="first").sort_index()) self.assert_eq(pser.rank(method="dense"), psser.rank(method="dense").sort_index()) msg = "method must be one of 'average', 'min', 'max', 'first', 'dense'" with self.assertRaisesRegex(ValueError, msg): psser.rank(method="nothing") def test_round(self): pser = pd.Series([0.028208, 0.038683, 0.877076], name="x") psser = ps.from_pandas(pser) self.assert_eq(pser.round(2), psser.round(2)) msg = "decimals must be an integer" with self.assertRaisesRegex(TypeError, msg): psser.round(1.5) def test_quantile(self): pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(psser.quantile(0.5), pser.quantile(0.5)) self.assert_eq(psser.quantile([0.25, 0.5, 0.75]), pser.quantile([0.25, 0.5, 0.75])) with self.assertRaisesRegex(TypeError, "accuracy must be an integer; however"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(accuracy="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(q="a") with self.assertRaisesRegex(TypeError, "q must be a float or an array of floats;"): ps.Series([24.0, 21.0, 25.0, 33.0, 26.0]).quantile(q=["a"]) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).quantile() with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).quantile([0.25, 0.5, 0.75]) def test_idxmax(self): pser = pd.Series(data=[1, 4, 5], index=["A", "B", "C"]) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(psser.idxmax(skipna=False), pser.idxmax(skipna=False)) index = pd.MultiIndex.from_arrays( [["a", "a", "b", "b"], ["c", "d", "e", "f"]], names=("first", "second") ) pser = pd.Series(data=[1, 2, 4, 5], index=index) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(psser.idxmax(skipna=False), pser.idxmax(skipna=False)) psser = ps.Series([]) with self.assertRaisesRegex(ValueError, "an empty sequence"): psser.idxmax() pser = pd.Series([1, 100, None, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) psser = ps.Series(pser) self.assertEqual(psser.idxmax(), pser.idxmax()) self.assertEqual(repr(psser.idxmax(skipna=False)), repr(pser.idxmax(skipna=False))) def test_idxmin(self): pser = pd.Series(data=[1, 4, 5], index=["A", "B", "C"]) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(psser.idxmin(skipna=False), pser.idxmin(skipna=False)) index = pd.MultiIndex.from_arrays( [["a", "a", "b", "b"], ["c", "d", "e", "f"]], names=("first", "second") ) pser = pd.Series(data=[1, 2, 4, 5], index=index) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(psser.idxmin(skipna=False), pser.idxmin(skipna=False)) psser = ps.Series([]) with self.assertRaisesRegex(ValueError, "an empty sequence"): psser.idxmin() pser = pd.Series([1, 100, None, 100, 1, 100], index=[10, 3, 5, 2, 1, 8]) psser = ps.Series(pser) self.assertEqual(psser.idxmin(), pser.idxmin()) self.assertEqual(repr(psser.idxmin(skipna=False)), repr(pser.idxmin(skipna=False))) def test_shift(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.shift(2), pser.shift(2)) self.assert_eq(psser.shift().shift(-1), pser.shift().shift(-1)) self.assert_eq(psser.shift().sum(), pser.shift().sum()) if LooseVersion(pd.__version__) < LooseVersion("0.24.2"): self.assert_eq(psser.shift(periods=2), pser.shift(periods=2)) else: self.assert_eq( psser.shift(periods=2, fill_value=0), pser.shift(periods=2, fill_value=0) ) with self.assertRaisesRegex(TypeError, "periods should be an int; however"): psser.shift(periods=1.5) def test_diff(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.diff(2), pser.diff(2)) self.assert_eq(psser.diff().diff(-1), pser.diff().diff(-1)) self.assert_eq(psser.diff().sum(), pser.diff().sum()) def _test_numeric_astype(self, pser): psser = ps.Series(pser) self.assert_eq(psser.astype(int), pser.astype(int)) self.assert_eq(psser.astype(np.int), pser.astype(np.int)) self.assert_eq(psser.astype(np.int8), pser.astype(np.int8)) self.assert_eq(psser.astype(np.int16), pser.astype(np.int16)) self.assert_eq(psser.astype(np.int32), pser.astype(np.int32)) self.assert_eq(psser.astype(np.int64), pser.astype(np.int64)) self.assert_eq(psser.astype(np.byte), pser.astype(np.byte)) self.assert_eq(psser.astype("int"), pser.astype("int")) self.assert_eq(psser.astype("int8"), pser.astype("int8")) self.assert_eq(psser.astype("int16"), pser.astype("int16")) self.assert_eq(psser.astype("int32"), pser.astype("int32")) self.assert_eq(psser.astype("int64"), pser.astype("int64")) self.assert_eq(psser.astype("b"), pser.astype("b")) self.assert_eq(psser.astype("byte"), pser.astype("byte")) self.assert_eq(psser.astype("i"), pser.astype("i")) self.assert_eq(psser.astype("long"), pser.astype("long")) self.assert_eq(psser.astype("short"), pser.astype("short")) self.assert_eq(psser.astype(np.float), pser.astype(np.float)) self.assert_eq(psser.astype(np.float32), pser.astype(np.float32)) self.assert_eq(psser.astype(np.float64), pser.astype(np.float64)) self.assert_eq(psser.astype("float"), pser.astype("float")) self.assert_eq(psser.astype("float32"), pser.astype("float32")) self.assert_eq(psser.astype("float64"), pser.astype("float64")) self.assert_eq(psser.astype("double"), pser.astype("double")) self.assert_eq(psser.astype("f"), pser.astype("f")) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype("bool"), pser.astype("bool")) self.assert_eq(psser.astype("?"), pser.astype("?")) self.assert_eq(psser.astype(np.unicode_), pser.astype(np.unicode_)) self.assert_eq(psser.astype("str"), pser.astype("str")) self.assert_eq(psser.astype("U"), pser.astype("U")) if extension_dtypes_available: from pandas import Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype self._check_extension(psser.astype("Int8"), pser.astype("Int8")) self._check_extension(psser.astype("Int16"), pser.astype("Int16")) self._check_extension(psser.astype("Int32"), pser.astype("Int32")) self._check_extension(psser.astype("Int64"), pser.astype("Int64")) self._check_extension(psser.astype(Int8Dtype()), pser.astype(Int8Dtype())) self._check_extension(psser.astype(Int16Dtype()), pser.astype(Int16Dtype())) self._check_extension(psser.astype(Int32Dtype()), pser.astype(Int32Dtype())) self._check_extension(psser.astype(Int64Dtype()), pser.astype(Int64Dtype())) if extension_object_dtypes_available: from pandas import StringDtype if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) else: self._check_extension( psser.astype("string"), pd.Series(["10", "20", "15", "30", "45"], name="x", dtype="string"), ) self._check_extension( psser.astype(StringDtype()), pd.Series(["10", "20", "15", "30", "45"], name="x", dtype=StringDtype()), ) if extension_float_dtypes_available: from pandas import Float32Dtype, Float64Dtype self._check_extension(psser.astype("Float32"), pser.astype("Float32")) self._check_extension(psser.astype("Float64"), pser.astype("Float64")) self._check_extension(psser.astype(Float32Dtype()), pser.astype(Float32Dtype())) self._check_extension(psser.astype(Float64Dtype()), pser.astype(Float64Dtype())) def test_astype(self): psers = [pd.Series([10, 20, 15, 30, 45], name="x")] if extension_dtypes_available: psers.append(pd.Series([10, 20, 15, 30, 45], name="x", dtype="Int64")) if extension_float_dtypes_available: psers.append(pd.Series([10, 20, 15, 30, 45], name="x", dtype="Float64")) for pser in psers: self._test_numeric_astype(pser) pser = pd.Series([10, 20, 15, 30, 45, None, np.nan], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype(str), pser.astype(str)) pser = pd.Series(["hi", "hi ", " ", " \t", "", None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) if LooseVersion("1.1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.1.4"): # a pandas bug: https://github.com/databricks/koalas/pull/1818#issuecomment-703961980 self.assert_eq(psser.astype(str).tolist(), ["hi", "hi ", " ", " \t", "", "None"]) else: self.assert_eq(psser.astype(str), pser.astype(str)) self.assert_eq(psser.str.strip().astype(bool), pser.str.strip().astype(bool)) if extension_object_dtypes_available: from pandas import StringDtype self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) pser = pd.Series([True, False, None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(bool), pser.astype(bool)) self.assert_eq(psser.astype(str), pser.astype(str)) if extension_object_dtypes_available: from pandas import BooleanDtype, StringDtype self._check_extension(psser.astype("boolean"), pser.astype("boolean")) self._check_extension(psser.astype(BooleanDtype()), pser.astype(BooleanDtype())) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self._check_extension(psser.astype("string"), pser.astype("string")) self._check_extension(psser.astype(StringDtype()), pser.astype(StringDtype())) else: self._check_extension( psser.astype("string"), pd.Series(["True", "False", None], name="x", dtype="string"), ) self._check_extension( psser.astype(StringDtype()), pd.Series(["True", "False", None], name="x", dtype=StringDtype()), ) pser = pd.Series(["2020-10-27 00:00:01", None], name="x") psser = ps.Series(pser) self.assert_eq(psser.astype(np.datetime64), pser.astype(np.datetime64)) self.assert_eq(psser.astype("datetime64[ns]"), pser.astype("datetime64[ns]")) self.assert_eq(psser.astype("M"), pser.astype("M")) self.assert_eq(psser.astype("M").astype(str), pser.astype("M").astype(str)) # Comment out the below test cause because pandas returns `NaT` or `nan` randomly # self.assert_eq( # psser.astype("M").dt.date.astype(str), pser.astype("M").dt.date.astype(str) # ) if extension_object_dtypes_available: from pandas import StringDtype self._check_extension( psser.astype("M").astype("string"), pser.astype("M").astype("string") ) self._check_extension( psser.astype("M").astype(StringDtype()), pser.astype("M").astype(StringDtype()) ) with self.assertRaisesRegex(TypeError, "not understood"): psser.astype("int63") def test_aggregate(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) msg = "func must be a string or list of strings" with self.assertRaisesRegex(TypeError, msg): psser.aggregate({"x": ["min", "max"]}) msg = ( "If the given function is a list, it " "should only contains function names as strings." ) with self.assertRaisesRegex(ValueError, msg): psser.aggregate(["min", max]) def test_drop(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) self.assert_eq(psser.drop(1), pser.drop(1)) self.assert_eq(psser.drop([1, 4]), pser.drop([1, 4])) msg = "Need to specify at least one of 'labels' or 'index'" with self.assertRaisesRegex(ValueError, msg): psser.drop() self.assertRaises(KeyError, lambda: psser.drop((0, 1))) # For MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.drop("lama"), pser.drop("lama")) self.assert_eq(psser.drop(labels="weight", level=1), pser.drop(labels="weight", level=1)) self.assert_eq(psser.drop(("lama", "weight")), pser.drop(("lama", "weight"))) self.assert_eq( psser.drop([("lama", "speed"), ("falcon", "weight")]), pser.drop([("lama", "speed"), ("falcon", "weight")]), ) self.assert_eq(psser.drop({"lama": "speed"}), pser.drop({"lama": "speed"})) msg = "'level' should be less than the number of indexes" with self.assertRaisesRegex(ValueError, msg): psser.drop(labels="weight", level=2) msg = ( "If the given index is a list, it " "should only contains names as all tuples or all non tuples " "that contain index names" ) with self.assertRaisesRegex(ValueError, msg): psser.drop(["lama", ["cow", "falcon"]]) msg = "Cannot specify both 'labels' and 'index'" with self.assertRaisesRegex(ValueError, msg): psser.drop("lama", index="cow") msg = r"'Key length \(2\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psser.drop(("lama", "speed", "x")) def test_pop(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pdf = pd.DataFrame({"x": [45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3]}, index=midx) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.pop(("lama", "speed")), pser.pop(("lama", "speed"))) self.assert_eq(psser, pser) self.assert_eq(psdf, pdf) msg = r"'Key length \(3\) exceeds index depth \(2\)'" with self.assertRaisesRegex(KeyError, msg): psser.pop(("lama", "speed", "x")) def test_replace(self): pser = pd.Series([10, 20, 15, 30, np.nan], name="x") psser = ps.Series(pser) self.assert_eq(psser.replace(), pser.replace()) self.assert_eq(psser.replace({}), pser.replace({})) self.assert_eq(psser.replace(np.nan, 45), pser.replace(np.nan, 45)) self.assert_eq(psser.replace([10, 15], 45), pser.replace([10, 15], 45)) self.assert_eq(psser.replace((10, 15), 45), pser.replace((10, 15), 45)) self.assert_eq(psser.replace([10, 15], [45, 50]), pser.replace([10, 15], [45, 50])) self.assert_eq(psser.replace((10, 15), (45, 50)), pser.replace((10, 15), (45, 50))) msg = "'to_replace' should be one of str, list, tuple, dict, int, float" with self.assertRaisesRegex(TypeError, msg): psser.replace(ps.range(5)) msg = "Replacement lists must match in length. Expecting 3 got 2" with self.assertRaisesRegex(ValueError, msg): psser.replace([10, 20, 30], [1, 2]) msg = "replace currently not support for regex" with self.assertRaisesRegex(NotImplementedError, msg): psser.replace(r"^1.$", regex=True) def test_xs(self): midx = pd.MultiIndex( [["a", "b", "c"], ["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.xs(("a", "lama", "speed")), pser.xs(("a", "lama", "speed"))) def test_duplicates(self): psers = { "test on texts": pd.Series( ["lama", "cow", "lama", "beetle", "lama", "hippo"], name="animal" ), "test on numbers": pd.Series([1, 1, 2, 4, 3]), } keeps = ["first", "last", False] for (msg, pser), keep in product(psers.items(), keeps): with self.subTest(msg, keep=keep): psser = ps.Series(pser) self.assert_eq( pser.drop_duplicates(keep=keep).sort_values(), psser.drop_duplicates(keep=keep).sort_values(), ) def test_update(self): pser = pd.Series([10, 20, 15, 30, 45], name="x") psser = ps.Series(pser) msg = "'other' must be a Series" with self.assertRaisesRegex(TypeError, msg): psser.update(10) def test_where(self): pser1 = pd.Series([0, 1, 2, 3, 4]) psser1 = ps.from_pandas(pser1) self.assert_eq(pser1.where(pser1 > 3), psser1.where(psser1 > 3).sort_index()) def test_mask(self): pser1 = pd.Series([0, 1, 2, 3, 4]) psser1 = ps.from_pandas(pser1) self.assert_eq(pser1.mask(pser1 > 3), psser1.mask(psser1 > 3).sort_index()) def test_truncate(self): pser1 = pd.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 5, 6, 7]) psser1 = ps.Series(pser1) pser2 = pd.Series([10, 20, 30, 40, 50, 60, 70], index=[7, 6, 5, 4, 3, 2, 1]) psser2 = ps.Series(pser2) self.assert_eq(psser1.truncate(), pser1.truncate()) self.assert_eq(psser1.truncate(before=2), pser1.truncate(before=2)) self.assert_eq(psser1.truncate(after=5), pser1.truncate(after=5)) self.assert_eq(psser1.truncate(copy=False), pser1.truncate(copy=False)) self.assert_eq(psser1.truncate(2, 5, copy=False), pser1.truncate(2, 5, copy=False)) # The bug for these tests has been fixed in pandas 1.1.0. if LooseVersion(pd.__version__) >= LooseVersion("1.1.0"): self.assert_eq(psser2.truncate(4, 6), pser2.truncate(4, 6)) self.assert_eq(psser2.truncate(4, 6, copy=False), pser2.truncate(4, 6, copy=False)) else: expected_psser = ps.Series([20, 30, 40], index=[6, 5, 4]) self.assert_eq(psser2.truncate(4, 6), expected_psser) self.assert_eq(psser2.truncate(4, 6, copy=False), expected_psser) psser = ps.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 3, 2, 1]) msg = "truncate requires a sorted index" with self.assertRaisesRegex(ValueError, msg): psser.truncate() psser = ps.Series([10, 20, 30, 40, 50, 60, 70], index=[1, 2, 3, 4, 5, 6, 7]) msg = "Truncate: 2 must be after 5" with self.assertRaisesRegex(ValueError, msg): psser.truncate(5, 2) def test_getitem(self): pser = pd.Series([10, 20, 15, 30, 45], ["A", "A", "B", "C", "D"]) psser = ps.Series(pser) self.assert_eq(psser["A"], pser["A"]) self.assert_eq(psser["B"], pser["B"]) self.assert_eq(psser[psser > 15], pser[pser > 15]) # for MultiIndex midx = pd.MultiIndex( [["a", "b", "c"], ["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], name="0", index=midx) psser = ps.Series(pser) self.assert_eq(psser["a"], pser["a"]) self.assert_eq(psser["a", "lama"], pser["a", "lama"]) self.assert_eq(psser[psser > 1.5], pser[pser > 1.5]) msg = r"'Key length \(4\) exceeds index depth \(3\)'" with self.assertRaisesRegex(KeyError, msg): psser[("a", "lama", "speed", "x")] def test_keys(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.keys(), pser.keys()) def test_index(self): # to check setting name of Index properly. idx = pd.Index([1, 2, 3, 4, 5, 6, 7, 8, 9]) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=idx) psser = ps.from_pandas(pser) psser.name = "koalas" pser.name = "koalas" self.assert_eq(psser.index.name, pser.index.name) # for check setting names of MultiIndex properly. psser.names = ["hello", "koalas"] pser.names = ["hello", "koalas"] self.assert_eq(psser.index.names, pser.index.names) def test_pct_change(self): pser = pd.Series([90, 91, 85], index=[2, 4, 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.pct_change(), pser.pct_change(), check_exact=False) self.assert_eq(psser.pct_change().sum(), pser.pct_change().sum(), almost=True) self.assert_eq(psser.pct_change(periods=2), pser.pct_change(periods=2), check_exact=False) self.assert_eq(psser.pct_change(periods=-1), pser.pct_change(periods=-1), check_exact=False) self.assert_eq(psser.pct_change(periods=-100000000), pser.pct_change(periods=-100000000)) self.assert_eq(psser.pct_change(periods=100000000), pser.pct_change(periods=100000000)) # for MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.pct_change(), pser.pct_change(), check_exact=False) self.assert_eq(psser.pct_change().sum(), pser.pct_change().sum(), almost=True) self.assert_eq(psser.pct_change(periods=2), pser.pct_change(periods=2), check_exact=False) self.assert_eq(psser.pct_change(periods=-1), pser.pct_change(periods=-1), check_exact=False) self.assert_eq(psser.pct_change(periods=-100000000), pser.pct_change(periods=-100000000)) self.assert_eq(psser.pct_change(periods=100000000), pser.pct_change(periods=100000000)) def test_axes(self): pser = pd.Series([90, 91, 85], index=[2, 4, 1]) psser = ps.from_pandas(pser) self.assert_eq(psser.axes, pser.axes) # for MultiIndex midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.axes, pser.axes) def test_udt(self): sparse_values = {0: 0.1, 1: 1.1} sparse_vector = SparseVector(len(sparse_values), sparse_values) pser = pd.Series([sparse_vector]) psser = ps.from_pandas(pser) self.assert_eq(psser, pser) def test_repeat(self): pser = pd.Series(["a", "b", "c"], name="0", index=np.random.rand(3)) psser = ps.from_pandas(pser) self.assert_eq(psser.repeat(3).sort_index(), pser.repeat(3).sort_index()) self.assert_eq(psser.repeat(0).sort_index(), pser.repeat(0).sort_index()) self.assertRaises(ValueError, lambda: psser.repeat(-1)) self.assertRaises(TypeError, lambda: psser.repeat("abc")) pdf = pd.DataFrame({"a": ["a", "b", "c"], "rep": [10, 20, 30]}, index=np.random.rand(3)) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.repeat(psdf.rep).sort_index(), pdf.a.repeat(pdf.rep).sort_index()) def test_take(self): pser = pd.Series([100, 200, 300, 400, 500], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.take([0, 2, 4]).sort_values(), pser.take([0, 2, 4]).sort_values()) self.assert_eq( psser.take(range(0, 5, 2)).sort_values(), pser.take(range(0, 5, 2)).sort_values() ) self.assert_eq(psser.take([-4, -2, 0]).sort_values(), pser.take([-4, -2, 0]).sort_values()) self.assert_eq( psser.take(range(-2, 1, 2)).sort_values(), pser.take(range(-2, 1, 2)).sort_values() ) # Checking the type of indices. self.assertRaises(TypeError, lambda: psser.take(1)) self.assertRaises(TypeError, lambda: psser.take("1")) self.assertRaises(TypeError, lambda: psser.take({1, 2})) self.assertRaises(TypeError, lambda: psser.take({1: None, 2: None})) def test_divmod(self): pser = pd.Series([100, None, 300, None, 500], name="Koalas") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): kdiv, kmod = psser.divmod(-100) pdiv, pmod = pser.divmod(-100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) kdiv, kmod = psser.divmod(100) pdiv, pmod = pser.divmod(100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) elif LooseVersion(pd.__version__) < LooseVersion("1.0.0"): kdiv, kmod = psser.divmod(-100) pdiv, pmod = pser.floordiv(-100), pser.mod(-100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) kdiv, kmod = psser.divmod(100) pdiv, pmod = pser.floordiv(100), pser.mod(100) self.assert_eq(kdiv, pdiv) self.assert_eq(kmod, pmod) def test_rdivmod(self): pser = pd.Series([100, None, 300, None, 500]) psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): krdiv, krmod = psser.rdivmod(-100) prdiv, prmod = pser.rdivmod(-100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) krdiv, krmod = psser.rdivmod(100) prdiv, prmod = pser.rdivmod(100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) elif LooseVersion(pd.__version__) < LooseVersion("1.0.0"): krdiv, krmod = psser.rdivmod(-100) prdiv, prmod = pser.rfloordiv(-100), pser.rmod(-100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) krdiv, krmod = psser.rdivmod(100) prdiv, prmod = pser.rfloordiv(100), pser.rmod(100) self.assert_eq(krdiv, prdiv) self.assert_eq(krmod, prmod) def test_mod(self): pser = pd.Series([100, None, -300, None, 500, -700], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.mod(-150), pser.mod(-150)) self.assert_eq(psser.mod(0), pser.mod(0)) self.assert_eq(psser.mod(150), pser.mod(150)) pdf = pd.DataFrame({"a": [100, None, -300, None, 500, -700], "b": [150] * 6}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.mod(psdf.b), pdf.a.mod(pdf.b)) def test_mode(self): pser = pd.Series([0, 0, 1, 1, 1, np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(psser.mode(), pser.mode()) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `dropna` argument is added in pandas 0.24. self.assert_eq( psser.mode(dropna=False).sort_values().reset_index(drop=True), pser.mode(dropna=False).sort_values().reset_index(drop=True), ) pser.name = "x" psser = ps.from_pandas(pser) self.assert_eq(psser.mode(), pser.mode()) if LooseVersion(pd.__version__) >= LooseVersion("0.24"): # The `dropna` argument is added in pandas 0.24. self.assert_eq( psser.mode(dropna=False).sort_values().reset_index(drop=True), pser.mode(dropna=False).sort_values().reset_index(drop=True), ) def test_rmod(self): pser = pd.Series([100, None, -300, None, 500, -700], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.rmod(-150), pser.rmod(-150)) self.assert_eq(psser.rmod(0), pser.rmod(0)) self.assert_eq(psser.rmod(150), pser.rmod(150)) pdf = pd.DataFrame({"a": [100, None, -300, None, 500, -700], "b": [150] * 6}) psdf = ps.from_pandas(pdf) self.assert_eq(psdf.a.rmod(psdf.b), pdf.a.rmod(pdf.b)) def test_asof(self): pser = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(psser.asof(20), pser.asof(20)) self.assert_eq(psser.asof([5, 20]).sort_index(), pser.asof([5, 20]).sort_index()) self.assert_eq(psser.asof(100), pser.asof(100)) self.assert_eq(repr(psser.asof(-100)), repr(pser.asof(-100))) self.assert_eq(psser.asof([-100, 100]).sort_index(), pser.asof([-100, 100]).sort_index()) # where cannot be an Index, Series or a DataFrame self.assertRaises(ValueError, lambda: psser.asof(ps.Index([-100, 100]))) self.assertRaises(ValueError, lambda: psser.asof(ps.Series([-100, 100]))) self.assertRaises(ValueError, lambda: psser.asof(ps.DataFrame({"A": [1, 2, 3]}))) # asof is not supported for a MultiIndex pser.index = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b"), ("y", "c"), ("y", "d")]) psser = ps.from_pandas(pser) self.assertRaises(ValueError, lambda: psser.asof(20)) # asof requires a sorted index (More precisely, should be a monotonic increasing) psser = ps.Series([1, 2, np.nan, 4], index=[10, 30, 20, 40], name="Koalas") self.assertRaises(ValueError, lambda: psser.asof(20)) psser = ps.Series([1, 2, np.nan, 4], index=[40, 30, 20, 10], name="Koalas") self.assertRaises(ValueError, lambda: psser.asof(20)) pidx = pd.DatetimeIndex(["2013-12-31", "2014-01-02", "2014-01-03"]) pser = pd.Series([1, 2, np.nan], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(psser.asof("2014-01-01"), pser.asof("2014-01-01")) self.assert_eq(psser.asof("2014-01-02"), pser.asof("2014-01-02")) self.assert_eq(repr(psser.asof("1999-01-02")), repr(pser.asof("1999-01-02"))) def test_squeeze(self): # Single value pser = pd.Series([90]) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Single value with MultiIndex midx = pd.MultiIndex.from_tuples([("a", "b", "c")]) pser = pd.Series([90], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Multiple values pser = pd.Series([90, 91, 85]) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) # Multiple values with MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series([90, 91, 85], index=midx) psser = ps.from_pandas(pser) self.assert_eq(psser.squeeze(), pser.squeeze()) def test_swaplevel(self): # MultiIndex with two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color")) pser = pd.Series(["a", "b", "c", "d"], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(pser.swaplevel(), psser.swaplevel()) self.assert_eq(pser.swaplevel(0, 1), psser.swaplevel(0, 1)) self.assert_eq(pser.swaplevel(1, 1), psser.swaplevel(1, 1)) self.assert_eq(pser.swaplevel("number", "color"), psser.swaplevel("number", "color")) # MultiIndex with more than two levels arrays = [[1, 1, 2, 2], ["red", "blue", "red", "blue"], ["l", "m", "s", "xs"]] pidx = pd.MultiIndex.from_arrays(arrays, names=("number", "color", "size")) pser = pd.Series(["a", "b", "c", "d"], index=pidx) psser = ps.from_pandas(pser) self.assert_eq(pser.swaplevel(), psser.swaplevel()) self.assert_eq(pser.swaplevel(0, 1), psser.swaplevel(0, 1)) self.assert_eq(pser.swaplevel(0, 2), psser.swaplevel(0, 2)) self.assert_eq(pser.swaplevel(1, 2), psser.swaplevel(1, 2)) self.assert_eq(pser.swaplevel(1, 1), psser.swaplevel(1, 1)) self.assert_eq(pser.swaplevel(-1, -2), psser.swaplevel(-1, -2)) self.assert_eq(pser.swaplevel("number", "color"), psser.swaplevel("number", "color")) self.assert_eq(pser.swaplevel("number", "size"), psser.swaplevel("number", "size")) self.assert_eq(pser.swaplevel("color", "size"), psser.swaplevel("color", "size")) # Error conditions self.assertRaises(AssertionError, lambda: ps.Series([1, 2]).swaplevel()) self.assertRaises(IndexError, lambda: psser.swaplevel(0, 9)) self.assertRaises(KeyError, lambda: psser.swaplevel("not_number", "color")) self.assertRaises(AssertionError, lambda: psser.swaplevel(copy=False)) def test_swapaxes(self): pser = pd.Series([1, 2, 3], index=["x", "y", "z"], name="ser") psser = ps.from_pandas(pser) self.assert_eq(psser.swapaxes(0, 0), pser.swapaxes(0, 0)) self.assert_eq(psser.swapaxes("index", "index"), pser.swapaxes("index", "index")) self.assert_eq((psser + 1).swapaxes(0, 0), (pser + 1).swapaxes(0, 0)) self.assertRaises(AssertionError, lambda: psser.swapaxes(0, 1, copy=False)) self.assertRaises(ValueError, lambda: psser.swapaxes(0, 1)) self.assertRaises(ValueError, lambda: psser.swapaxes("index", "columns")) def test_div_zero_and_nan(self): pser = pd.Series([100, None, -300, None, 500, -700, np.inf, -np.inf], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.div(0), psser.div(0)) self.assert_eq(pser.truediv(0), psser.truediv(0)) self.assert_eq(pser / 0, psser / 0) self.assert_eq(pser.div(np.nan), psser.div(np.nan)) self.assert_eq(pser.truediv(np.nan), psser.truediv(np.nan)) self.assert_eq(pser / np.nan, psser / np.nan) # floordiv has different behavior in pandas > 1.0.0 when divide by 0 if LooseVersion(pd.__version__) >= LooseVersion("1.0.0"): self.assert_eq(pser.floordiv(0), psser.floordiv(0)) self.assert_eq(pser // 0, psser // 0) else: result = pd.Series( [np.inf, np.nan, -np.inf, np.nan, np.inf, -np.inf, np.inf, -np.inf], name="Koalas" ) self.assert_eq(psser.floordiv(0), result) self.assert_eq(psser // 0, result) self.assert_eq(pser.floordiv(np.nan), psser.floordiv(np.nan)) def test_mad(self): pser = pd.Series([1, 2, 3, 4], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pser = pd.Series([None, -2, 5, 10, 50, np.nan, -20], name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pmidx = pd.MultiIndex.from_tuples( [("a", "1"), ("a", "2"), ("b", "1"), ("b", "2"), ("c", "1")] ) pser = pd.Series([1, 2, 3, 4, 5], name="Koalas") pser.index = pmidx psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) pmidx = pd.MultiIndex.from_tuples( [("a", "1"), ("a", "2"), ("b", "1"), ("b", "2"), ("c", "1")] ) pser = pd.Series([None, -2, 5, 50, np.nan], name="Koalas") pser.index = pmidx psser = ps.from_pandas(pser) self.assert_eq(pser.mad(), psser.mad()) def test_to_frame(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(pser.to_frame(name="a"), psser.to_frame(name="a")) # for MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series(["a", "b", "c"], index=midx) psser = ps.from_pandas(pser) self.assert_eq(pser.to_frame(name="a"), psser.to_frame(name="a")) def test_shape(self): pser = pd.Series(["a", "b", "c"]) psser = ps.from_pandas(pser) self.assert_eq(pser.shape, psser.shape) # for MultiIndex midx = pd.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")]) pser = pd.Series(["a", "b", "c"], index=midx) psser = ps.from_pandas(pser) self.assert_eq(pser.shape, psser.shape) @unittest.skipIf(not have_tabulate, tabulate_requirement_message) def test_to_markdown(self): pser = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") psser = ps.from_pandas(pser) # `to_markdown()` is supported in pandas >= 1.0.0 since it's newly added in pandas 1.0.0. if LooseVersion(pd.__version__) < LooseVersion("1.0.0"): self.assertRaises(NotImplementedError, lambda: psser.to_markdown()) else: self.assert_eq(pser.to_markdown(), psser.to_markdown()) def test_unstack(self): pser = pd.Series( [10, -2, 4, 7], index=pd.MultiIndex.from_tuples( [("one", "a", "z"), ("one", "b", "x"), ("two", "a", "c"), ("two", "b", "v")], names=["A", "B", "C"], ), ) psser = ps.from_pandas(pser) levels = [-3, -2, -1, 0, 1, 2] for level in levels: pandas_result = pser.unstack(level=level) pandas_on_spark_result = psser.unstack(level=level).sort_index() self.assert_eq(pandas_result, pandas_on_spark_result) self.assert_eq(pandas_result.index.names, pandas_on_spark_result.index.names) self.assert_eq(pandas_result.columns.names, pandas_on_spark_result.columns.names) # non-numeric datatypes pser = pd.Series( list("abcd"), index=pd.MultiIndex.from_product([["one", "two"], ["a", "b"]]) ) psser = ps.from_pandas(pser) levels = [-2, -1, 0, 1] for level in levels: pandas_result = pser.unstack(level=level) pandas_on_spark_result = psser.unstack(level=level).sort_index() self.assert_eq(pandas_result, pandas_on_spark_result) self.assert_eq(pandas_result.index.names, pandas_on_spark_result.index.names) self.assert_eq(pandas_result.columns.names, pandas_on_spark_result.columns.names) # Exceeding the range of level self.assertRaises(IndexError, lambda: psser.unstack(level=3)) self.assertRaises(IndexError, lambda: psser.unstack(level=-4)) # Only support for MultiIndex psser = ps.Series([10, -2, 4, 7]) self.assertRaises(ValueError, lambda: psser.unstack()) def test_item(self): psser = ps.Series([10, 20]) self.assertRaises(ValueError, lambda: psser.item()) def test_filter(self): pser = pd.Series([0, 1, 2], index=["one", "two", "three"]) psser = ps.from_pandas(pser) self.assert_eq(pser.filter(items=["one", "three"]), psser.filter(items=["one", "three"])) self.assert_eq(pser.filter(regex="e$"), psser.filter(regex="e$")) self.assert_eq(pser.filter(like="hre"), psser.filter(like="hre")) with self.assertRaisesRegex(ValueError, "Series does not support columns axis."): psser.filter(like="hre", axis=1) # for MultiIndex midx = pd.MultiIndex.from_tuples([("one", "x"), ("two", "y"), ("three", "z")]) pser = pd.Series([0, 1, 2], index=midx) psser = ps.from_pandas(pser) self.assert_eq( pser.filter(items=[("one", "x"), ("three", "z")]), psser.filter(items=[("one", "x"), ("three", "z")]), ) with self.assertRaisesRegex(TypeError, "Unsupported type list"): psser.filter(items=[["one", "x"], ("three", "z")]) with self.assertRaisesRegex(ValueError, "The item should not be empty."): psser.filter(items=[(), ("three", "z")]) def test_abs(self): pser = pd.Series([-2, -1, 0, 1]) psser = ps.from_pandas(pser) self.assert_eq(abs(psser), abs(pser)) self.assert_eq(np.abs(psser), np.abs(pser)) def test_bfill(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.bfill(), pser.bfill()) self.assert_eq(psser.bfill()[0], pser.bfill()[0]) psser.bfill(inplace=True) pser.bfill(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psser[0], pser[0]) self.assert_eq(psdf, pdf) def test_ffill(self): pdf = pd.DataFrame({"x": [np.nan, 2, 3, 4, np.nan, 6], "y": [np.nan, 2, 3, 4, np.nan, 6]}) psdf = ps.from_pandas(pdf) pser = pdf.x psser = psdf.x self.assert_eq(psser.ffill(), pser.ffill()) self.assert_eq(psser.ffill()[4], pser.ffill()[4]) psser.ffill(inplace=True) pser.ffill(inplace=True) self.assert_eq(psser, pser) self.assert_eq(psser[4], pser[4]) self.assert_eq(psdf, pdf) def test_iteritems(self): pser = pd.Series(["A", "B", "C"]) psser = ps.from_pandas(pser) for (p_name, p_items), (k_name, k_items) in zip(pser.iteritems(), psser.iteritems()): self.assert_eq(p_name, k_name) self.assert_eq(p_items, k_items) def test_droplevel(self): # droplevel is new in pandas 0.24.0 if LooseVersion(pd.__version__) >= LooseVersion("0.24.0"): pser = pd.Series( [1, 2, 3], index=pd.MultiIndex.from_tuples( [("x", "a", "q"), ("x", "b", "w"), ("y", "c", "e")], names=["level_1", "level_2", "level_3"], ), ) psser = ps.from_pandas(pser) self.assert_eq(pser.droplevel(0), psser.droplevel(0)) self.assert_eq(pser.droplevel("level_1"), psser.droplevel("level_1")) self.assert_eq(pser.droplevel(-1), psser.droplevel(-1)) self.assert_eq(pser.droplevel([0]), psser.droplevel([0])) self.assert_eq(pser.droplevel(["level_1"]), psser.droplevel(["level_1"])) self.assert_eq(pser.droplevel((0,)), psser.droplevel((0,))) self.assert_eq(pser.droplevel(("level_1",)), psser.droplevel(("level_1",))) self.assert_eq(pser.droplevel([0, 2]), psser.droplevel([0, 2])) self.assert_eq( pser.droplevel(["level_1", "level_3"]), psser.droplevel(["level_1", "level_3"]) ) self.assert_eq(pser.droplevel((1, 2)), psser.droplevel((1, 2))) self.assert_eq( pser.droplevel(("level_2", "level_3")), psser.droplevel(("level_2", "level_3")) ) with self.assertRaisesRegex(KeyError, "Level {0, 1, 2} not found"): psser.droplevel({0, 1, 2}) with self.assertRaisesRegex(KeyError, "Level level_100 not found"): psser.droplevel(["level_1", "level_100"]) with self.assertRaisesRegex( IndexError, "Too many levels: Index has only 3 levels, not 11" ): psser.droplevel(10) with self.assertRaisesRegex( IndexError, "Too many levels: Index has only 3 levels, -10 is not a valid level number", ): psser.droplevel(-10) with self.assertRaisesRegex( ValueError, "Cannot remove 3 levels from an index with 3 levels: " "at least one level must be left.", ): psser.droplevel([0, 1, 2]) with self.assertRaisesRegex( ValueError, "Cannot remove 5 levels from an index with 3 levels: " "at least one level must be left.", ): psser.droplevel([1, 1, 1, 1, 1]) # Tupled names pser.index.names = [("a", "1"), ("b", "2"), ("c", "3")] psser = ps.from_pandas(pser) self.assert_eq( pser.droplevel([("a", "1"), ("c", "3")]), psser.droplevel([("a", "1"), ("c", "3")]) ) def test_dot(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) psdf = ps.from_pandas(pdf) self.assert_eq((psdf["b"] * 10).dot(psdf["a"]), (pdf["b"] * 10).dot(pdf["a"])) self.assert_eq((psdf["b"] * 10).dot(psdf), (pdf["b"] * 10).dot(pdf)) self.assert_eq((psdf["b"] * 10).dot(psdf + 1), (pdf["b"] * 10).dot(pdf + 1)) def test_tail(self): pser = pd.Series(range(1000), name="Koalas") psser = ps.from_pandas(pser) self.assert_eq(pser.tail(), psser.tail()) self.assert_eq(pser.tail(10), psser.tail(10)) self.assert_eq(pser.tail(-990), psser.tail(-990)) self.assert_eq(pser.tail(0), psser.tail(0)) self.assert_eq(pser.tail(1001), psser.tail(1001)) self.assert_eq(pser.tail(-1001), psser.tail(-1001)) self.assert_eq((pser + 1).tail(), (psser + 1).tail()) self.assert_eq((pser + 1).tail(10), (psser + 1).tail(10)) self.assert_eq((pser + 1).tail(-990), (psser + 1).tail(-990)) self.assert_eq((pser + 1).tail(0), (psser + 1).tail(0)) self.assert_eq((pser + 1).tail(1001), (psser + 1).tail(1001)) self.assert_eq((pser + 1).tail(-1001), (psser + 1).tail(-1001)) with self.assertRaisesRegex(TypeError, "bad operand type for unary -: 'str'"): psser.tail("10") def test_product(self): pser = pd.Series([10, 20, 30, 40, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Containing NA values pser = pd.Series([10, np.nan, 30, np.nan, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod(), almost=True) # All-NA values pser = pd.Series([np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # Boolean Series pser = pd.Series([True, True, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) pser = pd.Series([False, False, False]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) pser = pd.Series([True, False, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(), psser.prod()) # With `min_count` parameter pser = pd.Series([10, 20, 30, 40, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=5), psser.prod(min_count=5)) self.assert_eq(pser.prod(min_count=6), psser.prod(min_count=6)) pser = pd.Series([10, np.nan, 30, np.nan, 50]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=3), psser.prod(min_count=3), almost=True) self.assert_eq(pser.prod(min_count=4), psser.prod(min_count=4)) pser = pd.Series([np.nan, np.nan, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=1), psser.prod(min_count=1)) pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.prod(min_count=1), psser.prod(min_count=1)) with self.assertRaisesRegex(TypeError, "Could not convert object \\(string\\) to numeric"): ps.Series(["a", "b", "c"]).prod() with self.assertRaisesRegex( TypeError, "Could not convert datetime64\\[ns\\] \\(timestamp\\) to numeric" ): ps.Series([pd.Timestamp("2016-01-01") for _ in range(3)]).prod() def test_hasnans(self): # BooleanType pser = pd.Series([True, False, True, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) pser = pd.Series([True, False, np.nan, True]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) # TimestampType pser = pd.Series([pd.Timestamp("2020-07-30") for _ in range(3)]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) pser = pd.Series([pd.Timestamp("2020-07-30"), np.nan, pd.Timestamp("2020-07-30")]) psser = ps.from_pandas(pser) self.assert_eq(pser.hasnans, psser.hasnans) def test_last_valid_index(self): pser = pd.Series([250, 1.5, 320, 1, 0.3, None, None, None, None]) psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) # MultiIndex columns midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser.index = midx psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.last_valid_index(), psser.last_valid_index()) def test_first_valid_index(self): # Empty Series pser = pd.Series([]) psser = ps.from_pandas(pser) self.assert_eq(pser.first_valid_index(), psser.first_valid_index()) def test_factorize(self): pser = pd.Series(["a", "b", "a", "b"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([5, 1, 5, 1]) psser = ps.from_pandas(pser) pcodes, puniques = (pser + 1).factorize(sort=True) kcodes, kuniques = (psser + 1).factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series(["a", "b", "a", "b"], name="ser", index=["w", "x", "y", "z"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series( ["a", "b", "a", "b"], index=pd.MultiIndex.from_arrays([[4, 3, 2, 1], [1, 2, 3, 4]]) ) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) # # Deals with None and np.nan # pser = pd.Series(["a", "b", "a", np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([1, None, 3, 2, 1]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series(["a", None, "a"]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True) kcodes, kuniques = psser.factorize() self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pser = pd.Series([None, np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(pcodes, kcodes.to_list()) # pandas: Float64Index([], dtype='float64') self.assert_eq(pd.Index([]), kuniques) pser = pd.Series([np.nan, np.nan]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize() kcodes, kuniques = psser.factorize() self.assert_eq(pcodes, kcodes.to_list()) # pandas: Float64Index([], dtype='float64') self.assert_eq(pd.Index([]), kuniques) # # Deals with na_sentinel # # pandas >= 1.1.2 support na_sentinel=None # pandas >= 0.24 support na_sentinel not to be -1 # pd_below_1_1_2 = LooseVersion(pd.__version__) < LooseVersion("1.1.2") pd_below_0_24 = LooseVersion(pd.__version__) < LooseVersion("0.24") pser = pd.Series(["a", "b", "a", np.nan, None]) psser = ps.from_pandas(pser) pcodes, puniques = pser.factorize(sort=True, na_sentinel=-2) kcodes, kuniques = psser.factorize(na_sentinel=-2) self.assert_eq([0, 1, 0, -2, -2] if pd_below_0_24 else pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) pcodes, puniques = pser.factorize(sort=True, na_sentinel=2) kcodes, kuniques = psser.factorize(na_sentinel=2) self.assert_eq([0, 1, 0, 2, 2] if pd_below_0_24 else pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) if not pd_below_1_1_2: pcodes, puniques = pser.factorize(sort=True, na_sentinel=None) kcodes, kuniques = psser.factorize(na_sentinel=None) self.assert_eq(pcodes.tolist(), kcodes.to_list()) # puniques is Index(['a', 'b', nan], dtype='object') self.assert_eq(ps.Index(["a", "b", None]), kuniques) psser = ps.Series([1, 2, np.nan, 4, 5]) # Arrow takes np.nan as null psser.loc[3] = np.nan # Spark takes np.nan as NaN kcodes, kuniques = psser.factorize(na_sentinel=None) pcodes, puniques = psser.to_pandas().factorize(sort=True, na_sentinel=None) self.assert_eq(pcodes.tolist(), kcodes.to_list()) self.assert_eq(puniques, kuniques) def test_pad(self): pser = pd.Series([np.nan, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pser.pad(), psser.pad()) # Test `inplace=True` pser.pad(inplace=True) psser.pad(inplace=True) self.assert_eq(pser, psser) else: expected = ps.Series([np.nan, 2, 3, 4, 4, 6], name="x") self.assert_eq(expected, psser.pad()) # Test `inplace=True` psser.pad(inplace=True) self.assert_eq(expected, psser) def test_explode(self): if LooseVersion(pd.__version__) >= LooseVersion("0.25"): pser = pd.Series([[1, 2, 3], [], None, [3, 4]]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode(), almost=True) # MultiIndex pser.index = pd.MultiIndex.from_tuples([("a", "w"), ("b", "x"), ("c", "y"), ("d", "z")]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode(), almost=True) # non-array type Series pser = pd.Series([1, 2, 3, 4]) psser = ps.from_pandas(pser) self.assert_eq(pser.explode(), psser.explode()) else: pser = pd.Series([[1, 2, 3], [], None, [3, 4]]) psser = ps.from_pandas(pser) expected = pd.Series([1.0, 2.0, 3.0, None, None, 3.0, 4.0], index=[0, 0, 0, 1, 2, 3, 3]) self.assert_eq(psser.explode(), expected) # MultiIndex pser.index = pd.MultiIndex.from_tuples([("a", "w"), ("b", "x"), ("c", "y"), ("d", "z")]) psser = ps.from_pandas(pser) expected = pd.Series( [1.0, 2.0, 3.0, None, None, 3.0, 4.0], index=pd.MultiIndex.from_tuples( [ ("a", "w"), ("a", "w"), ("a", "w"), ("b", "x"), ("c", "y"), ("d", "z"), ("d", "z"), ] ), ) self.assert_eq(psser.explode(), expected) # non-array type Series pser = pd.Series([1, 2, 3, 4]) psser = ps.from_pandas(pser) expected = pser self.assert_eq(psser.explode(), expected) def test_argsort(self): # Without null values pser = pd.Series([0, -100, 50, 100, 20], index=["A", "B", "C", "D", "E"]) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # With name pser.name = "Koalas" psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # Series from Index pidx = pd.Index([4.0, -6.0, 2.0, -100.0, 11.0, 20.0, 1.0, -99.0]) psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from Index with name pidx.name = "Koalas" psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from DataFrame pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) # With null values pser = pd.Series([0, -100, np.nan, 100, np.nan], index=["A", "B", "C", "D", "E"]) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # MultiIndex with null values pser.index = pd.MultiIndex.from_tuples( [("a", "v"), ("b", "w"), ("c", "x"), ("d", "y"), ("e", "z")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # With name with null values pser.name = "Koalas" psser = ps.from_pandas(pser) self.assert_eq(pser.argsort().sort_index(), psser.argsort().sort_index()) self.assert_eq((-pser).argsort().sort_index(), (-psser).argsort().sort_index()) # Series from Index with null values pidx = pd.Index([4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]) psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from Index with name with null values pidx.name = "Koalas" psidx = ps.from_pandas(pidx) self.assert_eq( pidx.to_series().argsort().sort_index(), psidx.to_series().argsort().sort_index() ) self.assert_eq( (-pidx.to_series()).argsort().sort_index(), (-psidx.to_series()).argsort().sort_index() ) # Series from DataFrame with null values pdf = pd.DataFrame({"A": [4.0, -6.0, 2.0, np.nan, -100.0, 11.0, 20.0, np.nan, 1.0, -99.0]}) psdf = ps.from_pandas(pdf) self.assert_eq(pdf.A.argsort().sort_index(), psdf.A.argsort().sort_index()) self.assert_eq((-pdf.A).argsort().sort_index(), (-psdf.A).argsort().sort_index()) def test_argmin_argmax(self): pser = pd.Series( { "Corn Flakes": 100.0, "Almond Delight": 110.0, "Cinnamon Toast Crunch": 120.0, "Cocoa Puff": 110.0, "Expensive Flakes": 120.0, "Cheap Flakes": 100.0, }, name="Koalas", ) psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.0"): self.assert_eq(pser.argmin(), psser.argmin()) self.assert_eq(pser.argmax(), psser.argmax()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "t"), ("b", "u"), ("c", "v"), ("d", "w"), ("e", "x"), ("f", "u")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.argmin(), psser.argmin()) self.assert_eq(pser.argmax(), psser.argmax()) # Null Series self.assert_eq(pd.Series([np.nan]).argmin(), ps.Series([np.nan]).argmin()) self.assert_eq(pd.Series([np.nan]).argmax(), ps.Series([np.nan]).argmax()) else: self.assert_eq(pser.values.argmin(), psser.argmin()) self.assert_eq(pser.values.argmax(), psser.argmax()) # MultiIndex pser.index = pd.MultiIndex.from_tuples( [("a", "t"), ("b", "u"), ("c", "v"), ("d", "w"), ("e", "x"), ("f", "u")] ) psser = ps.from_pandas(pser) self.assert_eq(pser.values.argmin(), psser.argmin()) self.assert_eq(pser.values.argmax(), psser.argmax()) # Null Series self.assert_eq(-1, ps.Series([np.nan]).argmin()) self.assert_eq(-1, ps.Series([np.nan]).argmax()) with self.assertRaisesRegex(ValueError, "attempt to get argmin of an empty sequence"): ps.Series([]).argmin() with self.assertRaisesRegex(ValueError, "attempt to get argmax of an empty sequence"): ps.Series([]).argmax() def test_backfill(self): pser = pd.Series([np.nan, 2, 3, 4, np.nan, 6], name="x") psser = ps.from_pandas(pser) if LooseVersion(pd.__version__) >= LooseVersion("1.1"): self.assert_eq(pser.backfill(), psser.backfill()) # Test `inplace=True` pser.backfill(inplace=True) psser.backfill(inplace=True) self.assert_eq(pser, psser) else: expected = ps.Series([2.0, 2.0, 3.0, 4.0, 6.0, 6.0], name="x") self.assert_eq(expected, psser.backfill()) # Test `inplace=True` psser.backfill(inplace=True) self.assert_eq(expected, psser) def test_align(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) psdf = ps.from_pandas(pdf) for join in ["outer", "inner", "left", "right"]: for axis in [None, 0]: psser_l, psser_r = psdf.a.align(psdf.b, join=join, axis=axis) pser_l, pser_r = pdf.a.align(pdf.b, join=join, axis=axis) self.assert_eq(psser_l, pser_l) self.assert_eq(psser_r, pser_r) psser_l, psdf_r = psdf.b.align(psdf[["b", "a"]], join=join, axis=axis) pser_l, pdf_r = pdf.b.align(pdf[["b", "a"]], join=join, axis=axis) self.assert_eq(psser_l, pser_l) self.assert_eq(psdf_r, pdf_r) self.assertRaises(ValueError, lambda: psdf.a.align(psdf.b, axis=1)) def test_pow_and_rpow(self): pser = pd.Series([1, 2, np.nan]) psser = ps.from_pandas(pser) self.assert_eq(pser.pow(np.nan), psser.pow(np.nan)) self.assert_eq(pser ** np.nan, psser ** np.nan) self.assert_eq(pser.rpow(np.nan), psser.rpow(np.nan)) self.assert_eq(1 ** pser, 1 ** psser) def test_between_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pser = pd.Series([1, 2, 3, 4], index=idx) psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) pser.index.name = "ts" psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) pser.index.name = "index" psser = ps.from_pandas(pser) self.assert_eq( pser.between_time("0:15", "0:45").sort_index(), psser.between_time("0:15", "0:45").sort_index(), ) def test_at_time(self): idx = pd.date_range("2018-04-09", periods=4, freq="1D20min") pser = pd.Series([1, 2, 3, 4], index=idx) psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) pser.index.name = "ts" psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) pser.index.name = "index" psser = ps.from_pandas(pser) self.assert_eq( pser.at_time("0:20").sort_index(), psser.at_time("0:20").sort_index(), ) if __name__ == "__main__": from pyspark.pandas.tests.test_series import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
NLeSC/embodied-emotions-scripts
embem/machinelearning/rakel_clf.py
1
2054
"""Script to train a rakel classifier. Usage: python br_rakel.py <input dir> <output dir> Made for use by do_rakel.sh: ./do_rakel.sh <data dir> The script expects a train.txt and a test.txt containing the train and test set in the data directory. """ from __future__ import print_function import argparse from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from rakel import RandomKLabelsets from mlutils import get_data, print_results, split from nltk.corpus import stopwords as sw import string import os parser = argparse.ArgumentParser() parser.add_argument('input_dir', help='directory containing the train and test' ' data') parser.add_argument('out_dir', help='directory output should be saved to') args = parser.parse_args() stopwords = sw.words('dutch') + [p for p in string.punctuation] out_dir = args.out_dir if not os.path.exists(out_dir): os.makedirs(out_dir) #classifier_dir = '{}/classifier/'.format(out_dir) #if not os.path.exists(classifier_dir): # os.makedirs(classifier_dir) for run in range(1, 11): print("Run", run) train_file = '{}/train_{}.txt'.format(args.input_dir, run) test_file = '{}/test_{}.txt'.format(args.input_dir, run) out_file = '{}/output_{}.txt'.format(out_dir, run) X_train, X_test, Y_train, Y_test, classes_ = get_data(train_file, test_file) #print(Y_train.shape) clf = make_pipeline(TfidfVectorizer(analyzer=split, stop_words=stopwords), RandomKLabelsets(LinearSVC(class_weight='auto'), n_estimators=Y_train.shape[1]*2, labels_per_estimator=3)) clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) print_results(Y_test, Y_pred, classes_, open(out_file, 'w')) # save classifier #joblib.dump(clf, '{}/classifier.pkl'.format(classifier_dir))
apache-2.0
mapagron/Boot_camp
hw3/hw3ch1v2.py
1
4760
#Code for Challenge#1_Homework3 #Financial analisys #10_01_17: Result: The file is created but only has rows, it does not have any data #Order of the task: #1. Merging the files (importing libraries, open files, and creating a new file) #1.1 To create the new file use in the column 1(date), separator "-" to get the month #1.1 importing libraries import os import csv #import pandas as pd #import numpy as np #import seaborn #1.2 Importing data #Name files with no spaces data1 = os.path.join('Resources', 'budget_data_1.csv') data2 = os.path.join('Resources', 'budget_data_2.csv') #1.3 Creating lists to new file #newdate = [] datemonth = [] dateyear = [] revenue = [] revenueTwo = [] #1.4 using with to create the new file #firts: testing with one cvsfiles = [data1, data2] for file in cvsfiles: with open(file, newline="") as cvsfileone: csvreaderone = csv.reader(cvsfileone, delimiter = ",") #creating the for loop to read all the rows in budget_data_1 for row in csvreaderone: #Using .append to add whatever needs to be add to the lists date = [] and revenue = [] #1.4.1 as to count month separete than day, I will separate them newdate = row[0].split("-") #to test out if new date is actually splitting. The answer is YES! #print(newdate) #1.4.2 .append the revenue revenue.append(row[1]) dateyear.append(newdate[0]) # for this one I got an error : list index out of range - it was because the data has different size datemonth.append(newdate[1]) #printing variables #Result : All printed - and working #print(revenue) #print(datemonth) #print(dateyear) #2. Calculate #2.1 The total number of months included in the dataset numberMonths = len(datemonth) print (numberMonths) #2.2 The total amount of revenue gained over the entire period #removing header from revenue #revenue.remove("Revenue") #revenue.pop([0]) #print(revenue) # changing revenue as integer #list comprenhension: for i (each value that finds) # type ---- command to get tha type of object for i in revenue: if i == "Revenue": revenue.remove("Revenue") #print("found it") else: revenueTwo.append(int(i)) #print (revenueTwo) #calculating total amount of revenue TotalRevenue = sum(revenueTwo) print (TotalRevenue) #2.3 The average change in revenue between months over the entire period #creating a function to calculate the average def average (list1): suma = sum((i) for i in list1) #if suma == 0: #suma = sum((i+1) for i in list1) average = suma / len(list1) return average print (average(revenueTwo)) #2.4 The greatest increase in revenue (date and amount) over the entire period print (max(revenueTwo)) #2.5 The greatest decrease in revenue (date and amount) over the entire period print (min(revenueTwo)) #1.5 Zipping into a new file #Zip is an iterator in pandas so to create the data frame, I have to create them as lists. #combinedcsv = list(zip(datemonth, dateyear, revenue)) #print(combinedcsv) #trying without creating a list ''' combinedcsv = zip(datemonth, dateyear, revenue) # 1.6 Set variable for output file outputfile = os.path.join("budget_data_final.csv") # 1.7 Open the new file # w: argument that allows writting with open(outputfile, "w", newline="") as csvfinal: writer = csv.writer(csvfinal) #to add headers' writer.writerow(["day", "month", "revenue"]) #write in zipped rows writer.writerow(combinedcsv) #Result - it is printing as rows not as columns (???) #So how can I include the printing as rows ? #writer.writerow(combinedcsv) // pd.DataFrame(combinedcsv) ''' #3. Work with Pandas - no valid for this assignment #This allows me to create columns #dataframestocks = pd.DataFrame(combinedcsv) #print(dataframestocks) #Test_Pivot_Table #dataframestocks.pivot(index='month', values='revenue') #for i #The total amount of revenue gained over the entire period #totalAverage = sum(dataframestocks[3]) #print(totalAverage) #sum(int(revenue) #print(TotalRevenue) #The average change in revenue between months over the entire period #The greatest increase in revenue (date and amount) over the entire period #The greatest decrease in revenue (date and amount) over the entire period #QUESTIONS FOR CLASS # Files written as columns - there is a simpler way? # To do operations with columns and calling the column - See these two examples: #The total number of months included in the dataset ''' countMonth = 0 for i in dataframestocks: if dataframestocks[0:i] > dataframestocks[0:i + 1] countMonth = countMonth + 1 #The total amount of revenue gained over the entire period for i in dataframestrocks: totalAverage = sum(dataframestocks[3]) print(totalAverage) '''
gpl-3.0
sinhrks/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
simontorres/bravo
gui/gui_con_pdm_play.py
1
7734
#import sys import matplotlib matplotlib.use('QT4Agg') from matplotlib.widgets import Button import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import UnivariateSpline from matplotlib.widgets import MultiCursor import os import argparse from astropy.stats import LombScargle def get_args(arguments=None): parser = argparse.ArgumentParser( description="Interactive tool to search for variable objects") parser.add_argument('table', action='store', help="Table of photometry or radial velocity data.") args = parser.parse_args(args=arguments) return args def cargar_datos(tabla): data = np.genfromtxt(tabla) data=data[data[:,0].argsort()] jda = data[:,0] maga = data[:,1] erra = data[:,2] return jda, maga, erra """ def calculo_fase(mag, date, er, per, T0): fase2, tt2, err, t = [], [], [], [] for i in range(len(mag)): fa2 = ((float(date[i]) * 1.0 - T0) / per) - int((float(date[i]) - T0) / per) if fa2 > 0: fase2.append(fa2) tt2.append(fa2 + 1.0) t.append(date[i]) err.append(er[i]) else: fase2.append(fa2 + 1) tt2.append(fa2 + 2) t.append(date[i]) err.append(er[i]) fase2 = np.array(fase2) tt2 = np.array(tt2) err = np.array(err) re2 = np.concatenate((fase2, tt2), axis=0) mag3 = np.concatenate((mag, mag), axis=0) t2 = np.concatenate((t, t), axis=0) err2 = np.concatenate((err, err), axis=0) return re2, mag3, t2, err2 """ def calculo_fase(mag, date, er, per, T0): fase2 = np.modf(date/per)[0] tt2 = fase2+1 re2 = np.concatenate((fase2, tt2), axis=0) mag3 = np.concatenate((mag, mag), axis=0) t2 = np.concatenate((date, date), axis=0) err2 = np.concatenate((er, er), axis=0) return re2, mag3, t2, err2 def spline(jda,maga,orden,splineYes=True): spl = UnivariateSpline(jda, maga, k=orden) return spl,splineYes class GuiExample(object): def __init__(self): self.tabla = None self.fig = None self.ax1 = None self.ax2 = None self.ax3 = None self.ax1_bb = None self.line_plot = None self.jda = None self.maga = None self.erra = None self.per = None self.t0 = None self.min_per = 0.1 self.max_per = 10.0 # self.step_per = 80000.0 self.step_pdm = 5000.0 self.periodos = None self.omega = None self.PS = None self.model = None self.power = None self.freqs = None self.spl = None self.splineYes = None self.multi = None self.name_star = True self.auto_per=None def __call__(self, tabla, *args, **kwargs): self.tabla = tabla self.jda, self.maga, self.erra = cargar_datos(self.tabla) self.fig, (self.ax1, self.ax2 , self.ax3) = plt.subplots(nrows=3) self.fig.subplots_adjust(hspace=0.27, bottom=0.07, top=0.99, left=0.08, right=0.98) self.multi = MultiCursor(self.fig.canvas, (self.ax1,self.ax2), color='r', \ lw=.5, horizOn=None, vertOn=True) manager = plt.get_current_fig_manager() manager.window.showMaximized() #jd/mag if self.splineYes == True: self.spl, self.splineYes = spline(self.jda, self.maga, 5) print "Aplicando spline" self.maga = self.maga - self.spl(self.jda) #self.ax1.plot(self.jda, self.spl(self.jda), 'r--', lw=3) self.spl, self.splineYes = spline(self.jda, self.maga, 5) self.ax1.plot(self.jda, self.spl(self.jda), 'r--', lw=3) self.maga = self.maga - self.spl(self.jda) else: print "NO aplicando spline" self.spl,self.splineYes = spline(self.jda, self.maga,5) self.ax1.plot(self.jda, self.spl(self.jda), 'r--', lw=3) self.ax1.plot(self.jda, self.maga, '.', c='black') self.ax1.set_ylim(max(self.maga+0.01), min(self.maga)-0.01) self.ax1.set_xlim(min(self.jda)-10, max(self.jda)+0.01) self.ax1.set_xlabel(r'Time', fontsize=20) self.ax1.set_ylabel(r"Magnitud", fontsize=20) if self.name_star!=True: self.ax1.text(0.03, 0.145, "%s"%self.name_star, ha='left', va='top', \ transform=self.ax1.transAxes, fontsize=25,color="red") #LS astropy frequency2, power3 = LombScargle(self.jda, self.maga, self.erra).autopower\ (minimum_frequency=1 / self.max_per,maximum_frequency=1 / self.min_per) self.ax2.plot(1.0 / frequency2, power3, '-', c='cyan', lw=1, zorder=1, \ label="PyLS") if self.auto_per == True: self.step_per = len(frequency2) """ #GLS self.periodos=np.linspace(self.min_per, self.max_per, self.step_per) self.omega = 2 * np.pi / self.periodos self.PS = lomb_scargle(self.jda, self.maga, self.erra, self.omega, generalized=True) self.ax2.plot(self.periodos, self.PS, '-', c='black', lw=1, zorder=1,label="GLS") #LS model = periodic.LombScargle().fit(self.jda, self.maga, self.erra) fmin = 1.0 / self.max_per fmax = 1.0 / self.min_per df = (fmax - fmin) / self.step_per self.power = model.score_frequency_grid(fmin, df, self.step_per) self.freqs = fmin + df * np.arange(self.step_per) self.ax2.plot(1.0/self.freqs, self.power, '-', c='red', lw=1, zorder=1,label="LS") self.ax2.legend(fontsize = 'x-large') """ #PDM os.system("awk '{print $1,$2,$3}' %s > borrar.dat"%tabla) self.tabla="borrar.dat" longi=open(self.tabla, 'r').read().count("\n") pdm1=float(os.popen("./pdmmm %s %0.1f %0.3f %0.3f 10 5 %0.3f"%(self.tabla,longi,self.min_per,self.max_per,self.step_pdm)).readlines()[0]) f_11=np.genfromtxt(self.tabla+".pdm") Pdm1t,Ppdm1=f_11[:,0],1./f_11[:,1] # print len(f_11[0]),1./min(f_11[1]) self.ax2.plot(Ppdm1, Pdm1t, '-', c='green', lw=1, zorder=1,label="PDM",alpha=0.8) ### self.ax2.legend(fontsize = 'x-large') self.ax2.set_xlabel(r'Periodo', fontsize=20) self.ax2.set_ylabel(r"Power", fontsize=20) self.ax2.set_xlim(self.min_per, self.max_per) self.ax1_bb = self.ax2.get_position() self.fig.canvas.mpl_connect('motion_notify_event', self.on_mouse_over) plt.tight_layout() plt.show() def on_mouse_over(self, event): ax1_x, ax1_y = \ self.fig.transFigure.inverted().transform((event.x, event.y)) if self.ax1_bb.contains(ax1_x, ax1_y): if self.line_plot is not None: try: self.line_plot.remove() self.ax3.relim() except: pass if event.ydata is not None: self.per=event.xdata print event.xdata self.t0=0 fasA,magniA,t_A,er_A=calculo_fase(self.maga, self.jda, self.erra, self.per, self.t0) self.line_plot, = self.ax3.plot(fasA,magniA,".",color='grey',alpha=0.2198) self.ax3.set_xlim(0,2) self.ax3.set_ylim(max(magniA+0.01), min(magniA)-0.01) self.fig.canvas.draw() self.ax3.set_xlabel(r'Fase', fontsize=20) self.ax3.set_ylabel(r"Magnitud", fontsize=20) if __name__ == '__main__': args = get_args() # print(args.table) gui = GuiExample() gui(tabla=args.table)
gpl-3.0
easonlius/fingercode
run.py
1
1550
# _* coding: utf-8 _*_ # description : run the database to get the result import cv2 import matplotlib.pyplot as plt from DB import * from fingercode import * db_name = "final.db" result = get_all(db_name) images = get_image_name(result) counts = [] for i in result: counts.append(convert_list(i)) # all the results cal_eluer distabce correct_images = [] all_temp = [] for i in range(len(counts)): images_temp = [] for j in range(len(counts)): if images[i] != images[j]: if images[j] not in all_temp: temp = cal_euler_distance(counts[i], counts[j]) #print temp if (temp < 3000): print temp all_temp.append(images[j]) print images[i], images[j] images_temp.append(images[j]) #counts.remove(counts[j]) img1 = cv2.imread(images[i]) img2 = cv2.imread(images[j]) plt.figure() plt.subplot(1, 2, 1) plt.imshow(img1) plt.subplot(1, 2, 2) plt.imshow(img2) plt.show() correct_images.append(images_temp) print len(correct_images) """ jk = [] for i in correct_images: if len(i) > 1: jk.append(i) rows = len(jk) for i in jk: plt.figure() index = 1 for j in i: plt.subplot(rows, 4, index) img = cv2.imread(j) plt.imshow(img) index += 1 plt.show() """
mit
lin-credible/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
osvaldomx/Modelos
LSTM_CONV/lstm.py
1
10725
# coding: utf-8 import numpy as np import scipy.io as sio from scipy.interpolate import griddata from functools import reduce from keras.models import Model from keras.layers import Dropout, Dense, Input, Flatten, Permute, Reshape, concatenate from keras.layers.convolutional import Conv2D, Conv1D from keras.layers.pooling import MaxPooling2D from keras.layers.recurrent import LSTM from keras.optimizers import adam from keras.utils import plot_model, to_categorical from utils import cart2sph, pol2cart, augment_EEG, reformatInput from sklearn.preprocessing import scale def azim_proj(pos): """ Computes the Azimuthal Equidistant Projection of input point in 3D Cartesian Coordinates. Imagine a plane being placed against (tangent to) a globe. If a light source inside the globe projects the graticule onto the plane the result would be a planar, or azimuthal, map projection. :param pos: position in 3D Cartesian coordinates :return: projected coordinates using Azimuthal Equidistant Projection """ [r, elev, az] = cart2sph(pos[0], pos[1], pos[2]) return pol2cart(az, np.pi / 2 - elev) def gen_images(locs, features, n_gridpoints, normalize=True, augment=False, pca=False, std_mult=0.1, n_components=2, edgeless=False): """ Generates EEG images given electrode locations in 2D space and multiple feature values for each electrode :param locs: An array with shape [n_electrodes, 2] containing X, Y coordinates for each electrode. :param features: Feature matrix as [n_samples, n_features] Features are as columns. Features corresponding to each frequency band are concatenated. (alpha1, alpha2, ..., beta1, beta2,...) :param n_gridpoints: Number of pixels in the output images :param normalize: Flag for whether to normalize each band over all samples :param augment: Flag for generating augmented images :param pca: Flag for PCA based data augmentation :param std_mult Multiplier for std of added noise :param n_components: Number of components in PCA to retain for augmentation :param edgeless: If True generates edgeless images by adding artificial channels at four corners of the image with value = 0 (default=False). :return: Tensor of size [samples, colors, W, H] containing generated images. """ feat_array_temp = [] nElectrodes = locs.shape[0] # Number of electrodes # Test whether the feature vector length is divisible by number of electrodes # assert features.shape[1] % nElectrodes == 0 n_colors = int(features.shape[1] / nElectrodes) for c in range(n_colors): feat_array_temp.append(features[:, c * nElectrodes: nElectrodes * (c + 1)]) if augment: if pca: for c in range(n_colors): feat_array_temp[c] = augment_EEG(feat_array_temp[c], std_mult, pca=True, n_components=n_components) else: for c in range(n_colors): feat_array_temp[c] = augment_EEG(feat_array_temp[c], std_mult, pca=False, n_components=n_components) nSamples = features.shape[0] # Interpolate the values grid_x, grid_y = np.mgrid[ min(locs[:, 0]):max(locs[:, 0]):n_gridpoints * 1j, min(locs[:, 1]):max(locs[:, 1]):n_gridpoints * 1j ] temp_interp = [] for c in range(n_colors): temp_interp.append(np.zeros([nSamples, n_gridpoints, n_gridpoints])) # Generate edgeless images if edgeless: min_x, min_y = np.min(locs, axis=0) max_x, max_y = np.max(locs, axis=0) locs = np.append(locs, np.array([[min_x, min_y], [min_x, max_y], [max_x, min_y], [max_x, max_y]]), axis=0) for c in range(n_colors): feat_array_temp[c] = np.append(feat_array_temp[c], np.zeros((nSamples, 4)), axis=1) # Interpolating for i in xrange(nSamples): for c in range(n_colors): temp_interp[c][i, :, :] = griddata(locs, feat_array_temp[c][i, :], (grid_x, grid_y), method='cubic', fill_value=np.nan) print'Interpolating {0}/{1}\r'.format(i + 1, nSamples, end='\r') # Normalizing for c in range(n_colors): if normalize: temp_interp[c][~np.isnan(temp_interp[c])] = \ scale(temp_interp[c][~np.isnan(temp_interp[c])]) temp_interp[c] = np.nan_to_num(temp_interp[c]) return np.swapaxes(np.asarray(temp_interp), 0, 1) # swap axes to have [samples, colors, W, H] def build_cnn(input_var=None, n_layers=(4, 2, 1), n_filters_first=32, imsize=32, n_colors=3): """ :param input_var: :param n_layers: :param n_filters_first: :param imsize: :param n_colors: :return: """ count = 0 # Input layer network = Input(shape=(n_colors, imsize, imsize), tensor=input_var) for i, s in enumerate(n_layers): for l in range(s): network = Conv2D(n_filters_first * (2 ** i), (3, 3), padding='same', data_format='channels_first')(network) count += 1 #weights.append(network.weights) network = MaxPooling2D(pool_size=(2, 2))(network) return network if __name__ == '__main__': # Load electrode locations print('Loading data...') locs = sio.loadmat('sample_data/Neuroscan_locs_orig.mat') locs_3d = locs['A'] locs_2d = [] # Convert to 2D for e in locs_3d: locs_2d.append(azim_proj(e)) feats = sio.loadmat('sample_data/FeatureMat_timeWin.mat')['features'] subj_nums = np.squeeze(sio.loadmat('sample_data/trials_subNums.mat')['subjectNum']) # Leave-Subject-Out cross validation fold_pairs = [] for i in np.unique(subj_nums): ts = subj_nums == i tr = np.squeeze(np.nonzero(np.bitwise_not(ts))) ts = np.squeeze(np.nonzero(ts)) np.random.shuffle(tr) # Shuffle indices np.random.shuffle(ts) fold_pairs.append((tr, ts)) # Conv-LSTM Mode print('Generating images for all time windows...') #images_timewin = np.array( # [gen_images(np.array(locs_2d), # feats[:, i * 192:(i + 1) * 192], 32, # normalize=False) # for i in range(feats.shape[1] / 192)]) images_timewin = np.load('sample_data/images_timewin.npy') num_classes = 4 grad_clip = 100 imsize = 32 n_colors = 3 n_timewin = 3 labels = np.squeeze(feats[:, -1]) - 1 images = images_timewin fold = fold_pairs[2] (X_train, y_train), (X_val, y_val), (X_test, y_test) = reformatInput(images, labels, fold) X_train = X_train.astype("float32", casting='unsafe') X_val = X_val.astype("float32", casting='unsafe') X_test = X_test.astype("float32", casting='unsafe') print('Building LSTM-Conv Model') main_input = Input(shape=(None, 3, imsize, imsize)) convnets = [] # Build 7 parallel CNNs with shared weights #for i in range(n_timewin): # convnet = build_cnn(main_input[i], imsize=imsize, n_colors=n_colors) # convnets.append(Flatten()(convnet)) in1 = Input(shape=(3,imsize,imsize)) net1 = Conv2D(32, 3, padding='same', data_format='channels_first')(in1) net1 = Conv2D(32, 3, padding='same', data_format='channels_first')(net1) net1 = Conv2D(32, 3, padding='same', data_format='channels_first')(net1) net1 = Conv2D(32, 3, padding='same', data_format='channels_first')(net1) net1 = MaxPooling2D(pool_size=(2, 2))(net1) net1 = Conv2D(64, 3, padding='same', data_format='channels_first')(net1) net1 = Conv2D(64, 3, padding='same', data_format='channels_first')(net1) net1 = MaxPooling2D(pool_size=(2, 2))(net1) net1 = Conv2D(128, 3, padding='same', data_format='channels_first')(net1) net1 = MaxPooling2D(pool_size=(2, 2))(net1) net1 = Flatten()(net1) in2 = Input(shape=(3, imsize, imsize)) net2 = Conv2D(32, 3, padding='same', data_format='channels_first')(in2) net2 = Conv2D(32, 3, padding='same', data_format='channels_first')(net2) net2 = Conv2D(32, 3, padding='same', data_format='channels_first')(net2) net2 = Conv2D(32, 3, padding='same', data_format='channels_first')(net2) net2 = MaxPooling2D(pool_size=(2, 2))(net2) net2 = Conv2D(64, 3, padding='same', data_format='channels_first')(net2) net2 = Conv2D(64, 3, padding='same', data_format='channels_first')(net2) net2 = MaxPooling2D(pool_size=(2, 2))(net2) net2 = Conv2D(128, 3, padding='same', data_format='channels_first')(net2) net2 = MaxPooling2D(pool_size=(2, 2))(net2) net2 = Flatten()(net2) in3 = Input(shape=(3, imsize, imsize)) net3 = Conv2D(32, 3, padding='same', data_format='channels_first')(in3) net3 = Conv2D(32, 3, padding='same', data_format='channels_first')(net3) net3 = Conv2D(32, 3, padding='same', data_format='channels_first')(net3) net3 = Conv2D(32, 3, padding='same', data_format='channels_first')(net3) net3 = MaxPooling2D(pool_size=(2, 2))(net3) net3 = Conv2D(64, 3, padding='same', data_format='channels_first')(net3) net3 = Conv2D(64, 3, padding='same', data_format='channels_first')(net3) net3 = MaxPooling2D(pool_size=(2, 2))(net3) net3 = Conv2D(128, 3, padding='same', data_format='channels_first')(net3) net3 = MaxPooling2D(pool_size=(2, 2))(net3) net3 = Flatten()(net3) #convpool = concatenate(convnets) convpool = concatenate([net1, net2, net3]) convpool = Reshape((n_timewin, -1))(convpool) conv_out = Permute((2,1))(convpool) conv_out = Conv1D(64, 3)(conv_out) conv_out = Flatten()(conv_out) lstm_out = LSTM(128, activation='tanh')(convpool) dense_input = concatenate([lstm_out, conv_out]) main_output = Dropout(0.5)(dense_input) main_output = Dense(512, activation='relu')(main_output) main_output = Dense(num_classes, activation='softmax')(main_output) lstm_conv = Model(inputs=[in1, in2, in3], outputs=main_output) #plot_model(lstm_conv, 'mix.png') opt = adam(clipvalue=100) lstm_conv.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy']) y_train_cat = to_categorical(y_train) y_val_cat = to_categorical(y_val) y_test_cat = to_categorical(y_test) num_epochs = 5 print('Training the LSTM-CONV Model...') X_train = [X_train[0], X_train[1], X_train[2]] lstm_conv.fit(X_train, y_train_cat, epochs=num_epochs) print('Done!')
