repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
Peilong/ganglia-parser
gangliaParser.py
2
3339
#!/usr/bin/python __author__ = 'Peilong' import urllib2 import re import sys import json from pprint import pprint import matplotlib.pyplot as plt import ConfigParser import string import decimal import datetime import os def get_metric(remove_duplicate, metric): global dir_str for index, value in enumerate (remove_duplicate): #print index, value ### Concatenate the final URL where JSON data locates jsonUrl = gangliaUrl + 'graph.php?r=hour&c=spark&h='+ value + '&v=0.0&m='+ metric +'&jr=&js=&json=1' print "--> from host: ", value #print "Web view: ", jsonUrl # retrieve json data response = urllib2.urlopen(jsonUrl) jsondata = json.load(response) ### Generate the JSON files fnbase = dir_str + remove_duplicate[index] + '-' + metric filename = fnbase +'.json' if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) with open(filename, "w") as f: json.dump(jsondata, f) f.close() # check if json file is empty or contains "null" if jsondata == None: continue xaxis = [] yaxis = [] #print jsondata[0] rawdata = jsondata[0]['datapoints'] #print "rawdata=", rawdata #The last two points are usually meanless, so substrate 2 for i in xrange (0, len(rawdata)-2): xaxis.append(rawdata[i][1]) yaxis.append(rawdata[i][0]) ### Plot JSON data to png figures plt.figure() plt.clf() plt.title(value) plt.plot(xaxis, yaxis, 'k') plt.ylabel('Value '+ metric) plt.xlabel('Time (1 hour in total)') plt.savefig(fnbase+'.png') return if len (sys.argv) < 2: print 'Usage: python gangliaParser.py target.conf' sys.exit(2) else: filename = sys.argv[-1] ### Header print '-'*45 print ' *** Ganglia JSON Parser Tool V - 0.2 ***' print '' print ' Usage: python gangliaParser.py target.conf' print '-'*45 ### Configuration file parser cf = ConfigParser.ConfigParser() cf.read(filename) dnsAddress = cf.get("target","dns") # metrics is comma separated list metrics = cf.get("option","metrics") #node_number = int (cf.get("node","number")) ### Ganglia web UI IP address gangliaUrl = 'http://'+dnsAddress + ':5080/ganglia/' ### Ganglia web UI index page contents = urllib2.urlopen(gangliaUrl).read() ### Regular experssion matching to grab the node internal IP pattern = re.compile('ip-\w{1,3}-\w{1,3}-\w{1,3}-\w{1,3}\.ec2\.internal') result = pattern.findall(contents) seen = set() remove_duplicate = [] for item in result: if item not in seen: seen.add(item) remove_duplicate.append(item) #print "set size =", len(seen) #num_nodes = len(seen) # gererate timestamp for json directory and organize output files in it utc_datetime = datetime.datetime.utcnow() dir_str = "metrics-"+utc_datetime.strftime("%Y-%m-%d-%H:%M:%S/") print "Creating directory "+dir_str # get all the metrics one by one for metric in metrics.split(','): print "Getting metric \""+metric+"\"" get_metric(remove_duplicate, metric) ### Final printout message print '+'*45 print '[SUCCESS] .JSON and .PNG files are saved!' print '[SUCCESS] to ./'+dir_str print '+'*45
gpl-2.0
fzalkow/scikit-learn
sklearn/decomposition/tests/test_incremental_pca.py
297
8265
"""Tests for Incremental PCA.""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA, IncrementalPCA iris = datasets.load_iris() def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1])) def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X) def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X) def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) ipca = IncrementalPCA(n_components=None) ipca.fit(X) assert_raises(ValueError, ipca.partial_fit, X2) def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6) def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1) def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3) def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1) def test_explained_variances(): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix(1000, 100, tail_strength=0., effective_rank=10, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc).fit(X) ipca = IncrementalPCA(n_components=nc, batch_size=100).fit(X) assert_almost_equal(pca.explained_variance_, ipca.explained_variance_, decimal=prec) assert_almost_equal(pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec) def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
bsd-3-clause
RachitKansal/scikit-learn
sklearn/neighbors/classification.py
132
14388
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import check_array class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Read more in the :ref:`User Guide <classification>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default = 'minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): if weights is None: mode, _ = stats.mode(_y[neigh_ind, k], axis=1) else: mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) mode = np.asarray(mode.ravel(), dtype=np.intp) y_pred[:, k] = classes_k.take(mode) if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred def predict_proba(self, X): """Return probability estimates for the test data X. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) all_rows = np.arange(X.shape[0]) probabilities = [] for k, classes_k in enumerate(classes_): pred_labels = _y[:, k][neigh_ind] proba_k = np.zeros((n_samples, classes_k.size)) # a simple ':' index doesn't work right for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) proba_k[all_rows, idx] += weights[:, i] # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) if not self.outputs_2d_: probabilities = probabilities[0] return probabilities class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Read more in the :ref:`User Guide <classification>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. outlier_label : int, optional (default = None) Label, which is given for outlier samples (samples with no neighbors on given radius). If set to None, ValueError is raised, when outlier is detected. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] neigh_dist, neigh_ind = self.radius_neighbors(X) inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0] outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0] classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) if self.outlier_label is not None: neigh_dist[outliers] = 1e-6 elif outliers: raise ValueError('No neighbors found for test samples %r, ' 'you can try using larger radius, ' 'give a label for outliers, ' 'or consider removing them from your dataset.' % outliers) weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object) if weights is None: mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int) else: mode = np.array([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int) mode = mode.ravel() y_pred[inliers, k] = classes_k.take(mode) if outliers: y_pred[outliers, :] = self.outlier_label if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
hbhzwj/SADIT
util/mod.py
1
1576
"""put import module sentence that may fail here """ from __future__ import print_function, division try: import numpy as np except ImportError: np = None print('--> [wanring], no numpy, some funcationality may be affected') try: import guiqwt.pyplot as plt print('--> Use [guiqwt] as plot backend') except ImportError: try: import matplotlib.pyplot as plt # import guiqwt.pyplot as plt print('--> Use [matplotlib] as plot backend') except Exception: plt = None print('--> [wanring], no [guiqwt] and [matplotlib], cannot visualize the result') try: from collections import Counter except ImportError: Counter = None print('--> [wanring], no collection.Counter , some funcationality may be affected') try: import _mysql as mysql from MySQLdb.constants import FIELD_TYPE except ImportError: mysql = None # FIELD_TYPE = object # FIELD_TYPE = object from Namespace import Namespace FIELD_TYPE = Namespace({ 'INT24': None, 'LONG': None, 'LONGLONG': None }) print('--> [warning] cannot import sql related function, reading for sql server is not supported') try: import tables except ImportError: tables = False ######################################### ## Adaption for Python3 ######################################### try: import Queue as queue # replace with 'import queue' if using Python 3 except ImportError: import queue try: from itertools import izip except ImportError: izip = zip
gpl-3.0
krikru/tensorflow-opencl
tensorflow/examples/learn/text_classification_character_rnn.py
61
3350
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is an example of using recurrent neural networks over characters for DBpedia dataset to predict class from description of an entity. This model is similar to one described in this paper: "Character-level Convolutional Networks for Text Classification" http://arxiv.org/abs/1509.01626 and is somewhat alternative to the Lua code from here: https://github.com/zhangxiangxiao/Crepe """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 100 HIDDEN_SIZE = 20 def char_rnn_model(features, target): """Character level recurrent neural network model to predict classes.""" target = tf.one_hot(target, 15, 1, 0) byte_list = tf.one_hot(features, 256, 1, 0) byte_list = tf.unstack(byte_list, axis=1) cell = tf.contrib.rnn.GRUCell(HIDDEN_SIZE) _, encoding = tf.contrib.rnn.static_rnn(cell, byte_list, dtype=tf.float32) logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary char_processor = learn.preprocessing.ByteProcessor(MAX_DOCUMENT_LENGTH) x_train = np.array(list(char_processor.fit_transform(x_train))) x_test = np.array(list(char_processor.transform(x_test))) # Build model classifier = learn.Estimator(model_fn=char_rnn_model) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
gpostelnicu/fin_data
fin_data/io/wiki_store.py
1
2253
import glob import os from datetime import datetime import pandas as pd from functools32 import lru_cache from pandas import HDFStore from fin_data.util.file import latest_filename class WikiStore(object): """ WikiStore is a HDFStore storage for a Quandl WIKI dataset. The Quandl WIKI dataset can be retrieved from: https://www.quandl.com/data/WIKI-Wiki-EOD-Stock-Prices. """ def __init__(self, base_dir, date_index=True): self.base_dir = base_dir assert os.path.exists(self.base_dir) self.date_index = date_index self._init() def keys(self): return self.tickers @lru_cache(maxsize=100) def __getitem__(self, item): df = self.store[item] if self.date_index: df.set_index('date', inplace=True) return df @staticmethod def store_snapshot(base_dir, snapshot_file): w_df = pd.read_csv(snapshot_file, parse_dates=[1]) w_df.columns = [c.replace('-', '_') for c in w_df.columns] w_df.set_index('ticker', inplace=True) w_df.sort_index(inplace=True) snapshot_file = datetime.today().strftime('%Y%m%d') with HDFStore(os.path.join(base_dir, '{}.h5'.format(snapshot_file)), 'w', complevel=6, complib='blosc') as store: tickers = set(w_df.index) for ticker in tickers: df = w_df.loc[ticker, :] df.reset_index(inplace=True) df = df.drop('ticker', 1) store[ticker] = df def _init(self): self.store = HDFStore(latest_filename('{}/*.h5'.format(self.base_dir))) self.tickers = [t[1:] for t in self.store.keys()] def close(self): self.store.close() def tickers_column(self, tickers, col='adj_close', fun_filter=None): if not tickers: return None def fetch_column(ticker): ticker_dat = self[ticker] df = ticker_dat[[col]] df.columns = [ticker] if fun_filter: df = fun_filter(df) return df buf = [fetch_column(ticker) for ticker in tickers] if len(tickers) == 1: return buf[0] return buf[0].join(buf[1:])
mit
eg-zhang/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
akshaybabloo/Car-ND
Project_4/temp/main.py
1
8248
import cv2 import matplotlib.pyplot as plt import pickle import os from glob import glob import numpy as np from PIL import Image from moviepy.editor import ImageSequenceClip from moviepy.video.io.VideoFileClip import VideoFileClip from scipy.misc import imread from tqdm import tqdm from helper import * with open("camera_cal/calibration.p", mode='rb') as f: camera_calib = pickle.load(f) mtx = camera_calib["mtx"] dist = camera_calib["dist"] prev_left_coeffs = None prev_right_coeffs = None def image_pipeline(file, filepath=False): global prev_left_coeffs global prev_right_coeffs plt.clf() if filepath == True: # Read in image raw = cv2.imread(file) else: raw = file # Parameters imshape = raw.shape src = np.float32( [[120, 720], [550, 470], [700, 470], [1160, 720]]) dst = np.float32( [[200, 720], [200, 0], [1080, 0], [1080, 720]]) M = cv2.getPerspectiveTransform(src, dst) Minv = cv2.getPerspectiveTransform(dst, src) height = raw.shape[0] offset = 50 offset_height = height - offset half_frame = raw.shape[1] // 2 steps = 6 pixels_per_step = offset_height / steps window_radius = 200 medianfilt_kernel_size = 51 blank_canvas = np.zeros((720, 1280)) colour_canvas = cv2.cvtColor(blank_canvas.astype(np.uint8), cv2.COLOR_GRAY2RGB) # Apply distortion correction to raw image image = cv2.undistort(raw, mtx, dist, None, mtx) ## Option I combined = apply_thresholds(image) ## Option II have_fit = False curvature_checked = False xgrad_thresh_temp = (40, 100) s_thresh_temp = (150, 255) while have_fit == False: combined_binary = apply_threshold_v2(image, xgrad_thresh=xgrad_thresh_temp, s_thresh=s_thresh_temp) # plt.imshow(combined_binary, cmap="gray") # Plotting thresholded images """ f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10)) ax1.set_title('Option 1') ax1.imshow(combined, cmap="gray") ax2.set_title('Option 2: Combined S channel and gradient thresholds') ax2.imshow(combined_binary, cmap='gray') """ # Warp onto birds-eye-view # Previous region-of-interest mask's function is absorbed by the warp warped = cv2.warpPerspective(combined_binary, M, (imshape[1], imshape[0]), flags=cv2.INTER_LINEAR) # plt.imshow(warped, cmap="gray") # Histogram and get pixels in window leftx, lefty, rightx, righty = histogram_pixels(warped, horizontal_offset=40) plt.imshow(warped, cmap="gray") if len(leftx) > 1 and len(rightx) > 1: have_fit = True xgrad_thresh_temp = (xgrad_thresh_temp[0] - 2, xgrad_thresh_temp[1] + 2) s_thresh_temp = (s_thresh_temp[0] - 2, s_thresh_temp[1] + 2) left_fit, left_coeffs = fit_second_order_poly(lefty, leftx, return_coeffs=True) # print("Left coeffs:", left_coeffs) # print("righty[0]: ,", righty[0], ", rightx[0]: ", rightx[0]) right_fit, right_coeffs = fit_second_order_poly(righty, rightx, return_coeffs=True) # print("Right coeffs: ", right_coeffs) # Plot data """ plt.plot(left_fit, lefty, color='green', linewidth=3) plt.plot(right_fit, righty, color='green', linewidth=3) plt.imshow(warped, cmap="gray") """ # Determine curvature of the lane # Define y-value where we want radius of curvature # I'll choose the maximum y-value, corresponding to the bottom of the image y_eval = 500 left_curverad = np.absolute(((1 + (2 * left_coeffs[0] * y_eval + left_coeffs[1]) ** 2) ** 1.5) \ / (2 * left_coeffs[0])) right_curverad = np.absolute(((1 + (2 * right_coeffs[0] * y_eval + right_coeffs[1]) ** 2) ** 1.5) \ / (2 * right_coeffs[0])) # print("Left lane curve radius: ", left_curverad) # print("Right lane curve radius: ", right_curverad) curvature = (left_curverad + right_curverad) / 2 min_curverad = min(left_curverad, right_curverad) # TODO: if plausible parallel, continue. Else don't make `curvature_checked` = True if not plausible_curvature(left_curverad, right_curverad) or \ not plausible_continuation_of_traces(left_coeffs, right_coeffs, prev_left_coeffs, prev_right_coeffs): if prev_left_coeffs is not None and prev_right_coeffs is not None: left_coeffs = prev_left_coeffs right_coeffs = prev_right_coeffs prev_left_coeffs = left_coeffs prev_right_coeffs = right_coeffs # Det vehicle position wrt centre centre = center(719, left_coeffs, right_coeffs) ## 7. Warp the detected lane boundaries back onto the original image. # print("Left coeffs: ", left_coeffs) # print("Right fit: ", right_coeffs) polyfit_left = draw_poly(blank_canvas, lane_poly, left_coeffs, 30) polyfit_drawn = draw_poly(polyfit_left, lane_poly, right_coeffs, 30) # plt.imshow(polyfit_drawn, cmap="gray") # plt.imshow(warped) # Convert to colour and highlight lane line area trace = colour_canvas trace[polyfit_drawn > 1] = [0, 0, 255] # print("polyfit shape: ", polyfit_drawn.shape) area = highlight_lane_line_area(blank_canvas, left_coeffs, right_coeffs) trace[area == 1] = [0, 255, 0] # plt.imshow(trace) lane_lines = cv2.warpPerspective(trace, Minv, (imshape[1], imshape[0]), flags=cv2.INTER_LINEAR) # plt.imshow(trace) combined_img = cv2.add(lane_lines, image) add_figures_to_image(combined_img, curvature=curvature, vehicle_position=centre, min_curvature=min_curverad, left_coeffs=left_coeffs, right_coeffs=right_coeffs) plt.imshow(combined_img) return combined_img # def run(): # """ # Runs the pipeline. # """ # # if not os.path.isdir('video' + os.sep + 'seq'): # os.mkdir('video' + os.sep + 'seq') # to_image_sequence() # # video_in = VideoFileClip(VIDEO_LOCATION) # video_size = tuple(video_in.size) # Get the video frames size. # # # Load calibrated images. # cam_calibration = helper.get_camera_calibration() # cam_calibrator = helper.CalibrateCamera(video_size, cam_calibration) # # # Load images with img_*.jpeg # content = glob('video/seq/img_*.jpeg') # images = [] # for con in tqdm(range(len(content)), desc='Reading files'): # # images.append(imread('../video/seq/img_%s.jpeg' % i)) # images.append(imread('video/seq/img_%s.jpeg' % con)) # # # Apply line detection to the read images and write them to a folder. # rows = len(images) # processed_images = [] # for row in tqdm(range(rows), desc='Applying DetectLines'): # img = images[row] # # ld = processor.DetectLanes(SRC, DST, number_frame=FRAME_MEMORY, camera_calibration=cam_calibrator, # transform_offset=OFFSET) # img = ld.generate_frame(img) # # processed_images.append(img) # # # Write as image # im = Image.fromarray(img) # im.save('video/seq_new/img_{}.jpeg'.format(row)) # # # # Create a backup. # # with open('data.p', 'wb') as p: # # pickle.dump({'images': processed_images}, p, protocol=pickle.HIGHEST_PROTOCOL) # # # Read the contents of processed image and make a video of it. # new_content = glob('video/seq_new/img_*.jpeg') # images_new = [] # # # Read the images from the processed folder # for i in tqdm(range(len(new_content)), desc='Reading processed images'): # images_new.append(imread('video/seq_new/img_%s.jpeg' % i)) # # # Write sequence of images to file as a video. # new_clip = ImageSequenceClip(images_new, fps=video_in.fps) # new_clip.write_videofile('processed_video.mp4') from moviepy.editor import VideoFileClip output = 'project_output_colour.mp4' clip1 = VideoFileClip("video/project_video.mp4") output_clip = clip1.fl_image(image_pipeline) #NOTE: this function expects color images!! output_clip.write_videofile(output, audio=False)
mit
yonglehou/scikit-learn
sklearn/neighbors/classification.py
106
13987
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import check_array class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Read more in the :ref:`User Guide <classification>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default = 'minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array of shape [n_samples, n_features] A 2-D array representing the test points. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): if weights is None: mode, _ = stats.mode(_y[neigh_ind, k], axis=1) else: mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) mode = np.asarray(mode.ravel(), dtype=np.intp) y_pred[:, k] = classes_k.take(mode) if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred def predict_proba(self, X): """Return probability estimates for the test data X. Parameters ---------- X : array, shape = (n_samples, n_features) A 2-D array representing the test points. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) all_rows = np.arange(X.shape[0]) probabilities = [] for k, classes_k in enumerate(classes_): pred_labels = _y[:, k][neigh_ind] proba_k = np.zeros((n_samples, classes_k.size)) # a simple ':' index doesn't work right for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) proba_k[all_rows, idx] += weights[:, i] # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) if not self.outputs_2d_: probabilities = probabilities[0] return probabilities class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Read more in the :ref:`User Guide <classification>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. outlier_label : int, optional (default = None) Label, which is given for outlier samples (samples with no neighbors on given radius). If set to None, ValueError is raised, when outlier is detected. metric_params: dict, optional (default = None) additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array of shape [n_samples, n_features] A 2-D array representing the test points. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] neigh_dist, neigh_ind = self.radius_neighbors(X) inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0] outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0] classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) if self.outlier_label is not None: neigh_dist[outliers] = 1e-6 elif outliers: raise ValueError('No neighbors found for test samples %r, ' 'you can try using larger radius, ' 'give a label for outliers, ' 'or consider removing them from your dataset.' % outliers) weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object) if weights is None: mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int) else: mode = np.array([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int) mode = mode.ravel() y_pred[inliers, k] = classes_k.take(mode) if outliers: y_pred[outliers, :] = self.outlier_label if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
richardtran415/pymatgen
pymatgen/electronic_structure/tests/test_plotter.py
5
26593
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. import json import os import unittest import warnings from io import open import scipy from monty.os.path import which from pymatgen.core.structure import Structure from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine from pymatgen.electronic_structure.boltztrap import BoltztrapAnalyzer from pymatgen.electronic_structure.cohp import CompleteCohp from pymatgen.electronic_structure.core import Spin from pymatgen.electronic_structure.dos import CompleteDos from pymatgen.electronic_structure.plotter import ( BoltztrapPlotter, BSDOSPlotter, BSPlotter, BSPlotterProjected, CohpPlotter, DosPlotter, fold_point, plot_brillouin_zone, plot_ellipsoid, ) from pymatgen.io.vasp import Vasprun from pymatgen.util.testing import PymatgenTest class DosPlotterTest(unittest.TestCase): def setUp(self): with open(os.path.join(PymatgenTest.TEST_FILES_DIR, "complete_dos.json"), "r", encoding="utf-8") as f: self.dos = CompleteDos.from_dict(json.load(f)) self.plotter = DosPlotter(sigma=0.2, stack=True) warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_add_dos_dict(self): d = self.plotter.get_dos_dict() self.assertEqual(len(d), 0) self.plotter.add_dos_dict(self.dos.get_element_dos(), key_sort_func=lambda x: x.X) d = self.plotter.get_dos_dict() self.assertEqual(len(d), 4) def test_get_dos_dict(self): self.plotter.add_dos_dict(self.dos.get_element_dos(), key_sort_func=lambda x: x.X) d = self.plotter.get_dos_dict() for el in ["Li", "Fe", "P", "O"]: self.assertIn(el, d) # Minimal baseline testing for get_plot. not a true test. Just checks that # it can actually execute. def test_get_plot(self): # Disabling latex is needed for this test to work. from matplotlib import rc rc("text", usetex=False) self.plotter.add_dos_dict(self.dos.get_element_dos(), key_sort_func=lambda x: x.X) plt = self.plotter.get_plot() self.plotter.save_plot("dosplot.png") self.assertTrue(os.path.isfile("dosplot.png")) os.remove("dosplot.png") plt.close("all") class BSPlotterTest(unittest.TestCase): def setUp(self): with open(os.path.join(PymatgenTest.TEST_FILES_DIR, "CaO_2605_bandstructure.json"), "r", encoding="utf-8") as f: d = json.loads(f.read()) self.bs = BandStructureSymmLine.from_dict(d) self.plotter = BSPlotter(self.bs) self.assertEqual(len(self.plotter._bs), 1, "wrong number of band objects") with open(os.path.join(PymatgenTest.TEST_FILES_DIR, "N2_12103_bandstructure.json"), "r", encoding="utf-8") as f: d = json.loads(f.read()) self.sbs_sc = BandStructureSymmLine.from_dict(d) with open(os.path.join(PymatgenTest.TEST_FILES_DIR, "C_48_bandstructure.json"), "r", encoding="utf-8") as f: d = json.loads(f.read()) self.sbs_met = BandStructureSymmLine.from_dict(d) self.plotter_multi = BSPlotter([self.sbs_sc, self.sbs_met]) self.assertEqual(len(self.plotter_multi._bs), 2, "wrong number of band objects") self.assertEqual(self.plotter_multi._nb_bands, [96, 96], "wrong number of bands") warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_add_bs(self): self.plotter_multi.add_bs(self.sbs_sc) self.assertEqual(len(self.plotter_multi._bs), 3, "wrong number of band objects") self.assertEqual(self.plotter_multi._nb_bands, [96, 96, 96], "wrong number of bands") def test_get_branch_steps(self): steps_idx = BSPlotter._get_branch_steps(self.sbs_sc.branches) self.assertEqual(steps_idx, [0, 121, 132, 143], "wrong list of steps idx") def test_rescale_distances(self): rescaled_distances = self.plotter_multi._rescale_distances(self.sbs_sc, self.sbs_met) self.assertEqual( len(rescaled_distances), len(self.sbs_met.distance), "wrong lenght of distances list", ) self.assertEqual(rescaled_distances[-1], 6.5191398067252875, "wrong last distance value") self.assertEqual( rescaled_distances[148], self.sbs_sc.distance[19], "wrong distance at high symm k-point", ) def test_interpolate_bands(self): data = self.plotter.bs_plot_data() d = data["distances"] en = data["energy"]["1"] int_distances, int_energies = self.plotter._interpolate_bands(d, en) self.assertEqual(len(int_distances), 10, "wrong lenght of distances list") self.assertEqual(len(int_distances[0]), 100, "wrong lenght of distances in a branch") self.assertEqual(len(int_energies), 10, "wrong lenght of distances list") self.assertEqual(int_energies[0].shape, (16, 100), "wrong lenght of distances list") def test_bs_plot_data(self): self.assertEqual( len(self.plotter.bs_plot_data()["distances"]), 10, "wrong number of sequences of branches", ) self.assertEqual( len(self.plotter.bs_plot_data()["distances"][0]), 16, "wrong number of distances in the first sequence of branches", ) self.assertEqual( sum([len(e) for e in self.plotter.bs_plot_data()["distances"]]), 160, "wrong number of distances", ) lenght = len(self.plotter.bs_plot_data(split_branches=False)["distances"][0]) self.assertEqual(lenght, 144, "wrong number of distances in the first sequence of branches") lenght = len(self.plotter.bs_plot_data(split_branches=False)["distances"]) self.assertEqual(lenght, 2, "wrong number of distances in the first sequence of branches") self.assertEqual(self.plotter.bs_plot_data()["ticks"]["label"][5], "K", "wrong tick label") self.assertEqual( len(self.plotter.bs_plot_data()["ticks"]["label"]), 19, "wrong number of tick labels", ) def test_get_ticks(self): self.assertEqual(self.plotter.get_ticks()["label"][5], "K", "wrong tick label") self.assertEqual( self.plotter.get_ticks()["distance"][5], 2.406607625322699, "wrong tick distance", ) # Minimal baseline testing for get_plot. not a true test. Just checks that # it can actually execute. def test_get_plot(self): # zero_to_efermi = True, ylim = None, smooth = False, # vbm_cbm_marker = False, smooth_tol = None # Disabling latex is needed for this test to work. from matplotlib import rc rc("text", usetex=False) plt = self.plotter.get_plot() self.assertEqual(plt.ylim(), (-4.0, 7.6348), "wrong ylim") plt = self.plotter.get_plot(smooth=True) plt = self.plotter.get_plot(vbm_cbm_marker=True) self.plotter.save_plot("bsplot.png") self.assertTrue(os.path.isfile("bsplot.png")) os.remove("bsplot.png") plt.close("all") # test plotter with 2 bandstructures plt = self.plotter_multi.get_plot() self.assertEqual(len(plt.gca().get_lines()), 874, "wrong number of lines") self.assertEqual(plt.ylim(), (-10.0, 10.0), "wrong ylim") plt = self.plotter_multi.get_plot(zero_to_efermi=False) self.assertEqual(plt.ylim(), (-15.2379, 12.67141266), "wrong ylim") plt = self.plotter_multi.get_plot(smooth=True) self.plotter_multi.save_plot("bsplot.png") self.assertTrue(os.path.isfile("bsplot.png")) os.remove("bsplot.png") plt.close("all") class BSPlotterProjectedTest(unittest.TestCase): def setUp(self): with open(os.path.join(PymatgenTest.TEST_FILES_DIR, "Cu2O_361_bandstructure.json"), "r", encoding="utf-8") as f: d = json.load(f) self.bs = BandStructureSymmLine.from_dict(d) self.plotter = BSPlotterProjected(self.bs) warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") # Minimal baseline testing for get_plot. not a true test. Just checks that # it can actually execute. def test_methods(self): self.plotter.get_elt_projected_plots().close() self.plotter.get_elt_projected_plots_color().close() self.plotter.get_projected_plots_dots({"Cu": ["d", "s"], "O": ["p"]}).close() self.plotter.get_projected_plots_dots_patom_pmorb( {"Cu": ["dxy", "s", "px"], "O": ["px", "py", "pz"]}, {"Cu": [3, 5], "O": [1]}, ).close() class BSDOSPlotterTest(unittest.TestCase): def setUp(self): warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") # Minimal baseline testing for get_plot. not a true test. Just checks that # it can actually execute. def test_methods(self): v = Vasprun(os.path.join(PymatgenTest.TEST_FILES_DIR, "vasprun_Si_bands.xml")) p = BSDOSPlotter() plt = p.get_plot( v.get_band_structure(kpoints_filename=os.path.join(PymatgenTest.TEST_FILES_DIR, "KPOINTS_Si_bands")) ) plt.close() plt = p.get_plot( v.get_band_structure(kpoints_filename=os.path.join(PymatgenTest.TEST_FILES_DIR, "KPOINTS_Si_bands")), v.complete_dos, ) plt.close("all") class PlotBZTest(unittest.TestCase): def setUp(self): self.rec_latt = Structure.from_file( os.path.join(PymatgenTest.TEST_FILES_DIR, "Si.cssr") ).lattice.reciprocal_lattice self.kpath = [[[0.0, 0.0, 0.0], [0.5, 0.0, 0.5], [0.5, 0.25, 0.75], [0.375, 0.375, 0.75]]] self.labels = { "\\Gamma": [0.0, 0.0, 0.0], "K": [0.375, 0.375, 0.75], "L": [0.5, 0.5, 0.5], "U": [0.625, 0.25, 0.625], "W": [0.5, 0.25, 0.75], "X": [0.5, 0.0, 0.5], } self.hessian = [ [17.64757034, 3.90159625, -4.77845607], [3.90159625, 14.88874142, 6.75776076], [-4.77845607, 6.75776076, 12.12987493], ] self.center = [0.41, 0.0, 0.41] self.points = [[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]] warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_bz_plot(self): fig, ax = plot_ellipsoid(self.hessian, self.center, lattice=self.rec_latt) fig = plot_brillouin_zone( self.rec_latt, lines=self.kpath, labels=self.labels, kpoints=self.points, ax=ax, show=False, ) def test_fold_point(self): self.assertTrue( scipy.allclose( fold_point([0.0, -0.5, 0.5], lattice=self.rec_latt), self.rec_latt.get_cartesian_coords([0.0, 0.5, 0.5]), ) ) self.assertTrue( scipy.allclose( fold_point([0.1, -0.6, 0.2], lattice=self.rec_latt), self.rec_latt.get_cartesian_coords([0.1, 0.4, 0.2]), ) ) x_trans = which("x_trans") @unittest.skipIf(not x_trans, "No x_trans.") class BoltztrapPlotterTest(unittest.TestCase): def setUp(self): bz = BoltztrapAnalyzer.from_files(os.path.join(PymatgenTest.TEST_FILES_DIR, "boltztrap/transp/")) self.plotter = BoltztrapPlotter(bz) warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_plot_carriers(self): plt = self.plotter.plot_carriers() self.assertEqual(len(plt.gca().get_lines()), 7, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 6.525490122298364e22, "wrong 1 data in line 0", ) plt.close() def test_plot_complexity_factor_mu(self): plt = self.plotter.plot_complexity_factor_mu() self.assertEqual(len(plt.gca().get_lines()), 2, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.004708835456903449, "wrong 1 data in line 0", ) plt.close() def test_plot_conductivity_dop(self): plt = self.plotter.plot_conductivity_dop() self.assertEqual(len(plt.gca().get_lines()), 8, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], 1000000000000000.0, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.3801957596666667, "wrong 1 data in line 0", ) plt.close() def test_plot_conductivity_mu(self): plt = self.plotter.plot_conductivity_mu() self.assertEqual(len(plt.gca().get_lines()), 9, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 1965.1306, "wrong 1 data in line 0", ) plt.close() def test_plot_conductivity_temp(self): plt = self.plotter.plot_conductivity_temp() self.assertEqual(len(plt.gca().get_lines()), 6, "wrong number of lines") self.assertEqual(plt.gca().get_lines()[0].get_data()[0][0], 100, "wrong 0 data in line 0") self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.3801957596666667, "wrong 1 data in line 0", ) plt.close() def test_plot_dos(self): plt = self.plotter.plot_dos() self.assertEqual(len(plt.gca().get_lines()), 3, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.4197044934588674, "wrong 0 data in line 0", ) self.assertEqual(plt.gca().get_lines()[0].get_data()[1][0], 0.0, "wrong 1 data in line 0") plt.close() def test_plot_eff_mass_dop(self): plt = self.plotter.plot_eff_mass_dop() self.assertEqual(len(plt.gca().get_lines()), 8, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], 1000000000000000.0, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 1.4231240011719886, "wrong 1 data in line 0", ) plt.close() def test_plot_eff_mass_temp(self): plt = self.plotter.plot_eff_mass_temp() self.assertEqual(len(plt.gca().get_lines()), 6, "wrong number of lines") self.assertEqual(plt.gca().get_lines()[0].get_data()[0][0], 100, "wrong 0 data in line 0") self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 1.4231240011719886, "wrong 1 data in line 0", ) plt.close() def test_plot_hall_carriers(self): plt = self.plotter.plot_hall_carriers() self.assertEqual(len(plt.gca().get_lines()), 7, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 9.538187273102463e17, "wrong 1 data in line 0", ) plt.close() def test_plot_power_factor_dop(self): plt = self.plotter.plot_power_factor_dop() self.assertEqual(len(plt.gca().get_lines()), 8, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], 1000000000000000.0, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.40606868935796925, "wrong 1 data in line 0", ) plt.close() def test_plot_power_factor_mu(self): plt = self.plotter.plot_power_factor_mu() self.assertEqual(len(plt.gca().get_lines()), 9, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 365.5514594136157, "wrong 1 data in line 0", ) plt.close() def test_plot_power_factor_temp(self): plt = self.plotter.plot_power_factor_temp() self.assertEqual(len(plt.gca().get_lines()), 6, "wrong number of lines") self.assertEqual(plt.gca().get_lines()[0].get_data()[0][0], 100, "wrong 0 data in line 0") self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.40606868935796925, "wrong 1 data in line 0", ) plt.close() def test_plot_seebeck_dop(self): plt = self.plotter.plot_seebeck_dop() self.assertEqual(len(plt.gca().get_lines()), 8, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], 1000000000000000.0, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 1050.8197666666667, "wrong 1 data in line 0", ) plt.close() def test_plot_seebeck_eff_mass_mu(self): plt = self.plotter.plot_seebeck_eff_mass_mu() self.assertEqual(len(plt.gca().get_lines()), 2, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 6412.881888198197, "wrong 1 data in line 0", ) plt.close() def test_plot_seebeck_mu(self): plt = self.plotter.plot_seebeck_mu() self.assertEqual(len(plt.gca().get_lines()), 9, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], -433.11096000000003, "wrong 1 data in line 0", ) plt.close() def test_plot_seebeck_temp(self): plt = self.plotter.plot_seebeck_temp() self.assertEqual(len(plt.gca().get_lines()), 6, "wrong number of lines") self.assertEqual(plt.gca().get_lines()[0].get_data()[0][0], 100, "wrong 0 data in line 0") self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 1050.8197666666667, "wrong 1 data in line 0", ) plt.close() def test_plot_zt_dop(self): plt = self.plotter.plot_zt_dop() self.assertEqual(len(plt.gca().get_lines()), 8, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], 1000000000000000.0, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 4.060682863129955e-05, "wrong 1 data in line 0", ) plt.close() def test_plot_zt_mu(self): plt = self.plotter.plot_zt_mu() self.assertEqual(len(plt.gca().get_lines()), 9, "wrong number of lines") self.assertEqual( plt.gca().get_lines()[0].get_data()[0][0], -2.0702422655947665, "wrong 0 data in line 0", ) self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 0.2153839699235254, "wrong 1 data in line 0", ) plt.close() def test_plot_zt_temp(self): plt = self.plotter.plot_zt_temp() self.assertEqual(len(plt.gca().get_lines()), 6, "wrong number of lines") self.assertEqual(plt.gca().get_lines()[0].get_data()[0][0], 100, "wrong 0 data in line 0") self.assertEqual( plt.gca().get_lines()[0].get_data()[1][0], 4.060682863129955e-05, "wrong 1 data in line 0", ) plt.close() class CohpPlotterTest(PymatgenTest): def setUp(self): path = os.path.join(PymatgenTest.TEST_FILES_DIR, "cohp", "complete_cohp_lobster.json") with open(os.path.join(path), "r") as f: self.cohp = CompleteCohp.from_dict(json.load(f)) path = os.path.join(PymatgenTest.TEST_FILES_DIR, "cohp", "complete_coop_lobster.json") with open(os.path.join(path), "r") as f: self.coop = CompleteCohp.from_dict(json.load(f)) self.cohp_plot = CohpPlotter(zero_at_efermi=False) self.coop_plot = CohpPlotter(are_coops=True) warnings.simplefilter("ignore") def tearDown(self): warnings.simplefilter("default") def test_attributes(self): self.assertFalse(self.cohp_plot.are_coops) self.assertTrue(self.coop_plot.are_coops) self.assertFalse(self.cohp_plot.zero_at_efermi) self.assertTrue(self.coop_plot.zero_at_efermi) self.cohp_plot.add_cohp_dict(self.cohp.all_cohps) cohp_energies = self.cohp_plot._cohps["1"]["energies"] self.assertEqual(len(cohp_energies), 301) self.assertAlmostEqual(cohp_energies[0], -0.27768) self.assertAlmostEqual(cohp_energies[-1], 14.77248) self.coop_plot.add_cohp_dict(self.coop.all_cohps) coop_energies = self.coop_plot._cohps["10"]["energies"] self.assertEqual(len(coop_energies), 241) self.assertAlmostEqual(coop_energies[0], -6.02510) self.assertAlmostEqual(coop_energies[-1], 6.02510) def test_add_cohp_dict(self): # Sorts the populations by z-coordinates of the sites def sortkeys(sites): return sites[0].z, sites[1].z sorted_keys = ["3", "4", "7", "8", "9", "10", "11", "6", "5", "2", "1"] d_coop = self.coop_plot.get_cohp_dict() self.assertEqual(len(d_coop), 0) bonds = self.coop.bonds self.coop_plot.add_cohp_dict(self.coop.all_cohps, key_sort_func=lambda x: sortkeys(bonds[x]["sites"])) d_coop = self.coop_plot.get_cohp_dict() self.assertEqual(len(d_coop), 11) self.assertEqual(list(self.coop_plot._cohps.keys()), sorted_keys) def test_get_cohp_dict(self): self.cohp_plot.add_cohp_dict(self.cohp.all_cohps) d_cohp = self.cohp_plot.get_cohp_dict() for bond in ["1", "2"]: self.assertIn(bond, d_cohp) def test_get_plot(self): self.cohp_plot.add_cohp_dict(self.cohp.all_cohps) plt_cohp = self.cohp_plot.get_plot() ax_cohp = plt_cohp.gca() self.assertEqual(ax_cohp.get_xlabel(), "-COHP") self.assertEqual(ax_cohp.get_ylabel(), "$E$ (eV)") legend_labels = ax_cohp.get_legend_handles_labels()[1] self.assertEqual(len(self.cohp_plot._cohps), len(legend_labels)) self.assertEqual(ax_cohp.lines[0].get_linestyle(), "-") self.assertEqual(ax_cohp.lines[1].get_linestyle(), "--") for label in legend_labels: self.assertIn(label, self.cohp_plot._cohps) linesindex = legend_labels.index("1") linestyles = {Spin.up: "-", Spin.down: "--"} cohp_fe_fe = self.cohp.all_cohps["1"] for s, spin in enumerate([Spin.up, Spin.down]): lines = ax_cohp.lines[2 * linesindex + s] self.assertArrayAlmostEqual(lines.get_xdata(), -cohp_fe_fe.cohp[spin]) self.assertArrayAlmostEqual(lines.get_ydata(), self.cohp.energies) self.assertEqual(lines.get_linestyle(), linestyles[spin]) plt_cohp.close() plt_cohp = self.cohp_plot.get_plot(invert_axes=False, plot_negative=False) ax_cohp = plt_cohp.gca() self.assertEqual(ax_cohp.get_xlabel(), "$E$ (eV)") self.assertEqual(ax_cohp.get_ylabel(), "COHP") for s, spin in enumerate([Spin.up, Spin.down]): lines = ax_cohp.lines[2 * linesindex + s] self.assertArrayAlmostEqual(lines.get_xdata(), self.cohp.energies) self.assertArrayAlmostEqual(lines.get_ydata(), cohp_fe_fe.cohp[spin]) plt_cohp.close() plt_cohp = self.cohp_plot.get_plot(integrated=True) ax_cohp = plt_cohp.gca() self.assertEqual(ax_cohp.get_xlabel(), "-ICOHP (eV)") for s, spin in enumerate([Spin.up, Spin.down]): lines = ax_cohp.lines[2 * linesindex + s] self.assertArrayAlmostEqual(lines.get_xdata(), -cohp_fe_fe.icohp[spin]) coop_dict = {"Bi5-Bi6": self.coop.all_cohps["10"]} self.coop_plot.add_cohp_dict(coop_dict) plt_coop = self.coop_plot.get_plot() ax_coop = plt_coop.gca() self.assertEqual(ax_coop.get_xlabel(), "COOP") self.assertEqual(ax_coop.get_ylabel(), "$E - E_f$ (eV)") lines_coop = ax_coop.get_lines()[0] self.assertArrayAlmostEqual(lines_coop.get_ydata(), self.coop.energies - self.coop.efermi) coop_bi_bi = self.coop.all_cohps["10"].cohp[Spin.up] self.assertArrayAlmostEqual(lines_coop.get_xdata(), coop_bi_bi) # Cleanup. plt_cohp.close() plt_coop.close("all") def test_save_plot(self): self.cohp_plot.add_cohp_dict(self.cohp.all_cohps) plt_cohp = self.cohp_plot.get_plot() self.cohp_plot.save_plot("cohpplot.png") self.assertTrue(os.path.isfile("cohpplot.png")) os.remove("cohpplot.png") plt_cohp.close("all") if __name__ == "__main__": unittest.main()
mit
samuel1208/scikit-learn
sklearn/svm/tests/test_sparse.py
95
12156
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
pbrod/numpy
numpy/core/code_generators/ufunc_docstrings.py
7
106598
""" Docstrings for generated ufuncs The syntax is designed to look like the function add_newdoc is being called from numpy.lib, but in this file add_newdoc puts the docstrings in a dictionary. This dictionary is used in numpy/core/code_generators/generate_umath.py to generate the docstrings for the ufuncs in numpy.core at the C level when the ufuncs are created at compile time. """ import textwrap docdict = {} def get(name): return docdict.get(name) # common parameter text to all ufuncs subst = { 'PARAMS': textwrap.dedent(""" out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. """).strip(), 'BROADCASTABLE_2': ("If ``x1.shape != x2.shape``, they must be " "broadcastable to a common\n shape (which becomes " "the shape of the output)."), 'OUT_SCALAR_1': "This is a scalar if `x` is a scalar.", 'OUT_SCALAR_2': "This is a scalar if both `x1` and `x2` are scalars.", } def add_newdoc(place, name, doc): doc = textwrap.dedent(doc).strip() skip = ( # gufuncs do not use the OUT_SCALAR replacement strings 'matmul', # clip has 3 inputs, which is not handled by this 'clip', ) if name[0] != '_' and name not in skip: if '\nx :' in doc: assert '$OUT_SCALAR_1' in doc, "in {}".format(name) elif '\nx2 :' in doc or '\nx1, x2 :' in doc: assert '$OUT_SCALAR_2' in doc, "in {}".format(name) else: assert False, "Could not detect number of inputs in {}".format(name) for k, v in subst.items(): doc = doc.replace('$' + k, v) docdict['.'.join((place, name))] = doc add_newdoc('numpy.core.umath', 'absolute', """ Calculate the absolute value element-wise. ``np.abs`` is a shorthand for this function. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. For complex input, ``a + ib``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. $OUT_SCALAR_1 Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) >>> np.absolute(1.2 + 1j) 1.5620499351813308 Plot the function over ``[-10, 10]``: >>> import matplotlib.pyplot as plt >>> x = np.linspace(start=-10, stop=10, num=101) >>> plt.plot(x, np.absolute(x)) >>> plt.show() Plot the function over the complex plane: >>> xx = x + 1j * x[:, np.newaxis] >>> plt.imshow(np.abs(xx), extent=[-10, 10, -10, 10], cmap='gray') >>> plt.show() The `abs` function can be used as a shorthand for ``np.absolute`` on ndarrays. >>> x = np.array([-1.2, 1.2]) >>> abs(x) array([1.2, 1.2]) """) add_newdoc('numpy.core.umath', 'add', """ Add arguments element-wise. Parameters ---------- x1, x2 : array_like The arrays to be added. $BROADCASTABLE_2 $PARAMS Returns ------- add : ndarray or scalar The sum of `x1` and `x2`, element-wise. $OUT_SCALAR_2 Notes ----- Equivalent to `x1` + `x2` in terms of array broadcasting. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) The ``+`` operator can be used as a shorthand for ``np.add`` on ndarrays. >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 + x2 array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """) add_newdoc('numpy.core.umath', 'arccos', """ Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, if ``y = cos(x)``, then ``x = arccos(y)``. Parameters ---------- x : array_like `x`-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. $PARAMS Returns ------- angle : ndarray The angle of the ray intersecting the unit circle at the given `x`-coordinate in radians [0, pi]. $OUT_SCALAR_1 See Also -------- cos, arctan, arcsin, emath.arccos Notes ----- `arccos` is a multivalued function: for each `x` there are infinitely many numbers `z` such that ``cos(z) = x``. The convention is to return the angle `z` whose real part lies in `[0, pi]`. For real-valued input data types, `arccos` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytic function that has branch cuts ``[-inf, -1]`` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse `cos` is also known as `acos` or cos^-1. References ---------- M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arccos of 1 to be 0, and of -1 to be pi: >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) Plot arccos: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-1, 1, num=100) >>> plt.plot(x, np.arccos(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arccosh', """ Inverse hyperbolic cosine, element-wise. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- arccosh : ndarray Array of the same shape as `x`. $OUT_SCALAR_1 See Also -------- cosh, arcsinh, sinh, arctanh, tanh Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. The convention is to return the `z` whose imaginary part lies in ``[-pi, pi]`` and the real part in ``[0, inf]``. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccosh` is a complex analytical function that has a branch cut `[-inf, 1]` and is continuous from above on it. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", https://en.wikipedia.org/wiki/Arccosh Examples -------- >>> np.arccosh([np.e, 10.0]) array([ 1.65745445, 2.99322285]) >>> np.arccosh(1) 0.0 """) add_newdoc('numpy.core.umath', 'arcsin', """ Inverse sine, element-wise. Parameters ---------- x : array_like `y`-coordinate on the unit circle. $PARAMS Returns ------- angle : ndarray The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. $OUT_SCALAR_1 See Also -------- sin, cos, arccos, tan, arctan, arctan2, emath.arcsin Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arcsin` is a complex analytic function that has, by convention, the branch cuts [-inf, -1] and [1, inf] and is continuous from above on the former and from below on the latter. The inverse sine is also known as `asin` or sin^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 """) add_newdoc('numpy.core.umath', 'arcsinh', """ Inverse hyperbolic sine element-wise. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- out : ndarray or scalar Array of the same shape as `x`. $OUT_SCALAR_1 Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it returns ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arccos` is a complex analytical function that has branch cuts `[1j, infj]` and `[-1j, -infj]` and is continuous from the right on the former and from the left on the latter. The inverse hyperbolic sine is also known as `asinh` or ``sinh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", https://en.wikipedia.org/wiki/Arcsinh Examples -------- >>> np.arcsinh(np.array([np.e, 10.0])) array([ 1.72538256, 2.99822295]) """) add_newdoc('numpy.core.umath', 'arctan', """ Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : array_like $PARAMS Returns ------- out : ndarray or scalar Out has the same shape as `x`. Its real part is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). $OUT_SCALAR_1 See Also -------- arctan2 : The "four quadrant" arctan of the angle formed by (`x`, `y`) and the positive `x`-axis. angle : Argument of complex values. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctan` is a complex analytic function that has [``1j, infj``] and [``-1j, -infj``] as branch cuts, and is continuous from the left on the former and from the right on the latter. The inverse tangent is also known as `atan` or tan^{-1}. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79. http://www.math.sfu.ca/~cbm/aands/ Examples -------- We expect the arctan of 0 to be 0, and of 1 to be pi/4: >>> np.arctan([0, 1]) array([ 0. , 0.78539816]) >>> np.pi/4 0.78539816339744828 Plot arctan: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-10, 10) >>> plt.plot(x, np.arctan(x)) >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'arctan2', """ Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : array_like, real-valued `y`-coordinates. x2 : array_like, real-valued `x`-coordinates. $BROADCASTABLE_2 $PARAMS Returns ------- angle : ndarray Array of angles in radians, in the range ``[-pi, pi]``. $OUT_SCALAR_2 See Also -------- arctan, tan, angle Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> np.arctan2([1., -1.], [0., 0.]) array([ 1.57079633, -1.57079633]) >>> np.arctan2([0., 0., np.inf], [+0., -0., np.inf]) array([ 0. , 3.14159265, 0.78539816]) """) add_newdoc('numpy.core.umath', '_arg', """ DO NOT USE, ONLY FOR TESTING """) add_newdoc('numpy.core.umath', 'arctanh', """ Inverse hyperbolic tangent element-wise. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- out : ndarray or scalar Array of the same shape as `x`. $OUT_SCALAR_1 See Also -------- emath.arctanh Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that ``tanh(z) = x``. The convention is to return the `z` whose imaginary part lies in `[-pi/2, pi/2]`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `arctanh` is a complex analytical function that has branch cuts `[-1, -inf]` and `[1, inf]` and is continuous from above on the former and from below on the latter. The inverse hyperbolic tangent is also known as `atanh` or ``tanh^-1``. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 86. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Inverse hyperbolic function", https://en.wikipedia.org/wiki/Arctanh Examples -------- >>> np.arctanh([0, -0.5]) array([ 0. , -0.54930614]) """) add_newdoc('numpy.core.umath', 'bitwise_and', """ Compute the bit-wise AND of two arrays element-wise. Computes the bit-wise AND of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``&``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Result. $OUT_SCALAR_2 See Also -------- logical_and bitwise_or bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise AND of 13 and 17 is therefore ``000000001``, or 1: >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.binary_repr(12) '1100' >>> np.bitwise_and([14,3], 13) array([12, 1]) >>> np.bitwise_and([11,7], [4,25]) array([0, 1]) >>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16])) array([ 2, 4, 16]) >>> np.bitwise_and([True, True], [False, True]) array([False, True]) The ``&`` operator can be used as a shorthand for ``np.bitwise_and`` on ndarrays. >>> x1 = np.array([2, 5, 255]) >>> x2 = np.array([3, 14, 16]) >>> x1 & x2 array([ 2, 4, 16]) """) add_newdoc('numpy.core.umath', 'bitwise_or', """ Compute the bit-wise OR of two arrays element-wise. Computes the bit-wise OR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``|``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Result. $OUT_SCALAR_2 See Also -------- logical_or bitwise_and bitwise_xor binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 has the binaray representation ``00001101``. Likewise, 16 is represented by ``00010000``. The bit-wise OR of 13 and 16 is then ``000111011``, or 29: >>> np.bitwise_or(13, 16) 29 >>> np.binary_repr(29) '11101' >>> np.bitwise_or(32, 2) 34 >>> np.bitwise_or([33, 4], 1) array([33, 5]) >>> np.bitwise_or([33, 4], [1, 2]) array([33, 6]) >>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4])) array([ 6, 5, 255]) >>> np.array([2, 5, 255]) | np.array([4, 4, 4]) array([ 6, 5, 255]) >>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32), ... np.array([4, 4, 4, 2147483647], dtype=np.int32)) array([ 6, 5, 255, 2147483647]) >>> np.bitwise_or([True, True], [False, True]) array([ True, True]) The ``|`` operator can be used as a shorthand for ``np.bitwise_or`` on ndarrays. >>> x1 = np.array([2, 5, 255]) >>> x2 = np.array([4, 4, 4]) >>> x1 | x2 array([ 6, 5, 255]) """) add_newdoc('numpy.core.umath', 'bitwise_xor', """ Compute the bit-wise XOR of two arrays element-wise. Computes the bit-wise XOR of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``^``. Parameters ---------- x1, x2 : array_like Only integer and boolean types are handled. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Result. $OUT_SCALAR_2 See Also -------- logical_xor bitwise_and bitwise_or binary_repr : Return the binary representation of the input number as a string. Examples -------- The number 13 is represented by ``00001101``. Likewise, 17 is represented by ``00010001``. The bit-wise XOR of 13 and 17 is therefore ``00011100``, or 28: >>> np.bitwise_xor(13, 17) 28 >>> np.binary_repr(28) '11100' >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor([31,3], 5) array([26, 6]) >>> np.bitwise_xor([31,3], [5,6]) array([26, 5]) >>> np.bitwise_xor([True, True], [False, True]) array([ True, False]) The ``^`` operator can be used as a shorthand for ``np.bitwise_xor`` on ndarrays. >>> x1 = np.array([True, True]) >>> x2 = np.array([False, True]) >>> x1 ^ x2 array([ True, False]) """) add_newdoc('numpy.core.umath', 'ceil', """ Return the ceiling of the input, element-wise. The ceil of the scalar `x` is the smallest integer `i`, such that ``i >= x``. It is often denoted as :math:`\\lceil x \\rceil`. Parameters ---------- x : array_like Input data. $PARAMS Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. $OUT_SCALAR_1 See Also -------- floor, trunc, rint, fix Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'trunc', """ Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : array_like Input data. $PARAMS Returns ------- y : ndarray or scalar The truncated value of each element in `x`. $OUT_SCALAR_1 See Also -------- ceil, floor, rint, fix Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'conjugate', """ Return the complex conjugate, element-wise. The complex conjugate of a complex number is obtained by changing the sign of its imaginary part. Parameters ---------- x : array_like Input value. $PARAMS Returns ------- y : ndarray The complex conjugate of `x`, with same dtype as `y`. $OUT_SCALAR_1 Notes ----- `conj` is an alias for `conjugate`: >>> np.conj is np.conjugate True Examples -------- >>> np.conjugate(1+2j) (1-2j) >>> x = np.eye(2) + 1j * np.eye(2) >>> np.conjugate(x) array([[ 1.-1.j, 0.-0.j], [ 0.-0.j, 1.-1.j]]) """) add_newdoc('numpy.core.umath', 'cos', """ Cosine element-wise. Parameters ---------- x : array_like Input array in radians. $PARAMS Returns ------- y : ndarray The corresponding cosine values. $OUT_SCALAR_1 Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.00000000e+00, 6.12303177e-17, -1.00000000e+00]) >>> >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='d') >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2) """) add_newdoc('numpy.core.umath', 'cosh', """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- out : ndarray or scalar Output array of same shape as `x`. $OUT_SCALAR_1 Examples -------- >>> np.cosh(0) 1.0 The hyperbolic cosine describes the shape of a hanging cable: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show() """) add_newdoc('numpy.core.umath', 'degrees', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Input array in radians. $PARAMS Returns ------- y : ndarray of floats The corresponding degree values; if `out` was supplied this is a reference to it. $OUT_SCALAR_1 See Also -------- rad2deg : equivalent function Examples -------- Convert a radian array to degrees >>> rad = np.arange(12.)*np.pi/6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out = np.zeros((rad.shape)) >>> r = np.degrees(rad, out) >>> np.all(r == out) True """) add_newdoc('numpy.core.umath', 'rad2deg', """ Convert angles from radians to degrees. Parameters ---------- x : array_like Angle in radians. $PARAMS Returns ------- y : ndarray The corresponding angle in degrees. $OUT_SCALAR_1 See Also -------- deg2rad : Convert angles from degrees to radians. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 rad2deg(x) is ``180 * x / pi``. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """) add_newdoc('numpy.core.umath', 'heaviside', """ Compute the Heaviside step function. The Heaviside step function is defined as:: 0 if x1 < 0 heaviside(x1, x2) = x2 if x1 == 0 1 if x1 > 0 where `x2` is often taken to be 0.5, but 0 and 1 are also sometimes used. Parameters ---------- x1 : array_like Input values. x2 : array_like The value of the function when x1 is 0. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar The output array, element-wise Heaviside step function of `x1`. $OUT_SCALAR_2 Notes ----- .. versionadded:: 1.13.0 References ---------- .. Wikipedia, "Heaviside step function", https://en.wikipedia.org/wiki/Heaviside_step_function Examples -------- >>> np.heaviside([-1.5, 0, 2.0], 0.5) array([ 0. , 0.5, 1. ]) >>> np.heaviside([-1.5, 0, 2.0], 1) array([ 0., 1., 1.]) """) add_newdoc('numpy.core.umath', 'divide', """ Divide arguments element-wise. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The quotient ``x1/x2``, element-wise. $OUT_SCALAR_2 See Also -------- seterr : Set whether to raise or warn on overflow, underflow and division by zero. Notes ----- Equivalent to ``x1`` / ``x2`` in terms of array-broadcasting. Behavior on division by zero can be changed using ``seterr``. In Python 2, when both ``x1`` and ``x2`` are of an integer type, ``divide`` will behave like ``floor_divide``. In Python 3, it behaves like ``true_divide``. Examples -------- >>> np.divide(2.0, 4.0) 0.5 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.divide(x1, x2) array([[ NaN, 1. , 1. ], [ Inf, 4. , 2.5], [ Inf, 7. , 4. ]]) Note the behavior with integer types (Python 2 only): >>> np.divide(2, 4) 0 >>> np.divide(2, 4.) 0.5 Division by zero always yields zero in integer arithmetic (again, Python 2 only), and does not raise an exception or a warning: >>> np.divide(np.array([0, 1], dtype=int), np.array([0, 0], dtype=int)) array([0, 0]) Division by zero can, however, be caught using ``seterr``: >>> old_err_state = np.seterr(divide='raise') >>> np.divide(1, 0) Traceback (most recent call last): File "<stdin>", line 1, in <module> FloatingPointError: divide by zero encountered in divide >>> ignored_states = np.seterr(**old_err_state) >>> np.divide(1, 0) 0 The ``/`` operator can be used as a shorthand for ``np.divide`` on ndarrays. >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = 2 * np.ones(3) >>> x1 / x2 array([[0. , 0.5, 1. ], [1.5, 2. , 2.5], [3. , 3.5, 4. ]]) """) add_newdoc('numpy.core.umath', 'equal', """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal([0, 1, 3], np.arange(3)) array([ True, True, False]) What is compared are values, not types. So an int (1) and an array of length one can evaluate as True: >>> np.equal(1, np.ones(1)) array([ True]) The ``==`` operator can be used as a shorthand for ``np.equal`` on ndarrays. >>> a = np.array([2, 4, 6]) >>> b = np.array([2, 4, 2]) >>> a == b array([ True, True, False]) """) add_newdoc('numpy.core.umath', 'exp', """ Calculate the exponential of all elements in the input array. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise exponential of `x`. $OUT_SCALAR_1 See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array. Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \\ln y = \\log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive. For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^{ib}`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^{ib}`, is :math:`\\cos b + i \\sin b`, a function with magnitude 1 and a periodic phase. References ---------- .. [1] Wikipedia, "Exponential function", https://en.wikipedia.org/wiki/Exponential_function .. [2] M. Abramovitz and I. A. Stegun, "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane: >>> import matplotlib.pyplot as plt >>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x[:, np.newaxis] # a + ib over complex plane >>> out = np.exp(xx) >>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='gray') >>> plt.title('Magnitude of exp(x)') >>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=[-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi], cmap='hsv') >>> plt.title('Phase (angle) of exp(x)') >>> plt.show() """) add_newdoc('numpy.core.umath', 'exp2', """ Calculate `2**p` for all `p` in the input array. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- out : ndarray or scalar Element-wise 2 to the power `x`. $OUT_SCALAR_1 See Also -------- power Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> np.exp2([2, 3]) array([ 4., 8.]) """) add_newdoc('numpy.core.umath', 'expm1', """ Calculate ``exp(x) - 1`` for all elements in the array. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- out : ndarray or scalar Element-wise exponential minus one: ``out = exp(x) - 1``. $OUT_SCALAR_1 See Also -------- log1p : ``log(1 + x)``, the inverse of expm1. Notes ----- This function provides greater precision than ``exp(x) - 1`` for small values of ``x``. Examples -------- The true value of ``exp(1e-10) - 1`` is ``1.00000000005e-10`` to about 32 significant digits. This example shows the superiority of expm1 in this case. >>> np.expm1(1e-10) 1.00000000005e-10 >>> np.exp(1e-10) - 1 1.000000082740371e-10 """) add_newdoc('numpy.core.umath', 'fabs', """ Compute the absolute values element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : array_like The array of numbers for which the absolute values are required. If `x` is a scalar, the result `y` will also be a scalar. $PARAMS Returns ------- y : ndarray or scalar The absolute values of `x`, the returned values are always floats. $OUT_SCALAR_1 See Also -------- absolute : Absolute values including `complex` types. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs([-1.2, 1.2]) array([ 1.2, 1.2]) """) add_newdoc('numpy.core.umath', 'floor', """ Return the floor of the input, element-wise. The floor of the scalar `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\\lfloor x \\rfloor`. Parameters ---------- x : array_like Input data. $PARAMS Returns ------- y : ndarray or scalar The floor of each element in `x`. $OUT_SCALAR_1 See Also -------- ceil, trunc, rint, fix Notes ----- Some spreadsheet programs calculate the "floor-towards-zero", where ``floor(-2.5) == -2``. NumPy instead uses the definition of `floor` where `floor(-2.5) == -3`. The "floor-towards-zero" function is called ``fix`` in NumPy. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) """) add_newdoc('numpy.core.umath', 'floor_divide', """ Return the largest integer smaller or equal to the division of the inputs. It is equivalent to the Python ``//`` operator and pairs with the Python ``%`` (`remainder`), function so that ``a = a % b + b * (a // b)`` up to roundoff. Parameters ---------- x1 : array_like Numerator. x2 : array_like Denominator. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray y = floor(`x1`/`x2`) $OUT_SCALAR_2 See Also -------- remainder : Remainder complementary to floor_divide. divmod : Simultaneous floor division and remainder. divide : Standard division. floor : Round a number to the nearest integer toward minus infinity. ceil : Round a number to the nearest integer toward infinity. Examples -------- >>> np.floor_divide(7,3) 2 >>> np.floor_divide([1., 2., 3., 4.], 2.5) array([ 0., 0., 1., 1.]) The ``//`` operator can be used as a shorthand for ``np.floor_divide`` on ndarrays. >>> x1 = np.array([1., 2., 3., 4.]) >>> x1 // 2.5 array([0., 0., 1., 1.]) """) add_newdoc('numpy.core.umath', 'fmod', """ Return the element-wise remainder of division. This is the NumPy implementation of the C library function fmod, the remainder has the same sign as the dividend `x1`. It is equivalent to the Matlab(TM) ``rem`` function and should not be confused with the Python modulus operator ``x1 % x2``. Parameters ---------- x1 : array_like Dividend. x2 : array_like Divisor. $BROADCASTABLE_2 $PARAMS Returns ------- y : array_like The remainder of the division of `x1` by `x2`. $OUT_SCALAR_2 See Also -------- remainder : Equivalent to the Python ``%`` operator. divide Notes ----- The result of the modulo operation for negative dividend and divisors is bound by conventions. For `fmod`, the sign of result is the sign of the dividend, while for `remainder` the sign of the result is the sign of the divisor. The `fmod` function is equivalent to the Matlab(TM) ``rem`` function. Examples -------- >>> np.fmod([-3, -2, -1, 1, 2, 3], 2) array([-1, 0, -1, 1, 0, 1]) >>> np.remainder([-3, -2, -1, 1, 2, 3], 2) array([1, 0, 1, 1, 0, 1]) >>> np.fmod([5, 3], [2, 2.]) array([ 1., 1.]) >>> a = np.arange(-3, 3).reshape(3, 2) >>> a array([[-3, -2], [-1, 0], [ 1, 2]]) >>> np.fmod(a, [2,2]) array([[-1, 0], [-1, 0], [ 1, 0]]) """) add_newdoc('numpy.core.umath', 'greater', """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- greater_equal, less, less_equal, equal, not_equal Examples -------- >>> np.greater([4,2],[2,2]) array([ True, False]) The ``>`` operator can be used as a shorthand for ``np.greater`` on ndarrays. >>> a = np.array([4, 2]) >>> b = np.array([2, 2]) >>> a > b array([ True, False]) """) add_newdoc('numpy.core.umath', 'greater_equal', """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : bool or ndarray of bool Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- greater, less, less_equal, equal, not_equal Examples -------- >>> np.greater_equal([4, 2, 1], [2, 2, 2]) array([ True, True, False]) The ``>=`` operator can be used as a shorthand for ``np.greater_equal`` on ndarrays. >>> a = np.array([4, 2, 1]) >>> b = np.array([2, 2, 2]) >>> a >= b array([ True, True, False]) """) add_newdoc('numpy.core.umath', 'hypot', """ Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. (See Examples) Parameters ---------- x1, x2 : array_like Leg of the triangle(s). $BROADCASTABLE_2 $PARAMS Returns ------- z : ndarray The hypotenuse of the triangle(s). $OUT_SCALAR_2 Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """) add_newdoc('numpy.core.umath', 'invert', """ Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. For signed integer inputs, the two's complement is returned. In a two's-complement system negative numbers are represented by the two's complement of the absolute value. This is the most common method of representing signed integers on computers [1]_. A N-bit two's-complement system can represent every integer in the range :math:`-2^{N-1}` to :math:`+2^{N-1}-1`. Parameters ---------- x : array_like Only integer and boolean types are handled. $PARAMS Returns ------- out : ndarray or scalar Result. $OUT_SCALAR_1 See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True References ---------- .. [1] Wikipedia, "Two's complement", https://en.wikipedia.org/wiki/Two's_complement Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010' The result depends on the bit-width: >>> x = np.invert(np.array(13, dtype=np.uint16)) >>> x 65522 >>> np.binary_repr(x, width=16) '1111111111110010' When using signed integer types the result is the two's complement of the result for the unsigned type: >>> np.invert(np.array([13], dtype=np.int8)) array([-14], dtype=int8) >>> np.binary_repr(-14, width=8) '11110010' Booleans are accepted as well: >>> np.invert(np.array([True, False])) array([False, True]) The ``~`` operator can be used as a shorthand for ``np.invert`` on ndarrays. >>> x1 = np.array([True, False]) >>> ~x1 array([False, True]) """) add_newdoc('numpy.core.umath', 'isfinite', """ Test element-wise for finiteness (not infinity or not Not a Number). The result is returned as a boolean array. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- y : ndarray, bool True where ``x`` is not positive infinity, negative infinity, or NaN; false otherwise. $OUT_SCALAR_1 See Also -------- isinf, isneginf, isposinf, isnan Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when `x` is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(np.NINF) False >>> np.isfinite([np.log(-1.),1.,np.log(0)]) array([False, True, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isfinite(x, y) array([0, 1, 0]) >>> y array([0, 1, 0]) """) add_newdoc('numpy.core.umath', 'isinf', """ Test element-wise for positive or negative infinity. Returns a boolean array of the same shape as `x`, True where ``x == +/-inf``, otherwise False. Parameters ---------- x : array_like Input values $PARAMS Returns ------- y : bool (scalar) or boolean ndarray True where ``x`` is positive or negative infinity, false otherwise. $OUT_SCALAR_1 See Also -------- isneginf, isposinf, isnan, isfinite Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1]) """) add_newdoc('numpy.core.umath', 'isnan', """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y : ndarray or bool True where ``x`` is NaN, false otherwise. $OUT_SCALAR_1 See Also -------- isinf, isneginf, isposinf, isfinite, isnat Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan([np.log(-1.),1.,np.log(0)]) array([ True, False, False]) """) add_newdoc('numpy.core.umath', 'isnat', """ Test element-wise for NaT (not a time) and return result as a boolean array. .. versionadded:: 1.13.0 Parameters ---------- x : array_like Input array with datetime or timedelta data type. $PARAMS Returns ------- y : ndarray or bool True where ``x`` is NaT, false otherwise. $OUT_SCALAR_1 See Also -------- isnan, isinf, isneginf, isposinf, isfinite Examples -------- >>> np.isnat(np.datetime64("NaT")) True >>> np.isnat(np.datetime64("2016-01-01")) False >>> np.isnat(np.array(["NaT", "2016-01-01"], dtype="datetime64[ns]")) array([ True, False]) """) add_newdoc('numpy.core.umath', 'left_shift', """ Shift the bits of an integer to the left. Bits are shifted to the left by appending `x2` 0s at the right of `x1`. Since the internal representation of numbers is in binary format, this operation is equivalent to multiplying `x1` by ``2**x2``. Parameters ---------- x1 : array_like of integer type Input values. x2 : array_like of integer type Number of zeros to append to `x1`. Has to be non-negative. $BROADCASTABLE_2 $PARAMS Returns ------- out : array of integer type Return `x1` with bits shifted `x2` times to the left. $OUT_SCALAR_2 See Also -------- right_shift : Shift the bits of an integer to the right. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(5) '101' >>> np.left_shift(5, 2) 20 >>> np.binary_repr(20) '10100' >>> np.left_shift(5, [1,2,3]) array([10, 20, 40]) Note that the dtype of the second argument may change the dtype of the result and can lead to unexpected results in some cases (see :ref:`Casting Rules <ufuncs.casting>`): >>> a = np.left_shift(np.uint8(255), 1) # Expect 254 >>> print(a, type(a)) # Unexpected result due to upcasting 510 <class 'numpy.int64'> >>> b = np.left_shift(np.uint8(255), np.uint8(1)) >>> print(b, type(b)) 254 <class 'numpy.uint8'> The ``<<`` operator can be used as a shorthand for ``np.left_shift`` on ndarrays. >>> x1 = 5 >>> x2 = np.array([1, 2, 3]) >>> x1 << x2 array([10, 20, 40]) """) add_newdoc('numpy.core.umath', 'less', """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- greater, less_equal, greater_equal, equal, not_equal Examples -------- >>> np.less([1, 2], [2, 2]) array([ True, False]) The ``<`` operator can be used as a shorthand for ``np.less`` on ndarrays. >>> a = np.array([1, 2]) >>> b = np.array([2, 2]) >>> a < b array([ True, False]) """) add_newdoc('numpy.core.umath', 'less_equal', """ Return the truth value of (x1 <= x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- greater, less, greater_equal, equal, not_equal Examples -------- >>> np.less_equal([4, 2, 1], [2, 2, 2]) array([False, True, True]) The ``<=`` operator can be used as a shorthand for ``np.less_equal`` on ndarrays. >>> a = np.array([4, 2, 1]) >>> b = np.array([2, 2, 2]) >>> a <= b array([False, True, True]) """) add_newdoc('numpy.core.umath', 'log', """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : array_like Input value. $PARAMS Returns ------- y : ndarray The natural logarithm of `x`, element-wise. $OUT_SCALAR_1 See Also -------- log10, log2, log1p, emath.log Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". https://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf]) """) add_newdoc('numpy.core.umath', 'log10', """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- y : ndarray The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. $OUT_SCALAR_1 See Also -------- emath.log10 Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `10**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log10` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log10` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log10` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". https://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log10([1e-15, -3.]) array([-15., nan]) """) add_newdoc('numpy.core.umath', 'log2', """ Base-2 logarithm of `x`. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- y : ndarray Base-2 logarithm of `x`. $OUT_SCALAR_1 See Also -------- log, log10, log1p, emath.log2 Notes ----- .. versionadded:: 1.3.0 Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `2**z = x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log2` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log2` is a complex analytical function that has a branch cut `[-inf, 0]` and is continuous from above on it. `log2` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.]) >>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j]) """) add_newdoc('numpy.core.umath', 'logaddexp', """ Logarithm of the sum of exponentiations of the inputs. Calculates ``log(exp(x1) + exp(x2))``. This function is useful in statistics where the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the logarithm of the calculated probability is stored. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. $BROADCASTABLE_2 $PARAMS Returns ------- result : ndarray Logarithm of ``exp(x1) + exp(x2)``. $OUT_SCALAR_2 See Also -------- logaddexp2: Logarithm of the sum of exponentiations of inputs in base 2. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log(1e-50) >>> prob2 = np.log(2.5e-50) >>> prob12 = np.logaddexp(prob1, prob2) >>> prob12 -113.87649168120691 >>> np.exp(prob12) 3.5000000000000057e-50 """) add_newdoc('numpy.core.umath', 'logaddexp2', """ Logarithm of the sum of exponentiations of the inputs in base-2. Calculates ``log2(2**x1 + 2**x2)``. This function is useful in machine learning when the calculated probabilities of events may be so small as to exceed the range of normal floating point numbers. In such cases the base-2 logarithm of the calculated probability can be used instead. This function allows adding probabilities stored in such a fashion. Parameters ---------- x1, x2 : array_like Input values. $BROADCASTABLE_2 $PARAMS Returns ------- result : ndarray Base-2 logarithm of ``2**x1 + 2**x2``. $OUT_SCALAR_2 See Also -------- logaddexp: Logarithm of the sum of exponentiations of the inputs. Notes ----- .. versionadded:: 1.3.0 Examples -------- >>> prob1 = np.log2(1e-50) >>> prob2 = np.log2(2.5e-50) >>> prob12 = np.logaddexp2(prob1, prob2) >>> prob1, prob2, prob12 (-166.09640474436813, -164.77447664948076, -164.28904982231052) >>> 2**prob12 3.4999999999999914e-50 """) add_newdoc('numpy.core.umath', 'log1p', """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- y : ndarray Natural logarithm of `1 + x`, element-wise. $OUT_SCALAR_1 See Also -------- expm1 : ``exp(x) - 1``, the inverse of `log1p`. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, `log1p` is a complex analytical function that has a branch cut `[-inf, -1]` and is continuous from above on it. `log1p` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard. References ---------- .. [1] M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions", 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Logarithm". https://en.wikipedia.org/wiki/Logarithm Examples -------- >>> np.log1p(1e-99) 1e-99 >>> np.log(1 + 1e-99) 0.0 """) add_newdoc('numpy.core.umath', 'logical_and', """ Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or bool Boolean result of the logical AND operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. $OUT_SCALAR_2 See Also -------- logical_or, logical_not, logical_xor bitwise_and Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and([True, False], [False, False]) array([False, False]) >>> x = np.arange(5) >>> np.logical_and(x>1, x<4) array([False, False, True, True, False]) The ``&`` operator can be used as a shorthand for ``np.logical_and`` on boolean ndarrays. >>> a = np.array([True, False]) >>> b = np.array([False, False]) >>> a & b array([False, False]) """) add_newdoc('numpy.core.umath', 'logical_not', """ Compute the truth value of NOT x element-wise. Parameters ---------- x : array_like Logical NOT is applied to the elements of `x`. $PARAMS Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. $OUT_SCALAR_1 See Also -------- logical_and, logical_or, logical_xor Examples -------- >>> np.logical_not(3) False >>> np.logical_not([True, False, 0, 1]) array([False, True, True, False]) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True]) """) add_newdoc('numpy.core.umath', 'logical_or', """ Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or bool Boolean result of the logical OR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. $OUT_SCALAR_2 See Also -------- logical_and, logical_not, logical_xor bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or([True, False], [False, False]) array([ True, False]) >>> x = np.arange(5) >>> np.logical_or(x < 1, x > 3) array([ True, False, False, False, True]) The ``|`` operator can be used as a shorthand for ``np.logical_or`` on boolean ndarrays. >>> a = np.array([True, False]) >>> b = np.array([False, False]) >>> a | b array([ True, False]) """) add_newdoc('numpy.core.umath', 'logical_xor', """ Compute the truth value of x1 XOR x2, element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. $BROADCASTABLE_2 $PARAMS Returns ------- y : bool or ndarray of bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. $OUT_SCALAR_2 See Also -------- logical_and, logical_or, logical_not, bitwise_xor Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor([True, True, False, False], [True, False, True, False]) array([False, True, True, False]) >>> x = np.arange(5) >>> np.logical_xor(x < 1, x > 3) array([ True, False, False, False, True]) Simple example showing support of broadcasting >>> np.logical_xor(0, np.eye(2)) array([[ True, False], [False, True]]) """) add_newdoc('numpy.core.umath', 'maximum', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. $OUT_SCALAR_2 See Also -------- minimum : Element-wise minimum of two arrays, propagates NaNs. fmax : Element-wise maximum of two arrays, ignores NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. fmin, amin, nanmin Notes ----- The maximum is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are nans, but it is faster and does proper broadcasting. Examples -------- >>> np.maximum([2, 3, 4], [1, 5, 2]) array([2, 5, 4]) >>> np.maximum(np.eye(2), [0.5, 2]) # broadcasting array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.maximum([np.nan, 0, np.nan], [0, np.nan, np.nan]) array([nan, nan, nan]) >>> np.maximum(np.Inf, 1) inf """) add_newdoc('numpy.core.umath', 'minimum', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then that element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are propagated. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. $OUT_SCALAR_2 See Also -------- maximum : Element-wise maximum of two arrays, propagates NaNs. fmin : Element-wise minimum of two arrays, ignores NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. fmax, amax, nanmax Notes ----- The minimum is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.minimum([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.minimum(np.eye(2), [0.5, 2]) # broadcasting array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.minimum([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([nan, nan, nan]) >>> np.minimum(-np.Inf, 1) -inf """) add_newdoc('numpy.core.umath', 'fmax', """ Element-wise maximum of array elements. Compare two arrays and returns a new array containing the element-wise maxima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The maximum of `x1` and `x2`, element-wise. $OUT_SCALAR_2 See Also -------- fmin : Element-wise minimum of two arrays, ignores NaNs. maximum : Element-wise maximum of two arrays, propagates NaNs. amax : The maximum value of an array along a given axis, propagates NaNs. nanmax : The maximum value of an array along a given axis, ignores NaNs. minimum, amin, nanmin Notes ----- .. versionadded:: 1.3.0 The fmax is equivalent to ``np.where(x1 >= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmax([2, 3, 4], [1, 5, 2]) array([ 2., 5., 4.]) >>> np.fmax(np.eye(2), [0.5, 2]) array([[ 1. , 2. ], [ 0.5, 2. ]]) >>> np.fmax([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., nan]) """) add_newdoc('numpy.core.umath', 'fmin', """ Element-wise minimum of array elements. Compare two arrays and returns a new array containing the element-wise minima. If one of the elements being compared is a NaN, then the non-nan element is returned. If both elements are NaNs then the first is returned. The latter distinction is important for complex NaNs, which are defined as at least one of the real or imaginary parts being a NaN. The net effect is that NaNs are ignored when possible. Parameters ---------- x1, x2 : array_like The arrays holding the elements to be compared. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The minimum of `x1` and `x2`, element-wise. $OUT_SCALAR_2 See Also -------- fmax : Element-wise maximum of two arrays, ignores NaNs. minimum : Element-wise minimum of two arrays, propagates NaNs. amin : The minimum value of an array along a given axis, propagates NaNs. nanmin : The minimum value of an array along a given axis, ignores NaNs. maximum, amax, nanmax Notes ----- .. versionadded:: 1.3.0 The fmin is equivalent to ``np.where(x1 <= x2, x1, x2)`` when neither x1 nor x2 are NaNs, but it is faster and does proper broadcasting. Examples -------- >>> np.fmin([2, 3, 4], [1, 5, 2]) array([1, 3, 2]) >>> np.fmin(np.eye(2), [0.5, 2]) array([[ 0.5, 0. ], [ 0. , 1. ]]) >>> np.fmin([np.nan, 0, np.nan],[0, np.nan, np.nan]) array([ 0., 0., nan]) """) add_newdoc('numpy.core.umath', 'clip', """ Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Equivalent to but faster than ``np.minimum(np.maximum(a, a_min), a_max)``. Parameters ---------- a : array_like Array containing elements to clip. a_min : array_like Minimum value. a_max : array_like Maximum value. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. $PARAMS See Also -------- numpy.clip : Wrapper that makes the ``a_min`` and ``a_max`` arguments optional, dispatching to one of `~numpy.core.umath.clip`, `~numpy.core.umath.minimum`, and `~numpy.core.umath.maximum`. Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. """) add_newdoc('numpy.core.umath', 'matmul', """ Matrix product of two arrays. Parameters ---------- x1, x2 : array_like Input arrays, scalars not allowed. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that matches the signature `(n,k),(k,m)->(n,m)`. If not provided or None, a freshly-allocated array is returned. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. .. versionadded:: 1.16 Now handles ufunc kwargs Returns ------- y : ndarray The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors. Raises ------ ValueError If the last dimension of `x1` is not the same size as the second-to-last dimension of `x2`. If a scalar value is passed in. See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. dot : alternative matrix product with different broadcasting rules. Notes ----- The behavior depends on the arguments in the following way. - If both arguments are 2-D they are multiplied like conventional matrices. - If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed. ``matmul`` differs from ``dot`` in two important ways: - Multiplication by scalars is not allowed, use ``*`` instead. - Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature ``(n,k),(k,m)->(n,m)``: >>> a = np.ones([9, 5, 7, 4]) >>> c = np.ones([9, 5, 4, 3]) >>> np.dot(a, c).shape (9, 5, 7, 9, 5, 3) >>> np.matmul(a, c).shape (9, 5, 7, 3) >>> # n is 7, k is 4, m is 3 The matmul function implements the semantics of the ``@`` operator introduced in Python 3.5 following :pep:`465`. Examples -------- For 2-D arrays it is the matrix product: >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([[4, 1], ... [2, 2]]) >>> np.matmul(a, b) array([[4, 1], [2, 2]]) For 2-D mixed with 1-D, the result is the usual. >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([1, 2]) >>> np.matmul(a, b) array([1, 2]) >>> np.matmul(b, a) array([1, 2]) Broadcasting is conventional for stacks of arrays >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) >>> np.matmul(a,b).shape (2, 2, 2) >>> np.matmul(a, b)[0, 1, 1] 98 >>> sum(a[0, 1, :] * b[0 , :, 1]) 98 Vector, vector returns the scalar inner product, but neither argument is complex-conjugated: >>> np.matmul([2j, 3j], [2j, 3j]) (-13+0j) Scalar multiplication raises an error. >>> np.matmul([1,2], 3) Traceback (most recent call last): ... ValueError: matmul: Input operand 1 does not have enough dimensions ... The ``@`` operator can be used as a shorthand for ``np.matmul`` on ndarrays. >>> x1 = np.array([2j, 3j]) >>> x2 = np.array([2j, 3j]) >>> x1 @ x2 (-13+0j) .. versionadded:: 1.10.0 """) add_newdoc('numpy.core.umath', 'modf', """ Return the fractional and integral parts of an array, element-wise. The fractional and integral parts are negative if the given number is negative. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y1 : ndarray Fractional part of `x`. $OUT_SCALAR_1 y2 : ndarray Integral part of `x`. $OUT_SCALAR_1 Notes ----- For integer input the return values are floats. See Also -------- divmod : ``divmod(x, 1)`` is equivalent to ``modf`` with the return values switched, except it always has a positive remainder. Examples -------- >>> np.modf([0, 3.5]) (array([ 0. , 0.5]), array([ 0., 3.])) >>> np.modf(-0.5) (-0.5, -0) """) add_newdoc('numpy.core.umath', 'multiply', """ Multiply arguments element-wise. Parameters ---------- x1, x2 : array_like Input arrays to be multiplied. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray The product of `x1` and `x2`, element-wise. $OUT_SCALAR_2 Notes ----- Equivalent to `x1` * `x2` in terms of array broadcasting. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) The ``*`` operator can be used as a shorthand for ``np.multiply`` on ndarrays. >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 * x2 array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """) add_newdoc('numpy.core.umath', 'negative', """ Numerical negative, element-wise. Parameters ---------- x : array_like or scalar Input array. $PARAMS Returns ------- y : ndarray or scalar Returned array or scalar: `y = -x`. $OUT_SCALAR_1 Examples -------- >>> np.negative([1.,-1.]) array([-1., 1.]) The unary ``-`` operator can be used as a shorthand for ``np.negative`` on ndarrays. >>> x1 = np.array(([1., -1.])) >>> -x1 array([-1., 1.]) """) add_newdoc('numpy.core.umath', 'positive', """ Numerical positive, element-wise. .. versionadded:: 1.13.0 Parameters ---------- x : array_like or scalar Input array. Returns ------- y : ndarray or scalar Returned array or scalar: `y = +x`. $OUT_SCALAR_1 Notes ----- Equivalent to `x.copy()`, but only defined for types that support arithmetic. Examples -------- >>> x1 = np.array(([1., -1.])) >>> np.positive(x1) array([ 1., -1.]) The unary ``+`` operator can be used as a shorthand for ``np.positive`` on ndarrays. >>> x1 = np.array(([1., -1.])) >>> +x1 array([ 1., -1.]) """) add_newdoc('numpy.core.umath', 'not_equal', """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : array_like Input arrays. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar Output array, element-wise comparison of `x1` and `x2`. Typically of type bool, unless ``dtype=object`` is passed. $OUT_SCALAR_2 See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal([1.,2.], [1., 3.]) array([False, True]) >>> np.not_equal([1, 2], [[1, 3],[1, 4]]) array([[False, True], [False, True]]) The ``!=`` operator can be used as a shorthand for ``np.not_equal`` on ndarrays. >>> a = np.array([1., 2.]) >>> b = np.array([1., 3.]) >>> a != b array([False, True]) """) add_newdoc('numpy.core.umath', '_ones_like', """ This function used to be the numpy.ones_like, but now a specific function for that has been written for consistency with the other *_like functions. It is only used internally in a limited fashion now. See Also -------- ones_like """) add_newdoc('numpy.core.umath', 'power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. Note that an integer type raised to a negative integer power will raise a ValueError. Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. $OUT_SCALAR_2 See Also -------- float_power : power function that promotes integers to float Examples -------- Cube each element in an array. >>> x1 = np.arange(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.power(x1, x2) array([[ 0, 1, 8, 27, 16, 5], [ 0, 1, 8, 27, 16, 5]]) The ``**`` operator can be used as a shorthand for ``np.power`` on ndarrays. >>> x2 = np.array([1, 2, 3, 3, 2, 1]) >>> x1 = np.arange(6) >>> x1 ** x2 array([ 0, 1, 8, 27, 16, 5]) """) add_newdoc('numpy.core.umath', 'float_power', """ First array elements raised to powers from second array, element-wise. Raise each base in `x1` to the positionally-corresponding power in `x2`. `x1` and `x2` must be broadcastable to the same shape. This differs from the power function in that integers, float16, and float32 are promoted to floats with a minimum precision of float64 so that the result is always inexact. The intent is that the function will return a usable result for negative powers and seldom overflow for positive powers. .. versionadded:: 1.12.0 Parameters ---------- x1 : array_like The bases. x2 : array_like The exponents. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray The bases in `x1` raised to the exponents in `x2`. $OUT_SCALAR_2 See Also -------- power : power function that preserves type Examples -------- Cube each element in a list. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.float_power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.float_power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> np.float_power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]]) """) add_newdoc('numpy.core.umath', 'radians', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Input array in degrees. $PARAMS Returns ------- y : ndarray The corresponding radian values. $OUT_SCALAR_1 See Also -------- deg2rad : equivalent function Examples -------- Convert a degree array to radians >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([ 0. , 0.52359878, 1.04719755, 1.57079633, 2.0943951 , 2.61799388, 3.14159265, 3.66519143, 4.1887902 , 4.71238898, 5.23598776, 5.75958653]) >>> out = np.zeros((deg.shape)) >>> ret = np.radians(deg, out) >>> ret is out True """) add_newdoc('numpy.core.umath', 'deg2rad', """ Convert angles from degrees to radians. Parameters ---------- x : array_like Angles in degrees. $PARAMS Returns ------- y : ndarray The corresponding angle in radians. $OUT_SCALAR_1 See Also -------- rad2deg : Convert angles from radians to degrees. unwrap : Remove large jumps in angle by wrapping. Notes ----- .. versionadded:: 1.3.0 ``deg2rad(x)`` is ``x * pi / 180``. Examples -------- >>> np.deg2rad(180) 3.1415926535897931 """) add_newdoc('numpy.core.umath', 'reciprocal', """ Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y : ndarray Return array. $OUT_SCALAR_1 Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. Examples -------- >>> np.reciprocal(2.) 0.5 >>> np.reciprocal([1, 2., 3.33]) array([ 1. , 0.5 , 0.3003003]) """) add_newdoc('numpy.core.umath', 'remainder', """ Return element-wise remainder of division. Computes the remainder complementary to the `floor_divide` function. It is equivalent to the Python modulus operator``x1 % x2`` and has the same sign as the divisor `x2`. The MATLAB function equivalent to ``np.remainder`` is ``mod``. .. warning:: This should not be confused with: * Python 3.7's `math.remainder` and C's ``remainder``, which computes the IEEE remainder, which are the complement to ``round(x1 / x2)``. * The MATLAB ``rem`` function and or the C ``%`` operator which is the complement to ``int(x1 / x2)``. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray The element-wise remainder of the quotient ``floor_divide(x1, x2)``. $OUT_SCALAR_2 See Also -------- floor_divide : Equivalent of Python ``//`` operator. divmod : Simultaneous floor division and remainder. fmod : Equivalent of the MATLAB ``rem`` function. divide, floor Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. ``mod`` is an alias of ``remainder``. Examples -------- >>> np.remainder([4, 7], [2, 3]) array([0, 1]) >>> np.remainder(np.arange(7), 5) array([0, 1, 2, 3, 4, 0, 1]) The ``%`` operator can be used as a shorthand for ``np.remainder`` on ndarrays. >>> x1 = np.arange(7) >>> x1 % 5 array([0, 1, 2, 3, 4, 0, 1]) """) add_newdoc('numpy.core.umath', 'divmod', """ Return element-wise quotient and remainder simultaneously. .. versionadded:: 1.13.0 ``np.divmod(x, y)`` is equivalent to ``(x // y, x % y)``, but faster because it avoids redundant work. It is used to implement the Python built-in function ``divmod`` on NumPy arrays. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. $BROADCASTABLE_2 $PARAMS Returns ------- out1 : ndarray Element-wise quotient resulting from floor division. $OUT_SCALAR_2 out2 : ndarray Element-wise remainder from floor division. $OUT_SCALAR_2 See Also -------- floor_divide : Equivalent to Python's ``//`` operator. remainder : Equivalent to Python's ``%`` operator. modf : Equivalent to ``divmod(x, 1)`` for positive ``x`` with the return values switched. Examples -------- >>> np.divmod(np.arange(5), 3) (array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1])) The `divmod` function can be used as a shorthand for ``np.divmod`` on ndarrays. >>> x = np.arange(5) >>> divmod(x, 3) (array([0, 0, 0, 1, 1]), array([0, 1, 2, 0, 1])) """) add_newdoc('numpy.core.umath', 'right_shift', """ Shift the bits of an integer to the right. Bits are shifted to the right `x2`. Because the internal representation of numbers is in binary format, this operation is equivalent to dividing `x1` by ``2**x2``. Parameters ---------- x1 : array_like, int Input values. x2 : array_like, int Number of bits to remove at the right of `x1`. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray, int Return `x1` with bits shifted `x2` times to the right. $OUT_SCALAR_2 See Also -------- left_shift : Shift the bits of an integer to the left. binary_repr : Return the binary representation of the input number as a string. Examples -------- >>> np.binary_repr(10) '1010' >>> np.right_shift(10, 1) 5 >>> np.binary_repr(5) '101' >>> np.right_shift(10, [1,2,3]) array([5, 2, 1]) The ``>>`` operator can be used as a shorthand for ``np.right_shift`` on ndarrays. >>> x1 = 10 >>> x2 = np.array([1,2,3]) >>> x1 >> x2 array([5, 2, 1]) """) add_newdoc('numpy.core.umath', 'rint', """ Round elements of the array to the nearest integer. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- out : ndarray or scalar Output array is same shape and type as `x`. $OUT_SCALAR_1 See Also -------- fix, ceil, floor, trunc Notes ----- For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 2., 2., 2.]) """) add_newdoc('numpy.core.umath', 'sign', """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. nan is returned for nan inputs. For complex inputs, the `sign` function returns ``sign(x.real) + 0j if x.real != 0 else sign(x.imag) + 0j``. complex(nan, 0) is returned for complex nan inputs. Parameters ---------- x : array_like Input values. $PARAMS Returns ------- y : ndarray The sign of `x`. $OUT_SCALAR_1 Notes ----- There is more than one definition of sign in common use for complex numbers. The definition used here is equivalent to :math:`x/\\sqrt{x*x}` which is different from a common alternative, :math:`x/|x|`. Examples -------- >>> np.sign([-5., 4.5]) array([-1., 1.]) >>> np.sign(0) 0 >>> np.sign(5-2j) (1+0j) """) add_newdoc('numpy.core.umath', 'signbit', """ Returns element-wise True where signbit is set (less than zero). Parameters ---------- x : array_like The input value(s). $PARAMS Returns ------- result : ndarray of bool Output array, or reference to `out` if that was supplied. $OUT_SCALAR_1 Examples -------- >>> np.signbit(-1.2) True >>> np.signbit(np.array([1, -2.3, 2.1])) array([False, True, False]) """) add_newdoc('numpy.core.umath', 'copysign', """ Change the sign of x1 to that of x2, element-wise. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : array_like Values to change the sign of. x2 : array_like The sign of `x2` is copied to `x1`. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar The values of `x1` with the sign of `x2`. $OUT_SCALAR_2 Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> np.copysign([-1, 0, 1], -1.1) array([-1., -0., -1.]) >>> np.copysign([-1, 0, 1], np.arange(3)-1) array([-1., 0., 1.]) """) add_newdoc('numpy.core.umath', 'nextafter', """ Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar The next representable values of `x1` in the direction of `x2`. $OUT_SCALAR_2 Examples -------- >>> eps = np.finfo(np.float64).eps >>> np.nextafter(1, 2) == eps + 1 True >>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps] array([ True, True]) """) add_newdoc('numpy.core.umath', 'spacing', """ Return the distance between x and the nearest adjacent number. Parameters ---------- x : array_like Values to find the spacing of. $PARAMS Returns ------- out : ndarray or scalar The spacing of values of `x`. $OUT_SCALAR_1 Notes ----- It can be considered as a generalization of EPS: ``spacing(np.float64(1)) == np.finfo(np.float64).eps``, and there should not be any representable number between ``x + spacing(x)`` and x for any finite x. Spacing of +- inf and NaN is NaN. Examples -------- >>> np.spacing(1) == np.finfo(np.float64).eps True """) add_newdoc('numpy.core.umath', 'sin', """ Trigonometric sine, element-wise. Parameters ---------- x : array_like Angle, in radians (:math:`2 \\pi` rad equals 360 degrees). $PARAMS Returns ------- y : array_like The sine of each element of x. $OUT_SCALAR_1 See Also -------- arcsin, sinh, cos Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\\pi / 2` to +1 for :math:`\\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\\pi`. Sines of angles between :math:`\\pi` and :math:`2\\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text. Examples -------- Print sine of one angle: >>> np.sin(np.pi/2.) 1.0 Print sines of an array of angles given in degrees: >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array([ 0. , 0.5 , 0.70710678, 0.8660254 , 1. ]) Plot the sine function: >>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle [rad]') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show() """) add_newdoc('numpy.core.umath', 'sinh', """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y : ndarray The corresponding hyperbolic sine values. $OUT_SCALAR_1 Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic. >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='d') >>> out2 = np.sinh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2) """) add_newdoc('numpy.core.umath', 'sqrt', """ Return the non-negative square-root of an array, element-wise. Parameters ---------- x : array_like The values whose square-roots are required. $PARAMS Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. $OUT_SCALAR_1 See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals. Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real "interval" [`-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, np.inf]) array([ 2., nan, inf]) """) add_newdoc('numpy.core.umath', 'cbrt', """ Return the cube-root of an array, element-wise. .. versionadded:: 1.10.0 Parameters ---------- x : array_like The values whose cube-roots are required. $PARAMS Returns ------- y : ndarray An array of the same shape as `x`, containing the cube cube-root of each element in `x`. If `out` was provided, `y` is a reference to it. $OUT_SCALAR_1 Examples -------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """) add_newdoc('numpy.core.umath', 'square', """ Return the element-wise square of the input. Parameters ---------- x : array_like Input data. $PARAMS Returns ------- out : ndarray or scalar Element-wise `x*x`, of the same shape and dtype as `x`. $OUT_SCALAR_1 See Also -------- numpy.linalg.matrix_power sqrt power Examples -------- >>> np.square([-1j, 1]) array([-1.-0.j, 1.+0.j]) """) add_newdoc('numpy.core.umath', 'subtract', """ Subtract arguments, element-wise. Parameters ---------- x1, x2 : array_like The arrays to be subtracted from each other. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray The difference of `x1` and `x2`, element-wise. $OUT_SCALAR_2 Notes ----- Equivalent to ``x1 - x2`` in terms of array broadcasting. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[ 0., 0., 0.], [ 3., 3., 3.], [ 6., 6., 6.]]) The ``-`` operator can be used as a shorthand for ``np.subtract`` on ndarrays. >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> x1 - x2 array([[0., 0., 0.], [3., 3., 3.], [6., 6., 6.]]) """) add_newdoc('numpy.core.umath', 'tan', """ Compute tangent element-wise. Equivalent to ``np.sin(x)/np.cos(x)`` element-wise. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y : ndarray The corresponding tangent values. $OUT_SCALAR_1 Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972. Examples -------- >>> from math import pi >>> np.tan(np.array([-pi,pi/2,pi])) array([ 1.22460635e-16, 1.63317787e+16, -1.22460635e-16]) >>> >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array([0], dtype='d') >>> out2 = np.cos([0.1], out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2) """) add_newdoc('numpy.core.umath', 'tanh', """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``. Parameters ---------- x : array_like Input array. $PARAMS Returns ------- y : ndarray The corresponding hyperbolic tangent values. $OUT_SCALAR_1 Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) References ---------- .. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/ .. [2] Wikipedia, "Hyperbolic function", https://en.wikipedia.org/wiki/Hyperbolic_function Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array([ 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j]) >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array([0], dtype='d') >>> out2 = np.tanh([0.1], out1) >>> out2 is out1 True >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2) """) add_newdoc('numpy.core.umath', 'true_divide', """ Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. $BROADCASTABLE_2 $PARAMS Returns ------- out : ndarray or scalar $OUT_SCALAR_2 Notes ----- In Python, ``//`` is the floor division operator and ``/`` the true division operator. The ``true_divide(x1, x2)`` function is equivalent to true division in Python. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x/4 array([ 0. , 0.25, 0.5 , 0.75, 1. ]) >>> x//4 array([0, 0, 0, 0, 1]) The ``/`` operator can be used as a shorthand for ``np.true_divide`` on ndarrays. >>> x = np.arange(5) >>> x / 4 array([0. , 0.25, 0.5 , 0.75, 1. ]) """) add_newdoc('numpy.core.umath', 'frexp', """ Decompose the elements of x into mantissa and twos exponent. Returns (`mantissa`, `exponent`), where `x = mantissa * 2**exponent``. The mantissa lies in the open interval(-1, 1), while the twos exponent is a signed integer. Parameters ---------- x : array_like Array of numbers to be decomposed. out1 : ndarray, optional Output array for the mantissa. Must have the same shape as `x`. out2 : ndarray, optional Output array for the exponent. Must have the same shape as `x`. $PARAMS Returns ------- mantissa : ndarray Floating values between -1 and 1. $OUT_SCALAR_1 exponent : ndarray Integer exponents of 2. $OUT_SCALAR_1 See Also -------- ldexp : Compute ``y = x1 * 2**x2``, the inverse of `frexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Examples -------- >>> x = np.arange(9) >>> y1, y2 = np.frexp(x) >>> y1 array([ 0. , 0.5 , 0.5 , 0.75 , 0.5 , 0.625, 0.75 , 0.875, 0.5 ]) >>> y2 array([0, 1, 2, 2, 3, 3, 3, 3, 4]) >>> y1 * 2**y2 array([ 0., 1., 2., 3., 4., 5., 6., 7., 8.]) """) add_newdoc('numpy.core.umath', 'ldexp', """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : array_like Array of multipliers. x2 : array_like, int Array of twos exponents. $BROADCASTABLE_2 $PARAMS Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. $OUT_SCALAR_2 See Also -------- frexp : Return (y1, y2) from ``x = y1 * 2**y2``, inverse to `ldexp`. Notes ----- Complex dtypes are not supported, they will raise a TypeError. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.], dtype=float16) >>> x = np.arange(6) >>> np.ldexp(*np.frexp(x)) array([ 0., 1., 2., 3., 4., 5.]) """) add_newdoc('numpy.core.umath', 'gcd', """ Returns the greatest common divisor of ``|x1|`` and ``|x2|`` Parameters ---------- x1, x2 : array_like, int Arrays of values. $BROADCASTABLE_2 Returns ------- y : ndarray or scalar The greatest common divisor of the absolute value of the inputs $OUT_SCALAR_2 See Also -------- lcm : The lowest common multiple Examples -------- >>> np.gcd(12, 20) 4 >>> np.gcd.reduce([15, 25, 35]) 5 >>> np.gcd(np.arange(6), 20) array([20, 1, 2, 1, 4, 5]) """) add_newdoc('numpy.core.umath', 'lcm', """ Returns the lowest common multiple of ``|x1|`` and ``|x2|`` Parameters ---------- x1, x2 : array_like, int Arrays of values. $BROADCASTABLE_2 Returns ------- y : ndarray or scalar The lowest common multiple of the absolute value of the inputs $OUT_SCALAR_2 See Also -------- gcd : The greatest common divisor Examples -------- >>> np.lcm(12, 20) 60 >>> np.lcm.reduce([3, 12, 20]) 60 >>> np.lcm.reduce([40, 12, 20]) 120 >>> np.lcm(np.arange(6), 20) array([ 0, 20, 20, 60, 20, 20]) """)