gpl-3.0
velizarefremov/vascularnetworks
skeletonize.py
1
1055
import os import sys import numpy as np from itkutilities import get_itk_array, write_itk_imageArray import utility from skimage.morphology import skeletonize_3d import matplotlib.pyplot as plt display = False if len(sys.argv) != 3: print("Usage: " + sys.argv[0] + " <testData> <output>") sys.exit(1) inputfile = sys.argv[1] outputfile = sys.argv[2] inputimg = np.array(get_itk_array(inputfile), dtype="uint8") # perform skeletonization skeleton = skeletonize_3d(inputimg) if display == True: # display results fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 4), sharex=True, sharey=True, subplot_kw={'adjustable': 'box-forced'}) ax = axes.ravel() ax[0].imshow(inputimg[55], cmap=plt.cm.gray) ax[0].axis('off') ax[0].set_title('original', fontsize=20) ax[1].imshow(skeleton[55], cmap=plt.cm.gray) ax[1].axis('off') ax[1].set_title('skeleton', fontsize=20) fig.tight_layout() plt.show() write_itk_imageArray(skeleton, outputfile)
gpl-3.0
jdavidrcamacho/Tests_GP
02 - Programs being tested/06 - spots tests/Test_ES_3spots.py
1
8206
# -*- coding: utf-8 -*- """ Created on Fri Mar 3 17:46:39 2017 @author: camacho """ import Kernel;reload(Kernel);kl=Kernel import Kernel_likelihood;reload(Kernel_likelihood);lk=Kernel_likelihood import Kernel_optimization;reload(Kernel_optimization);opt=Kernel_optimization import RV_function;reload(RV_function);RVfunc=RV_function import numpy as np;np.random.seed(1234) import matplotlib.pylab as pl import astropy.table as Table import sys f=open("Test_ES_3spots.txt","w") sys.stdout = f pl.close('all') ##### spots data pre-processing ##### rdb_data=Table.Table.read('3spots.rdb',format='ascii') RV_spot=rdb_data['RV_tot'][1:101] RV_spot=np.array(RV_spot) RV_spot=RV_spot.astype('Float64') RV_SPOT=np.concatenate((RV_spot,RV_spot,RV_spot,RV_spot),axis=0) spots_yy=[] for i in np.arange(4,401,4): a=(RV_SPOT[i-4]+RV_SPOT[i-3]+RV_SPOT[i-2]+RV_SPOT[i-1])*1000/4. spots_yy.append(a) spots_data=[] for j in np.arange(1,100,3.3): spots_data.append(spots_yy[int(round(j))]) ##### data and plot ##### # Period(P) ~ 20 e 50 days # Observations(space) ~ every 4 days # Error(yerr) ~ 0.20 a 0.50 m # K=17.353 => planet with 1/4 mass of Jupiter test1=RVfunc.RV_circular(P=25,K=17.353,T=0,gamma=0,time=100,space=30) t=np.linspace(0,100,30) #np.linspace(0,time,space) y0=np.array(test1[1]) yerr=np.array([np.random.uniform(0.2,0.5) for x in y0]) y=np.array([x1+x2 for x1,x2 in zip(y0,spots_data)]) total=np.array([x1+x2 for x1,x2 in zip(y,yerr)]) Xfinal=t Yfinal=total ##### Lets try GP to fit ##### #kl.ExpSineSquared(theta,l,P) + kl.WhiteNoise(theta) def sub_tests(trials=20,variation=-0.1): theta=17.0;l=1.0;P=25.0 for i in range(1,trials+1): print 'EXAMPLE %i' %i kernel1=kl.ExpSquared(theta, l) print 'initial kernel ->', kernel1 likelihood1=lk.likelihood(kernel1,Xfinal,Xfinal,Yfinal,yerr) print 'initial likelihood ->', likelihood1 Xcalc=np.linspace(0,100,1000) # [mu,std]=lk.compute_kernel(kernel1,Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") optimization1=opt.committed_optimization(kernel1,Xfinal,Xfinal,Yfinal,yerr,max_opt=10) print 'final kernel ->',optimization1[1] print 'final likelihood ->', optimization1[0] # [mu,std]=lk.compute_kernel(optimization1[1],Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") theta=theta+variation;l=l;P=P+variation def subNoise_tests(trials=20,variation=-0.1): theta=17.0;l=1.0;P=24.0;noise=0.5 for i in range(1,trials+1): print 'EXAMPLE %i' %i kernel1=kl.ExpSquared(theta, l)+kl.WhiteNoise(noise) print 'initial kernel ->', kernel1 likelihood1=lk.likelihood(kernel1,Xfinal,Xfinal,Yfinal,yerr) print 'initial likelihood ->', likelihood1 Xcalc=np.linspace(0,100,1000) # [mu,std]=lk.compute_kernel(kernel1,Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") optimization1=opt.committed_optimization(kernel1,Xfinal,Xfinal,Yfinal,yerr,max_opt=10) print 'final kernel ->',optimization1[1] print 'final likelihood ->', optimization1[0] # [mu,std]=lk.compute_kernel(optimization1[1],Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") theta=theta+variation;l=l;P=P+variation;noise=noise+(variation/2.) def add_tests(trials=20,variation=0.1): theta=17.0;l=1.0;P=25.0 for i in range(1,trials+1): print 'EXAMPLE %i' %i kernel1=kl.ExpSquared(theta, l) print 'initial kernel ->', kernel1 likelihood1=lk.likelihood(kernel1,Xfinal,Xfinal,Yfinal,yerr) print 'initial likelihood ->', likelihood1 Xcalc=np.linspace(0,100,1000) # [mu,std]=lk.compute_kernel(kernel1,Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") optimization1=opt.committed_optimization(kernel1,Xfinal,Xfinal,Yfinal,yerr,max_opt=10) print 'final kernel ->',optimization1[1] print 'final likelihood ->', optimization1[0] # [mu,std]=lk.compute_kernel(optimization1[1],Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") theta=theta+variation;l=l;P=P+variation def addNoise_tests(trials=20,variation=0.1): theta=17.0;l=1.0;P=24.0;noise=0.1 for i in range(1,trials+1): print 'EXAMPLE %i' %i kernel1=kl.ExpSquared(theta, l)+kl.WhiteNoise(noise) print 'initial kernel ->', kernel1 likelihood1=lk.likelihood(kernel1,Xfinal,Xfinal,Yfinal,yerr) print 'initial likelihood ->', likelihood1 Xcalc=np.linspace(0,100,1000) # [mu,std]=lk.compute_kernel(kernel1,Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") optimization1=opt.committed_optimization(kernel1,Xfinal,Xfinal,Yfinal,yerr,max_opt=10) print 'final kernel ->',optimization1[1] print 'final likelihood ->', optimization1[0] # [mu,std]=lk.compute_kernel(optimization1[1],Xfinal,Xcalc,Yfinal,yerr) # pl.figure() #Graphics # pl.fill_between(Xcalc, mu+std, mu-std, color="k", alpha=0.1) # pl.plot(Xcalc, mu+std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu-std, color="k", alpha=1, lw=0.25) # pl.plot(Xcalc, mu, color="k", alpha=1, lw=0.5) # pl.errorbar(Xfinal, Yfinal, yerr=yerr, fmt=".k", capsize=0) # pl.xlabel("$x$") # pl.ylabel("$y$") theta=theta;l=l;noise=noise+(variation/2.) sub_tests() print '' subNoise_tests() print '' add_tests() print '' addNoise_tests() print '' #for when everything ends f.close()
mit
musically-ut/numpy
numpy/lib/recfunctions.py
148
35012
""" Collection of utilities to manipulate structured arrays. Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience. """ from __future__ import division, absolute_import, print_function import sys import itertools import numpy as np import numpy.ma as ma from numpy import ndarray, recarray from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords from numpy.lib._iotools import _is_string_like from numpy.compat import basestring if sys.version_info[0] < 3: from future_builtins import zip _check_fill_value = np.ma.core._check_fill_value __all__ = [ 'append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ] def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.0), (2, 20.0), (0, 0.0)], dtype=[('A', '<i4'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output def get_names(adtype): """ Returns the field names of the input datatype as a tuple. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names(np.empty((1,), dtype=int)) is None True >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None True >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None def flatten_descr(ndtype): """ Flatten a structured data-type description. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) """ names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr) def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields indexing lists of their parent fields. This function is used to simplify access to fields nested in other fields. Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion). Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> rfn.get_fieldstructure(ndtype) ... # XXX: possible regression, order of BBA and BBB is swapped {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname, ] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: lastparent.append(lastname) elif lastname: lastparent = [lastname, ] parents[name] = lastparent or [] return parents or None def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if (hasattr(element, '__iter__') and not isinstance(element, basestring)): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter=([fill_value] * (len(seqarrays) - 1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = itertools.repeat(fill_value) iters = [itertools.chain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in zip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).items(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output def merge_arrays(seqarrays, fill_value=-1, flatten=False, usemask=False, asrecarray=False): """ Merge arrays field by field. Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value = (999999, 1e+20), dtype = [('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]), ... np.array([10., 20., 30.])), ... usemask=False, asrecarray=True) rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('a', '<i4'), ('f1', '<f8')]) Notes ----- * Without a mask, the missing value will be filled with something, * depending on what its corresponding type: -1 for integers -1.0 for floating point numbers '-' for characters '-1' for strings True for boolean values * XXX: I just obtained these values empirically """ # Only one item in the input sequence ? if (len(seqarrays) == 1): seqarrays = np.asanyarray(seqarrays[0]) # Do we have a single ndarray as input ? if isinstance(seqarrays, (ndarray, np.void)): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): # Minimal processing needed: just make sure everythng's a-ok seqarrays = seqarrays.ravel() # Make sure we have named fields if not seqdtype.names: seqdtype = [('', seqdtype)] # Find what type of array we must return if usemask: if asrecarray: seqtype = MaskedRecords else: seqtype = MaskedArray elif asrecarray: seqtype = recarray else: seqtype = ndarray return seqarrays.view(dtype=seqdtype, type=seqtype) else: seqarrays = (seqarrays,) else: # Make sure we have arrays in the input sequence seqarrays = [np.asanyarray(_m) for _m in seqarrays] # Find the sizes of the inputs and their maximum sizes = tuple(a.size for a in seqarrays) maxlength = max(sizes) # Get the dtype of the output (flattening if needed) newdtype = zip_descr(seqarrays, flatten=flatten) # Initialize the sequences for data and mask seqdata = [] seqmask = [] # If we expect some kind of MaskedArray, make a special loop. if usemask: for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) # Get the data and mask data = a.ravel().__array__() mask = ma.getmaskarray(a).ravel() # Get the filling value (if needed) if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: fval = np.array(fval, dtype=a.dtype, ndmin=1) fmsk = np.ones((1,), dtype=mask.dtype) else: fval = None fmsk = True # Store an iterator padding the input to the expected length seqdata.append(itertools.chain(data, [fval] * nbmissing)) seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) # Create an iterator for the data data = tuple(izip_records(seqdata, flatten=flatten)) output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), mask=list(izip_records(seqmask, flatten=flatten))) if asrecarray: output = output.view(MaskedRecords) else: # Same as before, without the mask we don't need... for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) data = a.ravel().__array__() if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] else: fval = np.array(fval, dtype=a.dtype, ndmin=1) else: fval = None seqdata.append(itertools.chain(data, [fval] * nbmissing)) output = np.fromiter(tuple(izip_records(seqdata, flatten=flatten)), dtype=newdtype, count=maxlength) if asrecarray: output = output.view(recarray) # And we're done... return output def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped. Nested fields are supported. Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> rfn.drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> rfn.drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names, ] else: drop_names = set(drop_names) def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True) def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append( (newname, _recursive_rename_fields(current, namemapper)) ) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype) def append_fields(base, names, data, dtypes=None, fill_value=-1, usemask=True, asrecarray=False): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. """ # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): msg = "The number of arrays does not match the number of names" raise ValueError(msg) elif isinstance(names, basestring): names = [names, ] data = [data, ] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] else: if not isinstance(dtypes, (tuple, list)): dtypes = [dtypes, ] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, a dtype, or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False) def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields Parameters ---------- arrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> x = np.array([1, 2,]) >>> rfn.stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], ... dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = rfn.stack_arrays((z,zz)) >>> test masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0) ('c', 30.0, 300.0)], mask = [(False, False, True) (False, False, True) (False, False, False) (False, False, False) (False, False, False)], fill_value = ('N/A', 1e+20, 1e+20), dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')]) """ if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" % (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray) def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = [('a', int)] >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) ... # XXX: judging by the output, the ignoremask flag has no effect """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`. The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm. Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates... """ # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError( "The 'jointype' argument should be in 'inner', " "'outer' or 'leftouter' (got '%s' instead)" % jointype ) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key,) # Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s' % name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s' % name) # Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() # Fixme: nb2 below is never used. Commenting out for pyflakes. # (nb1, nb2) = (len(r1), len(r2)) nb1 = len(r1) (r1names, r2names) = (r1.dtype.names, r2.dtype.names) # Check the names for collision if (set.intersection(set(r1names), set(r2names)).difference(key) and not (r1postfix or r2postfix)): msg = "r1 and r2 contain common names, r1postfix and r2postfix " msg += "can't be empty" raise ValueError(msg) # Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key]) # Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = ndtype.index(desc) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx + 1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : # r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names or (f in r2names and not r2postfix and f not in key): f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn + r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names or (f in r1names and not r1postfix and f not in key): f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs) def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray. See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
bsd-3-clause
alexeyum/scikit-learn
examples/text/document_classification_20newsgroups.py
37
10499
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='navy') plt.barh(indices + .3, training_time, .2, label="training time", color='c') plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
tkchafin/mrbait
mrbait/mrbait_corefuncs_parallel.py
1
18041
#!/usr/bin/python import sys import sqlite3 import getopt import Bio import os import time from Bio import AlignIO from mrbait import mrbait_menu from mrbait import substring from mrbait.substring import SubString from functools import partial from mrbait import manage_bait_db as m from mrbait import alignment_tools as a from mrbait import sequence_tools as s from mrbait import misc_utils as utils from mrbait import seq_graph as graph from mrbait import aln_file_tools from mrbait import vcf_tools from mrbait import vsearch from mrbait import gff3_parser as gff from mrbait import blast as b import subprocess import pandas as pd import numpy as np import multiprocessing """ Parallel versions of some of the MrBait corefuncs. Much thanks to SO user 'dano' for 2014 post on how to share lock in multiprocessing pool: https://stackoverflow.com/questions/25557686/python-sharing-a-lock-between-processes """ #Function to load a GFF file into database def loadGFF_parallel(conn, params): t = int(params.threads) #file chunker call file_list = aln_file_tools.generic_chunker(params.gff, t, params.workdir) #print("Files are:",file_list) #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() try: with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(loadGFF_worker, params.db, chunk) results = pool.map(func, file_list) except Exception as e: pool.close() pool.close() pool.join() #reset_lock() #Remove chunkfiles aln_file_tools.removeChunks(params.workdir) #worker function version of loadGFF def loadGFF_worker(db, chunk): try: connection = sqlite3.connect(db) #For each GFF record in params.gff for record in gff.read_gff(chunk): #Skip any records that are missing the sequence ID, or coordinates if record.seqid == "NULL" or record.start == "NULL" or record.end == "NULL": continue if record.start > record.end: temp = record.start record.start = record.end record.end = temp #Get the alias, if it exists alias = "" if record.getAlias(): #returns false if no alias alias = record.getAlias() else: alias = "NULL" #NOTE: This function ONLY inserts GFFRecords where record.seqid matches an existing locus in the loci table lock.acquire() m.add_gff_record(connection, record.seqid, record.type.lower(), record.start, record.end, alias) lock.release() connection.close() except Exception as e: raise Exception(e.message) #Function to load a GFF file into database def loadBED_parallel(conn, params): t = int(params.threads) #file chunker call file_list = aln_file_tools.generic_chunker(params.bed, t, params.workdir) #print("Files are:",file_list) #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() try: with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(loadBED_worker, params.db, params.bed_header) results = pool.map(func, file_list) except Exception as e: pool.close() pool.close() pool.join() #reset_lock() #Remove chunkfiles aln_file_tools.removeChunks(params.workdir) #worker function version of loadGFF def loadBED_worker(db, bed_header, chunk): try: connection = sqlite3.connect(db) with open(chunk)as f: count=0 for line in f: line = line.strip() if not line: continue count+=1 if count <= bed_header: continue content = line.split() #NOTE: This function ONLY inserts BEDRecords where record.seqid matches an existing locus in the loci table lock.acquire() print(content) m.add_bed_record(connection, content[0], content[1], content[2]) lock.release() connection.close() except Exception as e: raise Exception(e.message) #Function to load BED file def loadBED(conn, params): with open(params.bed)as f: count=0 for line in f: line = line.strip() if not line: continue count+=1 if count <= params.bed_header: continue content = line.split() #NOTE: This function ONLY inserts BEDRecords where record.seqid matches an existing locus in the loci table m.add_bed_record(conn, content[0], content[1], content[2]) #remove BED records not falling within our loci #print(m.getBED(conn)) m.validateBEDRecords(conn) #print(m.getBED(conn)) #Function to load a XMFA file into database def loadXMFA_parallel(conn, params): t = int(params.threads) numLoci = aln_file_tools.countXMFA(params.xmfa) if numLoci < 10000: print("\t\t\tReading",numLoci,"alignments.") else: print("\t\t\tReading",numLoci,"alignments... This may take a while.") #file chunker call file_list = aln_file_tools.xmfa_chunker(params.xmfa, t, params.workdir) #print("Files are:",file_list) #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() try: with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(loadXMFA_worker, params.db, params.cov, params.minlen, params.thresh, params.mask, params.maf) results = pool.map(func, file_list) except Exception as e: pool.close() pool.close() pool.join() #reset_lock() #Remove chunkfiles aln_file_tools.removeChunks(params.workdir) #worker function version of loadMAF def loadXMFA_worker(db, params_cov, params_minlen, params_thresh, params_mask, params_maf, chunk): try: connection = sqlite3.connect(db) #Parse MAF file and create database for aln in AlignIO.parse(chunk, "mauve"): #NOTE: Add error handling, return error code cov = len(aln) alen = aln.get_alignment_length() if cov < params_cov or alen < params_minlen: continue #Add each locus to database locus = a.consensAlign(aln, threshold=params_thresh, mask=params_mask, maf=params_maf) lock.acquire() locid = m.add_locus_record(connection, cov, locus.conSequence, 1, "NULL") lock.release() connection.close() except Exception as e: raise Exception(e.message) #Function to load LOCI file in parallel def loadLOCI_parallel(conn, params): """ Format: multiprocessing pool. Master: splits file into n chunks creates multiprocessing pool Workers: read file chunk calculate consensus grab lock INSERT data to SQL database release lock """ t = int(params.threads) numLoci = aln_file_tools.countLoci(params.loci) if numLoci < 10000: print("\t\t\tReading",numLoci,"alignments.") else: print("\t\t\tReading",numLoci,"alignments... This may take a while.") #file chunker call file_list = aln_file_tools.loci_chunker(params.loci, t, params.workdir) #print("Files are:",file_list) #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() try: with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(loadLOCI_worker, params.db, params.cov, params.minlen, params.thresh, params.mask, params.maf) results = pool.map(func, file_list) except Exception as e: pool.close() pool.close() pool.join() #reset_lock() #Remove chunkfiles aln_file_tools.removeChunks(params.workdir) #Function to load MAF file in parallel def loadMAF_parallel(conn, params): t = int(params.threads) numLoci = aln_file_tools.countMAF(params.alignment) if numLoci < 10000: print("\t\t\tReading",numLoci,"alignments.") else: print("\t\t\tReading",numLoci,"alignments... This may take a while.") #file chunker call file_list = aln_file_tools.maf_chunker(params.alignment, t, params.workdir) #print("Files are:",file_list) #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() try: with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(loadMAF_worker, params.db, params.cov, params.minlen, params.thresh, params.mask, params.maf) results = pool.map(func, file_list) except Exception as e: pool.close() pool.close() pool.join() #reset_lock() #Remove chunkfiles aln_file_tools.removeChunks(params.workdir) # #first chunking, then arsing in parallel # def loadVCF_parallel(conn, params): # t = int(params.threads) # #file chunker call # file_list = vcf_tools.vcf_chunker(params.vcf, t, params.workdir) # # print("Files are:",file_list) # #Initialize multiprocessing pool # #if 'lock' not in globals(): # lock = multiprocessing.Lock() # try: # with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: # func = partial(loadVCF_worker, params.db, params.thresh) # results = pool.map(func, file_list) # except Exception as e: # pool.close() # pool.close() # pool.join() # # #reset_lock() # #Remove chunkfiles # #aln_file_tools.removeChunks(params.workdir) #INitialize a global lock. Doing it this way allows it to be inherited by the child processes properly #Found on StackOverflow: https://stackoverflow.com/questions/25557686/python-sharing-a-lock-between-processes #Thanks go to SO user dano def init(l): global lock lock = l #Function to reset lock def reset_lock(): global lock del lock #NOTE: 'params' object can't be pickled, so I have to do it this way. #worker function version of loadMAF def loadMAF_worker(db, params_cov, params_minlen, params_thresh, params_mask, params_maf, chunk): try: connection = sqlite3.connect(db) #Parse MAF file and create database for aln in AlignIO.parse(chunk, "maf"): #NOTE: Add error handling, return error code cov = len(aln) alen = aln.get_alignment_length() if cov < params_cov or alen < params_minlen: continue #Add each locus to database locus = a.consensAlign(aln, threshold=params_thresh, mask=params_mask, maf=params_maf) lock.acquire() locid = m.add_locus_record(connection, cov, locus.conSequence, 1, "NULL") #print(locid) lock.release() #Extract variable positions for database #for var in locus.alnVars: #m.add_variant_record(connection, locid, var.position, var.value) connection.close() except Exception as e: raise Exception(e.message) # #Function to load VCF variants file # def loadVCF_worker(db, threshold, chunk): # try: # #Each worker opens unique connection to db # connection = sqlite3.connect(db) # #Lock DB and read loci, then release lock # lock.acquire() # loci = m.getPassedLoci(connection) #get DF of passed loci # lock.release() # # chrom_lookup = loci.set_index('chrom')['id'].to_dict() # loci.set_index('id', inplace=True) # # passed=0 #To track number of VCF records for which no locus exists # failed=0 # for reclist in vcf_tools.read_vcf(chunk): # rec_chrom = reclist[0].CHROM # if rec_chrom in chrom_lookup: # locid = chrom_lookup[rec_chrom] # passed+=1 # #Grab DF record for the matching CHROM # seq = loci.loc[locid,'consensus'] # #Get new consensus sequence given VCF records # new_cons = vcf_tools.make_consensus_from_vcf(seq,rec_chrom,reclist, threshold) # print(new_cons) # #Update new consensus seq in db # if len(new_cons) != len(seq): #Check length first # print("\t\t\tWarning: New consensus sequence for locus %s (locid=<%s>) is the wrong length! Skipping."%(rec_chrom, locid)) # else: # #Lock database for update, then relase lock # lock.acquire() # m.updateConsensus(connection, locid, new_cons) # lock.release() # else: # failed+=1 # if failed > 0: # print("\t\t\tWARNING:%s/%s records in <%s> don't match any reference sequences"%(failed, failed+passed, chunk)) # #close connection # connection.close() # except Exception as e: # raise Exception(e.message) #Worker function for loadLOCI_parallel def loadLOCI_worker(db, params_cov, params_minlen, params_thresh, params_mask, params_maf, chunk): try: connection = sqlite3.connect(db) #Parse LOCI file and create database for aln in aln_file_tools.read_loci(chunk): #NOTE: Add error handling, return error code cov = len(aln) alen = aln.get_alignment_length() #Skip if coverage or alignment length too short if cov < params_cov or alen < params_minlen: #print("Locus skipped") continue else: #Add each locus to database locus = a.consensAlign(aln, threshold=params_thresh, mask=params_mask, maf=params_maf) #Acquire lock, submit to Database lock.acquire() locid = m.add_locus_record(connection, cov, locus.conSequence, 1, "NULL") lock.release() #print("Loading Locus #:",locid) #Extract variable positions for database #for var in locus.alnVars: #m.add_variant_record(connection, locid, var.position, var.value) connection.close() except Exception as e: raise Exception(e.message) #Function to discover target regions using a sliding windows through passedLoci def targetDiscoverySlidingWindow_parallel(conn, params, loci): """ Format: 1. Write pandas DF to n chunk files 2. List of chunk file names 3. Pass 1 chunk file to each worker in a multiprocessing pool. Master: creates n chunk files creates multiprocessing pool Workers: read file chunk calculate consensus grab lock INSERT data to SQL database release lock """ t = int(params.threads) chunk = 1 loci_num = int(loci.shape[0]) #print("number of loci:",loci_num) #print("number of threads:",t) chunks = 0 if loci_num < t: chunks = loci_num else: chunks = t chunk_size = loci_num // chunks remainder = loci_num % chunks #print("Chunk size is:",chunk_size) #print("remainder is:",remainder) start = 0 stop = 0 files = list() #Split loci DataFrame into chunks, and keep list of chunk files for df_chunk in np.array_split(loci, chunks): size = df_chunk.shape[0] #print("size of chunk",chunk,"is:",size) chunk_file = params.workdir + "/." + str(chunk) + ".chunk" #print(df_chunk) df_chunk.to_csv(chunk_file, mode="w", index=False) files.append(chunk_file) chunk += 1 #Initialize multiprocessing pool #if 'lock' not in globals(): lock = multiprocessing.Lock() with multiprocessing.Pool(t,initializer=init, initargs=(lock,)) as pool: func = partial(targetDiscoverySlidingWindow_worker, params.db, params.win_shift, params.win_width, params.var_max, params.numN, params.numG, params.blen, params.flank_dist, params.target_all) results = pool.map(func, files) pool.close() pool.join() #reset_lock() #Remove chunkfiles d = os.listdir(params.workdir) for item in d: if item.endswith(".chunk"): os.remove(os.path.join(params.workdir, item)) #Function to discover target regions using a sliding windows through passedLoci def targetDiscoverySlidingWindow_worker(db, shift, width, var, n, g, blen, flank_dist, target_all, chunk): connection = sqlite3.connect(db) #print("process: reading hdf from",chunk) loci = pd.read_csv(chunk) #print(loci) for seq in loci.itertuples(): #print(seq) start = 0 stop = 0 if target_all: #print("target_all") #submit full locus as target seq_norm = s.simplifySeq(seq[2]) counts = s.seqCounterSimple(seq_norm) if counts['*'] <= var and counts['N'] <= n and counts['-'] <= g: target = seq[2] tr_counts = s.seqCounterSimple(seq_norm) n_mask = utils.n_lower_chars(seq[2]) n_gc = s.gc_counts(seq[2]) #NOTE: flank count set to number of variable sites in whole locus #print(int(seq[1]), 0, len(seq[2]), seq[2], tr_counts, tr_counts, n_mask, n_gc) lock.acquire() m.add_region_record(connection, int(seq[1]), 0, len(seq[2]), seq[2], tr_counts, tr_counts, n_mask, n_gc) lock.release() else: #print("\nConsensus: ", seq[2], "ID is: ", seq[1], "\n") generator = s.slidingWindowGenerator(seq[2], shift, width) for window_seq in generator(): seq_norm = s.simplifySeq(window_seq[0]) counts = s.seqCounterSimple(seq_norm) #If window passes filters, extend current bait region #print("Start is ", start, " and stop is ",stop) #debug print if counts['*'] <= var and counts['N'] <= n and counts['-'] <= g: stop = window_seq[2] #if this window passes BUT is the last window, evaluate it if stop == len(seq[2]): #print("last window") if (stop - start) >= blen: target = (seq[2])[start:stop] tr_counts = s.seqCounterSimple(s.simplifySeq(target)) #print("candidate:",window_seq[0]) n_mask = utils.n_lower_chars(target) n_gc = s.gc_counts(target) #Check that there aren't too many SNPs #if tr_counts["*"] <= params.vmax_r: #print(" Target region: ", target) #Submit target region to database #print("process: grabbing lock")' flank_counts = s.getFlankCounts(seq[2], start, stop, flank_dist) lock.acquire() m.add_region_record(connection, int(seq[1]), start, stop, target, tr_counts, flank_counts, n_mask, n_gc) #print("process: releasing lock") lock.release() #set start of next window to end of current TR generator.setI(stop) else: #If window fails, check if previous bait region passes to submit to DB #print (stop-start) if (stop - start) >= blen: target = (seq[2])[start:stop] tr_counts = s.seqCounterSimple(s.simplifySeq(target)) n_mask = utils.n_lower_chars(target) n_gc = s.gc_counts(target) #Check that there aren't too many SNPs #if tr_counts["*"] <= params.vmax_r: #print(" Target region: ", target) #Submit target region to database #print("process: grabbing lock")' flank_counts = s.getFlankCounts(seq[2], start, stop, flank_dist) lock.acquire() m.add_region_record(connection, int(seq[1]), start, stop, target, tr_counts, flank_counts, n_mask, n_gc) #print("process: releasing lock") lock.release() #set start of next window to end of current TR generator.setI(stop) #If bait fails, set start to start point of next window start = generator.getI()+shift connection.close() #Function to get DataFrame of targets + flank regions, and calculate some stuff def flankDistParser_parallel(conn, dist): #Call manage_bait_db function to return DataFrame targets = m.getTargetFlanks(conn, dist)
gpl-3.0
eco32i/ggplot
ggplot/scales/scale_colour_gradient.py
1
1219
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap, rgb2hex, ColorConverter def colors_at_breaks(cmap, breaks=[0, 0.25, 0.5, 0.75, 1.]): return [rgb2hex(cmap(bb)[:3]) for bb in breaks] class scale_colour_gradient(scale): VALID_SCALES = ['name', 'limits', 'low', 'mid', 'high'] def __radd__(self, gg): gg = deepcopy(gg) if self.name: gg.color_label = self.name if self.limits: gg.color_limits = self.limits color_spectrum = [] if self.low: color_spectrum.append(self.low) if self.mid: color_spectrum.append(self.mid) if self.high: color_spectrum.append(self.high) if self.low and self.high: gradient2n = LinearSegmentedColormap.from_list('gradient2n', color_spectrum) plt.cm.register_cmap(cmap=gradient2n) # add them back to ggplot gg.color_scale = colors_at_breaks(gradient2n) gg.colormap = gradient2n return gg
bsd-2-clause
walterreade/scikit-learn
sklearn/feature_extraction/image.py
263
17600
""" The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to extract features from images. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Olivier Grisel # Vlad Niculae # License: BSD 3 clause from itertools import product import numbers import numpy as np from scipy import sparse from numpy.lib.stride_tricks import as_strided from ..utils import check_array, check_random_state from ..utils.fixes import astype from ..base import BaseEstimator __all__ = ['PatchExtractor', 'extract_patches_2d', 'grid_to_graph', 'img_to_graph', 'reconstruct_from_patches_2d'] ############################################################################### # From an image to a graph def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters =========== n_x: integer The size of the grid in the x direction. n_y: integer The size of the grid in the y direction. n_z: integer, optional The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges def _compute_gradient_3d(edges, img): n_x, n_y, n_z = img.shape gradient = np.abs(img[edges[0] // (n_y * n_z), (edges[0] % (n_y * n_z)) // n_z, (edges[0] % (n_y * n_z)) % n_z] - img[edges[1] // (n_y * n_z), (edges[1] % (n_y * n_z)) // n_z, (edges[1] % (n_y * n_z)) % n_z]) return gradient # XXX: Why mask the image after computing the weights? def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.in1d(edges[0], inds), np.in1d(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights def _to_graph(n_x, n_y, n_z, mask=None, img=None, return_as=sparse.coo_matrix, dtype=None): """Auxiliary function for img_to_graph and grid_to_graph """ edges = _make_edges_3d(n_x, n_y, n_z) if dtype is None: if img is None: dtype = np.int else: dtype = img.dtype if img is not None: img = np.atleast_3d(img) weights = _compute_gradient_3d(edges, img) if mask is not None: edges, weights = _mask_edges_weights(mask, edges, weights) diag = img.squeeze()[mask] else: diag = img.ravel() n_voxels = diag.size else: if mask is not None: mask = astype(mask, dtype=np.bool, copy=False) mask = np.asarray(mask, dtype=np.bool) edges = _mask_edges_weights(mask, edges) n_voxels = np.sum(mask) else: n_voxels = n_x * n_y * n_z weights = np.ones(edges.shape[1], dtype=dtype) diag = np.ones(n_voxels, dtype=dtype) diag_idx = np.arange(n_voxels) i_idx = np.hstack((edges[0], edges[1])) j_idx = np.hstack((edges[1], edges[0])) graph = sparse.coo_matrix((np.hstack((weights, weights, diag)), (np.hstack((i_idx, diag_idx)), np.hstack((j_idx, diag_idx)))), (n_voxels, n_voxels), dtype=dtype) if return_as is np.ndarray: return graph.toarray() return return_as(graph) def img_to_graph(img, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : ndarray, 2D or 3D 2D or 3D image mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : None or dtype, optional The data of the returned sparse matrix. By default it is the dtype of img Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype) def grid_to_graph(n_x, n_y, n_z=1, mask=None, return_as=sparse.coo_matrix, dtype=np.int): """Graph of the pixel-to-pixel connections Edges exist if 2 voxels are connected. Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, optional, default 1 Dimension in z axis mask : ndarray of booleans, optional An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, optional The class to use to build the returned adjacency matrix. dtype : dtype, optional, default int The data of the returned sparse matrix. By default it is int Notes ----- For sklearn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected. For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues. """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype) ############################################################################### # From an image to a set of small image patches def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if (isinstance(max_patches, (numbers.Integral)) and max_patches < all_patches): return max_patches elif (isinstance(max_patches, (numbers.Real)) and 0 < max_patches < 1): return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches def extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : integer or tuple of length arr.ndim Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : integer or tuple of length arr.ndim Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, numbers.Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, numbers.Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = [slice(None, None, st) for st in extraction_step] indexing_strides = arr[slices].strides patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step)) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches def extract_patches_2d(image, patch_size, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : array, shape = (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches to extract. If max_patches is a float between 0 and 1, it is taken to be a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling to use if `max_patches` is not None. Returns ------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.feature_extraction import image >>> one_image = np.arange(16).reshape((4, 4)) >>> one_image array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print(patches.shape) (9, 2, 2) >>> patches[0] array([[0, 1], [4, 5]]) >>> patches[1] array([[1, 2], [5, 6]]) >>> patches[8] array([[10, 11], [14, 15]]) """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError("Height of the patch should be less than the height" " of the image.") if p_w > i_w: raise ValueError("Width of the patch should be less than the width" " of the image.") image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = extract_patches(image, patch_shape=(p_h, p_w, n_colors), extraction_step=1) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of ints (image_height, image_width) or (image_height, image_width, n_channels) the size of the image that will be reconstructed Returns ------- image : array, shape = image_size the reconstructed image """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i:i + p_h, j:j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img class PatchExtractor(BaseEstimator): """Extracts patches from a collection of images Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patch_size : tuple of ints (patch_height, patch_width) the dimensions of one patch max_patches : integer or float, optional default is None The maximum number of patches per image to extract. If max_patches is a float in (0, 1), it is taken to mean a proportion of the total number of patches. random_state : int or RandomState Pseudo number generator state used for random sampling. """ def __init__(self, patch_size=None, max_patches=None, random_state=None): self.patch_size = patch_size self.max_patches = max_patches self.random_state = random_state def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self def transform(self, X): """Transforms the image samples in X into a matrix of patch data. Parameters ---------- X : array, shape = (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches: array, shape = (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ self.random_state = check_random_state(self.random_state) n_images, i_h, i_w = X.shape[:3] X = np.reshape(X, (n_images, i_h, i_w, -1)) n_channels = X.shape[-1] if self.patch_size is None: patch_size = i_h // 10, i_w // 10 else: patch_size = self.patch_size # compute the dimensions of the patches array p_h, p_w = patch_size n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches) patches_shape = (n_images * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d( image, patch_size, self.max_patches, self.random_state) return patches
bsd-3-clause
srepho/BDA_py_demos
demos_ch2/demo2_3.py
19
1931
"""Bayesian Data Analysis, 3rd ed Chapter 2, demo 3 Simulate samples from Beta(438,544), draw a histogram with quantiles, and do the same for a transformed variable. """ import numpy as np from scipy.stats import beta import matplotlib.pyplot as plt # Edit default plot settings (colours from colorbrewer2.org) plt.rc('font', size=14) plt.rc('lines', color='#377eb8', linewidth=2) plt.rc('axes', color_cycle=('#377eb8','#e41a1c','#4daf4a', '#984ea3','#ff7f00','#ffff33')) # Plotting grid x = np.linspace(0.36, 0.54, 150) # Draw n random samples from Beta(438,544) n = 10000 th = beta.rvs(438, 544, size=n) # rvs comes from `random variates` # Plot 2 subplots fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(8, 10)) # Plot histogram axes[0].hist(th, bins=30) # Compute 2.5% and 97.5% quantile approximation using samples th25, th975 = np.percentile(th, [2.5, 97.5]) # Draw lines for these axes[0].axvline(th25, color='#e41a1c', linewidth=1.5) axes[0].axvline(th975, color='#e41a1c', linewidth=1.5) axes[0].text(th25, axes[0].get_ylim()[1]+15, '2.5%', horizontalalignment='center') axes[0].text(th975, axes[0].get_ylim()[1]+15, '97.5%', horizontalalignment='center') axes[0].set_xlabel(r'$\theta$', fontsize=18) axes[0].set_yticks(()) # Plot histogram for the transformed variable phi = (1-th)/th axes[1].hist(phi, bins=30) # Compute 2.5% and 97.5% quantile approximation using samples phi25, phi975 = np.percentile(phi, [2.5, 97.5]) # Draw lines for these axes[1].axvline(phi25, color='#e41a1c', linewidth=1.5) axes[1].axvline(phi975, color='#e41a1c', linewidth=1.5) axes[1].text(phi25, axes[1].get_ylim()[1]+15, '2.5%', horizontalalignment='center') axes[1].text(phi975, axes[1].get_ylim()[1]+15, '97.5%', horizontalalignment='center') axes[1].set_xlabel(r'$\phi$', fontsize=18) axes[1].set_yticks(()) # Display the figure plt.show()
gpl-3.0
krafczyk/spack
var/spack/repos/builtin/packages/py-multiqc/package.py
5
2328
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the LICENSE file for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyMultiqc(PythonPackage): """MultiQC is a tool to aggregate bioinformatics results across many samples into a single report. It is written in Python and contains modules for a large number of common bioinformatics tools.""" homepage = "https://multiqc.info" url = "https://pypi.io/packages/source/m/multiqc/multiqc-1.0.tar.gz" version('1.5', 'c9fc5f54a75b1d0c3e119e0db7f5fe72') version('1.3', '78fef8a89c0bd40d559b10c1f736bbcd') version('1.0', '0b7310b3f75595e5be8099fbed2d2515') depends_on('[email protected]:') depends_on('py-setuptools', type='build') depends_on('py-click', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-lzstring', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('py-spectra', type=('build', 'run')) depends_on('py-matplotlib', type=('build', 'run')) depends_on('py-numpy', type=('build', 'run')) depends_on('py-pyyaml', type=('build', 'run')) depends_on('py-simplejson', type=('build', 'run'))
lgpl-2.1
pratapvardhan/pandas
pandas/tests/frame/test_operators.py
2
43613
# -*- coding: utf-8 -*- from __future__ import print_function from collections import deque from datetime import datetime from decimal import Decimal import operator import pytest from numpy import nan, random import numpy as np from pandas.compat import range from pandas import compat from pandas import (DataFrame, Series, MultiIndex, Timestamp, date_range) import pandas.core.common as com import pandas.io.formats.printing as printing import pandas as pd from pandas.util.testing import (assert_numpy_array_equal, assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.tests.frame.common import (TestData, _check_mixed_float, _check_mixed_int) class TestDataFrameOperators(TestData): def test_operators(self): garbage = random.random(4) colSeries = Series(garbage, index=np.array(self.frame.columns)) idSum = self.frame + self.frame seriesSum = self.frame + colSeries for col, series in compat.iteritems(idSum): for idx, val in compat.iteritems(series): origVal = self.frame[col][idx] * 2 if not np.isnan(val): assert val == origVal else: assert np.isnan(origVal) for col, series in compat.iteritems(seriesSum): for idx, val in compat.iteritems(series): origVal = self.frame[col][idx] + colSeries[col] if not np.isnan(val): assert val == origVal else: assert np.isnan(origVal) added = self.frame2 + self.frame2 expected = self.frame2 * 2 assert_frame_equal(added, expected) df = DataFrame({'a': ['a', None, 'b']}) assert_frame_equal(df + df, DataFrame({'a': ['aa', np.nan, 'bb']})) # Test for issue #10181 for dtype in ('float', 'int64'): frames = [ DataFrame(dtype=dtype), DataFrame(columns=['A'], dtype=dtype), DataFrame(index=[0], dtype=dtype), ] for df in frames: assert (df + df).equals(df) assert_frame_equal(df + df, df) def test_ops_np_scalar(self): vals, xs = np.random.rand(5, 3), [nan, 7, -23, 2.718, -3.14, np.inf] f = lambda x: DataFrame(x, index=list('ABCDE'), columns=['jim', 'joe', 'jolie']) df = f(vals) for x in xs: assert_frame_equal(df / np.array(x), f(vals / x)) assert_frame_equal(np.array(x) * df, f(vals * x)) assert_frame_equal(df + np.array(x), f(vals + x)) assert_frame_equal(np.array(x) - df, f(x - vals)) def test_operators_boolean(self): # GH 5808 # empty frames, non-mixed dtype result = DataFrame(index=[1]) & DataFrame(index=[1]) assert_frame_equal(result, DataFrame(index=[1])) result = DataFrame(index=[1]) | DataFrame(index=[1]) assert_frame_equal(result, DataFrame(index=[1])) result = DataFrame(index=[1]) & DataFrame(index=[1, 2]) assert_frame_equal(result, DataFrame(index=[1, 2])) result = DataFrame(index=[1], columns=['A']) & DataFrame( index=[1], columns=['A']) assert_frame_equal(result, DataFrame(index=[1], columns=['A'])) result = DataFrame(True, index=[1], columns=['A']) & DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(True, index=[1], columns=['A'])) result = DataFrame(True, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(True, index=[1], columns=['A'])) # boolean ops result = DataFrame(1, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) assert_frame_equal(result, DataFrame(1, index=[1], columns=['A'])) def f(): DataFrame(1.0, index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) pytest.raises(TypeError, f) def f(): DataFrame('foo', index=[1], columns=['A']) | DataFrame( True, index=[1], columns=['A']) pytest.raises(TypeError, f) def test_operators_none_as_na(self): df = DataFrame({"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object) ops = [operator.add, operator.sub, operator.mul, operator.truediv] # since filling converts dtypes from object, changed expected to be # object for op in ops: filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None assert_frame_equal(result, expected) result = op(df, df.fillna(7)) assert_frame_equal(result, expected) result = op(df.fillna(7), df) assert_frame_equal(result, expected, check_dtype=False) def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: pytest.raises(TypeError, lambda: x == y) pytest.raises(TypeError, lambda: x != y) pytest.raises(TypeError, lambda: x >= y) pytest.raises(TypeError, lambda: x > y) pytest.raises(TypeError, lambda: x < y) pytest.raises(TypeError, lambda: x <= y) # GH4968 # invalid date/int comparisons df = DataFrame(np.random.randint(10, size=(10, 1)), columns=['a']) df['dates'] = date_range('20010101', periods=len(df)) df2 = df.copy() df2['dates'] = df['a'] check(df, df2) df = DataFrame(np.random.randint(10, size=(10, 2)), columns=['a', 'b']) df2 = DataFrame({'a': date_range('20010101', periods=len( df)), 'b': date_range('20100101', periods=len(df))}) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH4982 df = DataFrame({'dates1': date_range('20010101', periods=10), 'dates2': date_range('20010102', periods=10), 'intcol': np.random.randint(1000000000, size=10), 'floatcol': np.random.randn(10), 'stringcol': list(tm.rands(10))}) df.loc[np.random.rand(len(df)) > 0.5, 'dates2'] = pd.NaT ops = {'gt': 'lt', 'lt': 'gt', 'ge': 'le', 'le': 'ge', 'eq': 'eq', 'ne': 'ne'} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats expected = left_f(df, Timestamp('20010109')) result = right_f(Timestamp('20010109'), df) assert_frame_equal(result, expected) # nats expected = left_f(df, Timestamp('nat')) result = right_f(Timestamp('nat'), df) assert_frame_equal(result, expected) def test_logical_operators(self): def _check_bin_op(op): result = op(df1, df2) expected = DataFrame(op(df1.values, df2.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) def _check_unary_op(op): result = op(df1) expected = DataFrame(op(df1.values), index=df1.index, columns=df1.columns) assert result.values.dtype == np.bool_ assert_frame_equal(result, expected) df1 = {'a': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': False, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}, 'e': {'a': True, 'b': False, 'c': False, 'd': True, 'e': True}} df2 = {'a': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'b': {'a': False, 'b': True, 'c': False, 'd': False, 'e': False}, 'c': {'a': True, 'b': False, 'c': True, 'd': False, 'e': False}, 'd': {'a': False, 'b': False, 'c': False, 'd': True, 'e': False}, 'e': {'a': False, 'b': False, 'c': False, 'd': False, 'e': True}} df1 = DataFrame(df1) df2 = DataFrame(df2) _check_bin_op(operator.and_) _check_bin_op(operator.or_) _check_bin_op(operator.xor) # operator.neg is deprecated in numpy >= 1.9 _check_unary_op(operator.inv) @pytest.mark.parametrize('op,res', [('__eq__', False), ('__ne__', True)]) def test_logical_typeerror_with_non_valid(self, op, res): # we are comparing floats vs a string result = getattr(self.frame, op)('foo') assert bool(result.all().all()) is res def test_logical_with_nas(self): d = DataFrame({'a': [np.nan, False], 'b': [True, True]}) # GH4947 # bool comparisons should return bool result = d['a'] | d['b'] expected = Series([False, True]) assert_series_equal(result, expected) # GH4604, automatic casting here result = d['a'].fillna(False) | d['b'] expected = Series([True, True]) assert_series_equal(result, expected) result = d['a'].fillna(False, downcast=False) | d['b'] expected = Series([True, True]) assert_series_equal(result, expected) @pytest.mark.parametrize('df,expected', [ (pd.DataFrame({'a': [-1, 1]}), pd.DataFrame({'a': [1, -1]})), (pd.DataFrame({'a': [False, True]}), pd.DataFrame({'a': [True, False]})), (pd.DataFrame({'a': pd.Series(pd.to_timedelta([-1, 1]))}), pd.DataFrame({'a': pd.Series(pd.to_timedelta([1, -1]))})) ]) def test_neg_numeric(self, df, expected): assert_frame_equal(-df, expected) assert_series_equal(-df['a'], expected['a']) @pytest.mark.parametrize('df, expected', [ (np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)), ([Decimal('1.0'), Decimal('2.0')], [Decimal('-1.0'), Decimal('-2.0')]), ]) def test_neg_object(self, df, expected): # GH 21380 df = pd.DataFrame({'a': df}) expected = pd.DataFrame({'a': expected}) assert_frame_equal(-df, expected) assert_series_equal(-df['a'], expected['a']) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': ['a', 'b']}), pd.DataFrame({'a': pd.to_datetime(['2017-01-22', '1970-01-01'])}), ]) def test_neg_raises(self, df): with pytest.raises(TypeError): (- df) with pytest.raises(TypeError): (- df['a']) def test_invert(self): assert_frame_equal(-(self.frame < 0), ~(self.frame < 0)) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': [-1, 1]}), pd.DataFrame({'a': [False, True]}), pd.DataFrame({'a': pd.Series(pd.to_timedelta([-1, 1]))}), ]) def test_pos_numeric(self, df): # GH 16073 assert_frame_equal(+df, df) assert_series_equal(+df['a'], df['a']) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': ['a', 'b']}), pd.DataFrame({'a': np.array([-1, 2], dtype=object)}), pd.DataFrame({'a': [Decimal('-1.0'), Decimal('2.0')]}), ]) def test_pos_object(self, df): # GH 21380 assert_frame_equal(+df, df) assert_series_equal(+df['a'], df['a']) @pytest.mark.parametrize('df', [ pd.DataFrame({'a': pd.to_datetime(['2017-01-22', '1970-01-01'])}), ]) def test_pos_raises(self, df): with pytest.raises(TypeError): (+ df) with pytest.raises(TypeError): (+ df['a']) def test_arith_flex_frame(self): ops = ['add', 'sub', 'mul', 'div', 'truediv', 'pow', 'floordiv', 'mod'] if not compat.PY3: aliases = {} else: aliases = {'div': 'truediv'} for op in ops: try: alias = aliases.get(op, op) f = getattr(operator, alias) result = getattr(self.frame, op)(2 * self.frame) exp = f(self.frame, 2 * self.frame) assert_frame_equal(result, exp) # vs mix float result = getattr(self.mixed_float, op)(2 * self.mixed_float) exp = f(self.mixed_float, 2 * self.mixed_float) assert_frame_equal(result, exp) _check_mixed_float(result, dtype=dict(C=None)) # vs mix int if op in ['add', 'sub', 'mul']: result = getattr(self.mixed_int, op)(2 + self.mixed_int) exp = f(self.mixed_int, 2 + self.mixed_int) # no overflow in the uint dtype = None if op in ['sub']: dtype = dict(B='uint64', C=None) elif op in ['add', 'mul']: dtype = dict(C=None) assert_frame_equal(result, exp) _check_mixed_int(result, dtype=dtype) # rops r_f = lambda x, y: f(y, x) result = getattr(self.frame, 'r' + op)(2 * self.frame) exp = r_f(self.frame, 2 * self.frame) assert_frame_equal(result, exp) # vs mix float result = getattr(self.mixed_float, op)( 2 * self.mixed_float) exp = f(self.mixed_float, 2 * self.mixed_float) assert_frame_equal(result, exp) _check_mixed_float(result, dtype=dict(C=None)) result = getattr(self.intframe, op)(2 * self.intframe) exp = f(self.intframe, 2 * self.intframe) assert_frame_equal(result, exp) # vs mix int if op in ['add', 'sub', 'mul']: result = getattr(self.mixed_int, op)( 2 + self.mixed_int) exp = f(self.mixed_int, 2 + self.mixed_int) # no overflow in the uint dtype = None if op in ['sub']: dtype = dict(B='uint64', C=None) elif op in ['add', 'mul']: dtype = dict(C=None) assert_frame_equal(result, exp) _check_mixed_int(result, dtype=dtype) except: printing.pprint_thing("Failing operation %r" % op) raise # ndim >= 3 ndim_5 = np.ones(self.frame.shape + (3, 4, 5)) msg = "Unable to coerce to Series/DataFrame" with tm.assert_raises_regex(ValueError, msg): f(self.frame, ndim_5) with tm.assert_raises_regex(ValueError, msg): getattr(self.frame, op)(ndim_5) # res_add = self.frame.add(self.frame) # res_sub = self.frame.sub(self.frame) # res_mul = self.frame.mul(self.frame) # res_div = self.frame.div(2 * self.frame) # assert_frame_equal(res_add, self.frame + self.frame) # assert_frame_equal(res_sub, self.frame - self.frame) # assert_frame_equal(res_mul, self.frame * self.frame) # assert_frame_equal(res_div, self.frame / (2 * self.frame)) const_add = self.frame.add(1) assert_frame_equal(const_add, self.frame + 1) # corner cases result = self.frame.add(self.frame[:0]) assert_frame_equal(result, self.frame * np.nan) result = self.frame[:0].add(self.frame) assert_frame_equal(result, self.frame * np.nan) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): self.frame.add(self.frame.iloc[0], fill_value=3) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): self.frame.add(self.frame.iloc[0], axis='index', fill_value=3) def test_arith_flex_zero_len_raises(self): # GH#19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([]) df_len0 = pd.DataFrame([], columns=['A', 'B']) df = pd.DataFrame([[1, 2], [3, 4]], columns=['A', 'B']) with tm.assert_raises_regex(NotImplementedError, 'fill_value'): df.add(ser_len0, fill_value='E') with tm.assert_raises_regex(NotImplementedError, 'fill_value'): df_len0.sub(df['A'], axis=None, fill_value=3) def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product([list('abc'), ['one', 'two', 'three'], [1, 2, 3]], names=['first', 'second', 'third']) df = DataFrame(np.arange(27 * 3).reshape(27, 3), index=index, columns=['value1', 'value2', 'value3']).sort_index() idx = pd.IndexSlice for op in ['add', 'sub', 'mul', 'div', 'truediv']: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level='third', axis=0) expected = pd.concat([opa(df.loc[idx[:, :, i], :], v) for i, v in x.iteritems()]).sort_index() assert_frame_equal(result, expected) x = Series([1.0, 10.0], ['two', 'three']) result = getattr(df, op)(x, level='second', axis=0) expected = (pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.iteritems()]) .reindex_like(df).sort_index()) assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([['A', 'B'], ['a', 'b']]) df = DataFrame(np.ones((2, 4), dtype='int64'), columns=midx) s = pd.Series({'a': 1, 'b': 2}) df2 = df.copy() df2.columns.names = ['lvl0', 'lvl1'] s2 = s.copy() s2.index.name = 'lvl1' # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level='lvl1') res6 = df2.mul(s2, axis=1, level='lvl1') exp = DataFrame(np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype='int64'), columns=midx) for res in [res1, res2]: assert_frame_equal(res, exp) exp.columns.names = ['lvl0', 'lvl1'] for res in [res3, res4, res5, res6]: assert_frame_equal(res, exp) def test_arith_mixed(self): left = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, 3]}) result = left + left expected = DataFrame({'A': ['aa', 'bb', 'cc'], 'B': [2, 4, 6]}) assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = DataFrame({'A': [1.1, 3.3], 'B': [2.5, -3.9]}) self._test_op(df, operator.add) self._test_op(df, operator.sub) self._test_op(df, operator.mul) self._test_op(df, operator.truediv) self._test_op(df, operator.floordiv) self._test_op(df, operator.pow) self._test_op(df, lambda x, y: y + x) self._test_op(df, lambda x, y: y - x) self._test_op(df, lambda x, y: y * x) self._test_op(df, lambda x, y: y / x) self._test_op(df, lambda x, y: y ** x) self._test_op(df, lambda x, y: x + y) self._test_op(df, lambda x, y: x - y) self._test_op(df, lambda x, y: x * y) self._test_op(df, lambda x, y: x / y) self._test_op(df, lambda x, y: x ** y) @staticmethod def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: assert_series_equal(result[col], op(df[col], 1)) def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = DataFrame(data) other = DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ['eq', 'ne', 'gt', 'lt', 'ge', 'le']: f = getattr(df, op) o = getattr(operator, op) # No NAs assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray assert_frame_equal(f(other.values), o(df, other.values)) # scalar assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" assert_frame_equal(f(np.nan), o(df, np.nan)) with tm.assert_raises_regex(ValueError, msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) assert_frame_equal(col_eq, df == Series(col_ser)) assert_frame_equal(col_eq, -col_ne) assert_frame_equal(idx_eq, -idx_ne) assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) assert_frame_equal(col_eq, df.eq(list(col_ser))) assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0)) assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) assert_frame_equal(col_gt, df > Series(col_ser)) assert_frame_equal(col_gt, -col_le) assert_frame_equal(idx_gt, -idx_le) assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) assert_frame_equal(col_ge, df >= Series(col_ser)) assert_frame_equal(col_ge, -col_lt) assert_frame_equal(idx_ge, -idx_lt) assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = Series(np.random.randn(5)) col_ser = Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = DataFrame({'a': arr}) df2 = DataFrame({'a': arr2}) rs = df.gt(df2) assert not rs.values.any() rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = DataFrame({'a': arr3}) rs = df3.gt(2j) assert not rs.values.any() # corner, dtype=object df1 = DataFrame({'col': ['foo', np.nan, 'bar']}) df2 = DataFrame({'col': ['foo', datetime.now(), 'bar']}) result = df1.ne(df2) exp = DataFrame({'col': [False, True, False]}) assert_frame_equal(result, exp) def test_dti_tz_convert_to_utc(self): base = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='UTC') idx1 = base.tz_convert('Asia/Tokyo')[:2] idx2 = base.tz_convert('US/Eastern')[1:] df1 = DataFrame({'A': [1, 2]}, index=idx1) df2 = DataFrame({'A': [1, 1]}, index=idx2) exp = DataFrame({'A': [np.nan, 3, np.nan]}, index=base) assert_frame_equal(df1 + df2, exp) def test_arith_flex_series(self): df = self.simple row = df.xs('a') col = df['two'] # after arithmetic refactor, add truediv here ops = ['add', 'sub', 'mul', 'mod'] for op in ops: f = getattr(df, op) op = getattr(operator, op) assert_frame_equal(f(row), op(df, row)) assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor assert_frame_equal(df.div(row), df / row) assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH7325 df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='int64') expected = DataFrame([[nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') assert_frame_equal(result, expected) df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype='float64') expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis='index') assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = self.simple val1 = df.xs('a').values added = DataFrame(df.values + val1, index=df.index, columns=df.columns) assert_frame_equal(df + val1, added) added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df['two']) added = DataFrame(df.values + val2, index=df.index, columns=df.columns) assert_frame_equal(df + val2, added) added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) assert_frame_equal(df.add(val2, axis='index'), added) val3 = np.random.rand(*df.shape) added = DataFrame(df.values + val3, index=df.index, columns=df.columns) assert_frame_equal(df.add(val3), added) @pytest.mark.parametrize('values', [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])]) def test_arith_alignment_non_pandas_object(self, values): # GH 17901 df = DataFrame({'A': [1, 1], 'B': [1, 1]}) expected = DataFrame({'A': [2, 2], 'B': [3, 3]}) result = df + values assert_frame_equal(result, expected) def test_combineFrame(self): frame_copy = self.frame.reindex(self.frame.index[::2]) del frame_copy['D'] frame_copy['C'][:5] = nan added = self.frame + frame_copy indexer = added['A'].dropna().index exp = (self.frame['A'] * 2).copy() tm.assert_series_equal(added['A'].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added['A'], exp.loc[added['A'].index]) assert np.isnan(added['C'].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added['D']).all() self_added = self.frame + self.frame tm.assert_index_equal(self_added.index, self.frame.index) added_rev = frame_copy + self.frame assert np.isnan(added['D']).all() assert np.isnan(added_rev['D']).all() # corner cases # empty plus_empty = self.frame + self.empty assert np.isnan(plus_empty.values).all() empty_plus = self.empty + self.frame assert np.isnan(empty_plus.values).all() empty_empty = self.empty + self.empty assert empty_empty.empty # out of order reverse = self.frame.reindex(columns=self.frame.columns[::-1]) assert_frame_equal(reverse + self.frame, self.frame * 2) # mix vs float64, upcast added = self.frame + self.mixed_float _check_mixed_float(added, dtype='float64') added = self.mixed_float + self.frame _check_mixed_float(added, dtype='float64') # mix vs mix added = self.mixed_float + self.mixed_float2 _check_mixed_float(added, dtype=dict(C=None)) added = self.mixed_float2 + self.mixed_float _check_mixed_float(added, dtype=dict(C=None)) # with int added = self.frame + self.mixed_int _check_mixed_float(added, dtype='float64') def test_combineSeries(self): # Series series = self.frame.xs(self.frame.index[0]) added = self.frame + series for key, s in compat.iteritems(added): assert_series_equal(s, self.frame[key] + series[key]) larger_series = series.to_dict() larger_series['E'] = 1 larger_series = Series(larger_series) larger_added = self.frame + larger_series for key, s in compat.iteritems(self.frame): assert_series_equal(larger_added[key], s + series[key]) assert 'E' in larger_added assert np.isnan(larger_added['E']).all() # no upcast needed added = self.mixed_float + series _check_mixed_float(added) # vs mix (upcast) as needed added = self.mixed_float + series.astype('float32') _check_mixed_float(added, dtype=dict(C=None)) added = self.mixed_float + series.astype('float16') _check_mixed_float(added, dtype=dict(C=None)) # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = self.mixed_int + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = self.mixed_int + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = self.tsframe['A'] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = self.tsframe.add(ts, axis='index') for key, col in compat.iteritems(self.tsframe): result = col + ts assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == 'A' else: assert result.name is None smaller_frame = self.tsframe[:-5] smaller_added = smaller_frame.add(ts, axis='index') tm.assert_index_equal(smaller_added.index, self.tsframe.index) smaller_ts = ts[:-5] smaller_added2 = self.tsframe.add(smaller_ts, axis='index') assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = self.tsframe.add(ts[:0], axis='index') expected = DataFrame(np.nan, index=self.tsframe.index, columns=self.tsframe.columns) assert_frame_equal(result, expected) # Frame is all-nan result = self.tsframe[:0].add(ts, axis='index') expected = DataFrame(np.nan, index=self.tsframe.index, columns=self.tsframe.columns) assert_frame_equal(result, expected) # empty but with non-empty index frame = self.tsframe[:1].reindex(columns=[]) result = frame.mul(ts, axis='index') assert len(result) == len(ts) def test_combineFunc(self): result = self.frame * 2 tm.assert_numpy_array_equal(result.values, self.frame.values * 2) # vs mix result = self.mixed_float * 2 for c, s in compat.iteritems(result): tm.assert_numpy_array_equal( s.values, self.mixed_float[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = self.empty * 2 assert result.index is self.empty.index assert len(result.columns) == 0 def test_comparisons(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = self.simple.xs('a') ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) with tm.assert_raises_regex(ValueError, 'Wrong number of dimensions'): func(df1, ndim_5) result2 = func(self.simple, row) tm.assert_numpy_array_equal(result2.values, func(self.simple.values, row.values)) result3 = func(self.frame, 0) tm.assert_numpy_array_equal(result3.values, func(self.frame.values, 0)) with tm.assert_raises_regex(ValueError, 'Can only compare identically' '-labeled DataFrame'): func(self.simple, self.simple[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]['A'] = np.nan with np.errstate(invalid='ignore'): expected = missing_df.values < 0 with np.errstate(invalid='raise'): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T l = (2, 2, 2) tup = tuple(l) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b assert_frame_equal(result, expected) result = df.values > b assert_numpy_array_equal(result, expected.values) result = df > l assert_frame_equal(result, expected) result = df > tup assert_frame_equal(result, expected) result = df > b_r assert_frame_equal(result, expected) result = df.values > b_r assert_numpy_array_equal(result, expected.values) pytest.raises(ValueError, df.__gt__, b_c) pytest.raises(ValueError, df.values.__gt__, b_c) # == expected = DataFrame([[False, False], [True, False], [False, False]]) result = df == b assert_frame_equal(result, expected) result = df == l assert_frame_equal(result, expected) result = df == tup assert_frame_equal(result, expected) result = df == b_r assert_frame_equal(result, expected) result = df.values == b_r assert_numpy_array_equal(result, expected.values) pytest.raises(ValueError, lambda: df == b_c) assert df.values.shape != b_c.shape # with alignment df = DataFrame(np.arange(6).reshape((3, 2)), columns=list('AB'), index=list('abc')) expected.index = df.index expected.columns = df.columns result = df == l assert_frame_equal(result, expected) result = df == tup assert_frame_equal(result, expected) def test_combine_generic(self): df1 = self.frame df2 = self.frame.loc[self.frame.index[:-5], ['A', 'B', 'C']] combined = df1.combine(df2, np.add) combined2 = df2.combine(df1, np.add) assert combined['D'].isna().all() assert combined2['D'].isna().all() chunk = combined.loc[combined.index[:-5], ['A', 'B', 'C']] chunk2 = combined2.loc[combined2.index[:-5], ['A', 'B', 'C']] exp = self.frame.loc[self.frame.index[:-5], ['A', 'B', 'C']].reindex_like(chunk) * 2 assert_frame_equal(chunk, exp) assert_frame_equal(chunk2, exp) def test_inplace_ops_alignment(self): # inplace ops / ops alignment # GH 8511 columns = list('abcdefg') X_orig = DataFrame(np.arange(10 * len(columns)) .reshape(-1, len(columns)), columns=columns, index=range(10)) Z = 100 * X_orig.iloc[:, 1:-1].copy() block1 = list('bedcf') subs = list('bcdef') # add X = X_orig.copy() result1 = (X[block1] + Z).reindex(columns=subs) X[block1] += Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] + Z[block1]).reindex(columns=subs) X[block1] += Z[block1] result4 = X.reindex(columns=subs) assert_frame_equal(result1, result2) assert_frame_equal(result1, result3) assert_frame_equal(result1, result4) # sub X = X_orig.copy() result1 = (X[block1] - Z).reindex(columns=subs) X[block1] -= Z result2 = X.reindex(columns=subs) X = X_orig.copy() result3 = (X[block1] - Z[block1]).reindex(columns=subs) X[block1] -= Z[block1] result4 = X.reindex(columns=subs) assert_frame_equal(result1, result2) assert_frame_equal(result1, result3) assert_frame_equal(result1, result4) def test_inplace_ops_identity(self): # GH 5104 # make sure that we are actually changing the object s_orig = Series([1, 2, 3]) df_orig = DataFrame(np.random.randint(0, 5, size=10).reshape(-1, 5)) # no dtype change s = s_orig.copy() s2 = s s += 1 assert_series_equal(s, s2) assert_series_equal(s_orig + 1, s) assert s is s2 assert s._data is s2._data df = df_orig.copy() df2 = df df += 1 assert_frame_equal(df, df2) assert_frame_equal(df_orig + 1, df) assert df is df2 assert df._data is df2._data # dtype change s = s_orig.copy() s2 = s s += 1.5 assert_series_equal(s, s2) assert_series_equal(s_orig + 1.5, s) df = df_orig.copy() df2 = df df += 1.5 assert_frame_equal(df, df2) assert_frame_equal(df_orig + 1.5, df) assert df is df2 assert df._data is df2._data # mixed dtype arr = np.random.randint(0, 10, size=5) df_orig = DataFrame({'A': arr.copy(), 'B': 'foo'}) df = df_orig.copy() df2 = df df['A'] += 1 expected = DataFrame({'A': arr.copy() + 1, 'B': 'foo'}) assert_frame_equal(df, expected) assert_frame_equal(df2, expected) assert df._data is df2._data df = df_orig.copy() df2 = df df['A'] += 1.5 expected = DataFrame({'A': arr.copy() + 1.5, 'B': 'foo'}) assert_frame_equal(df, expected) assert_frame_equal(df2, expected) assert df._data is df2._data @pytest.mark.parametrize('op', ['add', 'and', 'div', 'floordiv', 'mod', 'mul', 'or', 'pow', 'sub', 'truediv', 'xor']) def test_inplace_ops_identity2(self, op): if compat.PY3 and op == 'div': return df = DataFrame({'a': [1., 2., 3.], 'b': [1, 2, 3]}) operand = 2 if op in ('and', 'or', 'xor'): # cannot use floats for boolean ops df['a'] = [True, False, True] df_copy = df.copy() iop = '__i{}__'.format(op) op = '__{}__'.format(op) # no id change and value is correct getattr(df, iop)(operand) expected = getattr(df_copy, op)(operand) assert_frame_equal(df, expected) expected = id(df) assert id(df) == expected def test_alignment_non_pandas(self): index = ['A', 'B', 'C'] columns = ['X', 'Y', 'Z'] df = pd.DataFrame(np.random.randn(3, 3), index=index, columns=columns) align = pd.core.ops._align_method_FRAME for val in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype=np.int64), range(1, 4)]: tm.assert_series_equal(align(df, val, 'index'), Series([1, 2, 3], index=df.index)) tm.assert_series_equal(align(df, val, 'columns'), Series([1, 2, 3], index=df.columns)) # length mismatch msg = 'Unable to coerce to Series, length must be 3: given 2' for val in [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)]: with tm.assert_raises_regex(ValueError, msg): align(df, val, 'index') with tm.assert_raises_regex(ValueError, msg): align(df, val, 'columns') val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) tm.assert_frame_equal(align(df, val, 'index'), DataFrame(val, index=df.index, columns=df.columns)) tm.assert_frame_equal(align(df, val, 'columns'), DataFrame(val, index=df.index, columns=df.columns)) # shape mismatch msg = 'Unable to coerce to DataFrame, shape must be' val = np.array([[1, 2, 3], [4, 5, 6]]) with tm.assert_raises_regex(ValueError, msg): align(df, val, 'index') with tm.assert_raises_regex(ValueError, msg): align(df, val, 'columns') val = np.zeros((3, 3, 3)) with pytest.raises(ValueError): align(df, val, 'index') with pytest.raises(ValueError): align(df, val, 'columns')
bsd-3-clause
lbdreyer/cartopy
lib/cartopy/tests/mpl/test_img_transform.py
1
5341
# (C) British Crown Copyright 2011 - 2012, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <http://www.gnu.org/licenses/>. import operator import os import unittest import matplotlib import matplotlib.pyplot as plt import numpy as np from cartopy import config from cartopy.tests.mpl import ImageTesting import cartopy.crs as ccrs import cartopy.img_transform as im_trans from functools import reduce class TestRegrid(unittest.TestCase): def test_array_dims(self): # Source data source_nx = 100 source_ny = 100 source_x = np.linspace(-180.0, 180.0, source_nx).astype(np.float64) source_y = np.linspace(-90, 90.0, source_ny).astype(np.float64) source_x, source_y = np.meshgrid(source_x, source_y) data = np.arange(source_nx * source_ny, dtype=np.int32).reshape(source_ny, source_nx) source_cs = ccrs.Geodetic() # Target grid target_nx = 23 target_ny = 45 target_proj = ccrs.PlateCarree() target_x, target_y, extent = im_trans.mesh_projection(target_proj, target_nx, target_ny) # Perform regrid new_array = im_trans.regrid(data, source_x, source_y, source_cs, target_proj, target_x, target_y) # Check dimensions of return array self.assertEqual(new_array.shape, target_x.shape) self.assertEqual(new_array.shape, target_y.shape) self.assertEqual(new_array.shape, (target_ny, target_nx)) def test_different_dims(self): # Source data source_nx = 100 source_ny = 100 source_x = np.linspace(-180.0, 180.0, source_nx).astype(np.float64) source_y = np.linspace(-90, 90.0, source_ny).astype(np.float64) source_x, source_y = np.meshgrid(source_x, source_y) data = np.arange(source_nx * source_ny, dtype=np.int32).reshape(source_ny, source_nx) source_cs = ccrs.Geodetic() # Target grids (different shapes) target_x_shape = (23, 45) target_y_shape = (23, 44) target_x = np.arange(reduce(operator.mul, target_x_shape), dtype=np.float64).reshape(target_x_shape) target_y = np.arange(reduce(operator.mul, target_y_shape), dtype=np.float64).reshape(target_y_shape) target_proj = ccrs.PlateCarree() # Attempt regrid with self.assertRaises(ValueError): im_trans.regrid(data, source_x, source_y, source_cs, target_proj, target_x, target_y) @ImageTesting(['regrid_image']) def test_regrid_image(): # Source data fname = os.path.join(config["repo_data_dir"], 'raster', 'natural_earth', '50-natural-earth-1-downsampled.png') nx = 720 ny = 360 source_proj = ccrs.PlateCarree() source_x, source_y, _ = im_trans.mesh_projection(source_proj, nx, ny) data = plt.imread(fname) # Flip vertically to match source_x/source_y orientation data = data[::-1] # Target grid target_nx = 300 target_ny = 300 target_proj = ccrs.InterruptedGoodeHomolosine() target_x, target_y, target_extent = im_trans.mesh_projection(target_proj, target_nx, target_ny) # Perform regrid new_array = im_trans.regrid(data, source_x, source_y, source_proj, target_proj, target_x, target_y) # Plot fig = plt.figure(figsize=(10, 10)) gs = matplotlib.gridspec.GridSpec(nrows=4, ncols=1, hspace=1.5, wspace=0.5) # Set up axes and title ax = plt.subplot(gs[0], frameon=False, projection=target_proj) plt.imshow(new_array, origin='lower', extent=target_extent) ax.coastlines() # Plot each color slice (tests masking) cmaps = {'red': 'Reds', 'green': 'Greens', 'blue': 'Blues'} for i, color in enumerate(['red', 'green', 'blue']): ax = plt.subplot(gs[i + 1], frameon=False, projection=target_proj) ax.set_title(color) plt.imshow(new_array[:, :, i], extent=target_extent, origin='lower', cmap=cmaps[color]) ax.coastlines() # Tighten up layout gs.tight_layout(plt.gcf()) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
lgpl-3.0
BorisJeremic/Real-ESSI-Examples
education_examples/_Chapter_Modeling_and_Simulation_Examples_Dynamic_Examples/upU/coupled_contact_upU_parallel/plot.py
3
3443
########################################################################################################################### # # # Wet Contact Modelling in Real ESSI # # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # # # # GITHUB:: https://github.com/SumeetSinha # # # # Sumeet Kumar Sinha (September,2016) # # Computational Geomechanics Group # # University of California, Davis # # s u m e e t k s i n h a . c o m # ########################################################################################################################### from __future__ import print_function import matplotlib.pylab as plt import numpy as np import h5py f = h5py.File('CoupledContactEffect_Consolidation.h5.feioutput','r') z_index = 30; pressure = f["/Model/Nodes/Generalized_Displacements"][3,:] zdisp_at_interface = f["/Model/Nodes/Generalized_Displacements"][z_index,:] # zdisp_at_top = f["/Model/Nodes/Generalized_Displacements"][79,:] time = f["/time"][:] # Plot the pressure figure. Add labels and titles. plt.figure() plt.plot(time,pressure/1000,'-',linewidth=2.0,) plt.grid() plt.xlabel("Time [s]") plt.ylabel("Pressure [kPa] ") plt.savefig("Pressure_Plot.pdf", bbox_inches='tight') plt.show() # Plot the displacementn figure. Add labels and titles. plt.figure() plt.plot(time,1000*zdisp_at_interface,label="At Surface",linewidth=2.0,) # plt.plot(time,1000*zdisp_at_top,label="At Interface",linewidth=2.0,) plt.grid() plt.legend() plt.xlabel("Time [s]") plt.ylabel("Displacement [mm] ") plt.savefig("Displacement_Plot.pdf", bbox_inches='tight') plt.show() f = h5py.File('Saturated_Contact_Modelling_Consolidation.h5.feioutput','r') pressure = f["/Model/Nodes/Generalized_Displacements"][3,:] zdisp_at_interface = f["/Model/Nodes/Generalized_Displacements"][z_index,:] # zdisp_at_top = f["/Model/Nodes/Generalized_Displacements"][79,:] time = f["/time"][:] # Plot the pressure figure. Add labels and titles. plt.figure() plt.plot(time,pressure/1000,'-',linewidth=2.0,) plt.grid() plt.xlabel("Time [s]") plt.ylabel("Pressure [kPa] ") plt.savefig("Pressure_Plot_2.pdf", bbox_inches='tight') plt.show() # Plot the displacementn figure. Add labels and titles. plt.figure() plt.plot(time,1000*zdisp_at_interface,label="At Surface",linewidth=2.0,) # plt.plot(time,1000*zdisp_at_top,label="At Interface",linewidth=2.0,) plt.grid() plt.legend() plt.xlabel("Time [s]") plt.ylabel("Displacement [mm] ") plt.savefig("Displacement_Plot_2.pdf", bbox_inches='tight') plt.show()
cc0-1.0
qrqiuren/sms-tools
lectures/07-Sinusoidal-plus-residual-model/plots-code/stochasticSynthesisFrame.py
24
2966
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, hanning, triang, blackmanharris, resample import math import sys, os, time from scipy.fftpack import fft, ifft sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF def stochasticModelFrame(x, w, N, stocf) : # x: input array sound, w: analysis window, N: FFT size, # stocf: decimation factor of mag spectrum for stochastic analysis hN = N/2+1 # size of positive spectrum hM = (w.size)/2 # half analysis window size pin = hM # initialize sound pointer in middle of analysis window fftbuffer = np.zeros(N) # initialize buffer for FFT yw = np.zeros(w.size) # initialize output sound frame w = w / sum(w) # normalize analysis window #-----analysis----- xw = x[pin-hM:pin+hM] * w # window the input sound X = fft(xw) # compute FFT mX = 20 * np.log10( abs(X[:hN]) ) # magnitude spectrum of positive frequencies mXenv = resample(np.maximum(-200, mX), mX.size*stocf) # decimate the mag spectrum pX = np.angle(X[:hN]) #-----synthesis----- mY = resample(mXenv, hN) # interpolate to original size pY = 2*np.pi*np.random.rand(hN) # generate phase random values Y = np.zeros(N, dtype = complex) Y[:hN] = 10**(mY/20) * np.exp(1j*pY) # generate positive freq. Y[hN:] = 10**(mY[-2:0:-1]/20) * np.exp(-1j*pY[-2:0:-1]) # generate negative freq. fftbuffer = np.real( ifft(Y) ) # inverse FFT y = fftbuffer*N/2 return mX, pX, mY, pY, y # example call of stochasticModel function if __name__ == '__main__': (fs, x) = UF.wavread('../../../sounds/ocean.wav') w = np.hanning(1024) N = 1024 stocf = 0.1 maxFreq = 10000.0 lastbin = N*maxFreq/fs first = 1000 last = first+w.size mX, pX, mY, pY, y = stochasticModelFrame(x[first:last], w, N, stocf) plt.figure(1, figsize=(9, 5)) plt.subplot(3,1,1) plt.plot(float(fs)*np.arange(mY.size)/N, mY, 'r', lw=1.5, label="mY") plt.axis([0, maxFreq, -78, max(mX)+0.5]) plt.title('mY (stochastic approximation of mX)') plt.subplot(3,1,2) plt.plot(float(fs)*np.arange(pY.size)/N, pY-np.pi, 'c', lw=1.5, label="pY") plt.axis([0, maxFreq, -np.pi, np.pi]) plt.title('pY (random phases)') plt.subplot(3,1,3) plt.plot(np.arange(first, last)/float(fs), y, 'b', lw=1.5) plt.axis([first/float(fs), last/float(fs), min(y), max(y)]) plt.title('yst') plt.tight_layout() plt.savefig('stochasticSynthesisFrame.png') plt.show()
agpl-3.0
pydata/pandas-gbq
pandas_gbq/_version.py
1
18586
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "pandas_gbq/_version.py" cfg.versionfile_source = "pandas_gbq/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command( commands, args, cwd=None, verbose=False, hide_stderr=False, env=None ): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen( [c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None), ) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return { "version": dirname[len(parentdir_prefix) :], "full-revisionid": None, "dirty": False, "error": None, "date": None, } else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print( "Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix) ) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG) :] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r"\d", r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix) :] if verbose: print("picking %s" % r) return { "version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date, } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return { "version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None, } @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command( GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True ) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command( GITS, [ "describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix, ], cwd=root, ) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[: git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ( "unable to parse git-describe output: '%s'" % describe_out ) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = "tag '%s' doesn't start with prefix '%s'" % ( full_tag, tag_prefix, ) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix) :] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command( GITS, ["rev-list", "HEAD", "--count"], cwd=root ) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[ 0 ].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return { "version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None, } if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return { "version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date"), } def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords( get_keywords(), cfg.tag_prefix, verbose ) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split("/"): root = os.path.dirname(root) except NameError: return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None, } try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None, }
bsd-3-clause
gfrd/gfrd
samples/pushpull/plot_tc.py
1
1340
#!/usr/bin/env python import sys import numpy import scipy.io import fractionS from matplotlib.pylab import * def load_header( filename ): file = open( filename ) header = [] for line in file.readlines(): if line[0:2] == '#@': hline = line[2:].lstrip() header.append( hline ) return header def add_columns( data, ycolumns ): y = numpy.array([ data[:,col] for col in ycolumns ]) y = y.sum(0) return y def plot_theory( E1, E2, K, maxt ): frac = fractionS.fraction_Sp( E1, E2, K ) x = [0.0, maxt] y = [frac,frac] plot( x, y ) def plot_file( filename ): ycolumns = [2,] #ycolumns = [2,6] #ycolumns = [3,5] #ycolumns = [2,6,3,5] header = load_header( filename ) print header for l in header: exec( l ) data = load( filename ) x = data[:,0] y = add_columns( data, ycolumns ) plot_theory( N_K, N_P, Keq, x[-1] ) plot( x, y / S_tot ) import glob import os pattern = sys.argv[1] globpattern = pattern.replace('ALL','*') figtitle = os.path.basename( os.path.splitext( pattern )[0] ) print title #print globpattern filelist = glob.glob( globpattern ) #print filelist for filename in filelist: plot_file( filename ) title( figtitle ) savefig( 'figs/' + figtitle + '.png', dpi=80 ) #show()
gpl-2.0
European-XFEL/h5tools-py
setup.py
1
2890
#!/usr/bin/env python import os.path as osp import re from setuptools import setup, find_packages import sys def get_script_path(): return osp.dirname(osp.realpath(sys.argv[0])) def read(*parts): return open(osp.join(get_script_path(), *parts)).read() def find_version(*parts): vers_file = read(*parts) match = re.search(r'^__version__ = "(\d+\.\d+\.\d+)"', vers_file, re.M) if match is not None: return match.group(1) raise RuntimeError("Unable to find version string.") setup(name="karabo_data", version=find_version("karabo_data", "__init__.py"), author="European XFEL GmbH", author_email="[email protected]", maintainer="Thomas Michelat", url="https://github.com/European-XFEL/karabo_data", description="Tools to read and analyse data from European XFEL ", long_description=read("README.md"), long_description_content_type='text/markdown', license="BSD-3-Clause", packages=find_packages(), package_data={ 'karabo_data.tests': ['dssc_geo_june19.h5', 'lpd_mar_18.h5'], }, entry_points={ "console_scripts": [ "lsxfel = karabo_data.lsxfel:main", "karabo-bridge-serve-files = karabo_data.export:main", "karabo-data-validate = karabo_data.validation:main", "karabo-data-make-virtual-cxi = karabo_data.cli.make_virtual_cxi:main" ], }, install_requires=[ 'cfelpyutils>=0.92', 'fabio', 'h5py>=2.7.1', 'karabo-bridge', 'matplotlib', 'msgpack>=0.5.4', 'msgpack-numpy>=0.4.3', 'numpy', 'pandas', 'pyzmq>=17.0.0', 'scipy', 'xarray', ], extras_require={ 'docs': [ 'sphinx', 'nbsphinx', 'ipython', # For nbsphinx syntax highlighting 'sphinxcontrib_github_alt', ], 'test': [ 'dask[array]', 'pytest', 'pytest-cov', 'coverage<5', # Until nbval is compatible with coverage 5.0 'nbval', 'testpath', ] }, python_requires='>=3.5', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Scientific/Engineering :: Physics', ] )
bsd-3-clause
ch3ll0v3k/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
258
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
ShipJ/Code
Projects/SpringAutumnFair/src/analysis/clean.py
1
5406
import pandas as pd import numpy as np import sys def clean(df): """ Takes a dataframe of salesforce data and maps values to a more usable format, returning a clean data set. :param df: pandas DataFrame containing raw data :return: df: cleaned data set - i.e. mapped to correct values """ # Replace empty and NaN's with None empty_nan_map = {np.nan: None, '': None} df.replace(empty_nan_map, inplace=True) # Drop unwanted headers df = pd.DataFrame(df.drop(['RegisteredCompany', 'OpportunityId', 'CreditStatus', 'CompanyTelephone', 'ShowSector', 'BillingPostalCode', 'BillingState', 'VATNumber', 'VATNumberValidationStatus', 'Website', 'CurrencyIsoCode', 'IsWon', 'InvoiceFrequency', 'LeadChannel', 'LeadSource', 'ProductDescription', 'ReasonLost', 'OtherReasonsLost', 'OtherCustomerObjectives', 'Probability', 'GrossArea', 'NetChargeableArea', 'ProductCategory'], axis=1)) # Exhibitions: map 'Spring Fair International 2017' -> Spring17 fairs = [] years = [] for i in range(len(df)): fairs.append(df['Exhibition'][i].split(' ', 1)[0]) years.append(df['Exhibition'][i].split(' ')[3][2:]) df['Exhibition'] = fairs df['Year'] = years # Company Sectors: strip redundant values, repeat entries, mistake entries, combine 3 cols to 1 col words, results = [], [] stopwords = ['and', '&', 'the'] for i in range(len(df)): query1, query2, query3 = df['CompanySector'][i], df['CompanySector2'][i], df['CompanySector3'][i] queries = list() if query1 != None: queries += list(query1.split()) if query2 != None: queries += list(query2.split()) if query3!= None: queries += list(query3.split()) else: queries = None if queries == None: result = None else: result = list([word for word in queries if word.lower() not in stopwords]) mapping = [("Children\xe2\x80\x99s", 'Children\'s Gifts'), ('Gifts,', ''), ('Children?s', 'Children\'s Gifts'), ('Fashion,', 'Fashion'), ('Jewellery,', 'Jewellery'), ('Volume,', 'Volume'), ('Kitchen,', 'Kitchen'), ('Multiple, /', ''), ('Department', 'Department Store'), ('Stores', ''), ('retailer', 'Retail'), ('/', ''), ('Multiple', ''), (' ', '')] for k, v in mapping: result = [i.replace(k, v) for i in result] if '' in result: result.remove('') result = pd.unique(result) results.append(result) df = pd.DataFrame(df.drop(['CompanySector', 'CompanySector2', 'CompanySector3'], axis=1)) df['CompanySectors'] = results # Replace unknown with None exhibitorTypeMap = {'Unknown': None} df['ExhibitorType'].replace(exhibitorTypeMap, inplace=True) # Replace the multitude of Hall labels with the following map hallMap = {'': None, '1': 1, '1.1': 1, '10,11,12': [10, 11, 12], '10-Dec': None, '11': 11, '19-20': [19, 20], '2': 2, '20': 20, '3': 3, '4': 4, '5': 5, '6': 6, '9': 9, 'Autumn Fair Intl 2014 Hall 3': 3, 'Autumn Fair Intl 2015 Hall 1': 1, 'Autumn Fair Intl 2015 Hall 4': 4, 'Autumn Fair Intl 2015 Hall 5': 5, 'Ground Level': 'n/a', 'Hall 01': 1, 'Hall 02': 2, 'Hall 03': 3, 'Hall 04': 4, 'Hall 05': 5, 'Hall 1': 1, 'Hall 1 (H1)': 1, 'Hall 10,Hall 11,Hall 12': [10, 11, 12], 'Hall 10,Hall 11,Hall 12 (H10-12)': [10, 11, 12], 'Hall 10-12': [10, 11, 12], 'Hall 17,Hall 18 (H17-18)': [17, 18], 'Hall 17-19': [17, 18, 19], 'Hall 19,Hall 20': [19, 20], 'Hall 19,Hall 20 (H19-20)': [19, 20], 'Hall 19-20': [19, 20], 'Hall 2': 2, 'Hall 2 (H2)': 2, 'Hall 3': 3, 'Hall 3 (H3)': 3, 'Hall 3 3A': 3, 'Hall 3-3A': 3, 'Hall 4': 4, 'Hall 4 (H4)': 4, 'Hall 5': 5, 'Hall 5 (H5)': 5, 'Hall 6 & 7': [6, 7], 'Hall 6, Hall 7 (H6-7)': [6, 7], 'Hall 6,Hall7': [6, 7], 'Hall 6-7': [6, 7], 'Hall 8': 8, 'Hall 8 (H8)': 8, 'Hall 9': 9, 'Hall 9 (H9)': 9, 'Hall 9-10': [9, 10], 'Hall N1-19': range(1, 20), 'Halls 10-12': [10, 11, 12], 'Halls 6 & 7': [6, 7], 'Spring Fair International 2016 - Hall 1': 1, 'Spring Fair International 2016 - Hall 19&20': [19, 20], 'Spring Fair International 2016 - Hall 3': 3, 'Spring Fair International 2016 - Hall 4': 4, 'Spring Fair International 2016 - Hall 5': 5, 'Spring Fair International 2016 - Halls 19&20': [19, 20], 'Spring Fair International 2016 - Halls 6&7': [6, 7], 'Spring Fair International 2016 Halls 6 & 7': [6, 7]} df['Hall'].replace(hallMap, inplace=True) cityMap = {'.': '', 'X': '', 'Tbc': '', 'Oxon': 'Oxford', 'Girona 17469': 'Girona', 'Ny': 'New York'} df['BillingCity'].replace(cityMap, inplace=True) # Some stage names map to the same value StageNameMap = {'': None, 'Adv. Commercial Negotiation': 'Commercial Negotiation', 'Close Lost': 'Closed Lost'} df['StageName'].replace(StageNameMap, inplace=True) # Some dates incorrectly labelled, must be greater than 0 df = df[df['CreateCloseDateDiff'] >= 0] return df
mit
ChristianKniep/QNIB
serverfiles/usr/local/lib/networkx-1.6/examples/graph/atlas.py
20
2637
#!/usr/bin/env python """ Atlas of all graphs of 6 nodes or less. """ __author__ = """Aric Hagberg ([email protected])""" # Copyright (C) 2004 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import networkx as nx #from networkx import * #from networkx.generators.atlas import * from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic import random def atlas6(): """ Return the atlas of all connected graphs of 6 nodes or less. Attempt to check for isomorphisms and remove. """ Atlas=nx.graph_atlas_g()[0:208] # 208 # remove isolated nodes, only connected graphs are left U=nx.Graph() # graph for union of all graphs in atlas for G in Atlas: zerodegree=[n for n in G if G.degree(n)==0] for n in zerodegree: G.remove_node(n) U=nx.disjoint_union(U,G) # list of graphs of all connected components C=nx.connected_component_subgraphs(U) UU=nx.Graph() # do quick isomorphic-like check, not a true isomorphism checker nlist=[] # list of nonisomorphic graphs for G in C: # check against all nonisomorphic graphs so far if not iso(G,nlist): nlist.append(G) UU=nx.disjoint_union(UU,G) # union the nonisomorphic graphs return UU def iso(G1, glist): """Quick and dirty nonisomorphism checker used to check isomorphisms.""" for G2 in glist: if isomorphic(G1,G2): return True return False if __name__ == '__main__': import networkx as nx G=atlas6() print("graph has %d nodes with %d edges"\ %(nx.number_of_nodes(G),nx.number_of_edges(G))) print(nx.number_connected_components(G),"connected components") try: from networkx import graphviz_layout except ImportError: raise ImportError("This example needs Graphviz and either PyGraphviz or Pydot") import matplotlib.pyplot as plt plt.figure(1,figsize=(8,8)) # layout graphs with positions using graphviz neato pos=nx.graphviz_layout(G,prog="neato") # color nodes the same in each connected subgraph C=nx.connected_component_subgraphs(G) for g in C: c=[random.random()]*nx.number_of_nodes(g) # random color... nx.draw(g, pos, node_size=40, node_color=c, vmin=0.0, vmax=1.0, with_labels=False ) plt.savefig("atlas.png",dpi=75)
gpl-2.0
bthirion/scikit-learn
sklearn/gaussian_process/tests/test_kernels.py
51
12799
"""Testing for kernels for Gaussian processes.""" # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause from sklearn.externals.funcsigs import signature import numpy as np from sklearn.gaussian_process.kernels import _approx_fprime from sklearn.metrics.pairwise \ import PAIRWISE_KERNEL_FUNCTIONS, euclidean_distances, pairwise_kernels from sklearn.gaussian_process.kernels \ import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel, WhiteKernel, PairwiseKernel, KernelOperator, Exponentiation) from sklearn.base import clone from sklearn.utils.testing import (assert_equal, assert_almost_equal, assert_not_equal, assert_array_equal, assert_array_almost_equal) X = np.random.RandomState(0).normal(0, 1, (5, 2)) Y = np.random.RandomState(0).normal(0, 1, (6, 2)) kernel_white = RBF(length_scale=2.0) + WhiteKernel(noise_level=3.0) kernels = [RBF(length_scale=2.0), RBF(length_scale_bounds=(0.5, 2.0)), ConstantKernel(constant_value=10.0), 2.0 * RBF(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * RBF(length_scale=0.5), kernel_white, 2.0 * RBF(length_scale=[0.5, 2.0]), 2.0 * Matern(length_scale=0.33, length_scale_bounds="fixed"), 2.0 * Matern(length_scale=0.5, nu=0.5), 2.0 * Matern(length_scale=1.5, nu=1.5), 2.0 * Matern(length_scale=2.5, nu=2.5), 2.0 * Matern(length_scale=[0.5, 2.0], nu=0.5), 3.0 * Matern(length_scale=[2.0, 0.5], nu=1.5), 4.0 * Matern(length_scale=[0.5, 0.5], nu=2.5), RationalQuadratic(length_scale=0.5, alpha=1.5), ExpSineSquared(length_scale=0.5, periodicity=1.5), DotProduct(sigma_0=2.0), DotProduct(sigma_0=2.0) ** 2, RBF(length_scale=[2.0]), Matern(length_scale=[2.0])] for metric in PAIRWISE_KERNEL_FUNCTIONS: if metric in ["additive_chi2", "chi2"]: continue kernels.append(PairwiseKernel(gamma=1.0, metric=metric)) def test_kernel_gradient(): # Compare analytic and numeric gradient of kernels. for kernel in kernels: K, K_gradient = kernel(X, eval_gradient=True) assert_equal(K_gradient.shape[0], X.shape[0]) assert_equal(K_gradient.shape[1], X.shape[0]) assert_equal(K_gradient.shape[2], kernel.theta.shape[0]) def eval_kernel_for_theta(theta): kernel_clone = kernel.clone_with_theta(theta) K = kernel_clone(X, eval_gradient=False) return K K_gradient_approx = \ _approx_fprime(kernel.theta, eval_kernel_for_theta, 1e-10) assert_almost_equal(K_gradient, K_gradient_approx, 4) def test_kernel_theta(): # Check that parameter vector theta of kernel is set correctly. for kernel in kernels: if isinstance(kernel, KernelOperator) \ or isinstance(kernel, Exponentiation): # skip non-basic kernels continue theta = kernel.theta _, K_gradient = kernel(X, eval_gradient=True) # Determine kernel parameters that contribute to theta init_sign = signature(kernel.__class__.__init__).parameters.values() args = [p.name for p in init_sign if p.name != 'self'] theta_vars = map(lambda s: s[0:-len("_bounds")], filter(lambda s: s.endswith("_bounds"), args)) assert_equal( set(hyperparameter.name for hyperparameter in kernel.hyperparameters), set(theta_vars)) # Check that values returned in theta are consistent with # hyperparameter values (being their logarithms) for i, hyperparameter in enumerate(kernel.hyperparameters): assert_equal(theta[i], np.log(getattr(kernel, hyperparameter.name))) # Fixed kernel parameters must be excluded from theta and gradient. for i, hyperparameter in enumerate(kernel.hyperparameters): # create copy with certain hyperparameter fixed params = kernel.get_params() params[hyperparameter.name + "_bounds"] = "fixed" kernel_class = kernel.__class__ new_kernel = kernel_class(**params) # Check that theta and K_gradient are identical with the fixed # dimension left out _, K_gradient_new = new_kernel(X, eval_gradient=True) assert_equal(theta.shape[0], new_kernel.theta.shape[0] + 1) assert_equal(K_gradient.shape[2], K_gradient_new.shape[2] + 1) if i > 0: assert_equal(theta[:i], new_kernel.theta[:i]) assert_array_equal(K_gradient[..., :i], K_gradient_new[..., :i]) if i + 1 < len(kernel.hyperparameters): assert_equal(theta[i + 1:], new_kernel.theta[i:]) assert_array_equal(K_gradient[..., i + 1:], K_gradient_new[..., i:]) # Check that values of theta are modified correctly for i, hyperparameter in enumerate(kernel.hyperparameters): theta[i] = np.log(42) kernel.theta = theta assert_almost_equal(getattr(kernel, hyperparameter.name), 42) setattr(kernel, hyperparameter.name, 43) assert_almost_equal(kernel.theta[i], np.log(43)) def test_auto_vs_cross(): # Auto-correlation and cross-correlation should be consistent. for kernel in kernels: if kernel == kernel_white: continue # Identity is not satisfied on diagonal K_auto = kernel(X) K_cross = kernel(X, X) assert_almost_equal(K_auto, K_cross, 5) def test_kernel_diag(): # Test that diag method of kernel returns consistent results. for kernel in kernels: K_call_diag = np.diag(kernel(X)) K_diag = kernel.diag(X) assert_almost_equal(K_call_diag, K_diag, 5) def test_kernel_operator_commutative(): # Adding kernels and multiplying kernels should be commutative. # Check addition assert_almost_equal((RBF(2.0) + 1.0)(X), (1.0 + RBF(2.0))(X)) # Check multiplication assert_almost_equal((3.0 * RBF(2.0))(X), (RBF(2.0) * 3.0)(X)) def test_kernel_anisotropic(): # Anisotropic kernel should be consistent with isotropic kernels. kernel = 3.0 * RBF([0.5, 2.0]) K = kernel(X) X1 = np.array(X) X1[:, 0] *= 4 K1 = 3.0 * RBF(2.0)(X1) assert_almost_equal(K, K1) X2 = np.array(X) X2[:, 1] /= 4 K2 = 3.0 * RBF(0.5)(X2) assert_almost_equal(K, K2) # Check getting and setting via theta kernel.theta = kernel.theta + np.log(2) assert_array_equal(kernel.theta, np.log([6.0, 1.0, 4.0])) assert_array_equal(kernel.k2.length_scale, [1.0, 4.0]) def test_kernel_stationary(): # Test stationarity of kernels. for kernel in kernels: if not kernel.is_stationary(): continue K = kernel(X, X + 1) assert_almost_equal(K[0, 0], np.diag(K)) def check_hyperparameters_equal(kernel1, kernel2): # Check that hyperparameters of two kernels are equal for attr in set(dir(kernel1) + dir(kernel2)): if attr.startswith("hyperparameter_"): attr_value1 = getattr(kernel1, attr) attr_value2 = getattr(kernel2, attr) assert_equal(attr_value1, attr_value2) def test_kernel_clone(): # Test that sklearn's clone works correctly on kernels. for kernel in kernels: kernel_cloned = clone(kernel) # XXX: Should this be fixed? # This differs from the sklearn's estimators equality check. assert_equal(kernel, kernel_cloned) assert_not_equal(id(kernel), id(kernel_cloned)) # Check that all constructor parameters are equal. assert_equal(kernel.get_params(), kernel_cloned.get_params()) # Check that all hyperparameters are equal. yield check_hyperparameters_equal, kernel, kernel_cloned def test_kernel_clone_after_set_params(): # This test is to verify that using set_params does not # break clone on kernels. # This used to break because in kernels such as the RBF, non-trivial # logic that modified the length scale used to be in the constructor # See https://github.com/scikit-learn/scikit-learn/issues/6961 # for more details. bounds = (1e-5, 1e5) for kernel in kernels: kernel_cloned = clone(kernel) params = kernel.get_params() # RationalQuadratic kernel is isotropic. isotropic_kernels = (ExpSineSquared, RationalQuadratic) if 'length_scale' in params and not isinstance(kernel, isotropic_kernels): length_scale = params['length_scale'] if np.iterable(length_scale): params['length_scale'] = length_scale[0] params['length_scale_bounds'] = bounds else: params['length_scale'] = [length_scale] * 2 params['length_scale_bounds'] = bounds * 2 kernel_cloned.set_params(**params) kernel_cloned_clone = clone(kernel_cloned) assert_equal(kernel_cloned_clone.get_params(), kernel_cloned.get_params()) assert_not_equal(id(kernel_cloned_clone), id(kernel_cloned)) yield (check_hyperparameters_equal, kernel_cloned, kernel_cloned_clone) def test_matern_kernel(): # Test consistency of Matern kernel for special values of nu. K = Matern(nu=1.5, length_scale=1.0)(X) # the diagonal elements of a matern kernel are 1 assert_array_almost_equal(np.diag(K), np.ones(X.shape[0])) # matern kernel for coef0==0.5 is equal to absolute exponential kernel K_absexp = np.exp(-euclidean_distances(X, X, squared=False)) K = Matern(nu=0.5, length_scale=1.0)(X) assert_array_almost_equal(K, K_absexp) # test that special cases of matern kernel (coef0 in [0.5, 1.5, 2.5]) # result in nearly identical results as the general case for coef0 in # [0.5 + tiny, 1.5 + tiny, 2.5 + tiny] tiny = 1e-10 for nu in [0.5, 1.5, 2.5]: K1 = Matern(nu=nu, length_scale=1.0)(X) K2 = Matern(nu=nu + tiny, length_scale=1.0)(X) assert_array_almost_equal(K1, K2) def test_kernel_versus_pairwise(): # Check that GP kernels can also be used as pairwise kernels. for kernel in kernels: # Test auto-kernel if kernel != kernel_white: # For WhiteKernel: k(X) != k(X,X). This is assumed by # pairwise_kernels K1 = kernel(X) K2 = pairwise_kernels(X, metric=kernel) assert_array_almost_equal(K1, K2) # Test cross-kernel K1 = kernel(X, Y) K2 = pairwise_kernels(X, Y, metric=kernel) assert_array_almost_equal(K1, K2) def test_set_get_params(): # Check that set_params()/get_params() is consistent with kernel.theta. for kernel in kernels: # Test get_params() index = 0 params = kernel.get_params() for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels assert_almost_equal(np.exp(kernel.theta[index:index + size]), params[hyperparameter.name]) index += size else: assert_almost_equal(np.exp(kernel.theta[index]), params[hyperparameter.name]) index += 1 # Test set_params() index = 0 value = 10 # arbitrary value for hyperparameter in kernel.hyperparameters: if isinstance("string", type(hyperparameter.bounds)): if hyperparameter.bounds == "fixed": continue size = hyperparameter.n_elements if size > 1: # anisotropic kernels kernel.set_params(**{hyperparameter.name: [value] * size}) assert_almost_equal(np.exp(kernel.theta[index:index + size]), [value] * size) index += size else: kernel.set_params(**{hyperparameter.name: value}) assert_almost_equal(np.exp(kernel.theta[index]), value) index += 1 def test_repr_kernels(): # Smoke-test for repr in kernels. for kernel in kernels: repr(kernel)
bsd-3-clause
worldofchris/jlf
jlf_stats/test/test_publisher.py
1
21591
""" What output do we expect from JLF? Tables and Graphs in Excel for: -Cumulative Throughput -Ratio of Work Types (i.e. Value/Failure/Overhead) -Introduction of Defects -Cycle Time """ import unittest import tempfile import os from subprocess import call import mock from jlf_stats.metrics import Metrics from jlf_stats import publisher from datetime import date import pandas as pd import xlrd import zipfile import filecmp def serve_dummy_results(*args, **kwargs): return pd.DataFrame([1, 2, 3]) def serve_dummy_throughput(*args, **kwargs): try: if kwargs['types'] == ['failure', 'value', 'operational overhead']: return pd.DataFrame([4, 5, 6]) else: dummy = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) dummy.columns = ['one', 'two', 'three'] return dummy except KeyError: return pd.DataFrame({'one': [1, 2, 3]}) def serve_dummy_detail(*args, **kwargs): if 'fields' in kwargs: fields = kwargs['fields'] values = [1] * len(fields) dummy = pd.DataFrame([values], columns=fields) else: dummy = pd.DataFrame([['TICKET-1', 'Dummy Ticket', 3]]) dummy.columns = ['id', 'name', 'cycle time'] return dummy def serve_dummy_cfd_data(*args, **kwargs): dummy = pd.DataFrame([['', 'in progress', 'closed'], ['open', 'in progress', 'closed'], ['open', 'closed', 'closed']]) return dummy class TestGetOutput(unittest.TestCase): def setUp(self): self.mock_metrics = mock.Mock(spec=Metrics) self.mock_metrics.throughput.side_effect = serve_dummy_throughput self.mock_metrics.demand.side_effect = serve_dummy_results self.mock_metrics.cycle_time_histogram.side_effect = serve_dummy_results self.mock_metrics.arrival_rate.side_effect = serve_dummy_results self.mock_metrics.details.side_effect = serve_dummy_detail self.mock_metrics.cfd.side_effect = serve_dummy_cfd_data self.workspace = tempfile.mkdtemp() def testSmokeOutCommandLine(self): """ Smoke test to ensure we have not broken running from the command line """ expected_filename = 'reports.xlsx' pwd = os.path.dirname(os.path.abspath(__file__)) bin_dir = '../../bin' jlf = os.path.join(pwd, bin_dir, 'jlf') config_file = os.path.join(pwd, bin_dir, 'config.json') saved_path = os.getcwd() os.chdir(self.workspace) call([jlf, '-c', config_file]) os.chdir(saved_path) actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output)) def testOutputThroughputToExcel(self): # Given this report config: report_config = {'name': 'reports', 'reports': [{'metric': 'throughput', 'categories': 'foreach', 'types': 'foreach'}], 'format': 'xlsx', 'location': self.workspace, 'counts_towards_throughput': [], 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} # Specify categories and types to report on or: # foreach - to report on each category separately # combine - to aggregate totals together # when we publish the metrics for the data in our jira publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) # Then we should get an Excel workbook expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('throughput', workbook.sheet_names()[0]) def testOutputCumulativeThroughputToExcel(self): report_config = {'name': 'reports', 'reports': [{'metric': 'cumulative-throughput', 'categories': 'foreach', 'types': 'foreach'}], 'format': 'xlsx', 'counts_towards_throughput': [], 'location': self.workspace, 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('cumulative-throughput', workbook.sheet_names()[0]) def testOutputFailureDemandToExcel(self): report_config = {'name': 'reports', 'reports': [{'metric': 'demand', 'categories': 'foreach', 'types': ['failure']}], 'format': 'xlsx', 'location': self.workspace, 'counts_towards_throughput': [], 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('failure-demand', workbook.sheet_names()[0]) def testOutputDetailToExcel(self): report_config = {'name': 'reports', 'reports': [{'metric': 'detail', 'fields': ['this', 'that', 'the other'], 'categories': 'foreach', 'types': 'foreach', 'sort': 'week-done'}], 'format': 'xlsx', 'counts_towards_throughput': [], 'location': self.workspace, 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('detail', workbook.sheet_names()[0]) sheet = workbook.sheet_by_name('detail') fields = report_config['reports'][0]['fields'] for i in range(len(fields)): self.assertEqual(sheet.cell_value(0, i+1), fields[i]) # and test sorted by week-done... # and test when no fields specified def testOutputCycleTimeToExcel(self): report_config = {'name': 'reports', 'reports': [{'metric': 'cycle-time', 'categories': 'foreach', 'types': ['value'], 'cycles': ['develop']}], 'format': 'xlsx', 'location': self.workspace} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('value-develop-cycle-time', workbook.sheet_names()[0]) def testOutputCFDToExcel(self): report_config = {'name': 'reports', 'states': [], 'reports': [{'metric': 'cfd'}], 'format': 'xlsx', 'counts_towards_throughput': [], 'location': self.workspace} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) # with a sheet containing the throughput data workbook = xlrd.open_workbook(actual_output) self.assertEqual('cfd', workbook.sheet_names()[0]) def testMakeValidSheetTitle(self): titles = [('failure-value-operational overhead-demand', 'failure-value-operatio-demand'), ('aa-bb-cc-dd-ee-ff-gg-hh-ii-jj-kk-ll-mm-nn-oo-pp-qq-rr-ss-tt-uu-vv-ww-demand', 'a-b-c-d-e-f-g-h-i-j-k-l-demand')] for title in titles: actual_title = publisher.worksheet_title(title[0]) expected_title = title[1] self.assertEqual(actual_title, expected_title) def testOutputMultipleTypesOfThroughput(self): report_config = {'name': 'reports', 'reports': [{'metric': 'throughput', 'categories': 'foreach', 'types': 'foreach'}], 'format': 'xlsx', 'location': self.workspace, 'counts_towards_throughput': [], 'categories': {'one': 'project = "one"', 'two': 'project = "two"', 'three': 'project = "three"'}, 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) workbook = xlrd.open_workbook(actual_output) expected_sheet_name = 'throughput' self.assertEqual(expected_sheet_name, workbook.sheet_names()[0]) worksheet = workbook.sheet_by_name(expected_sheet_name) header_row = worksheet.row(0) expected_headers = ['one', 'two', 'three'] for cell in header_row[1:]: self.assertEqual(cell.value, expected_headers[header_row[1:].index(cell)]) @unittest.skip("Unfinished") def testOutputArrivalRateToExcel(self): report_config = {'name': 'reports', 'reports': [{'metric': 'arrival-rate'}], 'format': 'xlsx', 'location': self.workspace} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) workbook = xlrd.open_workbook(actual_output) expected_sheet_name = 'arrival-rate' self.assertEqual(expected_sheet_name, workbook.sheet_names()[0]) worksheet = workbook.sheet_by_name(expected_sheet_name) header_row = worksheet.row(0) expected_headers = ['one', 'two', 'three'] # This isn't finished def testGetDefaultColours(self): """ If a cfd report doesn't specify formats for the states then use the defaults """ expected_formats = {'open': {'color': publisher._state_default_colours[0]}, 'in progress': {'color': publisher._state_default_colours[1]}, 'closed': {'color': publisher._state_default_colours[2]}} states = ['open', 'in progress', 'closed'] actual_formats = publisher.format_states(states) self.assertEqual(actual_formats, expected_formats) def testMoreStatesThanDefaultColours(self): """ What to do if we run out of default colours """ expected_formats = {} states = [] for a in range(2): for index, colour in enumerate(publisher._state_default_colours): state_name = 's{0}{1}'.format(a, index) expected_formats[state_name] = {'color': colour} states.append(state_name) actual_formats = publisher.format_states(states) self.assertEqual(actual_formats, expected_formats, expected_formats) def testCfdDefaultColours(self): report_config = {'name': 'reports_default', 'states': ['open', 'in progress', 'closed'], 'reports': [{'metric': 'cfd'}], 'format': 'xlsx', 'location': self.workspace} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports_default.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) self.compareExcelFiles(actual_output, expected_filename) def testColourInExcelCfd(self): report_config = {'name': 'reports', 'reports': [{'metric': 'cfd', 'format': {'open': {'color': 'green'}, 'in progress': {'color': 'red'}, 'closed': {'color': 'yellow'}}}], 'format': 'xlsx', 'location': self.workspace} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) self.compareExcelFiles(actual_output, expected_filename) @unittest.skip("TODO") def testHistoryToExcel(self): pass def testCumulativeThroughputGraph(self): report_config = {'name': 'reports', 'reports': [{'metric': 'cumulative-throughput', 'categories': 'foreach', 'types': 'foreach', 'graph': 'yes'}], 'format': 'xlsx', 'counts_towards_throughput': [], 'location': self.workspace, 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) def testSeriesName(self): expected_name = "Features" actual_name = publisher.series_name("bigcorp-features") self.assertEqual(actual_name, expected_name) def testAboutReport(self): """ Add a bit of blurb to the report """ report_config = {'name': 'reports', 'reports': [{'metric': 'cumulative-throughput', 'description': 'All about flow', 'categories': 'foreach', 'types': 'foreach'}], 'format': 'xlsx', 'counts_towards_throughput': [], 'location': self.workspace, 'types': {'failure': ['Bug', 'Fault'], 'value': ['New Feature', 'Story', 'Improvement'], 'oo': ['Task', 'Decision', 'User Support', 'Spike']}} publisher.publish(report_config, self.mock_metrics, from_date=date(2012, 10, 8), to_date=date(2012, 11, 12)) expected_filename = 'reports.xlsx' actual_output = os.path.join(self.workspace, expected_filename) self.assertTrue(os.path.isfile(actual_output), "Spreadsheet not published:{spreadsheet}".format(spreadsheet=actual_output)) workbook = xlrd.open_workbook(actual_output) expected_sheet_name = 'cumulative-throughput' self.assertEqual(expected_sheet_name, workbook.sheet_names()[0]) worksheet = workbook.sheet_by_name(expected_sheet_name) actual = worksheet.cell_value(rowx=0, colx=5) expected = report_config['reports'][0]['description'] self.assertEqual(actual, expected) ################################################################################################################ def compareExcelFiles(self, actual_output, expected_filename): # Sadly reading of xlsx files with their formatting by xlrd is not supported. # Looking at the Open Office XML format you can see why - http://en.wikipedia.org/wiki/Office_Open_XML # It's not exactly human readable. # # So, I am going to unzip the resulting xlsx file and diff the worksheet against a known good one. cmp_files = ['xl/worksheets/sheet1.xml', 'xl/sharedStrings.xml', 'xl/styles.xml', 'xl/workbook.xml', 'xl/theme/theme1.xml'] expected_workspace = os.path.join(self.workspace, 'expected') os.makedirs(expected_workspace) expected_output = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', expected_filename) with zipfile.ZipFile(expected_output, "r") as z: z.extractall(expected_workspace) actual_workspace = os.path.join(self.workspace, 'actual') os.makedirs(actual_workspace) with zipfile.ZipFile(actual_output, "r") as z: z.extractall(actual_workspace) for cmp_file in cmp_files: expected_full_path = os.path.join(expected_workspace, cmp_file) actual_full_path = os.path.join(actual_workspace, cmp_file) self.assertTrue(filecmp.cmp(expected_full_path, actual_full_path), '{0}:{1}'.format(expected_full_path, actual_full_path))
bsd-2-clause
toobaz/pandas
pandas/tests/arrays/test_datetimes.py
2
10859
""" Tests for DatetimeArray """ import operator import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas.core.arrays import DatetimeArray from pandas.core.arrays.datetimes import sequence_to_dt64ns import pandas.util.testing as tm class TestDatetimeArrayConstructor: def test_only_1dim_accepted(self): arr = np.array([0, 1, 2, 3], dtype="M8[h]").astype("M8[ns]") with pytest.raises(ValueError, match="Only 1-dimensional"): # 2-dim DatetimeArray(arr.reshape(2, 2)) with pytest.raises(ValueError, match="Only 1-dimensional"): # 0-dim DatetimeArray(arr[[0]].squeeze()) def test_freq_validation(self): # GH#24623 check that invalid instances cannot be created with the # public constructor arr = np.arange(5, dtype=np.int64) * 3600 * 10 ** 9 msg = ( "Inferred frequency H from passed values does not " "conform to passed frequency W-SUN" ) with pytest.raises(ValueError, match=msg): DatetimeArray(arr, freq="W") @pytest.mark.parametrize( "meth", [ DatetimeArray._from_sequence, sequence_to_dt64ns, pd.to_datetime, pd.DatetimeIndex, ], ) def test_mixing_naive_tzaware_raises(self, meth): # GH#24569 arr = np.array([pd.Timestamp("2000"), pd.Timestamp("2000", tz="CET")]) msg = ( "Cannot mix tz-aware with tz-naive values|" "Tz-aware datetime.datetime cannot be converted " "to datetime64 unless utc=True" ) for obj in [arr, arr[::-1]]: # check that we raise regardless of whether naive is found # before aware or vice-versa with pytest.raises(ValueError, match=msg): meth(obj) def test_from_pandas_array(self): arr = pd.array(np.arange(5, dtype=np.int64)) * 3600 * 10 ** 9 result = DatetimeArray._from_sequence(arr, freq="infer") expected = pd.date_range("1970-01-01", periods=5, freq="H")._data tm.assert_datetime_array_equal(result, expected) def test_mismatched_timezone_raises(self): arr = DatetimeArray( np.array(["2000-01-01T06:00:00"], dtype="M8[ns]"), dtype=DatetimeTZDtype(tz="US/Central"), ) dtype = DatetimeTZDtype(tz="US/Eastern") with pytest.raises(TypeError, match="Timezone of the array"): DatetimeArray(arr, dtype=dtype) def test_non_array_raises(self): with pytest.raises(ValueError, match="list"): DatetimeArray([1, 2, 3]) def test_other_type_raises(self): with pytest.raises( ValueError, match="The dtype of 'values' is incorrect.*bool" ): DatetimeArray(np.array([1, 2, 3], dtype="bool")) def test_incorrect_dtype_raises(self): with pytest.raises(ValueError, match="Unexpected value for 'dtype'."): DatetimeArray(np.array([1, 2, 3], dtype="i8"), dtype="category") def test_freq_infer_raises(self): with pytest.raises(ValueError, match="Frequency inference"): DatetimeArray(np.array([1, 2, 3], dtype="i8"), freq="infer") def test_copy(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False) assert arr._data is data arr = DatetimeArray(data, copy=True) assert arr._data is not data class TestDatetimeArrayComparisons: # TODO: merge this into tests/arithmetic/test_datetime64 once it is # sufficiently robust def test_cmp_dt64_arraylike_tznaive(self, all_compare_operators): # arbitrary tz-naive DatetimeIndex opname = all_compare_operators.strip("_") op = getattr(operator, opname) dti = pd.date_range("2016-01-1", freq="MS", periods=9, tz=None) arr = DatetimeArray(dti) assert arr.freq == dti.freq assert arr.tz == dti.tz right = dti expected = np.ones(len(arr), dtype=bool) if opname in ["ne", "gt", "lt"]: # for these the comparisons should be all-False expected = ~expected result = op(arr, arr) tm.assert_numpy_array_equal(result, expected) for other in [right, np.array(right)]: # TODO: add list and tuple, and object-dtype once those # are fixed in the constructor result = op(arr, other) tm.assert_numpy_array_equal(result, expected) result = op(other, arr) tm.assert_numpy_array_equal(result, expected) class TestDatetimeArray: def test_astype_to_same(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") result = arr.astype(DatetimeTZDtype(tz="US/Central"), copy=False) assert result is arr @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"]) def test_astype_int(self, dtype): arr = DatetimeArray._from_sequence([pd.Timestamp("2000"), pd.Timestamp("2001")]) result = arr.astype(dtype) if np.dtype(dtype).kind == "u": expected_dtype = np.dtype("uint64") else: expected_dtype = np.dtype("int64") expected = arr.astype(expected_dtype) assert result.dtype == expected_dtype tm.assert_numpy_array_equal(result, expected) def test_tz_setter_raises(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") with pytest.raises(AttributeError, match="tz_localize"): arr.tz = "UTC" def test_setitem_different_tz_raises(self): data = np.array([1, 2, 3], dtype="M8[ns]") arr = DatetimeArray(data, copy=False, dtype=DatetimeTZDtype(tz="US/Central")) with pytest.raises(ValueError, match="None"): arr[0] = pd.Timestamp("2000") with pytest.raises(ValueError, match="US/Central"): arr[0] = pd.Timestamp("2000", tz="US/Eastern") def test_setitem_clears_freq(self): a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central")) a[0] = pd.Timestamp("2000", tz="US/Central") assert a.freq is None def test_repeat_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti) repeated = arr.repeat([1, 1]) # preserves tz and values, but not freq expected = DatetimeArray(arr.asi8, freq=None, dtype=arr.dtype) tm.assert_equal(repeated, expected) def test_value_counts_preserves_tz(self): dti = pd.date_range("2000", periods=2, freq="D", tz="US/Central") arr = DatetimeArray(dti).repeat([4, 3]) result = arr.value_counts() # Note: not tm.assert_index_equal, since `freq`s do not match assert result.index.equals(dti) arr[-2] = pd.NaT result = arr.value_counts() expected = pd.Series([1, 4, 2], index=[pd.NaT, dti[0], dti[1]]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("method", ["pad", "backfill"]) def test_fillna_preserves_tz(self, method): dti = pd.date_range("2000-01-01", periods=5, freq="D", tz="US/Central") arr = DatetimeArray(dti, copy=True) arr[2] = pd.NaT fill_val = dti[1] if method == "pad" else dti[3] expected = DatetimeArray._from_sequence( [dti[0], dti[1], fill_val, dti[3], dti[4]], freq=None, tz="US/Central" ) result = arr.fillna(method=method) tm.assert_extension_array_equal(result, expected) # assert that arr and dti were not modified in-place assert arr[2] is pd.NaT assert dti[2] == pd.Timestamp("2000-01-03", tz="US/Central") def test_array_interface_tz(self): tz = "US/Central" data = DatetimeArray(pd.date_range("2017", periods=2, tz=tz)) result = np.asarray(data) expected = np.array( [ pd.Timestamp("2017-01-01T00:00:00", tz=tz), pd.Timestamp("2017-01-02T00:00:00", tz=tz), ], dtype=object, ) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype="M8[ns]") expected = np.array( ["2017-01-01T06:00:00", "2017-01-02T06:00:00"], dtype="M8[ns]" ) tm.assert_numpy_array_equal(result, expected) def test_array_interface(self): data = DatetimeArray(pd.date_range("2017", periods=2)) expected = np.array( ["2017-01-01T00:00:00", "2017-01-02T00:00:00"], dtype="datetime64[ns]" ) result = np.asarray(data) tm.assert_numpy_array_equal(result, expected) result = np.asarray(data, dtype=object) expected = np.array( [pd.Timestamp("2017-01-01T00:00:00"), pd.Timestamp("2017-01-02T00:00:00")], dtype=object, ) tm.assert_numpy_array_equal(result, expected) class TestSequenceToDT64NS: def test_tz_dtype_mismatch_raises(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") with pytest.raises(TypeError, match="data is already tz-aware"): sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="UTC")) def test_tz_dtype_matches(self): arr = DatetimeArray._from_sequence(["2000"], tz="US/Central") result, _, _ = sequence_to_dt64ns(arr, dtype=DatetimeTZDtype(tz="US/Central")) tm.assert_numpy_array_equal(arr._data, result) class TestReductions: @pytest.mark.parametrize("tz", [None, "US/Central"]) def test_min_max(self, tz): arr = DatetimeArray._from_sequence( [ "2000-01-03", "2000-01-03", "NaT", "2000-01-02", "2000-01-05", "2000-01-04", ], tz=tz, ) result = arr.min() expected = pd.Timestamp("2000-01-02", tz=tz) assert result == expected result = arr.max() expected = pd.Timestamp("2000-01-05", tz=tz) assert result == expected result = arr.min(skipna=False) assert result is pd.NaT result = arr.max(skipna=False) assert result is pd.NaT @pytest.mark.parametrize("tz", [None, "US/Central"]) @pytest.mark.parametrize("skipna", [True, False]) def test_min_max_empty(self, skipna, tz): arr = DatetimeArray._from_sequence([], tz=tz) result = arr.min(skipna=skipna) assert result is pd.NaT result = arr.max(skipna=skipna) assert result is pd.NaT
bsd-3-clause
sureshthalamati/spark
python/pyspark/sql/utils.py
3
5464
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import py4j class CapturedException(Exception): def __init__(self, desc, stackTrace): self.desc = desc self.stackTrace = stackTrace def __str__(self): return repr(self.desc) class AnalysisException(CapturedException): """ Failed to analyze a SQL query plan. """ class ParseException(CapturedException): """ Failed to parse a SQL command. """ class IllegalArgumentException(CapturedException): """ Passed an illegal or inappropriate argument. """ class StreamingQueryException(CapturedException): """ Exception that stopped a :class:`StreamingQuery`. """ class QueryExecutionException(CapturedException): """ Failed to execute a query. """ def capture_sql_exception(f): def deco(*a, **kw): try: return f(*a, **kw) except py4j.protocol.Py4JJavaError as e: s = e.java_exception.toString() stackTrace = '\n\t at '.join(map(lambda x: x.toString(), e.java_exception.getStackTrace())) if s.startswith('org.apache.spark.sql.AnalysisException: '): raise AnalysisException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.catalyst.analysis'): raise AnalysisException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.catalyst.parser.ParseException: '): raise ParseException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.streaming.StreamingQueryException: '): raise StreamingQueryException(s.split(': ', 1)[1], stackTrace) if s.startswith('org.apache.spark.sql.execution.QueryExecutionException: '): raise QueryExecutionException(s.split(': ', 1)[1], stackTrace) if s.startswith('java.lang.IllegalArgumentException: '): raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace) raise return deco def install_exception_handler(): """ Hook an exception handler into Py4j, which could capture some SQL exceptions in Java. When calling Java API, it will call `get_return_value` to parse the returned object. If any exception happened in JVM, the result will be Java exception object, it raise py4j.protocol.Py4JJavaError. We replace the original `get_return_value` with one that could capture the Java exception and throw a Python one (with the same error message). It's idempotent, could be called multiple times. """ original = py4j.protocol.get_return_value # The original `get_return_value` is not patched, it's idempotent. patched = capture_sql_exception(original) # only patch the one used in py4j.java_gateway (call Java API) py4j.java_gateway.get_return_value = patched def toJArray(gateway, jtype, arr): """ Convert python list to java type array :param gateway: Py4j Gateway :param jtype: java type of element in array :param arr: python type list """ jarr = gateway.new_array(jtype, len(arr)) for i in range(0, len(arr)): jarr[i] = arr[i] return jarr def require_minimum_pandas_version(): """ Raise ImportError if minimum version of Pandas is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pandas_version = "0.19.2" from distutils.version import LooseVersion try: import pandas except ImportError: raise ImportError("Pandas >= %s must be installed; however, " "it was not found." % minimum_pandas_version) if LooseVersion(pandas.__version__) < LooseVersion(minimum_pandas_version): raise ImportError("Pandas >= %s must be installed; however, " "your version was %s." % (minimum_pandas_version, pandas.__version__)) def require_minimum_pyarrow_version(): """ Raise ImportError if minimum version of pyarrow is not installed """ # TODO(HyukjinKwon): Relocate and deduplicate the version specification. minimum_pyarrow_version = "0.8.0" from distutils.version import LooseVersion try: import pyarrow except ImportError: raise ImportError("PyArrow >= %s must be installed; however, " "it was not found." % minimum_pyarrow_version) if LooseVersion(pyarrow.__version__) < LooseVersion(minimum_pyarrow_version): raise ImportError("PyArrow >= %s must be installed; however, " "your version was %s." % (minimum_pyarrow_version, pyarrow.__version__))
apache-2.0
QJonny/CyNest
cynest/nest/raster_plot.py
2
6131
import cynest as nest import numpy import pylab def extract_events(data, time=None, sel=None): """ Extracts all events within a given time interval or are from a given set of neurons. - data is a matrix such that data[:,0] is a vector of all gids and data[:,1] a vector with the corresponding time stamps. - time is a list with at most two entries such that time=[t_max] extracts all events with t< t_max time=[t_min, t_max] extracts all events with t_min <= t < t_max - sel is a list of gids such that sel=[gid1, ... , gidn] extracts all events from these gids. All others are discarded. Both time and sel may be used at the same time such that all events are extracted for which both conditions are true. """ val = [] if time: t_max = time[-1] if len(time) > 1: t_min = time[0] else: t_min = 0 for v in data: t = v[1] gid = v[0] if time and (t < t_min or t >= t_max): continue if not sel or gid in sel: val.append(v) return numpy.array(val) def from_data(data, title=None, hist=False, hist_binwidth=5.0, grayscale=False, sel=None): """ Plot raster from data array """ ts = data[:, 1] d = extract_events(data, sel=sel) ts1 = d[:, 1] gids = d[:, 0] return _make_plot(ts, ts1, gids, data[:, 0], hist, hist_binwidth, grayscale, title) def from_file(fname, title=None, hist=False, hist_binwidth=5.0, grayscale=False): """ Plot raster from file """ if nest.is_sequencetype(fname): data = None for f in fname: if data is None: data = numpy.loadtxt(f) else: data = numpy.concatenate((data, numpy.loadtxt(f))) else: data = numpy.loadtxt(fname) return from_data(data, title, hist, hist_binwidth, grayscale) def from_device(detec, title=None, hist=False, hist_binwidth=5.0, grayscale=False, plot_lid=False): """ Plot raster from spike detector """ if not nest.GetStatus(detec)[0]["model"] == "spike_detector": raise nest.NESTError("Please provide a spike_detector.") if nest.GetStatus(detec, "to_memory")[0]: ts, gids = _from_memory(detec) if not len(ts): raise nest.NESTError("No events recorded!") if plot_lid: gids = [nest.GetLID([x]) for x in gids] if title is None: title = "Raster plot from device '%i'" % detec[0] if nest.GetStatus(detec)[0]["time_in_steps"]: xlabel = "Steps" else: xlabel = "Time (ms)" return _make_plot(ts, ts, gids, gids, hist, hist_binwidth, grayscale, title, xlabel) elif nest.GetStatus(detec, "to_file")[0]: fname = nest.GetStatus(detec, "filenames")[0] return from_file(fname, title, hist, hist_binwidth, grayscale) else: raise nest.NESTError("No data to plot. Make sure that either to_memory or to_file are set.") def _from_memory(detec): ev = nest.GetStatus(detec, "events")[0] return ev["times"], ev["senders"] def _make_plot(ts, ts1, gids, neurons, hist, hist_binwidth, grayscale, title, xlabel=None): """ Generic plotting routine that constructs a raster plot along with an optional histogram (common part in all routines above) """ pylab.figure() if grayscale: color_marker = ".k" color_bar = "gray" else: color_marker = "." color_bar = "blue" color_edge = "black" if xlabel is None: xlabel = "Time (ms)" ylabel = "Neuron ID" if hist: ax1 = pylab.axes([0.1, 0.3, 0.85, 0.6]) plotid = pylab.plot(ts1, gids, color_marker) pylab.ylabel(ylabel) pylab.xticks([]) xlim = pylab.xlim() pylab.axes([0.1, 0.1, 0.85, 0.17]) t_bins = numpy.arange(numpy.amin(ts), numpy.amax(ts), float(hist_binwidth)) n, bins = _histogram(ts, bins=t_bins) num_neurons = len(numpy.unique(neurons)) heights = 1000 * n / (hist_binwidth * num_neurons) pylab.bar(t_bins, heights, width=hist_binwidth, color=color_bar, edgecolor=color_edge) pylab.yticks([int(x) for x in numpy.linspace(0.0, int(max(heights) * 1.1) + 5, 4)]) pylab.ylabel("Rate (Hz)") pylab.xlabel(xlabel) pylab.xlim(xlim) pylab.axes(ax1) else: plotid = pylab.plot(ts1, gids, color_marker) pylab.xlabel(xlabel) pylab.ylabel(ylabel) if title is None: pylab.title("Raster plot") else: pylab.title(title) pylab.draw() return plotid def _histogram(a, bins=10, rangeV=None, normed=False): from numpy import asarray, iterable, linspace, sort, concatenate a = asarray(a).ravel() if rangeV is not None: mn, mx = rangeV if mn > mx: raise AttributeError( "max must be larger than min in range parameter.") if not iterable(bins): if rangeV is None: rangeV = (a.min(), a.max()) mn, mx = [mi + 0.0 for mi in rangeV] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins, endpoint=False) else: if(bins[1:] - bins[:-1] < 0).any(): raise AttributeError("bins must increase monotonically.") # best block size probably depends on processor cache size block = 65536 n = sort(a[:block]).searchsorted(bins) for i in range(block, a.size, block): n += sort(a[i:i + block]).searchsorted(bins) n = concatenate([n, [len(a)]]) n = n[1:] - n[:-1] if normed: db = bins[1] - bins[0] return 1.0 / (a.size * db) * n, bins else: return n, bins def show(): """ Call pylab.show() to show all figures and enter the GUI main loop. Python will block until all figure windows are closed again. You should call this function only once at the end of a script. See also: http://matplotlib.sourceforge.net/faq/howto_faq.html#use-show """ pylab.show()
gpl-2.0
joernhees/scikit-learn
doc/conf.py
2
9836
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve import sphinx_gallery # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', 'sphinx.ext.doctest', 'sphinx_gallery.gen_gallery', 'sphinx_issues', ] # pngmath / imgmath compatibility layer for different sphinx versions import sphinx from distutils.version import LooseVersion if LooseVersion(sphinx.__version__) < LooseVersion('1.4'): extensions.append('sphinx.ext.pngmath') else: extensions.append('sphinx.ext.imgmath') autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2007 - 2017, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True sphinx_gallery_conf = { 'doc_module': 'sklearn', 'reference_url': { 'sklearn': None, 'matplotlib': 'http://matplotlib.org', 'numpy': 'http://docs.scipy.org/doc/numpy-1.8.1', 'scipy': 'http://docs.scipy.org/doc/scipy-0.13.3/reference'}, 'expected_failing_examples': [ '../examples/applications/plot_stock_market.py'] } # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'sphx_glr_plot_classifier_comparison_001.png': 600, 'sphx_glr_plot_outlier_detection_003.png': 372, 'sphx_glr_plot_gpr_co2_001.png': 350, 'sphx_glr_plot_adaboost_twoclass_001.png': 372, 'sphx_glr_plot_compare_methods_001.png': 349} def make_carousel_thumbs(app, exception): """produces the final resized carousel images""" if exception is not None: return print('Preparing carousel images') image_dir = os.path.join(app.builder.outdir, '_images') for glr_plot, max_width in carousel_thumbs.items(): image = os.path.join(image_dir, glr_plot) if os.path.exists(image): c_thumb = os.path.join(image_dir, glr_plot[:-4] + '_carousel.png') sphinx_gallery.gen_rst.scale_image(image, c_thumb, max_width, 190) # Config for sphinx_issues issues_uri = 'https://github.com/scikit-learn/scikit-learn/issues/{issue}' issues_github_path = 'scikit-learn/scikit-learn' issues_user_uri = 'https://github.com/{user}' def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('build-finished', make_carousel_thumbs) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
phdowling/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
bikong2/scikit-learn
sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
wanggang3333/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
FedeMPouzols/Savu
scripts/log_evaluation/VisualiseProfileData.py
2
3197
import GraphicalThreadProfiler as GTP import GraphicalThreadProfiler_multi as GTP_m import fnmatch import os def convert(files): import pandas as pd # calculate the mean and std test = [] index = ['file_system', 'nNodes_x_nCores', 'Mean_time', 'nNodes', 'Std_time'] for file in files: temp_frame = pd.read_csv(file, header=None) a = (file.split('/')[-1]).split('_') vals = pd.Series([a[3], int(a[-6].split('N')[1])*int(a[-5].split('C')[1]), int(temp_frame.iloc[1, 1])*0.001, int(a[-6].split('N')[1]), int(temp_frame.iloc[2, 1])*0.001], index=index) test.append(vals) all_vals = (pd.concat(test, axis=1).transpose()) frame = all_vals return frame def get_files(dir_path): from os import listdir from os.path import isfile, join all_files = [f for f in listdir(dir_path) if isfile(join(dir_path, f))] files = [(dir_path + '/' + f) for f in all_files] return files def render_template(frame, outfilename, title, size, params, header_shift, max_std): from jinja2 import Template import template_strings as ts nVals = len(frame) f_out = open(outfilename, 'w') template = Template(ts.set_template_string_vis(nVals, title, size, params, header_shift)) style = os.path.dirname(__file__) + '/style_sheet.css' print outfilename f_out.write(template.render(frame=[map(list, f) for f in frame], style_sheet=style, max_bubble=max_std)) f_out.close() return def convert_all_files(): all_files = get_files(os.getcwd()) single_files = [f for f in all_files if f.split('.')[-1][0] is 'o'] GTP.convert(single_files) wildcard_files = [(os.path.dirname(f) + '/' + os.path.basename(f).split('.')[-2] + '*') for f in single_files] for wildcard in set(wildcard_files): matching_files = [] for file in single_files: if fnmatch.fnmatch(file, wildcard): matching_files.append(file) GTP_m.convert(matching_files) create_bubble_chart(get_files(os.getcwd())) def create_bubble_chart(all_files): stats_files = [f for f in all_files if 'stats.csv' in f] frame = convert(stats_files) max_std = frame.Std_time.max() frame['link'] = [('file://' + f.split('_stats')[0] + '.html') for f in stats_files] size = [(70, 70), (100, 100)] #params = {} params = {'Chunk': 'false', 'Process': '12', 'Data size': '(91,135,160)'} render_template([frame.values.tolist()], 'analysis.html', ['Nodes'], size, params, 0, max_std) if __name__ == "__main__": import optparse usage = "%prog [options] input_file" parser = optparse.OptionParser(usage=usage) (options, args) = parser.parse_args() if len(args) is 1: filename = (os.getcwd() if args[0] is '.' else args[0]) create_bubble_chart(get_files(filename)) else: convert_all_files()