bsd-3-clause
dongjoon-hyun/spark
python/pyspark/pandas/tests/test_internal.py
14
4900
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd from pyspark.pandas.internal import ( InternalFrame, SPARK_DEFAULT_INDEX_NAME, SPARK_INDEX_NAME_FORMAT, ) from pyspark.pandas.utils import spark_column_equals from pyspark.testing.pandasutils import PandasOnSparkTestCase from pyspark.testing.sqlutils import SQLTestUtils class InternalFrameTest(PandasOnSparkTestCase, SQLTestUtils): def test_from_pandas(self): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) internal = InternalFrame.from_pandas(pdf) sdf = internal.spark_frame self.assert_eq(internal.index_spark_column_names, [SPARK_DEFAULT_INDEX_NAME]) self.assert_eq(internal.index_names, [None]) self.assert_eq(internal.column_labels, [("a",), ("b",)]) self.assert_eq(internal.data_spark_column_names, ["a", "b"]) self.assertTrue(spark_column_equals(internal.spark_column_for(("a",)), sdf["a"])) self.assertTrue(spark_column_equals(internal.spark_column_for(("b",)), sdf["b"])) self.assert_eq(internal.to_pandas_frame, pdf) # non-string column name pdf1 = pd.DataFrame({0: [1, 2, 3], 1: [4, 5, 6]}) internal = InternalFrame.from_pandas(pdf1) sdf = internal.spark_frame self.assert_eq(internal.index_spark_column_names, [SPARK_DEFAULT_INDEX_NAME]) self.assert_eq(internal.index_names, [None]) self.assert_eq(internal.column_labels, [(0,), (1,)]) self.assert_eq(internal.data_spark_column_names, ["0", "1"]) self.assertTrue(spark_column_equals(internal.spark_column_for((0,)), sdf["0"])) self.assertTrue(spark_column_equals(internal.spark_column_for((1,)), sdf["1"])) self.assert_eq(internal.to_pandas_frame, pdf1) # categorical column pdf2 = pd.DataFrame({0: [1, 2, 3], 1: pd.Categorical([4, 5, 6])}) internal = InternalFrame.from_pandas(pdf2) sdf = internal.spark_frame self.assert_eq(internal.index_spark_column_names, [SPARK_DEFAULT_INDEX_NAME]) self.assert_eq(internal.index_names, [None]) self.assert_eq(internal.column_labels, [(0,), (1,)]) self.assert_eq(internal.data_spark_column_names, ["0", "1"]) self.assertTrue(spark_column_equals(internal.spark_column_for((0,)), sdf["0"])) self.assertTrue(spark_column_equals(internal.spark_column_for((1,)), sdf["1"])) self.assert_eq(internal.to_pandas_frame, pdf2) # multi-index pdf.set_index("a", append=True, inplace=True) internal = InternalFrame.from_pandas(pdf) sdf = internal.spark_frame self.assert_eq( internal.index_spark_column_names, [SPARK_INDEX_NAME_FORMAT(0), SPARK_INDEX_NAME_FORMAT(1)], ) self.assert_eq(internal.index_names, [None, ("a",)]) self.assert_eq(internal.column_labels, [("b",)]) self.assert_eq(internal.data_spark_column_names, ["b"]) self.assertTrue(spark_column_equals(internal.spark_column_for(("b",)), sdf["b"])) self.assert_eq(internal.to_pandas_frame, pdf) # multi-index columns pdf.columns = pd.MultiIndex.from_tuples([("x", "b")]) internal = InternalFrame.from_pandas(pdf) sdf = internal.spark_frame self.assert_eq( internal.index_spark_column_names, [SPARK_INDEX_NAME_FORMAT(0), SPARK_INDEX_NAME_FORMAT(1)], ) self.assert_eq(internal.index_names, [None, ("a",)]) self.assert_eq(internal.column_labels, [("x", "b")]) self.assert_eq(internal.data_spark_column_names, ["(x, b)"]) self.assertTrue(spark_column_equals(internal.spark_column_for(("x", "b")), sdf["(x, b)"])) self.assert_eq(internal.to_pandas_frame, pdf) if __name__ == "__main__": import unittest from pyspark.pandas.tests.test_internal import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
huongttlan/statsmodels
tools/code_maintenance.py
37
2307
""" Code maintenance script modified from PyMC """ #!/usr/bin/env python import sys import os # This is a function, not a test case, because it has to be run from inside # the source tree to work well. mod_strs = ['IPython', 'pylab', 'matplotlib', 'scipy','Pdb'] dep_files = {} for mod_str in mod_strs: dep_files[mod_str] = [] def remove_whitespace(fname): # Remove trailing whitespace fd = open(fname,mode='U') # open in universal newline mode lines = [] for line in fd.readlines(): lines.append( line.rstrip() ) fd.close() fd = open(fname,mode='w') fd.seek(0) for line in lines: fd.write(line+'\n') fd.close() # print 'Removed whitespace from %s'%fname def find_whitespace(fname): fd = open(fname, mode='U') for line in fd.readlines(): #print repr(line) if ' \n' in line: print fname break # print print_only = True # ==================== # = Strip whitespace = # ==================== for dirname, dirs, files in os.walk('.'): if dirname[1:].find('.')==-1: # print dirname for fname in files: if fname[-2:] in ['c', 'f'] or fname[-3:]=='.py' or fname[-4:] in ['.pyx', '.txt', '.tex', '.sty', '.cls'] or fname.find('.')==-1: # print fname if print_only: find_whitespace(dirname + '/' + fname) else: remove_whitespace(dirname + '/' + fname) """ # ========================== # = Check for dependencies = # ========================== for dirname, dirs, files in os.walk('pymc'): for fname in files: if fname[-3:]=='.py' or fname[-4:]=='.pyx': if dirname.find('sandbox')==-1 and fname != 'test_dependencies.py'\ and dirname.find('examples')==-1: for mod_str in mod_strs: if file(dirname+'/'+fname).read().find(mod_str)>=0: dep_files[mod_str].append(dirname+'/'+fname) print 'Instances of optional dependencies found are:' for mod_str in mod_strs: print '\t'+mod_str+':' for fname in dep_files[mod_str]: print '\t\t'+fname if len(dep_files['Pdb'])>0: raise ValueError, 'Looks like Pdb was not commented out in '+', '.join(dep_files[mod_str]) """
bsd-3-clause
jmschrei/scikit-learn
sklearn/linear_model/bayes.py
220
15248
""" Various bayesian regression """ from __future__ import print_function # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from .base import LinearModel from ..base import RegressorMixin from ..utils.extmath import fast_logdet, pinvh from ..utils import check_X_y ############################################################################### # BayesianRidge regression class BayesianRidge(LinearModel, RegressorMixin): """Bayesian ridge regression Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300. tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6 alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6 compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes ----- See examples/linear_model/plot_bayesian_ridge.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the model Parameters ---------- X : numpy array of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples] Target values Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) n_samples, n_features = X.shape ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 ### Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): ### Compute mu and sigma # sigma_ = lambda_ / alpha_ * np.eye(n_features) + np.dot(X.T, X) # coef_ = sigma_^-1 * XT * y if n_samples > n_features: coef_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, None]) coef_ = np.dot(coef_, XT_y) if self.compute_score: logdet_sigma_ = - np.sum( np.log(lambda_ + alpha_ * eigen_vals_)) else: coef_ = np.dot(X.T, np.dot( U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T)) coef_ = np.dot(coef_, y) if self.compute_score: logdet_sigma_ = lambda_ * np.ones(n_features) logdet_sigma_[:n_samples] += alpha_ * eigen_vals_ logdet_sigma_ = - np.sum(np.log(logdet_sigma_)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = (np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_))) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) ### Compute the objective function if self.compute_score: s = lambda_1 * log(lambda_) - lambda_2 * lambda_ s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse_ - (lambda_ * np.sum(coef_ ** 2)) - logdet_sigma_ - n_samples * log(2 * np.pi)) self.scores_.append(s) ### Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_ = coef_ self._set_intercept(X_mean, y_mean, X_std) return self ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(LinearModel, RegressorMixin): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, optional Maximum number of iterations. Default is 300 tol : float, optional Stop the algorithm if w has converged. Default is 1.e-3. alpha_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. alpha_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6. lambda_1 : float, optional Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. lambda_2 : float, optional Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6. compute_score : boolean, optional If True, compute the objective function at each step of the model. Default is False. threshold_lambda : float, optional threshold for removing (pruning) weights with high precision from the computation. Default is 1.e+4. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True. normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. copy_X : boolean, optional, default True. If True, X will be copied; else, it may be overwritten. verbose : boolean, optional, default False Verbose mode when fitting the model. Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array, shape = (n_features) estimated precisions of the weights. sigma_ : array, shape = (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ... # doctest: +NORMALIZE_WHITESPACE ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False, copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, normalize=False, threshold_lambda=10000.0, tol=0.001, verbose=False) >>> clf.predict([[1, 1]]) array([ 1.]) Notes -------- See examples/linear_model/plot_ard.py for an example. """ def __init__(self, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize=False, copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array, shape = [n_samples] Target values (integers) Returns ------- self : returns an instance of self. """ X, y = check_X_y(X, y, dtype=np.float64, y_numeric=True) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_mean, y_mean, X_std = self._center_data( X, y, self.fit_intercept, self.normalize, self.copy_X) ### Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose ### Initialization of the values of the parameters alpha_ = 1. / np.var(y) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None ### Iterative procedure of ARDRegression for iter_ in range(self.n_iter): ### Compute mu and sigma (using Woodbury matrix identity) sigma_ = pinvh(np.eye(n_samples) / alpha_ + np.dot(X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1]), X[:, keep_lambda].T)) sigma_ = np.dot(sigma_, X[:, keep_lambda] * np.reshape(1. / lambda_[keep_lambda], [1, -1])) sigma_ = - np.dot(np.reshape(1. / lambda_[keep_lambda], [-1, 1]) * X[:, keep_lambda].T, sigma_) sigma_.flat[::(sigma_.shape[1] + 1)] += 1. / lambda_[keep_lambda] coef_[keep_lambda] = alpha_ * np.dot( sigma_, np.dot(X[:, keep_lambda].T, y)) ### Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) ### Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 ### Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) ### Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_mean, y_mean, X_std) return self
bsd-3-clause
fivejjs/GPy
GPy/examples/classification.py
4
6767
# Copyright (c) 2012-2014, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) """ Gaussian Processes classification examples """ import GPy default_seed = 10000 def oil(num_inducing=50, max_iters=100, kernel=None, optimize=True, plot=True): """ Run a Gaussian process classification on the three phase oil data. The demonstration calls the basic GP classification model and uses EP to approximate the likelihood. """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.oil() X = data['X'] Xtest = data['Xtest'] Y = data['Y'][:, 0:1] Ytest = data['Ytest'][:, 0:1] Y[Y.flatten()==-1] = 0 Ytest[Ytest.flatten()==-1] = 0 # Create GP model m = GPy.models.SparseGPClassification(X, Y, kernel=kernel, num_inducing=num_inducing) # Contrain all parameters to be positive #m.tie_params('.*len') m['.*len'] = 10. # Optimize if optimize: for _ in range(5): m.optimize(max_iters=int(max_iters/5)) print(m) #Test probs = m.predict(Xtest)[0] GPy.util.classification.conf_matrix(probs, Ytest) return m def toy_linear_1d_classification(seed=default_seed, optimize=True, plot=True): """ Simple 1D classification example using EP approximation :param seed: seed value for data generation (default is 4). :type seed: int """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.toy_linear_1d_classification(seed=seed) Y = data['Y'][:, 0:1] Y[Y.flatten() == -1] = 0 # Model definition m = GPy.models.GPClassification(data['X'], Y) # Optimize if optimize: #m.update_likelihood_approximation() # Parameters optimization: m.optimize() #m.update_likelihood_approximation() #m.pseudo_EM() # Plot if plot: from matplotlib import pyplot as plt fig, axes = plt.subplots(2, 1) m.plot_f(ax=axes[0]) m.plot(ax=axes[1]) print m return m def toy_linear_1d_classification_laplace(seed=default_seed, optimize=True, plot=True): """ Simple 1D classification example using Laplace approximation :param seed: seed value for data generation (default is 4). :type seed: int """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.toy_linear_1d_classification(seed=seed) Y = data['Y'][:, 0:1] Y[Y.flatten() == -1] = 0 likelihood = GPy.likelihoods.Bernoulli() laplace_inf = GPy.inference.latent_function_inference.Laplace() kernel = GPy.kern.RBF(1) # Model definition m = GPy.core.GP(data['X'], Y, kernel=kernel, likelihood=likelihood, inference_method=laplace_inf) # Optimize if optimize: try: m.optimize('scg', messages=1) except Exception as e: return m # Plot if plot: from matplotlib import pyplot as plt fig, axes = plt.subplots(2, 1) m.plot_f(ax=axes[0]) m.plot(ax=axes[1]) print m return m def sparse_toy_linear_1d_classification(num_inducing=10, seed=default_seed, optimize=True, plot=True): """ Sparse 1D classification example :param seed: seed value for data generation (default is 4). :type seed: int """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.toy_linear_1d_classification(seed=seed) Y = data['Y'][:, 0:1] Y[Y.flatten() == -1] = 0 # Model definition m = GPy.models.SparseGPClassification(data['X'], Y, num_inducing=num_inducing) m['.*len'] = 4. # Optimize if optimize: m.optimize() # Plot if plot: from matplotlib import pyplot as plt fig, axes = plt.subplots(2, 1) m.plot_f(ax=axes[0]) m.plot(ax=axes[1]) print m return m def toy_heaviside(seed=default_seed, max_iters=100, optimize=True, plot=True): """ Simple 1D classification example using a heavy side gp transformation :param seed: seed value for data generation (default is 4). :type seed: int """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.toy_linear_1d_classification(seed=seed) Y = data['Y'][:, 0:1] Y[Y.flatten() == -1] = 0 # Model definition kernel = GPy.kern.RBF(1) likelihood = GPy.likelihoods.Bernoulli(gp_link=GPy.likelihoods.link_functions.Heaviside()) ep = GPy.inference.latent_function_inference.expectation_propagation.EP() m = GPy.core.GP(X=data['X'], Y=Y, kernel=kernel, likelihood=likelihood, inference_method=ep, name='gp_classification_heaviside') #m = GPy.models.GPClassification(data['X'], likelihood=likelihood) # Optimize if optimize: # Parameters optimization: for _ in range(5): m.optimize(max_iters=int(max_iters/5)) print m # Plot if plot: from matplotlib import pyplot as plt fig, axes = plt.subplots(2, 1) m.plot_f(ax=axes[0]) m.plot(ax=axes[1]) print m return m def crescent_data(model_type='Full', num_inducing=10, seed=default_seed, kernel=None, optimize=True, plot=True): """ Run a Gaussian process classification on the crescent data. The demonstration calls the basic GP classification model and uses EP to approximate the likelihood. :param model_type: type of model to fit ['Full', 'FITC', 'DTC']. :param inducing: number of inducing variables (only used for 'FITC' or 'DTC'). :type inducing: int :param seed: seed value for data generation. :type seed: int :param kernel: kernel to use in the model :type kernel: a GPy kernel """ try:import pods except ImportError:print 'pods unavailable, see https://github.com/sods/ods for example datasets' data = pods.datasets.crescent_data(seed=seed) Y = data['Y'] Y[Y.flatten()==-1] = 0 if model_type == 'Full': m = GPy.models.GPClassification(data['X'], Y, kernel=kernel) elif model_type == 'DTC': m = GPy.models.SparseGPClassification(data['X'], Y, kernel=kernel, num_inducing=num_inducing) m['.*len'] = 10. elif model_type == 'FITC': m = GPy.models.FITCClassification(data['X'], Y, kernel=kernel, num_inducing=num_inducing) m['.*len'] = 3. if optimize: m.pseudo_EM() if plot: m.plot() print m return m
bsd-3-clause
HoliestCow/ece692_deeplearning
project5/cnn/rad_gan.py
1
4059
""" GAN Example Use a generative adversarial network (GAN) to generate digit images from a noise distribution. References: - Generative adversarial nets. I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, Y. Bengio. Advances in neural information processing systems, 2672-2680. Links: - [GAN Paper](https://arxiv.org/pdf/1406.2661.pdf). """ from __future__ import division, print_function, absolute_import import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import tflearn import h5py # Data loading and preprocessing # import tflearn.datasets.mnist as mnist # X, Y, testX, testY = mnist.load_data() # bg = np.load('./integrations/bg_spectra_only.npy') dataset = h5py.File('./spectral_data.h5', 'r') x = np.array(dataset['training_data'], dtype=float) x_test = np.array(dataset['testing_data'], dtype=float) # validation_dataset = np.array(dataset['validation_data']) # image_dim = 784 # 28*28 pixels image_dim = 1024 z_dim = 200 # Noise data points total_samples = x.shape[0] def samplewise_mean(x): for i in range(x.shape[0]): mean = np.mean(x[i, :]) std = np.std(x[i, :]) z = np.divide(np.subtract(x[i, :], mean), std) x[i, :] = z return x x = samplewise_mean(x) x_test = samplewise_mean(x) # Generator def generator(x, reuse=False): with tf.variable_scope('Generator', reuse=reuse): x = tflearn.fully_connected(x, 512, activation='relu') x = tflearn.fully_connected(x, image_dim, activation='sigmoid') return x # Discriminator def discriminator(x, reuse=False): with tf.variable_scope('Discriminator', reuse=reuse): x = tflearn.fully_connected(x, 512, activation='relu') x = tflearn.fully_connected(x, 1, activation='sigmoid') return x # Build Networks gen_input = tflearn.input_data(shape=[None, z_dim], name='input_noise') disc_input = tflearn.input_data(shape=[None, image_dim], name='disc_input') gen_sample = generator(gen_input) disc_real = discriminator(disc_input) disc_fake = discriminator(gen_sample, reuse=True) # Define Loss disc_loss = -tf.reduce_mean(tf.log(disc_real) + tf.log(1. - disc_fake)) gen_loss = -tf.reduce_mean(tf.log(disc_fake)) # Build Training Ops for both Generator and Discriminator. # Each network optimization should only update its own variable, thus we need # to retrieve each network variables (with get_layer_variables_by_scope) and set # 'placeholder=None' because we do not need to feed any target. gen_vars = tflearn.get_layer_variables_by_scope('Generator') gen_model = tflearn.regression(gen_sample, placeholder=None, optimizer='adam', loss=gen_loss, trainable_vars=gen_vars, batch_size=64, name='target_gen', op_name='GEN') disc_vars = tflearn.get_layer_variables_by_scope('Discriminator') disc_model = tflearn.regression(disc_real, placeholder=None, optimizer='adam', loss=disc_loss, trainable_vars=disc_vars, batch_size=64, name='target_disc', op_name='DISC') # Define GAN model, that output the generated images. gan = tflearn.DNN(gen_model) # Training # Generate noise to feed to the generator z = np.random.uniform(-1., 1., size=[total_samples, z_dim]) # z = np.random.poisson(lam=1, size=z_dim) # Start training, feed both noise and real images. gan.fit(X_inputs={gen_input: z, disc_input: x}, Y_targets=None, n_epoch=20) # Generate images from noise, using the generator network. f, a = plt.subplots(2, 2, figsize=(10, 4)) for i in range(2): for j in range(2): # Noise input. z = np.random.uniform(-1., 1., size=[1, z_dim]) # z = np.random.poisson(lam=1, size=z_dim) # Generate image from noise. Extend to 3 channels for matplot figure. # temp = [[ii, ii, ii] for ii in list(gan.predict([z])[0])] # a[j][i].imshow(np.reshape(temp, (28, 28, 3))) temp = list(gan.predict([z])[0]) a[j][i].plot(temp) f.savefig('test_gan.png')
mit
Midafi/scikit-image
doc/examples/plot_ssim.py
3
2274
""" =========================== Structural similarity index =========================== When comparing images, the mean squared error (MSE)--while simple to implement--is not highly indicative of perceived similarity. Structural similarity aims to address this shortcoming by taking texture into account [1]_, [2]_. The example shows two modifications of the input image, each with the same MSE, but with very different mean structural similarity indices. .. [1] Zhou Wang; Bovik, A.C.; ,"Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures," Signal Processing Magazine, IEEE, vol. 26, no. 1, pp. 98-117, Jan. 2009. .. [2] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from skimage import data, img_as_float from skimage.measure import structural_similarity as ssim matplotlib.rcParams['font.size'] = 9 img = img_as_float(data.camera()) rows, cols = img.shape noise = np.ones_like(img) * 0.2 * (img.max() - img.min()) noise[np.random.random(size=noise.shape) > 0.5] *= -1 def mse(x, y): return np.linalg.norm(x - y) img_noise = img + noise img_const = img + abs(noise) fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3, figsize=(8, 4)) mse_none = mse(img, img) ssim_none = ssim(img, img, dynamic_range=img.max() - img.min()) mse_noise = mse(img, img_noise) ssim_noise = ssim(img, img_noise, dynamic_range=img_const.max() - img_const.min()) mse_const = mse(img, img_const) ssim_const = ssim(img, img_const, dynamic_range=img_noise.max() - img_noise.min()) label = 'MSE: %2.f, SSIM: %.2f' ax0.imshow(img, cmap=plt.cm.gray, vmin=0, vmax=1) ax0.set_xlabel(label % (mse_none, ssim_none)) ax0.set_title('Original image') ax1.imshow(img_noise, cmap=plt.cm.gray, vmin=0, vmax=1) ax1.set_xlabel(label % (mse_noise, ssim_noise)) ax1.set_title('Image with noise') ax2.imshow(img_const, cmap=plt.cm.gray, vmin=0, vmax=1) ax2.set_xlabel(label % (mse_const, ssim_const)) ax2.set_title('Image plus constant') plt.show()
bsd-3-clause
spbguru/repo1
external/linux32/lib/python2.6/site-packages/matplotlib/__init__.py
69
28184
""" This is an object-orient plotting library. A procedural interface is provided by the companion pylab module, which may be imported directly, e.g:: from pylab import * or using ipython:: ipython -pylab For the most part, direct use of the object-oriented library is encouraged when programming rather than working interactively. The exceptions are the pylab commands :func:`~matplotlib.pyplot.figure`, :func:`~matplotlib.pyplot.subplot`, :func:`~matplotlib.backends.backend_qt4agg.show`, and :func:`~pyplot.savefig`, which can greatly simplify scripting. Modules include: :mod:`matplotlib.axes` defines the :class:`~matplotlib.axes.Axes` class. Most pylab commands are wrappers for :class:`~matplotlib.axes.Axes` methods. The axes module is the highest level of OO access to the library. :mod:`matplotlib.figure` defines the :class:`~matplotlib.figure.Figure` class. :mod:`matplotlib.artist` defines the :class:`~matplotlib.artist.Artist` base class for all classes that draw things. :mod:`matplotlib.lines` defines the :class:`~matplotlib.lines.Line2D` class for drawing lines and markers :mod`matplotlib.patches` defines classes for drawing polygons :mod:`matplotlib.text` defines the :class:`~matplotlib.text.Text`, :class:`~matplotlib.text.TextWithDash`, and :class:`~matplotlib.text.Annotate` classes :mod:`matplotlib.image` defines the :class:`~matplotlib.image.AxesImage` and :class:`~matplotlib.image.FigureImage` classes :mod:`matplotlib.collections` classes for efficient drawing of groups of lines or polygons :mod:`matplotlib.colors` classes for interpreting color specifications and for making colormaps :mod:`matplotlib.cm` colormaps and the :class:`~matplotlib.image.ScalarMappable` mixin class for providing color mapping functionality to other classes :mod:`matplotlib.ticker` classes for calculating tick mark locations and for formatting tick labels :mod:`matplotlib.backends` a subpackage with modules for various gui libraries and output formats The base matplotlib namespace includes: :data:`~matplotlib.rcParams` a global dictionary of default configuration settings. It is initialized by code which may be overridded by a matplotlibrc file. :func:`~matplotlib.rc` a function for setting groups of rcParams values :func:`~matplotlib.use` a function for setting the matplotlib backend. If used, this function must be called immediately after importing matplotlib for the first time. In particular, it must be called **before** importing pylab (if pylab is imported). matplotlib is written by John D. Hunter (jdh2358 at gmail.com) and a host of others. """ from __future__ import generators __version__ = '0.98.5.2' __revision__ = '$Revision: 6660 $' __date__ = '$Date: 2008-12-18 06:10:51 -0600 (Thu, 18 Dec 2008) $' import os, re, shutil, subprocess, sys, warnings import distutils.sysconfig import distutils.version NEWCONFIG = False # Needed for toolkit setuptools support if 0: try: __import__('pkg_resources').declare_namespace(__name__) except ImportError: pass # must not have setuptools if not hasattr(sys, 'argv'): # for modpython sys.argv = ['modpython'] """ Manage user customizations through a rc file. The default file location is given in the following order - environment variable MATPLOTLIBRC - HOME/.matplotlib/matplotlibrc if HOME is defined - PATH/matplotlibrc where PATH is the return value of get_data_path() """ import sys, os, tempfile from rcsetup import defaultParams, validate_backend, validate_toolbar from rcsetup import validate_cairo_format major, minor1, minor2, s, tmp = sys.version_info _python24 = major>=2 and minor1>=4 # the havedate check was a legacy from old matplotlib which preceeded # datetime support _havedate = True #try: # import pkg_resources # pkg_resources is part of setuptools #except ImportError: _have_pkg_resources = False #else: _have_pkg_resources = True if not _python24: raise ImportError('matplotlib requires Python 2.4 or later') import numpy nn = numpy.__version__.split('.') if not (int(nn[0]) >= 1 and int(nn[1]) >= 1): raise ImportError( 'numpy 1.1 or later is required; you have %s' % numpy.__version__) def is_string_like(obj): if hasattr(obj, 'shape'): return 0 try: obj + '' except (TypeError, ValueError): return 0 return 1 def _is_writable_dir(p): """ p is a string pointing to a putative writable dir -- return True p is such a string, else False """ try: p + '' # test is string like except TypeError: return False try: t = tempfile.TemporaryFile(dir=p) t.write('1') t.close() except OSError: return False else: return True class Verbose: """ A class to handle reporting. Set the fileo attribute to any file instance to handle the output. Default is sys.stdout """ levels = ('silent', 'helpful', 'debug', 'debug-annoying') vald = dict( [(level, i) for i,level in enumerate(levels)]) # parse the verbosity from the command line; flags look like # --verbose-silent or --verbose-helpful _commandLineVerbose = None for arg in sys.argv[1:]: if not arg.startswith('--verbose-'): continue _commandLineVerbose = arg[10:] def __init__(self): self.set_level('silent') self.fileo = sys.stdout def set_level(self, level): 'set the verbosity to one of the Verbose.levels strings' if self._commandLineVerbose is not None: level = self._commandLineVerbose if level not in self.levels: raise ValueError('Illegal verbose string "%s". Legal values are %s'%(level, self.levels)) self.level = level def set_fileo(self, fname): std = { 'sys.stdout': sys.stdout, 'sys.stderr': sys.stderr, } if fname in std: self.fileo = std[fname] else: try: fileo = file(fname, 'w') except IOError: raise ValueError('Verbose object could not open log file "%s" for writing.\nCheck your matplotlibrc verbose.fileo setting'%fname) else: self.fileo = fileo def report(self, s, level='helpful'): """ print message s to self.fileo if self.level>=level. Return value indicates whether a message was issued """ if self.ge(level): print >>self.fileo, s return True return False def wrap(self, fmt, func, level='helpful', always=True): """ return a callable function that wraps func and reports it output through the verbose handler if current verbosity level is higher than level if always is True, the report will occur on every function call; otherwise only on the first time the function is called """ assert callable(func) def wrapper(*args, **kwargs): ret = func(*args, **kwargs) if (always or not wrapper._spoke): spoke = self.report(fmt%ret, level) if not wrapper._spoke: wrapper._spoke = spoke return ret wrapper._spoke = False wrapper.__doc__ = func.