gpl-3.0
neuroidss/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/testfuncs.py
72
20890
"""Some test functions for bivariate interpolation. Most of these have been yoinked from ACM TOMS 792. http://netlib.org/toms/792 """ import numpy as np from triangulate import Triangulation class TestData(dict): def __init__(self, *args, **kwds): dict.__init__(self, *args, **kwds) self.__dict__ = self class TestDataSet(object): def __init__(self, **kwds): self.__dict__.update(kwds) data = TestData( franke100=TestDataSet( x=np.array([ 0.0227035, 0.0539888, 0.0217008, 0.0175129, 0.0019029, -0.0509685, 0.0395408, -0.0487061, 0.0315828, -0.0418785, 0.1324189, 0.1090271, 0.1254439, 0.093454 , 0.0767578, 0.1451874, 0.0626494, 0.1452734, 0.0958668, 0.0695559, 0.2645602, 0.2391645, 0.208899 , 0.2767329, 0.1714726, 0.2266781, 0.1909212, 0.1867647, 0.2304634, 0.2426219, 0.3663168, 0.3857662, 0.3832392, 0.3179087, 0.3466321, 0.3776591, 0.3873159, 0.3812917, 0.3795364, 0.2803515, 0.4149771, 0.4277679, 0.420001 , 0.4663631, 0.4855658, 0.4092026, 0.4792578, 0.4812279, 0.3977761, 0.4027321, 0.5848691, 0.5730076, 0.6063893, 0.5013894, 0.5741311, 0.6106955, 0.5990105, 0.5380621, 0.6096967, 0.5026188, 0.6616928, 0.6427836, 0.6396475, 0.6703963, 0.7001181, 0.633359 , 0.6908947, 0.6895638, 0.6718889, 0.6837675, 0.7736939, 0.7635332, 0.7410424, 0.8258981, 0.7306034, 0.8086609, 0.8214531, 0.729064 , 0.8076643, 0.8170951, 0.8424572, 0.8684053, 0.8366923, 0.9418461, 0.8478122, 0.8599583, 0.91757 , 0.8596328, 0.9279871, 0.8512805, 1.044982 , 0.9670631, 0.9857884, 0.9676313, 1.0129299, 0.965704 , 1.0019855, 1.0359297, 1.0414677, 0.9471506]), y=np.array([-0.0310206, 0.1586742, 0.2576924, 0.3414014, 0.4943596, 0.5782854, 0.6993418, 0.7470194, 0.9107649, 0.996289 , 0.050133 , 0.0918555, 0.2592973, 0.3381592, 0.4171125, 0.5615563, 0.6552235, 0.7524066, 0.9146523, 0.9632421, 0.0292939, 0.0602303, 0.2668783, 0.3696044, 0.4801738, 0.5940595, 0.6878797, 0.8185576, 0.9046507, 0.9805412, 0.0396955, 0.0684484, 0.2389548, 0.3124129, 0.4902989, 0.5199303, 0.6445227, 0.8203789, 0.8938079, 0.9711719, -0.0284618, 0.1560965, 0.2262471, 0.3175094, 0.3891417, 0.5084949, 0.6324247, 0.7511007, 0.8489712, 0.9978728, -0.0271948, 0.127243 , 0.2709269, 0.3477728, 0.4259422, 0.6084711, 0.6733781, 0.7235242, 0.9242411, 1.0308762, 0.0255959, 0.0707835, 0.2008336, 0.3259843, 0.4890704, 0.5096324, 0.669788 , 0.7759569, 0.9366096, 1.0064516, 0.0285374, 0.1021403, 0.1936581, 0.3235775, 0.4714228, 0.6091595, 0.6685053, 0.8022808, 0.847679 , 1.0512371, 0.0380499, 0.0902048, 0.2083092, 0.3318491, 0.4335632, 0.5910139, 0.6307383, 0.8144841, 0.904231 , 0.969603 , -0.01209 , 0.1334114, 0.2695844, 0.3795281, 0.4396054, 0.5044425, 0.6941519, 0.7459923, 0.8682081, 0.9801409])), franke33=TestDataSet( x=np.array([ 5.00000000e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e-01, 1.00000000e-01, 1.50000000e-01, 2.00000000e-01, 2.50000000e-01, 3.00000000e-01, 3.50000000e-01, 5.00000000e-01, 5.00000000e-01, 5.50000000e-01, 6.00000000e-01, 6.00000000e-01, 6.00000000e-01, 6.50000000e-01, 7.00000000e-01, 7.00000000e-01, 7.00000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.00000000e-01, 8.00000000e-01, 8.50000000e-01, 9.00000000e-01, 9.00000000e-01, 9.50000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([ 4.50000000e-01, 5.00000000e-01, 1.00000000e+00, 0.00000000e+00, 1.50000000e-01, 7.50000000e-01, 3.00000000e-01, 1.00000000e-01, 2.00000000e-01, 3.50000000e-01, 8.50000000e-01, 0.00000000e+00, 1.00000000e+00, 9.50000000e-01, 2.50000000e-01, 6.50000000e-01, 8.50000000e-01, 7.00000000e-01, 2.00000000e-01, 6.50000000e-01, 9.00000000e-01, 1.00000000e-01, 3.50000000e-01, 8.50000000e-01, 4.00000000e-01, 6.50000000e-01, 2.50000000e-01, 3.50000000e-01, 8.00000000e-01, 9.00000000e-01, 0.00000000e+00, 5.00000000e-01, 1.00000000e+00])), lawson25=TestDataSet( x=np.array([ 0.1375, 0.9125, 0.7125, 0.225 , -0.05 , 0.475 , 0.05 , 0.45 , 1.0875, 0.5375, -0.0375, 0.1875, 0.7125, 0.85 , 0.7 , 0.275 , 0.45 , 0.8125, 0.45 , 1. , 0.5 , 0.1875, 0.5875, 1.05 , 0.1 ]), y=np.array([ 0.975 , 0.9875 , 0.7625 , 0.8375 , 0.4125 , 0.6375 , -0.05 , 1.0375 , 0.55 , 0.8 , 0.75 , 0.575 , 0.55 , 0.4375 , 0.3125 , 0.425 , 0.2875 , 0.1875 , -0.0375 , 0.2625 , 0.4625 , 0.2625 , 0.125 , -0.06125, 0.1125 ])), random100=TestDataSet( x=np.array([ 0.0096326, 0.0216348, 0.029836 , 0.0417447, 0.0470462, 0.0562965, 0.0646857, 0.0740377, 0.0873907, 0.0934832, 0.1032216, 0.1110176, 0.1181193, 0.1251704, 0.132733 , 0.1439536, 0.1564861, 0.1651043, 0.1786039, 0.1886405, 0.2016706, 0.2099886, 0.2147003, 0.2204141, 0.2343715, 0.240966 , 0.252774 , 0.2570839, 0.2733365, 0.2853833, 0.2901755, 0.2964854, 0.3019725, 0.3125695, 0.3307163, 0.3378504, 0.3439061, 0.3529922, 0.3635507, 0.3766172, 0.3822429, 0.3869838, 0.3973137, 0.4170708, 0.4255588, 0.4299218, 0.4372839, 0.4705033, 0.4736655, 0.4879299, 0.494026 , 0.5055324, 0.5162593, 0.5219219, 0.5348529, 0.5483213, 0.5569571, 0.5638611, 0.5784908, 0.586395 , 0.5929148, 0.5987839, 0.6117561, 0.6252296, 0.6331381, 0.6399048, 0.6488972, 0.6558537, 0.6677405, 0.6814074, 0.6887812, 0.6940896, 0.7061687, 0.7160957, 0.7317445, 0.7370798, 0.746203 , 0.7566957, 0.7699998, 0.7879347, 0.7944014, 0.8164468, 0.8192794, 0.8368405, 0.8500993, 0.8588255, 0.8646496, 0.8792329, 0.8837536, 0.8900077, 0.8969894, 0.9044917, 0.9083947, 0.9203972, 0.9347906, 0.9434519, 0.9490328, 0.9569571, 0.9772067, 0.9983493]), y=np.array([ 0.3083158, 0.2450434, 0.8613847, 0.0977864, 0.3648355, 0.7156339, 0.5311312, 0.9755672, 0.1781117, 0.5452797, 0.1603881, 0.7837139, 0.9982015, 0.6910589, 0.104958 , 0.8184662, 0.7086405, 0.4456593, 0.1178342, 0.3189021, 0.9668446, 0.7571834, 0.2016598, 0.3232444, 0.4368583, 0.8907869, 0.064726 , 0.5692618, 0.2947027, 0.4332426, 0.3347464, 0.7436284, 0.1066265, 0.8845357, 0.515873 , 0.9425637, 0.4799701, 0.1783069, 0.114676 , 0.8225797, 0.2270688, 0.4073598, 0.887508 , 0.7631616, 0.9972804, 0.4959884, 0.3410421, 0.249812 , 0.6409007, 0.105869 , 0.5411969, 0.0089792, 0.8784268, 0.5515874, 0.4038952, 0.1654023, 0.2965158, 0.3660356, 0.0366554, 0.950242 , 0.2638101, 0.9277386, 0.5377694, 0.7374676, 0.4674627, 0.9186109, 0.0416884, 0.1291029, 0.6763676, 0.8444238, 0.3273328, 0.1893879, 0.0645923, 0.0180147, 0.8904992, 0.4160648, 0.4688995, 0.2174508, 0.5734231, 0.8853319, 0.8018436, 0.6388941, 0.8931002, 0.1000558, 0.2789506, 0.9082948, 0.3259159, 0.8318747, 0.0508513, 0.970845 , 0.5120548, 0.2859716, 0.9581641, 0.6183429, 0.3779934, 0.4010423, 0.9478657, 0.7425486, 0.8883287, 0.549675 ])), uniform9=TestDataSet( x=np.array([ 1.25000000e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([ 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00])), ) def constant(x, y): return np.ones(x.shape, x.dtype) constant.title = 'Constant' def xramp(x, y): return x xramp.title = 'X Ramp' def yramp(x, y): return y yramp.title = 'Y Ramp' def exponential(x, y): x = x*9 y = y*9 x1 = x+1.0 x2 = x-2.0 x4 = x-4.0 x7 = x-7.0 y1 = x+1.0 y2 = y-2.0 y3 = y-3.0 y7 = y-7.0 f = (0.75 * np.exp(-(x2*x2+y2*y2)/4.0) + 0.75 * np.exp(-x1*x1/49.0 - y1/10.0) + 0.5 * np.exp(-(x7*x7 + y3*y3)/4.0) - 0.2 * np.exp(-x4*x4 -y7*y7)) return f exponential.title = 'Exponential and Some Gaussians' def cliff(x, y): f = np.tanh(9.0*(y-x) + 1.0)/9.0 return f cliff.title = 'Cliff' def saddle(x, y): f = (1.25 + np.cos(5.4*y))/(6.0 + 6.0*(3*x-1.0)**2) return f saddle.title = 'Saddle' def gentle(x, y): f = np.exp(-5.0625*((x-0.5)**2+(y-0.5)**2))/3.0 return f gentle.title = 'Gentle Peak' def steep(x, y): f = np.exp(-20.25*((x-0.5)**2+(y-0.5)**2))/3.0 return f steep.title = 'Steep Peak' def sphere(x, y): circle = 64-81*((x-0.5)**2 + (y-0.5)**2) f = np.where(circle >= 0, np.sqrt(np.clip(circle,0,100)) - 0.5, 0.0) return f sphere.title = 'Sphere' def trig(x, y): f = 2.0*np.cos(10.0*x)*np.sin(10.0*y) + np.sin(10.0*x*y) return f trig.title = 'Cosines and Sines' def gauss(x, y): x = 5.0-10.0*x y = 5.0-10.0*y g1 = np.exp(-x*x/2) g2 = np.exp(-y*y/2) f = g1 + 0.75*g2*(1 + g1) return f gauss.title = 'Gaussian Peak and Gaussian Ridges' def cloverleaf(x, y): ex = np.exp((10.0-20.0*x)/3.0) ey = np.exp((10.0-20.0*y)/3.0) logitx = 1.0/(1.0+ex) logity = 1.0/(1.0+ey) f = (((20.0/3.0)**3 * ex*ey)**2 * (logitx*logity)**5 * (ex-2.0*logitx)*(ey-2.0*logity)) return f cloverleaf.title = 'Cloverleaf' def cosine_peak(x, y): circle = np.hypot(80*x-40.0, 90*y-45.) f = np.exp(-0.04*circle) * np.cos(0.15*circle) return f cosine_peak.title = 'Cosine Peak' allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak] class LinearTester(object): name = 'Linear' def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250): self.xrange = xrange self.yrange = yrange self.nrange = nrange self.npoints = npoints rng = np.random.RandomState(1234567890) self.x = rng.uniform(xrange[0], xrange[1], size=npoints) self.y = rng.uniform(yrange[0], yrange[1], size=npoints) self.tri = Triangulation(self.x, self.y) def replace_data(self, dataset): self.x = dataset.x self.y = dataset.y self.tri = Triangulation(self.x, self.y) def interpolator(self, func): z = func(self.x, self.y) return self.tri.linear_extrapolator(z, bbox=self.xrange+self.yrange) def plot(self, func, interp=True, plotter='imshow'): import matplotlib as mpl from matplotlib import pylab as pl if interp: lpi = self.interpolator(func) z = lpi[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] else: y, x = np.mgrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] z = func(x, y) z = np.where(np.isinf(z), 0.0, z) extent = (self.xrange[0], self.xrange[1], self.yrange[0], self.yrange[1]) pl.ioff() pl.clf() pl.hot() # Some like it hot if plotter == 'imshow': pl.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower') elif plotter == 'contour': Y, X = np.ogrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] pl.contour(np.ravel(X), np.ravel(Y), z, 20) x = self.x y = self.y lc = mpl.collections.LineCollection(np.array([((x[i], y[i]), (x[j], y[j])) for i, j in self.tri.edge_db]), colors=[(0,0,0,0.2)]) ax = pl.gca() ax.add_collection(lc) if interp: title = '%s Interpolant' % self.name else: title = 'Reference' if hasattr(func, 'title'): pl.title('%s: %s' % (func.title, title)) else: pl.title(title) pl.show() pl.ion() class NNTester(LinearTester): name = 'Natural Neighbors' def interpolator(self, func): z = func(self.x, self.y) return self.tri.nn_extrapolator(z, bbox=self.xrange+self.yrange) def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print func.title nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion() def plot_dt(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0,0,0,0.2)] lc = mpl.collections.LineCollection(np.array([((tri.x[i], tri.y[i]), (tri.x[j], tri.y[j])) for i, j in tri.edge_db]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_vo(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0,1,0,0.2)] lc = mpl.collections.LineCollection(np.array( [(tri.circumcenters[i], tri.circumcenters[j]) for i in xrange(len(tri.circumcenters)) for j in tri.triangle_neighbors[i] if j != -1]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_cc(tri, edgecolor=None): import matplotlib as mpl from matplotlib import pylab as pl if edgecolor is None: edgecolor = (0,0,1,0.2) dxy = (np.array([(tri.x[i], tri.y[i]) for i,j,k in tri.triangle_nodes]) - tri.circumcenters) r = np.hypot(dxy[:,0], dxy[:,1]) ax = pl.gca() for i in xrange(len(r)): p = mpl.patches.Circle(tri.circumcenters[i], r[i], resolution=100, edgecolor=edgecolor, facecolor=(1,1,1,0), linewidth=0.2) ax.add_patch(p) pl.draw_if_interactive() def quality(func, mesh, interpolator='nn', n=33): """Compute a quality factor (the quantity r**2 from TOMS792). interpolator must be in ('linear', 'nn'). """ fz = func(mesh.x, mesh.y) tri = Triangulation(mesh.x, mesh.y) intp = getattr(tri, interpolator+'_extrapolator')(fz, bbox=(0.,1.,0.,1.)) Y, X = np.mgrid[0:1:complex(0,n),0:1:complex(0,n)] Z = func(X, Y) iz = intp[0:1:complex(0,n),0:1:complex(0,n)] #nans = np.isnan(iz) #numgood = n*n - np.sum(np.array(nans.flat, np.int32)) numgood = n*n SE = (Z - iz)**2 SSE = np.sum(SE.flat) meanZ = np.sum(Z.flat) / numgood SM = (Z - meanZ)**2 SSM = np.sum(SM.flat) r2 = 1.0 - SSE/SSM print func.func_name, r2, SSE, SSM, numgood return r2 def allquality(interpolator='nn', allfuncs=allfuncs, data=data, n=33): results = {} kv = data.items() kv.sort() for name, mesh in kv: reslist = results.setdefault(name, []) for func in allfuncs: reslist.append(quality(func, mesh, interpolator, n)) return results def funky(): x0 = np.array([0.25, 0.3, 0.5, 0.6, 0.6]) y0 = np.array([0.2, 0.35, 0.0, 0.25, 0.65]) tx = 0.46 ty = 0.23 t0 = Triangulation(x0, y0) t1 = Triangulation(np.hstack((x0, [tx])), np.hstack((y0, [ty]))) return t0, t1
agpl-3.0
aewhatley/scikit-learn
sklearn/utils/tests/test_validation.py
133
18339
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=100, dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, []) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = check_array(42, ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
epierson9/multiphenotype_methods
multiphenotype_utils.py
1
8040
import pandas as pd import numpy as np import copy, math, random import matplotlib.pyplot as plt from scipy.stats import spearmanr, pearsonr from scipy.cluster.hierarchy import linkage, dendrogram, fcluster from scipy.spatial.distance import squareform def move_last_col_to_first(df): cols = df.columns.tolist() cols = cols[-1:] + cols[:-1] df = df.loc[:, cols] return df def compute_correlation_matrix_with_incomplete_data(df, correlation_type): """ Given a dataframe or numpy array df and a correlation type (spearman, pearson, or covariance) computes the pairwise correlations between all columns of the dataframe. Dataframe can have missing data; these will simply be ignored. Nan correlations are set to 0 with a warning. Returns the correlation matrix and a vector of counts of non-missing data. For correlation_type == covariance, identical to np.cov(df.T, ddof = 0) in case of no missing data. """ X = copy.deepcopy(pd.DataFrame(df)) # make sure we are using a dataframe to do computations. assert correlation_type in ['spearman', 'pearson', 'covariance'] X = X.astype(np.float64) # if we do not do this for some reason it ignores some columns in computing the correlation matrix. # which ends up being the wrong shape. if correlation_type == 'covariance': C = X.cov() * (len(df) - 1) / len(df) # need correction factor so it's consistent with ddof = 0. Makes little difference. else: C = X.corr(correlation_type) C = np.array(C) assert C.shape[0] == C.shape[1] assert C.shape[0] == len(df.columns) for i in range(len(C)): for j in range(len(C)): if np.isnan(C[i][j]): print("Warning: entry of covariance matrix is nan; setting to 0.") C[i][j] = 0 non_missing_data_counts = (~pd.isnull(X)).sum(axis = 0) return C, non_missing_data_counts def partition_dataframe_into_binary_and_continuous(df, verbose=False): """ Partitions a data frame into binary and continuous features. This is used for the autoencoder so we apply the correct loss function. Returns a matrix X of df values along the column indices of binary and continuous features and the feature names. """ #print("Partitioning dataframe into binary and continuous columns") phenotypes_to_exclude = [ 'individual_id', 'age_sex___age'] feature_names = [] binary_features = [] continuous_features = [] for c in df.columns: if c in phenotypes_to_exclude: continue assert len(df[c].dropna()) == len(df) if set(df[c]) == set([False, True]): # this binarization should work even if df[c] is eg 1.0 or 1 rather than True. if verbose: print("Binary column %s" % c) binary_features.append(c) else: if verbose: print("Continuous column %s" % c) continuous_features.append(c) feature_names.append(c) binary_feature_idxs = [feature_names.index(a) for a in binary_features] continuous_feature_idxs = [feature_names.index(a) for a in continuous_features] X = df[feature_names].values return X, binary_feature_idxs, continuous_feature_idxs, feature_names def compute_column_means_with_incomplete_data(df): """ Given a dataframe or numpy array df, computes means for each column. Identical to np.array(data.df).mean(axis = 0) in case of no missing data. """ X = np.array(df) return np.nanmean(X, axis = 0) def cluster_and_plot_correlation_matrix(C, column_names, how_to_sort): """ Given a correlation matrix c and column_names, sorts correlation matrix using hierarchical clustering if how_to_sort == hierarchical, otherwise alphabetically. """ C = copy.deepcopy(C) if np.abs(C).max() - 1 > 1e-6: print("Warning: maximum absolute value in C is %2.3f, which is larger than 1; this will be truncated in the visualization." % np.abs(C).max()) for i in range(len(C)): if(np.abs(C[i, i] - 1) > 1e-6): print("Warning: correlation matrix diagonal entry is not one (%2.8f); setting to one for visualization purposes." % C[i, i].mean()) C[i, i] = 1 # make it exactly one so hierarchical clustering doesn't complain. C[C > 1] = 1 C[C < -1] = -1 assert how_to_sort in ['alphabetically', 'hierarchical'] assert(len(C) == len(column_names)) if how_to_sort == 'hierarchical': y = squareform(1 - np.abs(C)) Z = linkage(y, method = 'average') clusters = fcluster(Z, t = 0) # print(clusters) reordered_idxs = np.argsort(clusters) else: reordered_idxs = np.argsort(column_names) C = C[:, reordered_idxs] C = C[reordered_idxs, :] plt.figure(figsize=[50, 50]) plt.set_cmap('bwr') plt.imshow(C, vmin = -1, vmax = 1) reordered_colnames = np.array(column_names)[reordered_idxs] plt.yticks(range(len(column_names)), reordered_colnames, fontsize = 24) plt.xticks(range(len(column_names)), reordered_colnames, rotation = 90, fontsize = 24) plt.colorbar() for i in range(len(C)): for j in range(len(C)): if np.abs(C[i][j]) > .1: plt.scatter([i], [j], color = 'black', s = 1) plt.show() def get_continuous_features_as_matrix(df, return_cols=False): X, binary_feature_idxs, continuous_feature_idxs, feature_names = partition_dataframe_into_binary_and_continuous(df) X_continuous = X[:, continuous_feature_idxs] continuous_feature_names = [feature_names[idx] for idx in continuous_feature_idxs] # Sanity checks sanity_check_non_continuous_phenotypes = [ 'individual_id', 'age_sex___age', 'age_sex___self_report_female'] for phenotype in sanity_check_non_continuous_phenotypes: assert phenotype not in continuous_feature_names if return_cols: return X_continuous, continuous_feature_names else: return X_continuous def assert_zero_mean(df): print(np.mean(get_continuous_features_as_matrix(df), axis=0)) assert np.all(np.mean(get_continuous_features_as_matrix(df), axis=0) < 1e-8) def add_id(Z, df_with_id): """ Takes in a matrix Z and data frame df_with_id and converts Z into a data frame with individual_id taken from df_with_id. Assumes that rows of Z are aligned with rows of df_with_id. """ assert Z.shape[0] == df_with_id.shape[0] assert 'individual_id' in df_with_id.columns results_df = pd.DataFrame(Z) results_df.index = list(df_with_id.index) # make sure the two dataframes have the same index. results_df.loc[:, 'individual_id'] = df_with_id.loc[:, 'individual_id'].values # similarly with individual id. results_df = move_last_col_to_first(results_df) return results_df def remove_id_and_get_mat(Z_df): assert Z_df.columns[0] == 'individual_id' return Z_df.drop('individual_id', axis=1).values def make_age_bins(bin_size=1, lower=40, upper=69): """ Returns bins such that np.digitize(x, bins) does the right thing. """ bins = np.arange(lower, upper+1, bin_size) bins = np.append(bins, upper+1) print(bins) return bins def compute_column_means_with_incomplete_data(df): """ Given a dataframe or numpy array df, computes means for each column. Identical to np.array(data.df).mean(axis = 0) in case of no missing data. """ X = np.array(df) return np.nanmean(X, axis = 0) def divide_idxs_into_batches(idxs, batch_size): """ Given a list of idxs and a batch size, divides into batches. """ n_examples = len(idxs) n_batches = math.ceil(n_examples / batch_size) batches = [] for i in range(n_batches): start = i * batch_size end = start + batch_size batches.append(idxs[start:end]) return batches
mit
davemccormick/pyAnimalTrack
src/pyAnimalTrack/backend/filehandlers/filtered_sensor_data.py
1
2015
import pandas as pd from pyAnimalTrack.backend.filehandlers.input_data import InputData class FilteredSensorData(InputData): def __init__(self, filter_class, df, filter_parameters): """ Constructor :param filter_class: The filter to use :param df: The Pandas dataframe to filter :param sample_rate: The sample rate of the data, in Hz :param cutoff_frequency: ??? :param filter_length: ??? :returns: void """ super(FilteredSensorData, self).__init__() self.__df = df.copy() # TODO: Remove this duplication of names - potentially into input_data, or a new parent class? self.__names =['ms','ax','ay','az','mx','my','mz','gx','gy','gz','temp','adjms'] self.__readableNames = ['Milliseconds', 'AX', 'AY', 'AZ', 'MX', 'MY', 'MZ', 'GX', 'GY', 'GZ', 'Temperature', 'Adjusted Milliseconds'] filtered_names = self.__names[1:-2] new_values = {} # We need to filter the data, with the provided parameters for column in range(0, len(self.__names)): curr_name = self.__names[column] # Only run the filter on the columns that require it if curr_name in filtered_names: # Create a new column of data new_values[curr_name] = filter_class(getattr(self.__df, curr_name).values)\ .filter( filter_parameters[curr_name]['SampleRate'], filter_parameters[curr_name]['CutoffFrequency'], filter_parameters[curr_name]['FilterLength'] ) else: # Otherwise, just copy the value new_values[curr_name] = getattr(self.__df, curr_name).values self.__df = pd.DataFrame(new_values) def getData(self): return self.__df def getColumns(self): return self.__names def getReadableColumns(self): return self.__readableNames
gpl-3.0
zxsted/scipy
doc/source/tutorial/stats/plots/kde_plot3.py
132
1229
import numpy as np import matplotlib.pyplot as plt from scipy import stats np.random.seed(12456) x1 = np.random.normal(size=200) # random data, normal distribution xs = np.linspace(x1.min()-1, x1.max()+1, 200) kde1 = stats.gaussian_kde(x1) kde2 = stats.gaussian_kde(x1, bw_method='silverman') fig = plt.figure(figsize=(8, 6)) ax1 = fig.add_subplot(211) ax1.plot(x1, np.zeros(x1.shape), 'b+', ms=12) # rug plot ax1.plot(xs, kde1(xs), 'k-', label="Scott's Rule") ax1.plot(xs, kde2(xs), 'b-', label="Silverman's Rule") ax1.plot(xs, stats.norm.pdf(xs), 'r--', label="True PDF") ax1.set_xlabel('x') ax1.set_ylabel('Density') ax1.set_title("Normal (top) and Student's T$_{df=5}$ (bottom) distributions") ax1.legend(loc=1) x2 = stats.t.rvs(5, size=200) # random data, T distribution xs = np.linspace(x2.min() - 1, x2.max() + 1, 200) kde3 = stats.gaussian_kde(x2) kde4 = stats.gaussian_kde(x2, bw_method='silverman') ax2 = fig.add_subplot(212) ax2.plot(x2, np.zeros(x2.shape), 'b+', ms=12) # rug plot ax2.plot(xs, kde3(xs), 'k-', label="Scott's Rule") ax2.plot(xs, kde4(xs), 'b-', label="Silverman's Rule") ax2.plot(xs, stats.t.pdf(xs, 5), 'r--', label="True PDF") ax2.set_xlabel('x') ax2.set_ylabel('Density') plt.show()
bsd-3-clause
intel-analytics/analytics-zoo
pyzoo/zoo/automl/model/base_pytorch_model.py
1
15238
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch from torch.utils.data import TensorDataset, DataLoader import types from zoo.automl.model.abstract import BaseModel, ModelBuilder from zoo.automl.common.util import * from zoo.automl.common.metrics import Evaluator import pandas as pd from zoo.orca.automl.pytorch_utils import LR_NAME, DEFAULT_LR PYTORCH_REGRESSION_LOSS_MAP = {"mse": "MSELoss", "mae": "L1Loss", "huber_loss": "SmoothL1Loss"} class PytorchBaseModel(BaseModel): def __init__(self, model_creator, optimizer_creator, loss_creator, check_optional_config=False): self.check_optional_config = check_optional_config self.model_creator = model_creator self.optimizer_creator = optimizer_creator self.loss_creator = loss_creator self.config = None self.model = None self.model_built = False self.onnx_model = None self.onnx_model_built = False def _create_loss(self): if isinstance(self.loss_creator, torch.nn.modules.loss._Loss): self.criterion = self.loss_creator else: self.criterion = self.loss_creator(self.config) def _create_optimizer(self): import types if isinstance(self.optimizer_creator, types.FunctionType): self.optimizer = self.optimizer_creator(self.model, self.config) else: # use torch default parameter values if user pass optimizer name or optimizer class. try: self.optimizer = self.optimizer_creator(self.model.parameters(), lr=self.config.get(LR_NAME, DEFAULT_LR)) except: raise ValueError("We failed to generate an optimizer with specified optim " "class/name. You need to pass an optimizer creator function.") def build(self, config): # check config and update self._check_config(**config) self.config = config # build model if "selected_features" in config: config["input_feature_num"] = len(config['selected_features'])\ + config['output_feature_num'] self.model = self.model_creator(config) if not isinstance(self.model, torch.nn.Module): raise ValueError("You must create a torch model in model_creator") self.model_built = True self._create_loss() self._create_optimizer() def _reshape_input(self, x): if x.ndim == 1: x = x.reshape(-1, 1) return x def _np_to_creator(self, data): def data_creator(config): x, y = PytorchBaseModel.covert_input(data) x = self._reshape_input(x) y = self._reshape_input(y) return DataLoader(TensorDataset(x, y), batch_size=int(config["batch_size"]), shuffle=True) return data_creator def fit_eval(self, data, validation_data=None, mc=False, verbose=0, epochs=1, metric=None, metric_func=None, **config): """ :param data: data could be a tuple with numpy ndarray with form (x, y) or a data creator which takes a config dict and returns a torch.utils.data.DataLoader. torch.Tensor should be generated from the dataloader. :param validation_data: validation data could be a tuple with numpy ndarray with form (x, y) or a data creator which takes a config dict and returns a torch.utils.data.DataLoader. torch.Tensor should be generated from the dataloader. fit_eval will build a model at the first time it is built config will be updated for the second or later times with only non-model-arch params be functional TODO: check the updated params and decide if the model is needed to be rebuilt """ # todo: support input validation data None assert validation_data is not None, "You must input validation data!" if not metric: raise ValueError("You must input a valid metric value for fit_eval.") # update config settings def update_config(): if not isinstance(data, types.FunctionType): x = self._reshape_input(data[0]) y = self._reshape_input(data[1]) config.setdefault("past_seq_len", x.shape[-2]) config.setdefault("future_seq_len", y.shape[-2]) config.setdefault("input_feature_num", x.shape[-1]) config.setdefault("output_feature_num", y.shape[-1]) if not self.model_built: update_config() self.build(config) else: tmp_config = self.config.copy() tmp_config.update(config) self._check_config(**tmp_config) self.config.update(config) # get train_loader and validation_loader if isinstance(data, types.FunctionType): train_loader = data(self.config) validation_loader = validation_data(self.config) else: assert isinstance(data, tuple) and isinstance(validation_data, tuple),\ f"data/validation_data should be a tuple or\ data creator function but found {type(data)}" assert isinstance(data[0], np.ndarray) and isinstance(validation_data[0], np.ndarray),\ f"x should be a np.ndarray but found {type(x)}" assert isinstance(data[1], np.ndarray) and isinstance(validation_data[1], np.ndarray),\ f"y should be a np.ndarray but found {type(y)}" train_data_creator = self._np_to_creator(data) valid_data_creator = self._np_to_creator(validation_data) train_loader = train_data_creator(self.config) validation_loader = valid_data_creator(self.config) epoch_losses = [] for i in range(epochs): train_loss = self._train_epoch(train_loader) epoch_losses.append(train_loss) train_stats = {"loss": np.mean(epoch_losses), "last_loss": epoch_losses[-1]} val_stats = self._validate(validation_loader, metric_name=metric, metric_func=metric_func) self.onnx_model_built = False return val_stats @staticmethod def to_torch(inp): if isinstance(inp, np.ndarray): return torch.from_numpy(inp) if isinstance(inp, (pd.DataFrame, pd.Series)): return torch.from_numpy(inp.values) return inp @staticmethod def covert_input(data): x = PytorchBaseModel.to_torch(data[0]).float() y = PytorchBaseModel.to_torch(data[1]).float() return x, y def _train_epoch(self, train_loader): self.model.train() total_loss = 0 batch_idx = 0 tqdm = None try: from tqdm import tqdm pbar = tqdm(total=len(train_loader)) except ImportError: pass for x_batch, y_batch in train_loader: self.optimizer.zero_grad() yhat = self._forward(x_batch, y_batch) loss = self.criterion(yhat, y_batch) loss.backward() self.optimizer.step() total_loss += loss.item() batch_idx += 1 if tqdm: pbar.set_description("Loss: {}".format(loss.item())) pbar.update(1) if tqdm: pbar.close() train_loss = total_loss/batch_idx return train_loss def _forward(self, x, y): return self.model(x) def _validate(self, validation_loader, metric_name, metric_func=None): if not metric_name: assert metric_func, "You must input valid metric_func or metric_name" metric_name = metric_func.__name__ self.model.eval() with torch.no_grad(): yhat_list = [] y_list = [] for x_valid_batch, y_valid_batch in validation_loader: yhat_list.append(self.model(x_valid_batch).numpy()) y_list.append(y_valid_batch.numpy()) yhat = np.concatenate(yhat_list, axis=0) y = np.concatenate(y_list, axis=0) # val_loss = self.criterion(yhat, y) if metric_func: eval_result = metric_func(y, yhat) else: eval_result = Evaluator.evaluate(metric=metric_name, y_true=y, y_pred=yhat, multioutput='uniform_average') return {metric_name: eval_result} def _print_model(self): # print model and parameters print(self.model) print(len(list(self.model.parameters()))) for i in range(len(list(self.model.parameters()))): print(list(self.model.parameters())[i].size()) def evaluate(self, x, y, metrics=['mse'], multioutput="raw_values"): # reshape 1dim input x = self._reshape_input(x) y = self._reshape_input(y) yhat = self.predict(x) eval_result = [Evaluator.evaluate(m, y_true=y, y_pred=yhat, multioutput=multioutput) for m in metrics] return eval_result def predict(self, x, mc=False, batch_size=32): # reshape 1dim input x = self._reshape_input(x) if not self.model_built: raise RuntimeError("You must call fit_eval or restore first before calling predict!") x = PytorchBaseModel.to_torch(x).float() if mc: self.model.train() else: self.model.eval() test_loader = DataLoader(TensorDataset(x), batch_size=int(batch_size)) yhat_list = [] for x_test_batch in test_loader: yhat_list.append(self.model(x_test_batch[0]).detach().numpy()) yhat = np.concatenate(yhat_list, axis=0) return yhat def predict_with_uncertainty(self, x, n_iter=100): result = np.zeros((n_iter,) + (x.shape[0], self.config["output_feature_num"])) for i in range(n_iter): result[i, :, :] = self.predict(x, mc=True) prediction = result.mean(axis=0) uncertainty = result.std(axis=0) return prediction, uncertainty def state_dict(self): state = { "config": self.config, "model": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), } return state def load_state_dict(self, state): self.config = state["config"] self.model = self.model_creator(self.config) self.model.load_state_dict(state["model"]) self.model_built = True self._create_optimizer() self.optimizer.load_state_dict(state["optimizer"]) self._create_loss() def save(self, checkpoint): if not self.model_built: raise RuntimeError("You must call fit_eval or restore first before calling save!") state_dict = self.state_dict() torch.save(state_dict, checkpoint) def restore(self, checkpoint): state_dict = torch.load(checkpoint) self.load_state_dict(state_dict) def evaluate_with_onnx(self, x, y, metrics=['mse'], dirname=None, multioutput="raw_values"): # reshape 1dim input x = self._reshape_input(x) y = self._reshape_input(y) yhat = self.predict_with_onnx(x, dirname=dirname) eval_result = [Evaluator.evaluate(m, y_true=y, y_pred=yhat, multioutput=multioutput) for m in metrics] return eval_result def _build_onnx(self, x, dirname=None): if not self.model_built: raise RuntimeError("You must call fit_eval or restore\ first before calling onnx methods!") try: import onnx import onnxruntime except: raise RuntimeError("You should install onnx and onnxruntime to use onnx based method.") if dirname is None: dirname = tempfile.mkdtemp(prefix="onnx_cache_") # code adapted from # https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html torch.onnx.export(self.model, x, os.path.join(dirname, "cache.onnx"), export_params=True, opset_version=10, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) self.onnx_model = onnx.load(os.path.join(dirname, "cache.onnx")) onnx.checker.check_model(self.onnx_model) self.ort_session = onnxruntime.InferenceSession(os.path.join(dirname, "cache.onnx")) self.onnx_model_built = True def predict_with_onnx(self, x, mc=False, dirname=None): # reshape 1dim input x = self._reshape_input(x) x = PytorchBaseModel.to_torch(x).float() if not self.onnx_model_built: self._build_onnx(x[0:1], dirname=dirname) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() ort_inputs = {self.ort_session.get_inputs()[0].name: to_numpy(x)} ort_outs = self.ort_session.run(None, ort_inputs) return ort_outs[0] def _get_required_parameters(self): return {} def _get_optional_parameters(self): return {"batch_size", LR_NAME, "dropout", "optim", "loss" } class PytorchModelBuilder(ModelBuilder): def __init__(self, model_creator, optimizer_creator, loss_creator): from zoo.orca.automl.pytorch_utils import validate_pytorch_loss, validate_pytorch_optim self.model_creator = model_creator optimizer = validate_pytorch_optim(optimizer_creator) self.optimizer_creator = optimizer loss = validate_pytorch_loss(loss_creator) self.loss_creator = loss def build(self, config): model = PytorchBaseModel(self.model_creator, self.optimizer_creator, self.loss_creator) model.build(config) return model
apache-2.0
hsiaoyi0504/scikit-learn
sklearn/linear_model/tests/test_theil_sen.py
234
9928
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause from __future__ import division, print_function, absolute_import import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from nose.tools import raises, assert_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model.theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model.theil_sen import _modified_weiszfeld_step from sklearn.utils.testing import assert_greater, assert_less @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') yield sys.stdout.flush() sys.stderr.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(np.abs(lstq.coef_ - w), 0.9) # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_greater(np.abs(lstq.coef_ - w - c), 0.5) # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert_less(np.abs(bp - 1 + 1/(np.sqrt(2))), 1.e-6) @raises(ValueError) def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(max_subpopulation=-1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=1, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() TheilSenRegressor(n_subsamples=101, random_state=0).fit(X, y) @raises(ValueError) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) TheilSenRegressor(n_subsamples=9, random_state=0).fit(X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert_greater(norm(lstq.coef_ - w), 1.0) # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=-1, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
bsd-3-clause
robbymeals/scikit-learn
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
alexeyum/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
127
1270
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import matplotlib.pyplot as plt from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) plt.figure('scikit-learn parallel %s benchmark results' % func.__name__) plt.plot(sample_sizes, one_core, label="one core") plt.plot(sample_sizes, multi_core, label="multi core") plt.xlabel('n_samples') plt.ylabel('Time (s)') plt.title('Parallel %s' % func.__name__) plt.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) plt.show()
bsd-3-clause
ERA-URBAN/hurp
hurp/Traffic2wrfchemi_v4.py
1
22560
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import netCDF4 as nc import os from sys import platform def traffic2wrfchemi(datapath, wrfchemipath, month, day): # SNAP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TP_moy = dict() # Month of Year TP_dow = dict() # Day of Week TP_hod = dict() # Hour of Day TP_moy['Jan'] = np.array([1.000, 1.060, 0.950, 1.060, 1.000, 1.200, 0.880, 0.450, 1.000, 1.060, 1.200, 1.000, 0.880, 0.880]) TP_moy['Feb'] = np.array([1.000, 1.047, 0.960, 1.047, 1.000, 1.150, 0.920, 1.300, 1.000, 1.047, 1.200, 1.000, 0.920, 0.920]) TP_moy['Mar'] = np.array([1.000, 1.035, 1.020, 1.035, 1.000, 1.050, 0.980, 2.350, 1.000, 1.035, 1.200, 1.000, 0.980, 0.980]) TP_moy['Apr'] = np.array([1.000, 1.010, 1.000, 1.010, 1.000, 1.000, 1.030, 1.700, 1.000, 1.010, 0.800, 1.000, 1.030, 1.030]) TP_moy['May'] = np.array([1.000, 0.985, 1.010, 0.985, 1.000, 0.900, 1.050, 0.850, 1.000, 0.985, 0.800, 1.000, 1.050, 1.050]) TP_moy['Jun'] = np.array([1.000, 0.960, 1.030, 0.960, 1.000, 0.850, 1.060, 0.850, 1.000, 0.960, 0.800, 1.000, 1.060, 1.060]) TP_moy['Jul'] = np.array([1.000, 0.965, 1.030, 0.965, 1.000, 0.800, 1.010, 0.850, 1.000, 0.965, 0.800, 1.000, 1.010, 1.010]) TP_moy['Aug'] = np.array([1.000, 0.935, 1.010, 0.935, 1.000, 0.875, 1.020, 1.000, 1.000, 0.935, 0.800, 1.000, 1.020, 1.020]) TP_moy['Sep'] = np.array([1.000, 0.995, 1.040, 0.995, 1.000, 0.950, 1.060, 1.100, 1.000, 0.995, 0.800, 1.000, 1.060, 1.060]) TP_moy['Oct'] = np.array([1.000, 1.010, 1.030, 1.010, 1.000, 1.000, 1.050, 0.650, 1.000, 1.010, 1.200, 1.000, 1.050, 1.050]) TP_moy['Nov'] = np.array([1.000, 1.023, 1.010, 1.023, 1.000, 1.075, 1.010, 0.450, 1.000, 1.023, 1.200, 1.000, 1.010, 1.010]) TP_moy['Dec'] = np.array([1.000, 0.975, 0.910, 0.975, 1.000, 1.150, 0.930, 0.450, 1.000, 0.975, 1.200, 1.000, 0.930, 0.930]) TP_dow['Mon'] = np.array([1.000, 1.050, 1.200, 1.050, 1.000, 1.060, 1.020, 1.000, 1.000, 1.050, 1.000, 1.000, 1.000, 1.020]) TP_dow['Tue'] = np.array([1.000, 1.050, 1.200, 1.050, 1.000, 1.060, 1.060, 1.000, 1.000, 1.050, 1.000, 1.000, 1.000, 1.060]) TP_dow['Wed'] = np.array([1.000, 1.050, 1.200, 1.050, 1.000, 1.060, 1.080, 1.000, 1.000, 1.050, 1.000, 1.000, 1.000, 1.080]) TP_dow['Thu'] = np.array([1.000, 1.050, 1.200, 1.050, 1.000, 1.060, 1.100, 1.000, 1.000, 1.050, 1.000, 1.000, 1.000, 1.100]) TP_dow['Fri'] = np.array([1.000, 1.050, 1.200, 1.050, 1.000, 1.060, 1.140, 1.000, 1.000, 1.050, 1.000, 1.000, 1.000, 1.140]) TP_dow['Sat'] = np.array([1.000, 0.910, 0.500, 0.910, 1.000, 0.850, 0.810, 1.000, 1.000, 0.910, 1.000, 1.000, 1.000, 0.810]) TP_dow['Sun'] = np.array([1.000, 0.840, 0.500, 0.840, 1.000, 0.850, 0.790, 1.000, 1.000, 0.840, 1.000, 1.000, 1.000, 0.790]) TP_hod['00'] = np.array([1.000, 0.875, 0.500, 0.875, 1.000, 0.790, 0.190, 0.600, 1.000, 0.875, 1.000, 1.000, 1.000, 0.190]) TP_hod['01'] = np.array([1.000, 0.875, 0.350, 0.875, 1.000, 0.720, 0.090, 0.600, 1.000, 0.875, 1.000, 1.000, 1.000, 0.090]) TP_hod['02'] = np.array([1.000, 0.890, 0.200, 0.890, 1.000, 0.720, 0.060, 0.600, 1.000, 0.890, 1.000, 1.000, 1.000, 0.060]) TP_hod['03'] = np.array([1.000, 0.910, 0.100, 0.910, 1.000, 0.710, 0.050, 0.600, 1.000, 0.910, 1.000, 1.000, 1.000, 0.050]) TP_hod['04'] = np.array([1.000, 0.940, 0.100, 0.940, 1.000, 0.740, 0.090, 0.600, 1.000, 0.940, 1.000, 1.000, 1.000, 0.090]) TP_hod['05'] = np.array([1.000, 0.975, 0.200, 0.975, 1.000, 0.800, 0.220, 0.650, 1.000, 0.975, 1.000, 1.000, 1.000, 0.220]) TP_hod['06'] = np.array([1.000, 1.010, 0.750, 1.010, 1.000, 0.920, 0.860, 0.750, 1.000, 1.010, 1.000, 1.000, 1.000, 0.860]) TP_hod['07'] = np.array([1.000, 1.045, 1.250, 1.045, 1.000, 1.080, 1.840, 0.900, 1.000, 1.045, 1.000, 1.000, 1.000, 1.840]) TP_hod['08'] = np.array([1.000, 1.080, 1.400, 1.080, 1.000, 1.190, 1.860, 1.100, 1.000, 1.080, 1.000, 1.000, 1.000, 1.860]) TP_hod['09'] = np.array([1.000, 1.110, 1.500, 1.110, 1.000, 1.220, 1.410, 1.350, 1.000, 1.110, 1.000, 1.000, 1.000, 1.410]) TP_hod['10'] = np.array([1.000, 1.140, 1.500, 1.140, 1.000, 1.210, 1.240, 1.450, 1.000, 1.140, 1.000, 1.000, 1.000, 1.240]) TP_hod['11'] = np.array([1.000, 1.150, 1.500, 1.150, 1.000, 1.210, 1.200, 1.600, 1.000, 1.150, 1.000, 1.000, 1.000, 1.200]) TP_hod['12'] = np.array([1.000, 1.110, 1.500, 1.110, 1.000, 1.170, 1.320, 1.650, 1.000, 1.110, 1.000, 1.000, 1.000, 1.320]) TP_hod['13'] = np.array([1.000, 1.120, 1.500, 1.120, 1.000, 1.150, 1.440, 1.750, 1.000, 1.120, 1.000, 1.000, 1.000, 1.440]) TP_hod['14'] = np.array([1.000, 1.125, 1.500, 1.125, 1.000, 1.140, 1.450, 1.700, 1.000, 1.125, 1.000, 1.000, 1.000, 1.450]) TP_hod['15'] = np.array([1.000, 1.080, 1.500, 1.080, 1.000, 1.130, 1.590, 1.550, 1.000, 1.080, 1.000, 1.000, 1.000, 1.590]) TP_hod['16'] = np.array([1.000, 1.040, 1.500, 1.040, 1.000, 1.100, 2.030, 1.350, 1.000, 1.040, 1.000, 1.000, 1.000, 2.030]) TP_hod['17'] = np.array([1.000, 1.005, 1.400, 1.005, 1.000, 1.070, 2.080, 1.100, 1.000, 1.005, 1.000, 1.000, 1.000, 2.080]) TP_hod['18'] = np.array([1.000, 0.975, 1.250, 0.975, 1.000, 1.040, 1.510, 0.900, 1.000, 0.975, 1.000, 1.000, 1.000, 1.510]) TP_hod['19'] = np.array([1.000, 0.950, 1.100, 0.950, 1.000, 1.020, 1.060, 0.750, 1.000, 0.950, 1.000, 1.000, 1.000, 1.060]) TP_hod['20'] = np.array([1.000, 0.925, 1.000, 0.925, 1.000, 1.020, 0.740, 0.650, 1.000, 0.925, 1.000, 1.000, 1.000, 0.740]) TP_hod['21'] = np.array([1.000, 0.905, 0.900, 0.905, 1.000, 1.010, 0.620, 0.600, 1.000, 0.905, 1.000, 1.000, 1.000, 0.620]) TP_hod['22'] = np.array([1.000, 0.890, 0.800, 0.890, 1.000, 0.960, 0.610, 0.600, 1.000, 0.890, 1.000, 1.000, 1.000, 0.610]) TP_hod['23'] = np.array([1.000, 0.875, 0.700, 0.875, 1.000, 0.880, 0.440, 0.600, 1.000, 0.875, 1.000, 1.000, 1.000, 0.440]) # define months/days of week moys = ('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') dows = ('Mon','Tue','Wed','Thu','Fri','Sat','Sun') infilename1 = '%s/resulting_intensities_onGrid_binnenstad.csv'%datapath infilename2 = '%s/resulting_intensities_onGrid_snelweg.csv'%datapath infilename3 = '%s/NEI_wrfchemi_00z_d04_%s_%s'%(wrfchemipath,moys[month-1], dows[day]) if not 'progress' in globals(): progress = list() if not 'dataloaded' in progress: #--- load grid from existing wrfchemi file print('Loading grid data from %s'%infilename3) ncfile = nc.Dataset(infilename3,'r') xlon = ncfile.variables['XLONG'][:] xlat = ncfile.variables['XLAT'] [:] ncfile.close() # --- initialise traffic intensity matrices I_city_L = xlat * 0 # veh/24h I_city_M = xlat * 0 # veh/24h I_city_H = xlat * 0 # veh/24h I_ring_L = xlat * 0 # veh/24h I_ring_M = xlat * 0 # veh/24h I_ring_H = xlat * 0 # veh/24h #--- load traffic intensities for city print('Loading traffic intensity data from %s'%infilename1) infile = open(infilename1,'r') iline = -1 for line in infile: iline = iline+1 if iline > 1: #,lat,lon,gridId,STRAATNAAM,KM_LV24_x,KM_MV24_x,KM_ZV24_x words = line.split(',') if not words[5]: words[5] = 0 if not words[6]: words[6] = 0 if(not words[7] or (words[7] == '\r\n')): words[7] = 0 order = np.int (words[0]) lat = np.float(words[1]) lon = np.float(words[2]) gridID = np.int (words[3]) NAME = words[4] LVDU_x = np.float(words[5]) # light veh km's driven in grid cell in 24h MVDU_x = np.float(words[6]) # middle veh km's driven in grid cell in 24h ZVDU_x = np.float(words[7]) # heavy veh km's driven in grid cell in 24h distance = np.square(xlon-lon) + np.square(xlat-lat) iy,ix = np.where( distance == distance.min() ) # if distance[iy,ix] > 1e-10: # print('(lat,lon) = (%12.10f,%12.10f),(xlat,xlon) = (%12.10f,%12.10f)'%(lat,lon,xlat[iy,ix],xlon[iy,ix])) # print('(dlat,dlon)=(%f,%f)'%(xlat[iy,ix]-lat,xlon[iy,ix]-lon)) if I_city_L[iy,ix] > 0: print('warning: I_city_L[%3d,%3d] is not empty!'%(iy,ix)) if I_city_M[iy,ix] > 0: print('warning: I_city_M[%3d,%3d] is not empty!'%(iy,ix)) if I_city_H[iy,ix] > 0: print('warning: I_city_H[%3d,%3d] is not empty!'%(iy,ix)) I_city_L[iy,ix] = I_city_L[iy,ix] + LVDU_x I_city_M[iy,ix] = I_city_M[iy,ix] + MVDU_x I_city_H[iy,ix] = I_city_H[iy,ix] + ZVDU_x infile.close() words = '' #--- load traffic intensities for ring print('Loading traffic intensity data from %s'%infilename2) infile = open(infilename2,'r') iline = -1 for line in infile: iline = iline+1 if iline > 1: #city: ,lat,lon,gridId,NAME, LVDU_x,MVDU_x,ZVDU_x,Shape_Length_x #ring: ,lat,lon,gridId,STRAATNAAM,LVDU_x,MVDU_x,ZVDU_x words = line.split(',') print words[7] words[7] = words[7].rstrip() if not words[5] : words[5] = 0 if not words[6] : words[6] = 0 if (not words[7] or (words[7] == '\r\n')): words[7] = 0 order = np.int (words[0]) lat = np.float(words[1]) lon = np.float(words[2]) gridID = np.int (words[3]) NAME = words[4] LVDU_x = np.float(words[5]) # light veh km's driven in grid cell in 24h MVDU_x = np.float(words[6]) # middle veh km's driven in grid cell in 24h ZVDU_x = np.float(words[7]) # heavy veh km's driven in grid cell in 24h distance = np.square(xlon-lon) + np.square(xlat-lat) iy,ix = np.where( distance == distance.min() ) # if distance[iy,ix] > 1e-10: # print('(lat,lon) = (%12.10f,%12.10f),(xlat,xlon) = (%12.10f,%12.10f)'%(lat,lon,xlat[iy,ix],xlon[iy,ix])) # print('(dlat,dlon)=(%f,%f)'%(xlat[iy,ix]-lat,xlon[iy,ix]-lon)) if I_ring_L[iy,ix] > 0: print('warning: I_ring_L[%3d,%3d] is not empty!'%(iy,ix)) if I_ring_M[iy,ix] > 0: print('warning: I_ring_M[%3d,%3d] is not empty!'%(iy,ix)) if I_ring_H[iy,ix] > 0: print('warning: I_ring_H[%3d,%3d] is not empty!'%(iy,ix)) I_ring_L[iy,ix] = I_ring_L[iy,ix] + LVDU_x I_ring_M[iy,ix] = I_ring_M[iy,ix] + MVDU_x I_ring_H[iy,ix] = I_ring_H[iy,ix] + ZVDU_x infile.close() progress.append('dataloaded') #--- Emissions g2mole_NOx = 1./46. # M_NO2 = 46 g/mole g2kg = 0.001 day2hr = 1/24. A = 0.1 * 0.1 # km2 f_city_L_NOx = 0.35 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Stad-normaal 2017; licht verkeer f_city_M_NOx = 5.63 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Stad-normaal 2017; middelzwaar verkeer f_city_H_NOx = 6.78 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Stad-normaal 2017; zwaar verkeer f_city_L_PM10 = 0.036 * g2kg # g/km/veh PM10 (verbranding+slijtage); Stad-normaal 2017; licht verkeer f_city_M_PM10 = 0.175 * g2kg # g/km/veh PM10 (verbranding+slijtage); Stad-normaal 2017; middelzwaar verkeer f_city_H_PM10 = 0.183 * g2kg # g/km/veh PM10 (verbranding+slijtage); Stad-normaal 2017; zwaar verkeer f_ring_L_NOx = 0.27 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Snelweg-vrije doorstroming 2017; licht verkeer f_ring_M_NOx = 2.42 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Snelweg-vrije doorstroming 2017; middelzwaar verkeer f_ring_H_NOx = 2.41 * g2mole_NOx # g/km/veh NOx in NO2-equivalenten; Snelweg-vrije doorstroming 2017; zwaar verkeer f_ring_L_PM10 = 0.024 * g2kg # g/km/veh PM10 (verbranding+slijtage); Snelweg-vrije doorstroming 2017; licht verkeer f_ring_M_PM10 = 0.097 * g2kg # g/km/veh PM10 (verbranding+slijtage); Snelweg-vrije doorstroming 2017; middelzwaar verkeer f_ring_H_PM10 = 0.090 * g2kg # g/km/veh PM10 (verbranding+slijtage); Snelweg-vrije doorstroming 2017; zwaar verkeer E_NOx_traf = day2hr/A * (I_city_L * f_city_L_NOx + I_city_M * f_city_M_NOx + I_city_H * f_city_H_NOx + \ I_ring_L * f_ring_L_NOx + I_ring_M * f_ring_M_NOx + I_ring_H * f_ring_H_NOx) # veh-km/day * days2hr * g/km/veh * g2mole / km2 = mole/km2/hr E_PM10_traf = day2hr/A * (I_city_L * f_city_L_PM10 + I_city_M * f_city_M_PM10 + I_city_H * f_city_H_PM10 + \ I_ring_L * f_ring_L_PM10 + I_ring_M * f_ring_M_PM10 + I_ring_H * f_ring_H_PM10) # veh-km/day * days2hr * g/km/veh * g2kg / km2 = kg/km2/hr if not 'wrfchemi_written' in progress: ncinfilenames = [os.path.join(wrfchemipath,filename) for filename in os.listdir(wrfchemipath) if (filename.startswith('NEI_wrfchemi') and 'd04' in filename)] for ncinfilename in ncinfilenames: zTime = ncinfilename[-15:-12] domain = 'd04' moy = ncinfilename[ -7: -4] dow = ncinfilename[ -3: ] zTimeOffset = 12 if zTime == '12z' else 0 ncoutfilename = '%s/NEI_Traffic_wrfchemi_%s_%s_%s_%s'%(wrfchemipath,zTime,domain,moy,dow) ncinfile = nc.Dataset(ncinfilename,'r') Times = ncinfile.variables['Times' ][:] xlat = ncinfile.variables['XLAT' ][:] xlon = ncinfile.variables['XLONG' ][:] E_NOx_stat = ncinfile.variables['E_NOx_stat' ][:] E_PM10_stat = ncinfile.variables['E_PM10_stat'][:] ncoutfile = nc.Dataset(ncoutfilename,'w') nz = 1 nlat,nlon = xlat.shape ncoutfile.createDimension('Time', None) # will be 12 ncoutfile.createDimension('bottom_top' , nz) ncoutfile.createDimension('south_north', nlat) ncoutfile.createDimension('west_east' , nlon) ncoutfile.createDimension('DateStrLen' , 19) ncTimes = ncoutfile.createVariable('Times' ,'c',dimensions=('Time','DateStrLen')) ncXLAT = ncoutfile.createVariable('XLAT' ,'d',dimensions=('south_north','west_east')) ncXLONG = ncoutfile.createVariable('XLONG' ,'d',dimensions=('south_north','west_east')) ncE_NOx_stat = ncoutfile.createVariable('E_NOx_stat' ,'d',dimensions=('Time','bottom_top','south_north','west_east'),fill_value = -1.e34) ncE_NOx_traf = ncoutfile.createVariable('E_NOx_traf' ,'d',dimensions=('Time','bottom_top','south_north','west_east'),fill_value = -1.e34) ncE_PM10_stat = ncoutfile.createVariable('E_PM10_stat' ,'d',dimensions=('Time','bottom_top','south_north','west_east'),fill_value = -1.e34) ncE_PM10_traf = ncoutfile.createVariable('E_PM10_traf' ,'d',dimensions=('Time','bottom_top','south_north','west_east'),fill_value = -1.e34) ncTimes[:] = Times ncXLAT.FieldType = 104. ncXLAT.MemoryOrder = 'XY' ncXLAT.description = 'LATITUDE, SOUTH IS NEGATIVE' ncXLAT.units = 'degree_north' ncXLAT.stagger = ' ' ncXLAT.coordinates = 'XLONG XLAT' ncXLAT[:] = xlat ncXLONG.FieldType = 104. ncXLONG.MemoryOrder = 'XY' ncXLONG.description = 'LONGGITUDE, WEST IS NEGATIVE' ncXLONG.units = 'degree_north' ncXLONG.stagger = ' ' ncXLONG.coordinates = 'XLONG XLAT' ncXLONG[:] = xlon ncE_NOx_stat.FieldType = 104. ncE_NOx_stat.MemoryOrder = 'XYZ' ncE_NOx_stat.description = 'NOx emissions from stationary sources' ncE_NOx_stat.units = 'mole/km2/hr' ncE_NOx_stat.stagger = ' ' ncE_NOx_stat.coordinates = 'XLONG XLAT' ncE_NOx_stat[:] = E_NOx_stat ncE_NOx_traf.FieldType = 104. ncE_NOx_traf.MemoryOrder = 'XYZ' ncE_NOx_traf.description = 'NOx emissions from road traffic' ncE_NOx_traf.units = 'mole/km2/hr' ncE_NOx_traf.stagger = ' ' ncE_NOx_traf.coordinates = 'XLONG XLAT' Isnap = 13 for it in range(12): TP = TP_hod['%02d'%(it+zTimeOffset)][Isnap] * TP_dow[dow][Isnap] * TP_moy[moy][Isnap] ncE_NOx_traf[it,0,:,:] = TP*E_NOx_traf # TP2 = np.tile(TP[...,np.newaxis,np.newaxis],(1,nlat,nlon)) ncE_PM10_stat.FieldType = 104. ncE_PM10_stat.MemoryOrder = 'XYZ' ncE_PM10_stat.description = 'PM10 emissions from stationary sources' ncE_PM10_stat.units = 'kg/km2/hr' ncE_PM10_stat.stagger = ' ' ncE_PM10_stat.coordinates = 'XLONG XLAT' ncE_PM10_stat[:] = E_PM10_stat ncE_PM10_traf.FieldType = 104. ncE_PM10_traf.MemoryOrder = 'XYZ' ncE_PM10_traf.description = 'PM10 emissions from road traffic' ncE_PM10_traf.units = 'kg/km2/hr' ncE_PM10_traf.stagger = ' ' ncE_PM10_traf.coordinates = 'XLONG XLAT' Isnap = 13 for it in range(12): TP = TP_hod['%02d'%(it+zTimeOffset)][Isnap] * TP_dow[dow][Isnap] * TP_moy[moy][Isnap] # TP2 = np.tile(TP[...,np.newaxis,np.newaxis],(1,nlat,nlon)) ncE_PM10_traf[it,0,:,:] = TP*E_PM10_traf ncoutfile.CEN_LAT = ncinfile.getncattr('CEN_LAT') ncoutfile.CEN_LON = ncinfile.getncattr('CEN_LON') ncoutfile.TRUELAT1 = ncinfile.getncattr('TRUELAT1') ncoutfile.TRUELAT2 = ncinfile.getncattr('TRUELAT2') ncoutfile.MOAD_CEN_LAT = ncinfile.getncattr('MOAD_CEN_LAT') ncoutfile.STAND_LON = ncinfile.getncattr('STAND_LON') ncoutfile.POLE_LAT = ncinfile.getncattr('POLE_LAT') ncoutfile.POLE_LON = ncinfile.getncattr('POLE_LON') ncoutfile.GMT = ncinfile.getncattr('GMT') ncoutfile.JULYR = ncinfile.getncattr('JULYR') ncoutfile.JULDAY = ncinfile.getncattr('JULDAY') ncoutfile.MAP_PROJ = ncinfile.getncattr('MAP_PROJ') ncoutfile.MMINLU = ncinfile.getncattr('MMINLU') ncoutfile.NUM_LAND_CAT = ncinfile.getncattr('NUM_LAND_CAT') ncoutfile.ISWATER = ncinfile.getncattr('ISWATER') ncoutfile.ISLAKE = ncinfile.getncattr('ISLAKE') ncoutfile.ISICE = ncinfile.getncattr('ISICE') ncoutfile.ISURBAN = ncinfile.getncattr('ISURBAN') ncoutfile.ISOILWATER = ncinfile.getncattr('ISOILWATER') ncinfile.close() ncoutfile.close() progress.append('wrfchemi_written') if False: f = plt.figure(1) f.clf() vmax = 2000. ax = f.add_subplot(231) ax.pcolor(xlon,xlat,I_city_L,vmax=vmax) ax.set_title('I city light') ax = f.add_subplot(232) ax.pcolor(xlon,xlat,I_city_M,vmax=vmax) ax.set_title('I city middle') ax = f.add_subplot(233) ax.pcolor(xlon,xlat,I_city_H,vmax=vmax) ax.set_title('I city heavy') ax = f.add_subplot(234) ax.pcolor(xlon,xlat,I_ring_L,vmax=vmax) ax.set_title('I ring light') ax = f.add_subplot(235) ax.pcolor(xlon,xlat,I_ring_M,vmax=vmax) ax.set_title('I ring middle') ax = f.add_subplot(236) ax.pcolor(xlon,xlat,I_ring_H,vmax=vmax) ax.set_title('I ring heavy') f = plt.figure(2) f.clf() ax = f.add_subplot(121) ax.pcolor(xlon,xlat,E_NOx) ax.set_title('E_NOx') ax = f.add_subplot(122) ax.pcolor(xlon,xlat,E_PM10) ax.set_title('E_PM10') f = plt.figure(3) f.clf() ax = f.add_subplot(111) ax.pcolor(xlon,xlat,L_city) if __name__=="__main__": month = 'Mar' if platform == 'win32': trafficpath = 'u:\AMS_Stimulus_2016\Data_share\Verkeersintensiteiten per grid ring en binnenstad' wrfchemipath = 'u:\AMS_Stimulus_2016\Data_share\Emissions\wrfchemi' elif platform == 'linux2': trafficpath = '/projects/0/aams/wrfv3/Data_share/Verkeersintensiteiten per grid ring en binnenstad' wrfchemipath = '/projects/0/aams/wrfv3/Data_share/Emissions/wrfchemi' traffic2wrfchemi(trafficpath, wrfchemipath, month)
apache-2.0
wazeerzulfikar/scikit-learn
benchmarks/bench_plot_neighbors.py
101
6469
""" Plot the scaling of the nearest neighbors algorithms with k, D, and N """ from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import ticker from sklearn import neighbors, datasets def get_data(N, D, dataset='dense'): if dataset == 'dense': np.random.seed(0) return np.random.random((N, D)) elif dataset == 'digits': X = datasets.load_digits().data i = np.argsort(X[0])[::-1] X = X[:, i] return X[:N, :D] else: raise ValueError("invalid dataset: %s" % dataset) def barplot_neighbors(Nrange=2 ** np.arange(1, 11), Drange=2 ** np.arange(7), krange=2 ** np.arange(10), N=1000, D=64, k=5, leaf_size=30, dataset='digits'): algorithms = ('kd_tree', 'brute', 'ball_tree') fiducial_values = {'N': N, 'D': D, 'k': k} #------------------------------------------------------------ # varying N N_results_build = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) N_results_query = dict([(alg, np.zeros(len(Nrange))) for alg in algorithms]) for i, NN in enumerate(Nrange): print("N = %i (%i out of %i)" % (NN, i + 1, len(Nrange))) X = get_data(NN, D, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=min(NN, k), algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() N_results_build[algorithm][i] = (t1 - t0) N_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying D D_results_build = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) D_results_query = dict([(alg, np.zeros(len(Drange))) for alg in algorithms]) for i, DD in enumerate(Drange): print("D = %i (%i out of %i)" % (DD, i + 1, len(Drange))) X = get_data(N, DD, dataset) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=k, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() D_results_build[algorithm][i] = (t1 - t0) D_results_query[algorithm][i] = (t2 - t1) #------------------------------------------------------------ # varying k k_results_build = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) k_results_query = dict([(alg, np.zeros(len(krange))) for alg in algorithms]) X = get_data(N, DD, dataset) for i, kk in enumerate(krange): print("k = %i (%i out of %i)" % (kk, i + 1, len(krange))) for algorithm in algorithms: nbrs = neighbors.NearestNeighbors(n_neighbors=kk, algorithm=algorithm, leaf_size=leaf_size) t0 = time() nbrs.fit(X) t1 = time() nbrs.kneighbors(X) t2 = time() k_results_build[algorithm][i] = (t1 - t0) k_results_query[algorithm][i] = (t2 - t1) plt.figure(figsize=(8, 11)) for (sbplt, vals, quantity, build_time, query_time) in [(311, Nrange, 'N', N_results_build, N_results_query), (312, Drange, 'D', D_results_build, D_results_query), (313, krange, 'k', k_results_build, k_results_query)]: ax = plt.subplot(sbplt, yscale='log') plt.grid(True) tick_vals = [] tick_labels = [] bottom = 10 ** np.min([min(np.floor(np.log10(build_time[alg]))) for alg in algorithms]) for i, alg in enumerate(algorithms): xvals = 0.1 + i * (1 + len(vals)) + np.arange(len(vals)) width = 0.8 c_bar = plt.bar(xvals, build_time[alg] - bottom, width, bottom, color='r') q_bar = plt.bar(xvals, query_time[alg], width, build_time[alg], color='b') tick_vals += list(xvals + 0.5 * width) tick_labels += ['%i' % val for val in vals] plt.text((i + 0.02) / len(algorithms), 0.98, alg, transform=ax.transAxes, ha='left', va='top', bbox=dict(facecolor='w', edgecolor='w', alpha=0.5)) plt.ylabel('Time (s)') ax.xaxis.set_major_locator(ticker.FixedLocator(tick_vals)) ax.xaxis.set_major_formatter(ticker.FixedFormatter(tick_labels)) for label in ax.get_xticklabels(): label.set_rotation(-90) label.set_fontsize(10) title_string = 'Varying %s' % quantity descr_string = '' for s in 'NDk': if s == quantity: pass else: descr_string += '%s = %i, ' % (s, fiducial_values[s]) descr_string = descr_string[:-2] plt.text(1.01, 0.5, title_string, transform=ax.transAxes, rotation=-90, ha='left', va='center', fontsize=20) plt.text(0.99, 0.5, descr_string, transform=ax.transAxes, rotation=-90, ha='right', va='center') plt.gcf().suptitle("%s data set" % dataset.capitalize(), fontsize=16) plt.figlegend((c_bar, q_bar), ('construction', 'N-point query'), 'upper right') if __name__ == '__main__': barplot_neighbors(dataset='digits') barplot_neighbors(dataset='dense') plt.show()
bsd-3-clause
ephes/scikit-learn
examples/decomposition/plot_pca_iris.py
253
1801
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= PCA example with Iris Data-set ========================================================= Principal Component Analysis applied to the Iris dataset. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target fig = plt.figure(1, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() pca = decomposition.PCA(n_components=3) pca.fit(X) X = pca.transform(X) for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 0].mean(), X[y == label, 1].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=y, cmap=plt.cm.spectral) x_surf = [X[:, 0].min(), X[:, 0].max(), X[:, 0].min(), X[:, 0].max()] y_surf = [X[:, 0].max(), X[:, 0].max(), X[:, 0].min(), X[:, 0].min()] x_surf = np.array(x_surf) y_surf = np.array(y_surf) v0 = pca.transform(pca.components_[0]) v0 /= v0[-1] v1 = pca.transform(pca.components_[1]) v1 /= v1[-1] ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
jmschrei/scikit-learn
examples/gaussian_process/plot_gpr_noisy_targets.py
45
3680
""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression example computed in two different ways: 1. A noise-free case 2. A noisy case with known noise-level per datapoint In both cases, the kernel's parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``alpha`` is applied as a Tikhonov regularization of the assumed covariance between the training points. """ print(__doc__) # Author: Vincent Dubourg <[email protected]> # Jake Vanderplas <[email protected]> # Jan Hendrik Metzen <[email protected]>s # Licence: BSD 3 clause import numpy as np from matplotlib import pyplot as pl from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) # ---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') # ---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Instanciate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=(dy / y) ** 2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show()
bsd-3-clause
Carralex/landlab
landlab/components/chi_index/channel_chi.py
5
26351
# -*- coding: utf-8 -*- """ Created March 2016. @author: dejh """ from __future__ import print_function from six.moves import range # this is Python 3's generator, not P2's list from landlab import ModelParameterDictionary, Component, FieldError, \ FIXED_VALUE_BOUNDARY, BAD_INDEX_VALUE, CLOSED_BOUNDARY import numpy as np try: from itertools import izip except ImportError: izip = zip class ChiFinder(Component): """ This component calculates chi indices, sensu Perron & Royden, 2013, for a Landlab landscape. Construction:: ChiFinder(grid, reference_concavity=0.5, min_drainage_area=1.e6, reference_area=1., use_true_dx=False) Parameters ---------- grid : RasterModelGrid A landlab RasterModelGrid. reference_concavity : float The reference concavity to use in the calculation. min_drainage_area : float (m**2) The drainage area down to which to calculate chi. reference_area : float or None (m**2) If None, will default to the mean core cell area on the grid. Else, provide a value to use. Essentially becomes a prefactor on the value of chi. use_true_dx : bool (default False) If True, integration to give chi is performed using each value of node spacing along the channel (which can lead to a quantization effect, and is not preferred by Taylor & Royden). If False, the mean value of node spacing along the all channels is assumed everywhere. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter, FastscapeEroder >>> mg = RasterModelGrid((3, 4), 1.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> _ = mg.add_field('node', 'topographic__elevation', mg.node_x) >>> fr = FlowRouter(mg) >>> cf = ChiFinder(mg, min_drainage_area=1., reference_concavity=1.) >>> fr.run_one_step() >>> cf.calculate_chi() >>> mg.at_node['channel__chi_index'].reshape(mg.shape)[1, :] array([ 0.5, 1. , 2. , 0. ]) >>> mg2 = RasterModelGrid((5, 5), 100.) >>> for nodes in (mg2.nodes_at_right_edge, mg2.nodes_at_bottom_edge, ... mg2.nodes_at_top_edge): ... mg2.status_at_node[nodes] = CLOSED_BOUNDARY >>> _ = mg2.add_zeros('node', 'topographic__elevation') >>> mg2.at_node['topographic__elevation'][mg2.core_nodes] = mg2.node_x[ ... mg2.core_nodes]/1000. >>> np.random.seed(0) >>> mg2.at_node['topographic__elevation'][ ... mg2.core_nodes] += np.random.rand(mg2.number_of_core_nodes) >>> fr2 = FlowRouter(mg2) >>> sp2 = FastscapeEroder(mg2, K_sp=0.01) >>> cf2 = ChiFinder(mg2, min_drainage_area=0., reference_concavity=0.5) >>> for i in range(10): ... mg2.at_node['topographic__elevation'][mg2.core_nodes] += 10. ... fr2.run_one_step() ... sp2.run_one_step(1000.) >>> fr2.run_one_step() >>> cf2.calculate_chi() >>> mg2.at_node['channel__chi_index'].reshape( ... mg2.shape) # doctest: +NORMALIZE_WHITESPACE array([[ 0. , 0. , 0. , 0. , 0. ], [ 0.77219416, 1.54438833, 2.63643578, 2.61419437, 0. ], [ 1.09204746, 2.18409492, 1.52214691, 2.61419437, 0. ], [ 0.44582651, 0.89165302, 1.66384718, 2.75589464, 0. ], [ 0. , 0. , 0. , 0. , 0. ]]) >>> cf2.calculate_chi(min_drainage_area=20000., use_true_dx=True, ... reference_area=mg2.at_node['drainage_area'].max()) >>> cf2.chi_indices.reshape(mg2.shape) # doctest: +NORMALIZE_WHITESPACE array([[ 0. , 0. , 0. , 0. , 0. ], [ 0. , 173.20508076, 0. , 0. , 0. ], [ 0. , 0. , 270.71067812, 0. , 0. ], [ 0. , 100. , 236.60254038, 0. , 0. ], [ 0. , 0. , 0. , 0. , 0. ]]) >>> cf2.hillslope_mask.reshape(mg2.shape) array([[ True, True, True, True, True], [False, False, True, True, True], [ True, True, False, True, True], [False, False, False, True, True], [ True, True, True, True, True]], dtype=bool) """ _name = 'ChiFinder' _input_var_names = ( 'topographic__elevation', 'drainage_area', 'topographic__steepest_slope', 'flow__receiver_node', 'flow__upstream_node_order', 'flow__link_to_receiver_node', ) _output_var_names = ( 'channel__chi_index', ) _var_units = {'topographic__elevation': 'm', 'drainage_area': 'm**2', 'topographic__steepest_slope': '-', 'flow__receiver_node': '-', 'flow__upstream_node_order': '-', 'flow__link_to_receiver_node': '-', 'channel__chi_index': 'variable', } _var_mapping = {'topographic__elevation': 'node', 'drainage_area': 'node', 'topographic__steepest_slope': 'node', 'flow__receiver_node': 'node', 'flow__upstream_node_order': 'node', 'flow__link_to_receiver_node': 'node', 'channel__chi_index': 'node', } _var_doc = {'topographic__elevation': 'Surface topographic elevation', 'drainage_area': 'upstream drainage area', 'topographic__steepest_slope': ('the steepest downslope ' + 'rise/run leaving the node'), 'flow__receiver_node': ('the downstream node at the end of the ' + 'steepest link'), 'flow__upstream_node_order': ('node order such that nodes must ' + 'appear in the list after all nodes ' + 'downstream of them'), 'flow__link_to_receiver_node': ('ID of link downstream of each node, which carries the ' + 'discharge'), 'channel__chi_index': 'the local steepness index', } def __init__(self, grid, reference_concavity=0.5, min_drainage_area=1.e6, reference_area=1., use_true_dx=False, **kwds): """ Constructor for the component. """ self._grid = grid self._reftheta = reference_concavity self.min_drainage = min_drainage_area if reference_area is None: try: self._A0 = float(self.grid.cell_area_at_node) except TypeError: # was an array self._A0 = self.grid.cell_area_at_node[ self.grid.core_nodes].mean() else: assert reference_area > 0. self._A0 = reference_area self.use_true_dx = use_true_dx self.chi = self._grid.add_zeros('node', 'channel__chi_index') self._mask = self.grid.ones('node', dtype=bool) # this one needs modifying if smooth_elev self._elev = self.grid.at_node['topographic__elevation'] def calculate_chi(self, **kwds): """ This is the main method. Call it to calculate local chi indices at all points with drainage areas greater than *min_drainage_area*. This "run" method can optionally take the same parameter set as provided at instantiation. If they are provided, they will override the existing values from instantiation. Chi of any node without a defined value is reported as 0. These nodes are also identified in the mask retrieved with :func:`hillslope_mask`. """ self._mask.fill(True) self.chi.fill(0.) # test for new kwds: reftheta = kwds.get('reference_concavity', self._reftheta) min_drainage = kwds.get('min_drainage_area', self.min_drainage) A0 = kwds.get('reference_area', self._A0) if A0 is None: try: A0 = float(self.grid.cell_area_at_node) except TypeError: A0 = self.grid.cell_area_at_node[self.grid.core_nodes].mean() assert A0 > 0. use_true_dx = kwds.get('use_true_dx', self.use_true_dx) upstr_order = self.grid.at_node['flow__upstream_node_order'] # get an array of only nodes with A above threshold: valid_upstr_order = upstr_order[self.grid.at_node['drainage_area'][ upstr_order] >= min_drainage] valid_upstr_areas = self.grid.at_node['drainage_area'][ valid_upstr_order] if not use_true_dx: chi_integrand = (A0/valid_upstr_areas)**reftheta mean_dx = self.mean_channel_node_spacing(valid_upstr_order) self.integrate_chi_avg_dx(valid_upstr_order, chi_integrand, self.chi, mean_dx) else: chi_integrand = self.grid.zeros('node') chi_integrand[valid_upstr_order] = (A0/valid_upstr_areas)**reftheta self.integrate_chi_each_dx(valid_upstr_order, chi_integrand, self.chi) # stamp over the closed nodes, as it's possible they can receive infs # if min_drainage_area < grid.cell_area_at_node self.chi[self.grid.status_at_node == CLOSED_BOUNDARY] = 0. self._mask[valid_upstr_order] = False def integrate_chi_avg_dx(self, valid_upstr_order, chi_integrand, chi_array, mean_dx): """ Calculates chi at each channel node by summing chi_integrand. This method assumes a uniform, mean spacing between nodes. Method is deliberately split out for potential cythonization at a later stage. Parameters ---------- valid_upstr_order : array of ints nodes in the channel network in upstream order. chi_integrand : array of floats The value (A0/A)**concavity, in upstream order. chi_array : array of floats Array in which to store chi. mean_dx : float The mean node spacing in the network. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter >>> mg = RasterModelGrid((5, 4), 1.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> z = mg.node_x.copy() >>> z[[5, 13]] = z[6] # guard nodes >>> _ = mg.add_field('node', 'topographic__elevation', z) >>> fr = FlowRouter(mg) >>> cf = ChiFinder(mg) >>> fr.run_one_step() >>> ch_nodes = np.array([4, 8, 12, 5, 9, 13, 6, 10, 14]) >>> ch_integrand = 3.*np.ones(9, dtype=float) # to make calc clearer >>> chi_array = np.zeros(mg.number_of_nodes, dtype=float) >>> cf.integrate_chi_avg_dx(ch_nodes, ch_integrand, chi_array, 0.5) >>> chi_array.reshape(mg.shape) array([[ 0. , 0. , 0. , 0. ], [ 1.5, 3. , 4.5, 0. ], [ 1.5, 3. , 4.5, 0. ], [ 1.5, 3. , 4.5, 0. ], [ 0. , 0. , 0. , 0. ]]) """ receivers = self.grid.at_node['flow__receiver_node'] # because chi_array is all zeros, BC cases where node is receiver # resolve themselves for (node, integrand) in izip(valid_upstr_order, chi_integrand): dstr_node = receivers[node] chi_array[node] = chi_array[dstr_node] + integrand chi_array *= mean_dx def integrate_chi_each_dx(self, valid_upstr_order, chi_integrand_at_nodes, chi_array): """ Calculates chi at each channel node by summing chi_integrand*dx. This method accounts explicitly for spacing between each node. Method is deliberately split out for potential cythonization at a later stage. Uses a trapezium integration method. Parameters ---------- valid_upstr_order : array of ints nodes in the channel network in upstream order. chi_integrand_at_nodes : array of floats The value (A0/A)**concavity, in *node* order. chi_array : array of floats Array in which to store chi. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter >>> mg = RasterModelGrid((5, 4), 3.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> z = mg.node_x.copy() >>> z[[5, 13]] = z[6] # guard nodes >>> _ = mg.add_field('node', 'topographic__elevation', z) >>> fr = FlowRouter(mg) >>> cf = ChiFinder(mg) >>> fr.run_one_step() >>> ch_nodes = np.array([4, 8, 12, 5, 9, 13, 6, 10, 14]) >>> ch_integrand = 2.*np.ones(mg.number_of_nodes, ... dtype=float) # to make calc clearer >>> chi_array = np.zeros(mg.number_of_nodes, dtype=float) >>> cf.integrate_chi_each_dx(ch_nodes, ch_integrand, chi_array) >>> chi_array.reshape(mg.shape) array([[ 0. , 0. , 0. , 0. ], [ 0. , 6. , 14.48528137, 0. ], [ 0. , 6. , 12. , 0. ], [ 0. , 6. , 14.48528137, 0. ], [ 0. , 0. , 0. , 0. ]]) >>> from landlab.components import FastscapeEroder >>> mg2 = RasterModelGrid((5, 5), 100.) >>> for nodes in (mg2.nodes_at_right_edge, mg2.nodes_at_bottom_edge, ... mg2.nodes_at_top_edge): ... mg2.status_at_node[nodes] = CLOSED_BOUNDARY >>> _ = mg2.add_zeros('node', 'topographic__elevation') >>> mg2.at_node['topographic__elevation'][mg2.core_nodes] = mg2.node_x[ ... mg2.core_nodes]/1000. >>> np.random.seed(0) >>> mg2.at_node['topographic__elevation'][ ... mg2.core_nodes] += np.random.rand(mg2.number_of_core_nodes) >>> fr2 = FlowRouter(mg2) >>> sp2 = FastscapeEroder(mg2, K_sp=0.01) >>> cf2 = ChiFinder(mg2, min_drainage_area=1., reference_concavity=0.5, ... use_true_dx=True) >>> for i in range(10): ... mg2.at_node['topographic__elevation'][mg2.core_nodes] += 10. ... fr2.run_one_step() ... sp2.run_one_step(1000.) >>> fr2.run_one_step() >>> output_array = np.zeros(25, dtype=float) >>> cf2.integrate_chi_each_dx(mg2.at_node['flow__upstream_node_order'], ... np.ones(25, dtype=float), ... output_array) >>> output_array.reshape(mg2.shape) array([[ 0. , 0. , 0. , 0. , 0. ], [ 0. , 100. , 200. , 382.84271247, 0. ], [ 0. , 100. , 241.42135624, 341.42135624, 0. ], [ 0. , 100. , 200. , 300. , 0. ], [ 0. , 0. , 0. , 0. , 0. ]]) """ receivers = self.grid.at_node['flow__receiver_node'] links = self.grid.at_node['flow__link_to_receiver_node'] link_lengths = self.grid._length_of_link_with_diagonals # because chi_array is all zeros, BC cases where node is receiver # resolve themselves half_integrand = 0.5 * chi_integrand_at_nodes for node in valid_upstr_order: dstr_node = receivers[node] dstr_link = links[node] if dstr_link != BAD_INDEX_VALUE: dstr_length = link_lengths[dstr_link] half_head_val = half_integrand[node] half_tail_val = half_integrand[dstr_node] mean_val = half_head_val + half_tail_val chi_to_add = mean_val * dstr_length chi_array[node] = chi_array[dstr_node] + chi_to_add def mean_channel_node_spacing(self, ch_nodes): """ Calculates the mean spacing between all adjacent channel nodes. Parameters ---------- ch_nodes : array of ints The nodes within the defined channel network. Returns ------- mean_spacing : float (m) The mean spacing between all nodes in the network. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter >>> mg = RasterModelGrid((5, 4), 2.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> z = mg.node_x.copy() >>> z[[5, 13]] = z[6] # guard nodes >>> _ = mg.add_field('node', 'topographic__elevation', z) >>> fr = FlowRouter(mg) >>> cf = ChiFinder(mg) >>> fr.run_one_step() >>> ch_nodes = np.array([4, 8, 12, 5, 9, 13, 6, 10, 14]) >>> cf.mean_channel_node_spacing(ch_nodes) 2.2761423749153966 """ ch_links = self.grid.at_node['flow__link_to_receiver_node'][ch_nodes] ch_links_valid = ch_links[ch_links != BAD_INDEX_VALUE] valid_link_lengths = self.grid._length_of_link_with_diagonals[ ch_links_valid] return valid_link_lengths.mean() @property def chi_indices(self): """ Return the array of channel steepness indices. Nodes not in the channel receive zeros. """ return self.chi @property def hillslope_mask(self): """ Return a boolean array, False where steepness indices exist. """ return self._mask def best_fit_chi_elevation_gradient_and_intercept(self, ch_nodes=None): """ Returns least squares best fit for a straight line through a chi plot. Parameters ---------- ch_nodes : array of ints or None Nodes at which to consider chi and elevation values. If None, will use all nodes in grid with area greater than the component min_drainage_area. Returns ------- coeffs : array(gradient, intercept) A len-2 array containing the m then z0, where z = z0 + m * chi. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter >>> mg = RasterModelGrid((3, 4), 1.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> z = mg.add_field('node', 'topographic__elevation', ... mg.node_x.copy()) >>> z[4:8] = np.array([0.5, 1., 2., 0.]) >>> fr = FlowRouter(mg) >>> cf = ChiFinder(mg, min_drainage_area=1., reference_concavity=1.) >>> fr.run_one_step() >>> cf.calculate_chi() >>> mg.at_node['channel__chi_index'].reshape(mg.shape)[1, :] array([ 0.5, 1. , 2. , 0. ]) >>> coeffs = cf.best_fit_chi_elevation_gradient_and_intercept() >>> np.allclose(np.array([1., 0.]), coeffs) True """ if ch_nodes is None: good_vals = np.logical_not(self.hillslope_mask) else: good_vals = np.array(ch_nodes) chi_vals = self.chi_indices[good_vals] elev_vals = self.grid.at_node['topographic__elevation'][good_vals] coeffs = np.polyfit(chi_vals, elev_vals, 1) return coeffs def nodes_downstream_of_channel_head(self, channel_head): """ Find and return an array with nodes downstream of channel_head. Parameters ---------- channel_head : int Node ID of channel head from which to get downstream nodes. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter >>> mg = RasterModelGrid((3, 4), 1.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> z = mg.add_field('node', 'topographic__elevation', ... mg.node_x.copy()) >>> z[4:8] = np.array([0.5, 1., 2., 0.]) >>> fr = FlowRouter(mg) >>> fr.run_one_step() >>> mg.at_node['flow__receiver_node'] array([ 0, 1, 2, 3, 4, 4, 5, 7, 8, 9, 10, 11]) >>> cf = ChiFinder(mg, min_drainage_area=0., reference_concavity=1.) >>> cf.calculate_chi() >>> cf.nodes_downstream_of_channel_head(6) [6, 5, 4] """ ch_nodes = [] current_node = channel_head while True: ch_A = self.grid.at_node['drainage_area'][current_node] if ch_A > self.min_drainage: ch_nodes.append(current_node) next_node = self.grid.at_node['flow__receiver_node'][ current_node] if next_node == current_node: break else: current_node = next_node return ch_nodes def create_chi_plot(self, channel_heads=None, label_axes=True, symbol='kx', plot_line=False, line_symbol='r-'): """ Plots a "chi plot" (chi vs elevation for points in channel network). If channel_heads is provided, only the channel nodes downstream of the provided points (and with area > min_drainage_area) will be plotted. Parameters ---------- channel_heads : int, list or array of ints, or None Node IDs of channel heads to from which plot downstream. label_axes : bool If True, labels the axes as "Chi" and "Elevation (m)". symbol : str A matplotlib-style string for the style to use for the points. plot_line : bool If True, will plot a linear best fit line through the data cloud. line_symbol : str A matplotlib-style string for the style to use for the line, if plot_line. """ from matplotlib.pyplot import plot, xlabel, ylabel, figure, clf, show figure('Chi plot') clf() if channel_heads is not None: if plot_line: good_nodes = set() if type(channel_heads) is int: channel_heads = [channel_heads, ] for head in channel_heads: ch_nodes = self.nodes_downstream_of_channel_head(head) plot(self.chi_indices[ch_nodes], self.grid.at_node['topographic__elevation'][ch_nodes], symbol) if plot_line: good_nodes.update(ch_nodes) else: ch_nodes = np.logical_not(self.hillslope_mask) plot(self.chi_indices[ch_nodes], self.grid.at_node['topographic__elevation'][ch_nodes], symbol) good_nodes = ch_nodes if plot_line: coeffs = self.best_fit_chi_elevation_gradient_and_intercept( good_nodes) p = np.poly1d(coeffs) chirange = np.linspace(self.chi_indices[good_nodes].min(), self.chi_indices[good_nodes].max(), 100) plot(chirange, p(chirange), line_symbol) if label_axes: ylabel('Elevation (m)') xlabel('Chi') @property def masked_chi_indices(self): """ Returns a masked array version of the 'channel__chi_index' field. This enables easier plotting of the values with :func:`landlab.imshow_grid_at_node` or similar. Examples -------- Make a topographic map with an overlay of chi values: >>> from landlab import imshow_grid_at_node >>> from landlab import RasterModelGrid, CLOSED_BOUNDARY >>> from landlab.components import FlowRouter, FastscapeEroder >>> mg = RasterModelGrid((5, 5), 100.) >>> for nodes in (mg.nodes_at_right_edge, mg.nodes_at_bottom_edge, ... mg.nodes_at_top_edge): ... mg.status_at_node[nodes] = CLOSED_BOUNDARY >>> _ = mg.add_zeros('node', 'topographic__elevation') >>> mg.at_node['topographic__elevation'][mg.core_nodes] = mg.node_x[ ... mg.core_nodes]/1000. >>> np.random.seed(0) >>> mg.at_node['topographic__elevation'][ ... mg.core_nodes] += np.random.rand(mg.number_of_core_nodes) >>> fr = FlowRouter(mg) >>> sp = FastscapeEroder(mg, K_sp=0.01) >>> cf = ChiFinder(mg, min_drainage_area=20000.) >>> for i in range(10): ... mg.at_node['topographic__elevation'][mg.core_nodes] += 10. ... fr.run_one_step() ... sp.run_one_step(1000.) >>> fr.run_one_step() >>> cf.calculate_chi() >>> imshow_grid_at_node(mg, 'topographic__elevation', ... allow_colorbar=False) >>> imshow_grid_at_node(mg, cf.masked_chi_indices, ... color_for_closed=None, cmap='winter') """ return np.ma.array(self.chi_indices, mask=self.hillslope_mask)
mit
BoltzmannBrain/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/cbook.py
69
42525
""" A collection of utility functions and classes. Many (but not all) from the Python Cookbook -- hence the name cbook """ from __future__ import generators import re, os, errno, sys, StringIO, traceback, locale, threading, types import time, datetime import warnings import numpy as np import numpy.ma as ma from weakref import ref major, minor1, minor2, s, tmp = sys.version_info # on some systems, locale.getpreferredencoding returns None, which can break unicode preferredencoding = locale.getpreferredencoding() def unicode_safe(s): if preferredencoding is None: return unicode(s) else: return unicode(s, preferredencoding) class converter: """ Base class for handling string -> python type with support for missing values """ def __init__(self, missing='Null', missingval=None): self.missing = missing self.missingval = missingval def __call__(self, s): if s==self.missing: return self.missingval return s def is_missing(self, s): return not s.strip() or s==self.missing class tostr(converter): 'convert to string or None' def __init__(self, missing='Null', missingval=''): converter.__init__(self, missing=missing, missingval=missingval) class todatetime(converter): 'convert to a datetime or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.datetime(*tup[:6]) class todate(converter): 'convert to a date or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.date(*tup[:3]) class tofloat(converter): 'convert to a float or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) self.missingval = missingval def __call__(self, s): if self.is_missing(s): return self.missingval return float(s) class toint(converter): 'convert to an int or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) def __call__(self, s): if self.is_missing(s): return self.missingval return int(s) class CallbackRegistry: """ Handle registering and disconnecting for a set of signals and callbacks:: signals = 'eat', 'drink', 'be merry' def oneat(x): print 'eat', x def ondrink(x): print 'drink', x callbacks = CallbackRegistry(signals) ideat = callbacks.connect('eat', oneat) iddrink = callbacks.connect('drink', ondrink) #tmp = callbacks.connect('drunk', ondrink) # this will raise a ValueError callbacks.process('drink', 123) # will call oneat callbacks.process('eat', 456) # will call ondrink callbacks.process('be merry', 456) # nothing will be called callbacks.disconnect(ideat) # disconnect oneat callbacks.process('eat', 456) # nothing will be called """ def __init__(self, signals): '*signals* is a sequence of valid signals' self.signals = set(signals) # callbacks is a dict mapping the signal to a dictionary # mapping callback id to the callback function self.callbacks = dict([(s, dict()) for s in signals]) self._cid = 0 def _check_signal(self, s): 'make sure *s* is a valid signal or raise a ValueError' if s not in self.signals: signals = list(self.signals) signals.sort() raise ValueError('Unknown signal "%s"; valid signals are %s'%(s, signals)) def connect(self, s, func): """ register *func* to be called when a signal *s* is generated func will be called """ self._check_signal(s) self._cid +=1 self.callbacks[s][self._cid] = func return self._cid def disconnect(self, cid): """ disconnect the callback registered with callback id *cid* """ for eventname, callbackd in self.callbacks.items(): try: del callbackd[cid] except KeyError: continue else: return def process(self, s, *args, **kwargs): """ process signal *s*. All of the functions registered to receive callbacks on *s* will be called with *\*args* and *\*\*kwargs* """ self._check_signal(s) for func in self.callbacks[s].values(): func(*args, **kwargs) class Scheduler(threading.Thread): """ Base class for timeout and idle scheduling """ idlelock = threading.Lock() id = 0 def __init__(self): threading.Thread.__init__(self) self.id = Scheduler.id self._stopped = False Scheduler.id += 1 self._stopevent = threading.Event() def stop(self): if self._stopped: return self._stopevent.set() self.join() self._stopped = True class Timeout(Scheduler): """ Schedule recurring events with a wait time in seconds """ def __init__(self, wait, func): Scheduler.__init__(self) self.wait = wait self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(self.wait) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class Idle(Scheduler): """ Schedule callbacks when scheduler is idle """ # the prototype impl is a bit of a poor man's idle handler. It # just implements a short wait time. But it will provide a # placeholder for a proper impl ater waittime = 0.05 def __init__(self, func): Scheduler.__init__(self) self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(Idle.waittime) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class silent_list(list): """ override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is meant to be used for a homogeneous list of a give type """ def __init__(self, type, seq=None): self.type = type if seq is not None: self.extend(seq) def __repr__(self): return '<a list of %d %s objects>' % (len(self), self.type) def __str__(self): return '<a list of %d %s objects>' % (len(self), self.type) def strip_math(s): 'remove latex formatting from mathtext' remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}') s = s[1:-1] for r in remove: s = s.replace(r,'') return s class Bunch: """ Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary's OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to group a few variables: >>> point = Bunch(datum=2, squared=4, coord=12) >>> point.datum By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308 """ def __init__(self, **kwds): self.__dict__.update(kwds) def unique(x): 'Return a list of unique elements of *x*' return dict([ (val, 1) for val in x]).keys() def iterable(obj): 'return true if *obj* is iterable' try: len(obj) except: return False return True def is_string_like(obj): 'Return True if *obj* looks like a string' if isinstance(obj, (str, unicode)): return True # numpy strings are subclass of str, ma strings are not if ma.isMaskedArray(obj): if obj.ndim == 0 and obj.dtype.kind in 'SU': return True else: return False try: obj + '' except (TypeError, ValueError): return False return True def is_sequence_of_strings(obj): """ Returns true if *obj* is iterable and contains strings """ if not iterable(obj): return False if is_string_like(obj): return False for o in obj: if not is_string_like(o): return False return True def is_writable_file_like(obj): 'return true if *obj* looks like a file object with a *write* method' return hasattr(obj, 'write') and callable(obj.write) def is_scalar(obj): 'return true if *obj* is not string like and is not iterable' return not is_string_like(obj) and not iterable(obj) def is_numlike(obj): 'return true if *obj* looks like a number' try: obj+1 except TypeError: return False else: return True def to_filehandle(fname, flag='r', return_opened=False): """ *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in .gz. *flag* is a read/write flag for :func:`file` """ if is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname, flag) else: fh = file(fname, flag) opened = True elif hasattr(fname, 'seek'): fh = fname opened = False else: raise ValueError('fname must be a string or file handle') if return_opened: return fh, opened return fh def is_scalar_or_string(val): return is_string_like(val) or not iterable(val) def flatten(seq, scalarp=is_scalar_or_string): """ this generator flattens nested containers such as >>> l=( ('John', 'Hunter'), (1,23), [[[[42,(5,23)]]]]) so that >>> for i in flatten(l): print i, John Hunter 1 23 42 5 23 By: Composite of Holger Krekel and Luther Blissett From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook """ for item in seq: if scalarp(item): yield item else: for subitem in flatten(item, scalarp): yield subitem class Sorter: """ Sort by attribute or item Example usage:: sort = Sorter() list = [(1, 2), (4, 8), (0, 3)] dict = [{'a': 3, 'b': 4}, {'a': 5, 'b': 2}, {'a': 0, 'b': 0}, {'a': 9, 'b': 9}] sort(list) # default sort sort(list, 1) # sort by index 1 sort(dict, 'a') # sort a list of dicts by key 'a' """ def _helper(self, data, aux, inplace): aux.sort() result = [data[i] for junk, i in aux] if inplace: data[:] = result return result def byItem(self, data, itemindex=None, inplace=1): if itemindex is None: if inplace: data.sort() result = data else: result = data[:] result.sort() return result else: aux = [(data[i][itemindex], i) for i in range(len(data))] return self._helper(data, aux, inplace) def byAttribute(self, data, attributename, inplace=1): aux = [(getattr(data[i],attributename),i) for i in range(len(data))] return self._helper(data, aux, inplace) # a couple of handy synonyms sort = byItem __call__ = byItem class Xlator(dict): """ All-in-one multiple-string-substitution class Example usage:: text = "Larry Wall is the creator of Perl" adict = { "Larry Wall" : "Guido van Rossum", "creator" : "Benevolent Dictator for Life", "Perl" : "Python", } print multiple_replace(adict, text) xlat = Xlator(adict) print xlat.xlat(text) """ def _make_regex(self): """ Build re object based on the keys of the current dictionary """ return re.compile("|".join(map(re.escape, self.keys()))) def __call__(self, match): """ Handler invoked for each regex *match* """ return self[match.group(0)] def xlat(self, text): """ Translate *text*, returns the modified text. """ return self._make_regex().sub(self, text) def soundex(name, len=4): """ soundex module conforming to Odell-Russell algorithm """ # digits holds the soundex values for the alphabet soundex_digits = '01230120022455012623010202' sndx = '' fc = '' # Translate letters in name to soundex digits for c in name.upper(): if c.isalpha(): if not fc: fc = c # Remember first letter d = soundex_digits[ord(c)-ord('A')] # Duplicate consecutive soundex digits are skipped if not sndx or (d != sndx[-1]): sndx += d # Replace first digit with first letter sndx = fc + sndx[1:] # Remove all 0s from the soundex code sndx = sndx.replace('0', '') # Return soundex code truncated or 0-padded to len characters return (sndx + (len * '0'))[:len] class Null: """ Null objects always and reliably "do nothing." """ def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __str__(self): return "Null()" def __repr__(self): return "Null()" def __nonzero__(self): return 0 def __getattr__(self, name): return self def __setattr__(self, name, value): return self def __delattr__(self, name): return self def mkdirs(newdir, mode=0777): """ make directory *newdir* recursively, and set *mode*. Equivalent to :: > mkdir -p NEWDIR > chmod MODE NEWDIR """ try: if not os.path.exists(newdir): parts = os.path.split(newdir) for i in range(1, len(parts)+1): thispart = os.path.join(*parts[:i]) if not os.path.exists(thispart): os.makedirs(thispart, mode) except OSError, err: # Reraise the error unless it's about an already existing directory if err.errno != errno.EEXIST or not os.path.isdir(newdir): raise class GetRealpathAndStat: def __init__(self): self._cache = {} def __call__(self, path): result = self._cache.get(path) if result is None: realpath = os.path.realpath(path) if sys.platform == 'win32': stat_key = realpath else: stat = os.stat(realpath) stat_key = (stat.st_ino, stat.st_dev) result = realpath, stat_key self._cache[path] = result return result get_realpath_and_stat = GetRealpathAndStat() def dict_delall(d, keys): 'delete all of the *keys* from the :class:`dict` *d*' for key in keys: try: del d[key] except KeyError: pass class RingBuffer: """ class that implements a not-yet-full buffer """ def __init__(self,size_max): self.max = size_max self.data = [] class __Full: """ class that implements a full buffer """ def append(self, x): """ Append an element overwriting the oldest one. """ self.data[self.cur] = x self.cur = (self.cur+1) % self.max def get(self): """ return list of elements in correct order """ return self.data[self.cur:]+self.data[:self.cur] def append(self,x): """append an element at the end of the buffer""" self.data.append(x) if len(self.data) == self.max: self.cur = 0 # Permanently change self's class from non-full to full self.__class__ = __Full def get(self): """ Return a list of elements from the oldest to the newest. """ return self.data def __get_item__(self, i): return self.data[i % len(self.data)] def get_split_ind(seq, N): """ *seq* is a list of words. Return the index into seq such that:: len(' '.join(seq[:ind])<=N """ sLen = 0 # todo: use Alex's xrange pattern from the cbook for efficiency for (word, ind) in zip(seq, range(len(seq))): sLen += len(word) + 1 # +1 to account for the len(' ') if sLen>=N: return ind return len(seq) def wrap(prefix, text, cols): 'wrap *text* with *prefix* at length *cols*' pad = ' '*len(prefix.expandtabs()) available = cols - len(pad) seq = text.split(' ') Nseq = len(seq) ind = 0 lines = [] while ind<Nseq: lastInd = ind ind += get_split_ind(seq[ind:], available) lines.append(seq[lastInd:ind]) # add the prefix to the first line, pad with spaces otherwise ret = prefix + ' '.join(lines[0]) + '\n' for line in lines[1:]: ret += pad + ' '.join(line) + '\n' return ret # A regular expression used to determine the amount of space to # remove. It looks for the first sequence of spaces immediately # following the first newline, or at the beginning of the string. _find_dedent_regex = re.compile("(?:(?:\n\r?)|^)( *)\S") # A cache to hold the regexs that actually remove the indent. _dedent_regex = {} def dedent(s): """ Remove excess indentation from docstring *s*. Discards any leading blank lines, then removes up to n whitespace characters from each line, where n is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its deletion of leading blank lines and its use of the first non-blank line to determine the indentation. It is also faster in most cases. """ # This implementation has a somewhat obtuse use of regular # expressions. However, this function accounted for almost 30% of # matplotlib startup time, so it is worthy of optimization at all # costs. if not s: # includes case of s is None return '' match = _find_dedent_regex.match(s) if match is None: return s # This is the number of spaces to remove from the left-hand side. nshift = match.end(1) - match.start(1) if nshift == 0: return s # Get a regex that will remove *up to* nshift spaces from the # beginning of each line. If it isn't in the cache, generate it. unindent = _dedent_regex.get(nshift, None) if unindent is None: unindent = re.compile("\n\r? {0,%d}" % nshift) _dedent_regex[nshift] = unindent result = unindent.sub("\n", s).strip() return result def listFiles(root, patterns='*', recurse=1, return_folders=0): """ Recursively list files from Parmar and Martelli in the Python Cookbook """ import os.path, fnmatch # Expand patterns from semicolon-separated string to list pattern_list = patterns.split(';') # Collect input and output arguments into one bunch class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) arg = Bunch(recurse=recurse, pattern_list=pattern_list, return_folders=return_folders, results=[]) def visit(arg, dirname, files): # Append to arg.results all relevant files (and perhaps folders) for name in files: fullname = os.path.normpath(os.path.join(dirname, name)) if arg.return_folders or os.path.isfile(fullname): for pattern in arg.pattern_list: if fnmatch.fnmatch(name, pattern): arg.results.append(fullname) break # Block recursion if recursion was disallowed if not arg.recurse: files[:]=[] os.path.walk(root, visit, arg) return arg.results def get_recursive_filelist(args): """ Recurs all the files and dirs in *args* ignoring symbolic links and return the files as a list of strings """ files = [] for arg in args: if os.path.isfile(arg): files.append(arg) continue if os.path.isdir(arg): newfiles = listFiles(arg, recurse=1, return_folders=1) files.extend(newfiles) return [f for f in files if not os.path.islink(f)] def pieces(seq, num=2): "Break up the *seq* into *num* tuples" start = 0 while 1: item = seq[start:start+num] if not len(item): break yield item start += num def exception_to_str(s = None): sh = StringIO.StringIO() if s is not None: print >>sh, s traceback.print_exc(file=sh) return sh.getvalue() def allequal(seq): """ Return *True* if all elements of *seq* compare equal. If *seq* is 0 or 1 length, return *True* """ if len(seq)<2: return True val = seq[0] for i in xrange(1, len(seq)): thisval = seq[i] if thisval != val: return False return True def alltrue(seq): """ Return *True* if all elements of *seq* evaluate to *True*. If *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if not val: return False return True def onetrue(seq): """ Return *True* if one element of *seq* is *True*. It *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if val: return True return False def allpairs(x): """ return all possible pairs in sequence *x* Condensed by Alex Martelli from this thread_ on c.l.python .. _thread: http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1 """ return [ (s, f) for i, f in enumerate(x) for s in x[i+1:] ] # python 2.2 dicts don't have pop--but we don't support 2.2 any more def popd(d, *args): """ Should behave like python2.3 :meth:`dict.pop` method; *d* is a :class:`dict`:: # returns value for key and deletes item; raises a KeyError if key # is not in dict val = popd(d, key) # returns value for key if key exists, else default. Delete key, # val item if it exists. Will not raise a KeyError val = popd(d, key, default) """ warnings.warn("Use native python dict.pop method", DeprecationWarning) # warning added 2008/07/22 if len(args)==1: key = args[0] val = d[key] del d[key] elif len(args)==2: key, default = args val = d.get(key, default) try: del d[key] except KeyError: pass return val class maxdict(dict): """ A dictionary with a maximum size; this doesn't override all the relevant methods to contrain size, just setitem, so use with caution """ def __init__(self, maxsize): dict.__init__(self) self.maxsize = maxsize self._killkeys = [] def __setitem__(self, k, v): if len(self)>=self.maxsize: del self[self._killkeys[0]] del self._killkeys[0] dict.__setitem__(self, k, v) self._killkeys.append(k) class Stack: """ Implement a stack where elements can be pushed on and you can move back and forth. But no pop. Should mimic home / back / forward in a browser """ def __init__(self, default=None): self.clear() self._default = default def __call__(self): 'return the current element, or None' if not len(self._elements): return self._default else: return self._elements[self._pos] def forward(self): 'move the position forward and return the current element' N = len(self._elements) if self._pos<N-1: self._pos += 1 return self() def back(self): 'move the position back and return the current element' if self._pos>0: self._pos -= 1 return self() def push(self, o): """ push object onto stack at current position - all elements occurring later than the current position are discarded """ self._elements = self._elements[:self._pos+1] self._elements.append(o) self._pos = len(self._elements)-1 return self() def home(self): 'push the first element onto the top of the stack' if not len(self._elements): return self.push(self._elements[0]) return self() def empty(self): return len(self._elements)==0 def clear(self): 'empty the stack' self._pos = -1 self._elements = [] def bubble(self, o): """ raise *o* to the top of the stack and return *o*. *o* must be in the stack """ if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() bubbles = [] for thiso in old: if thiso==o: bubbles.append(thiso) else: self.push(thiso) for thiso in bubbles: self.push(o) return o def remove(self, o): 'remove element *o* from the stack' if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() for thiso in old: if thiso==o: continue else: self.push(thiso) def popall(seq): 'empty a list' for i in xrange(len(seq)): seq.pop() def finddir(o, match, case=False): """ return all attributes of *o* which match string in match. if case is True require an exact case match. """ if case: names = [(name,name) for name in dir(o) if is_string_like(name)] else: names = [(name.lower(), name) for name in dir(o) if is_string_like(name)] match = match.lower() return [orig for name, orig in names if name.find(match)>=0] def reverse_dict(d): 'reverse the dictionary -- may lose data if values are not unique!' return dict([(v,k) for k,v in d.items()]) def report_memory(i=0): # argument may go away 'return the memory consumed by process' pid = os.getpid() if sys.platform=='sunos5': a2 = os.popen('ps -p %d -o osz' % pid).readlines() mem = int(a2[-1].strip()) elif sys.platform.startswith('linux'): a2 = os.popen('ps -p %d -o rss,sz' % pid).readlines() mem = int(a2[1].split()[1]) elif sys.platform.startswith('darwin'): a2 = os.popen('ps -p %d -o rss,vsz' % pid).readlines() mem = int(a2[1].split()[0]) return mem _safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d' def safezip(*args): 'make sure *args* are equal len before zipping' Nx = len(args[0]) for i, arg in enumerate(args[1:]): if len(arg) != Nx: raise ValueError(_safezip_msg % (Nx, i+1, len(arg))) return zip(*args) def issubclass_safe(x, klass): 'return issubclass(x, klass) and return False on a TypeError' try: return issubclass(x, klass) except TypeError: return False class MemoryMonitor: def __init__(self, nmax=20000): self._nmax = nmax self._mem = np.zeros((self._nmax,), np.int32) self.clear() def clear(self): self._n = 0 self._overflow = False def __call__(self): mem = report_memory() if self._n < self._nmax: self._mem[self._n] = mem self._n += 1 else: self._overflow = True return mem def report(self, segments=4): n = self._n segments = min(n, segments) dn = int(n/segments) ii = range(0, n, dn) ii[-1] = n-1 print print 'memory report: i, mem, dmem, dmem/nloops' print 0, self._mem[0] for i in range(1, len(ii)): di = ii[i] - ii[i-1] if di == 0: continue dm = self._mem[ii[i]] - self._mem[ii[i-1]] print '%5d %5d %3d %8.3f' % (ii[i], self._mem[ii[i]], dm, dm / float(di)) if self._overflow: print "Warning: array size was too small for the number of calls." def xy(self, i0=0, isub=1): x = np.arange(i0, self._n, isub) return x, self._mem[i0:self._n:isub] def plot(self, i0=0, isub=1, fig=None): if fig is None: from pylab import figure, show fig = figure() ax = fig.add_subplot(111) ax.plot(*self.xy(i0, isub)) fig.canvas.draw() def print_cycles(objects, outstream=sys.stdout, show_progress=False): """ *objects* A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that are preventing some objects from being garbage collected. *outstream* The stream for output. *show_progress* If True, print the number of objects reached as they are found. """ import gc from types import FrameType def print_path(path): for i, step in enumerate(path): # next "wraps around" next = path[(i + 1) % len(path)] outstream.write(" %s -- " % str(type(step))) if isinstance(step, dict): for key, val in step.items(): if val is next: outstream.write("[%s]" % repr(key)) break if key is next: outstream.write("[key] = %s" % repr(val)) break elif isinstance(step, list): outstream.write("[%d]" % step.index(next)) elif isinstance(step, tuple): outstream.write("( tuple )") else: outstream.write(repr(step)) outstream.write(" ->\n") outstream.write("\n") def recurse(obj, start, all, current_path): if show_progress: outstream.write("%d\r" % len(all)) all[id(obj)] = None referents = gc.get_referents(obj) for referent in referents: # If we've found our way back to the start, this is # a cycle, so print it out if referent is start: print_path(current_path) # Don't go back through the original list of objects, or # through temporary references to the object, since those # are just an artifact of the cycle detector itself. elif referent is objects or isinstance(referent, FrameType): continue # We haven't seen this object before, so recurse elif id(referent) not in all: recurse(referent, start, all, current_path + [obj]) for obj in objects: outstream.write("Examining: %r\n" % (obj,)) recurse(obj, obj, { }, []) class Grouper(object): """ This class provides a lightweight way to group arbitrary objects together into disjoint sets when a full-blown graph data structure would be overkill. Objects can be joined using :meth:`join`, tested for connectedness using :meth:`joined`, and all disjoint sets can be retreived by using the object as an iterator. The objects being joined must be hashable. For example: >>> g = grouper.Grouper() >>> g.join('a', 'b') >>> g.join('b', 'c') >>> g.join('d', 'e') >>> list(g) [['a', 'b', 'c'], ['d', 'e']] >>> g.joined('a', 'b') True >>> g.joined('a', 'c') True >>> g.joined('a', 'd') False """ def __init__(self, init=[]): mapping = self._mapping = {} for x in init: mapping[ref(x)] = [ref(x)] def __contains__(self, item): return ref(item) in self._mapping def clean(self): """ Clean dead weak references from the dictionary """ mapping = self._mapping for key, val in mapping.items(): if key() is None: del mapping[key] val.remove(key) def join(self, a, *args): """ Join given arguments into the same set. Accepts one or more arguments. """ mapping = self._mapping set_a = mapping.setdefault(ref(a), [ref(a)]) for arg in args: set_b = mapping.get(ref(arg)) if set_b is None: set_a.append(ref(arg)) mapping[ref(arg)] = set_a elif set_b is not set_a: if len(set_b) > len(set_a): set_a, set_b = set_b, set_a set_a.extend(set_b) for elem in set_b: mapping[elem] = set_a self.clean() def joined(self, a, b): """ Returns True if *a* and *b* are members of the same set. """ self.clean() mapping = self._mapping try: return mapping[ref(a)] is mapping[ref(b)] except KeyError: return False def __iter__(self): """ Iterate over each of the disjoint sets as a list. The iterator is invalid if interleaved with calls to join(). """ self.clean() class Token: pass token = Token() # Mark each group as we come across if by appending a token, # and don't yield it twice for group in self._mapping.itervalues(): if not group[-1] is token: yield [x() for x in group] group.append(token) # Cleanup the tokens for group in self._mapping.itervalues(): if group[-1] is token: del group[-1] def get_siblings(self, a): """ Returns all of the items joined with *a*, including itself. """ self.clean() siblings = self._mapping.get(ref(a), [ref(a)]) return [x() for x in siblings] def simple_linear_interpolation(a, steps): steps = np.floor(steps) new_length = ((len(a) - 1) * steps) + 1 new_shape = list(a.shape) new_shape[0] = new_length result = np.zeros(new_shape, a.dtype) result[0] = a[0] a0 = a[0:-1] a1 = a[1: ] delta = ((a1 - a0) / steps) for i in range(1, int(steps)): result[i::steps] = delta * i + a0 result[steps::steps] = a1 return result def recursive_remove(path): if os.path.isdir(path): for fname in glob.glob(os.path.join(path, '*')) + glob.glob(os.path.join(path, '.*')): if os.path.isdir(fname): recursive_remove(fname) os.removedirs(fname) else: os.remove(fname) #os.removedirs(path) else: os.remove(path) def delete_masked_points(*args): """ Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the unmasked points remaining. Arguments can be in any of 5 categories: 1) 1-D masked arrays 2) 1-D ndarrays 3) ndarrays with more than one dimension 4) other non-string iterables 5) anything else The first argument must be in one of the first four categories; any argument with a length differing from that of the first argument (and hence anything in category 5) then will be passed through unchanged. Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite` does not yield a Boolean array. All input arguments that are not passed unchanged are returned as ndarrays after removing the points or rows corresponding to masks in any of the arguments. A vastly simpler version of this function was originally written as a helper for Axes.scatter(). """ if not len(args): return () if (is_string_like(args[0]) or not iterable(args[0])): raise ValueError("First argument must be a sequence") nrecs = len(args[0]) margs = [] seqlist = [False] * len(args) for i, x in enumerate(args): if (not is_string_like(x)) and iterable(x) and len(x) == nrecs: seqlist[i] = True if ma.isMA(x): if x.ndim > 1: raise ValueError("Masked arrays must be 1-D") else: x = np.asarray(x) margs.append(x) masks = [] # list of masks that are True where good for i, x in enumerate(margs): if seqlist[i]: if x.ndim > 1: continue # Don't try to get nan locations unless 1-D. if ma.isMA(x): masks.append(~ma.getmaskarray(x)) # invert the mask xd = x.data else: xd = x try: mask = np.isfinite(xd) if isinstance(mask, np.ndarray): masks.append(mask) except: #Fixme: put in tuple of possible exceptions? pass if len(masks): mask = reduce(np.logical_and, masks) igood = mask.nonzero()[0] if len(igood) < nrecs: for i, x in enumerate(margs): if seqlist[i]: margs[i] = x.take(igood, axis=0) for i, x in enumerate(margs): if seqlist[i] and ma.isMA(x): margs[i] = x.filled() return margs def unmasked_index_ranges(mask, compressed = True): ''' Find index ranges where *mask* is *False*. *mask* will be flattened if it is not already 1-D. Returns Nx2 :class:`numpy.ndarray` with each row the start and stop indices for slices of the compressed :class:`numpy.ndarray` corresponding to each of *N* uninterrupted runs of unmasked values. If optional argument *compressed* is *False*, it returns the start and stop indices into the original :class:`numpy.ndarray`, not the compressed :class:`numpy.ndarray`. Returns *None* if there are no unmasked values. Example:: y = ma.array(np.arange(5), mask = [0,0,1,0,0]) ii = unmasked_index_ranges(ma.getmaskarray(y)) # returns array [[0,2,] [2,4,]] y.compressed()[ii[1,0]:ii[1,1]] # returns array [3,4,] ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False) # returns array [[0, 2], [3, 5]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] Prior to the transforms refactoring, this was used to support masked arrays in Line2D. ''' mask = mask.reshape(mask.size) m = np.concatenate(((1,), mask, (1,))) indices = np.arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = np.compress(mdif == -1, indices) i1 = np.compress(mdif == 1, indices) assert len(i0) == len(i1) if len(i1) == 0: return None # Maybe this should be np.zeros((0,2), dtype=int) if not compressed: return np.concatenate((i0[:, np.newaxis], i1[:, np.newaxis]), axis=1) seglengths = i1 - i0 breakpoints = np.cumsum(seglengths) ic0 = np.concatenate(((0,), breakpoints[:-1])) ic1 = breakpoints return np.concatenate((ic0[:, np.newaxis], ic1[:, np.newaxis]), axis=1) # a dict to cross-map linestyle arguments _linestyles = [('-', 'solid'), ('--', 'dashed'), ('-.', 'dashdot'), (':', 'dotted')] ls_mapper = dict(_linestyles) ls_mapper.update([(ls[1], ls[0]) for ls in _linestyles]) def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('less_simple_linear_interpolation has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.less_simple_linear_interpolation( x, y, xi, extrap=extrap ) def isvector(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('isvector has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.isvector( x, y, xi, extrap=extrap ) def vector_lengths( X, P=2., axis=None ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('vector_lengths has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.vector_lengths( X, P=2., axis=axis ) def distances_along_curve( X ): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('distances_along_curve has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.distances_along_curve( X ) def path_length(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('path_length has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.path_length(X) def is_closed_polygon(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('is_closed_polygon has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.is_closed_polygon(X) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('quad2cubic has been moved to matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y) if __name__=='__main__': assert( allequal([1,1,1]) ) assert(not allequal([1,1,0]) ) assert( allequal([]) ) assert( allequal(('a', 'a'))) assert( not allequal(('a', 'b')))
agpl-3.0
ifuding/Kaggle
TCCC/Code/philly/nfold_train.py
1
8951
from sklearn.model_selection import KFold from lgb import lgbm_train # import xgboost as xgb from functools import reduce import numpy as np # from keras_train import keras_train # import gensim # from RCNN_Keras import get_word2vec, RCNN_Model # from RNN_Keras import RNN_Model from CNN_Keras import CNN_Model, get_word2vec_embedding from vdcnn import VDCNN_Model from tensorflow.python.keras.models import Model # RNN_PARAMS RCNN_HIDDEN_UNIT = [128, 64] def nfold_train(train_data, train_label, model_types = None, stacking = False, valide_data = None, valide_label = None, test_data = None, train_weight = None, valide_weight = None, flags = None ,tokenizer = None, scores = None, emb_weight = None): """ nfold Training """ print("Over all training size:") print(train_data.shape) print("Over all label size:") print(train_label.shape) fold = flags.nfold kf = KFold(n_splits=fold, shuffle=False) # wv_model = gensim.models.Word2Vec.load("wv_model_norm.gensim") stacking = flags.stacking stacking_data = None stacking_label = None test_preds = None num_fold = 0 models = [] # if flags.load_wv_model: # embedding_weight = get_word2vec_embedding(location = flags.input_training_data_path + flags.wv_model_file, \ # tokenizer = tokenizer, nb_words = flags.vocab_size, embed_size = flags.emb_dim, \ # model_type = flags.wv_model_type) # else: embedding_weight = emb_weight for train_index, test_index in kf.split(train_data): print('fold: %d th train :-)' % (num_fold)) print('Train size: {} Valide size: {}'.format(train_index.shape[0], test_index.shape[0])) # print(test_index[:100]) # exit(0) if valide_label is None: train_part = train_data[train_index] train_part_label = train_label[train_index] valide_part = train_data[test_index] valide_part_label = train_label[test_index] if train_weight is not None: train_part_weight = train_weight[train_index] valide_part_weight = train_weight[test_index] else: train_part = train_data train_part_label = train_label valide_part = valide_data valide_part_label = valide_label if train_weight is not None: train_part_weight, valide_part_weight = train_weight, valide_weight onefold_models = [] for model_type in model_types: if model_type == 'k': pass # with tf.device('/cpu:0'): model = keras_train(train_part, train_part_label, valide_part, valide_part_label, num_fold) onefold_models.append((model, 'k')) elif model_type == 'x': pass # model = xgb_train(train_part, train_part_label, valide_part, valide_part_label, num_fold) # onefold_models.append((model, 'x')) elif model_type == 'l': model = lgbm_train(train_part, train_part_label, valide_part, valide_part_label, num_fold, fold) onefold_models.append((model, 'l')) elif model_type == 'rcnn': # model = Create_RCNN(MAX_NUM_WORDS, RNN_EMBEDDING_DIM, 2, LSTM_UNIT, RCNN_HIDDEN_UNIT, wv_model) model = RCNN_Model(wv_model_file = 'wv_model_norm.gensim', num_classes = 2, context_vector_dim = LSTM_UNIT, \ hidden_dim = RCNN_HIDDEN_UNIT, max_len = MAX_SEQUENCE_LEN) model.train(train_part, train_part_label, valide_part, valide_part_label) print(model.model.summary()) onefold_models.append((model, 'rcnn')) elif model_type == 'rnn': model = RNN_Model(max_token = MAX_NUM_WORDS, num_classes = 6, context_vector_dim = LSTM_UNIT, \ hidden_dim = RCNN_HIDDEN_UNIT, max_len = MAX_SEQUENCE_LEN, embedding_dim = RNN_EMBEDDING_DIM) model.train(train_part, train_part_label, valide_part, valide_part_label) # print(model.model.summary()) onefold_models.append((model, 'rnn')) elif model_type == 'cnn': model = CNN_Model(max_token = flags.vocab_size, num_classes = 6, \ context_vector_dim = [int(hn.strip()) for hn in flags.rnn_unit.strip().split(',')], \ hidden_dim = [int(hn.strip()) for hn in flags.full_connect_hn.strip().split(',')], \ max_len = flags.max_seq_len, embedding_dim = flags.emb_dim, tokenizer = tokenizer, \ embedding_weight = embedding_weight, batch_size = flags.batch_size, epochs = flags.epochs, \ filter_size = [int(hn.strip()) for hn in flags.filter_size.strip().split(',')], \ fix_wv_model = flags.fix_wv_model, \ batch_interval = flags.batch_interval, emb_dropout = flags.emb_dropout, \ full_connect_dropout = flags.full_connect_dropout, separate_label_layer = flags.separate_label_layer, \ scores = scores, resnet_hn = flags.resnet_hn, top_k = flags.vdcc_top_k, char_split = flags.char_split,\ kernel_size_list = [int(kernel.strip()) for kernel in flags.kernel_size_list.strip().split(',')], rnn_input_dropout = flags.rnn_input_dropout, rnn_state_dropout = flags.rnn_state_dropout) if num_fold == 0: print(model.model.summary()) model.train(train_part, train_part_label, valide_part, valide_part_label) if stacking: model = Model(inputs = model.model.inputs, outputs = model.model.get_layer(name = 'RCNN_CONC').output) onefold_models.append((model, 'cnn')) elif model_type == 'vdcnn': model = VDCNN_Model(num_filters = [int(hn.strip()) for hn in flags.vdcnn_filters.strip().split(',')], \ sequence_max_length = flags.max_seq_len, top_k = flags.vdcc_top_k, embedding_size = flags.emb_dim, \ hidden_dim = [int(hn.strip()) for hn in flags.full_connect_hn.strip().split(',')], \ batch_size = flags.batch_size, dense_dropout = flags.full_connect_dropout, epochs = flags.epochs) if num_fold == 0: print(model.model.summary()) model.train(train_part, train_part_label, valide_part, valide_part_label) onefold_models.append((model, 'cnn')) if stacking: valide_pred = [model_eval(model[0], model[1], valide_part) for model in onefold_models] valide_pred = reduce((lambda x, y: np.c_[x, y]), valide_pred) test_pred = [model_eval(model[0], model[1], test_data) for model in onefold_models] test_pred = reduce((lambda x, y: np.c_[x, y]), test_pred) if stacking_data is None: stacking_data = valide_pred #np.c_[valide_part, valide_pred] stacking_label = valide_part_label test_preds = test_pred else: stacking_data = np.append(stacking_data, valide_pred, axis = 0) #np.append(stacking_data, np.c_[valide_part, valide_pred], axis = 0) stacking_label = np.append(stacking_label, valide_part_label, axis = 0) test_preds += test_pred print('stacking_data shape: {0}'.format(stacking_data.shape)) print('stacking_label shape: {0}'.format(stacking_label.shape)) print('stacking test data shape: {0}'.format(test_preds.shape)) models.append(onefold_models[0]) num_fold += 1 if num_fold == flags.ensemble_nfold: break if stacking: test_preds /= flags.ensemble_nfold # test_data = np.c_[test_data, test_preds] return models, stacking_data, stacking_label, test_preds def model_eval(model, model_type, data_frame): """ """ if model_type == 'l': preds = model.predict(data_frame) elif model_type == 'k' or model_type == 'LR' or model_type == 'DNN' or model_type == 'rcnn' \ or model_type == 'rnn' or model_type == 'cnn': preds = model.predict(data_frame, verbose = 2) elif model_type == 't': print("ToDO") elif model_type == 'x': preds = model.predict(xgb.DMatrix(data_frame), ntree_limit=model.best_ntree_limit) return preds #.reshape((data_frame.shape[0], -1)) def models_eval(models, data): preds = None for (model, model_type) in models: pred = model_eval(model, model_type, data) if preds is None: preds = pred.copy() else: preds += pred preds /= len(models) return preds
apache-2.0
rahul-c1/scikit-learn
sklearn/metrics/tests/test_regression.py
31
3010
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred) assert_almost_equal(error, 1 - 5. / 2) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2 = _check_reg_targets(y1, y2) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2)
bsd-3-clause
pprett/sklearn_pycon2014
notebooks/fig_code/ML_flow_chart.py
61
4970
""" Tutorial Diagrams ----------------- This script plots the flow-charts used in the scikit-learn tutorials. """ import numpy as np import pylab as pl from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow def create_base(box_bg = '#CCCCCC', arrow1 = '#88CCFF', arrow2 = '#88FF88', supervised=True): fig = pl.figure(figsize=(9, 6), facecolor='w') ax = pl.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) ax.set_xlim(0, 9) ax.set_ylim(0, 6) patches = [Rectangle((0.3, 3.6), 1.5, 1.8, zorder=1, fc=box_bg), Rectangle((0.5, 3.8), 1.5, 1.8, zorder=2, fc=box_bg), Rectangle((0.7, 4.0), 1.5, 1.8, zorder=3, fc=box_bg), Rectangle((2.9, 3.6), 0.2, 1.8, fc=box_bg), Rectangle((3.1, 3.8), 0.2, 1.8, fc=box_bg), Rectangle((3.3, 4.0), 0.2, 1.8, fc=box_bg), Rectangle((0.3, 0.2), 1.5, 1.8, fc=box_bg), Rectangle((2.9, 0.2), 0.2, 1.8, fc=box_bg), Circle((5.5, 3.5), 1.0, fc=box_bg), Polygon([[5.5, 1.7], [6.1, 1.1], [5.5, 0.5], [4.9, 1.1]], fc=box_bg), FancyArrow(2.3, 4.6, 0.35, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.75, 4.2, 0.5, -0.2, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(5.5, 2.4, 0, -0.4, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(2.0, 1.1, 0.5, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.3, 1.1, 1.3, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(6.2, 1.1, 0.8, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2)] if supervised: patches += [Rectangle((0.3, 2.4), 1.5, 0.5, zorder=1, fc=box_bg), Rectangle((0.5, 2.6), 1.5, 0.5, zorder=2, fc=box_bg), Rectangle((0.7, 2.8), 1.5, 0.5, zorder=3, fc=box_bg), FancyArrow(2.3, 2.9, 2.0, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), Rectangle((7.3, 0.85), 1.5, 0.5, fc=box_bg)] else: patches += [Rectangle((7.3, 0.2), 1.5, 1.8, fc=box_bg)] for p in patches: ax.add_patch(p) pl.text(1.45, 4.9, "Training\nText,\nDocuments,\nImages,\netc.", ha='center', va='center', fontsize=14) pl.text(3.6, 4.9, "Feature\nVectors", ha='left', va='center', fontsize=14) pl.text(5.5, 3.5, "Machine\nLearning\nAlgorithm", ha='center', va='center', fontsize=14) pl.text(1.05, 1.1, "New Text,\nDocument,\nImage,\netc.", ha='center', va='center', fontsize=14) pl.text(3.3, 1.7, "Feature\nVector", ha='left', va='center', fontsize=14) pl.text(5.5, 1.1, "Predictive\nModel", ha='center', va='center', fontsize=12) if supervised: pl.text(1.45, 3.05, "Labels", ha='center', va='center', fontsize=14) pl.text(8.05, 1.1, "Expected\nLabel", ha='center', va='center', fontsize=14) pl.text(8.8, 5.8, "Supervised Learning Model", ha='right', va='top', fontsize=18) else: pl.text(8.05, 1.1, "Likelihood\nor Cluster ID\nor Better\nRepresentation", ha='center', va='center', fontsize=12) pl.text(8.8, 5.8, "Unsupervised Learning Model", ha='right', va='top', fontsize=18) def plot_supervised_chart(annotate=False): create_base(supervised=True) if annotate: fontdict = dict(color='r', weight='bold', size=14) pl.text(1.9, 4.55, 'X = vec.fit_transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(3.7, 3.2, 'clf.fit(X, y)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(1.7, 1.5, 'X_new = vec.transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(6.1, 1.5, 'y_new = clf.predict(X_new)', fontdict=fontdict, rotation=20, ha='left', va='bottom') def plot_unsupervised_chart(): create_base(supervised=False) if __name__ == '__main__': plot_supervised_chart(False) plot_supervised_chart(True) plot_unsupervised_chart() pl.show()
bsd-3-clause
emon10005/scikit-image
doc/examples/plot_ihc_color_separation.py
18
1925
""" ============================================== Immunohistochemical staining colors separation ============================================== In this example we separate the immunohistochemical (IHC) staining from the hematoxylin counterstaining. The separation is achieved with the method described in [1]_, known as "color deconvolution". The IHC staining expression of the FHL2 protein is here revealed with Diaminobenzidine (DAB) which gives a brown color. .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. """ import matplotlib.pyplot as plt from skimage import data from skimage.color import rgb2hed ihc_rgb = data.immunohistochemistry() ihc_hed = rgb2hed(ihc_rgb) fig, axes = plt.subplots(2, 2, figsize=(7, 6)) ax0, ax1, ax2, ax3 = axes.ravel() ax0.imshow(ihc_rgb) ax0.set_title("Original image") ax1.imshow(ihc_hed[:, :, 0], cmap=plt.cm.gray) ax1.set_title("Hematoxylin") ax2.imshow(ihc_hed[:, :, 1], cmap=plt.cm.gray) ax2.set_title("Eosin") ax3.imshow(ihc_hed[:, :, 2], cmap=plt.cm.gray) ax3.set_title("DAB") for ax in axes.ravel(): ax.axis('off') fig.subplots_adjust(hspace=0.3) """ .. image:: PLOT2RST.current_figure Now we can easily manipulate the hematoxylin and DAB "channels": """ import numpy as np from skimage.exposure import rescale_intensity # Rescale hematoxylin and DAB signals and give them a fluorescence look h = rescale_intensity(ihc_hed[:, :, 0], out_range=(0, 1)) d = rescale_intensity(ihc_hed[:, :, 2], out_range=(0, 1)) zdh = np.dstack((np.zeros_like(h), d, h)) fig, ax = plt.subplots() ax.imshow(zdh) ax.set_title("Stain separated image (rescaled)") ax.axis('off') plt.show() """ .. image:: PLOT2RST.current_figure """
bsd-3-clause
sjsrey/pysal_core
pysal_core/io/geotable/dbf.py
2
6681
"""miscellaneous file manipulation utilities """ import numpy as np import pandas as pd from ..FileIO import FileIO as ps_open def check_dups(li): """checks duplicates in list of ID values ID values must be read in as a list __author__ = "Luc Anselin <[email protected]> " Arguments --------- li : list of ID values Returns ------- a list with the duplicate IDs """ return list(set([x for x in li if li.count(x) > 1])) def dbfdups(dbfpath,idvar): """checks duplicates in a dBase file ID variable must be specified correctly __author__ = "Luc Anselin <[email protected]> " Arguments --------- dbfpath : file path to dBase file idvar : ID variable in dBase file Returns ------- a list with the duplicate IDs """ db = ps_open(dbfpath,'r') li = db.by_col(idvar) return list(set([x for x in li if li.count(x) > 1])) def df2dbf(df, dbf_path, my_specs=None): ''' Convert a pandas.DataFrame into a dbf. __author__ = "Dani Arribas-Bel <[email protected]>, Luc Anselin <[email protected]>" ... Arguments --------- df : DataFrame Pandas dataframe object to be entirely written out to a dbf dbf_path : str Path to the output dbf. It is also returned by the function my_specs : list List with the field_specs to use for each column. Defaults to None and applies the following scheme: * int: ('N', 14, 0) - for all ints * float: ('N', 14, 14) - for all floats * str: ('C', 14, 0) - for string, object and category with all variants for different type sizes Note: use of dtypes.name may not be fully robust, but preferred apprach of using isinstance seems too clumsy ''' if my_specs: specs = my_specs else: """ type2spec = {int: ('N', 20, 0), np.int64: ('N', 20, 0), np.int32: ('N', 20, 0), np.int16: ('N', 20, 0), np.int8: ('N', 20, 0), float: ('N', 36, 15), np.float64: ('N', 36, 15), np.float32: ('N', 36, 15), str: ('C', 14, 0) } types = [type(df[i].iloc[0]) for i in df.columns] """ # new approach using dtypes.name to avoid numpy name issue in type type2spec = {'int': ('N', 20, 0), 'int8': ('N', 20, 0), 'int16': ('N', 20, 0), 'int32': ('N', 20, 0), 'int64': ('N', 20, 0), 'float': ('N', 36, 15), 'float32': ('N', 36, 15), 'float64': ('N', 36, 15), 'str': ('C', 14, 0), 'object': ('C', 14, 0), 'category': ('C', 14, 0) } types = [df[i].dtypes.name for i in df.columns] specs = [type2spec[t] for t in types] db = ps_open(dbf_path, 'w') db.header = list(df.columns) db.field_spec = specs for i, row in df.T.iteritems(): db.write(row) db.close() return dbf_path def dbf2df(dbf_path, index=None, cols=False, incl_index=False): ''' Read a dbf file as a pandas.DataFrame, optionally selecting the index variable and which columns are to be loaded. __author__ = "Dani Arribas-Bel <[email protected]> " ... Arguments --------- dbf_path : str Path to the DBF file to be read index : str Name of the column to be used as the index of the DataFrame cols : list List with the names of the columns to be read into the DataFrame. Defaults to False, which reads the whole dbf incl_index : Boolean If True index is included in the DataFrame as a column too. Defaults to False Returns ------- df : DataFrame pandas.DataFrame object created ''' db = ps_open(dbf_path) if cols: if incl_index: cols.append(index) vars_to_read = cols else: vars_to_read = db.header data = dict([(var, db.by_col(var)) for var in vars_to_read]) if index: index = db.by_col(index) db.close() return pd.DataFrame(data, index=index, columns=vars_to_read) else: db.close() return pd.DataFrame(data,columns=vars_to_read) def dbfjoin(dbf1_path,dbf2_path,out_path,joinkey1,joinkey2): ''' Wrapper function to merge two dbf files into a new dbf file. __author__ = "Luc Anselin <[email protected]> " Uses dbf2df and df2dbf to read and write the dbf files into a pandas DataFrame. Uses all default settings for dbf2df and df2dbf (see docs for specifics). ... Arguments --------- dbf1_path : str Path to the first (left) dbf file dbf2_path : str Path to the second (right) dbf file out_path : str Path to the output dbf file (returned by the function) joinkey1 : str Variable name for the key in the first dbf. Must be specified. Key must take unique values. joinkey2 : str Variable name for the key in the second dbf. Must be specified. Key must take unique values. Returns ------- dbfpath : path to output file ''' df1 = dbf2df(dbf1_path,index=joinkey1) df2 = dbf2df(dbf2_path,index=joinkey2) dfbig = pd.merge(df1,df2,left_on=joinkey1,right_on=joinkey2,sort=False) dp = df2dbf(dfbig,out_path) return dp def dta2dbf(dta_path,dbf_path): """ Wrapper function to convert a stata dta file into a dbf file. __author__ = "Luc Anselin <[email protected]> " Uses df2dbf to write the dbf files from a pandas DataFrame. Uses all default settings for df2dbf (see docs for specifics). ... Arguments --------- dta_path : str Path to the Stata dta file dbf_path : str Path to the output dbf file Returns ------- dbf_path : path to output file """ db = pd.read_stata(dta_path) dp = df2dbf(db,dbf_path) return dp
bsd-3-clause
thunderhoser/GewitterGefahr
gewittergefahr/interpretation_paper_2019/make_permutation_figure.py
1
6319
"""Makes figure with results of all 4 permutation tests.""" import argparse import matplotlib matplotlib.use('agg') import matplotlib.pyplot as pyplot from gewittergefahr.gg_utils import file_system_utils from gewittergefahr.deep_learning import permutation_utils from gewittergefahr.plotting import plotting_utils from gewittergefahr.plotting import permutation_plotting FIGURE_RESOLUTION_DPI = 300 FORWARD_FILE_ARG_NAME = 'forward_test_file_name' BACKWARDS_FILE_ARG_NAME = 'backwards_test_file_name' NUM_PREDICTORS_ARG_NAME = 'num_predictors' CONFIDENCE_LEVEL_ARG_NAME = 'confidence_level' OUTPUT_FILE_ARG_NAME = 'output_file_name' FORWARD_FILE_HELP_STRING = ( 'Path to file with results of forward (both single- and multi-pass) ' 'permutation tests. Will be read by `permutation_utils.read_results`.' ) BACKWARDS_FILE_HELP_STRING = ( 'Same as `{0:s}` but for backwards tests.' ).format(FORWARD_FILE_ARG_NAME) NUM_PREDICTORS_HELP_STRING = ( 'Will plot the K most important predictors for each test, where K = ' '`{0:s}`. If you want to plot all predictors, leave this argument alone.' ).format(NUM_PREDICTORS_ARG_NAME) CONFIDENCE_LEVEL_HELP_STRING = ( 'Confidence level for error bars (in range 0...1).' ) OUTPUT_FILE_HELP_STRING = ( 'Path to output file (figure will be saved here).' ) INPUT_ARG_PARSER = argparse.ArgumentParser() INPUT_ARG_PARSER.add_argument( '--' + FORWARD_FILE_ARG_NAME, type=str, required=True, help=FORWARD_FILE_HELP_STRING ) INPUT_ARG_PARSER.add_argument( '--' + BACKWARDS_FILE_ARG_NAME, type=str, required=True, help=BACKWARDS_FILE_HELP_STRING ) INPUT_ARG_PARSER.add_argument( '--' + NUM_PREDICTORS_ARG_NAME, type=int, required=False, default=-1, help=NUM_PREDICTORS_HELP_STRING ) INPUT_ARG_PARSER.add_argument( '--' + CONFIDENCE_LEVEL_ARG_NAME, type=float, required=False, default=0.95, help=CONFIDENCE_LEVEL_HELP_STRING ) INPUT_ARG_PARSER.add_argument( '--' + OUTPUT_FILE_ARG_NAME, type=str, required=True, help=OUTPUT_FILE_HELP_STRING ) def _run(forward_test_file_name, backwards_test_file_name, num_predictors, confidence_level, output_file_name): """Makes figure with results of all 4 permutation tests. This is effectively the main method. :param forward_test_file_name: See documentation at top of file. :param backwards_test_file_name: Same. :param num_predictors: Same. :param confidence_level: Same. :param output_file_name: Same. """ if num_predictors <= 0: num_predictors = None file_system_utils.mkdir_recursive_if_necessary(file_name=output_file_name) print('Reading data from: "{0:s}"...'.format(forward_test_file_name)) forward_test_dict = permutation_utils.read_results(forward_test_file_name) print('Reading data from: "{0:s}"...'.format(backwards_test_file_name)) backwards_test_dict = permutation_utils.read_results( backwards_test_file_name ) figure_object, axes_object_matrix = plotting_utils.create_paneled_figure( num_rows=2, num_columns=2, shared_x_axis=False, shared_y_axis=True, keep_aspect_ratio=False, horizontal_spacing=0.1, vertical_spacing=0.05 ) permutation_plotting.plot_single_pass_test( permutation_dict=forward_test_dict, axes_object=axes_object_matrix[0, 0], plot_percent_increase=False, confidence_level=confidence_level, num_predictors_to_plot=num_predictors ) axes_object_matrix[0, 0].set_title('Forward single-pass test') axes_object_matrix[0, 0].set_xticks([]) axes_object_matrix[0, 0].set_xlabel('') plotting_utils.label_axes( axes_object=axes_object_matrix[0, 0], label_string='(a)', x_coord_normalized=-0.01, y_coord_normalized=0.925 ) permutation_plotting.plot_multipass_test( permutation_dict=forward_test_dict, axes_object=axes_object_matrix[0, 1], plot_percent_increase=False, confidence_level=confidence_level, num_predictors_to_plot=num_predictors ) axes_object_matrix[0, 1].set_title('Forward multi-pass test') axes_object_matrix[0, 1].set_xticks([]) axes_object_matrix[0, 1].set_xlabel('') axes_object_matrix[0, 1].set_ylabel('') plotting_utils.label_axes( axes_object=axes_object_matrix[0, 1], label_string='(b)', x_coord_normalized=1.15, y_coord_normalized=0.925 ) permutation_plotting.plot_single_pass_test( permutation_dict=backwards_test_dict, axes_object=axes_object_matrix[1, 0], plot_percent_increase=False, confidence_level=confidence_level, num_predictors_to_plot=num_predictors ) axes_object_matrix[1, 0].set_title('Backward single-pass test') axes_object_matrix[1, 0].set_xlabel('Area under ROC curve (AUC)') plotting_utils.label_axes( axes_object=axes_object_matrix[1, 0], label_string='(c)', x_coord_normalized=-0.01, y_coord_normalized=0.925 ) permutation_plotting.plot_multipass_test( permutation_dict=backwards_test_dict, axes_object=axes_object_matrix[1, 1], plot_percent_increase=False, confidence_level=confidence_level, num_predictors_to_plot=num_predictors ) axes_object_matrix[1, 1].set_title('Backward multi-pass test') axes_object_matrix[1, 1].set_xlabel('Area under ROC curve (AUC)') axes_object_matrix[1, 1].set_ylabel('') plotting_utils.label_axes( axes_object=axes_object_matrix[1, 1], label_string='(d)', x_coord_normalized=1.15, y_coord_normalized=0.925 ) print('Saving figure to: "{0:s}"...'.format(output_file_name)) figure_object.savefig( output_file_name, dpi=FIGURE_RESOLUTION_DPI, pad_inches=0, bbox_inches='tight' ) pyplot.close(figure_object) if __name__ == '__main__': INPUT_ARG_OBJECT = INPUT_ARG_PARSER.parse_args() _run( forward_test_file_name=getattr(INPUT_ARG_OBJECT, FORWARD_FILE_ARG_NAME), backwards_test_file_name=getattr( INPUT_ARG_OBJECT, BACKWARDS_FILE_ARG_NAME ), num_predictors=getattr(INPUT_ARG_OBJECT, NUM_PREDICTORS_ARG_NAME), confidence_level=getattr(INPUT_ARG_OBJECT, CONFIDENCE_LEVEL_ARG_NAME), output_file_name=getattr(INPUT_ARG_OBJECT, OUTPUT_FILE_ARG_NAME) )
mit
naritta/numpy
doc/example.py
81
3581
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceeded by a blank line. """ from __future__ import division, absolute_import, print_function import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi') : r"""A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. Long_variable_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- type Explanation of anonymous return value of type ``type``. describe : type Explanation of return value named `describe`. out : type Explanation of `out`. Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a=[1,2,3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a b """ pass
bsd-3-clause
mamikonyana/mamikonyana.github.io
static/ml_afternoon/presentation_data/practical_s1/color_points.py
1
1060
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np import pandas as pd import argparse from kmeans import KMeans from mixture import GaussianMixtureModel def parse_args(*argument_array): parser = argparse.ArgumentParser() parser.add_argument('data_csv') parser.add_argument('--num-clusters', type=int, default=15) parser.add_argument('--algorithm', choices=['k-means', 'gmm'], default='k-means') args = parser.parse_args(*argument_array) return args def main(args): df = pd.read_csv(args.data_csv) data = np.array(df[['X', 'Y']]) plt.clf() plt.scatter(data[:, 0], data[:, 1], s=3, color='blue') if args.algorithm == 'gmm': gmm = GaussianMixtureModel(args.num_clusters) gmm.fit(data) y = gmm.predict_cluster(data) else: km = KMeans(args.num_clusters) km.fit(data) y = km.predict(data) plt.scatter(data[:, 0], data[:, 1], c=y) plt.show() if __name__ == '__main__': args = parse_args() main(args)