__doc__ return wrapper def ge(self, level): 'return true if self.level is >= level' return self.vald[self.level]>=self.vald[level] verbose=Verbose() def checkdep_dvipng(): try: s = subprocess.Popen(['dvipng','-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) line = s.stdout.readlines()[1] v = line.split()[-1] return v except (IndexError, ValueError, OSError): return None def checkdep_ghostscript(): try: if sys.platform == 'win32': command_args = ['gswin32c', '--version'] else: command_args = ['gs', '--version'] s = subprocess.Popen(command_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE) v = s.stdout.read()[:-1] return v except (IndexError, ValueError, OSError): return None def checkdep_tex(): try: s = subprocess.Popen(['tex','-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) line = s.stdout.readlines()[0] pattern = '3\.1\d+' match = re.search(pattern, line) v = match.group(0) return v except (IndexError, ValueError, AttributeError, OSError): return None def checkdep_pdftops(): try: s = subprocess.Popen(['pdftops','-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) for line in s.stderr: if 'version' in line: v = line.split()[-1] return v except (IndexError, ValueError, UnboundLocalError, OSError): return None def compare_versions(a, b): "return True if a is greater than or equal to b" if a: a = distutils.version.LooseVersion(a) b = distutils.version.LooseVersion(b) if a>=b: return True else: return False else: return False def checkdep_ps_distiller(s): if not s: return False flag = True gs_req = '7.07' gs_sugg = '7.07' gs_v = checkdep_ghostscript() if compare_versions(gs_v, gs_sugg): pass elif compare_versions(gs_v, gs_req): verbose.report(('ghostscript-%s found. ghostscript-%s or later ' 'is recommended to use the ps.usedistiller option.') % (gs_v, gs_sugg)) else: flag = False warnings.warn(('matplotlibrc ps.usedistiller option can not be used ' 'unless ghostscript-%s or later is installed on your system') % gs_req) if s == 'xpdf': pdftops_req = '3.0' pdftops_req_alt = '0.9' # poppler version numbers, ugh pdftops_v = checkdep_pdftops() if compare_versions(pdftops_v, pdftops_req): pass elif compare_versions(pdftops_v, pdftops_req_alt) and not \ compare_versions(pdftops_v, '1.0'): pass else: flag = False warnings.warn(('matplotlibrc ps.usedistiller can not be set to ' 'xpdf unless xpdf-%s or later is installed on your system') % pdftops_req) if flag: return s else: return False def checkdep_usetex(s): if not s: return False tex_req = '3.1415' gs_req = '7.07' gs_sugg = '7.07' dvipng_req = '1.5' flag = True tex_v = checkdep_tex() if compare_versions(tex_v, tex_req): pass else: flag = False warnings.warn(('matplotlibrc text.usetex option can not be used ' 'unless TeX-%s or later is ' 'installed on your system') % tex_req) dvipng_v = checkdep_dvipng() if compare_versions(dvipng_v, dvipng_req): pass else: flag = False warnings.warn( 'matplotlibrc text.usetex can not be used with *Agg ' 'backend unless dvipng-1.5 or later is ' 'installed on your system') gs_v = checkdep_ghostscript() if compare_versions(gs_v, gs_sugg): pass elif compare_versions(gs_v, gs_req): verbose.report(('ghostscript-%s found. ghostscript-%s or later is ' 'recommended for use with the text.usetex ' 'option.') % (gs_v, gs_sugg)) else: flag = False warnings.warn(('matplotlibrc text.usetex can not be used ' 'unless ghostscript-%s or later is ' 'installed on your system') % gs_req) return flag def _get_home(): """Find user's home directory if possible. Otherwise raise error. :see: http://mail.python.org/pipermail/python-list/2005-February/263921.html """ path='' try: path=os.path.expanduser("~") except: pass if not os.path.isdir(path): for evar in ('HOME', 'USERPROFILE', 'TMP'): try: path = os.environ[evar] if os.path.isdir(path): break except: pass if path: return path else: raise RuntimeError('please define environment variable $HOME') get_home = verbose.wrap('$HOME=%s', _get_home, always=False) def _get_configdir(): """ Return the string representing the configuration dir. default is HOME/.matplotlib. you can override this with the MPLCONFIGDIR environment variable """ configdir = os.environ.get('MPLCONFIGDIR') if configdir is not None: if not _is_writable_dir(configdir): raise RuntimeError('Could not write to MPLCONFIGDIR="%s"'%configdir) return configdir h = get_home() p = os.path.join(get_home(), '.matplotlib') if os.path.exists(p): if not _is_writable_dir(p): raise RuntimeError("'%s' is not a writable dir; you must set %s/.matplotlib to be a writable dir. You can also set environment variable MPLCONFIGDIR to any writable directory where you want matplotlib data stored "% (h, h)) else: if not _is_writable_dir(h): raise RuntimeError("Failed to create %s/.matplotlib; consider setting MPLCONFIGDIR to a writable directory for matplotlib configuration data"%h) os.mkdir(p) return p get_configdir = verbose.wrap('CONFIGDIR=%s', _get_configdir, always=False) def _get_data_path(): 'get the path to matplotlib data' if 'MATPLOTLIBDATA' in os.environ: path = os.environ['MATPLOTLIBDATA'] if not os.path.isdir(path): raise RuntimeError('Path in environment MATPLOTLIBDATA not a directory') return path path = os.sep.join([os.path.dirname(__file__), 'mpl-data']) if os.path.isdir(path): return path # setuptools' namespace_packages may highjack this init file # so need to try something known to be in matplotlib, not basemap import matplotlib.afm path = os.sep.join([os.path.dirname(matplotlib.afm.__file__), 'mpl-data']) if os.path.isdir(path): return path # py2exe zips pure python, so still need special check if getattr(sys,'frozen',None): path = os.path.join(os.path.split(sys.path[0])[0], 'mpl-data') if os.path.isdir(path): return path else: # Try again assuming we need to step up one more directory path = os.path.join(os.path.split(os.path.split(sys.path[0])[0])[0], 'mpl-data') if os.path.isdir(path): return path else: # Try again assuming sys.path[0] is a dir not a exe path = os.path.join(sys.path[0], 'mpl-data') if os.path.isdir(path): return path raise RuntimeError('Could not find the matplotlib data files') def _get_data_path_cached(): if defaultParams['datapath'][0] is None: defaultParams['datapath'][0] = _get_data_path() return defaultParams['datapath'][0] get_data_path = verbose.wrap('matplotlib data path %s', _get_data_path_cached, always=False) def get_example_data(fname): """ return a filehandle to one of the example files in mpl-data/example *fname* the name of one of the files in mpl-data/example """ datadir = os.path.join(get_data_path(), 'example') fullpath = os.path.join(datadir, fname) if not os.path.exists(fullpath): raise IOError('could not find matplotlib example file "%s" in data directory "%s"'%( fname, datadir)) return file(fullpath, 'rb') def get_py2exe_datafiles(): datapath = get_data_path() head, tail = os.path.split(datapath) d = {} for root, dirs, files in os.walk(datapath): # Need to explicitly remove cocoa_agg files or py2exe complains # NOTE I dont know why, but do as previous version if 'Matplotlib.nib' in files: files.remove('Matplotlib.nib') files = [os.path.join(root, filename) for filename in files] root = root.replace(tail, 'mpl-data') root = root[root.index('mpl-data'):] d[root] = files return d.items() def matplotlib_fname(): """ Return the path to the rc file Search order: * current working dir * environ var MATPLOTLIBRC * HOME/.matplotlib/matplotlibrc * MATPLOTLIBDATA/matplotlibrc """ oldname = os.path.join( os.getcwd(), '.matplotlibrc') if os.path.exists(oldname): print >> sys.stderr, """\ WARNING: Old rc filename ".matplotlibrc" found in working dir and and renamed to new default rc file name "matplotlibrc" (no leading"dot"). """ shutil.move('.matplotlibrc', 'matplotlibrc') home = get_home() oldname = os.path.join( home, '.matplotlibrc') if os.path.exists(oldname): configdir = get_configdir() newname = os.path.join(configdir, 'matplotlibrc') print >> sys.stderr, """\ WARNING: Old rc filename "%s" found and renamed to new default rc file name "%s"."""%(oldname, newname) shutil.move(oldname, newname) fname = os.path.join( os.getcwd(), 'matplotlibrc') if os.path.exists(fname): return fname if 'MATPLOTLIBRC' in os.environ: path = os.environ['MATPLOTLIBRC'] if os.path.exists(path): fname = os.path.join(path, 'matplotlibrc') if os.path.exists(fname): return fname fname = os.path.join(get_configdir(), 'matplotlibrc') if os.path.exists(fname): return fname path = get_data_path() # guaranteed to exist or raise fname = os.path.join(path, 'matplotlibrc') if not os.path.exists(fname): warnings.warn('Could not find matplotlibrc; using defaults') return fname _deprecated_map = { 'text.fontstyle': 'font.style', 'text.fontangle': 'font.style', 'text.fontvariant': 'font.variant', 'text.fontweight': 'font.weight', 'text.fontsize': 'font.size', 'tick.size' : 'tick.major.size', } class RcParams(dict): """ A dictionary object including validation validating functions are defined and associated with rc parameters in :mod:`matplotlib.rcsetup` """ validate = dict([ (key, converter) for key, (default, converter) in \ defaultParams.iteritems() ]) def __setitem__(self, key, val): try: if key in _deprecated_map.keys(): alt = _deprecated_map[key] warnings.warn('%s is deprecated in matplotlibrc. Use %s \ instead.'% (key, alt)) key = alt cval = self.validate[key](val) dict.__setitem__(self, key, cval) except KeyError: raise KeyError('%s is not a valid rc parameter.\ See rcParams.keys() for a list of valid parameters.'%key) def rc_params(fail_on_error=False): 'Return the default params updated from the values in the rc file' fname = matplotlib_fname() if not os.path.exists(fname): # this should never happen, default in mpl-data should always be found message = 'could not find rc file; returning defaults' ret = RcParams([ (key, default) for key, (default, converter) in \ defaultParams.iteritems() ]) warnings.warn(message) return ret cnt = 0 rc_temp = {} for line in file(fname): cnt += 1 strippedline = line.split('#',1)[0].strip() if not strippedline: continue tup = strippedline.split(':',1) if len(tup) !=2: warnings.warn('Illegal line #%d\n\t%s\n\tin file "%s"'%\ (cnt, line, fname)) continue key, val = tup key = key.strip() val = val.strip() if key in rc_temp: warnings.warn('Duplicate key in file "%s", line #%d'%(fname,cnt)) rc_temp[key] = (val, line, cnt) ret = RcParams([ (key, default) for key, (default, converter) in \ defaultParams.iteritems() ]) for key in ('verbose.level', 'verbose.fileo'): if key in rc_temp: val, line, cnt = rc_temp.pop(key) if fail_on_error: ret[key] = val # try to convert to proper type or raise else: try: ret[key] = val # try to convert to proper type or skip except Exception, msg: warnings.warn('Bad val "%s" on line #%d\n\t"%s"\n\tin file \ "%s"\n\t%s' % (val, cnt, line, fname, msg)) verbose.set_level(ret['verbose.level']) verbose.set_fileo(ret['verbose.fileo']) for key, (val, line, cnt) in rc_temp.iteritems(): if key in defaultParams: if fail_on_error: ret[key] = val # try to convert to proper type or raise else: try: ret[key] = val # try to convert to proper type or skip except Exception, msg: warnings.warn('Bad val "%s" on line #%d\n\t"%s"\n\tin file \ "%s"\n\t%s' % (val, cnt, line, fname, msg)) else: print >> sys.stderr, """ Bad key "%s" on line %d in %s. You probably need to get an updated matplotlibrc file from http://matplotlib.sf.net/_static/matplotlibrc or from the matplotlib source distribution""" % (key, cnt, fname) if ret['datapath'] is None: ret['datapath'] = get_data_path() if not ret['text.latex.preamble'] == ['']: verbose.report(""" ***************************************************************** You have the following UNSUPPORTED LaTeX preamble customizations: %s Please do not ask for support with these customizations active. ***************************************************************** """% '\n'.join(ret['text.latex.preamble']), 'helpful') verbose.report('loaded rc file %s'%fname) return ret # this is the instance used by the matplotlib classes rcParams = rc_params() rcParamsDefault = RcParams([ (key, default) for key, (default, converter) in \ defaultParams.iteritems() ]) rcParams['ps.usedistiller'] = checkdep_ps_distiller(rcParams['ps.usedistiller']) rcParams['text.usetex'] = checkdep_usetex(rcParams['text.usetex']) def rc(group, **kwargs): """ Set the current rc params. Group is the grouping for the rc, eg. for ``lines.linewidth`` the group is ``lines``, for ``axes.facecolor``, the group is ``axes``, and so on. Group may also be a list or tuple of group names, eg. (*xtick*, *ytick*). *kwargs* is a dictionary attribute name/value pairs, eg:: rc('lines', linewidth=2, color='r') sets the current rc params and is equivalent to:: rcParams['lines.linewidth'] = 2 rcParams['lines.color'] = 'r' The following aliases are available to save typing for interactive users: ===== ================= Alias Property ===== ================= 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' ===== ================= Thus you could abbreviate the above rc command as:: rc('lines', lw=2, c='r') Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. Eg, you can customize the font rc as follows:: font = {'family' : 'monospace', 'weight' : 'bold', 'size' : 'larger'} rc('font', **font) # pass in the font dict as kwargs This enables you to easily switch between several configurations. Use :func:`~matplotlib.pyplot.rcdefaults` to restore the default rc params after changes. """ aliases = { 'lw' : 'linewidth', 'ls' : 'linestyle', 'c' : 'color', 'fc' : 'facecolor', 'ec' : 'edgecolor', 'mew' : 'markeredgewidth', 'aa' : 'antialiased', } if is_string_like(group): group = (group,) for g in group: for k,v in kwargs.items(): name = aliases.get(k) or k key = '%s.%s' % (g, name) if key not in rcParams: raise KeyError('Unrecognized key "%s" for group "%s" and name "%s"' % (key, g, name)) rcParams[key] = v def rcdefaults(): """ Restore the default rc params - the ones that were created at matplotlib load time. """ rcParams.update(rcParamsDefault) if NEWCONFIG: #print "importing from reorganized config system!" try: from config import rcParams, rcdefaults, mplConfig, save_config verbose.set_level(rcParams['verbose.level']) verbose.set_fileo(rcParams['verbose.fileo']) except: from config import rcParams, rcdefaults _use_error_msg = """ This call to matplotlib.use() has no effect because the the backend has already been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot, or matplotlib.backends is imported for the first time. """ def use(arg, warn=True): """ Set the matplotlib backend to one of the known backends. The argument is case-insensitive. For the Cairo backend, the argument can have an extension to indicate the type of output. Example: use('cairo.pdf') will specify a default of pdf output generated by Cairo. Note: this function must be called *before* importing pylab for the first time; or, if you are not using pylab, it must be called before importing matplotlib.backends. If warn is True, a warning is issued if you try and callthis after pylab or pyplot have been loaded. In certain black magic use cases, eg pyplot.switch_backends, we are doing the reloading necessary to make the backend switch work (in some cases, eg pure image backends) so one can set warn=False to supporess the warnings """ if 'matplotlib.backends' in sys.modules: if warn: warnings.warn(_use_error_msg) return arg = arg.lower() if arg.startswith('module://'): name = arg else: be_parts = arg.split('.') name = validate_backend(be_parts[0]) rcParams['backend'] = name if name == 'cairo' and len(be_parts) > 1: rcParams['cairo.format'] = validate_cairo_format(be_parts[1]) def get_backend(): "Returns the current backend" return rcParams['backend'] def interactive(b): """ Set interactive mode to boolean b. If b is True, then draw after every plotting command, eg, after xlabel """ rcParams['interactive'] = b def is_interactive(): 'Return true if plot mode is interactive' b = rcParams['interactive'] return b def tk_window_focus(): """Return true if focus maintenance under TkAgg on win32 is on. This currently works only for python.exe and IPython.exe. Both IDLE and Pythonwin.exe fail badly when tk_window_focus is on.""" if rcParams['backend'] != 'TkAgg': return False return rcParams['tk.window_focus'] # Now allow command line to override # Allow command line access to the backend with -d (matlab compatible # flag) for s in sys.argv[1:]: if s.startswith('-d') and len(s) > 2: # look for a -d flag try: use(s[2:]) except (KeyError, ValueError): pass # we don't want to assume all -d flags are backends, eg -debug verbose.report('matplotlib version %s'%__version__) verbose.report('verbose.level %s'%verbose.level) verbose.report('interactive is %s'%rcParams['interactive']) verbose.report('units is %s'%rcParams['units']) verbose.report('platform is %s'%sys.platform) verbose.report('loaded modules: %s'%sys.modules.keys(), 'debug')
gpl-3.0
muku42/seaborn
seaborn/tests/test_linearmodels.py
8
18843
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import nose.tools as nt import numpy.testing as npt import pandas.util.testing as pdt from numpy.testing.decorators import skipif from nose import SkipTest try: import statsmodels.regression.linear_model as smlm _no_statsmodels = False except ImportError: _no_statsmodels = True from . import PlotTestCase from .. import linearmodels as lm from .. import algorithms as algo from .. import utils from ..palettes import color_palette rs = np.random.RandomState(0) class TestLinearPlotter(PlotTestCase): rs = np.random.RandomState(77) df = pd.DataFrame(dict(x=rs.normal(size=60), d=rs.randint(-2, 3, 60), y=rs.gamma(4, size=60), s=np.tile(list("abcdefghij"), 6))) df["z"] = df.y + rs.randn(60) df["y_na"] = df.y.copy() df.y_na.ix[[10, 20, 30]] = np.nan def test_establish_variables_from_frame(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y="y") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_frame_equal(p.data, self.df) def test_establish_variables_from_series(self): p = lm._LinearPlotter() p.establish_variables(None, x=self.df.x, y=self.df.y) pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) nt.assert_is(p.data, None) def test_establish_variables_from_array(self): p = lm._LinearPlotter() p.establish_variables(None, x=self.df.x.values, y=self.df.y.values) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y) nt.assert_is(p.data, None) def test_establish_variables_from_mix(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y=self.df.y) pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_frame_equal(p.data, self.df) def test_establish_variables_from_bad(self): p = lm._LinearPlotter() with nt.assert_raises(ValueError): p.establish_variables(None, x="x", y=self.df.y) def test_dropna(self): p = lm._LinearPlotter() p.establish_variables(self.df, x="x", y_na="y_na") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y_na, self.df.y_na) p.dropna("x", "y_na") mask = self.df.y_na.notnull() pdt.assert_series_equal(p.x, self.df.x[mask]) pdt.assert_series_equal(p.y_na, self.df.y_na[mask]) class TestRegressionPlotter(PlotTestCase): rs = np.random.RandomState(49) grid = np.linspace(-3, 3, 30) n_boot = 100 bins_numeric = 3 bins_given = [-1, 0, 1] df = pd.DataFrame(dict(x=rs.normal(size=60), d=rs.randint(-2, 3, 60), y=rs.gamma(4, size=60), s=np.tile(list(range(6)), 10))) df["z"] = df.y + rs.randn(60) df["y_na"] = df.y.copy() bw_err = rs.randn(6)[df.s.values] * 2 df.y += bw_err p = 1 / (1 + np.exp(-(df.x * 2 + rs.randn(60)))) df["c"] = [rs.binomial(1, p_i) for p_i in p] df.y_na.ix[[10, 20, 30]] = np.nan def test_variables_from_frame(self): p = lm._RegressionPlotter("x", "y", data=self.df, units="s") pdt.assert_series_equal(p.x, self.df.x) pdt.assert_series_equal(p.y, self.df.y) pdt.assert_series_equal(p.units, self.df.s) pdt.assert_frame_equal(p.data, self.df) def test_variables_from_series(self): p = lm._RegressionPlotter(self.df.x, self.df.y, units=self.df.s) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y) npt.assert_array_equal(p.units, self.df.s) nt.assert_is(p.data, None) def test_variables_from_mix(self): p = lm._RegressionPlotter("x", self.df.y + 1, data=self.df) npt.assert_array_equal(p.x, self.df.x) npt.assert_array_equal(p.y, self.df.y + 1) pdt.assert_frame_equal(p.data, self.df) def test_dropna(self): p = lm._RegressionPlotter("x", "y_na", data=self.df) nt.assert_equal(len(p.x), pd.notnull(self.df.y_na).sum()) p = lm._RegressionPlotter("x", "y_na", data=self.df, dropna=False) nt.assert_equal(len(p.x), len(self.df.y_na)) def test_ci(self): p = lm._RegressionPlotter("x", "y", data=self.df, ci=95) nt.assert_equal(p.ci, 95) nt.assert_equal(p.x_ci, 95) p = lm._RegressionPlotter("x", "y", data=self.df, ci=95, x_ci=68) nt.assert_equal(p.ci, 95) nt.assert_equal(p.x_ci, 68) @skipif(_no_statsmodels) def test_fast_regression(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fit with the "fast" function, which just does linear algebra yhat_fast, _ = p.fit_fast(self.grid) # Fit using the statsmodels function with an OLS model yhat_smod, _ = p.fit_statsmodels(self.grid, smlm.OLS) # Compare the vector of y_hat values npt.assert_array_almost_equal(yhat_fast, yhat_smod) @skipif(_no_statsmodels) def test_regress_poly(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fit an first-order polynomial yhat_poly, _ = p.fit_poly(self.grid, 1) # Fit using the statsmodels function with an OLS model yhat_smod, _ = p.fit_statsmodels(self.grid, smlm.OLS) # Compare the vector of y_hat values npt.assert_array_almost_equal(yhat_poly, yhat_smod) def test_regress_logx(self): x = np.arange(1, 10) y = np.arange(1, 10) grid = np.linspace(1, 10, 100) p = lm._RegressionPlotter(x, y, n_boot=self.n_boot) yhat_lin, _ = p.fit_fast(grid) yhat_log, _ = p.fit_logx(grid) nt.assert_greater(yhat_lin[0], yhat_log[0]) nt.assert_greater(yhat_log[20], yhat_lin[20]) nt.assert_greater(yhat_lin[90], yhat_log[90]) @skipif(_no_statsmodels) def test_regress_n_boot(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) # Fast (linear algebra) version _, boots_fast = p.fit_fast(self.grid) npt.assert_equal(boots_fast.shape, (self.n_boot, self.grid.size)) # Slower (np.polyfit) version _, boots_poly = p.fit_poly(self.grid, 1) npt.assert_equal(boots_poly.shape, (self.n_boot, self.grid.size)) # Slowest (statsmodels) version _, boots_smod = p.fit_statsmodels(self.grid, smlm.OLS) npt.assert_equal(boots_smod.shape, (self.n_boot, self.grid.size)) @skipif(_no_statsmodels) def test_regress_without_bootstrap(self): p = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot, ci=None) # Fast (linear algebra) version _, boots_fast = p.fit_fast(self.grid) nt.assert_is(boots_fast, None) # Slower (np.polyfit) version _, boots_poly = p.fit_poly(self.grid, 1) nt.assert_is(boots_poly, None) # Slowest (statsmodels) version _, boots_smod = p.fit_statsmodels(self.grid, smlm.OLS) nt.assert_is(boots_smod, None) def test_numeric_bins(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_numeric) npt.assert_equal(len(bins), self.bins_numeric) npt.assert_array_equal(np.unique(x_binned), bins) def test_provided_bins(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_given) npt.assert_array_equal(np.unique(x_binned), self.bins_given) def test_bin_results(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x_binned, bins = p.bin_predictor(self.bins_given) nt.assert_greater(self.df.x[x_binned == 0].min(), self.df.x[x_binned == -1].max()) nt.assert_greater(self.df.x[x_binned == 1].min(), self.df.x[x_binned == 0].max()) def test_scatter_data(self): p = lm._RegressionPlotter(self.df.x, self.df.y) x, y = p.scatter_data npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y) x, y = p.scatter_data npt.assert_array_equal(x, self.df.d) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y, x_jitter=.1) x, y = p.scatter_data nt.assert_true((x != self.df.d).any()) npt.assert_array_less(np.abs(self.df.d - x), np.repeat(.1, len(x))) npt.assert_array_equal(y, self.df.y) p = lm._RegressionPlotter(self.df.d, self.df.y, y_jitter=.05) x, y = p.scatter_data npt.assert_array_equal(x, self.df.d) npt.assert_array_less(np.abs(self.df.y - y), np.repeat(.1, len(y))) def test_estimate_data(self): p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean) x, y, ci = p.estimate_data npt.assert_array_equal(x, np.sort(np.unique(self.df.d))) npt.assert_array_almost_equal(y, self.df.groupby("d").y.mean()) npt.assert_array_less(np.array(ci)[:, 0], y) npt.assert_array_less(y, np.array(ci)[:, 1]) def test_estimate_cis(self): # set known good seed to avoid the test stochastically failing np.random.seed(123) p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=95) _, _, ci_big = p.estimate_data p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=50) _, _, ci_wee = p.estimate_data npt.assert_array_less(np.diff(ci_wee), np.diff(ci_big)) p = lm._RegressionPlotter(self.df.d, self.df.y, x_estimator=np.mean, ci=None) _, _, ci_nil = p.estimate_data npt.assert_array_equal(ci_nil, [None] * len(ci_nil)) def test_estimate_units(self): # Seed the RNG locally np.random.seed(345) p = lm._RegressionPlotter("x", "y", data=self.df, units="s", x_bins=3) _, _, ci_big = p.estimate_data ci_big = np.diff(ci_big, axis=1) p = lm._RegressionPlotter("x", "y", data=self.df, x_bins=3) _, _, ci_wee = p.estimate_data ci_wee = np.diff(ci_wee, axis=1) npt.assert_array_less(ci_wee, ci_big) def test_partial(self): x = self.rs.randn(100) y = x + self.rs.randn(100) z = x + self.rs.randn(100) p = lm._RegressionPlotter(y, z) _, r_orig = np.corrcoef(p.x, p.y)[0] p = lm._RegressionPlotter(y, z, y_partial=x) _, r_semipartial = np.corrcoef(p.x, p.y)[0] nt.assert_less(r_semipartial, r_orig) p = lm._RegressionPlotter(y, z, x_partial=x, y_partial=x) _, r_partial = np.corrcoef(p.x, p.y)[0] nt.assert_less(r_partial, r_orig) @skipif(_no_statsmodels) def test_logistic_regression(self): p = lm._RegressionPlotter("x", "c", data=self.df, logistic=True, n_boot=self.n_boot) _, yhat, _ = p.fit_regression(x_range=(-3, 3)) npt.assert_array_less(yhat, 1) npt.assert_array_less(0, yhat) @skipif(_no_statsmodels) def test_robust_regression(self): p_ols = lm._RegressionPlotter("x", "y", data=self.df, n_boot=self.n_boot) _, ols_yhat, _ = p_ols.fit_regression(x_range=(-3, 3)) p_robust = lm._RegressionPlotter("x", "y", data=self.df, robust=True, n_boot=self.n_boot) _, robust_yhat, _ = p_robust.fit_regression(x_range=(-3, 3)) nt.assert_equal(len(ols_yhat), len(robust_yhat)) @skipif(_no_statsmodels) def test_lowess_regression(self): p = lm._RegressionPlotter("x", "y", data=self.df, lowess=True) grid, yhat, err_bands = p.fit_regression(x_range=(-3, 3)) nt.assert_equal(len(grid), len(yhat)) nt.assert_is(err_bands, None) def test_regression_options(self): with nt.assert_raises(ValueError): lm._RegressionPlotter("x", "y", data=self.df, lowess=True, order=2) with nt.assert_raises(ValueError): lm._RegressionPlotter("x", "y", data=self.df, lowess=True, logistic=True) def test_regression_limits(self): f, ax = plt.subplots() ax.scatter(self.df.x, self.df.y) p = lm._RegressionPlotter("x", "y", data=self.df) grid, _, _ = p.fit_regression(ax) xlim = ax.get_xlim() nt.assert_equal(grid.min(), xlim[0]) nt.assert_equal(grid.max(), xlim[1]) p = lm._RegressionPlotter("x", "y", data=self.df, truncate=True) grid, _, _ = p.fit_regression() nt.assert_equal(grid.min(), self.df.x.min()) nt.assert_equal(grid.max(), self.df.x.max()) class TestRegressionPlots(PlotTestCase): rs = np.random.RandomState(56) df = pd.DataFrame(dict(x=rs.randn(90), y=rs.randn(90) + 5, z=rs.randint(0, 1, 90), g=np.repeat(list("abc"), 30), h=np.tile(list("xy"), 45), u=np.tile(np.arange(6), 15))) bw_err = rs.randn(6)[df.u.values] df.y += bw_err def test_regplot_basic(self): f, ax = plt.subplots() lm.regplot("x", "y", self.df) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) def test_regplot_selective(self): f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, scatter=False, ax=ax) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 1) ax.clear() f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, fit_reg=False) nt.assert_equal(len(ax.lines), 0) nt.assert_equal(len(ax.collections), 1) ax.clear() f, ax = plt.subplots() ax = lm.regplot("x", "y", self.df, ci=None) nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 1) ax.clear() def test_regplot_scatter_kws_alpha(self): f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_is(ax.collections[0]._alpha, None) nt.assert_equal(ax.collections[0]._facecolors[0, 3], 0.5) f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_equal(ax.collections[0]._alpha, 0.8) f, ax = plt.subplots() color = np.array([[0.3, 0.8, 0.5]]) ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color, 'alpha': 0.4}) nt.assert_equal(ax.collections[0]._alpha, 0.4) f, ax = plt.subplots() color = 'r' ax = lm.regplot("x", "y", self.df, scatter_kws={'color': color}) nt.assert_equal(ax.collections[0]._alpha, 0.8) def test_regplot_binned(self): ax = lm.regplot("x", "y", self.df, x_bins=5) nt.assert_equal(len(ax.lines), 6) nt.assert_equal(len(ax.collections), 2) def test_lmplot_basic(self): g = lm.lmplot("x", "y", self.df) ax = g.axes[0, 0] nt.assert_equal(len(ax.lines), 1) nt.assert_equal(len(ax.collections), 2) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.df.x) npt.assert_array_equal(y, self.df.y) def test_lmplot_hue(self): g = lm.lmplot("x", "y", data=self.df, hue="h") ax = g.axes[0, 0] nt.assert_equal(len(ax.lines), 2) nt.assert_equal(len(ax.collections), 4) def test_lmplot_markers(self): g1 = lm.lmplot("x", "y", data=self.df, hue="h", markers="s") nt.assert_equal(g1.hue_kws, {"marker": ["s", "s"]}) g2 = lm.lmplot("x", "y", data=self.df, hue="h", markers=["o", "s"]) nt.assert_equal(g2.hue_kws, {"marker": ["o", "s"]}) with nt.assert_raises(ValueError): lm.lmplot("x", "y", data=self.df, hue="h", markers=["o", "s", "d"]) def test_lmplot_marker_linewidths(self): if mpl.__version__ == "1.4.2": raise SkipTest g = lm.lmplot("x", "y", data=self.df, hue="h", fit_reg=False, markers=["o", "+"]) c = g.axes[0, 0].collections nt.assert_equal(c[0].get_linewidths()[0], 0) rclw = mpl.rcParams["lines.linewidth"] nt.assert_equal(c[1].get_linewidths()[0], rclw) def test_lmplot_facets(self): g = lm.lmplot("x", "y", data=self.df, row="g", col="h") nt.assert_equal(g.axes.shape, (3, 2)) g = lm.lmplot("x", "y", data=self.df, col="u", col_wrap=4) nt.assert_equal(g.axes.shape, (6,)) g = lm.lmplot("x", "y", data=self.df, hue="h", col="u") nt.assert_equal(g.axes.shape, (1, 6)) def test_lmplot_hue_col_nolegend(self): g = lm.lmplot("x", "y", data=self.df, col="h", hue="h") nt.assert_is(g._legend, None) def test_lmplot_scatter_kws(self): g = lm.lmplot("x", "y", hue="h", data=self.df, ci=None) red_scatter, blue_scatter = g.axes[0, 0].collections red, blue = color_palette(n_colors=2) npt.assert_array_equal(red, red_scatter.get_facecolors()[0, :3]) npt.assert_array_equal(blue, blue_scatter.get_facecolors()[0, :3]) def test_residplot(self): x, y = self.df.x, self.df.y ax = lm.residplot(x, y) resid = y - np.polyval(np.polyfit(x, y, 1), x) x_plot, y_plot = ax.collections[0].get_offsets().T npt.assert_array_equal(x, x_plot) npt.assert_array_almost_equal(resid, y_plot) @skipif(_no_statsmodels) def test_residplot_lowess(self): ax = lm.residplot("x", "y", self.df, lowess=True) nt.assert_equal(len(ax.lines), 2) x, y = ax.lines[1].get_xydata().T npt.assert_array_equal(x, np.sort(self.df.x))
bsd-3-clause
michaelaye/vispy
vispy/testing/__init__.py
21
2415
# -*- coding: utf-8 -*- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. """ Testing ======= This module provides functions useful for running tests in vispy. Tests can be run in a few ways: * From Python, you can import ``vispy`` and do ``vispy.test()``. * From the source root, you can do ``make test`` which wraps to a call to ``python make test``. There are various diffrent testing "modes", including: * "full": run all tests. * any backend name (e.g., "glfw"): run application/GL tests using a specific backend. * "nobackend": run tests that do not require a backend. * "examples": run repo examples to check for errors and warnings. * "flake": check style errors. Examples get automatically tested unless they have a special comment toward the top ``# vispy: testskip``. Examples that should be tested should be formatted so that 1) a ``Canvas`` class is defined, or a ``canvas`` class is instantiated; and 2) the ``app.run()`` call is protected by a check if ``__name__ == "__main__"``. This makes it so that the event loop is not started when running examples in the test suite -- the test suite instead manually updates the canvas (using ``app.process_events()``) for under one second to ensure that things like timer events are processed. For examples on how to test various bits of functionality (e.g., application functionality, or drawing things with OpenGL), it's best to look at existing examples in the test suite. The code base gets automatically tested by Travis-CI (Linux) and AppVeyor (Windows) on Python 2.6, 2.7, 3.4. There are multiple testing modes that use e.g. full dependencies, minimal dependencies, etc. See ``.travis.yml`` to determine what automatic tests are run. """ from ._testing import (SkipTest, requires_application, requires_ipython, # noqa requires_img_lib, # noqa has_backend, requires_pyopengl, # noqa requires_scipy, has_matplotlib, # noqa save_testing_image, TestingCanvas, has_pyopengl, # noqa run_tests_if_main, assert_is, assert_in, assert_not_in, assert_equal, assert_not_equal, assert_raises, assert_true, # noqa raises) # noqa from ._runners import test # noqa
bsd-3-clause
hsiaoyi0504/scikit-learn
examples/linear_model/plot_sgd_penalties.py
249
1563
""" ============== SGD: Penalties ============== Plot the contours of the three penalties. All of the above are supported by :class:`sklearn.linear_model.stochastic_gradient`. """ from __future__ import division print(__doc__) import numpy as np import matplotlib.pyplot as plt def l1(xs): return np.array([np.sqrt((1 - np.sqrt(x ** 2.0)) ** 2.0) for x in xs]) def l2(xs): return np.array([np.sqrt(1.0 - x ** 2.0) for x in xs]) def el(xs, z): return np.array([(2 - 2 * x - 2 * z + 4 * x * z - (4 * z ** 2 - 8 * x * z ** 2 + 8 * x ** 2 * z ** 2 - 16 * x ** 2 * z ** 3 + 8 * x * z ** 3 + 4 * x ** 2 * z ** 4) ** (1. / 2) - 2 * x * z ** 2) / (2 - 4 * z) for x in xs]) def cross(ext): plt.plot([-ext, ext], [0, 0], "k-") plt.plot([0, 0], [-ext, ext], "k-") xs = np.linspace(0, 1, 100) alpha = 0.501 # 0.5 division throuh zero cross(1.2) plt.plot(xs, l1(xs), "r-", label="L1") plt.plot(xs, -1.0 * l1(xs), "r-") plt.plot(-1 * xs, l1(xs), "r-") plt.plot(-1 * xs, -1.0 * l1(xs), "r-") plt.plot(xs, l2(xs), "b-", label="L2") plt.plot(xs, -1.0 * l2(xs), "b-") plt.plot(-1 * xs, l2(xs), "b-") plt.plot(-1 * xs, -1.0 * l2(xs), "b-") plt.plot(xs, el(xs, alpha), "y-", label="Elastic Net") plt.plot(xs, -1.0 * el(xs, alpha), "y-") plt.plot(-1 * xs, el(xs, alpha), "y-") plt.plot(-1 * xs, -1.0 * el(xs, alpha), "y-") plt.xlabel(r"$w_0$") plt.ylabel(r"$w_1$") plt.legend() plt.axis("equal") plt.show()
bsd-3-clause
keir-rex/zipline
zipline/history/history_container.py
18
33931