mit
DailyActie/Surrogate-Model
01-codes/scipy-master/scipy/misc/common.py
1
6176
""" Functions which are common and require SciPy Base and Level 1 SciPy (special, linalg) """ from __future__ import division, print_function, absolute_import from numpy import arange, newaxis, hstack, product, array, fromstring __all__ = ['central_diff_weights', 'derivative', 'lena', 'ascent', 'face'] def central_diff_weights(Np, ndiv=1): """ Return weights for an Np-point central derivative. Assumes equally-spaced function points. If weights are in the vector w, then derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx) Parameters ---------- Np : int Number of points for the central derivative. ndiv : int, optional Number of divisions. Default is 1. Notes ----- Can be inaccurate for large number of points. """ if Np < ndiv + 1: raise ValueError("Number of points must be at least the derivative order + 1.") if Np % 2 == 0: raise ValueError("The number of points must be odd.") from scipy import linalg ho = Np >> 1 x = arange(-ho, ho + 1.0) x = x[:, newaxis] X = x ** 0.0 for k in range(1, Np): X = hstack([X, x ** k]) w = product(arange(1, ndiv + 1), axis=0) * linalg.inv(X)[ndiv] return w def derivative(func, x0, dx=1.0, n=1, args=(), order=3): """ Find the n-th derivative of a function at a point. Given a function, use a central difference formula with spacing `dx` to compute the `n`-th derivative at `x0`. Parameters ---------- func : function Input function. x0 : float The point at which `n`-th derivative is found. dx : float, optional Spacing. n : int, optional Order of the derivative. Default is 1. args : tuple, optional Arguments order : int, optional Number of points to use, must be odd. Notes ----- Decreasing the step size too small can result in round-off error. Examples -------- >>> from scipy.misc import derivative >>> def f(x): ... return x**3 + x**2 >>> derivative(f, 1.0, dx=1e-6) 4.9999999999217337 """ if order < n + 1: raise ValueError("'order' (the number of points used to compute the derivative), " "must be at least the derivative order 'n' + 1.") if order % 2 == 0: raise ValueError("'order' (the number of points used to compute the derivative) " "must be odd.") # pre-computed for n=1 and 2 and low-order for speed. if n == 1: if order == 3: weights = array([-1, 0, 1]) / 2.0 elif order == 5: weights = array([1, -8, 0, 8, -1]) / 12.0 elif order == 7: weights = array([-1, 9, -45, 0, 45, -9, 1]) / 60.0 elif order == 9: weights = array([3, -32, 168, -672, 0, 672, -168, 32, -3]) / 840.0 else: weights = central_diff_weights(order, 1) elif n == 2: if order == 3: weights = array([1, -2.0, 1]) elif order == 5: weights = array([-1, 16, -30, 16, -1]) / 12.0 elif order == 7: weights = array([2, -27, 270, -490, 270, -27, 2]) / 180.0 elif order == 9: weights = array([-9, 128, -1008, 8064, -14350, 8064, -1008, 128, -9]) / 5040.0 else: weights = central_diff_weights(order, 2) else: weights = central_diff_weights(order, n) val = 0.0 ho = order >> 1 for k in range(order): val += weights[k] * func(x0 + (k - ho) * dx, *args) return val / product((dx,) * n, axis=0) def lena(): """ Function that previously returned an example image .. note:: Removed in 0.17 Parameters ---------- None Returns ------- None Raises ------ RuntimeError This functionality has been removed due to licensing reasons. Notes ----- The image previously returned by this function has an incompatible license and has been removed from SciPy. Please use `face` or `ascent` instead. See Also -------- face, ascent """ raise RuntimeError('lena() is no longer included in SciPy, please use ' 'ascent() or face() instead') def ascent(): """ Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-domain-images-pictures/ Parameters ---------- None Returns ------- ascent : ndarray convenient image to use for testing and demonstration Examples -------- >>> import scipy.misc >>> ascent = scipy.misc.ascent() >>> ascent.shape (512, 512) >>> ascent.max() 255 >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(ascent) >>> plt.show() """ import pickle import os fname = os.path.join(os.path.dirname(__file__), 'ascent.dat') with open(fname, 'rb') as f: ascent = array(pickle.load(f)) return ascent def face(gray=False): """ Get a 1024 x 768, color image of a raccoon face. raccoon-procyon-lotor.jpg at http://www.public-domain-image.com Parameters ---------- gray : bool, optional If True return 8-bit grey-scale image, otherwise return a color image Returns ------- face : ndarray image of a racoon face Examples -------- >>> import scipy.misc >>> face = scipy.misc.face() >>> face.shape (768, 1024, 3) >>> face.max() 255 >>> face.dtype dtype('uint8') >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(face) >>> plt.show() """ import bz2 import os with open(os.path.join(os.path.dirname(__file__), 'face.dat'), 'rb') as f: rawdata = f.read() data = bz2.decompress(rawdata) face = fromstring(data, dtype='uint8') face.shape = (768, 1024, 3) if gray is True: face = (0.21 * face[:, :, 0] + 0.71 * face[:, :, 1] + 0.07 * face[:, :, 2]).astype('uint8') return face
mit
jayflo/scikit-learn
examples/classification/plot_lda_qda.py
164
4806
""" ==================================================================== Linear and Quadratic Discriminant Analysis with confidence ellipsoid ==================================================================== Plot the confidence ellipsoids of each class and decision boundary """ print(__doc__) from scipy import linalg import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.lda import LDA from sklearn.qda import QDA ############################################################################### # colormap cmap = colors.LinearSegmentedColormap( 'red_blue_classes', {'red': [(0, 1, 1), (1, 0.7, 0.7)], 'green': [(0, 0.7, 0.7), (1, 0.7, 0.7)], 'blue': [(0, 0.7, 0.7), (1, 1, 1)]}) plt.cm.register_cmap(cmap=cmap) ############################################################################### # generate datasets def dataset_fixed_cov(): '''Generate 2 Gaussians samples with the same covariance matrix''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -0.23], [0.83, .23]]) X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C) + np.array([1, 1])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y def dataset_cov(): '''Generate 2 Gaussians samples with different covariance matrices''' n, dim = 300, 2 np.random.seed(0) C = np.array([[0., -1.], [2.5, .7]]) * 2. X = np.r_[np.dot(np.random.randn(n, dim), C), np.dot(np.random.randn(n, dim), C.T) + np.array([1, 4])] y = np.hstack((np.zeros(n), np.ones(n))) return X, y ############################################################################### # plot functions def plot_data(lda, X, y, y_pred, fig_index): splot = plt.subplot(2, 2, fig_index) if fig_index == 1: plt.title('Linear Discriminant Analysis') plt.ylabel('Data with fixed covariance') elif fig_index == 2: plt.title('Quadratic Discriminant Analysis') elif fig_index == 3: plt.ylabel('Data with varying covariances') tp = (y == y_pred) # True Positive tp0, tp1 = tp[y == 0], tp[y == 1] X0, X1 = X[y == 0], X[y == 1] X0_tp, X0_fp = X0[tp0], X0[~tp0] X1_tp, X1_fp = X1[tp1], X1[~tp1] xmin, xmax = X[:, 0].min(), X[:, 0].max() ymin, ymax = X[:, 1].min(), X[:, 1].max() # class 0: dots plt.plot(X0_tp[:, 0], X0_tp[:, 1], 'o', color='red') plt.plot(X0_fp[:, 0], X0_fp[:, 1], '.', color='#990000') # dark red # class 1: dots plt.plot(X1_tp[:, 0], X1_tp[:, 1], 'o', color='blue') plt.plot(X1_fp[:, 0], X1_fp[:, 1], '.', color='#000099') # dark blue # class 0 and 1 : areas nx, ny = 200, 100 x_min, x_max = plt.xlim() y_min, y_max = plt.ylim() xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx), np.linspace(y_min, y_max, ny)) Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()]) Z = Z[:, 1].reshape(xx.shape) plt.pcolormesh(xx, yy, Z, cmap='red_blue_classes', norm=colors.Normalize(0., 1.)) plt.contour(xx, yy, Z, [0.5], linewidths=2., colors='k') # means plt.plot(lda.means_[0][0], lda.means_[0][1], 'o', color='black', markersize=10) plt.plot(lda.means_[1][0], lda.means_[1][1], 'o', color='black', markersize=10) return splot def plot_ellipse(splot, mean, cov, color): v, w = linalg.eigh(cov) u = w[0] / linalg.norm(w[0]) angle = np.arctan(u[1] / u[0]) angle = 180 * angle / np.pi # convert to degrees # filled Gaussian at 2 standard deviation ell = mpl.patches.Ellipse(mean, 2 * v[0] ** 0.5, 2 * v[1] ** 0.5, 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(0.5) splot.add_artist(ell) splot.set_xticks(()) splot.set_yticks(()) def plot_lda_cov(lda, splot): plot_ellipse(splot, lda.means_[0], lda.covariance_, 'red') plot_ellipse(splot, lda.means_[1], lda.covariance_, 'blue') def plot_qda_cov(qda, splot): plot_ellipse(splot, qda.means_[0], qda.covariances_[0], 'red') plot_ellipse(splot, qda.means_[1], qda.covariances_[1], 'blue') ############################################################################### for i, (X, y) in enumerate([dataset_fixed_cov(), dataset_cov()]): # LDA lda = LDA(solver="svd", store_covariance=True) y_pred = lda.fit(X, y).predict(X) splot = plot_data(lda, X, y, y_pred, fig_index=2 * i + 1) plot_lda_cov(lda, splot) plt.axis('tight') # QDA qda = QDA() y_pred = qda.fit(X, y, store_covariances=True).predict(X) splot = plot_data(qda, X, y, y_pred, fig_index=2 * i + 2) plot_qda_cov(qda, splot) plt.axis('tight') plt.suptitle('LDA vs QDA') plt.show()
bsd-3-clause
tomwallis/PsyUtils
psyutils/misc.py
1
6653
# miscellaneous functions # -*- coding: utf-8 -*- from __future__ import print_function, division import numpy as _np import psyutils as _pu import itertools as it import pandas as pd def fixation_cross(): """Return a 256 square numpy array containing a rendering of the fixation cross recommended in Thaler et al for low dispersion and microsaccade rate. You could rescale this to the appropriate size (outer ring should be 0.6 dva in diameter and inner ring 0.2 dva). Example: Our stimulus display has 40 pixels per degree of visual angle:: from skimage import transform sz = round(40 * 0.6) fixation_cross = transform.resize(pu.misc.fixation_cross(), (sz,sz)) Reference: Thaler, L., Schütz, A. C., Goodale, M. A., & Gegenfurtner, K. R. (2013) What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vision Research, 76(C), 31–42. """ outer_rad = 128 inner_rad = int((0.2 / 0.6)*outer_rad) # inner is 0.2 def _draw_oval(radius): im = _np.ones((radius*2, radius*2)) x = _np.linspace(-radius, radius, num=radius*2) xx, yy = _np.meshgrid(x, x) rad_dist = (xx**2 + yy**2)**0.5 im[rad_dist <= radius] = 0 return(im) im = _draw_oval(outer_rad) im[outer_rad - inner_rad:outer_rad + inner_rad, :] = 1 im[:, outer_rad - inner_rad:outer_rad + inner_rad] = 1 im[outer_rad-inner_rad:outer_rad+inner_rad, outer_rad-inner_rad:outer_rad+inner_rad] = _draw_oval(inner_rad) return(im) def draw_box(size, channel='r', width=4): """Make a box of a given size that can be placed into images to highlight a region of interest. The middle of the box is transparent (i.e. alpha 0) to show what's in the region of interest. Args: size (tuple or scalar): the size of the box in pixels; either square if a scalar is passed or (w, h) from tuple. channel (string): specify box colour according to colour channel ('r', 'g', 'b') width (int): width of box lines in pixels. Returns: a numpy array with shape [size, size, 4]. """ if channel == 'r': chan = 0 elif channel == 'g': chan = 1 elif channel == 'b': chan = 2 else: raise ValueError("don't know what colour channel to use") w, h = _pu.image.parse_size(size) box = _np.zeros((h, w, 4)) box[0:h, 0:width, chan] = 1. box[0:h, -width:, chan] = 1. box[0:width, 0:w, chan] = 1. box[-width:, 0:w, chan] = 1. box[0:h, 0:width, 3] = 1. box[0:h, -width:, 3] = 1. box[0:width, 0:w, 3] = 1. box[-width:, 0:w, 3] = 1. return(box) def pix_per_deg(viewing_distance, screen_wh_px, screen_wh_cm, average_wh=True): """Return the number of pixels per degree of visual angle for a given viewing distance of a screen of some resolution and size. Note: this assumes a constant viewing distance, so there will be an error that increases with eccentricity. For example, at a viewing distance of 60 cm, something 30 degrees eccentric will be at a distance of 69 cm (60 / np.cos(30 * np.pi / 180)), if presented on a flat screen. At that viewing distance, the number of pixels per degree will be higher (46 compared to 40 for the example monitor below) --- i.e. about a 13 percent size error at 30 degrees. Args: viewing_distance (float): the viewing distance of the screen (screen to subject's eye) in cm. screen_wh_px (tuple): the width and height of the screen in pixels. screen_wh_cm (tuple): the width and height of the screen in cm. average_wh (boolean, default True): if true, computes pix per deg based on the average of the width and height. If false, returns a tuple (width, height). Returns: float: the number of pixels per degree of visual angle, assuming a constant distance. or if average_wh=False, a 2 element numpy array. Example:: dist = 60 px = (1920, 1080) cm = (52, 29) pu.misc.pix_per_deg(60, (1920, 1080), (52, 29)) # gives 40.36 pixels per degree. """ wh_px = _np.array(screen_wh_px) wh_cm = _np.array(screen_wh_cm) ppd = _np.pi * (wh_px) / _np.arctan(wh_cm / viewing_distance / 2.) / 360. if average_wh is True: res = ppd.mean() elif average_wh is False: res = ppd return(res) def rad_ang(xy): """Return radius and polar angle relative to (0, 0) of given x and y coordinates. Args: xy: a tuple of x and y positions. Returns: rad, ang: a tuple of radius from centre and polar angle (radians): right = 0 top = pi/2 left = pi (or -pi) bottom = -pi/2 """ x, y = (xy[0], xy[1]) # compute radius and angle of patch centre: radius = _np.sqrt(x**2 + y**2) angle = _np.arctan2(y, x) return(radius, angle) def xy(radius, angle): """ returns the x, y coords of a point given a radius and angle (in radians). Args: radius: a float or int specifying the radius angle: the polar angle in radians. right = 0 top = pi/2 left = pi (or -pi) bottom = -pi/2 Returns: x, y: a tuple of x and y coordinates. """ x = radius * _np.cos(angle) y = radius * _np.sin(angle) return(x, y) def expand_grid(data_dict): """ A port of R's expand.grid function for use with Pandas dataframes. Taken from: `http://pandas.pydata.org/pandas-docs/stable/cookbook.html?highlight=expand%20grid` Args: data_dict: a dictionary or ordered dictionary of column names and values. Returns: A pandas dataframe with all combinations of the values given. Examples:: import psyutils as pu print(pu.misc.expand_grid( {'height': [60, 70], 'weight': [100, 140, 180], 'sex': ['Male', 'Female']}) from collections import OrderedDict entries = OrderedDict([('height', [60, 70]), ('weight', [100, 140, 180]), ('sex', ['Male', 'Female'])]) print(pu.misc.expand_grid(entries)) """ rows = it.product(*data_dict.values()) return pd.DataFrame.from_records(rows, columns=data_dict.keys())
mit
ndingwall/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
9
21205
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np import pytest from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils._testing import assert_array_equal, assert_array_less from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.base import clone from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble._weight_boosting import _samme_proba from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn.utils._mocking import NoSampleWeightWrapper from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the diabetes dataset and randomly permute it diabetes = datasets.load_diabetes() diabetes.data, diabetes.target = shuffle(diabetes.data, diabetes.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator: def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = _samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert np.isfinite(samme_proba).all() # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_oneclass_adaboost_proba(): # Test predict_proba robustness for one class label input. # In response to issue #7501 # https://github.com/scikit-learn/scikit-learn/issues/7501 y_t = np.ones(len(X)) clf = AdaBoostClassifier().fit(X, y_t) assert_array_almost_equal(clf.predict_proba(X), np.ones((len(X), 1))) @pytest.mark.parametrize("algorithm", ["SAMME", "SAMME.R"]) def test_classification_toy(algorithm): # Check classification on a toy dataset. clf = AdaBoostClassifier(algorithm=algorithm, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert clf.predict_proba(T).shape == (len(T), 2) assert clf.decision_function(T).shape == (len(T),) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert proba.shape[1] == len(classes) assert clf.decision_function(iris.data).shape[1] == len(classes) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Check we used multiple estimators assert len(clf.estimators_) > 1 # Check for distinct random states (see issue #7408) assert (len(set(est.random_state for est in clf.estimators_)) == len(clf.estimators_)) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) @pytest.mark.parametrize('loss', ['linear', 'square', 'exponential']) def test_diabetes(loss): # Check consistency on dataset diabetes. reg = AdaBoostRegressor(loss=loss, random_state=0) reg.fit(diabetes.data, diabetes.target) score = reg.score(diabetes.data, diabetes.target) assert score > 0.6 # Check we used multiple estimators assert len(reg.estimators_) > 1 # Check for distinct random states (see issue #7408) assert (len(set(est.random_state for est in reg.estimators_)) == len(reg.estimators_)) @pytest.mark.parametrize("algorithm", ["SAMME", "SAMME.R"]) def test_staged_predict(algorithm): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) diabetes_weights = rng.randint(10, size=diabetes.target.shape) clf = AdaBoostClassifier(algorithm=algorithm, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert len(staged_predictions) == 10 assert_array_almost_equal(predictions, staged_predictions[-1]) assert len(staged_probas) == 10 assert_array_almost_equal(proba, staged_probas[-1]) assert len(staged_scores) == 10 assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(diabetes.data, diabetes.target, sample_weight=diabetes_weights) predictions = clf.predict(diabetes.data) staged_predictions = [p for p in clf.staged_predict(diabetes.data)] score = clf.score(diabetes.data, diabetes.target, sample_weight=diabetes_weights) staged_scores = [ s for s in clf.staged_score( diabetes.data, diabetes.target, sample_weight=diabetes_weights)] assert len(staged_predictions) == 10 assert_array_almost_equal(predictions, staged_predictions[-1]) assert len(staged_scores) == 10 assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(diabetes.data, diabetes.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert type(obj2) == obj.__class__ score2 = obj2.score(iris.data, iris.target) assert score == score2 # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(diabetes.data, diabetes.target) score = obj.score(diabetes.data, diabetes.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert type(obj2) == obj.__class__ score2 = obj2.score(diabetes.data, diabetes.target) assert score == score2 def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert importances.shape[0] == 10 assert (importances[:3, np.newaxis] >= importances[3:]).all() def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super().fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_almost_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_almost_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_almost_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_almost_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_almost_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_almost_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super().fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_almost_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_almost_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert len(boost.estimator_weights_) == len(boost.estimator_errors_) def test_multidimensional_X(): """ Check that the AdaBoost estimators can work with n-dimensional data matrix """ rng = np.random.RandomState(0) X = rng.randn(50, 3, 3) yc = rng.choice([0, 1], 50) yr = rng.randn(50) boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent')) boost.fit(X, yc) boost.predict(X) boost.predict_proba(X) boost = AdaBoostRegressor(DummyRegressor()) boost.fit(X, yr) boost.predict(X) @pytest.mark.parametrize("algorithm", ['SAMME', 'SAMME.R']) def test_adaboostclassifier_without_sample_weight(algorithm): X, y = iris.data, iris.target base_estimator = NoSampleWeightWrapper(DummyClassifier()) clf = AdaBoostClassifier( base_estimator=base_estimator, algorithm=algorithm ) err_msg = ("{} doesn't support sample_weight" .format(base_estimator.__class__.__name__)) with pytest.raises(ValueError, match=err_msg): clf.fit(X, y) def test_adaboostregressor_sample_weight(): # check that giving weight will have an influence on the error computed # for a weak learner rng = np.random.RandomState(42) X = np.linspace(0, 100, num=1000) y = (.8 * X + 0.2) + (rng.rand(X.shape[0]) * 0.0001) X = X.reshape(-1, 1) # add an arbitrary outlier X[-1] *= 10 y[-1] = 10000 # random_state=0 ensure that the underlying bootstrap will use the outlier regr_no_outlier = AdaBoostRegressor( base_estimator=LinearRegression(), n_estimators=1, random_state=0 ) regr_with_weight = clone(regr_no_outlier) regr_with_outlier = clone(regr_no_outlier) # fit 3 models: # - a model containing the outlier # - a model without the outlier # - a model containing the outlier but with a null sample-weight regr_with_outlier.fit(X, y) regr_no_outlier.fit(X[:-1], y[:-1]) sample_weight = np.ones_like(y) sample_weight[-1] = 0 regr_with_weight.fit(X, y, sample_weight=sample_weight) score_with_outlier = regr_with_outlier.score(X[:-1], y[:-1]) score_no_outlier = regr_no_outlier.score(X[:-1], y[:-1]) score_with_weight = regr_with_weight.score(X[:-1], y[:-1]) assert score_with_outlier < score_no_outlier assert score_with_outlier < score_with_weight assert score_no_outlier == pytest.approx(score_with_weight) @pytest.mark.parametrize("algorithm", ["SAMME", "SAMME.R"]) def test_adaboost_consistent_predict(algorithm): # check that predict_proba and predict give consistent results # regression test for: # https://github.com/scikit-learn/scikit-learn/issues/14084 X_train, X_test, y_train, y_test = train_test_split( *datasets.load_digits(return_X_y=True), random_state=42 ) model = AdaBoostClassifier(algorithm=algorithm, random_state=42) model.fit(X_train, y_train) assert_array_equal( np.argmax(model.predict_proba(X_test), axis=1), model.predict(X_test) ) @pytest.mark.parametrize( 'model, X, y', [(AdaBoostClassifier(), iris.data, iris.target), (AdaBoostRegressor(), diabetes.data, diabetes.target)] ) def test_adaboost_negative_weight_error(model, X, y): sample_weight = np.ones_like(y) sample_weight[-1] = -10 err_msg = "sample_weight cannot contain negative weight" with pytest.raises(ValueError, match=err_msg): model.fit(X, y, sample_weight=sample_weight)
bsd-3-clause
pkruskal/scikit-learn
sklearn/cluster/tests/test_k_means.py
132
25860
"""Testing for K-means""" import sys import numpy as np from scipy import sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import if_not_mac_os from sklearn.utils.validation import DataConversionWarning from sklearn.utils.extmath import row_norms from sklearn.metrics.cluster import v_measure_score from sklearn.cluster import KMeans, k_means from sklearn.cluster import MiniBatchKMeans from sklearn.cluster.k_means_ import _labels_inertia from sklearn.cluster.k_means_ import _mini_batch_step from sklearn.datasets.samples_generator import make_blobs from sklearn.externals.six.moves import cStringIO as StringIO # non centered, sparse centers to check the centers = np.array([ [0.0, 5.0, 0.0, 0.0, 0.0], [1.0, 1.0, 4.0, 0.0, 0.0], [1.0, 0.0, 0.0, 5.0, 1.0], ]) n_samples = 100 n_clusters, n_features = centers.shape X, true_labels = make_blobs(n_samples=n_samples, centers=centers, cluster_std=1., random_state=42) X_csr = sp.csr_matrix(X) def test_kmeans_dtype(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) X = (X * 10).astype(np.uint8) km = KMeans(n_init=1).fit(X) pred_x = assert_warns(DataConversionWarning, km.predict, X) assert_array_equal(km.labels_, pred_x) def test_labels_assignment_and_inertia(): # pure numpy implementation as easily auditable reference gold # implementation rng = np.random.RandomState(42) noisy_centers = centers + rng.normal(size=centers.shape) labels_gold = - np.ones(n_samples, dtype=np.int) mindist = np.empty(n_samples) mindist.fill(np.infty) for center_id in range(n_clusters): dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1) labels_gold[dist < mindist] = center_id mindist = np.minimum(dist, mindist) inertia_gold = mindist.sum() assert_true((mindist >= 0.0).all()) assert_true((labels_gold != -1).all()) # perform label assignment using the dense array input x_squared_norms = (X ** 2).sum(axis=1) labels_array, inertia_array = _labels_inertia( X, x_squared_norms, noisy_centers) assert_array_almost_equal(inertia_array, inertia_gold) assert_array_equal(labels_array, labels_gold) # perform label assignment using the sparse CSR input x_squared_norms_from_csr = row_norms(X_csr, squared=True) labels_csr, inertia_csr = _labels_inertia( X_csr, x_squared_norms_from_csr, noisy_centers) assert_array_almost_equal(inertia_csr, inertia_gold) assert_array_equal(labels_csr, labels_gold) def test_minibatch_update_consistency(): # Check that dense and sparse minibatch update give the same results rng = np.random.RandomState(42) old_centers = centers + rng.normal(size=centers.shape) new_centers = old_centers.copy() new_centers_csr = old_centers.copy() counts = np.zeros(new_centers.shape[0], dtype=np.int32) counts_csr = np.zeros(new_centers.shape[0], dtype=np.int32) x_squared_norms = (X ** 2).sum(axis=1) x_squared_norms_csr = row_norms(X_csr, squared=True) buffer = np.zeros(centers.shape[1], dtype=np.double) buffer_csr = np.zeros(centers.shape[1], dtype=np.double) # extract a small minibatch X_mb = X[:10] X_mb_csr = X_csr[:10] x_mb_squared_norms = x_squared_norms[:10] x_mb_squared_norms_csr = x_squared_norms_csr[:10] # step 1: compute the dense minibatch update old_inertia, incremental_diff = _mini_batch_step( X_mb, x_mb_squared_norms, new_centers, counts, buffer, 1, None, random_reassign=False) assert_greater(old_inertia, 0.0) # compute the new inertia on the same batch to check that it decreased labels, new_inertia = _labels_inertia( X_mb, x_mb_squared_norms, new_centers) assert_greater(new_inertia, 0.0) assert_less(new_inertia, old_inertia) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers - old_centers) ** 2) assert_almost_equal(incremental_diff, effective_diff) # step 2: compute the sparse minibatch update old_inertia_csr, incremental_diff_csr = _mini_batch_step( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr, counts_csr, buffer_csr, 1, None, random_reassign=False) assert_greater(old_inertia_csr, 0.0) # compute the new inertia on the same batch to check that it decreased labels_csr, new_inertia_csr = _labels_inertia( X_mb_csr, x_mb_squared_norms_csr, new_centers_csr) assert_greater(new_inertia_csr, 0.0) assert_less(new_inertia_csr, old_inertia_csr) # check that the incremental difference computation is matching the # final observed value effective_diff = np.sum((new_centers_csr - old_centers) ** 2) assert_almost_equal(incremental_diff_csr, effective_diff) # step 3: check that sparse and dense updates lead to the same results assert_array_equal(labels, labels_csr) assert_array_almost_equal(new_centers, new_centers_csr) assert_almost_equal(incremental_diff, incremental_diff_csr) assert_almost_equal(old_inertia, old_inertia_csr) assert_almost_equal(new_inertia, new_inertia_csr) def _check_fitted_model(km): # check that the number of clusters centers and distinct labels match # the expectation centers = km.cluster_centers_ assert_equal(centers.shape, (n_clusters, n_features)) labels = km.labels_ assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(km.inertia_, 0.0) # check error on dataset being too small assert_raises(ValueError, km.fit, [[0., 1.]]) def test_k_means_plus_plus_init(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_new_centers(): # Explore the part of the code where a new center is reassigned X = np.array([[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0]]) labels = [0, 1, 2, 1, 1, 2] bad_centers = np.array([[+0, 1, 0, 0], [.2, 0, .2, .2], [+0, 0, 0, 0]]) km = KMeans(n_clusters=3, init=bad_centers, n_init=1, max_iter=10, random_state=1) for this_X in (X, sp.coo_matrix(X)): km.fit(this_X) this_labels = km.labels_ # Reorder the labels so that the first instance is in cluster 0, # the second in cluster 1, ... this_labels = np.unique(this_labels, return_index=True)[1][this_labels] np.testing.assert_array_equal(this_labels, labels) def _has_blas_lib(libname): from numpy.distutils.system_info import get_info return libname in get_info('blas_opt').get('libraries', []) @if_not_mac_os() def test_k_means_plus_plus_init_2_jobs(): if _has_blas_lib('openblas'): raise SkipTest('Multi-process bug with OpenBLAS (see issue #636)') km = KMeans(init="k-means++", n_clusters=n_clusters, n_jobs=2, random_state=42).fit(X) _check_fitted_model(km) def test_k_means_precompute_distances_flag(): # check that a warning is raised if the precompute_distances flag is not # supported km = KMeans(precompute_distances="wrong") assert_raises(ValueError, km.fit, X) def test_k_means_plus_plus_init_sparse(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_random_init(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X) _check_fitted_model(km) def test_k_means_random_init_sparse(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42) km.fit(X_csr) _check_fitted_model(km) def test_k_means_plus_plus_init_not_precomputed(): km = KMeans(init="k-means++", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_random_init_not_precomputed(): km = KMeans(init="random", n_clusters=n_clusters, random_state=42, precompute_distances=False).fit(X) _check_fitted_model(km) def test_k_means_perfect_init(): km = KMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1) km.fit(X) _check_fitted_model(km) def test_k_means_n_init(): rnd = np.random.RandomState(0) X = rnd.normal(size=(40, 2)) # two regression tests on bad n_init argument # previous bug: n_init <= 0 threw non-informative TypeError (#3858) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=0).fit, X) assert_raises_regexp(ValueError, "n_init", KMeans(n_init=-1).fit, X) def test_k_means_fortran_aligned_data(): # Check the KMeans will work well, even if X is a fortran-aligned data. X = np.asfortranarray([[0, 0], [0, 1], [0, 1]]) centers = np.array([[0, 0], [0, 1]]) labels = np.array([0, 1, 1]) km = KMeans(n_init=1, init=centers, precompute_distances=False, random_state=42) km.fit(X) assert_array_equal(km.cluster_centers_, centers) assert_array_equal(km.labels_, labels) def test_mb_k_means_plus_plus_init_dense_array(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X) _check_fitted_model(mb_k_means) def test_mb_kmeans_verbose(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: mb_k_means.fit(X) finally: sys.stdout = old_stdout def test_mb_k_means_plus_plus_init_sparse_matrix(): mb_k_means = MiniBatchKMeans(init="k-means++", n_clusters=n_clusters, random_state=42) mb_k_means.fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_init_with_large_k(): mb_k_means = MiniBatchKMeans(init='k-means++', init_size=10, n_clusters=20) # Check that a warning is raised, as the number clusters is larger # than the init_size assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_random_init_dense_array(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_random_init_sparse_csr(): # increase n_init to make random init stable enough mb_k_means = MiniBatchKMeans(init="random", n_clusters=n_clusters, random_state=42, n_init=10).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_k_means_perfect_init_dense_array(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_k_means_init_multiple_runs_with_explicit_centers(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=10) assert_warns(RuntimeWarning, mb_k_means.fit, X) def test_minibatch_k_means_perfect_init_sparse_csr(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, random_state=42, n_init=1).fit(X_csr) _check_fitted_model(mb_k_means) def test_minibatch_sensible_reassign_fit(): # check if identical initial clusters are reassigned # also a regression test for when there are more desired reassignments than # samples. zeroed_X, true_labels = make_blobs(n_samples=100, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) # do the same with batch-size > X.shape[0] (regression test) mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201, random_state=42, init="random") mb_k_means.fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_sensible_reassign_partial_fit(): zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5, cluster_std=1., random_state=42) zeroed_X[::2, :] = 0 mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random") for i in range(100): mb_k_means.partial_fit(zeroed_X) # there should not be too many exact zero cluster centers assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) def test_minibatch_reassign(): # Give a perfect initialization, but a large reassignment_ratio, # as a result all the centers should be reassigned and the model # should not longer be good for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=42) mb_k_means.fit(this_X) score_before = mb_k_means.score(this_X) try: old_stdout = sys.stdout sys.stdout = StringIO() # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1, verbose=True) finally: sys.stdout = old_stdout assert_greater(score_before, mb_k_means.score(this_X)) # Give a perfect initialization, with a small reassignment_ratio, # no center should be reassigned for this_X in (X, X_csr): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init=centers.copy(), random_state=42, n_init=1) mb_k_means.fit(this_X) clusters_before = mb_k_means.cluster_centers_ # Turn on verbosity to smoke test the display code _mini_batch_step(this_X, (X ** 2).sum(axis=1), mb_k_means.cluster_centers_, mb_k_means.counts_, np.zeros(X.shape[1], np.double), False, distances=np.zeros(X.shape[0]), random_reassign=True, random_state=42, reassignment_ratio=1e-15) assert_array_almost_equal(clusters_before, mb_k_means.cluster_centers_) def test_minibatch_with_many_reassignments(): # Test for the case that the number of clusters to reassign is bigger # than the batch_size n_samples = 550 rnd = np.random.RandomState(42) X = rnd.uniform(size=(n_samples, 10)) # Check that the fit works if n_clusters is bigger than the batch_size. # Run the test with 550 clusters and 550 samples, because it turned out # that this values ensure that the number of clusters to reassign # is always bigger than the batch_size n_clusters = 550 MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, init_size=n_samples, random_state=42).fit(X) def test_sparse_mb_k_means_callable_init(): def test_init(X, k, random_state): return centers # Small test to check that giving the wrong number of centers # raises a meaningful error assert_raises(ValueError, MiniBatchKMeans(init=test_init, random_state=42).fit, X_csr) # Now check that the fit actually works mb_k_means = MiniBatchKMeans(n_clusters=3, init=test_init, random_state=42).fit(X_csr) _check_fitted_model(mb_k_means) def test_mini_batch_k_means_random_init_partial_fit(): km = MiniBatchKMeans(n_clusters=n_clusters, init="random", random_state=42) # use the partial_fit API for online learning for X_minibatch in np.array_split(X, 10): km.partial_fit(X_minibatch) # compute the labeling on the complete dataset labels = km.predict(X) assert_equal(v_measure_score(true_labels, labels), 1.0) def test_minibatch_default_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, batch_size=10, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size_, 3 * mb_k_means.batch_size) _check_fitted_model(mb_k_means) def test_minibatch_tol(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, batch_size=10, random_state=42, tol=.01).fit(X) _check_fitted_model(mb_k_means) def test_minibatch_set_init_size(): mb_k_means = MiniBatchKMeans(init=centers.copy(), n_clusters=n_clusters, init_size=666, random_state=42, n_init=1).fit(X) assert_equal(mb_k_means.init_size, 666) assert_equal(mb_k_means.init_size_, n_samples) _check_fitted_model(mb_k_means) def test_k_means_invalid_init(): km = KMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_mini_match_k_means_invalid_init(): km = MiniBatchKMeans(init="invalid", n_init=1, n_clusters=n_clusters) assert_raises(ValueError, km.fit, X) def test_k_means_copyx(): # Check if copy_x=False returns nearly equal X after de-centering. my_X = X.copy() km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42) km.fit(my_X) _check_fitted_model(km) # check if my_X is centered assert_array_almost_equal(my_X, X) def test_k_means_non_collapsed(): # Check k_means with a bad initialization does not yield a singleton # Starting with bad centers that are quickly ignored should not # result in a repositioning of the centers to the center of mass that # would lead to collapsed centers which in turns make the clustering # dependent of the numerical unstabilities. my_X = np.array([[1.1, 1.1], [0.9, 1.1], [1.1, 0.9], [0.9, 1.1]]) array_init = np.array([[1.0, 1.0], [5.0, 5.0], [-5.0, -5.0]]) km = KMeans(init=array_init, n_clusters=3, random_state=42, n_init=1) km.fit(my_X) # centers must not been collapsed assert_equal(len(np.unique(km.labels_)), 3) centers = km.cluster_centers_ assert_true(np.linalg.norm(centers[0] - centers[1]) >= 0.1) assert_true(np.linalg.norm(centers[0] - centers[2]) >= 0.1) assert_true(np.linalg.norm(centers[1] - centers[2]) >= 0.1) def test_predict(): km = KMeans(n_clusters=n_clusters, random_state=42) km.fit(X) # sanity check: predict centroid labels pred = km.predict(km.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = km.predict(X) assert_array_equal(pred, km.labels_) # re-predict labels for training set using fit_predict pred = km.fit_predict(X) assert_array_equal(pred, km.labels_) def test_score(): km1 = KMeans(n_clusters=n_clusters, max_iter=1, random_state=42) s1 = km1.fit(X).score(X) km2 = KMeans(n_clusters=n_clusters, max_iter=10, random_state=42) s2 = km2.fit(X).score(X) assert_greater(s2, s1) def test_predict_minibatch_dense_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, random_state=40).fit(X) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # sanity check: re-predict labeling for training set samples pred = mb_k_means.predict(X) assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_kmeanspp_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='k-means++', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_predict_minibatch_random_init_sparse_input(): mb_k_means = MiniBatchKMeans(n_clusters=n_clusters, init='random', n_init=10).fit(X_csr) # sanity check: re-predict labeling for training set samples assert_array_equal(mb_k_means.predict(X_csr), mb_k_means.labels_) # sanity check: predict centroid labels pred = mb_k_means.predict(mb_k_means.cluster_centers_) assert_array_equal(pred, np.arange(n_clusters)) # check that models trained on sparse input also works for dense input at # predict time assert_array_equal(mb_k_means.predict(X), mb_k_means.labels_) def test_input_dtypes(): X_list = [[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]] X_int = np.array(X_list, dtype=np.int32) X_int_csr = sp.csr_matrix(X_int) init_int = X_int[:2] fitted_models = [ KMeans(n_clusters=2).fit(X_list), KMeans(n_clusters=2).fit(X_int), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_list), KMeans(n_clusters=2, init=init_int, n_init=1).fit(X_int), # mini batch kmeans is very unstable on such a small dataset hence # we use many inits MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_list), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int), MiniBatchKMeans(n_clusters=2, n_init=10, batch_size=2).fit(X_int_csr), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_list), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int), MiniBatchKMeans(n_clusters=2, batch_size=2, init=init_int, n_init=1).fit(X_int_csr), ] expected_labels = [0, 1, 1, 0, 0, 1] scores = np.array([v_measure_score(expected_labels, km.labels_) for km in fitted_models]) assert_array_equal(scores, np.ones(scores.shape[0])) def test_transform(): km = KMeans(n_clusters=n_clusters) km.fit(X) X_new = km.transform(km.cluster_centers_) for c in range(n_clusters): assert_equal(X_new[c, c], 0) for c2 in range(n_clusters): if c != c2: assert_greater(X_new[c, c2], 0) def test_fit_transform(): X1 = KMeans(n_clusters=3, random_state=51).fit(X).transform(X) X2 = KMeans(n_clusters=3, random_state=51).fit_transform(X) assert_array_equal(X1, X2) def test_n_init(): # Check that increasing the number of init increases the quality n_runs = 5 n_init_range = [1, 5, 10] inertia = np.zeros((len(n_init_range), n_runs)) for i, n_init in enumerate(n_init_range): for j in range(n_runs): km = KMeans(n_clusters=n_clusters, init="random", n_init=n_init, random_state=j).fit(X) inertia[i, j] = km.inertia_ inertia = inertia.mean(axis=1) failure_msg = ("Inertia %r should be decreasing" " when n_init is increasing.") % list(inertia) for i in range(len(n_init_range) - 1): assert_true(inertia[i] >= inertia[i + 1], failure_msg) def test_k_means_function(): # test calling the k_means function directly # catch output old_stdout = sys.stdout sys.stdout = StringIO() try: cluster_centers, labels, inertia = k_means(X, n_clusters=n_clusters, verbose=True) finally: sys.stdout = old_stdout centers = cluster_centers assert_equal(centers.shape, (n_clusters, n_features)) labels = labels assert_equal(np.unique(labels).shape[0], n_clusters) # check that the labels assignment are perfect (up to a permutation) assert_equal(v_measure_score(true_labels, labels), 1.0) assert_greater(inertia, 0.0) # check warning when centers are passed assert_warns(RuntimeWarning, k_means, X, n_clusters=n_clusters, init=centers) # to many clusters desired assert_raises(ValueError, k_means, X, n_clusters=X.shape[0] + 1)
bsd-3-clause
brguez/TEIBA
src/python/sourceElement_validationSamples.py
1
13301
#!/usr/bin/env python #coding: utf-8 #### FUNCTIONS #### def header(string): """ Display header """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print '\n', timeInfo, "****", string, "****" def subHeader(string): """ Display subheader """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print timeInfo, "**", string, "**" def info(string): """ Display basic information """ timeInfo = time.strftime("%Y-%m-%d %H:%M") print timeInfo, string def genotypes2df(VCFObj): """ """ donorGtList = [] ## For each MEI in the VCF for MEIObj in VCFObj.lineList: # Create a series of genotype (donorId labeled) end = (MEIObj.infoDict["BKPB"] if "BKPB" in MEIObj.infoDict else "UNK") sourceElementId = MEIObj.chrom + ':' + str(MEIObj.pos) + '-' + str(end) donorGt = pd.Series(MEIObj.genotypesDict, name=sourceElementId) # Add the series to the list of series donorGtList.append(donorGt) ## Merge line series into dataframe (row <- donor_ids, columns <- MEI_ids): df1 = pd.concat(donorGtList, axis=1) ## Transpose dataframe (row <- MEI_ids, columns <- donor_ids) df2 = df1.transpose() return df2 def gt2binary(gtString): """ """ genotype = gtString.split(':')[0] # A) Homozygous reference (for unknown genotypes con) if (genotype == '0') or (genotype == '0|0') or (genotype == '0/0') or (genotype == './.'): boolean = 0 # B) Heterozygous or homozygous MEI (carrier/no_carrier) else: boolean = 1 return boolean def series2binary(integer): """ """ if (integer > 0): boolean = 1 else: boolean = 0 return boolean def selectDonorSet(nbAbsentSrc, binaryGenotypes): """ """ nbDonors = binaryGenotypes.shape[1] nbSrcElements = binaryGenotypes.shape[0] percCovered = 0 accumulatedSeries = pd.Series([0] * nbSrcElements, index=binaryGenotypes.index) for iteration in range(1, (nbDonors + 1)): print "** Iteration nb. ", iteration, " **" bestDonor, newPercCovered, accumulatedSeries = selectBestDonor(nbAbsentSrc, percCovered, accumulatedSeries, binaryGenotypes) # b) if (newPercCovered > percCovered): percCovered = newPercCovered selectedDonorList.append(bestDonor) ## Discard selected donor from the dataframe; binaryGenotypes = binaryGenotypes.drop(bestDonor, axis=1) print "tioo: ", percCovered, len(selectedDonorList), selectedDonorList # b) else: print "Stop! No percentage increase" break def selectBestDonor(nbAbsentSrc, percCovered, accumulatedSeries, binaryGenotypes): """ """ # A key per donorId. The value will be the percentage of source elements covered after adding the candidate donors to the list of selected donors. percCoveredDict = {} # A key per donorId. The value will be a series containing for each source element its binary status (1: covered by the selected set of donors and 0: not covered ) unionSeriesDict = {} for donorId in binaryGenotypes: candidateDonorSeries = binaryGenotypes[donorId] tmpSeries = accumulatedSeries.add(candidateDonorSeries) unionSeries = tmpSeries.apply(series2binary) unionSeriesDict[donorId] = unionSeries nbCoveredCandidate = candidateDonorSeries.sum() # not needed nbCoveredAccumulated = unionSeries.sum() percCoveredDict[donorId] = float(nbCoveredAccumulated)/float(nbAbsentSrc)*100 ## Select the donor contributing to the highest percentage of covered source elements # Note: if there are several possible donors, select one randomly bestDonor = max(percCoveredDict, key=percCoveredDict.get) print "bestDonor: ", bestDonor, percCoveredDict[bestDonor] return(bestDonor, percCoveredDict[bestDonor], unionSeriesDict[bestDonor]) #### MAIN #### ## Import modules ## import argparse import sys import os.path import formats import time import pandas as pd import numpy as np from matplotlib import pyplot as plt ## Get user's input ## parser = argparse.ArgumentParser(description= """""") parser.add_argument('sourceElementGt', help='') parser.add_argument('donorMetadata', help='') parser.add_argument('sourceElementMetadata', help='') parser.add_argument('-o', '--outDir', default=os.getcwd(), dest='outDir', help='output directory. Default: current working directory.' ) args = parser.parse_args() sourceElementGt = args.sourceElementGt donorMetadata = args.donorMetadata sourceElementMetadata = args.sourceElementMetadata outDir = args.outDir scriptName = os.path.basename(sys.argv[0]) ## Display configuration to standard output ## print print "***** ", scriptName, " configuration *****" print "inputVCF: ", sourceElementGt print "donorMetadata: ", donorMetadata print "sourceElementMetadata: ", sourceElementMetadata print "outDir: ", outDir print print "***** Executing ", scriptName, ".... *****" print ## Start ##  #### 1. Read donor metadata file ################################# # Initialize a dictionary with the following structure: # - dict: key(donorId) -> projectCode header("1. Read donor metadata file") metadataFile = open(donorMetadata, 'r') donorIdProjectCodeDict = {} for line in metadataFile: line = line.rstrip('\r\n') if not line.startswith("#"): line = line.split('\t') donorId = line[0] tumorType = line[9] donorIdProjectCodeDict[donorId] = tumorType #print "test: ", donorId, tumorType #print "donorIdProjectCodeDict: ", donorIdProjectCodeDict #### 2. Compute the allele count of each source element in EOPC-DE ################################################################### ## EOPC-DE is the tumor type with available samples for the validation of L1 source elements. # Initialize a dictionary with the following structure: # - dict1: key(sourceElementId) -> dict2: key1("alleleCount") -> value1(alleleCount value) # key2("donorIdList") -> list of donor ids containing the insertion # sourceElementId: chr:beg-end header("2. Compute the allele count of each source element in EOPC-DE") VCFObj = formats.VCF() donorIdList = VCFObj.read_VCF_multiSample(sourceElementGt) alleleCountsDict = {} ## For each MEI: for MEIObj in VCFObj.lineList: end = (MEIObj.infoDict["BKPB"] if "BKPB" in MEIObj.infoDict else "UNK") sourceElementId = MEIObj.chrom + ':' + str(MEIObj.pos) + '-' + str(end) print "** source element ** ", sourceElementId ## Initialize source element dictionary alleleCountsDict[sourceElementId] = {} alleleCountsDict[sourceElementId]["alleleCount"] = 0 alleleCountsDict[sourceElementId]["donorIdList"] = [] ## For each donor: for donorId, genotypeField in MEIObj.genotypesDict.iteritems(): genotypeFieldList = genotypeField.split(":") genotype = genotypeFieldList[0] #print donorId ## Project code available for current donors if (donorId in donorIdProjectCodeDict): projectCode = donorIdProjectCodeDict[donorId] # Select EOPC-DE tumor types if (projectCode == "EOPC-DE"): #print "insertion-Gt: ", genotype ## A) Insertion absent in reference genome if (MEIObj.alt == "<MEI>"): # a) Heterozygous if (genotype == "0/1"): alleleCountsDict[sourceElementId]["alleleCount"] += 1 alleleCountsDict[sourceElementId]["donorIdList"].append(donorId) # b) Homozygous alternative elif (genotype == "1/1"): alleleCountsDict[sourceElementId]["alleleCount"] += 2 alleleCountsDict[sourceElementId]["donorIdList"].append(donorId) # Note c) possibility would be missing allele (./.) #print "Insertion absent in reference genome", sourceElementId, donorId, projectCode, alleleCountsDict[sourceElementId] ## B) Insertion in reference genome and absent in donor genome elif (MEIObj.ref == "<MEI>"): #print "Insertion in reference genome", donorId, genotype, projectCode # a) Heterozygous if (genotype == "0/1"): alleleCountsDict[sourceElementId]["alleleCount"] += 1 alleleCountsDict[sourceElementId]["donorIdList"].append(donorId) # b) Homozygous reference elif (genotype == "0/0"): alleleCountsDict[sourceElementId]["alleleCount"] += 2 alleleCountsDict[sourceElementId]["donorIdList"].append(donorId) # b) Project code not available for current donors (affects to few donors)  # I don't know why this happens... check later else: print "[ERROR] Unknown donor tumor type: ", donorId #### 3. Make output file containing source element metadata + allele count ############################################################################## header("3. Make output file containing source element metadata + allele count") metadataFile = open(sourceElementMetadata, 'r') # Open output file outFilePath = outDir + '/sourceElements_alleleCount_EOPCDE.tsv' outFile = open(outFilePath, 'w') # Write header: row = '#cytobandId' + "\t" + 'sourceIdNew' + "\t" + 'sourceIdOld' + "\t" + 'refStatus' + "\t" + 'strand' + "\t" + 'TSDlen' + "\t" + 'novelty' + "\t" + 'activityStatus' + "\t" + 'alleleCount' + "\t" + 'donorIdList' + "\n" outFile.write(row) for line in metadataFile: line = line.rstrip('\r\n') if not line.startswith("#"): line = line.split('\t') print "line: ", line cytobandId, sourceIdNew, sourceIdOld, novelty, activityStatus = line ## If inconsistencies between source element identifier raise an error an skip # Problem only affects one element if sourceIdNew not in alleleCountsDict: continue print "[ERROR] source element coordenate not found " alleleCount = alleleCountsDict[sourceIdNew]["alleleCount"] donorIdList = (','.join(alleleCountsDict[sourceIdNew]["donorIdList"]) if len(alleleCountsDict[sourceIdNew]["donorIdList"]) > 0 else "-") row = cytobandId + "\t" + sourceIdNew + "\t" + sourceIdOld + "\t" + novelty + "\t" + activityStatus + "\t" + str(alleleCount) + "\t" + donorIdList + "\n" outFile.write(row) #### 4. Make genotyping binary matrix for EOPC-DE donors ########################################################## # The binary matrix will only contain those source elements # that are absent in the reference genome ## carrier: 1, no_carrier: 0 header("4. Make genotyping binary matrix for EOPC-DE donors") #### Select MEI absent in the reference genome VCFAbsentObj = formats.VCF() ## For each MEI: for MEIObj in VCFObj.lineList: if (MEIObj.alt == "<MEI>"): VCFAbsentObj.addLine(MEIObj) #### Make binary matrix for all the donors gtAbsentDfPCAWG = genotypes2df(VCFAbsentObj) gtAbsentBinaryDfPCAWG = gtAbsentDfPCAWG.applymap(gt2binary) #### Filter binary matrix selecting EOPC-DE donors # print "gtBinaryDfPCAWG: ", gtBinaryDfPCAWG ## Make list with EOPC donor ids EOPCdonorIdList = [] for donorId in donorIdProjectCodeDict: projectCode = donorIdProjectCodeDict[donorId] # Select EOPC-DE tumor types if (projectCode == "EOPC-DE"): EOPCdonorIdList.append(donorId) binaryGtAbsentSrcEOPCdf = gtAbsentBinaryDfPCAWG[EOPCdonorIdList] #### 5. Find the collection of donors maximizing the number of ################################################################ # source elements absent in the reference genome ################################################## header("5. Find the collection of donors maximizing the number of source elements absent in the reference genome") nbAbsentSrc = len(VCFAbsentObj.lineList) selectedDonorList = [] print "nbAbsentSrc: ", nbAbsentSrc selectDonorSet(nbAbsentSrc, binaryGtAbsentSrcEOPCdf) #### 6. Report the number of source L1 in each EOPC #################################################### # Open output file outFilePath = outDir + '/donorId_nbSourceL1_EOPCDE.tsv' outFile = open(outFilePath, 'w') for donorId in binaryGtAbsentSrcEOPCdf: sourceL1list = [ sourceId for sourceId, active in binaryGtAbsentSrcEOPCdf[donorId].iteritems() if active == 1] nbSourceL1 = len(sourceL1list) sourceL1Str = ",".join(sourceL1list) row = donorId + "\t" + str(nbSourceL1) + "\t" + sourceL1Str + "\n" outFile.write(row) # medianNVHom = np.median([float(genotype[1]) for genotype in genotypesList if genotype[0] == '1/1']) #binaryGtAbsentSrcEOPCdf = binaryGtAbsentSrcEOPCdf #print "binaryGtAbsentSrcEOPCdf: ", binaryGtAbsentSrcEOPCdf #### header("Finished")
gpl-3.0
glemaitre/UnbalancedDataset
imblearn/tests/test_pipeline.py
2
34905
""" Test the pipeline module. """ # Authors: Guillaume Lemaitre <[email protected]> # Christos Aridas # License: MIT from tempfile import mkdtemp import shutil import time import numpy as np from pytest import raises from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_allclose from sklearn.base import clone, BaseEstimator from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.datasets import load_iris, make_classification from sklearn.preprocessing import StandardScaler from sklearn.externals.joblib import Memory from imblearn.pipeline import Pipeline, make_pipeline from imblearn.under_sampling import (RandomUnderSampler, EditedNearestNeighbours as ENN) JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) R_TOL = 1e-4 class NoFit(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class NoTrans(NoFit): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class NoInvTransf(NoTrans): def transform(self, X, y=None): return X class Transf(NoInvTransf): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class TransfFitParams(Transf): def fit(self, X, y, **fit_params): self.fit_params = fit_params return self class Mult(BaseEstimator): def __init__(self, mult=1): self.mult = mult def fit(self, X, y): return self def transform(self, X): return np.asarray(X) * self.mult def inverse_transform(self, X): return np.asarray(X) / self.mult def predict(self, X): return (np.asarray(X) * self.mult).sum(axis=1) predict_proba = predict_log_proba = decision_function = predict def score(self, X, y=None): return np.sum(X) class FitParamT(BaseEstimator): """Mock classifier """ def __init__(self): self.successful = False def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def fit_predict(self, X, y, should_succeed=False): self.fit(X, y, should_succeed=should_succeed) return self.predict(X) def score(self, X, y=None, sample_weight=None): if sample_weight is not None: X = X * sample_weight return np.sum(X) class DummyTransf(Transf): """Transformer which store the column means""" def fit(self, X, y): self.means_ = np.mean(X, axis=0) # store timestamp to figure out whether the result of 'fit' has been # cached or not self.timestamp_ = time.time() return self class DummySampler(NoTrans): """Samplers which returns a balanced number of samples""" def fit(self, X, y): self.means_ = np.mean(X, axis=0) # store timestamp to figure out whether the result of 'fit' has been # cached or not self.timestamp_ = time.time() return self def sample(self, X, y): return X, y def fit_sample(self, X, y): return self.fit(X, y).sample(X, y) class FitTransformSample(NoTrans): """Estimator implementing both transform and sample """ def fit(self, X, y, should_succeed=False): pass def sample(self, X, y=None): return X, y def transform(self, X, y=None): return X def test_pipeline_init(): # Test the various init parameters of the pipeline. with raises(TypeError): Pipeline() # Check that we can't instantiate pipelines with objects without fit # method error_regex = 'Last step of Pipeline should implement fit. .*NoFit.*' with raises(TypeError, match=error_regex): Pipeline([('clf', NoFit())]) # Smoke test with only an estimator clf = NoTrans() pipe = Pipeline([('svc', clf)]) expected = dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False)) assert pipe.get_params(deep=True) == expected # Check that params are set pipe.set_params(svc__a=0.1) assert clf.a == 0.1 assert clf.b is None # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't instantiate with non-transformers on the way # Note that NoTrans implements fit, but not transform error_regex = 'implement fit and transform or sample' with raises(TypeError, match=error_regex): Pipeline([('t', NoTrans()), ('svc', clf)]) # Check that params are set pipe.set_params(svc__C=0.1) assert clf.C == 0.1 # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong with raises(ValueError): pipe.set_params(anova__C=0.1) # Test clone pipe2 = clone(pipe) assert not pipe.named_steps['svc'] is pipe2.named_steps['svc'] # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert params == params2 def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert pipe.predict(None) # and transformer params should not be changed assert pipe.named_steps['transf'].a is None assert pipe.named_steps['transf'].b is None # invalid parameters should raise an error message with raises(TypeError, match="unexpected keyword argument"): pipe.fit(None, None, clf__bad=True) def test_pipeline_sample_weight_supported(): # Pipeline should pass sample_weight X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X, y=None) assert pipe.score(X) == 3 assert pipe.score(X, y=None) == 3 assert pipe.score(X, y=None, sample_weight=None) == 3 assert pipe.score(X, sample_weight=np.array([2, 3])) == 8 def test_pipeline_sample_weight_unsupported(): # When sample_weight is None it shouldn't be passed X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', Mult())]) pipe.fit(X, y=None) assert pipe.score(X) == 3 assert pipe.score(X, sample_weight=None) == 3 with raises(TypeError, match="unexpected keyword argument"): pipe.score(X, sample_weight=np.array([2, 3])) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) with raises(ValueError, match="Invalid parameter"): pipe.set_params(fake='nope') # nested model check with raises(ValueError, match="Invalid parameter"): pipe.set_params(fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(svd_solver='full', n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = PCA(n_components=2, svd_solver='randomized', whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert predict.shape == (n_samples,) proba = pipe.predict_proba(X) assert proba.shape == (n_samples, n_classes) log_proba = pipe.predict_log_proba(X) assert log_proba.shape == (n_samples, n_classes) decision_function = pipe.decision_function(X) assert decision_function.shape == (n_samples, n_classes) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # As pipeline doesn't clone estimators on construction, # it must have its own estimators scaler_for_pipeline = StandardScaler() km_for_pipeline = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([ ('scaler', scaler_for_pipeline), ('Kmeans', km_for_pipeline) ]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA(svd_solver='full') pipe = Pipeline([('scaler', scaler), ('pca', pca)]) error_regex = "'PCA' object has no attribute 'fit_predict'" with raises(AttributeError, match=error_regex): getattr(pipe, 'fit_predict') def test_fit_predict_with_intermediate_fit_params(): # tests that Pipeline passes fit_params to intermediate steps # when fit_predict is invoked pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())]) pipe.fit_predict(X=None, y=None, transf__should_get_this=True, clf__should_succeed=True) assert pipe.named_steps['transf'].fit_params['should_get_this'] assert pipe.named_steps['clf'].successful assert 'should_succeed' not in pipe.named_steps['transf'].fit_params def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2, svd_solver='full') pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transf = Transf() pipeline = Pipeline([('mock', transf)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transf.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_set_pipeline_steps(): transf1 = Transf() transf2 = Transf() pipeline = Pipeline([('mock', transf1)]) assert pipeline.named_steps['mock'] is transf1 # Directly setting attr pipeline.steps = [('mock2', transf2)] assert 'mock' not in pipeline.named_steps assert pipeline.named_steps['mock2'] is transf2 assert [('mock2', transf2)] == pipeline.steps # Using set_params pipeline.set_params(steps=[('mock', transf1)]) assert [('mock', transf1)] == pipeline.steps # Using set_params to replace single step pipeline.set_params(mock=transf2) assert [('mock', transf2)] == pipeline.steps # With invalid data pipeline.set_params(steps=[('junk', ())]) with raises(TypeError): pipeline.fit([[1]], [1]) with raises(TypeError): pipeline.fit_transform([[1]], [1]) def test_set_pipeline_step_none(): # Test setting Pipeline steps to None X = np.array([[1]]) y = np.array([1]) mult2 = Mult(mult=2) mult3 = Mult(mult=3) mult5 = Mult(mult=5) def make(): return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)]) pipeline = make() exp = 2 * 3 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline.set_params(m3=None) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) expected_params = {'steps': pipeline.steps, 'm2': mult2, 'm3': None, 'last': mult5, 'memory': None, 'm2__mult': 2, 'last__mult': 5} assert pipeline.get_params(deep=True) == expected_params pipeline.set_params(m2=None) exp = 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) # for other methods, ensure no AttributeErrors on None: other_methods = ['predict_proba', 'predict_log_proba', 'decision_function', 'transform', 'score'] for method in other_methods: getattr(pipeline, method)(X) pipeline.set_params(m2=mult2) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline = make() pipeline.set_params(last=None) # mult2 and mult3 are active exp = 6 pipeline.fit(X, y) pipeline.transform(X) assert_array_equal([[exp]], pipeline.fit(X, y).transform(X)) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) with raises(AttributeError, match="has no attribute 'predict'"): getattr(pipeline, 'predict') # Check None step at construction time exp = 2 * 5 pipeline = Pipeline([('m2', mult2), ('m3', None), ('last', mult5)]) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) def test_pipeline_ducktyping(): pipeline = make_pipeline(Mult(5)) pipeline.predict pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(Transf()) assert not hasattr(pipeline, 'predict') pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(None) assert not hasattr(pipeline, 'predict') pipeline.transform pipeline.inverse_transform pipeline = make_pipeline(Transf(), NoInvTransf()) assert not hasattr(pipeline, 'predict') pipeline.transform assert not hasattr(pipeline, 'inverse_transform') pipeline = make_pipeline(NoInvTransf(), Transf()) assert not hasattr(pipeline, 'predict') pipeline.transform assert not hasattr(pipeline, 'inverse_transform') def test_make_pipeline(): t1 = Transf() t2 = Transf() pipe = make_pipeline(t1, t2) assert isinstance(pipe, Pipeline) assert pipe.steps[0][0] == "transf-1" assert pipe.steps[1][0] == "transf-2" pipe = make_pipeline(t1, t2, FitParamT()) assert isinstance(pipe, Pipeline) assert pipe.steps[0][0] == "transf-1" assert pipe.steps[1][0] == "transf-2" assert pipe.steps[2][0] == "fitparamt" def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) with raises(AttributeError): getattr(reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) with raises(AttributeError): getattr(clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_pipeline_wrong_memory(): # Test that an error is raised when memory is not a string or a Memory # instance iris = load_iris() X = iris.data y = iris.target # Define memory as an integer memory = 1 cached_pipe = Pipeline([('transf', DummyTransf()), ('svc', SVC())], memory=memory) error_regex = ("'memory' should either be a string or a joblib.Memory" " instance, got 'memory=1' instead.") with raises(ValueError, match=error_regex): cached_pipe.fit(X, y) def test_pipeline_memory_transformer(): iris = load_iris() X = iris.data y = iris.target cachedir = mkdtemp() try: memory = Memory(cachedir=cachedir, verbose=10) # Test with Transformer + SVC clf = SVC(probability=True, random_state=0) transf = DummyTransf() pipe = Pipeline([('transf', clone(transf)), ('svc', clf)]) cached_pipe = Pipeline([('transf', transf), ('svc', clf)], memory=memory) # Memoize the transformer at the first fit cached_pipe.fit(X, y) pipe.fit(X, y) # Get the time stamp of the tranformer in the cached pipeline expected_ts = cached_pipe.named_steps['transf'].timestamp_ # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert not hasattr(transf, 'means_') # Check that we are reading the cache while fitting # a second time cached_pipe.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts # Create a new pipeline with cloned estimators # Check that even changing the name step does not affect the cache hit clf_2 = SVC(probability=True, random_state=0) transf_2 = DummyTransf() cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)], memory=memory) cached_pipe_2.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe_2.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe_2.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe_2.named_steps['transf_2'].means_) assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts finally: shutil.rmtree(cachedir) def test_pipeline_memory_sampler(): X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) cachedir = mkdtemp() try: memory = Memory(cachedir=cachedir, verbose=10) # Test with Transformer + SVC clf = SVC(probability=True, random_state=0) transf = DummySampler() pipe = Pipeline([('transf', clone(transf)), ('svc', clf)]) cached_pipe = Pipeline([('transf', transf), ('svc', clf)], memory=memory) # Memoize the transformer at the first fit cached_pipe.fit(X, y) pipe.fit(X, y) # Get the time stamp of the tranformer in the cached pipeline expected_ts = cached_pipe.named_steps['transf'].timestamp_ # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert not hasattr(transf, 'means_') # Check that we are reading the cache while fitting # a second time cached_pipe.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts # Create a new pipeline with cloned estimators # Check that even changing the name step does not affect the cache hit clf_2 = SVC(probability=True, random_state=0) transf_2 = DummySampler() cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)], memory=memory) cached_pipe_2.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe_2.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe_2.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe_2.named_steps['transf_2'].means_) assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts finally: shutil.rmtree(cachedir) def test_pipeline_methods_pca_rus_svm(): # Test the various methods of the pipeline (pca + svm). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA() rus = RandomUnderSampler(random_state=0) pipe = Pipeline([('pca', pca), ('rus', rus), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_rus_pca_svm(): # Test the various methods of the pipeline (pca + svm). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA() rus = RandomUnderSampler(random_state=0) pipe = Pipeline([('rus', rus), ('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_sample(): # Test whether pipeline works with a sampler at the end. # Also test pipeline.sampler X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) rus = RandomUnderSampler(random_state=0) pipeline = Pipeline([('rus', rus)]) # test transform and fit_transform: X_trans, y_trans = pipeline.fit(X, y).sample(X, y) X_trans2, y_trans2 = pipeline.fit_sample(X, y) X_trans3, y_trans3 = rus.fit_sample(X, y) assert_allclose(X_trans, X_trans2, rtol=R_TOL) assert_allclose(X_trans, X_trans3, rtol=R_TOL) assert_allclose(y_trans, y_trans2, rtol=R_TOL) assert_allclose(y_trans, y_trans3, rtol=R_TOL) pca = PCA() pipeline = Pipeline([('pca', PCA()), ('rus', rus)]) X_trans, y_trans = pipeline.fit(X, y).sample(X, y) X_pca = pca.fit_transform(X) X_trans2, y_trans2 = rus.fit_sample(X_pca, y) # We round the value near to zero. It seems that PCA has some issue # with that X_trans[np.bitwise_and(X_trans < R_TOL, X_trans > -R_TOL)] = 0 X_trans2[np.bitwise_and(X_trans2 < R_TOL, X_trans2 > -R_TOL)] = 0 assert_allclose(X_trans, X_trans2, rtol=R_TOL) assert_allclose(y_trans, y_trans2, rtol=R_TOL) def test_pipeline_sample_transform(): # Test whether pipeline works with a sampler at the end. # Also test pipeline.sampler X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) rus = RandomUnderSampler(random_state=0) pca = PCA() pca2 = PCA() pipeline = Pipeline([('pca', pca), ('rus', rus), ('pca2', pca2)]) pipeline.fit(X, y).transform(X) def test_pipeline_none_classifier(): # Test pipeline using None as preprocessing step and a classifier X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) clf = LogisticRegression(random_state=0) pipe = make_pipeline(None, clf) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.decision_function(X) pipe.score(X, y) def test_pipeline_none_sampler_classifier(): # Test pipeline using None, RUS and a classifier X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) clf = LogisticRegression(random_state=0) rus = RandomUnderSampler(random_state=0) pipe = make_pipeline(None, rus, clf) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.decision_function(X) pipe.score(X, y) def test_pipeline_sampler_none_classifier(): # Test pipeline using RUS, None and a classifier X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) clf = LogisticRegression(random_state=0) rus = RandomUnderSampler(random_state=0) pipe = make_pipeline(rus, None, clf) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.decision_function(X) pipe.score(X, y) def test_pipeline_none_sampler_sample(): # Test pipeline using None step and a sampler X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) rus = RandomUnderSampler(random_state=0) pipe = make_pipeline(None, rus) pipe.fit(X, y) pipe.sample(X, y) def test_pipeline_none_transformer(): # Test pipeline using None and a transformer that implements transform and # inverse_transform X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) pca = PCA(whiten=True) pipe = make_pipeline(None, pca) pipe.fit(X, y) X_trans = pipe.transform(X) X_inversed = pipe.inverse_transform(X_trans) assert_array_almost_equal(X, X_inversed) def test_pipeline_methods_anova_rus(): # Test the various methods of the pipeline (anova). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with RandomUnderSampling + Anova + LogisticRegression clf = LogisticRegression() rus = RandomUnderSampler(random_state=0) filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('rus', rus), ('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_with_step_that_implements_both_sample_and_transform(): # Test the various methods of the pipeline (anova). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) clf = LogisticRegression() with raises(TypeError): Pipeline([('step', FitTransformSample()), ('logistic', clf)]) def test_pipeline_with_step_that_it_is_pipeline(): # Test the various methods of the pipeline (anova). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with RandomUnderSampling + Anova + LogisticRegression clf = LogisticRegression() rus = RandomUnderSampler(random_state=0) filter1 = SelectKBest(f_classif, k=2) pipe1 = Pipeline([('rus', rus), ('anova', filter1)]) with raises(TypeError): Pipeline([('pipe1', pipe1), ('logistic', clf)]) def test_pipeline_fit_then_sample_with_sampler_last_estimator(): X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=50000, random_state=0) rus = RandomUnderSampler(random_state=42) enn = ENN() pipeline = make_pipeline(rus, enn) X_fit_sample_resampled, y_fit_sample_resampled = pipeline.fit_sample(X, y) pipeline = make_pipeline(rus, enn) pipeline.fit(X, y) X_fit_then_sample_res, y_fit_then_sample_res = pipeline.sample(X, y) assert_array_equal(X_fit_sample_resampled, X_fit_then_sample_res) assert_array_equal(y_fit_sample_resampled, y_fit_then_sample_res) def test_pipeline_fit_then_sample_3_samplers_with_sampler_last_estimator(): X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=50000, random_state=0) rus = RandomUnderSampler(random_state=42) enn = ENN() pipeline = make_pipeline(rus, enn, rus) X_fit_sample_resampled, y_fit_sample_resampled = pipeline.fit_sample(X, y) pipeline = make_pipeline(rus, enn, rus) pipeline.fit(X, y) X_fit_then_sample_res, y_fit_then_sample_res = pipeline.sample(X, y) assert_array_equal(X_fit_sample_resampled, X_fit_then_sample_res) assert_array_equal(y_fit_sample_resampled, y_fit_then_sample_res)
mit
zaxtax/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
fabianp/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
hsiaoyi0504/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
webmasterraj/FogOrNot
flask/lib/python2.7/site-packages/pandas/io/tests/test_stata.py
2
44490
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path,write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.read() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.read() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta tm.assert_equal(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) with tm.ensure_clean() as path: encoded.to_stata(path,encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) tm.assert_equal(len(w), 1) # should get a warning for that format. written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_reread_dta14(self): expected = self.read_csv(self.csv14) cols = ['byte_', 'int_', 'long_', 'float_', 'double_'] for col in cols: expected[col] = expected[col].convert_objects(convert_numeric=True) expected['float_'] = expected['float_'].astype(np.float32) expected['date_td'] = pd.to_datetime(expected['date_td'], coerce=True) parsed_113 = self.read_dta(self.dta14_113) parsed_113.index.name = 'index' parsed_114 = self.read_dta(self.dta14_114) parsed_114.index.name = 'index' parsed_115 = self.read_dta(self.dta14_115) parsed_115.index.name = 'index' parsed_117 = self.read_dta(self.dta14_117) parsed_117.index.name = 'index' tm.assert_frame_equal(parsed_114, parsed_113) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) with tm.ensure_clean() as path: parsed_114.to_stata(path, {'date_td': 'td'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), parsed_114) def test_read_write_reread_dta15(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) parsed_113 = self.read_dta(self.dta15_113) parsed_114 = self.read_dta(self.dta15_114) parsed_115 = self.read_dta(self.dta15_115) parsed_117 = self.read_dta(self.dta15_117) tm.assert_frame_equal(expected, parsed_114) tm.assert_frame_equal(parsed_113, parsed_114) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) def test_timestamp_and_label(self): original = DataFrame([(1,)], columns=['var']) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = 'This is a data file.' with tm.ensure_clean() as path: original.to_stata(path, time_stamp=time_stamp, data_label=data_label) reader = StataReader(path) parsed_time_stamp = dt.datetime.strptime(reader.time_stamp, ('%d %b %Y %H:%M')) assert parsed_time_stamp == time_stamp assert reader.data_label == data_label def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = 'index' with tm.ensure_clean() as path: # should get a warning for that format. with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path), InvalidColumnName) # should produce a single warning tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) tm.assert_frame_equal(original, written_and_read_again) def test_nan_to_missing_value(self): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, original) def test_no_index(self): columns = ['x', 'y'] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = 'index_not_written' with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) tm.assertRaises(KeyError, lambda: written_and_read_again['index_not_written']) def test_string_no_dates(self): s1 = Series(['a', 'A longer string']) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_large_value_conversion(self): s0 = Series([1, 99], dtype=np.int8) s1 = Series([1, 127], dtype=np.int8) s2 = Series([1, 2 ** 15 - 1], dtype=np.int16) s3 = Series([1, 2 ** 63 - 1], dtype=np.int64) original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3}) original.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path), PossiblePrecisionLoss) # should produce a single warning tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) modified = original.copy() modified['s1'] = Series(modified['s1'], dtype=np.int16) modified['s2'] = Series(modified['s2'], dtype=np.int32) modified['s3'] = Series(modified['s3'], dtype=np.float64) tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_dates_invalid_column(self): original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) original.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path, {0: 'tc'}), InvalidColumnName) tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) modified = original.copy() modified.columns = ['_0'] tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_date_export_formats(self): columns = ['tc', 'td', 'tw', 'tm', 'tq', 'th', 'ty'] conversions = dict(((c, c) for c in columns)) data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) original = DataFrame([data], columns=columns) original.index.name = 'index' expected_values = [datetime(2006, 11, 20, 23, 13, 20), # Time datetime(2006, 11, 20), # Day datetime(2006, 11, 19), # Week datetime(2006, 11, 1), # Month datetime(2006, 10, 1), # Quarter year datetime(2006, 7, 1), # Half year datetime(2006, 1, 1)] # Year expected = DataFrame([expected_values], columns=columns) expected.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, conversions) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_write_missing_strings(self): original = DataFrame([["1"], [None]], columns=["foo"]) expected = DataFrame([["1"], [""]], columns=["foo"]) expected.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_bool_uint(self): s0 = Series([0, 1, True], dtype=np.bool) s1 = Series([0, 1, 100], dtype=np.uint8) s2 = Series([0, 1, 255], dtype=np.uint8) s3 = Series([0, 1, 2 ** 15 - 100], dtype=np.uint16) s4 = Series([0, 1, 2 ** 16 - 1], dtype=np.uint16) s5 = Series([0, 1, 2 ** 31 - 100], dtype=np.uint32) s6 = Series([0, 1, 2 ** 32 - 1], dtype=np.uint32) original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3, 's4': s4, 's5': s5, 's6': s6}) original.index.name = 'index' expected = original.copy() expected_types = (np.int8, np.int8, np.int16, np.int16, np.int32, np.int32, np.float64) for c, t in zip(expected.columns, expected_types): expected[c] = expected[c].astype(t) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, expected) def test_variable_labels(self): sr_115 = StataReader(self.dta16_115).variable_labels() sr_117 = StataReader(self.dta16_117).variable_labels() keys = ('var1', 'var2', 'var3') labels = ('label1', 'label2', 'label3') for k,v in compat.iteritems(sr_115): self.assertTrue(k in sr_117) self.assertTrue(v == sr_117[k]) self.assertTrue(k in keys) self.assertTrue(v in labels) def test_minimal_size_col(self): str_lens = (1, 100, 244) s = {} for str_len in str_lens: s['s' + str(str_len)] = Series(['a' * str_len, 'b' * str_len, 'c' * str_len]) original = DataFrame(s) with tm.ensure_clean() as path: original.to_stata(path, write_index=False) sr = StataReader(path) typlist = sr.typlist variables = sr.varlist formats = sr.fmtlist for variable, fmt, typ in zip(variables, formats, typlist): self.assertTrue(int(variable[1:]) == int(fmt[1:-1])) self.assertTrue(int(variable[1:]) == typ) def test_excessively_long_string(self): str_lens = (1, 244, 500) s = {} for str_len in str_lens: s['s' + str(str_len)] = Series(['a' * str_len, 'b' * str_len, 'c' * str_len]) original = DataFrame(s) with tm.assertRaises(ValueError): with tm.ensure_clean() as path: original.to_stata(path) def test_missing_value_generator(self): types = ('b','h','l') df = DataFrame([[0.0]],columns=['float_']) with tm.ensure_clean() as path: df.to_stata(path) valid_range = StataReader(path).VALID_RANGE expected_values = ['.' + chr(97 + i) for i in range(26)] expected_values.insert(0, '.') for t in types: offset = valid_range[t][1] for i in range(0,27): val = StataMissingValue(offset+1+i) self.assertTrue(val.string == expected_values[i]) # Test extremes for floats val = StataMissingValue(struct.unpack('<f',b'\x00\x00\x00\x7f')[0]) self.assertTrue(val.string == '.') val = StataMissingValue(struct.unpack('<f',b'\x00\xd0\x00\x7f')[0]) self.assertTrue(val.string == '.z') # Test extremes for floats val = StataMissingValue(struct.unpack('<d',b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0]) self.assertTrue(val.string == '.') val = StataMissingValue(struct.unpack('<d',b'\x00\x00\x00\x00\x00\x1a\xe0\x7f')[0]) self.assertTrue(val.string == '.z') def test_missing_value_conversion(self): columns = ['int8_', 'int16_', 'int32_', 'float32_', 'float64_'] smv = StataMissingValue(101) keys = [key for key in iterkeys(smv.MISSING_VALUES)] keys.sort() data = [] for i in range(27): row = [StataMissingValue(keys[i+(j*27)]) for j in range(5)] data.append(row) expected = DataFrame(data,columns=columns) parsed_113 = read_stata(self.dta17_113, convert_missing=True) parsed_115 = read_stata(self.dta17_115, convert_missing=True) parsed_117 = read_stata(self.dta17_117, convert_missing=True) tm.assert_frame_equal(expected, parsed_113) tm.assert_frame_equal(expected, parsed_115) tm.assert_frame_equal(expected, parsed_117) def test_big_dates(self): yr = [1960, 2000, 9999, 100, 2262, 1677] mo = [1, 1, 12, 1, 4, 9] dd = [1, 1, 31, 1, 22, 23] hr = [0, 0, 23, 0, 0, 0] mm = [0, 0, 59, 0, 0, 0] ss = [0, 0, 59, 0, 0, 0] expected = [] for i in range(len(yr)): row = [] for j in range(7): if j == 0: row.append( datetime(yr[i], mo[i], dd[i], hr[i], mm[i], ss[i])) elif j == 6: row.append(datetime(yr[i], 1, 1)) else: row.append(datetime(yr[i], mo[i], dd[i])) expected.append(row) expected.append([NaT] * 7) columns = ['date_tc', 'date_td', 'date_tw', 'date_tm', 'date_tq', 'date_th', 'date_ty'] # Fixes for weekly, quarterly,half,year expected[2][2] = datetime(9999,12,24) expected[2][3] = datetime(9999,12,1) expected[2][4] = datetime(9999,10,1) expected[2][5] = datetime(9999,7,1) expected[4][2] = datetime(2262,4,16) expected[4][3] = expected[4][4] = datetime(2262,4,1) expected[4][5] = expected[4][6] = datetime(2262,1,1) expected[5][2] = expected[5][3] = expected[5][4] = datetime(1677,10,1) expected[5][5] = expected[5][6] = datetime(1678,1,1) expected = DataFrame(expected, columns=columns, dtype=np.object) parsed_115 = read_stata(self.dta18_115) parsed_117 = read_stata(self.dta18_117) tm.assert_frame_equal(expected, parsed_115) tm.assert_frame_equal(expected, parsed_117) date_conversion = dict((c, c[-2:]) for c in columns) #{c : c[-2:] for c in columns} with tm.ensure_clean() as path: expected.index.name = 'index' expected.to_stata(path, date_conversion) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_dtype_conversion(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) no_conversion = read_stata(self.dta15_117, convert_dates=True) tm.assert_frame_equal(expected, no_conversion) conversion = read_stata(self.dta15_117, convert_dates=True, preserve_dtypes=False) # read_csv types are the same expected = self.read_csv(self.csv15) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) tm.assert_frame_equal(expected, conversion) def test_drop_column(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) columns = ['byte_', 'int_', 'long_'] expected = expected[columns] dropped = read_stata(self.dta15_117, convert_dates=True, columns=columns) tm.assert_frame_equal(expected, dropped) with tm.assertRaises(ValueError): columns = ['byte_', 'byte_'] read_stata(self.dta15_117, convert_dates=True, columns=columns) with tm.assertRaises(ValueError): columns = ['byte_', 'int_', 'long_', 'not_found'] read_stata(self.dta15_117, convert_dates=True, columns=columns) def test_categorical_writing(self): original = DataFrame.from_records( [ ["one", "ten", "one", "one", "one", 1], ["two", "nine", "two", "two", "two", 2], ["three", "eight", "three", "three", "three", 3], ["four", "seven", 4, "four", "four", 4], ["five", "six", 5, np.nan, "five", 5], ["six", "five", 6, np.nan, "six", 6], ["seven", "four", 7, np.nan, "seven", 7], ["eight", "three", 8, np.nan, "eight", 8], ["nine", "two", 9, np.nan, "nine", 9], ["ten", "one", "ten", np.nan, "ten", 10] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled', 'unlabeled']) expected = original.copy() # these are all categoricals original = pd.concat([original[col].astype('category') for col in original], axis=1) expected['incompletely_labeled'] = expected['incompletely_labeled'].apply(str) expected['unlabeled'] = expected['unlabeled'].apply(str) expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) expected.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: # Silence warnings original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_categorical_warnings_and_errors(self): # Warning for non-string labels # Error for labels too long original = pd.DataFrame.from_records( [['a' * 10000], ['b' * 10000], ['c' * 10000], ['d' * 10000]], columns=['Too_long']) original = pd.concat([original[col].astype('category') for col in original], axis=1) with tm.ensure_clean() as path: tm.assertRaises(ValueError, original.to_stata, path) original = pd.DataFrame.from_records( [['a'], ['b'], ['c'], ['d'], [1]], columns=['Too_long']) original = pd.concat([original[col].astype('category') for col in original], axis=1) with warnings.catch_warnings(record=True) as w: original.to_stata(path) tm.assert_equal(len(w), 1) # should get a warning for mixed content def test_categorical_with_stata_missing_values(self): values = [['a' + str(i)] for i in range(120)] values.append([np.nan]) original = pd.DataFrame.from_records(values, columns=['many_labels']) original = pd.concat([original[col].astype('category') for col in original], axis=1) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_categorical_order(self): # Directly construct using expected codes # Format is is_cat, col_name, labels (in order), underlying data expected = [(True, 'ordered', ['a', 'b', 'c', 'd', 'e'], np.arange(5)), (True, 'reverse', ['a', 'b', 'c', 'd', 'e'], np.arange(5)[::-1]), (True, 'noorder', ['a', 'b', 'c', 'd', 'e'], np.array([2, 1, 4, 0, 3])), (True, 'floating', ['a', 'b', 'c', 'd', 'e'], np.arange(0, 5)), (True, 'float_missing', ['a', 'd', 'e'], np.array([0, 1, 2, -1, -1])), (False, 'nolabel', [1.0, 2.0, 3.0, 4.0, 5.0], np.arange(5)), (True, 'int32_mixed', ['d', 2, 'e', 'b', 'a'], np.arange(5))] cols = [] for is_cat, col, labels, codes in expected: if is_cat: cols.append((col, pd.Categorical.from_codes(codes, labels))) else: cols.append((col, pd.Series(labels, dtype=np.float32))) expected = DataFrame.from_items(cols) # Read with and with out categoricals, ensure order is identical parsed_115 = read_stata(self.dta19_115) parsed_117 = read_stata(self.dta19_117) tm.assert_frame_equal(expected, parsed_115) tm.assert_frame_equal(expected, parsed_117) # Check identity of codes for col in expected: if is_categorical_dtype(expected[col]): tm.assert_series_equal(expected[col].cat.codes, parsed_115[col].cat.codes) tm.assert_index_equal(expected[col].cat.categories, parsed_115[col].cat.categories) def test_categorical_sorting(self): parsed_115 = read_stata(self.dta20_115) parsed_117 = read_stata(self.dta20_117) # Sort based on codes, not strings parsed_115 = parsed_115.sort("srh") parsed_117 = parsed_117.sort("srh") # Don't sort index parsed_115.index = np.arange(parsed_115.shape[0]) parsed_117.index = np.arange(parsed_117.shape[0]) codes = [-1, -1, 0, 1, 1, 1, 2, 2, 3, 4] categories = ["Poor", "Fair", "Good", "Very good", "Excellent"] expected = pd.Series(pd.Categorical.from_codes(codes=codes, categories=categories)) tm.assert_series_equal(expected, parsed_115["srh"]) tm.assert_series_equal(expected, parsed_117["srh"]) def test_categorical_ordering(self): parsed_115 = read_stata(self.dta19_115) parsed_117 = read_stata(self.dta19_117) parsed_115_unordered = read_stata(self.dta19_115, order_categoricals=False) parsed_117_unordered = read_stata(self.dta19_117, order_categoricals=False) for col in parsed_115: if not is_categorical_dtype(parsed_115[col]): continue tm.assert_equal(True, parsed_115[col].cat.ordered) tm.assert_equal(True, parsed_117[col].cat.ordered) tm.assert_equal(False, parsed_115_unordered[col].cat.ordered) tm.assert_equal(False, parsed_117_unordered[col].cat.ordered) def test_read_chunks_117(self): files_117 = [self.dta1_117, self.dta2_117, self.dta3_117, self.dta4_117, self.dta14_117, self.dta15_117, self.dta16_117, self.dta17_117, self.dta18_117, self.dta19_117, self.dta20_117] for fname in files_117: for chunksize in 1,2: for convert_categoricals in False, True: for convert_dates in False, True: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata(fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates) itr = read_stata(fname, iterator=True) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos:pos+chunksize, :] try: tm.assert_frame_equal(from_frame, chunk, check_dtype=False) except AssertionError: # datetime.datetime and pandas.tslib.Timestamp may hold # equivalent values but fail assert_frame_equal assert(all([x == y for x, y in zip(from_frame, chunk)])) pos += chunksize def test_iterator(self): fname = self.dta3_117 parsed = read_stata(fname) itr = read_stata(fname, iterator=True) chunk = itr.read(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) itr = read_stata(fname, chunksize=5) chunk = list(itr) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk[0]) itr = read_stata(fname, iterator=True) chunk = itr.get_chunk(5) tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) itr = read_stata(fname, chunksize=5) chunk = itr.get_chunk() tm.assert_frame_equal(parsed.iloc[0:5, :], chunk) def test_read_chunks_115(self): files_115 = [self.dta2_115, self.dta3_115, self.dta4_115, self.dta14_115, self.dta15_115, self.dta16_115, self.dta17_115, self.dta18_115, self.dta19_115, self.dta20_115] for fname in files_115: for chunksize in 1,2: for convert_categoricals in False, True: for convert_dates in False, True: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed = read_stata(fname, convert_categoricals=convert_categoricals, convert_dates=convert_dates) itr = read_stata(fname, iterator=True, convert_categoricals=convert_categoricals) pos = 0 for j in range(5): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") try: chunk = itr.read(chunksize) except StopIteration: break from_frame = parsed.iloc[pos:pos+chunksize, :] try: tm.assert_frame_equal(from_frame, chunk, check_dtype=False) except AssertionError: # datetime.datetime and pandas.tslib.Timestamp may hold # equivalent values but fail assert_frame_equal assert(all([x == y for x, y in zip(from_frame, chunk)])) pos += chunksize def test_read_chunks_columns(self): fname = self.dta3_117 columns = ['quarter', 'cpi', 'm1'] chunksize = 2 parsed = read_stata(fname, columns=columns) itr = read_stata(fname, iterator=True) pos = 0 for j in range(5): chunk = itr.read(chunksize, columns=columns) if chunk is None: break from_frame = parsed.iloc[pos:pos+chunksize, :] tm.assert_frame_equal(from_frame, chunk, check_dtype=False) pos += chunksize if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-2.0
0asa/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
40
8143
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): """Histogram kernel implemented as a callable.""" assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed, []) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform #X_pred2 = kpca.inverse_transform(X_pred_transformed) #assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): """Test the linear separability of the first 2D KPCA transform""" X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
Yuliang-Zou/Automatic_Group_Photography_Enhancement
tools/demo.py
1
5199
import _init_paths import tensorflow as tf from fast_rcnn.config import cfg from fast_rcnn.test import im_detect, im_detect_ori from fast_rcnn.nms_wrapper import nms from utils.timer import Timer import matplotlib.pyplot as plt import numpy as np import os, sys, cv2 import argparse from networks.factory import get_network import ipdb # (Yuliang) Background + voc(w/o person) + face CLASSES = ('__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor', 'face') def vis_detections(im, class_name, dets, eyes, smiles, ax, thresh=0.9): """Draw detected bounding boxes.""" inds = np.where(dets[:, -1] >= thresh)[0] if len(inds) == 0: return for i in inds: bbox = dets[i, :4] score = dets[i, -1] eye = eyes[i, 1] smile = smiles[i, 1] ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='red', linewidth=3.5) ) ax.text(bbox[0], bbox[1] - 2, '{:s} {:.3f}'.format(class_name, score), bbox=dict(facecolor='blue', alpha=0.5), fontsize=14, color='white') ax.text(bbox[0], bbox[3] + 2, 'Open eye score: {:.3f}'.format(eye), bbox=dict(facecolor='green', alpha = 0.5), fontsize=12, color='white') ax.text(bbox[0], bbox[3] + 30, 'Smiling score: {:.3f}'.format(smile), bbox=dict(facecolor='green', alpha = 0.5), fontsize=12, color='white') ax.set_title(('{} detections with ' 'p({} | box) >= {:.1f}').format(class_name, class_name, thresh), fontsize=14) plt.axis('off') plt.tight_layout() plt.draw() def demo(sess, net, image_name): """Detect object classes in an image using pre-computed object proposals.""" # Load the demo image im_file = os.path.join(cfg.DATA_DIR, 'demo', image_name) #im_file = os.path.join('/home/corgi/Lab/label/pos_frame/ACCV/training/000001/',image_name) im = cv2.imread(im_file) # Detect all object classes and regress object bounds timer = Timer() timer.tic() # scores, boxes = im_detect(sess, net, im) scores, boxes, eyes, smiles = im_detect_ori(sess, net, im) timer.toc() print ('Detection took {:.3f}s for ' '{:d} object proposals').format(timer.total_time, boxes.shape[0]) # Visualize detections for each class im = im[:, :, (2, 1, 0)] fig, ax = plt.subplots(figsize=(8, 8)) ax.imshow(im, aspect='equal') CONF_THRESH = 0.9 NMS_THRESH = 0.3 for cls_ind, cls in enumerate(CLASSES[20:]): cls_ind += 20 # because we skipped everything except face cls_boxes = boxes[:, 4*cls_ind:4*(cls_ind + 1)] cls_scores = scores[:, cls_ind] dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])).astype(np.float32) keep = nms(dets, NMS_THRESH) dets = dets[keep, :] eye = eyes[keep, :] smile= smiles[keep, :] vis_detections(im, cls, dets, eye, smile, ax, thresh=CONF_THRESH) def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Faster R-CNN demo') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--cpu', dest='cpu_mode', help='Use CPU mode (overrides --gpu)', action='store_true') parser.add_argument('--net', dest='demo_net', help='Network to use [vgg16]', default='VGGnet_test') parser.add_argument('--model', dest='model', help='Model path', default=' ') args = parser.parse_args() return args if __name__ == '__main__': cfg.TEST.HAS_RPN = True # Use RPN for proposals args = parse_args() if args.model == ' ': raise IOError(('Error: Model not found.\n')) # init session sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # load network net = get_network(args.demo_net) # load model saver = tf.train.Saver() saver.restore(sess, args.model) #sess.run(tf.initialize_all_variables()) print '\n\nLoaded network {:s}'.format(args.model) # Warmup on a dummy image im = 128 * np.ones((300, 300, 3), dtype=np.uint8) for i in xrange(2): _, _= im_detect(sess, net, im) im_names = ['img_46.jpg', 'img_208.jpg', 'img_269.jpg', 'img_339.jpg', 'img_726.jpg', 'img_843.jpg'] # im_names = ['f2_1.png', 'f2_2.png', 'f2_3.png', 'f2_4.png'] for im_name in im_names: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Demo for data/demo/{}'.format(im_name) demo(sess, net, im_name) plt.show()
mit
ulmo-dev/ulmo-common
setup.py
3
2204
import os import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand class PyTest(TestCommand): def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(self.test_args) sys.exit(errno) with open('README.rst') as f: # use README for long description but don't include the link to travis-ci; # it seems a bit out of place on pypi since it applies to the development # version long_description = ''.join([ line for line in f.readlines() if 'travis-ci' not in line]) # this sets __version__ info = {} execfile(os.path.join('ulmo', 'version.py'), info) setup( name='ulmo', version=info['__version__'], license='BSD', author='Andy Wilson', author_email='[email protected]', description='clean, simple and fast access to public hydrology and climatology data', long_description=long_description, url='https://github.com/ulmo-dev/ulmo/', keywords='his pyhis ulmo water waterml cuahsi wateroneflow', packages=find_packages(), platforms='any', install_requires=[ 'appdirs>=1.2.0', 'beautifulsoup4>=4.1.3', 'geojson', 'isodate>=0.4.6', 'lxml>=2.3', # mock is required for mocking pytables-related functionality when it doesn't exist 'mock>=1.0.0', 'numpy>=1.4.0', 'pandas>=0.11', 'requests>=1.1', 'suds>=0.4', ], extras_require={ 'pytables_caching': ['tables>=2.3.0'] }, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Software Development :: Libraries :: Python Modules' ], tests_require=[ 'freezegun>=0.1.4', 'pytest>=2.3.2', 'httpretty>=0.5.8', ], cmdclass={'test': PyTest}, )
bsd-3-clause
ellisonbg/altair
altair/utils/data.py
1
4989
import json import random import uuid import pandas as pd from toolz.curried import curry, pipe # noqa from typing import Callable from .core import sanitize_dataframe from .plugin_registry import PluginRegistry # ============================================================================== # Data transformer registry # ============================================================================== DataTransformerType = Callable class DataTransformerRegistry(PluginRegistry[DataTransformerType]): pass # ============================================================================== # Data model transformers # # A data model transformer is a pure function that takes a dict or DataFrame # and returns a transformed version of a dict or DataFrame. The dict objects # will be the Data portion of the VegaLite schema. The idea is that user can # pipe a sequence of these data transformers together to prepare the data before # it hits the renderer. # # In this version of Altair, renderers only deal with the dict form of a # VegaLite spec, after the Data model has been put into a schema compliant # form. # # A data model transformer has the following type signature: # DataModelType = Union[dict, pd.DataFrame] # DataModelTransformerType = Callable[[DataModelType, KwArgs], DataModelType] # ============================================================================== class MaxRowsError(Exception): """Raised when a data model has too many rows.""" pass @curry def limit_rows(data, max_rows=5000): """Raise MaxRowsError if the data model has more than max_rows. If max_rows is None, then do not perform any check. """ check_data_type(data) if isinstance(data, pd.DataFrame): values = data elif isinstance(data, dict): if 'values' in data: values = data['values'] else: return data if max_rows is not None and len(values) > max_rows: raise MaxRowsError('The number of rows in your dataset is greater ' 'than the maximum allowed ({0}). ' 'For information on how to plot larger datasets ' 'in Altair, see the documentation'.format(max_rows)) return data @curry def sample(data, n=None, frac=None): """Reduce the size of the data model by sampling without replacement.""" check_data_type(data) if isinstance(data, pd.DataFrame): return data.sample(n=n, frac=frac) elif isinstance(data, dict): if 'values' in data: values = data['values'] n = n if n else int(frac*len(values)) values = random.sample(values, n) return {'values': values} @curry def to_json(data, prefix='altair-data'): """Write the data model to a .json file and return a url based data model.""" check_data_type(data) ext = '.json' filename = _compute_filename(prefix=prefix, ext=ext) if isinstance(data, pd.DataFrame): data = sanitize_dataframe(data) data.to_json(filename, orient='records') elif isinstance(data, dict): if 'values' not in data: raise KeyError('values expected in data dict, but not present.') values = data['values'] with open(filename) as f: json.dump(values, f) return { 'url': filename, 'format': {'type': 'json'} } @curry def to_csv(data, prefix='altair-data'): """Write the data model to a .csv file and return a url based data model.""" check_data_type(data) ext = '.csv' filename = _compute_filename(prefix=prefix, ext=ext) if isinstance(data, pd.DataFrame): data = sanitize_dataframe(data) data.to_csv(filename) return { 'url': filename, 'format': {'type': 'csv'} } elif isinstance(data, dict): raise NotImplementedError('to_csv only works with Pandas DataFrame objects.') @curry def to_values(data): """Replace a DataFrame by a data model with values.""" check_data_type(data) if isinstance(data, pd.DataFrame): data = sanitize_dataframe(data) return {'values': data.to_dict(orient='records')} elif isinstance(data, dict): if 'values' not in data: raise KeyError('values expected in data dict, but not present.') return data def check_data_type(data): """Raise if the data is not a dict or DataFrame.""" if not isinstance(data, (dict, pd.DataFrame)): raise TypeError('Expected dict or DataFrame, got: {}'.format(type(data))) # ============================================================================== # Private utilities # ============================================================================== def _compute_uuid_filename(prefix, ext): return prefix + '-' + str(uuid.uuid4()) + ext def _compute_filename(prefix='altair-data', ext='.csv'): filename = _compute_uuid_filename(prefix, ext) return filename
bsd-3-clause
neale/CS-program
434-MachineLearning/final_project/linearClassifier/sklearn/gaussian_process/tests/test_gpr.py
23
11915
"""Testing for Gaussian process regression """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, ConstantKernel as C, WhiteKernel from sklearn.utils.testing \ import (assert_true, assert_greater, assert_array_less, assert_almost_equal, assert_equal) def f(x): return x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=1.0), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2)), C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2))] def test_gpr_interpolation(): """Test the interpolating property for different kernels.""" for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_pred, y_cov = gpr.predict(X, return_cov=True) assert_true(np.allclose(y_pred, y)) assert_true(np.allclose(np.diag(y_cov), 0.)) def test_lml_improving(): """ Test that hyperparameter-tuning improves log-marginal likelihood. """ for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): """ Test that lml of optimized kernel is stored correctly. """ for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_equal(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood()) def test_converged_to_local_maximum(): """ Test that we are in local maximum after hyperparameter-optimization.""" for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpr.log_marginal_likelihood(gpr.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))) def test_solution_inside_bounds(): """ Test that hyperparameter-optimization remains in bounds""" for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) bounds = gpr.kernel_.bounds max_ = np.finfo(gpr.kernel_.theta.dtype).max tiny = 1e-10 bounds[~np.isfinite(bounds[:, 1]), 1] = max_ assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny) assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny) def test_lml_gradient(): """ Compare analytic and numeric gradient of log marginal likelihood. """ for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_prior(): """ Test that GP prior has mean 0 and identical variances.""" for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel) y_mean, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_mean, 0, 5) if len(gpr.kernel.theta) > 1: # XXX: quite hacky, works only for current kernels assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5) else: assert_almost_equal(np.diag(y_cov), 1, 5) def test_sample_statistics(): """ Test that statistics of samples drawn from GP are correct.""" for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) samples = gpr.sample_y(X2, 300000) # More digits accuracy would require many more samples assert_almost_equal(y_mean, np.mean(samples, 1), 1) assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(), np.var(samples, 1) / np.diag(y_cov).max(), 1) def test_no_optimizer(): """ Test that kernel parameters are unmodified when optimizer is None.""" kernel = RBF(1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y) assert_equal(np.exp(gpr.kernel_.theta), 1.0) def test_predict_cov_vs_std(): """ Test that predicted std.-dev. is consistent with cov's diagonal.""" for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) y_mean, y_std = gpr.predict(X2, return_std=True) assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std) def test_anisotropic_kernel(): """ Test that GPR can identify meaningful anisotropic length-scales. """ # We learn a function which varies in one dimension ten-times slower # than in the other. The corresponding length-scales should differ by at # least a factor 5 rng = np.random.RandomState(0) X = rng.uniform(-1, 1, (50, 2)) y = X[:, 0] + 0.1 * X[:, 1] kernel = RBF([1.0, 1.0]) gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(np.exp(gpr.kernel_.theta[1]), np.exp(gpr.kernel_.theta[0]) * 5) def test_random_starts(): """ Test that an increasing number of random-starts of GP fitting only increases the log marginal likelihood of the chosen theta. """ n_samples, n_features = 25, 2 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \ + rng.normal(scale=0.1, size=n_samples) kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1)) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessRegressor( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0,).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_y_normalization(): """ Test normalization of the target values in GP Fitting non-normalizing GP on normalized y and fitting normalizing GP on unnormalized y should yield identical results """ y_mean = y.mean(0) y_norm = y - y_mean for kernel in kernels: # Fit non-normalizing GP on normalized y gpr = GaussianProcessRegressor(kernel=kernel) gpr.fit(X, y_norm) # Fit normalizing GP on unnormalized y gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_norm.fit(X, y) # Compare predicted mean, std-devs and covariances y_pred, y_pred_std = gpr.predict(X2, return_std=True) y_pred = y_mean + y_pred y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True) assert_almost_equal(y_pred, y_pred_norm) assert_almost_equal(y_pred_std, y_pred_std_norm) _, y_cov = gpr.predict(X2, return_cov=True) _, y_cov_norm = gpr_norm.predict(X2, return_cov=True) assert_almost_equal(y_cov, y_cov_norm) def test_y_multioutput(): """ Test that GPR can deal with multi-dimensional target values""" y_2d = np.vstack((y, y * 2)).T # Test for fixed kernel that first dimension of 2d GP equals the output # of 1d GP and that second dimension is twice as large kernel = RBF(length_scale=1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr_2d.fit(X, y_2d) y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True) y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True) _, y_cov_1d = gpr.predict(X2, return_cov=True) _, y_cov_2d = gpr_2d.predict(X2, return_cov=True) assert_almost_equal(y_pred_1d, y_pred_2d[:, 0]) assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2) # Standard deviation and covariance do not depend on output assert_almost_equal(y_std_1d, y_std_2d) assert_almost_equal(y_cov_1d, y_cov_2d) y_sample_1d = gpr.sample_y(X2, n_samples=10) y_sample_2d = gpr_2d.sample_y(X2, n_samples=10) assert_almost_equal(y_sample_1d, y_sample_2d[:, 0]) # Test hyperparameter optimization for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_2d.fit(X, np.vstack((y, y)).T) assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4) def test_custom_optimizer(): """ Test that GPR can use externally defined optimizers. """ # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer) gpr.fit(X, y) # Checks that optimizer improved marginal likelihood assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(gpr.kernel.theta)) def test_duplicate_input(): """ Test GPR can handle two different output-values for the same input. """ for kernel in kernels: gpr_equal_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) gpr_similar_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) X_ = np.vstack((X, X[0])) y_ = np.hstack((y, y[0] + 1)) gpr_equal_inputs.fit(X_, y_) X_ = np.vstack((X, X[0] + 1e-15)) y_ = np.hstack((y, y[0] + 1)) gpr_similar_inputs.fit(X_, y_) X_test = np.linspace(0, 10, 100)[:, None] y_pred_equal, y_std_equal = \ gpr_equal_inputs.predict(X_test, return_std=True) y_pred_similar, y_std_similar = \ gpr_similar_inputs.predict(X_test, return_std=True) assert_almost_equal(y_pred_equal, y_pred_similar) assert_almost_equal(y_std_equal, y_std_similar)
unlicense
cgriffwx/programingworkshop
Python/pandas_and_parallel/meso_surface.py
8
2237
import pandas as pd import os import datetime as dt import numpy as np import mesonet_calculations from plotting import sfc_plot ''' For reading in and creating surface plots of mesonet data in a given time interval saved in folders in the current working directory for each variable plotted ''' variables = {'temperature' : ('Degrees Celsius', '2 m Temperature'), 'pressure': ('Millibars', 'Sea Level Pressure'), 'dew_point': ('Degrees Celsius', 'Dewpoint'), 'wind_speed': ('Meters per second', '10 m Scalar Wind Speed'), 'gust_speed': ('Meters per second', '10 m Gust Wind Speed'), 'rainfall': ('Inches', 'Rainfall'), } # to_plot = 'temperature' to_plot = np.array(['temperature', 'pressure', 'dew_point', 'wind_speed', 'gust_speed', 'rainfall']) # Note that the start time should be divisble by 5 minutes starttime = dt.datetime(2012, 6, 15, 1, 0) endtime = dt.datetime(2012, 6, 15, 2, 0) filename = 'locations.txt' locations = pd.read_csv(filename, sep=' ') met = pd.DataFrame() dir = os.listdir('raw_data') for file in dir: if file[-4:] == '.txt': met = pd.concat([met, mesonet_calculations.meso_operations('raw_data/%s' %(file), starttime,endtime,locations)], axis=0) xmin = np.min(met['Lon']) xmax = np.max(met['Lon']) ymin = np.min(met['Lat']) ymax = np.max(met['Lat']) xi, yi = np.meshgrid(np.linspace(xmin, xmax, 200), np.linspace(ymin, ymax, 200)) sfc_plot(starttime, endtime, to_plot[0], variables[to_plot[0]], locations, met, xi, yi, xmin, xmax, ymin, ymax) sfc_plot(starttime, endtime, to_plot[1], variables[to_plot[1]], locations, met, xi, yi, xmin, xmax, ymin, ymax) sfc_plot(starttime, endtime, to_plot[2], variables[to_plot[2]], locations, met, xi, yi, xmin, xmax, ymin, ymax) sfc_plot(starttime, endtime, to_plot[3], variables[to_plot[3]], locations, met, xi, yi, xmin, xmax, ymin, ymax) sfc_plot(starttime, endtime, to_plot[4], variables[to_plot[4]], locations, met, xi, yi, xmin, xmax, ymin, ymax) sfc_plot(starttime, endtime, to_plot[5], variables[to_plot[5]], locations, met, xi, yi, xmin, xmax, ymin, ymax)
mit
fabianp/scikit-learn
sklearn/metrics/scorer.py
211
13141
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <[email protected]> # Lars Buitinck <[email protected]> # Arnaud Joly <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
bsd-3-clause
loli/semisupervisedforests
sklearn/cluster/tests/test_hierarchical.py
5
18965
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.cluster import Ward, WardAgglomeration, ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # Deprecation of Ward class assert_warns(DeprecationWarning, Ward).fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): """ Check that we obtain the correct solution for structured linkage trees. """ rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): """ Check that we obtain the correct solution for unstructured linkage trees. """ rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): """ Check that the height of the results of linkage tree is sorted. """ rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): """ Check that we obtain the correct number of clusters with agglomerative clustering. """ rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): """ Check that we obtain the correct solution in a simplistic case """ rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) assert_warns(DeprecationWarning, WardAgglomeration) with ignore_warnings(): ward = WardAgglomeration(n_clusters=5, connectivity=connectivity) ward.fit(X) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_array_equal(agglo.labels_, ward.labels_) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): """Test scikit linkage with full connectivity (i.e. unstructured) vs scipy """ n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): """ Check that connectivity in the ward tree is propagated correctly during merging. """ X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144), ]) connectivity = kneighbors_graph(X, 10) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): """ Check that children are ordered in the same way for both structured and unstructured versions of ward_tree. """ # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): """Test return_distance option on linkage and ward trees""" # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): """ Check non regression of a bug if a non item assignable connectivity is provided with more than one component. """ # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): """Test that the full tree is computed if n_clusters is small""" rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
btabibian/scikit-learn
examples/bicluster/plot_bicluster_newsgroups.py
14
5895
""" ================================================================ Biclustering documents with the Spectral Co-clustering algorithm ================================================================ This example demonstrates the Spectral Co-clustering algorithm on the twenty newsgroups dataset. The 'comp.os.ms-windows.misc' category is excluded because it contains many posts containing nothing but data. The TF-IDF vectorized posts form a word frequency matrix, which is then biclustered using Dhillon's Spectral Co-Clustering algorithm. The resulting document-word biclusters indicate subsets words used more often in those subsets documents. For a few of the best biclusters, its most common document categories and its ten most important words get printed. The best biclusters are determined by their normalized cut. The best words are determined by comparing their sums inside and outside the bicluster. For comparison, the documents are also clustered using MiniBatchKMeans. The document clusters derived from the biclusters achieve a better V-measure than clusters found by MiniBatchKMeans. """ from __future__ import print_function from collections import defaultdict import operator import re from time import time import numpy as np from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster import MiniBatchKMeans from sklearn.externals.six import iteritems from sklearn.datasets.twenty_newsgroups import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.cluster import v_measure_score print(__doc__) def number_aware_tokenizer(doc): """ Tokenizer that maps all numeric tokens to a placeholder. For many applications, tokens that begin with a number are not directly useful, but the fact that such a token exists can be relevant. By applying this form of dimensionality reduction, some methods may perform better. """ token_pattern = re.compile(u'(?u)\\b\\w\\w+\\b') tokens = token_pattern.findall(doc) tokens = ["#NUMBER" if token[0] in "0123456789_" else token for token in tokens] return tokens # exclude 'comp.os.ms-windows.misc' categories = ['alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc'] newsgroups = fetch_20newsgroups(categories=categories) y_true = newsgroups.target vectorizer = TfidfVectorizer(stop_words='english', min_df=5, tokenizer=number_aware_tokenizer) cocluster = SpectralCoclustering(n_clusters=len(categories), svd_method='arpack', random_state=0) kmeans = MiniBatchKMeans(n_clusters=len(categories), batch_size=20000, random_state=0) print("Vectorizing...") X = vectorizer.fit_transform(newsgroups.data) print("Coclustering...") start_time = time() cocluster.fit(X) y_cocluster = cocluster.row_labels_ print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_cocluster, y_true))) print("MiniBatchKMeans...") start_time = time() y_kmeans = kmeans.fit_predict(X) print("Done in {:.2f}s. V-measure: {:.4f}".format( time() - start_time, v_measure_score(y_kmeans, y_true))) feature_names = vectorizer.get_feature_names() document_names = list(newsgroups.target_names[i] for i in newsgroups.target) def bicluster_ncut(i): rows, cols = cocluster.get_indices(i) if not (np.any(rows) and np.any(cols)): import sys return sys.float_info.max row_complement = np.nonzero(np.logical_not(cocluster.rows_[i]))[0] col_complement = np.nonzero(np.logical_not(cocluster.columns_[i]))[0] # Note: the following is identical to X[rows[:, np.newaxis], # cols].sum() but much faster in scipy <= 0.16 weight = X[rows][:, cols].sum() cut = (X[row_complement][:, cols].sum() + X[rows][:, col_complement].sum()) return cut / weight def most_common(d): """Items of a defaultdict(int) with the highest values. Like Counter.most_common in Python >=2.7. """ return sorted(iteritems(d), key=operator.itemgetter(1), reverse=True) bicluster_ncuts = list(bicluster_ncut(i) for i in range(len(newsgroups.target_names))) best_idx = np.argsort(bicluster_ncuts)[:5] print() print("Best biclusters:") print("----------------") for idx, cluster in enumerate(best_idx): n_rows, n_cols = cocluster.get_shape(cluster) cluster_docs, cluster_words = cocluster.get_indices(cluster) if not len(cluster_docs) or not len(cluster_words): continue # categories counter = defaultdict(int) for i in cluster_docs: counter[document_names[i]] += 1 cat_string = ", ".join("{:.0f}% {}".format(float(c) / n_rows * 100, name) for name, c in most_common(counter)[:3]) # words out_of_cluster_docs = cocluster.row_labels_ != cluster out_of_cluster_docs = np.where(out_of_cluster_docs)[0] word_col = X[:, cluster_words] word_scores = np.array(word_col[cluster_docs, :].sum(axis=0) - word_col[out_of_cluster_docs, :].sum(axis=0)) word_scores = word_scores.ravel() important_words = list(feature_names[cluster_words[i]] for i in word_scores.argsort()[:-11:-1]) print("bicluster {} : {} documents, {} words".format( idx, n_rows, n_cols)) print("categories : {}".format(cat_string)) print("words : {}\n".format(', '.join(important_words)))
bsd-3-clause
marcsans/cnn-physics-perception
phy/lib/python2.7/site-packages/sklearn/neighbors/tests/test_dist_metrics.py
36
6957
import itertools import pickle import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.neighbors import BallTree from sklearn.utils.testing import SkipTest, assert_raises_regex def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_pickle(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) yield self.check_pickle, metric, kwargs for metric in self.bool_metrics: yield self.check_pickle_bool, metric def check_pickle_bool(self, metric): dm = DistanceMetric.get_metric(metric) D1 = dm.pairwise(self.X1_bool) dm2 = pickle.loads(pickle.dumps(dm)) D2 = dm2.pairwise(self.X1_bool) assert_array_almost_equal(D1, D2) def check_pickle(self, metric, kwargs): dm = DistanceMetric.get_metric(metric, **kwargs) D1 = dm.pairwise(self.X1) dm2 = pickle.loads(pickle.dumps(dm)) D2 = dm2.pairwise(self.X1) assert_array_almost_equal(D1, D2) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) # Check if both callable metric and predefined metric initialized # DistanceMetric object is picklable euclidean_pkl = pickle.loads(pickle.dumps(euclidean)) pyfunc_pkl = pickle.loads(pickle.dumps(pyfunc)) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) D1_pkl = euclidean_pkl.pairwise(X) D2_pkl = pyfunc_pkl.pairwise(X) assert_array_almost_equal(D1, D2) assert_array_almost_equal(D1_pkl, D2_pkl) def test_bad_pyfunc_metric(): def wrong_distance(x, y): return "1" X = np.ones((5, 2)) assert_raises_regex(TypeError, "Custom distance function must accept two vectors", BallTree, X, metric=wrong_distance) def test_input_data_size(): # Regression test for #6288 # Previoulsly, a metric requiring a particular input dimension would fail def custom_metric(x, y): assert x.shape[0] == 3 return np.sum((x - y) ** 2) rng = np.random.RandomState(0) X = rng.rand(10, 3) pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) eucl = DistanceMetric.get_metric("euclidean") assert_array_almost_equal(pyfunc.pairwise(X), eucl.pairwise(X))
mit
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/IPython/external/qt_for_kernel.py
12
3192
""" Import Qt in a manner suitable for an IPython kernel. This is the import used for the `gui=qt` or `matplotlib=qt` initialization. Import Priority: if Qt has been imported anywhere else: use that if matplotlib has been imported and doesn't support v2 (<= 1.0.1): use PyQt4 @v1 Next, ask QT_API env variable if QT_API not set: ask matplotlib what it's using. If Qt4Agg or Qt5Agg, then use the version matplotlib is configured with else: (matplotlib said nothing) # this is the default path - nobody told us anything try in this order: PyQt default version, PySide, PyQt5 else: use what QT_API says """ # NOTE: This is no longer an external, third-party module, and should be # considered part of IPython. For compatibility however, it is being kept in # IPython/external. import os import sys from IPython.utils.version import check_version from IPython.external.qt_loaders import (load_qt, loaded_api, QT_API_PYSIDE, QT_API_PYSIDE2, QT_API_PYQT, QT_API_PYQT5, QT_API_PYQTv1, QT_API_PYQT_DEFAULT) _qt_apis = (QT_API_PYSIDE, QT_API_PYSIDE2, QT_API_PYQT, QT_API_PYQT5, QT_API_PYQTv1, QT_API_PYQT_DEFAULT) #Constraints placed on an imported matplotlib def matplotlib_options(mpl): if mpl is None: return backend = mpl.rcParams.get('backend', None) if backend == 'Qt4Agg': mpqt = mpl.rcParams.get('backend.qt4', None) if mpqt is None: return None if mpqt.lower() == 'pyside': return [QT_API_PYSIDE] elif mpqt.lower() == 'pyqt4': return [QT_API_PYQT_DEFAULT] elif mpqt.lower() == 'pyqt4v2': return [QT_API_PYQT] raise ImportError("unhandled value for backend.qt4 from matplotlib: %r" % mpqt) elif backend == 'Qt5Agg': mpqt = mpl.rcParams.get('backend.qt5', None) if mpqt is None: return None if mpqt.lower() == 'pyqt5': return [QT_API_PYQT5] raise ImportError("unhandled value for backend.qt5 from matplotlib: %r" % mpqt) def get_options(): """Return a list of acceptable QT APIs, in decreasing order of preference """ #already imported Qt somewhere. Use that loaded = loaded_api() if loaded is not None: return [loaded] mpl = sys.modules.get('matplotlib', None) if mpl is not None and not check_version(mpl.__version__, '1.0.2'): #1.0.1 only supports PyQt4 v1 return [QT_API_PYQT_DEFAULT] qt_api = os.environ.get('QT_API', None) if qt_api is None: #no ETS variable. Ask mpl, then use default fallback path return matplotlib_options(mpl) or [QT_API_PYQT_DEFAULT, QT_API_PYSIDE, QT_API_PYQT5, QT_API_PYSIDE2] elif qt_api not in _qt_apis: raise RuntimeError("Invalid Qt API %r, valid values are: %r" % (qt_api, ', '.join(_qt_apis))) else: return [qt_api] api_opts = get_options() QtCore, QtGui, QtSvg, QT_API = load_qt(api_opts)
gpl-3.0
devttys0/binwalk
src/binwalk/modules/entropy.py
1
11907
# Calculates and optionally plots the entropy of input files. import os import sys import math import zlib import binwalk.core.common from binwalk.core.compat import * from binwalk.core.module import Module, Option, Kwarg #try: # import numpy as np #except ImportError: # pass try: from numba import njit except ImportError: def njit(func): return func class Entropy(Module): XLABEL = 'Offset' YLABEL = 'Entropy' XUNITS = 'B' YUNITS = 'E' FILE_WIDTH = 1024 FILE_FORMAT = 'png' COLORS = ['g', 'r', 'c', 'm', 'y'] DEFAULT_BLOCK_SIZE = 1024 DEFAULT_DATA_POINTS = 2048 DEFAULT_TRIGGER_HIGH = .95 DEFAULT_TRIGGER_LOW = .85 TITLE = "Entropy" ORDER = 8 # TODO: Add --dpoints option to set the number of data points? CLI = [ Option(short='E', long='entropy', kwargs={'enabled': True}, description='Calculate file entropy'), Option(short='F', long='fast', kwargs={'use_zlib': True}, description='Use faster, but less detailed, entropy analysis'), Option(short='J', long='save', kwargs={'save_plot': True}, description='Save plot as a PNG'), Option(short='Q', long='nlegend', kwargs={'show_legend': False}, description='Omit the legend from the entropy plot graph'), Option(short='N', long='nplot', kwargs={'do_plot': False}, description='Do not generate an entropy plot graph'), Option(short='H', long='high', type=float, kwargs={'trigger_high': DEFAULT_TRIGGER_HIGH}, description='Set the rising edge entropy trigger threshold (default: %.2f)' % DEFAULT_TRIGGER_HIGH), Option(short='L', long='low', type=float, kwargs={'trigger_low': DEFAULT_TRIGGER_LOW}, description='Set the falling edge entropy trigger threshold (default: %.2f)' % DEFAULT_TRIGGER_LOW), ] KWARGS = [ Kwarg(name='enabled', default=False), Kwarg(name='save_plot', default=False), Kwarg(name='trigger_high', default=DEFAULT_TRIGGER_HIGH), Kwarg(name='trigger_low', default=DEFAULT_TRIGGER_LOW), Kwarg(name='use_zlib', default=False), Kwarg(name='display_results', default=True), Kwarg(name='do_plot', default=True), Kwarg(name='show_legend', default=True), Kwarg(name='block_size', default=0), ] # Run this module last so that it can process all other module's results # and overlay them on the entropy graph PRIORITY = 0 def init(self): self.HEADER[-1] = "ENTROPY" self.max_description_length = 0 self.file_markers = {} self.output_file = None if self.use_zlib: self.algorithm = self.gzip else: if 'numpy' in sys.modules: self.algorithm = self.shannon_numpy else: self.algorithm = self.shannon # Get a list of all other module's results to mark on the entropy graph for (module, obj) in iterator(self.modules): for result in obj.results: if result.plot and result.file and result.description: description = result.description.split(',')[0] if not has_key(self.file_markers, result.file.name): self.file_markers[result.file.name] = [] if len(description) > self.max_description_length: self.max_description_length = len(description) self.file_markers[result.file.name].append((result.offset, description)) # If other modules have been run and they produced results, don't spam # the terminal with entropy results if self.file_markers: self.display_results = False if not self.block_size: if self.config.block: self.block_size = self.config.block else: self.block_size = None def _entropy_sigterm_handler(self, *args): print ("Fuck it all.") def run(self): self._run() def _run(self): # Sanity check and warning if matplotlib isn't found if self.do_plot: try: # If we're saving the plot to a file, configure matplotlib # to use the Agg back-end. This does not require a X server, # allowing users to generate plot files on headless systems. if self.save_plot: import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt except ImportError as e: binwalk.core.common.warning("Failed to import matplotlib module, visual entropy graphing will be disabled") self.do_plot = False for fp in iter(self.next_file, None): if self.display_results: self.header() self.calculate_file_entropy(fp) if self.display_results: self.footer() def calculate_file_entropy(self, fp): # Tracks the last displayed rising/falling edge (0 for falling, 1 for # rising, None if nothing has been printed yet) last_edge = None # Auto-reset the trigger; if True, an entropy above/below # self.trigger_high/self.trigger_low will be printed trigger_reset = True # Clear results from any previously analyzed files self.clear(results=True) # If -K was not specified, calculate the block size to create # DEFAULT_DATA_POINTS data points if self.block_size is None: block_size = fp.size / self.DEFAULT_DATA_POINTS # Round up to the nearest DEFAULT_BLOCK_SIZE (1024) block_size = int(block_size + ((self.DEFAULT_BLOCK_SIZE - block_size) % self.DEFAULT_BLOCK_SIZE)) else: block_size = self.block_size # Make sure block size is greater than 0 if block_size <= 0: block_size = self.DEFAULT_BLOCK_SIZE binwalk.core.common.debug("Entropy block size (%d data points): %d" % (self.DEFAULT_DATA_POINTS, block_size)) while True: file_offset = fp.tell() (data, dlen) = fp.read_block() if dlen < 1: break i = 0 while i < dlen: entropy = self.algorithm(data[i:i + block_size]) display = self.display_results description = "%f" % entropy if not self.config.verbose: if last_edge in [None, 0] and entropy > self.trigger_low: trigger_reset = True elif last_edge in [None, 1] and entropy < self.trigger_high: trigger_reset = True if trigger_reset and entropy >= self.trigger_high: description = "Rising entropy edge (%f)" % entropy display = self.display_results last_edge = 1 trigger_reset = False elif trigger_reset and entropy <= self.trigger_low: description = "Falling entropy edge (%f)" % entropy display = self.display_results last_edge = 0 trigger_reset = False else: display = False description = "%f" % entropy r = self.result(offset=(file_offset + i), file=fp, entropy=entropy, description=description, display=display) i += block_size if self.do_plot: self.plot_entropy(fp.name) def shannon(self, data): ''' Performs a Shannon entropy analysis on a given block of data. ''' entropy = 0 if data: length = len(data) seen = dict(((chr(x), 0) for x in range(0, 256))) for byte in data: seen[byte] += 1 for x in range(0, 256): p_x = float(seen[chr(x)]) / length if p_x > 0: entropy -= p_x * math.log(p_x, 2) return (entropy / 8) def shannon_numpy(self, data): if data: return self._shannon_numpy(bytes2str(data)) else: return 0 @staticmethod @njit def _shannon_numpy(data): A = np.frombuffer(data, dtype=np.uint8) pA = np.bincount(A) / len(A) entropy = -np.nansum(pA*np.log2(pA)) return (entropy / 8) def gzip(self, data, truncate=True): ''' Performs an entropy analysis based on zlib compression ratio. This is faster than the shannon entropy analysis, but not as accurate. ''' # Entropy is a simple ratio of: <zlib compressed size> / <original # size> e = float(float(len(zlib.compress(str2bytes(data), 9))) / float(len(data))) if truncate and e > 1.0: e = 1.0 return e def plot_entropy(self, fname): try: import matplotlib.pyplot as plt except ImportError as e: return i = 0 x = [] y = [] plotted_colors = {} for r in self.results: x.append(r.offset) y.append(r.entropy) fig = plt.figure() # axisbg is depreciated, but older versions of matplotlib don't support facecolor. # This tries facecolor first, thus preventing the annoying depreciation warnings, # and falls back to axisbg if that fails. try: ax = fig.add_subplot(1, 1, 1, autoscale_on=True, facecolor='black') except AttributeError: ax = fig.add_subplot(1, 1, 1, autoscale_on=True, axisbg='black') ax.set_title(self.TITLE) ax.set_xlabel(self.XLABEL) ax.set_ylabel(self.YLABEL) ax.plot(x, y, 'y', lw=2) # Add a fake, invisible plot entry so that offsets at/near the # minimum x value (0) are actually visible on the plot. ax.plot(-(max(x)*.001), 1.1, lw=0) ax.plot(-(max(x)*.001), 0, lw=0) if self.show_legend and has_key(self.file_markers, fname): for (offset, description) in self.file_markers[fname]: # If this description has already been plotted at a different offset, we need to # use the same color for the marker, but set the description to None to prevent # duplicate entries in the graph legend. # # Else, get the next color and use it to mark descriptions of # this type. if has_key(plotted_colors, description): color = plotted_colors[description] description = None else: color = self.COLORS[i] plotted_colors[description] = color i += 1 if i >= len(self.COLORS): i = 0 ax.plot([offset, offset], [0, 1.1], '%s-' % color, lw=2, label=description) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) if self.save_plot: self.output_file = os.path.join(os.getcwd(), os.path.basename(fname)) + '.png' fig.savefig(self.output_file, bbox_inches='tight') else: plt.show()
mit
kursawe/MCSTracker
test/test_tracking/test_visualise_search.py
1
3905
# Copyright 2016 Jochen Kursawe. See the LICENSE file at the top-level directory # of this distribution and at https://github.com/kursawe/MCSTracker/blob/master/LICENSE. """This tests our first tracking example """ import unittest import mesh import tracking import numpy as np import matplotlib.pyplot as plt import networkx as nx import os import copy import sys from os import path from os.path import dirname from nose.plugins.attrib import attr class TestTracking(unittest.TestCase): @attr(level = 'standard') def test_visualise_search(self): """generate a small random mesh and track it. """ sys.setrecursionlimit(40000) mesh_one = mesh.creation.generate_random_tesselation(5,5) mesh_two = copy.deepcopy(mesh_one) mesh_one.assign_frame_ids_in_order() mesh_two.assign_frame_ids_randomly() tracked_ids = tracking.track(mesh_one, mesh_two) mesh_two.plot(path.join(dirname(__file__),'output','visualisation_mesh_after_tracking.pdf'), color_by_global_id = True, total_number_of_global_ids = mesh_one.get_num_elements()) @attr(level = 'standard') def test_plot_collection_into_separate_figure(self): """plot a polygon collection into a figure designed by us """ sys.setrecursionlimit(40000) mesh_one = mesh.creation.generate_random_tesselation(5,5) print 'start to copy' mesh_two = copy.deepcopy(mesh_one) print 'stop to copy' mesh_one.assign_frame_ids_in_order() mesh_two.assign_frame_ids_randomly() tracked_ids = tracking.track(mesh_one, mesh_two) # figure properties figuresize = (4,2.75) font = {'size' : 10} plt.rc('font', **font) mesh_figure = plt.figure(figsize = figuresize) ax = plt.axes([0,0,1,1]) polygon_collection = mesh_two.get_polygon_collection(color_by_global_id = True, total_number_of_global_ids = mesh_one.get_num_elements()) mesh_figure.gca().add_collection(polygon_collection) mesh_figure.gca().set_aspect('equal') mesh_figure.gca().autoscale_view() plt.axis('off') filename = path.join(dirname(__file__),'output','own_visualisation_figure.pdf') mesh_figure.savefig(filename, bbox_inches = 'tight') def test_plot_all_global_ids_same_color(self): """plot all global ids same color """ sys.setrecursionlimit(40000) mesh_one = mesh.creation.generate_random_tesselation(8,8) mesh_two = copy.deepcopy(mesh_one) mesh_one.assign_frame_ids_in_order() mesh_two.assign_frame_ids_randomly() # Perform T1 swap on mesh two # First pick a node in the centre mesh_centre = mesh_two.calculate_centre() # pick the node closest to the centre most_central_node = mesh_two.find_most_central_node() # pick a node that shares an edge with this central node for local_index, element_node in enumerate(most_central_node.adjacent_elements[0].nodes): if element_node.id == most_central_node.id: num_nodes_this_element = most_central_node.adjacent_elements[0].get_num_nodes() one_edge_node = most_central_node.adjacent_elements[0].nodes[(local_index+1)%num_nodes_this_element] break mesh_two.perform_t1_swap( most_central_node.id, one_edge_node.id ) tracked_ids = tracking.find_maximum_common_subgraph(mesh_one, mesh_two) mesh_two.plot(path.join(dirname(__file__),'output','visualisation_in_green.pdf'), color_by_global_id = 'g', total_number_of_global_ids = mesh_one.get_num_elements())
bsd-3-clause
MRSDTeamI/bud-e
ROS/src/rgbdslam_v2-hydro/rgbd_benchmark/evaluate_ate.py
4
7523