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from bisect import insort_left from collections import namedtuple from itertools import groupby, product import logbook import numpy as np import pandas as pd from six import itervalues, iteritems, iterkeys from . history import HistorySpec from zipline.finance.trading import with_environment from zipline.utils.data import RollingPanel, _ensure_index from zipline.utils.munge import ffill, bfill logger = logbook.Logger('History Container') # The closing price is referred to by multiple names, # allow both for price rollover logic etc. CLOSING_PRICE_FIELDS = frozenset({'price', 'close_price'}) def ffill_buffer_from_prior_values(freq, field, buffer_frame, digest_frame, pv_frame, raw=False): """ Forward-fill a buffer frame, falling back to the end-of-period values of a digest frame if the buffer frame has leading NaNs. """ # convert to ndarray if necessary digest_values = digest_frame if raw and isinstance(digest_frame, pd.DataFrame): digest_values = digest_frame.values buffer_values = buffer_frame if raw and isinstance(buffer_frame, pd.DataFrame): buffer_values = buffer_frame.values nan_sids = pd.isnull(buffer_values[0]) if np.any(nan_sids) and len(digest_values): # If we have any leading nans in the buffer and we have a non-empty # digest frame, use the oldest digest values as the initial buffer # values. buffer_values[0, nan_sids] = digest_values[-1, nan_sids] nan_sids = pd.isnull(buffer_values[0]) if np.any(nan_sids): # If we still have leading nans, fall back to the last known values # from before the digest. key_loc = pv_frame.index.get_loc((freq.freq_str, field)) filler = pv_frame.values[key_loc, nan_sids] buffer_values[0, nan_sids] = filler if raw: filled = ffill(buffer_values) return filled return buffer_frame.ffill() def ffill_digest_frame_from_prior_values(freq, field, digest_frame, pv_frame, raw=False): """ Forward-fill a digest frame, falling back to the last known prior values if necessary. """ # convert to ndarray if necessary values = digest_frame if raw and isinstance(digest_frame, pd.DataFrame): values = digest_frame.values nan_sids = pd.isnull(values[0]) if np.any(nan_sids): # If we have any leading nans in the frame, use values from pv_frame to # seed values for those sids. key_loc = pv_frame.index.get_loc((freq.freq_str, field)) filler = pv_frame.values[key_loc, nan_sids] values[0, nan_sids] = filler if raw: filled = ffill(values) return filled return digest_frame.ffill() def freq_str_and_bar_count(history_spec): """ Helper for getting the frequency string and bar count from a history spec. """ return (history_spec.frequency.freq_str, history_spec.bar_count) @with_environment() def next_bar(spec, env): """ Returns a function that will return the next bar for a given datetime. """ if spec.frequency.unit_str == 'd': if spec.frequency.data_frequency == 'minute': return lambda dt: env.get_open_and_close( env.next_trading_day(dt), )[1] else: return env.next_trading_day else: return env.next_market_minute def compute_largest_specs(history_specs): """ Maps a Frequency to the largest HistorySpec at that frequency from an iterable of HistorySpecs. """ return {key: max(group, key=lambda f: f.bar_count) for key, group in groupby( sorted(history_specs, key=freq_str_and_bar_count), key=lambda spec: spec.frequency)} # tuples to store a change to the shape of a HistoryContainer FrequencyDelta = namedtuple( 'FrequencyDelta', ['freq', 'buffer_delta'], ) LengthDelta = namedtuple( 'LengthDelta', ['freq', 'delta'], ) HistoryContainerDeltaSuper = namedtuple( 'HistoryContainerDelta', ['field', 'frequency_delta', 'length_delta'], ) class HistoryContainerDelta(HistoryContainerDeltaSuper): """ A class representing a resize of the history container. """ def __new__(cls, field=None, frequency_delta=None, length_delta=None): """ field is a new field that was added. frequency is a FrequencyDelta representing a new frequency was added. length is a bar LengthDelta which is a frequency and a bar_count. If any field is None, then no change occurred of that type. """ return super(HistoryContainerDelta, cls).__new__( cls, field, frequency_delta, length_delta, ) @property def empty(self): """ Checks if the delta is empty. """ return (self.field is None and self.frequency_delta is None and self.length_delta is None) def normalize_to_data_freq(data_frequency, dt): if data_frequency == 'minute': return dt return pd.tslib.normalize_date(dt) class HistoryContainer(object): """ Container for all history panels and frames used by an algoscript. To be used internally by TradingAlgorithm, but *not* passed directly to the algorithm. Entry point for the algoscript is the result of `get_history`. """ VALID_FIELDS = { 'price', 'open_price', 'volume', 'high', 'low', 'close_price', } def __init__(self, history_specs, initial_sids, initial_dt, data_frequency, bar_data=None): """ A container to hold a rolling window of historical data within a user's algorithm. Args: history_specs (dict[Frequency:HistorySpec]): The starting history specs that this container should be able to service. initial_sids (set[Asset or Int]): The starting sids to watch. initial_dt (datetime): The datetime to start collecting history from. bar_data (BarData): If this container is being constructed during handle_data, this is the BarData for the current bar to fill the buffer with. If this is constructed elsewhere, it is None. Returns: An instance of a new HistoryContainer """ # History specs to be served by this container. self.history_specs = history_specs self.largest_specs = compute_largest_specs( itervalues(self.history_specs) ) # The set of fields specified by all history specs self.fields = pd.Index( sorted(set(spec.field for spec in itervalues(history_specs))) ) self.sids = pd.Index( sorted(set(initial_sids or [])) ) self.data_frequency = data_frequency initial_dt = normalize_to_data_freq(self.data_frequency, initial_dt) # This panel contains raw minutes for periods that haven't been fully # completed. When a frequency period rolls over, these minutes are # digested using some sort of aggregation call on the panel (e.g. `sum` # for volume, `max` for high, `min` for low, etc.). self.buffer_panel = self.create_buffer_panel(initial_dt, bar_data) # Dictionaries with Frequency objects as keys. self.digest_panels, self.cur_window_starts, self.cur_window_closes = \ self.create_digest_panels(initial_sids, initial_dt) # Helps prop up the prior day panel against having a nan, when the data # has been seen. self.last_known_prior_values = pd.DataFrame( data=None, index=self.prior_values_index, columns=self.prior_values_columns, # Note: For bizarre "intricacies of the spaghetti that is pandas # indexing logic" reasons, setting this dtype prevents indexing # errors in update_last_known_values. This is safe for the time # being because our only forward-fillable fields are floats. If we # need to add a non-float-typed forward-fillable field, then we may # find ourselves having to track down and fix a pandas bug. dtype=np.float64, ) _ffillable_fields = None @property def ffillable_fields(self): if self._ffillable_fields is None: fillables = self.fields.intersection(HistorySpec.FORWARD_FILLABLE) self._ffillable_fields = fillables return self._ffillable_fields @property def prior_values_index(self): index_values = list( product( (freq.freq_str for freq in self.unique_frequencies), # Only store prior values for forward-fillable fields. self.ffillable_fields, ) ) if index_values: return pd.MultiIndex.from_tuples(index_values) else: # MultiIndex doesn't gracefully support empty input, so we return # an empty regular Index if we have values. return pd.Index(index_values) @property def prior_values_columns(self): return self.sids @property def all_panels(self): yield self.buffer_panel for panel in self.digest_panels.values(): yield panel @property def unique_frequencies(self): """ Return an iterator over all the unique frequencies serviced by this container. """ return iterkeys(self.largest_specs) @with_environment() def _add_frequency(self, spec, dt, data, env=None): """ Adds a new frequency to the container. This reshapes the buffer_panel if needed. """ freq = spec.frequency self.largest_specs[freq] = spec new_buffer_len = 0 if freq.max_bars > self.buffer_panel.window_length: # More bars need to be held in the buffer_panel to support this # freq if freq.data_frequency \ != self.buffer_spec.frequency.data_frequency: # If the data_frequencies are not the same, then we need to # create a fresh buffer. self.buffer_panel = self.create_buffer_panel( dt, bar_data=data, ) new_buffer_len = None else: # The frequencies are the same, we just need to add more bars. self._resize_panel( self.buffer_panel, freq.max_bars, dt, self.buffer_spec.frequency, ) new_buffer_len = freq.max_minutes # update the current buffer_spec to reflect the new lenght. self.buffer_spec.bar_count = new_buffer_len + 1 if spec.bar_count > 1: # This spec has more than one bar, construct a digest panel for it. self.digest_panels[freq] = self._create_digest_panel( dt, spec=spec, env=env, ) else: self.cur_window_starts[freq] = dt self.cur_window_closes[freq] = freq.window_close( self.cur_window_starts[freq] ) self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) return FrequencyDelta(freq, new_buffer_len) def _add_field(self, field): """ Adds a new field to the container. """ # self.fields is already sorted, so we just need to insert the new # field in the correct index. ls = list(self.fields) insort_left(ls, field) self.fields = pd.Index(ls) # unset fillable fields cache self._ffillable_fields = None self._realign_fields() self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) return field @with_environment() def _add_length(self, spec, dt, env=None): """ Increases the length of the digest panel for spec.frequency. If this does not have a panel, and one is needed; a digest panel will be constructed. """ old_count = self.largest_specs[spec.frequency].bar_count self.largest_specs[spec.frequency] = spec delta = spec.bar_count - old_count panel = self.digest_panels.get(spec.frequency) if panel is None: # The old length for this frequency was 1 bar, meaning no digest # panel was held. We must construct a new one here. panel = self._create_digest_panel( dt, spec=spec, env=env, ) else: self._resize_panel( panel, spec.bar_count - 1, dt, freq=spec.frequency, env=env, ) self.digest_panels[spec.frequency] = panel return LengthDelta(spec.frequency, delta) @with_environment() def _resize_panel(self, panel, size, dt, freq, env=None): """ Resizes a panel, fills the date_buf with the correct values. """ # This is the oldest datetime that will be shown in the current window # of the panel. oldest_dt = pd.Timestamp(panel.start_date, tz='utc',) delta = size - panel.window_length # Construct the missing dates. missing_dts = self._create_window_date_buf( delta, freq.unit_str, freq.data_frequency, oldest_dt, ) panel.extend_back(missing_dts) @with_environment() def _create_window_date_buf(self, window, unit_str, data_frequency, dt, env=None): """ Creates a window length date_buf looking backwards from dt. """ if unit_str == 'd': # Get the properly key'd datetime64 out of the pandas Timestamp if data_frequency != 'daily': arr = env.open_close_window( dt, window, offset=-window, ).market_close.astype('datetime64[ns]').values else: arr = env.open_close_window( dt, window, offset=-window, ).index.values return arr else: return env.market_minute_window( env.previous_market_minute(dt), window, step=-1, )[::-1].values @with_environment() def _create_panel(self, dt, spec, env=None): """ Constructs a rolling panel with a properly aligned date_buf. """ dt = normalize_to_data_freq(spec.frequency.data_frequency, dt) window = spec.bar_count - 1 date_buf = self._create_window_date_buf( window, spec.frequency.unit_str, spec.frequency.data_frequency, dt, env=env, ) panel = RollingPanel( window=window, items=self.fields, sids=self.sids, initial_dates=date_buf, ) return panel @with_environment() def _create_digest_panel(self, dt, spec, window_starts=None, window_closes=None, env=None): """ Creates a digest panel, setting the window_starts and window_closes. If window_starts or window_closes are None, then self.cur_window_starts or self.cur_window_closes will be used. """ freq = spec.frequency window_starts = window_starts if window_starts is not None \ else self.cur_window_starts window_closes = window_closes if window_closes is not None \ else self.cur_window_closes window_starts[freq] = freq.normalize(dt) window_closes[freq] = freq.window_close(window_starts[freq]) return self._create_panel(dt, spec, env=env) def ensure_spec(self, spec, dt, bar_data): """ Ensure that this container has enough space to hold the data for the given spec. This returns a HistoryContainerDelta to represent the changes in shape that the container made to support the new HistorySpec. """ updated = {} if spec.field not in self.fields: updated['field'] = self._add_field(spec.field) if spec.frequency not in self.largest_specs: updated['frequency_delta'] = self._add_frequency( spec, dt, bar_data, ) if spec.bar_count > self.largest_specs[spec.frequency].bar_count: updated['length_delta'] = self._add_length(spec, dt) return HistoryContainerDelta(**updated) def add_sids(self, to_add): """ Add new sids to the container. """ self.sids = pd.Index( sorted(self.sids.union(_ensure_index(to_add))), ) self._realign_sids() def drop_sids(self, to_drop): """ Remove sids from the container. """ self.sids = pd.Index( sorted(self.sids.difference(_ensure_index(to_drop))), ) self._realign_sids() def _realign_sids(self): """ Realign our constituent panels after adding or removing sids. """ self.last_known_prior_values = self.last_known_prior_values.reindex( columns=self.sids, ) for panel in self.all_panels: panel.set_minor_axis(self.sids) def _realign_fields(self): self.last_known_prior_values = self.last_known_prior_values.reindex( index=self.prior_values_index, ) for panel in self.all_panels: panel.set_items(self.fields) @with_environment() def create_digest_panels(self, initial_sids, initial_dt, env=None): """ Initialize a RollingPanel for each unique panel frequency being stored by this container. Each RollingPanel pre-allocates enough storage space to service the highest bar-count of any history call that it serves. """ # Map from frequency -> first/last minute of the next digest to be # rolled for that frequency. first_window_starts = {} first_window_closes = {} # Map from frequency -> digest_panels. panels = {} for freq, largest_spec in iteritems(self.largest_specs): if largest_spec.bar_count == 1: # No need to allocate a digest panel; this frequency will only # ever use data drawn from self.buffer_panel. first_window_starts[freq] = freq.normalize(initial_dt) first_window_closes[freq] = freq.window_close( first_window_starts[freq] ) continue dt = initial_dt rp = self._create_digest_panel( dt, spec=largest_spec, window_starts=first_window_starts, window_closes=first_window_closes, env=env, ) panels[freq] = rp return panels, first_window_starts, first_window_closes def create_buffer_panel(self, initial_dt, bar_data): """ Initialize a RollingPanel containing enough minutes to service all our frequencies. """ max_bars_needed = max( freq.max_bars for freq in self.unique_frequencies ) freq = '1m' if self.data_frequency == 'minute' else '1d' spec = HistorySpec( max_bars_needed + 1, freq, None, None, self.data_frequency, ) rp = self._create_panel( initial_dt, spec, ) self.buffer_spec = spec if bar_data is not None: frame = self.frame_from_bardata(bar_data, initial_dt) rp.add_frame(initial_dt, frame) return rp def convert_columns(self, values): """ If columns have a specific type you want to enforce, overwrite this method and return the transformed values. """ return values def digest_bars(self, history_spec, do_ffill): """ Get the last (history_spec.bar_count - 1) bars from self.digest_panel for the requested HistorySpec. """ bar_count = history_spec.bar_count if bar_count == 1: # slicing with [1 - bar_count:] doesn't work when bar_count == 1, # so special-casing this. res = pd.DataFrame(index=[], columns=self.sids, dtype=float) return res.values, res.index field = history_spec.field # Panel axes are (field, dates, sids). We want just the entries for # the requested field, the last (bar_count - 1) data points, and all # sids. digest_panel = self.digest_panels[history_spec.frequency] frame = digest_panel.get_current(field, raw=True) if do_ffill: # Do forward-filling *before* truncating down to the requested # number of bars. This protects us from losing data if an illiquid # stock has a gap in its price history. filled = ffill_digest_frame_from_prior_values( history_spec.frequency, history_spec.field, frame, self.last_known_prior_values, raw=True # Truncate only after we've forward-filled ) indexer = slice(1 - bar_count, None) return filled[indexer], digest_panel.current_dates()[indexer] else: indexer = slice(1 - bar_count, None) return frame[indexer, :], digest_panel.current_dates()[indexer] def buffer_panel_minutes(self, buffer_panel, earliest_minute=None, latest_minute=None, raw=False): """ Get the minutes in @buffer_panel between @earliest_minute and @latest_minute, inclusive. @buffer_panel can be a RollingPanel or a plain Panel. If a RollingPanel is supplied, we call `get_current` to extract a Panel object. If no value is specified for @earliest_minute, use all the minutes we have up until @latest minute. If no value for @latest_minute is specified, use all values up until the latest minute. """ if isinstance(buffer_panel, RollingPanel): buffer_panel = buffer_panel.get_current(start=earliest_minute, end=latest_minute, raw=raw) return buffer_panel # Using .ix here rather than .loc because loc requires that the keys # are actually in the index, whereas .ix returns all the values between # earliest_minute and latest_minute, which is what we want. return buffer_panel.ix[:, earliest_minute:latest_minute, :] def frame_from_bardata(self, data, algo_dt): """ Create a DataFrame from the given BarData and algo dt. """ data = data._data frame_data = np.empty((len(self.fields), len(self.sids))) * np.nan for j, sid in enumerate(self.sids): sid_data = data.get(sid) if not sid_data: continue if algo_dt != sid_data['dt']: continue for i, field in enumerate(self.fields): frame_data[i, j] = sid_data.get(field, np.nan) return pd.DataFrame( frame_data, index=self.fields.copy(), columns=self.sids.copy(), ) def update(self, data, algo_dt): """ Takes the bar at @algo_dt's @data, checks to see if we need to roll any new digests, then adds new data to the buffer panel. """ frame = self.frame_from_bardata(data, algo_dt) self.update_last_known_values() self.update_digest_panels(algo_dt, self.buffer_panel) self.buffer_panel.add_frame(algo_dt, frame) def update_digest_panels(self, algo_dt, buffer_panel, freq_filter=None): """ Check whether @algo_dt is greater than cur_window_close for any of our frequencies. If so, roll a digest for that frequency using data drawn from @buffer panel and insert it into the appropriate digest panels. If @freq_filter is specified, only use the given data to update frequencies on which the filter returns True. This takes `buffer_panel` as an argument rather than using self.buffer_panel so that this method can be used to add supplemental data from an external source. """ for frequency in filter(freq_filter, self.unique_frequencies): # We don't keep a digest panel if we only have a length-1 history # spec for a given frequency digest_panel = self.digest_panels.get(frequency, None) while algo_dt > self.cur_window_closes[frequency]: earliest_minute = self.cur_window_starts[frequency] latest_minute = self.cur_window_closes[frequency] minutes_to_process = self.buffer_panel_minutes( buffer_panel, earliest_minute=earliest_minute, latest_minute=latest_minute, raw=True ) if digest_panel is not None: # Create a digest from minutes_to_process and add it to # digest_panel. digest_frame = self.create_new_digest_frame( minutes_to_process, self.fields, self.sids ) digest_panel.add_frame( latest_minute, digest_frame, self.fields, self.sids ) # Update panel start/close for this frequency. self.cur_window_starts[frequency] = \ frequency.next_window_start(latest_minute) self.cur_window_closes[frequency] = \ frequency.window_close(self.cur_window_starts[frequency]) def frame_to_series(self, field, frame, columns=None): """ Convert a frame with a DatetimeIndex and sid columns into a series with a sid index, using the aggregator defined by the given field. """ if isinstance(frame, pd.DataFrame): columns = frame.columns frame = frame.values if not len(frame): return pd.Series( data=(0 if field == 'volume' else np.nan), index=columns, ).values if field in ['price', 'close_price']: # shortcircuit for full last row vals = frame[-1] if np.all(~np.isnan(vals)): return vals return ffill(frame)[-1] elif field == 'open_price': return bfill(frame)[0] elif field == 'volume': return np.nansum(frame, axis=0) elif field == 'high': return np.nanmax(frame, axis=0) elif field == 'low': return np.nanmin(frame, axis=0) else: raise ValueError("Unknown field {}".format(field)) def aggregate_ohlcv_panel(self, fields, ohlcv_panel, items=None, minor_axis=None): """ Convert an OHLCV Panel into a DataFrame by aggregating each field's frame into a Series. """ vals = ohlcv_panel if isinstance(ohlcv_panel, pd.Panel): vals = ohlcv_panel.values items = ohlcv_panel.items minor_axis = ohlcv_panel.minor_axis data = [ self.frame_to_series( field, vals[items.get_loc(field)], minor_axis ) for field in fields ] return np.array(data) def create_new_digest_frame(self, buffer_minutes, items=None, minor_axis=None): """ Package up minutes in @buffer_minutes into a single digest frame. """ return self.aggregate_ohlcv_panel( self.fields, buffer_minutes, items=items, minor_axis=minor_axis ) def update_last_known_values(self): """ Store the non-NaN values from our oldest frame in each frequency. """ ffillable = self.ffillable_fields if not len(ffillable): return for frequency in self.unique_frequencies: digest_panel = self.digest_panels.get(frequency, None) if digest_panel: oldest_known_values = digest_panel.oldest_frame(raw=True) else: oldest_known_values = self.buffer_panel.oldest_frame(raw=True) oldest_vals = oldest_known_values oldest_columns = self.fields for field in ffillable: f_idx = oldest_columns.get_loc(field) field_vals = oldest_vals[f_idx] # isnan would be fast, possible to use? non_nan_sids = np.where(pd.notnull(field_vals)) key = (frequency.freq_str, field) key_loc = self.last_known_prior_values.index.get_loc(key) self.last_known_prior_values.values[ key_loc, non_nan_sids ] = field_vals[non_nan_sids] def get_history(self, history_spec, algo_dt): """ Main API used by the algoscript is mapped to this function. Selects from the overarching history panel the values for the @history_spec at the given @algo_dt. """ field = history_spec.field do_ffill = history_spec.ffill # Get our stored values from periods prior to the current period. digest_frame, index = self.digest_bars(history_spec, do_ffill) # Get minutes from our buffer panel to build the last row of the # returned frame. buffer_panel = self.buffer_panel_minutes( self.buffer_panel, earliest_minute=self.cur_window_starts[history_spec.frequency], raw=True ) buffer_frame = buffer_panel[self.fields.get_loc(field)] if do_ffill: buffer_frame = ffill_buffer_from_prior_values( history_spec.frequency, field, buffer_frame, digest_frame, self.last_known_prior_values, raw=True ) last_period = self.frame_to_series(field, buffer_frame, self.sids) return fast_build_history_output(digest_frame, last_period, algo_dt, index=index, columns=self.sids) def fast_build_history_output(buffer_frame, last_period, algo_dt, index=None, columns=None): """ Optimized concatenation of DataFrame and Series for use in HistoryContainer.get_history. Relies on the fact that the input arrays have compatible shapes. """ buffer_values = buffer_frame if isinstance(buffer_frame, pd.DataFrame): buffer_values = buffer_frame.values index = buffer_frame.index columns = buffer_frame.columns return pd.DataFrame( data=np.vstack( [ buffer_values, last_period, ] ), index=fast_append_date_to_index( index, pd.Timestamp(algo_dt) ), columns=columns, ) def fast_append_date_to_index(index, timestamp): """ Append a timestamp to a DatetimeIndex. DatetimeIndex.append does not appear to work. """ return pd.DatetimeIndex( np.hstack( [ index.values, [timestamp.asm8], ] ), tz='UTC', )
apache-2.0
elaeon/breast_cancer_networks
sankey/script.py
2
8969
from optparse import OptionParser import pandas as pd import json ontology_term = {} ontology_gene = {} node_index = {} def read_gen_ontology(): df = pd.read_csv(filepath_or_buffer="gen_ontology.csv") return df def read_ft(): ft = set([]) with open("TFs.txt", "r") as f: for line in f.readlines(): ft.add(line.strip("\n")) return ft def read_ft_im(): df = pd.read_csv(filepath_or_buffer="regulon_2WsC_cy40.sif", sep='\t') return df def read_firma_molecular(): df = pd.read_csv(filepath_or_buffer="ms_k_sorted.csv") return df def read_genes_no_diferenciados(): df = pd.read_csv(filepath_or_buffer="etc_k_sorted.csv") return df def clean_nodes_links(nodes, links): indexes = set([link["source"] for link in links]) indexes = indexes.union(set([link["target"] for link in links])) n_nodes = [] n_links = [] other_index = {} for n_index, index in enumerate(indexes): other_index[index] = n_index n_nodes.append(nodes[index]) for values in links: r = {} try: s = {"source": other_index[values["source"]]} except KeyError: s = {"source": values["source"]} try: t = {"target": other_index[values["target"]]} except KeyError: s = {"target": values["target"]} r.update(s) r.update(t) r["value"] = values["value"] n_links.append(r) return n_nodes, n_links def unique(data, f=lambda v:"{}{}".format(v["source"], v["target"])): from collections import OrderedDict unique_data = OrderedDict() for value in data: key = f(value) if not key in unique_data: unique_data[key] = {"source": value["source"], "target": value["target"], "value": value["value"]} return unique_data.values() def join(left, right): from collections import defaultdict join_data = [] right_values = {right_value["source"]: right_value for right_value in right} for left_value in left: try: right_value = right_values[left_value["source"]] join_data.append({ "source": left_value["target"], "target": right_value["target"], "value": right_value["value"]}) except KeyError: pass #join_data.append({ # "source": left_value["target"], # "target": node_index["UNKNOW"], # "value": left_value["value"]}) return join_data def get_linked(search_space, links, length=0, im=10): import networkx as nx G = nx.DiGraph() edges = [(link["source"], link["target"], link["value"]) for link in links] G.add_weighted_edges_from(edges) def only_paths_of_size(paths): return [edges for edges in paths if len(edges) >= length] uv_count = {} linked = [] search_space_unique = unique(search_space, f=lambda v:"{}".format(v["source"])) for link in search_space_unique: shorted = nx.shortest_path(G, source=link["source"]) paths = only_paths_of_size(list(shorted.values())) for edges in paths: vertices = list(zip(edges, edges[1:])) last_u, last_v = vertices[-1] if G[last_u][last_v]["weight"] >= im: for u, v in vertices: key = "{}{}".format(u,v) if not key in uv_count: linked.append({ "source": u, "target": v, "value": None}) uv_count[key] = 0 uv_count[key] += 1 for link in linked: u = link["source"] v = link["target"] key = "{}{}".format(u,v) link["value"] = uv_count.get(key, G[u][v]["weight"]) return linked def ontology_graph(name, search_space_ontology): data = [] for gene, ontologies in sorted(search_space_ontology.items(), key=lambda x: x[0]): for key_ontology in ontologies[name]: term = ontology_term[key_ontology] data.append({"source": node_index[gene], "target": node_index[term], "value": 1}) return data def firma_molecular_graph(fm, gnd, ft_im): data = [] fm_set = set(fm["name"]) gnd_set = set(gnd["name"]) for i, row in ft_im.iterrows(): if row["blanco"] in fm_set: target = "Firma Molecular" elif row["blanco"] in gnd_set: target = "Genes no diferenciados" else: continue data.append({ "source": node_index[row["ft"]], "target": node_index[target], "value": abs(row["im"])}) return data def run(options): df = read_gen_ontology() ft = read_ft() df = df.drop_duplicates(subset="genesym") fm = read_firma_molecular() gnd = read_genes_no_diferenciados() ft_im = read_ft_im() gene_ont = ["Gene Ontology Biological Process", "Gene Ontology Cellular Component", "Gene Ontology Molecular Function"] gene_ont_abbrv = {"Gene Ontology Biological Process": "gbp", "Gene Ontology Cellular Component": "gcc", "Gene Ontology Molecular Function": "gmf"} df_ft = df[df["genesym"].isin(ft)] gene_ontology = {} ontologies = {} ontology_term_list = set([]) columns = ["genesym"] + gene_ont for i, row in df_ft[columns].iterrows(): for ontology in gene_ont: for go in row[ontology].split("///"): go_terms = go.split("//") if len(go_terms) >= 2: go_id = go_terms.pop(0) key = go_id.strip() ontology_term.setdefault(key, []) ontologies.setdefault(ontology, set([])) ontology_gene.setdefault(key, []) gene_ontology.setdefault(row["genesym"], dict(zip(gene_ont, [[], [], []]))) ontologies[ontology].add(key) gene_ontology[row["genesym"]][ontology].append(key) ontology_gene[key].append(row["genesym"]) term = go_terms[0].strip() ontology_term[key] = gene_ont_abbrv[ontology]+":"+term ontology_term_list.add(gene_ont_abbrv[ontology]+":"+term) fm_gnd_set = set(list(fm["name"]) + list(gnd["name"])) gene_set = set(gene_ontology.keys()) search_space_ontology = {} for gene in gene_set.intersection(fm_gnd_set): search_space_ontology[gene] = gene_ontology[gene] s_nodes = set([]) nodes = sorted(list(s_nodes.union(set(["UNKNOW"]), ft, ontology_term_list, fm_gnd_set, set(["Firma Molecular", "Genes no diferenciados"])))) for i, term in enumerate(nodes): if not term in node_index: node_index[term] = i pipeline = [] if options.cellular_component: pipeline.append(ontology_graph("Gene Ontology Cellular Component", search_space_ontology)) if options.biological_process: pipeline.append(ontology_graph("Gene Ontology Biological Process", search_space_ontology)) if options.molecular_function: pipeline.append(ontology_graph("Gene Ontology Molecular Function", search_space_ontology)) pipeline.append(firma_molecular_graph(fm, gnd, ft_im)) links = [v for v in pipeline[0]] for p1, p2 in zip(pipeline, pipeline[1:]): for v in join(p1, p2): links.append(v) paths = get_linked(pipeline[0], links, length=len(pipeline)+1, im=options.im) print("PATHS", len(paths)) n_nodes, n_links = clean_nodes_links(nodes, paths) result = json_sankey(n_nodes, n_links, type_=options.type) with open("sankey.json", "w") as f: f.write(json.dumps(result)) def json_sankey(n_nodes, n_links, type_="normal"): if type_ == "normal": result = {"nodes": [{"name": node} for node in n_nodes], "links": n_links} elif type_ == "colors": result = {"nodes": [{"name": node, "id": node.lower().replace(" ", "_") + "_score"} for node in n_nodes], "links": n_links} return result class Test(object): im = 10 cellular_component = True biological_process = True type = "normal" def test(): options = Test() run(options) if __name__ == '__main__': parser = OptionParser("%prog [options]") parser.add_option("-c", "--cellular_component", action="store_true", default=False) parser.add_option("-b", "--biological_process", action="store_true", default=False) parser.add_option("-m", "--molecular_function", action="store_true", default=False) parser.add_option("-i", "--im", action="store", default=0, type='float') parser.add_option("-t", "--type", action="store", default="normal", type='string') options, args = parser.parse_args() run(options)
gpl-3.0
xubenben/scikit-learn
examples/datasets/plot_random_dataset.py
348
2254
""" ============================================== Plot randomly generated classification dataset ============================================== Plot several randomly generated 2D classification datasets. This example illustrates the :func:`datasets.make_classification` :func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles` functions. For ``make_classification``, three binary and two multi-class classification datasets are generated, with different numbers of informative features and clusters per class. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_gaussian_quantiles plt.figure(figsize=(8, 8)) plt.subplots_adjust(bottom=.05, top=.9, left=.05, right=.95) plt.subplot(321) plt.title("One informative feature, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(322) plt.title("Two informative features, one cluster per class", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(323) plt.title("Two informative features, two clusters per class", fontsize='small') X2, Y2 = make_classification(n_features=2, n_redundant=0, n_informative=2) plt.scatter(X2[:, 0], X2[:, 1], marker='o', c=Y2) plt.subplot(324) plt.title("Multi-class, two informative features, one cluster", fontsize='small') X1, Y1 = make_classification(n_features=2, n_redundant=0, n_informative=2, n_clusters_per_class=1, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(325) plt.title("Three blobs", fontsize='small') X1, Y1 = make_blobs(n_features=2, centers=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.subplot(326) plt.title("Gaussian divided into three quantiles", fontsize='small') X1, Y1 = make_gaussian_quantiles(n_features=2, n_classes=3) plt.scatter(X1[:, 0], X1[:, 1], marker='o', c=Y1) plt.show()
bsd-3-clause
fvinas/businessplots
businessplots/_text.py
1
1071
# -*- coding: utf-8 -*- from matplotlib.patches import Ellipse # TODO: add support for kwargs to customize text styles def text(ax, x, y, text, kind='rect'): if kind == 'rect': text_artist = ax.text(x, y, text, fontsize=15, bbox=dict(fc='white', ec='k', pad=7), horizontalalignment='center', verticalalignment='center') bbox = text_artist.get_window_extent(ax.figure.canvas.get_renderer()).transformed(ax.transData.inverted()) return bbox.height * 2.5 elif kind == 'ellipse': # a bit more complicated: we need to get the text width & height before adding the ellipse text_artist = ax.text(x, y, text, fontsize=15, horizontalalignment='center', verticalalignment='center', zorder=4) # get text bbox in axes coordinates (not in pixels) bbox = text_artist.get_window_extent(ax.figure.canvas.get_renderer()).transformed(ax.transData.inverted()) ax.add_artist(Ellipse(xy=[x, y], width=bbox.width * 1.8, height=bbox.height * 2.5, angle=0, fc='white', zorder=3)) return .5 * (bbox.height * 2.5)
mit
jason-neal/companion_simulations
obsolete/create_min_chi2_table.py
1
6369
#!/usr/bin/env python """create_min_chi2_table.py. Create Table of minimum Chi_2 values and save to a table. """ import argparse import os import sys import corner import matplotlib.pyplot as plt import pandas as pd import sqlalchemy as sa from joblib import Parallel, delayed from pandas.plotting import scatter_matrix import simulators from mingle.utilities.param_file import get_host_params from mingle.utilities.phoenix_utils import closest_model_params from mingle.utilities.scatter_corner import scatter_corner from mingle.utilities.db_utils import decompose_database_name def parse_args(args): """Take care of all the argparse stuff. :returns: the args """ parser = argparse.ArgumentParser(description='Minimum chi-squared table.') parser.add_argument('star', help='Star name') parser.add_argument('--suffix', help='Suffix to add to the file names.', default="") return parser.parse_args(args) def main(star, obsnum, chip, suffix="", echo=False): database = os.path.join(simulators.paths["output_dir"], star, "iam", "{0}-{1}_{2}_iam_chisqr_results{3}.db".format(star, obsnum, chip, suffix)) path, star, obsnum, chip = decompose_database_name(database) os.makedirs(os.path.join(path, "plots"), exist_ok=True) save_name = os.path.join(path, "{0}_iam_all_observation_min_chi2{1}.tsv".format(star, suffix)) teff, logg, fe_h = closest_model_params(*get_host_params(star)) params = {"path": path, "star": star, "obsnum": obsnum, "chip": chip, "teff": teff, "logg": logg, "fe_h": fe_h} # Hack to run from editor if os.getcwd().endswith("companion_simulations/bin"): database = "../" + database save_name = "../" + save_name if os.path.exists(database): engine = sa.create_engine('sqlite:///{0}'.format(database), echo=echo) else: raise IOError("Database does not exist.") table_names = engine.table_names() if len(table_names) == 1: tb_name = table_names[0] else: raise ValueError("Database has two many tables {0}".format(table_names)) query = """SELECT * FROM {0} WHERE (teff_1 = {1} AND logg_1 = {2} AND feh_1 = {3}) ORDER BY chi2 LIMIT 1 """.format(tb_name, params["teff"], params["logg"], params["fe_h"]) df = pd.read_sql(sa.text(query), engine) df["obsnum"] = obsnum df["chip"] = chip columns = ["obsnum", "chip", "teff_1", "logg_1", "feh_1", "teff_2", "logg_2", "feh_2", "alpha", "rv", "gamma", "chi2"] if os.path.exists(save_name): df.to_csv(save_name, columns=columns, sep='\t', mode="a", index=False, header=False) else: df.to_csv(save_name, columns=columns, sep='\t', mode="a", index=False, header=True) return save_name def scatter_plots(star, filename): """Load minimum chi2 table and make scatter plots across chips.""" df = pd.read_table(filename, sep="\t") df.loc[:, "chip"] = df.loc[:, "chip"].astype(int) fig, axes = plt.subplots(5, 2) subdf = df.loc[:, ["chip", "teff_2", "alpha", "rv", "gamma", "chi2"]] # "logg_2", "feh_2" scatter_matrix(subdf, alpha=1, figsize=(12, 12), diagonal='hist') plt.suptitle("{0} Observation/chip variations".format(star)) path, fname = os.path.split(filename) figname = os.path.join(path, "plots", "{0}_scatter.pdf".format(fname.split(".")[0])) plt.savefig(figname) figname = os.path.join(path, "plots", "{0}_scatter.png".format(fname.split(".")[0])) plt.savefig(figname) plt.close() def scatter_corner_plots(star, filename): """Load minimum chi2 table and make scatter plots across chips.""" df = pd.read_table(filename, sep="\t") df.loc[:, "chip"] = df.loc[:, "chip"].astype(int) fig, axes = plt.subplots(5, 2) subdf = df.loc[:, ["chip", "teff_2", "alpha", "rv", "gamma", "chi2"]] # "logg_2", "feh_2" scatter_corner(subdf, alpha=1, figsize=(12, 12), diagonal='hist', corner="lower") plt.suptitle("{0} Observation/chip variations".format(star)) path, fname = os.path.split(filename) figname = os.path.join(path, "plots", "{0}_scatter_corner.pdf".format(fname.split(".")[0])) plt.savefig(figname) figname = os.path.join(path, "plots", "{0}_scatter_corner.png".format(fname.split(".")[0])) plt.savefig(figname) plt.close() # Corner.corner def min_chi2_corner_plot(star, filename): df = pd.read_table(filename, sep="\t") df.loc[:, "chip"] = df.loc[:, "chip"].astype(int) subdf = df.loc[:, ["chip", "teff_2", "alpha", "rv", "gamma", "chi2"]] # "logg_2", "feh_2" corner.corner(subdf.values, labels=subdf.columns.values) plt.suptitle("{0} Observation/chip variations".format(star)) path, fname = os.path.split(filename) figname = os.path.join(path, "plots", "{0}_corner_corner.png".format(fname.split(".")[0])) plt.savefig(figname) corner.corner(subdf.values, labels=subdf.columns.values, plot_contours=False) plt.suptitle("{0} Observation/chip variations".format(star)) figname = os.path.join(path, "plots", "{0}_corner_contoured.png".format(fname.split(".")[0])) plt.savefig(figname) plt.close() # TODO common function to determine observations and chips for different stars (like here) if __name__ == "__main__": args = parse_args(sys.argv[1:]) star = args.star obs_nums = {"HD30501": ["1", "2a", "2b", "3"], "HD211847": ["1", "2"], "HD4747": ["1"], "HDSIM": ["1", "2", "3"], "HDSIM2": ["1", "2", "3"], "HDSIM3": ["1", "2", "3"]} chips = range(1, 5) def paralleled_main(star, obsnum): for chip in chips: try: save_name = main(star, obsnum, chip, suffix=args.suffix) except Exception as e: print(e) print("Table creation failed for {0}-{1}_{2}".format(star, obsnum, chip)) continue try: scatter_plots(star, save_name) scatter_corner_plots(star, save_name) min_chi2_corner_plot(star, save_name) except Exception as e: print(" Corner plots did not work.") raise e # Run in parallel star_obsnums = obsnums[star] Parallel(n_jobs=-1)(delayed(paralleled_main)(star, obsnum) for obsnum in star_obsnums)
mit
iandriver/RNA-sequence-tools
FPKM_Parsing/make_align_report.py
2
3390
import fnmatch import os import pandas as pd import cPickle as pickle from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt from collections import OrderedDict path = '/Volumes/Seq_data' result_file_names = ['results_SPC_d7','results_spc2_n2/results_Lane1_data','results_spc2_n2/results_Lane2_data','results_spc2_n2/results_Lane3_data','results_spc2_n2/results_Lane4_data'] basename = 'spc_d0_4_7' cell_list =[] align_dict =OrderedDict() align_dict['input_L_num'] = [] align_dict['mapped_L_num'] = [] align_dict['input_R_num'] = [] align_dict['mapped_R_num'] = [] align_dict['per_mapped'] = [] for rf in result_file_names: path_to_file = os.path.join(path, rf) for root, dirnames, filenames in os.walk(path_to_file): for filename in fnmatch.filter(filenames, 'align_summary.txt'): cell_name = (root.split('/')[-1]) file_title = (root.split('/')[-2]) if 'd7' in file_title: day_n = 'D7_pnx_' if cell_name[-1] == '_': repeat = '_2' else: repeat ='' if 'Lane1' in file_title or 'Lane2' in file_title: day_n = 'D0_ctrl_' elif 'Lane3' in file_title or 'Lane4' in file_title: day_n = 'D4_pnx_' if 'bulk' in cell_name: end_n = 'Human_bulk' elif '+' in cell_name or '-' in cell_name or 'neg' in cell_name: end_n = cell_name else: end_n = '' if cell_name.strip('_')[-2] == 'C': c_num = 'C0'+cell_name.strip('_')[-1] elif cell_name.strip('_')[-3] == 'C': c_num = cell_name.strip('_')[-3:] else: c_num ='' cell_name = day_n+c_num+end_n+repeat cell_list.append(cell_name) f = open(os.path.join(root,'align_summary.txt'), 'rw') for l in f: if 'Left' in l: side_s = 0 elif 'Right' in l: side_s = 1 if "Input" in l and side_s == 0: input_L_num = int(l.split(':')[-1]) if "Mapped" in l and side_s == 0: mapped_L_1 = l.split(':')[-1] mapped_L_num = int(mapped_L_1.split('(')[0].strip()) if "Input" in l and side_s == 1: input_R_num = int(l.split(':')[-1]) if "Mapped" in l and side_s == 0: mapped_R_1 = l.split(':')[-1] mapped_R_num = int(mapped_R_1.split('(')[0].strip()) if "overall read mapping rate." in l: per_mapped = float(l.split('%')[0]) align_dict['input_L_num'].append(input_L_num) align_dict['mapped_L_num'].append(mapped_L_num) align_dict['input_R_num'].append(input_R_num) align_dict['mapped_R_num'].append(mapped_R_num) align_dict['per_mapped'].append(per_mapped) f.close() align_df = pd.DataFrame(align_dict, index = cell_list) align_df.to_csv(os.path.join(path,result_file_names[0],'results_'+basename+'_align.txt'), sep = '\t') plt.hist(align_df['mapped_L_num']) plt.show() with open(os.path.join(path,result_file_names[0],'results_'+basename+'_align.p'), 'wb') as fp: pickle.dump(align_df, fp)
mit
jesusfcr/airflow
airflow/hooks/dbapi_hook.py
17
9454
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from builtins import str from past.builtins import basestring from datetime import datetime from contextlib import closing import numpy import logging import sys from sqlalchemy import create_engine from airflow.hooks.base_hook import BaseHook from airflow.exceptions import AirflowException class DbApiHook(BaseHook): """ Abstract base class for sql hooks. """ # Override to provide the connection name. conn_name_attr = None # Override to have a default connection id for a particular dbHook default_conn_name = 'default_conn_id' # Override if this db supports autocommit. supports_autocommit = False # Override with the object that exposes the connect method connector = None def __init__(self, *args, **kwargs): if not self.conn_name_attr: raise AirflowException("conn_name_attr is not defined") elif len(args) == 1: setattr(self, self.conn_name_attr, args[0]) elif self.conn_name_attr not in kwargs: setattr(self, self.conn_name_attr, self.default_conn_name) else: setattr(self, self.conn_name_attr, kwargs[self.conn_name_attr]) def get_conn(self): """Returns a connection object """ db = self.get_connection(getattr(self, self.conn_name_attr)) return self.connector.connect( host=db.host, port=db.port, username=db.login, schema=db.schema) def get_uri(self): conn = self.get_connection(getattr(self, self.conn_name_attr)) login = '' if conn.login: login = '{conn.login}:{conn.password}@'.format(conn=conn) host = conn.host if conn.port is not None: host += ':{port}'.format(port=conn.port) return '{conn.conn_type}://{login}{host}/{conn.schema}'.format( conn=conn, login=login, host=host) def get_sqlalchemy_engine(self, engine_kwargs=None): if engine_kwargs is None: engine_kwargs = {} return create_engine(self.get_uri(), **engine_kwargs) def get_pandas_df(self, sql, parameters=None): """ Executes the sql and returns a pandas dataframe :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') import pandas.io.sql as psql with closing(self.get_conn()) as conn: return psql.read_sql(sql, con=conn, params=parameters) def get_records(self, sql, parameters=None): """ Executes the sql and returns a set of records. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') with closing(self.get_conn()) as conn: with closing(conn.cursor()) as cur: if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) return cur.fetchall() def get_first(self, sql, parameters=None): """ Executes the sql and returns the first resulting row. :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if sys.version_info[0] < 3: sql = sql.encode('utf-8') with closing(self.get_conn()) as conn: with closing(conn.cursor()) as cur: if parameters is not None: cur.execute(sql, parameters) else: cur.execute(sql) return cur.fetchone() def run(self, sql, autocommit=False, parameters=None): """ Runs a command or a list of commands. Pass a list of sql statements to the sql parameter to get them to execute sequentially :param sql: the sql statement to be executed (str) or a list of sql statements to execute :type sql: str or list :param autocommit: What to set the connection's autocommit setting to before executing the query. :type autocommit: bool :param parameters: The parameters to render the SQL query with. :type parameters: mapping or iterable """ if isinstance(sql, basestring): sql = [sql] with closing(self.get_conn()) as conn: if self.supports_autocommit: self.set_autocommit(conn, autocommit) with closing(conn.cursor()) as cur: for s in sql: if sys.version_info[0] < 3: s = s.encode('utf-8') logging.info(s) if parameters is not None: cur.execute(s, parameters) else: cur.execute(s) conn.commit() def set_autocommit(self, conn, autocommit): conn.autocommit = autocommit def get_cursor(self): """ Returns a cursor """ return self.get_conn().cursor() def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ A generic way to insert a set of tuples into a table, a new transaction is created every commit_every rows :param table: Name of the target table :type table: str :param rows: The rows to insert into the table :type rows: iterable of tuples :param target_fields: The names of the columns to fill in the table :type target_fields: iterable of strings :param commit_every: The maximum number of rows to insert in one transaction. Set to 0 to insert all rows in one transaction. :type commit_every: int """ if target_fields: target_fields = ", ".join(target_fields) target_fields = "({})".format(target_fields) else: target_fields = '' with closing(self.get_conn()) as conn: if self.supports_autocommit: self.set_autocommit(conn, False) conn.commit() with closing(conn.cursor()) as cur: for i, row in enumerate(rows, 1): l = [] for cell in row: l.append(self._serialize_cell(cell, conn)) values = tuple(l) placeholders = ["%s",]*len(values) sql = "INSERT INTO {0} {1} VALUES ({2});".format( table, target_fields, ",".join(placeholders)) cur.execute(sql, values) if commit_every and i % commit_every == 0: conn.commit() logging.info( "Loaded {i} into {table} rows so far".format(**locals())) conn.commit() logging.info( "Done loading. Loaded a total of {i} rows".format(**locals())) @staticmethod def _serialize_cell(cell, conn=None): """ Returns the SQL literal of the cell as a string. :param cell: The cell to insert into the table :type cell: object :param conn: The database connection :type conn: connection object :return: The serialized cell :rtype: str """ if cell is None: return None if isinstance(cell, datetime): return cell.isoformat() return str(cell) def bulk_dump(self, table, tmp_file): """ Dumps a database table into a tab-delimited file :param table: The name of the source table :type table: str :param tmp_file: The path of the target file :type tmp_file: str """ raise NotImplementedError() def bulk_load(self, table, tmp_file): """ Loads a tab-delimited file into a database table :param table: The name of the target table :type table: str :param tmp_file: The path of the file to load into the table :type tmp_file: str """ raise NotImplementedError()
apache-2.0
chaen/DIRAC
Core/Utilities/Graphs/PlotBase.py
4
9118
""" PlotBase is a base class for various Graphs plots The DIRAC Graphs package is derived from the GraphTool plotting package of the CMS/Phedex Project by ... <to be added> """ from __future__ import print_function from DIRAC.Core.Utilities.Graphs.Palette import Palette from DIRAC.Core.Utilities.Graphs.GraphData import GraphData from DIRAC.Core.Utilities.Graphs.GraphUtilities import pixelToPoint, evalPrefs from matplotlib.axes import Axes from matplotlib.pylab import setp __RCSID__ = "$Id$" class PlotBase( object ): def __init__( self, data = None, axes = None, *aw, **kw ): self.ax_contain = axes self.canvas = None self.figure = None if self.ax_contain: self.figure = self.ax_contain.get_figure() self.canvas = self.figure.canvas self.dpi = self.ax_contain.figure.get_dpi() self.ax_contain.set_axis_off() self.prefs = evalPrefs( *aw, **kw ) self.coords = {} self.palette = Palette() if isinstance( data, dict): self.gdata = GraphData( data ) elif isinstance( data, object) and data.__class__ == GraphData: self.gdata = data def dumpPrefs( self ): for key in self.prefs: print(key.rjust(20), ':', str(self.prefs[key]).ljust(40)) def setAxes( self, axes ): self.ax_contain = axes self.ax_contain.set_axis_off() self.figure = self.ax_contain.get_figure() self.canvas = self.figure.canvas self.dpi = self.ax_contain.figure.get_dpi() def draw( self ): prefs = self.prefs dpi = self.ax_contain.figure.get_dpi() # Update palette palette = prefs.get( 'colors', {} ) if palette: self.palette.addPalette( palette ) xlabel = prefs.get( 'xlabel', '' ) ylabel = prefs.get( 'ylabel', '' ) xticks_flag = prefs.get( 'xticks', True ) yticks_flag = prefs.get( 'yticks', True ) text_size = prefs['text_size'] text_padding = prefs['text_padding'] label_text_size = prefs.get( 'label_text_size', text_size ) label_text_size_point = pixelToPoint( label_text_size, dpi ) tick_text_size = prefs.get( 'tick_text_size', text_size ) tick_text_size_point = pixelToPoint( tick_text_size, dpi ) ytick_length = prefs.get( 'ytick_length', 7 * tick_text_size ) plot_title = prefs.get( 'plot_title', '' ) if not plot_title or plot_title == 'NoTitle': plot_title_size = 0 plot_title_padding = 0 else: plot_title_size = prefs.get( 'plot_title_size', text_size ) plot_title_padding = prefs.get( 'plot_text_padding', text_padding ) plot_title_size_point = pixelToPoint( plot_title_size, dpi ) stats_flag = prefs.get( 'statistics_line', False ) stats_line = '' stats_line_space = 0. if stats_flag: stats_line = self.gdata.getStatString() stats_line_size = label_text_size stats_line_padding = label_text_size * 2. stats_line_space = stats_line_size + stats_line_padding plot_padding = prefs['plot_padding'] plot_left_padding = prefs.get( 'plot_left_padding', plot_padding ) plot_right_padding = prefs.get( 'plot_right_padding', 0 ) plot_bottom_padding = prefs.get( 'plot_bottom_padding', plot_padding ) plot_top_padding = prefs.get( 'plot_top_padding', 0 ) frame_flag = prefs['frame'] # Create plot axes, and set properties left, bottom, width, height = self.ax_contain.get_window_extent().bounds l, b, f_width, f_height = self.figure.get_window_extent().bounds # Space needed for labels and ticks x_label_space = 0 if xticks_flag: x_label_space += tick_text_size * 1.5 if xlabel: x_label_space += label_text_size * 1.5 y_label_space = 0 if yticks_flag: y_label_space += ytick_length if ylabel: y_label_space += label_text_size * 1.5 ax_plot_rect = ( float( plot_left_padding + left + y_label_space ) / f_width, float( plot_bottom_padding + bottom + x_label_space + stats_line_space ) / f_height, float( width - plot_left_padding - plot_right_padding - y_label_space ) / f_width, float( height - plot_bottom_padding - plot_top_padding - x_label_space - \ plot_title_size - 2 * plot_title_padding - stats_line_space ) / f_height ) ax = Axes( self.figure, ax_plot_rect ) if prefs['square_axis']: l, b, a_width, a_height = ax.get_window_extent().bounds delta = abs( a_height - a_width ) if a_height > a_width: a_height = a_width ax_plot_rect = ( float( plot_left_padding + left ) / f_width, float( plot_bottom_padding + bottom + delta / 2. ) / f_height, float( width - plot_left_padding - plot_right_padding ) / f_width, float( height - plot_bottom_padding - plot_title_size - 2 * plot_title_padding - delta ) / f_height ) else: a_width = a_height ax_plot_rect = ( float( plot_left_padding + left + delta / 2. ) / f_width, float( plot_bottom_padding + bottom ) / f_height, float( width - plot_left_padding - delta ) / f_width, float( height - plot_bottom_padding - plot_title_size - 2 * plot_title_padding ) / f_height ) ax.set_position( ax_plot_rect ) self.figure.add_axes( ax ) self.ax = ax frame = ax.patch frame.set_fill( False ) if frame_flag.lower() == 'off': self.ax.set_axis_off() self.log_xaxis = False self.log_yaxis = False else: # If requested, make x/y axis logarithmic if prefs.get( 'log_xaxis', 'False' ).find( 'r' ) >= 0: ax.semilogx() self.log_xaxis = True else: self.log_xaxis = False if prefs.get( 'log_yaxis', 'False' ).find( 'r' ) >= 0: ax.semilogy() self.log_yaxis = True else: self.log_yaxis = False if xticks_flag: setp( ax.get_xticklabels(), family = prefs['font_family'] ) setp( ax.get_xticklabels(), fontname = prefs['font'] ) setp( ax.get_xticklabels(), size = tick_text_size_point ) else: setp( ax.get_xticklabels(), size = 0 ) if yticks_flag: setp( ax.get_yticklabels(), family = prefs['font_family'] ) setp( ax.get_yticklabels(), fontname = prefs['font'] ) setp( ax.get_yticklabels(), size = tick_text_size_point ) else: setp( ax.get_yticklabels(), size = 0 ) setp( ax.get_xticklines(), markeredgewidth = pixelToPoint( 0.5, dpi ) ) setp( ax.get_xticklines(), markersize = pixelToPoint( text_size / 2., dpi ) ) setp( ax.get_yticklines(), markeredgewidth = pixelToPoint( 0.5, dpi ) ) setp( ax.get_yticklines(), markersize = pixelToPoint( text_size / 2., dpi ) ) setp( ax.get_xticklines(), zorder = 4.0 ) line_width = prefs.get( 'line_width', 1.0 ) frame_line_width = prefs.get( 'frame_line_width', line_width ) grid_line_width = prefs.get( 'grid_line_width', 0.1 ) plot_line_width = prefs.get( 'plot_line_width', 0.1 ) setp( ax.patch, linewidth = pixelToPoint( plot_line_width, dpi ) ) #setp( ax.spines, linewidth=pixelToPoint(frame_line_width,dpi) ) #setp( ax.axvline(), linewidth=pixelToPoint(1.0,dpi) ) axis_grid_flag = prefs.get( 'plot_axis_grid', True ) if axis_grid_flag: ax.grid( True, color = '#555555', linewidth = pixelToPoint( grid_line_width, dpi ) ) plot_axis_flag = prefs.get( 'plot_axis', True ) if plot_axis_flag: # Set labels if xlabel: t = ax.set_xlabel( xlabel ) t.set_family( prefs['font_family'] ) t.set_fontname( prefs['font'] ) t.set_size( label_text_size ) if ylabel: t = ax.set_ylabel( ylabel ) t.set_family( prefs['font_family'] ) t.set_fontname( prefs['font'] ) t.set_size( label_text_size ) else: self.ax.set_axis_off() # Create a plot title, if necessary if plot_title: self.ax.title = self.ax.text( 0.5, 1. + float( plot_title_padding ) / height, plot_title, verticalalignment = 'bottom', horizontalalignment = 'center', size = pixelToPoint( plot_title_size, dpi ), family = prefs['font_family'], fontname = prefs['font']) self.ax.title.set_transform( self.ax.transAxes ) self.ax.title.set_family( prefs['font_family'] ) self.ax.title.set_fontname( prefs['font'] ) if stats_line: self.ax.stats = self.ax.text( 0.5, ( -stats_line_space ) / height, stats_line, verticalalignment = 'top', horizontalalignment = 'center', size = pixelToPoint( stats_line_size, dpi ) ) self.ax.stats.set_transform( self.ax.transAxes )
gpl-3.0
MLWave/auto-sklearn
test/scores/test_libscores.py
5
2736
import unittest import numpy as np import autosklearn.scores.libscores class LibScoresTest(unittest.TestCase): def test_accuracy_metric_4_binary_classification(self): # 100% correct expected = np.array([0, 1, 1, 1, 0, 0, 1, 1, 1, 0]).reshape((-1, 1)) prediction = expected.copy() score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertEqual(1, score) # 100% incorrect prediction = (expected.copy() - 1) * -1 score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(-1, score) # Random prediction = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(0, score) def test_accuracy_metric_4_multiclass_classification(self): # 100% correct expected = np.array([[0, 0, 1, 1, 0, 1, 0, 1, 0, 1], [1, 1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 1, 0]]) prediction = expected.copy() score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertEqual(1, score) # 100% incorrect prediction = (expected.copy() - 1) * -1 score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(-1, score) # Pseudorandom prediction = np.array([[1, 0, 0, 1, 0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0, 1, 0]]) score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(0.33333333, score) def test_accuracy_metric_4_multilabel_classification(self): # 100% correct expected = np.array([[0, 0, 1, 1, 0, 1, 0, 1, 0, 1], [1, 1, 0, 0, 1, 0, 1, 0, 1, 0], [1, 1, 0, 0, 1, 0, 1, 0, 1, 0]]) prediction = expected.copy() score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertEqual(1, score) # 100% incorrect prediction = (expected.copy() - 1) * -1 score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(-1, score) # Pseudorandom prediction = np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]]) score = autosklearn.scores.libscores.acc_metric(expected, prediction) self.assertAlmostEqual(-0.0666666666, score)
bsd-3-clause
ChinaQuants/bokeh
bokeh/compat/mplexporter/renderers/base.py
2
14361
import warnings import itertools from contextlib import contextmanager import numpy as np from matplotlib import transforms from .. import utils from .. import _py3k_compat as py3k class Renderer(object): @staticmethod def ax_zoomable(ax): return bool(ax and ax.get_navigate()) @staticmethod def ax_has_xgrid(ax): return bool(ax and ax.xaxis._gridOnMajor and ax.yaxis.get_gridlines()) @staticmethod def ax_has_ygrid(ax): return bool(ax and ax.yaxis._gridOnMajor and ax.yaxis.get_gridlines()) @property def current_ax_zoomable(self): return self.ax_zoomable(self._current_ax) @property def current_ax_has_xgrid(self): return self.ax_has_xgrid(self._current_ax) @property def current_ax_has_ygrid(self): return self.ax_has_ygrid(self._current_ax) @contextmanager def draw_figure(self, fig, props): if hasattr(self, "_current_fig") and self._current_fig is not None: warnings.warn("figure embedded in figure: something is wrong") self._current_fig = fig self._fig_props = props self.open_figure(fig=fig, props=props) yield self.close_figure(fig=fig) self._current_fig = None self._fig_props = {} @contextmanager def draw_axes(self, ax, props): if hasattr(self, "_current_ax") and self._current_ax is not None: warnings.warn("axes embedded in axes: something is wrong") self._current_ax = ax self._ax_props = props self.open_axes(ax=ax, props=props) yield self.close_axes(ax=ax) self._current_ax = None self._ax_props = {} @contextmanager def draw_legend(self, legend, props): self._current_legend = legend self._legend_props = props self.open_legend(legend=legend, props=props) yield self.close_legend(legend=legend) self._current_legend = None self._legend_props = {} # Following are the functions which should be overloaded in subclasses def open_figure(self, fig, props): """ Begin commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The Figure which will contain the ensuing axes and elements props : dictionary The dictionary of figure properties """ pass def close_figure(self, fig): """ Finish commands for a particular figure. Parameters ---------- fig : matplotlib.Figure The figure which is finished being drawn. """ pass def open_axes(self, ax, props): """ Begin commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which will contain the ensuing axes and elements props : dictionary The dictionary of axes properties """ pass def close_axes(self, ax): """ Finish commands for a particular axes. Parameters ---------- ax : matplotlib.Axes The Axes which is finished being drawn. """ pass def open_legend(self, legend, props): """ Beging commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend that will contain the ensuing elements props : dictionary The dictionary of legend properties """ pass def close_legend(self, legend): """ Finish commands for a particular legend. Parameters ---------- legend : matplotlib.legend.Legend The Legend which is finished being drawn """ pass def draw_marked_line(self, data, coordinates, linestyle, markerstyle, label, mplobj=None): """Draw a line that also has markers. If this isn't reimplemented by a renderer object, by default, it will make a call to BOTH draw_line and draw_markers when both markerstyle and linestyle are not None in the same Line2D object. """ if linestyle is not None: self.draw_line(data, coordinates, linestyle, label, mplobj) if markerstyle is not None: self.draw_markers(data, coordinates, markerstyle, label, mplobj) def draw_line(self, data, coordinates, style, label, mplobj=None): """ Draw a line. By default, draw the line via the draw_path() command. Some renderers might wish to override this and provide more fine-grained behavior. In matplotlib, lines are generally created via the plt.plot() command, though this command also can create marker collections. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the line. mplobj : matplotlib object the matplotlib plot element which generated this line """ pathcodes = ['M'] + (data.shape[0] - 1) * ['L'] pathstyle = dict(facecolor='none', **style) pathstyle['edgecolor'] = pathstyle.pop('color') pathstyle['edgewidth'] = pathstyle.pop('linewidth') self.draw_path(data=data, coordinates=coordinates, pathcodes=pathcodes, style=pathstyle, mplobj=mplobj) @staticmethod def _iter_path_collection(paths, path_transforms, offsets, styles): """Build an iterator over the elements of the path collection""" N = max(len(paths), len(offsets)) if len(path_transforms) == 0: path_transforms = [np.eye(3)] edgecolor = styles['edgecolor'] if np.size(edgecolor) == 0: edgecolor = ['none'] facecolor = styles['facecolor'] if np.size(facecolor) == 0: facecolor = ['none'] elements = [paths, path_transforms, offsets, edgecolor, styles['linewidth'], facecolor] it = itertools return it.islice(py3k.zip(*py3k.map(it.cycle, elements)), N) def draw_path_collection(self, paths, path_coordinates, path_transforms, offsets, offset_coordinates, offset_order, styles, mplobj=None): """ Draw a collection of paths. The paths, offsets, and styles are all iterables, and the number of paths is max(len(paths), len(offsets)). By default, this is implemented via multiple calls to the draw_path() function. For efficiency, Renderers may choose to customize this implementation. Examples of path collections created by matplotlib are scatter plots, histograms, contour plots, and many others. Parameters ---------- paths : list list of tuples, where each tuple has two elements: (data, pathcodes). See draw_path() for a description of these. path_coordinates: string the coordinates code for the paths, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. path_transforms: array_like an array of shape (*, 3, 3), giving a series of 2D Affine transforms for the paths. These encode translations, rotations, and scalings in the standard way. offsets: array_like An array of offsets of shape (N, 2) offset_coordinates : string the coordinates code for the offsets, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. offset_order : string either "before" or "after". This specifies whether the offset is applied before the path transform, or after. The matplotlib backend equivalent is "before"->"data", "after"->"screen". styles: dictionary A dictionary in which each value is a list of length N, containing the style(s) for the paths. mplobj : matplotlib object the matplotlib plot element which generated this collection """ if offset_order == "before": raise NotImplementedError("offset before transform") for tup in self._iter_path_collection(paths, path_transforms, offsets, styles): (path, path_transform, offset, ec, lw, fc) = tup vertices, pathcodes = path path_transform = transforms.Affine2D(path_transform) vertices = path_transform.transform(vertices) # This is a hack: if path_coordinates == "figure": path_coordinates = "points" style = {"edgecolor": utils.color_to_hex(ec), "facecolor": utils.color_to_hex(fc), "edgewidth": lw, "dasharray": "10,0", "alpha": styles['alpha'], "zorder": styles['zorder']} self.draw_path(data=vertices, coordinates=path_coordinates, pathcodes=pathcodes, style=style, offset=offset, offset_coordinates=offset_coordinates, mplobj=mplobj) def draw_markers(self, data, coordinates, style, label, mplobj=None): """ Draw a set of markers. By default, this is done by repeatedly calling draw_path(), but renderers should generally overload this method to provide a more efficient implementation. In matplotlib, markers are created using the plt.plot() command. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the markers. mplobj : matplotlib object the matplotlib plot element which generated this marker collection """ vertices, pathcodes = style['markerpath'] pathstyle = dict((key, style[key]) for key in ['alpha', 'edgecolor', 'facecolor', 'zorder', 'edgewidth']) pathstyle['dasharray'] = "10,0" for vertex in data: self.draw_path(data=vertices, coordinates="points", pathcodes=pathcodes, style=pathstyle, offset=vertex, offset_coordinates=coordinates, mplobj=mplobj) def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): """ Draw text on the image. Parameters ---------- text : string The text to draw position : tuple The (x, y) position of the text coordinates : string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the text. text_type : string or None if specified, a type of text such as "xlabel", "ylabel", "title" mplobj : matplotlib object the matplotlib plot element which generated this text """ raise NotImplementedError() def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): """ Draw a path. In matplotlib, paths are created by filled regions, histograms, contour plots, patches, etc. Parameters ---------- data : array_like A shape (N, 2) array of datapoints. coordinates : string A string code, which should be either 'data' for data coordinates, 'figure' for figure (pixel) coordinates, or "points" for raw point coordinates (useful in conjunction with offsets, below). pathcodes : list A list of single-character SVG pathcodes associated with the data. Path codes are one of ['M', 'm', 'L', 'l', 'Q', 'q', 'T', 't', 'S', 's', 'C', 'c', 'Z', 'z'] See the SVG specification for details. Note that some path codes consume more than one datapoint (while 'Z' consumes none), so in general, the length of the pathcodes list will not be the same as that of the data array. style : dictionary a dictionary specifying the appearance of the line. offset : list (optional) the (x, y) offset of the path. If not given, no offset will be used. offset_coordinates : string (optional) A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. mplobj : matplotlib object the matplotlib plot element which generated this path """ raise NotImplementedError() def draw_image(self, imdata, extent, coordinates, style, mplobj=None): """ Draw an image. Parameters ---------- imdata : string base64 encoded png representation of the image extent : list the axes extent of the image: [xmin, xmax, ymin, ymax] coordinates: string A string code, which should be either 'data' for data coordinates, or 'figure' for figure (pixel) coordinates. style : dictionary a dictionary specifying the appearance of the image mplobj : matplotlib object the matplotlib plot object which generated this image """ raise NotImplementedError()
bsd-3-clause
giorgiop/scikit-learn
sklearn/feature_extraction/text.py
13
52040