#!/usr/bin/python # # Requirements: # sudo apt-get install python-argparse import sys import numpy import argparse import associate def align_first(model,data): numpy.set_printoptions(precision=3,suppress=True) model_zerocentered = model - model.mean(1) data_zerocentered = data - data.mean(1) W = numpy.zeros( (3,3) ) for column in range(model.shape[1]): W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column]) U,d,Vh = numpy.linalg.linalg.svd(W.transpose()) S = numpy.matrix(numpy.identity( 3 )) if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0): S[2,2] = -1 rot = U*S*Vh print data.shape trans = data[:,0] - model[:,0] model_aligned = rot * model + trans alignment_error = model_aligned - data trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0] return rot,trans,trans_error def align(model,data): numpy.set_printoptions(precision=3,suppress=True) model_zerocentered = model - model.mean(1) data_zerocentered = data - data.mean(1) W = numpy.zeros( (3,3) ) for column in range(model.shape[1]): W += numpy.outer(model_zerocentered[:,column],data_zerocentered[:,column]) U,d,Vh = numpy.linalg.linalg.svd(W.transpose()) S = numpy.matrix(numpy.identity( 3 )) if(numpy.linalg.det(U) * numpy.linalg.det(Vh)<0): S[2,2] = -1 rot = U*S*Vh trans = data.mean(1) - rot * model.mean(1) model_aligned = rot * model + trans alignment_error = model_aligned - data trans_error = numpy.sqrt(numpy.sum(numpy.multiply(alignment_error,alignment_error),0)).A[0] return rot,trans,trans_error def plot_traj(ax,stamps,traj,style,color,label, linewidth): stamps.sort() interval = numpy.median([s-t for s,t in zip(stamps[1:],stamps[:-1])]) x = [] y = [] last = stamps[0] for i in range(len(stamps)): if stamps[i]-last < 5*interval: x.append(traj[i][0]) y.append(traj[i][1]) elif len(x)>0: ax.plot(x,y,style,color=color,label=label, linewidth=linewidth) label="" x=[] y=[] last= stamps[i] if len(x)>0: ax.plot(x,y,style,color=color,label=label, linewidth=linewidth) if __name__=="__main__": # parse command line parser = argparse.ArgumentParser(description=''' This script computes the absolute trajectory error from the ground truth trajectory and the estimated trajectory. ''') parser.add_argument('first_file', help='ground truth trajectory (format: timestamp tx ty tz qx qy qz qw)') parser.add_argument('second_file', help='estimated trajectory (format: timestamp tx ty tz qx qy qz qw)') parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0) parser.add_argument('--scale', help='scaling factor for the second trajectory (default: 1.0)',default=1.0) parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02) parser.add_argument('--save', help='save aligned second trajectory to disk (format: stamp2 x2 y2 z2)') parser.add_argument('--save_associations', help='save associated first and aligned second trajectory to disk (format: stamp1 x1 y1 z1 stamp2 x2 y2 z2)') parser.add_argument('--plot', help='plot the first and the aligned second trajectory to an image (format: png)') parser.add_argument('--verbose', help='print all evaluation data (otherwise, only the RMSE absolute translational error in meters after alignment will be printed)', action='store_true') args = parser.parse_args() first_list = associate.read_file_list(args.first_file) second_list = associate.read_file_list(args.second_file) matches = associate.associate(first_list, second_list,float(args.offset),float(args.max_difference)) if len(matches)<2: sys.exit("Couldn't find matching timestamp pairs between groundtruth and estimated trajectory! Did you choose the correct sequence?") first_xyz = numpy.matrix([[float(value) for value in first_list[a][0:3]] for a,b in matches]).transpose() second_xyz = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for a,b in matches]).transpose() rot,trans,trans_error = align(second_xyz,first_xyz) #rot,trans,trans_error = align_first(second_xyz,first_xyz) second_xyz_aligned = rot * second_xyz + trans first_stamps = first_list.keys() first_stamps.sort() first_xyz_full = numpy.matrix([[float(value) for value in first_list[b][0:3]] for b in first_stamps]).transpose() second_stamps = second_list.keys() second_stamps.sort() second_xyz_full = numpy.matrix([[float(value)*float(args.scale) for value in second_list[b][0:3]] for b in second_stamps]).transpose() second_xyz_full_aligned = rot * second_xyz_full + trans z_coords = numpy.array(second_xyz_full_aligned[2]) rmse = numpy.sqrt(numpy.dot(trans_error,trans_error) / len(trans_error)) if args.verbose: print "Z Min: ", numpy.min(z_coords); print "Z Max: ", numpy.max(z_coords); print "Z Std: ", numpy.std(z_coords); print "RMSE: ", numpy.sqrt(numpy.sum(z_coords*z_coords) / z_coords.shape[1]) print "compared_pose_pairs %d pairs"%(len(trans_error)) print "absolute_translational_error.rmse %f m"%rmse print "absolute_translational_error.mean %f m"%numpy.mean(trans_error) print "absolute_translational_error.median %f m"%numpy.median(trans_error) print "absolute_translational_error.std %f m"%numpy.std(trans_error) print "absolute_translational_error.min %f m"%numpy.min(trans_error) print "absolute_translational_error.max %f m"%numpy.max(trans_error) else: print "%f"%rmse if args.save_associations: file = open(args.save_associations,"w") file.write("\n".join(["%f %f %f %f %f %f %f %f"%(a,x1,y1,z1,b,x2,y2,z2) for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A)])) file.close() if args.save: file = open(args.save,"w") file.write("\n".join(["%f "%stamp+" ".join(["%f"%d for d in line]) for stamp,line in zip(second_stamps,second_xyz_full_aligned.transpose().A)])) file.close() if args.plot: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.pylab as pylab from matplotlib.patches import Ellipse fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(111) plt.title("ATE RMSE: "+str(rmse)) plot_traj(ax,first_stamps,first_xyz_full.transpose().A,'-',"black","Ground Truth", linewidth=2) plot_traj(ax,second_stamps,second_xyz_full_aligned.transpose().A,'-',"green","Unmodified RGB-D Sensor", linewidth=2) label="Difference" i = 0 for (a,b),(x1,y1,z1),(x2,y2,z2) in zip(matches,first_xyz.transpose().A,second_xyz_aligned.transpose().A): i+=1 if i % 10 == 0: ax.plot([x1,x2],[y1,y2],'-',color="red",label=label, linewidth=1) label="" ax.legend(loc="upper left") ax.set_xlabel('x [m]') ax.set_ylabel('y [m]') plt.savefig(args.plot,dpi=300)
apache-2.0
dominikwille/comp
sheet13/sheet13.py
1
4782
#!/usr/local/bin/python # -*- coding: utf-8 -*- # # @author Dominik Wille # @author Stefan Pojtinger # @tutor Alexander Schlaich # @sheet 13 # #Packete einlesen: import numpy as np import os import csv import matplotlib.pyplot as plt import random as rnd #Aufgabe 13.1.1 #Für das integral von 0 bis delta ist x << 1 und daher #kann 1 + x nach taylor als e**x genähert werden. #Das Inegral ist somit 2*sqrt(delta). def f(x): return 1.0/np.sqrt(np.log(1+x)) def hit_or_miss(f, a, b, N, f_min = None, f_max = None): if(f_min is None): f_min = f(b) if(f_max is None): f_max = f(a) N_pos = 0 for i in range(N): r = rnd.random() s = rnd.random() if(f(a + (b - a) * r) - f_min > (f_max - f_min) * s): N_pos += 1 return (b - a) * (float(N_pos) / float(N) * (f_max - f_min) + f_min) # delta = 10e-3 # a = delta # b = 1 # N = 1000 # I = [] # for i in range(10): # I.append(hit_or_miss(f, a, b, N) + 2*np.sqrt(delta)) # print np.average(I) # print np.std(I) #Durch 100 mal mehr schritte wird die Standardabweichung #ca 10 mal kleiner. #Aufgabe 13.1.2 #Der grenzwert für x->0 ist für f(x)/g(x) ist 1, #weil man 1 + x wieder als e**x nähern kann. def f2(y): return 1.0/np.sqrt(np.log(1+y*2/4.0))*y/2 a = 0 b = 2 N = 100000 I = [] # for i in range(10): # I.append(hit_or_miss(f2, a, b, N, f_max = 1)) # print np.average(I) # print np.std(I) #Die Standardabweichung ist um midestens eine Größenordnung #(10 mal) kleiner als in 13.1.1. Bemerkswert ist auch, #dass das Integral einen merklich anderen wert annimmt. #evtl fehlerhafte implementierung??? #Aufgabe 13.2 def rand_m(N): X = np.matrix([[0]*N]*N) for i in range(N): for j in range(N): X[i,j] = rnd.choice([-3,-1,1,3]) return X def repeat(x, N): while x < 0: x += N while x >= N: x -= N return x def flip(x): if(x == -3): return -1 elif(x == 3): return 1 else: return x + rnd.choice([-2, 2]) def getdE(X, (y1, y2), n_element, H, J): dE = 0 dE += - H * n_element / 2.0 dE -= - H * X[y1, y2] / 2.0 if(y1 > 0): dE += - J * X[y1 - 1, y2] * n_element / 8.0 dE -= - J * X[y1 - 1, y2] * X[y1, y2] / 8.0 if(y1 < N - 1): dE += - J * X[y1 + 1, y2] * n_element / 8.0 dE -= - J * X[y1 + 1, y2] * X[y1, y2] / 8.0 if(y2 > 0): dE += - J * X[y1, y2 - 1] * n_element / 8.0 dE -= - J * X[y1, y2 - 1] * X[y1, y2] / 8.0 if(y2 < N - 1): dE += - J * X[y1, y2 + 1] * n_element / 8.0 dE -= - J * X[y1, y2 + 1] * X[y1, y2] / 8.0 return dE def metropolis((x1, x2), X, kT, H, J=1.0, r=1.0, steps=10): N = len(X) for i in range(steps): (q1, q2) = (int(round(rnd.random() * 2 * r - r)), int(round(rnd.random() * 2 * r - r))) (y1, y2) = (repeat(x1 + q1, N), repeat(x2 + q2, N)) n_element = flip(X[y1,y2]) dE = getdE(X, (y1, y2), n_element, H, J) dM = n_element - X[y1, y2] if(dE < 0): X[y1, y2] = n_element (x1, x2) = (y1, y2) else: p_A = min(1.0, np.exp(-dE/kT)) if(rnd.random() < p_A): X[y1, y2] = n_element (x1, x2) = (y1, y2) return X def getM(X): N = len(X) M = 0 for i in range(N): for j in range(N): M += X[i,j] return M / 2.0 def getE(X, H): # print H N = len(X) E = 0 for i in range(N): for j in range(N): E += -H * X[i,j] / 2.0 if(i > 0): E += -X[i - 1, j] * X[i,j] / 8.0 if(i < N - 1): E += -X[i + 1, j] * X[i,j] / 8.0 if(j > 0): E += -X[i, j - 1] * X[i,j] / 8.0 if(j < N - 1): E += -X[i, j + 1] * X[i,j] / 8.0 return E N = 10 kT_list = [1e-3, 1e-1, 1.0, 2.0, 5.0, 10.0, 100.0] H_list = [0, 0.1, 1.0] # X = rand_m(N) # kT = kT_list[6] # H = H_list[2] # (X, E, M) = metropolis((4, 4), X, kT, H, steps=25000) # plt.imshow(X, extent=(0, N, N, 0), interpolation='nearest', cmap=plt.cm.jet) # plt.title('$H = ' + str(H) + '\,\,\,;\,\,\, kT = ' + str(kT) + '$') # plt.show() E = [] M = [] E_ = 0 M_ = 0 H = H_list[2] times = 10 for kT in kT_list: for n in range(times): X = rand_m(N) X = metropolis((4, 4), X, kT, H, steps=25000) print str(kT) + ', ' + str(H) + ', ' + str(getE(X, H)) + ', ' + str(getM(X)) M_ += getM(X) / times E_ += getE(X, H) / times M.append(M_) E.append(E_) plt.plot(kT_list, E) plt.plot(kT_list, M) plt.legend(['E', 'M']) plt.xscale('log') plt.title('$H = ' + str(H) + '$') plt.xlabel('$kT$') plt.ylabel('$M/E$') plt.show()
bsd-2-clause
gewaltig/cython-neuron
testsuite/manualtests/cross_check_test_mip_corrdet.py
2
2594
#! /usr/bin/env python # # cross_check_test_mip_corrdet.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. # Script to check correlation_detector. # Calculates spike cross correlation function of both spike trains in # spike_detector-0-0-3.gdf. The file is generated after running the # testscript testsuite/unittests/test_mip_corrdet.sli # # Author: Helias # Date: 08-04-07 # from scipy import * from matplotlib.pylab import * # for plot # Auto- and crosscorrelation functions for spike trains. # # A time bin of size tbin is centered around the time difference it # represents If the correlation function is calculated for tau in # [-tau_max, tau_max], the pair events contributing to the left-most # bin are those for which tau in [-tau_max-tbin/2, tau_max+tbin/2) and # so on. # correlate two spike trains with each other # assumes spike times to be ordered in time # tau > 0 means spike2 is later than spike1 # # tau_max: maximum time lag in ms correlation function # tbin: bin size # spike1: first spike train [tspike...] # spike2: second spike train [tspike...] # def corr_spikes_sorted(spike1, spike2, tbin, tau_max, h): tau_max_i = int(tau_max/h) tbin_i = int(tbin/h) cross = zeros(int(2*tau_max_i/tbin_i+1), 'd') j0 = 0 for spki in spike1: j = j0 while j < len(spike2) and spike2[j] - spki < -tau_max_i - tbin_i/2.0: j += 1 j0 = j while j < len(spike2) and spike2[j] - spki < tau_max_i + tbin_i/2.0: cross[int((spike2[j] - spki + tau_max_i + 0.5*tbin_i)/tbin_i)] += 1.0 j += 1 return cross def main(): # resolution h = 0.1 tau_max = 100.0 # ms correlation window t_bin = 10.0 # ms bin size # read input from spike detector spikes = load('spike_detector-0-0-3.gdf') sp1 = spikes[find(spikes[:,0] == 4), 1] sp2 = spikes[find(spikes[:,0] == 5), 1] cross = corr_spikes_sorted(sp1, sp2, t_bin, tau_max, h) print cross print sum(cross) main()
gpl-2.0
silky/sms-tools
lectures/09-Sound-description/plots-code/hpcp.py
25
1194
import numpy as np import matplotlib.pyplot as plt import essentia.standard as ess M = 1024 N = 1024 H = 512 fs = 44100 spectrum = ess.Spectrum(size=N) window = ess.Windowing(size=M, type='hann') spectralPeaks = ess.SpectralPeaks() hpcp = ess.HPCP() x = ess.MonoLoader(filename = '../../../sounds/cello-double.wav', sampleRate = fs)() hpcps = [] for frame in ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True): mX = spectrum(window(frame)) spectralPeaks_freqs, spectralPeaks_mags = spectralPeaks(mX) hpcp_vals = hpcp(spectralPeaks_freqs, spectralPeaks_mags) hpcps.append(hpcp_vals) hpcps = np.array(hpcps) plt.figure(1, figsize=(9.5, 7)) plt.subplot(2,1,1) plt.plot(np.arange(x.size)/float(fs), x, 'b') plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.title('x (cello-double.wav)') plt.subplot(2,1,2) numFrames = int(hpcps[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) plt.pcolormesh(frmTime, np.arange(12), np.transpose(hpcps)) plt.ylabel('spectral bins') plt.title('HPCP') plt.autoscale(tight=True) plt.tight_layout() plt.savefig('hpcp.png') plt.show()
agpl-3.0
crichardson17/starburst_atlas
Low_resolution_sims/Dusty_LowRes/Geneva_cont_NoRot/Geneva_cont_NoRot_0/fullgrid/UV1.py
31
9315
import csv import matplotlib.pyplot as plt from numpy import * import scipy.interpolate import math from pylab import * from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.patches as patches from matplotlib.path import Path import os # ------------------------------------------------------------------------------------------------------ #inputs for file in os.listdir('.'): if file.endswith("1.grd"): gridfile1 = file for file in os.listdir('.'): if file.endswith("2.grd"): gridfile2 = file for file in os.listdir('.'): if file.endswith("3.grd"): gridfile3 = file # ------------------------ for file in os.listdir('.'): if file.endswith("1.txt"): Elines1 = file for file in os.listdir('.'): if file.endswith("2.txt"): Elines2 = file for file in os.listdir('.'): if file.endswith("3.txt"): Elines3 = file # ------------------------------------------------------------------------------------------------------ #Patches data #for the Kewley and Levesque data verts = [ (1., 7.97712125471966000000), # left, bottom (1., 9.57712125471966000000), # left, top (2., 10.57712125471970000000), # right, top (2., 8.97712125471966000000), # right, bottom (0., 0.), # ignored ] codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY, ] path = Path(verts, codes) # ------------------------ #for the Kewley 01 data verts2 = [ (2.4, 9.243038049), # left, bottom (2.4, 11.0211893), # left, top (2.6, 11.0211893), # right, top (2.6, 9.243038049), # right, bottom (0, 0.), # ignored ] path = Path(verts, codes) path2 = Path(verts2, codes) # ------------------------- #for the Moy et al data verts3 = [ (1., 6.86712125471966000000), # left, bottom (1., 10.18712125471970000000), # left, top (3., 12.18712125471970000000), # right, top (3., 8.86712125471966000000), # right, bottom (0., 0.), # ignored ] path = Path(verts, codes) path3 = Path(verts3, codes) # ------------------------------------------------------------------------------------------------------ #the routine to add patches for others peoples' data onto our plots. def add_patches(ax): patch3 = patches.PathPatch(path3, facecolor='yellow', lw=0) patch2 = patches.PathPatch(path2, facecolor='green', lw=0) patch = patches.PathPatch(path, facecolor='red', lw=0) ax1.add_patch(patch3) ax1.add_patch(patch2) ax1.add_patch(patch) # ------------------------------------------------------------------------------------------------------ #the subplot routine def add_sub_plot(sub_num): numplots = 16 plt.subplot(numplots/4.,4,sub_num) rbf = scipy.interpolate.Rbf(x, y, z[:,sub_num-1], function='linear') zi = rbf(xi, yi) contour = plt.contour(xi,yi,zi, levels, colors='c', linestyles = 'dashed') contour2 = plt.contour(xi,yi,zi, levels2, colors='k', linewidths=1.5) plt.scatter(max_values[line[sub_num-1],2], max_values[line[sub_num-1],3], c ='k',marker = '*') plt.annotate(headers[line[sub_num-1]], xy=(8,11), xytext=(6,8.5), fontsize = 10) plt.annotate(max_values[line[sub_num-1],0], xy= (max_values[line[sub_num-1],2], max_values[line[sub_num-1],3]), xytext = (0, -10), textcoords = 'offset points', ha = 'right', va = 'bottom', fontsize=10) if sub_num == numplots / 2.: print "half the plots are complete" #axis limits yt_min = 8 yt_max = 23 xt_min = 0 xt_max = 12 plt.ylim(yt_min,yt_max) plt.xlim(xt_min,xt_max) plt.yticks(arange(yt_min+1,yt_max,1),fontsize=10) plt.xticks(arange(xt_min+1,xt_max,1), fontsize = 10) if sub_num in [2,3,4,6,7,8,10,11,12,14,15,16]: plt.tick_params(labelleft = 'off') else: plt.tick_params(labelleft = 'on') plt.ylabel('Log ($ \phi _{\mathrm{H}} $)') if sub_num in [1,2,3,4,5,6,7,8,9,10,11,12]: plt.tick_params(labelbottom = 'off') else: plt.tick_params(labelbottom = 'on') plt.xlabel('Log($n _{\mathrm{H}} $)') if sub_num == 1: plt.yticks(arange(yt_min+1,yt_max+1,1),fontsize=10) if sub_num == 13: plt.yticks(arange(yt_min,yt_max,1),fontsize=10) plt.xticks(arange(xt_min,xt_max,1), fontsize = 10) if sub_num == 16 : plt.xticks(arange(xt_min+1,xt_max+1,1), fontsize = 10) # --------------------------------------------------- #this is where the grid information (phi and hdens) is read in and saved to grid. grid1 = []; grid2 = []; grid3 = []; with open(gridfile1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid1.append(row); grid1 = asarray(grid1) with open(gridfile2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid2.append(row); grid2 = asarray(grid2) with open(gridfile3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') for row in csvReader: grid3.append(row); grid3 = asarray(grid3) #here is where the data for each line is read in and saved to dataEmissionlines dataEmissionlines1 = []; dataEmissionlines2 = []; dataEmissionlines3 = []; with open(Elines1, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers = csvReader.next() for row in csvReader: dataEmissionlines1.append(row); dataEmissionlines1 = asarray(dataEmissionlines1) with open(Elines2, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers2 = csvReader.next() for row in csvReader: dataEmissionlines2.append(row); dataEmissionlines2 = asarray(dataEmissionlines2) with open(Elines3, 'rb') as f: csvReader = csv.reader(f,delimiter='\t') headers3 = csvReader.next() for row in csvReader: dataEmissionlines3.append(row); dataEmissionlines3 = asarray(dataEmissionlines3) print "import files complete" # --------------------------------------------------- #for concatenating grid #pull the phi and hdens values from each of the runs. exclude header lines grid1new = zeros((len(grid1[:,0])-1,2)) grid1new[:,0] = grid1[1:,6] grid1new[:,1] = grid1[1:,7] grid2new = zeros((len(grid2[:,0])-1,2)) x = array(17.00000) grid2new[:,0] = repeat(x,len(grid2[:,0])-1) grid2new[:,1] = grid2[1:,6] grid3new = zeros((len(grid3[:,0])-1,2)) grid3new[:,0] = grid3[1:,6] grid3new[:,1] = grid3[1:,7] grid = concatenate((grid1new,grid2new,grid3new)) hdens_values = grid[:,1] phi_values = grid[:,0] # --------------------------------------------------- #for concatenating Emission lines data Emissionlines = concatenate((dataEmissionlines1[:,1:],dataEmissionlines2[:,1:],dataEmissionlines3[:,1:])) #for lines headers = headers[1:] concatenated_data = zeros((len(Emissionlines),len(Emissionlines[0]))) max_values = zeros((len(concatenated_data[0]),4)) # --------------------------------------------------- #constructing grid by scaling #select the scaling factor #for 1215 #incident = Emissionlines[1:,4] #for 4860 incident = concatenated_data[:,57] #take the ratio of incident and all the lines and put it all in an array concatenated_data for i in range(len(Emissionlines)): for j in range(len(Emissionlines[0])): if math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) > 0: concatenated_data[i,j] = math.log(4860.*(float(Emissionlines[i,j])/float(Emissionlines[i,57])), 10) else: concatenated_data[i,j] == 0 # for 1215 #for i in range(len(Emissionlines)): # for j in range(len(Emissionlines[0])): # if math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) > 0: # concatenated_data[i,j] = math.log(1215.*(float(Emissionlines[i,j])/float(Emissionlines[i,4])), 10) # else: # concatenated_data[i,j] == 0 # --------------------------------------------------- #find the maxima to plot onto the contour plots for j in range(len(concatenated_data[0])): max_values[j,0] = max(concatenated_data[:,j]) max_values[j,1] = argmax(concatenated_data[:,j], axis = 0) max_values[j,2] = hdens_values[max_values[j,1]] max_values[j,3] = phi_values[max_values[j,1]] #to round off the maxima max_values[:,0] = [ '%.1f' % elem for elem in max_values[:,0] ] print "data arranged" # --------------------------------------------------- #Creating the grid to interpolate with for contours. gridarray = zeros((len(concatenated_data),2)) gridarray[:,0] = hdens_values gridarray[:,1] = phi_values x = gridarray[:,0] y = gridarray[:,1] # --------------------------------------------------- #change desired lines here! line = [0, #977 1, #991 2, #1026 5, #1216 91, #1218 6, #1239 7, #1240 8, #1243 9, #1263 10, #1304 11,#1308 12, #1397 13, #1402 14, #1406 16, #1486 17] #1531 #create z array for this plot z = concatenated_data[:,line[:]] # --------------------------------------------------- # Interpolate print "starting interpolation" xi, yi = linspace(x.min(), x.max(), 10), linspace(y.min(), y.max(), 10) xi, yi = meshgrid(xi, yi) # --------------------------------------------------- print "interpolatation complete; now plotting" #plot plt.subplots_adjust(wspace=0, hspace=0) #remove space between plots levels = arange(10**-1,10, .2) levels2 = arange(10**-2,10**2, 1) plt.suptitle("Dusty UV Lines", fontsize=14) # --------------------------------------------------- for i in range(16): add_sub_plot(i) ax1 = plt.subplot(4,4,1) add_patches(ax1) print "complete" plt.savefig('Dusty_UV_Lines.pdf') plt.clf() print "figure saved"
gpl-2.0
robbymeals/scikit-learn
examples/bicluster/plot_spectral_coclustering.py
276
1736
""" ============================================== A demo of the Spectral Co-Clustering algorithm ============================================== This example demonstrates how to generate a dataset and bicluster it using the the Spectral Co-Clustering algorithm. The dataset is generated using the ``make_biclusters`` function, which creates a matrix of small values and implants bicluster with large values. The rows and columns are then shuffled and passed to the Spectral Co-Clustering algorithm. Rearranging the shuffled matrix to make biclusters contiguous shows how accurately the algorithm found the biclusters. """ print(__doc__) # Author: Kemal Eren <[email protected]> # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import make_biclusters from sklearn.datasets import samples_generator as sg from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.metrics import consensus_score data, rows, columns = make_biclusters( shape=(300, 300), n_clusters=5, noise=5, shuffle=False, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Original dataset") data, row_idx, col_idx = sg._shuffle(data, random_state=0) plt.matshow(data, cmap=plt.cm.Blues) plt.title("Shuffled dataset") model = SpectralCoclustering(n_clusters=5, random_state=0) model.fit(data) score = consensus_score(model.biclusters_, (rows[:, row_idx], columns[:, col_idx])) print("consensus score: {:.3f}".format(score)) fit_data = data[np.argsort(model.row_labels_)] fit_data = fit_data[:, np.argsort(model.column_labels_)] plt.matshow(fit_data, cmap=plt.cm.Blues) plt.title("After biclustering; rearranged to show biclusters") plt.show()
bsd-3-clause
MohammedWasim/scikit-learn
sklearn/linear_model/__init__.py
270
3096
""" The :mod:`sklearn.linear_model` module implements generalized linear models. It includes Ridge regression, Bayesian Regression, Lasso and Elastic Net estimators computed with Least Angle Regression and coordinate descent. It also implements Stochastic Gradient Descent related algorithms. """ # See http://scikit-learn.sourceforge.net/modules/sgd.html and # http://scikit-learn.sourceforge.net/modules/linear_model.html for # complete documentation. from .base import LinearRegression from .bayes import BayesianRidge, ARDRegression from .least_angle import (Lars, LassoLars, lars_path, LarsCV, LassoLarsCV, LassoLarsIC) from .coordinate_descent import (Lasso, ElasticNet, LassoCV, ElasticNetCV, lasso_path, enet_path, MultiTaskLasso, MultiTaskElasticNet, MultiTaskElasticNetCV, MultiTaskLassoCV) from .sgd_fast import Hinge, Log, ModifiedHuber, SquaredLoss, Huber from .stochastic_gradient import SGDClassifier, SGDRegressor from .ridge import (Ridge, RidgeCV, RidgeClassifier, RidgeClassifierCV, ridge_regression) from .logistic import (LogisticRegression, LogisticRegressionCV, logistic_regression_path) from .omp import (orthogonal_mp, orthogonal_mp_gram, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV) from .passive_aggressive import PassiveAggressiveClassifier from .passive_aggressive import PassiveAggressiveRegressor from .perceptron import Perceptron from .randomized_l1 import (RandomizedLasso, RandomizedLogisticRegression, lasso_stability_path) from .ransac import RANSACRegressor from .theil_sen import TheilSenRegressor __all__ = ['ARDRegression', 'BayesianRidge', 'ElasticNet', 'ElasticNetCV', 'Hinge', 'Huber', 'Lars', 'LarsCV', 'Lasso', 'LassoCV', 'LassoLars', 'LassoLarsCV', 'LassoLarsIC', 'LinearRegression', 'Log', 'LogisticRegression', 'LogisticRegressionCV', 'ModifiedHuber', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'OrthogonalMatchingPursuitCV', 'PassiveAggressiveClassifier', 'PassiveAggressiveRegressor', 'Perceptron', 'RandomizedLasso', 'RandomizedLogisticRegression', 'Ridge', 'RidgeCV', 'RidgeClassifier', 'RidgeClassifierCV', 'SGDClassifier', 'SGDRegressor', 'SquaredLoss', 'TheilSenRegressor', 'enet_path', 'lars_path', 'lasso_path', 'lasso_stability_path', 'logistic_regression_path', 'orthogonal_mp', 'orthogonal_mp_gram', 'ridge_regression', 'RANSACRegressor']
bsd-3-clause
anntzer/scikit-learn
sklearn/linear_model/_theil_sen.py
8
14803
# -*- coding: utf-8 -*- """ A Theil-Sen Estimator for Multiple Linear Regression Model """ # Author: Florian Wilhelm <[email protected]> # # License: BSD 3 clause import warnings from itertools import combinations import numpy as np from scipy import linalg from scipy.special import binom from scipy.linalg.lapack import get_lapack_funcs from joblib import Parallel, effective_n_jobs from ._base import LinearModel from ..base import RegressorMixin from ..utils import check_random_state from ..utils.validation import _deprecate_positional_args from ..utils.fixes import delayed from ..exceptions import ConvergenceWarning _EPSILON = np.finfo(np.double).eps def _modified_weiszfeld_step(X, x_old): """Modified Weiszfeld step. This function defines one iteration step in order to approximate the spatial median (L1 median). It is a form of an iteratively re-weighted least squares method. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. x_old : ndarray of shape = (n_features,) Current start vector. Returns ------- x_new : ndarray of shape (n_features,) New iteration step. References ---------- - On Computation of Spatial Median for Robust Data Mining, 2005 T. Kärkkäinen and S. Äyrämö http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf """ diff = X - x_old diff_norm = np.sqrt(np.sum(diff ** 2, axis=1)) mask = diff_norm >= _EPSILON # x_old equals one of our samples is_x_old_in_X = int(mask.sum() < X.shape[0]) diff = diff[mask] diff_norm = diff_norm[mask][:, np.newaxis] quotient_norm = linalg.norm(np.sum(diff / diff_norm, axis=0)) if quotient_norm > _EPSILON: # to avoid division by zero new_direction = (np.sum(X[mask, :] / diff_norm, axis=0) / np.sum(1 / diff_norm, axis=0)) else: new_direction = 1. quotient_norm = 1. return (max(0., 1. - is_x_old_in_X / quotient_norm) * new_direction + min(1., is_x_old_in_X / quotient_norm) * x_old) def _spatial_median(X, max_iter=300, tol=1.e-3): """Spatial median (L1 median). The spatial median is member of a class of so-called M-estimators which are defined by an optimization problem. Given a number of p points in an n-dimensional space, the point x minimizing the sum of all distances to the p other points is called spatial median. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. max_iter : int, default=300 Maximum number of iterations. tol : float, default=1.e-3 Stop the algorithm if spatial_median has converged. Returns ------- spatial_median : ndarray of shape = (n_features,) Spatial median. n_iter : int Number of iterations needed. References ---------- - On Computation of Spatial Median for Robust Data Mining, 2005 T. Kärkkäinen and S. Äyrämö http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf """ if X.shape[1] == 1: return 1, np.median(X.ravel(), keepdims=True) tol **= 2 # We are computing the tol on the squared norm spatial_median_old = np.mean(X, axis=0) for n_iter in range(max_iter): spatial_median = _modified_weiszfeld_step(X, spatial_median_old) if np.sum((spatial_median_old - spatial_median) ** 2) < tol: break else: spatial_median_old = spatial_median else: warnings.warn("Maximum number of iterations {max_iter} reached in " "spatial median for TheilSen regressor." "".format(max_iter=max_iter), ConvergenceWarning) return n_iter, spatial_median def _breakdown_point(n_samples, n_subsamples): """Approximation of the breakdown point. Parameters ---------- n_samples : int Number of samples. n_subsamples : int Number of subsamples to consider. Returns ------- breakdown_point : float Approximation of breakdown point. """ return 1 - (0.5 ** (1 / n_subsamples) * (n_samples - n_subsamples + 1) + n_subsamples - 1) / n_samples def _lstsq(X, y, indices, fit_intercept): """Least Squares Estimator for TheilSenRegressor class. This function calculates the least squares method on a subset of rows of X and y defined by the indices array. Optionally, an intercept column is added if intercept is set to true. Parameters ---------- X : array-like of shape (n_samples, n_features) Design matrix, where n_samples is the number of samples and n_features is the number of features. y : ndarray of shape (n_samples,) Target vector, where n_samples is the number of samples. indices : ndarray of shape (n_subpopulation, n_subsamples) Indices of all subsamples with respect to the chosen subpopulation. fit_intercept : bool Fit intercept or not. Returns ------- weights : ndarray of shape (n_subpopulation, n_features + intercept) Solution matrix of n_subpopulation solved least square problems. """ fit_intercept = int(fit_intercept) n_features = X.shape[1] + fit_intercept n_subsamples = indices.shape[1] weights = np.empty((indices.shape[0], n_features)) X_subpopulation = np.ones((n_subsamples, n_features)) # gelss need to pad y_subpopulation to be of the max dim of X_subpopulation y_subpopulation = np.zeros((max(n_subsamples, n_features))) lstsq, = get_lapack_funcs(('gelss',), (X_subpopulation, y_subpopulation)) for index, subset in enumerate(indices): X_subpopulation[:, fit_intercept:] = X[subset, :] y_subpopulation[:n_subsamples] = y[subset] weights[index] = lstsq(X_subpopulation, y_subpopulation)[1][:n_features] return weights class TheilSenRegressor(RegressorMixin, LinearModel): """Theil-Sen Estimator: robust multivariate regression model. The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value of n_subsamples between the number of features and samples leads to an estimator with a compromise between robustness and efficiency. Since the number of least square solutions is "n_samples choose n_subsamples", it can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions. Read more in the :ref:`User Guide <theil_sen_regression>`. Parameters ---------- fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. max_subpopulation : int, default=1e4 Instead of computing with a set of cardinality 'n choose k', where n is the number of samples and k is the number of subsamples (at least number of features), consider only a stochastic subpopulation of a given maximal size if 'n choose k' is larger than max_subpopulation. For other than small problem sizes this parameter will determine memory usage and runtime if n_subsamples is not changed. n_subsamples : int, default=None Number of samples to calculate the parameters. This is at least the number of features (plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower number leads to a higher breakdown point and a low efficiency while a high number leads to a low breakdown point and a high efficiency. If None, take the minimum number of subsamples leading to maximal robustness. If n_subsamples is set to n_samples, Theil-Sen is identical to least squares. max_iter : int, default=300 Maximum number of iterations for the calculation of spatial median. tol : float, default=1.e-3 Tolerance when calculating spatial median. random_state : int, RandomState instance or None, default=None A random number generator instance to define the state of the random permutations generator. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>` n_jobs : int, default=None Number of CPUs to use during the cross validation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : bool, default=False Verbose mode when fitting the model. Attributes ---------- coef_ : ndarray of shape (n_features,) Coefficients of the regression model (median of distribution). intercept_ : float Estimated intercept of regression model. breakdown_ : float Approximated breakdown point. n_iter_ : int Number of iterations needed for the spatial median. n_subpopulation_ : int Number of combinations taken into account from 'n choose k', where n is the number of samples and k is the number of subsamples. Examples -------- >>> from sklearn.linear_model import TheilSenRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression( ... n_samples=200, n_features=2, noise=4.0, random_state=0) >>> reg = TheilSenRegressor(random_state=0).fit(X, y) >>> reg.score(X, y) 0.9884... >>> reg.predict(X[:1,]) array([-31.5871...]) References ---------- - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf """ @_deprecate_positional_args def __init__(self, *, fit_intercept=True, copy_X=True, max_subpopulation=1e4, n_subsamples=None, max_iter=300, tol=1.e-3, random_state=None, n_jobs=None, verbose=False): self.fit_intercept = fit_intercept self.copy_X = copy_X self.max_subpopulation = int(max_subpopulation) self.n_subsamples = n_subsamples self.max_iter = max_iter self.tol = tol self.random_state = random_state self.n_jobs = n_jobs self.verbose = verbose def _check_subparams(self, n_samples, n_features): n_subsamples = self.n_subsamples if self.fit_intercept: n_dim = n_features + 1 else: n_dim = n_features if n_subsamples is not None: if n_subsamples > n_samples: raise ValueError("Invalid parameter since n_subsamples > " "n_samples ({0} > {1}).".format(n_subsamples, n_samples)) if n_samples >= n_features: if n_dim > n_subsamples: plus_1 = "+1" if self.fit_intercept else "" raise ValueError("Invalid parameter since n_features{0} " "> n_subsamples ({1} > {2})." "".format(plus_1, n_dim, n_samples)) else: # if n_samples < n_features if n_subsamples != n_samples: raise ValueError("Invalid parameter since n_subsamples != " "n_samples ({0} != {1}) while n_samples " "< n_features.".format(n_subsamples, n_samples)) else: n_subsamples = min(n_dim, n_samples) if self.max_subpopulation <= 0: raise ValueError("Subpopulation must be strictly positive " "({0} <= 0).".format(self.max_subpopulation)) all_combinations = max(1, np.rint(binom(n_samples, n_subsamples))) n_subpopulation = int(min(self.max_subpopulation, all_combinations)) return n_subsamples, n_subpopulation def fit(self, X, y): """Fit linear model. Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data. y : ndarray of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ random_state = check_random_state(self.random_state) X, y = self._validate_data(X, y, y_numeric=True) n_samples, n_features = X.shape n_subsamples, self.n_subpopulation_ = self._check_subparams(n_samples, n_features) self.breakdown_ = _breakdown_point(n_samples, n_subsamples) if self.verbose: print("Breakdown point: {0}".format(self.breakdown_)) print("Number of samples: {0}".format(n_samples)) tol_outliers = int(self.breakdown_ * n_samples) print("Tolerable outliers: {0}".format(tol_outliers)) print("Number of subpopulations: {0}".format( self.n_subpopulation_)) # Determine indices of subpopulation if np.rint(binom(n_samples, n_subsamples)) <= self.max_subpopulation: indices = list(combinations(range(n_samples), n_subsamples)) else: indices = [random_state.choice(n_samples, size=n_subsamples, replace=False) for _ in range(self.n_subpopulation_)] n_jobs = effective_n_jobs(self.n_jobs) index_list = np.array_split(indices, n_jobs) weights = Parallel(n_jobs=n_jobs, verbose=self.verbose)( delayed(_lstsq)(X, y, index_list[job], self.fit_intercept) for job in range(n_jobs)) weights = np.vstack(weights) self.n_iter_, coefs = _spatial_median(weights, max_iter=self.max_iter, tol=self.tol) if self.fit_intercept: self.intercept_ = coefs[0] self.coef_ = coefs[1:] else: self.intercept_ = 0. self.coef_ = coefs return self
bsd-3-clause
bigdataelephants/scikit-learn
examples/svm/plot_svm_regression.py
249
1451
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.plot(X, y_lin, c='r', label='Linear model') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
artdavis/eggloft
eggcarrier/data/parse_profile.py
1
1134
#! /usr/bin/env python """ :mod:`parse_profile` -- Convert unstructured profile data to xy coords =============================================================================== .. module:: parse_profile :synopsis: Convert unstructured profile data to xy coords .. moduleauthor:: Arthur Davis <[email protected]> Copyright 2017 Arthur Davis ([email protected]) Licensed under the MIT License 2017-04-02 - File creation """ import os import numpy as np import pandas as pd # Setup to use breakpt() for droppping into ipdb: import IPython breakpt = IPython.core.debugger.set_trace CWD=os.path.dirname(os.path.abspath(__file__)) MODNAME = os.path.splitext(os.path.basename(__file__))[0] with open('egg-profile_data.csv', 'r') as fid: raw = fid.read().strip() i = iter(raw.split(',')) x = [] y = [] try: while True: x.append(float(next(i))) y.append(float(next(i))) except StopIteration: pass xpts = np.array(x) ypts = -np.array(y) # Set zero origin xpts = xpts - np.min(xpts) ypts = ypts - np.min(ypts) df = pd.DataFrame({'x': xpts, 'y': ypts}) df.to_csv('egg-profile_xy.csv', index=False)
mit
derricw/pyqtgraph
pyqtgraph/widgets/MatplotlibWidget.py
30
1442
from ..Qt import QtGui, QtCore, USE_PYSIDE, USE_PYQT5 import matplotlib if not USE_PYQT5: if USE_PYSIDE: matplotlib.rcParams['backend.qt4']='PySide' from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar else: from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar from matplotlib.figure import Figure class MatplotlibWidget(QtGui.QWidget): """ Implements a Matplotlib figure inside a QWidget. Use getFigure() and redraw() to interact with matplotlib. Example:: mw = MatplotlibWidget() subplot = mw.getFigure().add_subplot(111) subplot.plot(x,y) mw.draw() """ def __init__(self, size=(5.0, 4.0), dpi=100): QtGui.QWidget.__init__(self) self.fig = Figure(size, dpi=dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self) self.toolbar = NavigationToolbar(self.canvas, self) self.vbox = QtGui.QVBoxLayout() self.vbox.addWidget(self.toolbar) self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) def getFigure(self): return self.fig def draw(self): self.canvas.draw()
mit
diegocavalca/Studies
programming/Python/Machine-Learning/Introduction-Udacity/final_project/tester.py
14
4509
#!/usr/bin/pickle """ a basic script for importing student's POI identifier, and checking the results that they get from it requires that the algorithm, dataset, and features list be written to my_classifier.pkl, my_dataset.pkl, and my_feature_list.pkl, respectively that process should happen at the end of poi_id.py """ import pickle import sys from sklearn.cross_validation import StratifiedShuffleSplit sys.path.append("../tools/") from feature_format import featureFormat, targetFeatureSplit PERF_FORMAT_STRING = "\ \tAccuracy: {:>0.{display_precision}f}\tPrecision: {:>0.{display_precision}f}\t\ Recall: {:>0.{display_precision}f}\tF1: {:>0.{display_precision}f}\tF2: {:>0.{display_precision}f}" RESULTS_FORMAT_STRING = "\tTotal predictions: {:4d}\tTrue positives: {:4d}\tFalse positives: {:4d}\ \tFalse negatives: {:4d}\tTrue negatives: {:4d}" def test_classifier(clf, dataset, feature_list, folds = 1000): data = featureFormat(dataset, feature_list, sort_keys = True) labels, features = targetFeatureSplit(data) cv = StratifiedShuffleSplit(labels, folds, random_state = 42) true_negatives = 0 false_negatives = 0 true_positives = 0 false_positives = 0 for train_idx, test_idx in cv: features_train = [] features_test = [] labels_train = [] labels_test = [] for ii in train_idx: features_train.append( features[ii] ) labels_train.append( labels[ii] ) for jj in test_idx: features_test.append( features[jj] ) labels_test.append( labels[jj] ) ### fit the classifier using training set, and test on test set clf.fit(features_train, labels_train) predictions = clf.predict(features_test) for prediction, truth in zip(predictions, labels_test): if prediction == 0 and truth == 0: true_negatives += 1 elif prediction == 0 and truth == 1: false_negatives += 1 elif prediction == 1 and truth == 0: false_positives += 1 elif prediction == 1 and truth == 1: true_positives += 1 else: print "Warning: Found a predicted label not == 0 or 1." print "All predictions should take value 0 or 1." print "Evaluating performance for processed predictions:" break try: total_predictions = true_negatives + false_negatives + false_positives + true_positives accuracy = 1.0*(true_positives + true_negatives)/total_predictions precision = 1.0*true_positives/(true_positives+false_positives) recall = 1.0*true_positives/(true_positives+false_negatives) f1 = 2.0 * true_positives/(2*true_positives + false_positives+false_negatives) f2 = (1+2.0*2.0) * precision*recall/(4*precision + recall) print clf print PERF_FORMAT_STRING.format(accuracy, precision, recall, f1, f2, display_precision = 5) print RESULTS_FORMAT_STRING.format(total_predictions, true_positives, false_positives, false_negatives, true_negatives) print "" except: print "Got a divide by zero when trying out:", clf print "Precision or recall may be undefined due to a lack of true positive predicitons." CLF_PICKLE_FILENAME = "my_classifier.pkl" DATASET_PICKLE_FILENAME = "my_dataset.pkl" FEATURE_LIST_FILENAME = "my_feature_list.pkl" def dump_classifier_and_data(clf, dataset, feature_list): with open(CLF_PICKLE_FILENAME, "w") as clf_outfile: pickle.dump(clf, clf_outfile) with open(DATASET_PICKLE_FILENAME, "w") as dataset_outfile: pickle.dump(dataset, dataset_outfile) with open(FEATURE_LIST_FILENAME, "w") as featurelist_outfile: pickle.dump(feature_list, featurelist_outfile) def load_classifier_and_data(): with open(CLF_PICKLE_FILENAME, "r") as clf_infile: clf = pickle.load(clf_infile) with open(DATASET_PICKLE_FILENAME, "r") as dataset_infile: dataset = pickle.load(dataset_infile) with open(FEATURE_LIST_FILENAME, "r") as featurelist_infile: feature_list = pickle.load(featurelist_infile) return clf, dataset, feature_list def main(): ### load up student's classifier, dataset, and feature_list clf, dataset, feature_list = load_classifier_and_data() ### Run testing script test_classifier(clf, dataset, feature_list) if __name__ == '__main__': main()
cc0-1.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/numpydoc/plot_directive.py
89
20530
""" A special directive for generating a matplotlib plot. .. warning:: This is a hacked version of plot_directive.py from Matplotlib. It's very much subject to change! Usage ----- Can be used like this:: .. plot:: examples/example.py .. plot:: import matplotlib.pyplot as plt plt.plot([1,2,3], [4,5,6]) .. plot:: A plotting example: >>> import matplotlib.pyplot as plt >>> plt.plot([1,2,3], [4,5,6]) The content is interpreted as doctest formatted if it has a line starting with ``>>>``. The ``plot`` directive supports the options format : {'python', 'doctest'} Specify the format of the input include-source : bool Whether to display the source code. Default can be changed in conf.py and the ``image`` directive options ``alt``, ``height``, ``width``, ``scale``, ``align``, ``class``. Configuration options --------------------- The plot directive has the following configuration options: plot_include_source Default value for the include-source option plot_pre_code Code that should be executed before each plot. plot_basedir Base directory, to which plot:: file names are relative to. (If None or empty, file names are relative to the directoly where the file containing the directive is.) plot_formats File formats to generate. List of tuples or strings:: [(suffix, dpi), suffix, ...] that determine the file format and the DPI. For entries whose DPI was omitted, sensible defaults are chosen. plot_html_show_formats Whether to show links to the files in HTML. TODO ---- * Refactor Latex output; now it's plain images, but it would be nice to make them appear side-by-side, or in floats. """ from __future__ import division, absolute_import, print_function import sys, os, glob, shutil, imp, warnings, re, textwrap, traceback import sphinx if sys.version_info[0] >= 3: from io import StringIO else: from io import StringIO import warnings warnings.warn("A plot_directive module is also available under " "matplotlib.sphinxext; expect this numpydoc.plot_directive " "module to be deprecated after relevant features have been " "integrated there.", FutureWarning, stacklevel=2) #------------------------------------------------------------------------------ # Registration hook #------------------------------------------------------------------------------ def setup(app): setup.app = app setup.config = app.config setup.confdir = app.confdir app.add_config_value('plot_pre_code', '', True) app.add_config_value('plot_include_source', False, True) app.add_config_value('plot_formats', ['png', 'hires.png', 'pdf'], True) app.add_config_value('plot_basedir', None, True) app.add_config_value('plot_html_show_formats', True, True) app.add_directive('plot', plot_directive, True, (0, 1, False), **plot_directive_options) #------------------------------------------------------------------------------ # plot:: directive #------------------------------------------------------------------------------ from docutils.parsers.rst import directives from docutils import nodes def plot_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): return run(arguments, content, options, state_machine, state, lineno) plot_directive.__doc__ = __doc__ def _option_boolean(arg): if not arg or not arg.strip(): # no argument given, assume used as a flag return True elif arg.strip().lower() in ('no', '0', 'false'): return False elif arg.strip().lower() in ('yes', '1', 'true'): return True else: raise ValueError('"%s" unknown boolean' % arg) def _option_format(arg): return directives.choice(arg, ('python', 'lisp')) def _option_align(arg): return directives.choice(arg, ("top", "middle", "bottom", "left", "center", "right")) plot_directive_options = {'alt': directives.unchanged, 'height': directives.length_or_unitless, 'width': directives.length_or_percentage_or_unitless, 'scale': directives.nonnegative_int, 'align': _option_align, 'class': directives.class_option, 'include-source': _option_boolean, 'format': _option_format, } #------------------------------------------------------------------------------ # Generating output #------------------------------------------------------------------------------ from docutils import nodes, utils try: # Sphinx depends on either Jinja or Jinja2 import jinja2 def format_template(template, **kw): return jinja2.Template(template).render(**kw) except ImportError: import jinja def format_template(template, **kw): return jinja.from_string(template, **kw) TEMPLATE = """ {{ source_code }} {{ only_html }} {% if source_link or (html_show_formats and not multi_image) %} ( {%- if source_link -%} `Source code <{{ source_link }}>`__ {%- endif -%} {%- if html_show_formats and not multi_image -%} {%- for img in images -%} {%- for fmt in img.formats -%} {%- if source_link or not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} {%- endfor -%} {%- endif -%} ) {% endif %} {% for img in images %} .. figure:: {{ build_dir }}/{{ img.basename }}.png {%- for option in options %} {{ option }} {% endfor %} {% if html_show_formats and multi_image -%} ( {%- for fmt in img.formats -%} {%- if not loop.first -%}, {% endif -%} `{{ fmt }} <{{ dest_dir }}/{{ img.basename }}.{{ fmt }}>`__ {%- endfor -%} ) {%- endif -%} {% endfor %} {{ only_latex }} {% for img in images %} .. image:: {{ build_dir }}/{{ img.basename }}.pdf {% endfor %} """ class ImageFile(object): def __init__(self, basename, dirname): self.basename = basename self.dirname = dirname self.formats = [] def filename(self, format): return os.path.join(self.dirname, "%s.%s" % (self.basename, format)) def filenames(self): return [self.filename(fmt) for fmt in self.formats] def run(arguments, content, options, state_machine, state, lineno): if arguments and content: raise RuntimeError("plot:: directive can't have both args and content") document = state_machine.document config = document.settings.env.config options.setdefault('include-source', config.plot_include_source) # determine input rst_file = document.attributes['source'] rst_dir = os.path.dirname(rst_file) if arguments: if not config.plot_basedir: source_file_name = os.path.join(rst_dir, directives.uri(arguments[0])) else: source_file_name = os.path.join(setup.confdir, config.plot_basedir, directives.uri(arguments[0])) code = open(source_file_name, 'r').read() output_base = os.path.basename(source_file_name) else: source_file_name = rst_file code = textwrap.dedent("\n".join(map(str, content))) counter = document.attributes.get('_plot_counter', 0) + 1 document.attributes['_plot_counter'] = counter base, ext = os.path.splitext(os.path.basename(source_file_name)) output_base = '%s-%d.py' % (base, counter) base, source_ext = os.path.splitext(output_base) if source_ext in ('.py', '.rst', '.txt'): output_base = base else: source_ext = '' # ensure that LaTeX includegraphics doesn't choke in foo.bar.pdf filenames output_base = output_base.replace('.', '-') # is it in doctest format? is_doctest = contains_doctest(code) if 'format' in options: if options['format'] == 'python': is_doctest = False else: is_doctest = True # determine output directory name fragment source_rel_name = relpath(source_file_name, setup.confdir) source_rel_dir = os.path.dirname(source_rel_name) while source_rel_dir.startswith(os.path.sep): source_rel_dir = source_rel_dir[1:] # build_dir: where to place output files (temporarily) build_dir = os.path.join(os.path.dirname(setup.app.doctreedir), 'plot_directive', source_rel_dir) if not os.path.exists(build_dir): os.makedirs(build_dir) # output_dir: final location in the builder's directory dest_dir = os.path.abspath(os.path.join(setup.app.builder.outdir, source_rel_dir)) # how to link to files from the RST file dest_dir_link = os.path.join(relpath(setup.confdir, rst_dir), source_rel_dir).replace(os.path.sep, '/') build_dir_link = relpath(build_dir, rst_dir).replace(os.path.sep, '/') source_link = dest_dir_link + '/' + output_base + source_ext # make figures try: results = makefig(code, source_file_name, build_dir, output_base, config) errors = [] except PlotError as err: reporter = state.memo.reporter sm = reporter.system_message( 2, "Exception occurred in plotting %s: %s" % (output_base, err), line=lineno) results = [(code, [])] errors = [sm] # generate output restructuredtext total_lines = [] for j, (code_piece, images) in enumerate(results): if options['include-source']: if is_doctest: lines = [''] lines += [row.rstrip() for row in code_piece.split('\n')] else: lines = ['.. code-block:: python', ''] lines += [' %s' % row.rstrip() for row in code_piece.split('\n')] source_code = "\n".join(lines) else: source_code = "" opts = [':%s: %s' % (key, val) for key, val in list(options.items()) if key in ('alt', 'height', 'width', 'scale', 'align', 'class')] only_html = ".. only:: html" only_latex = ".. only:: latex" if j == 0: src_link = source_link else: src_link = None result = format_template( TEMPLATE, dest_dir=dest_dir_link, build_dir=build_dir_link, source_link=src_link, multi_image=len(images) > 1, only_html=only_html, only_latex=only_latex, options=opts, images=images, source_code=source_code, html_show_formats=config.plot_html_show_formats) total_lines.extend(result.split("\n")) total_lines.extend("\n") if total_lines: state_machine.insert_input(total_lines, source=source_file_name) # copy image files to builder's output directory if not os.path.exists(dest_dir): os.makedirs(dest_dir) for code_piece, images in results: for img in images: for fn in img.filenames(): shutil.copyfile(fn, os.path.join(dest_dir, os.path.basename(fn))) # copy script (if necessary) if source_file_name == rst_file: target_name = os.path.join(dest_dir, output_base + source_ext) f = open(target_name, 'w') f.write(unescape_doctest(code)) f.close() return errors #------------------------------------------------------------------------------ # Run code and capture figures #------------------------------------------------------------------------------ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.image as image from matplotlib import _pylab_helpers import exceptions def contains_doctest(text): try: # check if it's valid Python as-is compile(text, '<string>', 'exec') return False except SyntaxError: pass r = re.compile(r'^\s*>>>', re.M) m = r.search(text) return bool(m) def unescape_doctest(text): """ Extract code from a piece of text, which contains either Python code or doctests. """ if not contains_doctest(text): return text code = "" for line in text.split("\n"): m = re.match(r'^\s*(>>>|\.\.\.) (.*)$', line) if m: code += m.group(2) + "\n" elif line.strip(): code += "# " + line.strip() + "\n" else: code += "\n" return code def split_code_at_show(text): """ Split code at plt.show() """ parts = [] is_doctest = contains_doctest(text) part = [] for line in text.split("\n"): if (not is_doctest and line.strip() == 'plt.show()') or \ (is_doctest and line.strip() == '>>> plt.show()'): part.append(line) parts.append("\n".join(part)) part = [] else: part.append(line) if "\n".join(part).strip(): parts.append("\n".join(part)) return parts class PlotError(RuntimeError): pass def run_code(code, code_path, ns=None): # Change the working directory to the directory of the example, so # it can get at its data files, if any. pwd = os.getcwd() old_sys_path = list(sys.path) if code_path is not None: dirname = os.path.abspath(os.path.dirname(code_path)) os.chdir(dirname) sys.path.insert(0, dirname) # Redirect stdout stdout = sys.stdout sys.stdout = StringIO() # Reset sys.argv old_sys_argv = sys.argv sys.argv = [code_path] try: try: code = unescape_doctest(code) if ns is None: ns = {} if not ns: exec(setup.config.plot_pre_code, ns) exec(code, ns) except (Exception, SystemExit) as err: raise PlotError(traceback.format_exc()) finally: os.chdir(pwd) sys.argv = old_sys_argv sys.path[:] = old_sys_path sys.stdout = stdout return ns #------------------------------------------------------------------------------ # Generating figures #------------------------------------------------------------------------------ def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime) def makefig(code, code_path, output_dir, output_base, config): """ Run a pyplot script *code* and save the images under *output_dir* with file names derived from *output_base* """ # -- Parse format list default_dpi = {'png': 80, 'hires.png': 200, 'pdf': 50} formats = [] for fmt in config.plot_formats: if isinstance(fmt, str): formats.append((fmt, default_dpi.get(fmt, 80))) elif type(fmt) in (tuple, list) and len(fmt)==2: formats.append((str(fmt[0]), int(fmt[1]))) else: raise PlotError('invalid image format "%r" in plot_formats' % fmt) # -- Try to determine if all images already exist code_pieces = split_code_at_show(code) # Look for single-figure output files first all_exists = True img = ImageFile(output_base, output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) if all_exists: return [(code, [img])] # Then look for multi-figure output files results = [] all_exists = True for i, code_piece in enumerate(code_pieces): images = [] for j in range(1000): img = ImageFile('%s_%02d_%02d' % (output_base, i, j), output_dir) for format, dpi in formats: if out_of_date(code_path, img.filename(format)): all_exists = False break img.formats.append(format) # assume that if we have one, we have them all if not all_exists: all_exists = (j > 0) break images.append(img) if not all_exists: break results.append((code_piece, images)) if all_exists: return results # -- We didn't find the files, so build them results = [] ns = {} for i, code_piece in enumerate(code_pieces): # Clear between runs plt.close('all') # Run code run_code(code_piece, code_path, ns) # Collect images images = [] fig_managers = _pylab_helpers.Gcf.get_all_fig_managers() for j, figman in enumerate(fig_managers): if len(fig_managers) == 1 and len(code_pieces) == 1: img = ImageFile(output_base, output_dir) else: img = ImageFile("%s_%02d_%02d" % (output_base, i, j), output_dir) images.append(img) for format, dpi in formats: try: figman.canvas.figure.savefig(img.filename(format), dpi=dpi) except exceptions.BaseException as err: raise PlotError(traceback.format_exc()) img.formats.append(format) # Results results.append((code_piece, images)) return results #------------------------------------------------------------------------------ # Relative pathnames #------------------------------------------------------------------------------ try: from os.path import relpath except ImportError: # Copied from Python 2.7 if 'posix' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) # Work out how much of the filepath is shared by start and path. i = len(commonprefix([start_list, path_list])) rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) elif 'nt' in sys.builtin_module_names: def relpath(path, start=os.path.curdir): """Return a relative version of a path""" from os.path import sep, curdir, join, abspath, commonprefix, \ pardir, splitunc if not path: raise ValueError("no path specified") start_list = abspath(start).split(sep) path_list = abspath(path).split(sep) if start_list[0].lower() != path_list[0].lower(): unc_path, rest = splitunc(path) unc_start, rest = splitunc(start) if bool(unc_path) ^ bool(unc_start): raise ValueError("Cannot mix UNC and non-UNC paths (%s and %s)" % (path, start)) else: raise ValueError("path is on drive %s, start on drive %s" % (path_list[0], start_list[0])) # Work out how much of the filepath is shared by start and path. for i in range(min(len(start_list), len(path_list))): if start_list[i].lower() != path_list[i].lower(): break else: i += 1 rel_list = [pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return curdir return join(*rel_list) else: raise RuntimeError("Unsupported platform (no relpath available!)")
gpl-3.0
geektoni/shogun
applications/easysvm/esvm/plots.py
7
6555
""" This module contains code for commonly used plots """ # This software is distributed under BSD 3-clause license (see LICENSE file). # # Authors: Soeren Sonnenburg import sys import random import numpy import warnings import shutil from shogun import Labels from shogun import * def plotroc(output, LTE, draw_random=False, figure_fname="", roc_label='ROC'): """Plot the receiver operating characteristic curve""" import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(4,4)) fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points=pm.get_ROC() points=numpy.array(points).T # for pylab.plot pylab.plot(points[0], points[1], 'b-', label=roc_label) if draw_random: pylab.plot([0, 1], [0, 1], 'r-', label='random guessing') pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('1 - specificity (false positive rate)',size=10) pylab.ylabel('sensitivity (true positive rate)',size=10) pylab.legend(loc='lower right', prop = matplotlib.font_manager.FontProperties('tiny')) if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auROC=pm.get_auROC() return auROC ; def plotprc(output, LTE, figure_fname="", prc_label='PRC'): """Plot the precision recall curve""" import pylab import matplotlib pylab.figure(2,dpi=150,figsize=(4,4)) pm=PerformanceMeasures(Labels(numpy.array(LTE)), Labels(numpy.array(output))) points=pm.get_PRC() points=numpy.array(points).T # for pylab.plot pylab.plot(points[0], points[1], 'b-', label=prc_label) pylab.axis([0, 1, 0, 1]) ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) pylab.xticks(ticks,size=10) pylab.yticks(ticks,size=10) pylab.xlabel('sensitivity (true positive rate)',size=10) pylab.ylabel('precision (1 - false discovery rate)',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) auPRC=pm.get_auPRC() return auPRC ; def plotcloud(cloud, figure_fname="", label='cloud'): """Plot the cloud of points (the first two dimensions only)""" import pylab import matplotlib pylab.figure(1,dpi=150,figsize=(4,4)) pos = [] neg = [] for i in xrange(len(cloud)): if cloud[i][0]==1: pos.append(cloud[i][1:]) elif cloud[i][0]==-1: neg.append(cloud[i][1:]) fontdict=dict(family="cursive",weight="bold",size=10,y=1.05) ; pylab.title(label, fontdict) points=numpy.array(pos).T # for pylab.plot pylab.plot(points[0], points[1], 'b+', label='positive') points=numpy.array(neg).T # for pylab.plot pylab.plot(points[0], points[1], 'rx', label='negative') #pylab.axis([0, 1, 0, 1]) #ticks=numpy.arange(0., 1., .1, dtype=numpy.float64) #pylab.xticks(ticks,size=10) #pylab.yticks(ticks,size=10) pylab.xlabel('dimension 1',size=10) pylab.ylabel('dimension 2',size=10) pylab.legend(loc='lower right') if figure_fname!=None: warnings.filterwarnings('ignore','Could not match*') tempfname = figure_fname + '.png' pylab.savefig(tempfname) shutil.move(tempfname,figure_fname) def plot_poims(poimfilename, poim, max_poim, diff_poim, poim_totalmass, poimdegree, max_len): """Plot a summary of the information in poims""" import pylab import matplotlib pylab.figure(3, dpi=150, figsize=(4,5)) # summary figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.05) ; pylab.subplot(3,2,1) pylab.title('Total POIM Mass', fontdict) pylab.plot(poim_totalmass) ; pylab.ylabel('weight mass', size=5) pylab.subplot(3,2,3) pylab.title('POIMs', fontdict) pylab.pcolor(max_poim, shading='flat') ; pylab.subplot(3,2,5) pylab.title('Differential POIMs', fontdict) pylab.pcolor(diff_poim, shading='flat') ; for plot in [3, 5]: pylab.subplot(3,2,plot) ticks=numpy.arange(1., poimdegree+1, 1, dtype=numpy.float64) ticks_str = [] for i in xrange(0, poimdegree): ticks_str.append("%i" % (i+1)) ticks[i] = i + 0.5 pylab.yticks(ticks, ticks_str) pylab.ylabel('degree', size=5) # per k-mer figures fontdict=dict(family="cursive",weight="bold",size=7,y=1.04) ; # 1-mers pylab.subplot(3,2,2) pylab.title('1-mer Positional Importance', fontdict) pylab.pcolor(poim[0], shading='flat') ; ticks_str = ['A', 'C', 'G', 'T'] ticks = [0.5, 1.5, 2.5, 3.5] pylab.yticks(ticks, ticks_str, size=5) pylab.axis([0, max_len, 0, 4]) # 2-mers pylab.subplot(3,2,4) pylab.title('2-mer Positional Importance', fontdict) pylab.pcolor(poim[1], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: ticks_str.append(l1+l2) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 16]) # 3-mers pylab.subplot(3,2,6) pylab.title('3-mer Positional Importance', fontdict) pylab.pcolor(poim[2], shading='flat') ; i=0 ; ticks=[] ; ticks_str=[] ; for l1 in ['A', 'C', 'G', 'T']: for l2 in ['A', 'C', 'G', 'T']: for l3 in ['A', 'C', 'G', 'T']: if numpy.mod(i,4)==0: ticks_str.append(l1+l2+l3) ticks.append(0.5+i) ; i+=1 ; pylab.yticks(ticks, ticks_str, fontsize=5) pylab.axis([0, max_len, 0, 64]) # x-axis on last two figures for plot in [5, 6]: pylab.subplot(3,2,plot) pylab.xlabel('sequence position', size=5) # finishing up for plot in xrange(0,6): pylab.subplot(3,2,plot+1) pylab.xticks(fontsize=5) for plot in [1,3,5]: pylab.subplot(3,2,plot) pylab.yticks(fontsize=5) pylab.subplots_adjust(hspace=0.35) ; # write to file warnings.filterwarnings('ignore','Could not match*') pylab.savefig('/tmp/temppylabfig.png') shutil.move('/tmp/temppylabfig.png',poimfilename)
bsd-3-clause
jmmease/pandas
pandas/tests/series/test_quantile.py
5
6023
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import numpy as np import pandas as pd from pandas import Index, Series from pandas.core.indexes.datetimes import Timestamp from pandas.core.dtypes.common import is_integer import pandas.util.testing as tm from .common import TestData class TestSeriesQuantile(TestData): def test_quantile(self): q = self.ts.quantile(0.1) assert q == np.percentile(self.ts.valid(), 10) q = self.ts.quantile(0.9) assert q == np.percentile(self.ts.valid(), 90) # object dtype q = Series(self.ts, dtype=object).quantile(0.9) assert q == np.percentile(self.ts.valid(), 90) # datetime64[ns] dtype dts = self.ts.index.to_series() q = dts.quantile(.2) assert q == Timestamp('2000-01-10 19:12:00') # timedelta64[ns] dtype tds = dts.diff() q = tds.quantile(.25) assert q == pd.to_timedelta('24:00:00') # GH7661 result = Series([np.timedelta64('NaT')]).sum() assert result is pd.NaT msg = 'percentiles should all be in the interval \\[0, 1\\]' for invalid in [-1, 2, [0.5, -1], [0.5, 2]]: with tm.assert_raises_regex(ValueError, msg): self.ts.quantile(invalid) def test_quantile_multi(self): qs = [.1, .9] result = self.ts.quantile(qs) expected = pd.Series([np.percentile(self.ts.valid(), 10), np.percentile(self.ts.valid(), 90)], index=qs, name=self.ts.name) tm.assert_series_equal(result, expected) dts = self.ts.index.to_series() dts.name = 'xxx' result = dts.quantile((.2, .2)) expected = Series([Timestamp('2000-01-10 19:12:00'), Timestamp('2000-01-10 19:12:00')], index=[.2, .2], name='xxx') tm.assert_series_equal(result, expected) result = self.ts.quantile([]) expected = pd.Series([], name=self.ts.name, index=Index( [], dtype=float)) tm.assert_series_equal(result, expected) def test_quantile_interpolation(self): # see gh-10174 # interpolation = linear (default case) q = self.ts.quantile(0.1, interpolation='linear') assert q == np.percentile(self.ts.valid(), 10) q1 = self.ts.quantile(0.1) assert q1 == np.percentile(self.ts.valid(), 10) # test with and without interpolation keyword assert q == q1 def test_quantile_interpolation_dtype(self): # GH #10174 # interpolation = linear (default case) q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='lower') assert q == np.percentile(np.array([1, 3, 4]), 50) assert is_integer(q) q = pd.Series([1, 3, 4]).quantile(0.5, interpolation='higher') assert q == np.percentile(np.array([1, 3, 4]), 50) assert is_integer(q) def test_quantile_nan(self): # GH 13098 s = pd.Series([1, 2, 3, 4, np.nan]) result = s.quantile(0.5) expected = 2.5 assert result == expected # all nan/empty cases = [Series([]), Series([np.nan, np.nan])] for s in cases: res = s.quantile(0.5) assert np.isnan(res) res = s.quantile([0.5]) tm.assert_series_equal(res, pd.Series([np.nan], index=[0.5])) res = s.quantile([0.2, 0.3]) tm.assert_series_equal(res, pd.Series([np.nan, np.nan], index=[0.2, 0.3])) def test_quantile_box(self): cases = [[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03')], [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-03', tz='US/Eastern')], [pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days')], # NaT [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.NaT], [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern'), pd.Timestamp('2011-01-03', tz='US/Eastern'), pd.NaT], [pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.NaT]] for case in cases: s = pd.Series(case, name='XXX') res = s.quantile(0.5) assert res == case[1] res = s.quantile([0.5]) exp = pd.Series([case[1]], index=[0.5], name='XXX') tm.assert_series_equal(res, exp) def test_datetime_timedelta_quantiles(self): # covers #9694 assert pd.isna(Series([], dtype='M8[ns]').quantile(.5)) assert pd.isna(Series([], dtype='m8[ns]').quantile(.5)) def test_quantile_nat(self): res = Series([pd.NaT, pd.NaT]).quantile(0.5) assert res is pd.NaT res = Series([pd.NaT, pd.NaT]).quantile([0.5]) tm.assert_series_equal(res, pd.Series([pd.NaT], index=[0.5])) def test_quantile_empty(self): # floats s = Series([], dtype='float64') res = s.quantile(0.5) assert np.isnan(res) res = s.quantile([0.5]) exp = Series([np.nan], index=[0.5]) tm.assert_series_equal(res, exp) # int s = Series([], dtype='int64') res = s.quantile(0.5) assert np.isnan(res) res = s.quantile([0.5]) exp = Series([np.nan], index=[0.5]) tm.assert_series_equal(res, exp) # datetime s = Series([], dtype='datetime64[ns]') res = s.quantile(0.5) assert res is pd.NaT res = s.quantile([0.5]) exp = Series([pd.NaT], index=[0.5]) tm.assert_series_equal(res, exp)
bsd-3-clause