# -*- coding: utf-8 -*- # Authors: Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck # Robert Layton <[email protected]> # Jochen Wersdörfer <[email protected]> # Roman Sinayev <[email protected]> # # License: BSD 3 clause """ The :mod:`sklearn.feature_extraction.text` submodule gathers utilities to build feature vectors from text documents. """ from __future__ import unicode_literals import array from collections import Mapping, defaultdict import numbers from operator import itemgetter import re import unicodedata import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..preprocessing import normalize from .hashing import FeatureHasher from .stop_words import ENGLISH_STOP_WORDS from ..utils import deprecated from ..utils.fixes import frombuffer_empty, bincount from ..utils.validation import check_is_fitted __all__ = ['CountVectorizer', 'ENGLISH_STOP_WORDS', 'TfidfTransformer', 'TfidfVectorizer', 'strip_accents_ascii', 'strip_accents_unicode', 'strip_tags'] def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. See also -------- strip_accents_ascii Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ normalized = unicodedata.normalize('NFKD', s) if normalized == s: return s else: return ''.join([c for c in normalized if not unicodedata.combining(c)]) def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. See also -------- strip_accents_unicode Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize('NFKD', s) return nkfd_form.encode('ASCII', 'ignore').decode('ASCII') def strip_tags(s): """Basic regexp based HTML / XML tag stripper function For serious HTML/XML preprocessing you should rather use an external library such as lxml or BeautifulSoup. """ return re.compile(r"<([^>]+)>", flags=re.UNICODE).sub(" ", s) def _check_stop_list(stop): if stop == "english": return ENGLISH_STOP_WORDS elif isinstance(stop, six.string_types): raise ValueError("not a built-in stop list: %s" % stop) elif stop is None: return None else: # assume it's a collection return frozenset(stop) class VectorizerMixin(object): """Provides common code for text vectorizers (tokenization logic).""" _white_spaces = re.compile(r"\s\s+") def decode(self, doc): """Decode the input into a string of unicode symbols The decoding strategy depends on the vectorizer parameters. """ if self.input == 'filename': with open(doc, 'rb') as fh: doc = fh.read() elif self.input == 'file': doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError("np.nan is an invalid document, expected byte or " "unicode string.") return doc def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens tokens = [] n_original_tokens = len(original_tokens) for n in xrange(min_n, min(max_n + 1, n_original_tokens + 1)): for i in xrange(n_original_tokens - n + 1): tokens.append(" ".join(original_tokens[i: i + n])) return tokens def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) ngrams = [] min_n, max_n = self.ngram_range for n in xrange(min_n, min(max_n + 1, text_len + 1)): for i in xrange(text_len - n + 1): ngrams.append(text_document[i: i + n]) return ngrams def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams excluding any whitespace (operating only inside word boundaries)""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] for w in text_document.split(): w = ' ' + w + ' ' w_len = len(w) for n in xrange(min_n, max_n + 1): offset = 0 ngrams.append(w[offset:offset + n]) while offset + n < w_len: offset += 1 ngrams.append(w[offset:offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams def build_preprocessor(self): """Return a function to preprocess the text before tokenization""" if self.preprocessor is not None: return self.preprocessor # unfortunately python functools package does not have an efficient # `compose` function that would have allowed us to chain a dynamic # number of functions. However the cost of a lambda call is a few # hundreds of nanoseconds which is negligible when compared to the # cost of tokenizing a string of 1000 chars for instance. noop = lambda x: x # accent stripping if not self.strip_accents: strip_accents = noop elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == 'ascii': strip_accents = strip_accents_ascii elif self.strip_accents == 'unicode': strip_accents = strip_accents_unicode else: raise ValueError('Invalid value for "strip_accents": %s' % self.strip_accents) if self.lowercase: return lambda x: strip_accents(x.lower()) else: return strip_accents def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens""" if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) return lambda doc: token_pattern.findall(doc) def get_stop_words(self): """Build or fetch the effective stop words list""" return _check_stop_list(self.stop_words) def build_analyzer(self): """Return a callable that handles preprocessing and tokenization""" if callable(self.analyzer): return self.analyzer preprocess = self.build_preprocessor() if self.analyzer == 'char': return lambda doc: self._char_ngrams(preprocess(self.decode(doc))) elif self.analyzer == 'char_wb': return lambda doc: self._char_wb_ngrams( preprocess(self.decode(doc))) elif self.analyzer == 'word': stop_words = self.get_stop_words() tokenize = self.build_tokenizer() return lambda doc: self._word_ngrams( tokenize(preprocess(self.decode(doc))), stop_words) else: raise ValueError('%s is not a valid tokenization scheme/analyzer' % self.analyzer) def _validate_vocabulary(self): vocabulary = self.vocabulary if vocabulary is not None: if isinstance(vocabulary, set): vocabulary = sorted(vocabulary) if not isinstance(vocabulary, Mapping): vocab = {} for i, t in enumerate(vocabulary): if vocab.setdefault(t, i) != i: msg = "Duplicate term in vocabulary: %r" % t raise ValueError(msg) vocabulary = vocab else: indices = set(six.itervalues(vocabulary)) if len(indices) != len(vocabulary): raise ValueError("Vocabulary contains repeated indices.") for i in xrange(len(vocabulary)): if i not in indices: msg = ("Vocabulary of size %d doesn't contain index " "%d." % (len(vocabulary), i)) raise ValueError(msg) if not vocabulary: raise ValueError("empty vocabulary passed to fit") self.fixed_vocabulary_ = True self.vocabulary_ = dict(vocabulary) else: self.fixed_vocabulary_ = False def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fit-ed)""" msg = "%(name)s - Vocabulary wasn't fitted." check_is_fitted(self, 'vocabulary_', msg=msg), if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty") class HashingVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token occurrences It turns a collection of text documents into a scipy.sparse matrix holding token occurrence counts (or binary occurrence information), possibly normalized as token frequencies if norm='l1' or projected on the euclidean unit sphere if norm='l2'. This text vectorizer implementation uses the hashing trick to find the token string name to feature integer index mapping. This strategy has several advantages: - it is very low memory scalable to large datasets as there is no need to store a vocabulary dictionary in memory - it is fast to pickle and un-pickle as it holds no state besides the constructor parameters - it can be used in a streaming (partial fit) or parallel pipeline as there is no state computed during fit. There are also a couple of cons (vs using a CountVectorizer with an in-memory vocabulary): - there is no way to compute the inverse transform (from feature indices to string feature names) which can be a problem when trying to introspect which features are most important to a model. - there can be collisions: distinct tokens can be mapped to the same feature index. However in practice this is rarely an issue if n_features is large enough (e.g. 2 ** 18 for text classification problems). - no IDF weighting as this would render the transformer stateful. The hash function employed is the signed 32-bit version of Murmurhash3. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, default='utf-8' If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n), default=(1, 1) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. lowercase : boolean, default=True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). n_features : integer, default=(2 ** 20) The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. binary : boolean, default=False. If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). non_negative : boolean, default=False Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. See also -------- CountVectorizer, TfidfVectorizer """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', non_negative=False, dtype=np.float64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.n_features = n_features self.ngram_range = ngram_range self.binary = binary self.norm = norm self.non_negative = non_negative self.dtype = dtype def partial_fit(self, X, y=None): """Does nothing: this transformer is stateless. This method is just there to mark the fact that this transformer can work in a streaming setup. """ return self def fit(self, X, y=None): """Does nothing: this transformer is stateless.""" # triggers a parameter validation if isinstance(X, six.string_types): raise ValueError( "Iterable over raw text documents expected, " "string object received.") self._get_hasher().fit(X, y=y) return self def transform(self, X, y=None): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Document-term matrix. """ if isinstance(X, six.string_types): raise ValueError( "Iterable over raw text documents expected, " "string object received.") analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X # Alias transform to fit_transform for convenience fit_transform = transform def _get_hasher(self): return FeatureHasher(n_features=self.n_features, input_type='string', dtype=self.dtype, non_negative=self.non_negative) def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.isspmatrix_csr(X): return bincount(X.indices, minlength=X.shape[1]) else: return np.diff(sp.csc_matrix(X, copy=False).indptr) class CountVectorizer(BaseEstimator, VectorizerMixin): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.coo_matrix. If you do not provide an a-priori dictionary and you do not use an analyzer that does some kind of feature selection then the number of features will be equal to the vocabulary size found by analyzing the data. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char', 'char_wb'} or callable Whether the feature should be made of word or character n-grams. Option 'char_wb' creates character n-grams only from text inside word boundaries. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If 'english', a built-in stop word list for English is used. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, True by default Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. Indices in the mapping should not be repeated and should not have any gap between 0 and the largest index. binary : boolean, default=False If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. dtype : type, optional Type of the matrix returned by fit_transform() or transform(). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- HashingVectorizer, TfidfVectorizer Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64): self.input = input self.encoding = encoding self.decode_error = decode_error self.strip_accents = strip_accents self.preprocessor = preprocessor self.tokenizer = tokenizer self.analyzer = analyzer self.lowercase = lowercase self.token_pattern = token_pattern self.stop_words = stop_words self.max_df = max_df self.min_df = min_df if max_df < 0 or min_df < 0: raise ValueError("negative value for max_df or min_df") self.max_features = max_features if max_features is not None: if (not isinstance(max_features, numbers.Integral) or max_features <= 0): raise ValueError( "max_features=%r, neither a positive integer nor None" % max_features) self.ngram_range = ngram_range self.vocabulary = vocabulary self.binary = binary self.dtype = dtype def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(six.iteritems(vocabulary)) map_index = np.empty(len(sorted_features), dtype=np.int32) for new_val, (term, old_val) in enumerate(sorted_features): vocabulary[term] = new_val map_index[old_val] = new_val X.indices = map_index.take(X.indices, mode='clip') return X def _limit_features(self, X, vocabulary, high=None, low=None, limit=None): """Remove too rare or too common features. Prune features that are non zero in more samples than high or less documents than low, modifying the vocabulary, and restricting it to at most the limit most frequent. This does not prune samples with zero features. """ if high is None and low is None and limit is None: return X, set() # Calculate a mask based on document frequencies dfs = _document_frequency(X) tfs = np.asarray(X.sum(axis=0)).ravel() mask = np.ones(len(dfs), dtype=bool) if high is not None: mask &= dfs <= high if low is not None: mask &= dfs >= low if limit is not None and mask.sum() > limit: mask_inds = (-tfs[mask]).argsort()[:limit] new_mask = np.zeros(len(dfs), dtype=bool) new_mask[np.where(mask)[0][mask_inds]] = True mask = new_mask new_indices = np.cumsum(mask) - 1 # maps old indices to new removed_terms = set() for term, old_index in list(six.iteritems(vocabulary)): if mask[old_index]: vocabulary[term] = new_indices[old_index] else: del vocabulary[term] removed_terms.add(term) kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_df or a higher max_df.") return X[:, kept_indices], removed_terms def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False """ if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = [] indptr = _make_int_array() values = _make_int_array() indptr.append(0) for doc in raw_documents: feature_counter = {} for feature in analyze(doc): try: feature_idx = vocabulary[feature] if feature_idx not in feature_counter: feature_counter[feature_idx] = 1 else: feature_counter[feature_idx] += 1 except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue j_indices.extend(feature_counter.keys()) values.extend(feature_counter.values()) indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError("empty vocabulary; perhaps the documents only" " contain stop words") j_indices = np.asarray(j_indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) values = frombuffer_empty(values, dtype=np.intc) X = sp.csr_matrix((values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype) X.sort_indices() return vocabulary, X def fit(self, raw_documents, y=None): """Learn a vocabulary dictionary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- self """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : array, [n_samples, n_features] Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. if isinstance(raw_documents, six.string_types): raise ValueError( "Iterable over raw text documents expected, " "string object received.") self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: X = self._sort_features(X, vocabulary) n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") X, self.stop_words_ = self._limit_features(X, vocabulary, max_doc_count, min_doc_count, max_features) self.vocabulary_ = vocabulary return X def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- X : sparse matrix, [n_samples, n_features] Document-term matrix. """ if isinstance(raw_documents, six.string_types): raise ValueError( "Iterable over raw text documents expected, " "string object received.") if not hasattr(self, 'vocabulary_'): self._validate_vocabulary() self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array, sparse matrix}, shape = [n_samples, n_features] Returns ------- X_inv : list of arrays, len = n_samples List of arrays of terms. """ self._check_vocabulary() if sp.issparse(X): # We need CSR format for fast row manipulations. X = X.tocsr() else: # We need to convert X to a matrix, so that the indexing # returns 2D objects X = np.asmatrix(X) n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] return [inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples)] def get_feature_names(self): """Array mapping from feature integer indices to feature name""" self._check_vocabulary() return [t for t, i in sorted(six.iteritems(self.vocabulary_), key=itemgetter(1))] def _make_int_array(): """Construct an array.array of a type suitable for scipy.sparse indices.""" return array.array(str("i")) class TfidfTransformer(BaseEstimator, TransformerMixin): """Transform a count matrix to a normalized tf or tf-idf representation Tf means term-frequency while tf-idf means term-frequency times inverse document-frequency. This is a common term weighting scheme in information retrieval, that has also found good use in document classification. The goal of using tf-idf instead of the raw frequencies of occurrence of a token in a given document is to scale down the impact of tokens that occur very frequently in a given corpus and that are hence empirically less informative than features that occur in a small fraction of the training corpus. The formula that is used to compute the tf-idf of term t is tf-idf(d, t) = tf(t) * idf(d, t), and the idf is computed as idf(d, t) = log [ n / df(d, t) ] + 1 (if ``smooth_idf=False``), where n is the total number of documents and df(d, t) is the document frequency; the document frequency is the number of documents d that contain term t. The effect of adding "1" to the idf in the equation above is that terms with zero idf, i.e., terms that occur in all documents in a training set, will not be entirely ignored. (Note that the idf formula above differs from the standard textbook notation that defines the idf as idf(d, t) = log [ n / (df(d, t) + 1) ]). If ``smooth_idf=True`` (the default), the constant "1" is added to the numerator and denominator of the idf as if an extra document was seen containing every term in the collection exactly once, which prevents zero divisions: idf(d, t) = log [ (1 + n) / 1 + df(d, t) ] + 1. Furthermore, the formulas used to compute tf and idf depend on parameter settings that correspond to the SMART notation used in IR as follows: Tf is "n" (natural) by default, "l" (logarithmic) when ``sublinear_tf=True``. Idf is "t" when use_idf is given, "n" (none) otherwise. Normalization is "c" (cosine) when ``norm='l2'``, "n" (none) when ``norm=None``. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). References ---------- .. [Yates2011] `R. Baeza-Yates and B. Ribeiro-Neto (2011). Modern Information Retrieval. Addison Wesley, pp. 68-74.` .. [MRS2008] `C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 118-120.` """ def __init__(self, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def fit(self, X, y=None): """Learn the idf vector (global term weights) Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) # perform idf smoothing if required df += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(float(n_samples) / df) + 1.0 self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features, format='csr') return self def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation Parameters ---------- X : sparse matrix, [n_samples, n_features] a matrix of term/token counts copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- vectors : sparse matrix, [n_samples, n_features] """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag if self.norm: X = normalize(X, norm=self.norm, copy=False) return X @property def idf_(self): if hasattr(self, "_idf_diag"): return np.ravel(self._idf_diag.sum(axis=0)) else: return None class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Equivalent to CountVectorizer followed by TfidfTransformer. Read more in the :ref:`User Guide <text_feature_extraction>`. Parameters ---------- input : string {'filename', 'file', 'content'} If 'filename', the sequence passed as an argument to fit is expected to be a list of filenames that need reading to fetch the raw content to analyze. If 'file', the sequence items must have a 'read' method (file-like object) that is called to fetch the bytes in memory. Otherwise the input is expected to be the sequence strings or bytes items are expected to be analyzed directly. encoding : string, 'utf-8' by default. If bytes or files are given to analyze, this encoding is used to decode. decode_error : {'strict', 'ignore', 'replace'} Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. By default, it is 'strict', meaning that a UnicodeDecodeError will be raised. Other values are 'ignore' and 'replace'. strip_accents : {'ascii', 'unicode', None} Remove accents during the preprocessing step. 'ascii' is a fast method that only works on characters that have an direct ASCII mapping. 'unicode' is a slightly slower method that works on any characters. None (default) does nothing. analyzer : string, {'word', 'char'} or callable Whether the feature should be made of word or character n-grams. If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input. preprocessor : callable or None (default) Override the preprocessing (string transformation) stage while preserving the tokenizing and n-grams generation steps. tokenizer : callable or None (default) Override the string tokenization step while preserving the preprocessing and n-grams generation steps. Only applies if ``analyzer == 'word'``. ngram_range : tuple (min_n, max_n) The lower and upper boundary of the range of n-values for different n-grams to be extracted. All values of n such that min_n <= n <= max_n will be used. stop_words : string {'english'}, list, or None (default) If a string, it is passed to _check_stop_list and the appropriate stop list is returned. 'english' is currently the only supported string value. If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if ``analyzer == 'word'``. If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms. lowercase : boolean, default True Convert all characters to lowercase before tokenizing. token_pattern : string Regular expression denoting what constitutes a "token", only used if ``analyzer == 'word'``. The default regexp selects tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator). max_df : float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. min_df : float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None. max_features : int or None, default=None If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus. This parameter is ignored if vocabulary is not None. vocabulary : Mapping or iterable, optional Either a Mapping (e.g., a dict) where keys are terms and values are indices in the feature matrix, or an iterable over terms. If not given, a vocabulary is determined from the input documents. binary : boolean, default=False If True, all non-zero term counts are set to 1. This does not mean outputs will have only 0/1 values, only that the tf term in tf-idf is binary. (Set idf and normalization to False to get 0/1 outputs.) dtype : type, optional Type of the matrix returned by fit_transform() or transform(). norm : 'l1', 'l2' or None, optional Norm used to normalize term vectors. None for no normalization. use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean, default=False Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Attributes ---------- vocabulary_ : dict A mapping of terms to feature indices. idf_ : array, shape = [n_features], or None The learned idf vector (global term weights) when ``use_idf`` is set to True, None otherwise. stop_words_ : set Terms that were ignored because they either: - occurred in too many documents (`max_df`) - occurred in too few documents (`min_df`) - were cut off by feature selection (`max_features`). This is only available if no vocabulary was given. See also -------- CountVectorizer Tokenize the documents and count the occurrences of token and return them as a sparse matrix TfidfTransformer Apply Term Frequency Inverse Document Frequency normalization to a sparse matrix of occurrence counts. Notes ----- The ``stop_words_`` attribute can get large and increase the model size when pickling. This attribute is provided only for introspection and can be safely removed using delattr or set to None before pickling. """ def __init__(self, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=np.int64, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super(TfidfVectorizer, self).__init__( input=input, encoding=encoding, decode_error=decode_error, strip_accents=strip_accents, lowercase=lowercase, preprocessor=preprocessor, tokenizer=tokenizer, analyzer=analyzer, stop_words=stop_words, token_pattern=token_pattern, ngram_range=ngram_range, max_df=max_df, min_df=min_df, max_features=max_features, vocabulary=vocabulary, binary=binary, dtype=dtype) self._tfidf = TfidfTransformer(norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf) # Broadcast the TF-IDF parameters to the underlying transformer instance # for easy grid search and repr @property def norm(self): return self._tfidf.norm @norm.setter def norm(self, value): self._tfidf.norm = value @property def use_idf(self): return self._tfidf.use_idf @use_idf.setter def use_idf(self, value): self._tfidf.use_idf = value @property def smooth_idf(self): return self._tfidf.smooth_idf @smooth_idf.setter def smooth_idf(self, value): self._tfidf.smooth_idf = value @property def sublinear_tf(self): return self._tfidf.sublinear_tf @sublinear_tf.setter def sublinear_tf(self, value): self._tfidf.sublinear_tf = value @property def idf_(self): return self._tfidf.idf_ def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- self : TfidfVectorizer """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) return self def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ X = super(TfidfVectorizer, self).fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False) def transform(self, raw_documents, copy=True): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable an iterable which yields either str, unicode or file objects copy : boolean, default True Whether to copy X and operate on the copy or perform in-place operations. Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ check_is_fitted(self, '_tfidf', 'The tfidf vector is not fitted') X = super(TfidfVectorizer, self).transform(raw_documents) return self._tfidf.transform(X, copy=False)
bsd-3-clause
draperjames/bokeh
bokeh/sampledata/daylight.py
13
2683
""" Daylight hours from http://www.sunrisesunset.com """ from __future__ import absolute_import from bokeh.util.dependencies import import_required pd = import_required('pandas', 'daylight sample data requires Pandas (http://pandas.pydata.org) to be installed') import re import datetime import requests from six.moves import xrange from os.path import join, abspath, dirname url = "http://sunrisesunset.com/calendar.asp" r0 = re.compile("<[^>]+>|&nbsp;|[\r\n\t]") r1 = re.compile(r"(\d+)(DST Begins|DST Ends)?Sunrise: (\d+):(\d\d)Sunset: (\d+):(\d\d)") def fetch_daylight_hours(lat, lon, tz, dst, year): """Fetch daylight hours from sunrisesunset.com for a given location. Parameters ---------- lat : float Location's latitude. lon : float Location's longitude. tz : int or float Time zone offset from UTC. Use floats for half-hour time zones. dst : int Daylight saving type, e.g. 0 -> none, 1 -> North America, 2 -> Europe. See sunrisesunset.com/custom.asp for other possible values. year : int Year (1901..2099). """ daylight = [] summer = 0 if lat >= 0 else 1 for month in xrange(1, 12+1): args = dict(url=url, lat=lat, lon=lon, tz=tz, dst=dst, year=year, month=month) response = requests.get("%(url)s?comb_city_info=_;%(lon)s;%(lat)s;%(tz)s;%(dst)s&month=%(month)s&year=%(year)s&time_type=1&wadj=1" % args) entries = r1.findall(r0.sub("", response.text)) for day, note, sunrise_hour, sunrise_minute, sunset_hour, sunset_minute in entries: if note == "DST Begins": summer = 1 elif note == "DST Ends": summer = 0 date = datetime.date(year, month, int(day)) sunrise = datetime.time(int(sunrise_hour), int(sunrise_minute)) sunset = datetime.time(int(sunset_hour), int(sunset_minute)) daylight.append([date, sunrise, sunset, summer]) return pd.DataFrame(daylight, columns=["Date", "Sunrise", "Sunset", "Summer"]) # daylight_warsaw_2013 = fetch_daylight_hours(52.2297, -21.0122, 1, 2, 2013) # daylight_warsaw_2013.to_csv("bokeh/sampledata/daylight_warsaw_2013.csv", index=False) def load_daylight_hours(file): path = join(dirname(abspath(__file__)), file) df = pd.read_csv(path, parse_dates=["Date", "Sunrise", "Sunset"]) df["Date"] = df.Date.map(lambda x: x.date()) df["Sunrise"] = df.Sunrise.map(lambda x: x.time()) df["Sunset"] = df.Sunset.map(lambda x: x.time()) return df daylight_warsaw_2013 = load_daylight_hours("daylight_warsaw_2013.csv")
bsd-3-clause
idlead/scikit-learn
sklearn/decomposition/tests/test_fastica.py
272
7798
""" Test the fastica algorithm. """ import itertools import warnings import numpy as np from scipy import stats from nose.tools import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns from sklearn.decomposition import FastICA, fastica, PCA from sklearn.decomposition.fastica_ import _gs_decorrelation from sklearn.externals.six import moves def center_and_norm(x, axis=-1): """ Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert_less((w ** 2).sum(), 1.e-10) w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert_less((tmp[:5] ** 2).sum(), 1.e-10) def test_fastica_simple(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) # scipy.stats uses the global RNG: np.random.seed(0) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x ** 3, (3 * x ** 2).mean(axis=-1) algos = ['parallel', 'deflation'] nls = ['logcosh', 'exp', 'cube', g_test] whitening = [True, False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica(m.T, fun=nl, algorithm=algo) assert_raises(ValueError, fastica, m.T, fun=np.tanh, algorithm=algo) else: X = PCA(n_components=2, whiten=True).fit_transform(m.T) k_, mixing_, s_ = fastica(X, fun=nl, algorithm=algo, whiten=False) assert_raises(ValueError, fastica, X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=2) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=2) else: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=1) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=1) # Test FastICA class _, _, sources_fun = fastica(m.T, fun=nl, algorithm=algo, random_state=0) ica = FastICA(fun=nl, algorithm=algo, random_state=0) sources = ica.fit_transform(m.T) assert_equal(ica.components_.shape, (2, 2)) assert_equal(sources.shape, (1000, 2)) assert_array_almost_equal(sources_fun, sources) assert_array_almost_equal(sources, ica.transform(m.T)) assert_equal(ica.mixing_.shape, (2, 2)) for fn in [np.tanh, "exp(-.5(x^2))"]: ica = FastICA(fun=fn, algorithm=algo, random_state=0) assert_raises(ValueError, ica.fit, m.T) assert_raises(TypeError, FastICA(fun=moves.xrange(10)).fit, m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) assert_warns(UserWarning, ica.fit, m) assert_true(hasattr(ica, 'mixing_')) def test_non_square_fastica(add_noise=False): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica(m.T, n_components=2, random_state=rng) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_almost_equal(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_almost_equal(np.dot(s1_, s1) / n_samples, 1, decimal=3) assert_almost_equal(np.dot(s2_, s2) / n_samples, 1, decimal=3) def test_fit_transform(): # Test FastICA.fit_transform rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) for whiten, n_components in [[True, 5], [False, None]]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) Xt = ica.fit_transform(X) assert_equal(ica.components_.shape, (n_components_, 10)) assert_equal(Xt.shape, (100, n_components_)) ica = FastICA(n_components=n_components, whiten=whiten, random_state=0) ica.fit(X) assert_equal(ica.components_.shape, (n_components_, 10)) Xt2 = ica.transform(X) assert_array_almost_equal(Xt, Xt2) def test_inverse_transform(): # Test FastICA.inverse_transform n_features = 10 n_samples = 100 n1, n2 = 5, 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected = {(True, n1): (n_features, n1), (True, n2): (n_features, n2), (False, n1): (n_features, n2), (False, n2): (n_features, n2)} for whiten in [True, False]: for n_components in [n1, n2]: n_components_ = (n_components if n_components is not None else X.shape[1]) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(record=True): # catch "n_components ignored" warning Xt = ica.fit_transform(X) expected_shape = expected[(whiten, n_components_)] assert_equal(ica.mixing_.shape, expected_shape) X2 = ica.inverse_transform(Xt) assert_equal(X.shape, X2.shape) # reversibility test in non-reduction case if n_components == X.shape[1]: assert_array_almost_equal(X, X2)
bsd-3-clause
Averroes/statsmodels
statsmodels/sandbox/examples/example_nbin.py
33
13139
# -*- coding: utf-8 -*- ''' Author: Vincent Arel-Bundock <[email protected]> Date: 2012-08-25 This example file implements 5 variations of the negative binomial regression model for count data: NB-P, NB-1, NB-2, geometric and left-truncated. The NBin class inherits from the GenericMaximumLikelihood statsmodels class which provides automatic numerical differentiation for the score and hessian. NB-1, NB-2 and geometric are implemented as special cases of the NB-P model described in Greene (2008) Functional forms for the negative binomial model for count data. Economics Letters, v99n3. Tests are included to check how NB-1, NB-2 and geometric coefficient estimates compare to equivalent models in R. Results usually agree up to the 4th digit. The NB-P and left-truncated model results have not been compared to other implementations. Note that NB-P appears to only have been implemented in the LIMDEP software. ''' import numpy as np from scipy.special import gammaln from scipy.stats import nbinom from statsmodels.base.model import GenericLikelihoodModel from statsmodels.base.model import GenericLikelihoodModelResults import statsmodels.api as sm #### Negative Binomial Log-likelihoods #### def _ll_nbp(y, X, beta, alph, Q): ''' Negative Binomial Log-likelihood -- type P References: Greene, W. 2008. "Functional forms for the negtive binomial model for count data". Economics Letters. Volume 99, Number 3, pp.585-590. Hilbe, J.M. 2011. "Negative binomial regression". Cambridge University Press. Following notation in Greene (2008), with negative binomial heterogeneity parameter :math:`\alpha`: .. math:: \lambda_i = exp(X\beta)\\ \theta = 1 / \alpha \\ g_i = \theta \lambda_i^Q \\ w_i = g_i/(g_i + \lambda_i) \\ r_i = \theta / (\theta+\lambda_i) \\ ln \mathcal{L}_i = ln \Gamma(y_i+g_i) - ln \Gamma(1+y_i) + g_iln (r_i) + y_i ln(1-r_i) ''' mu = np.exp(np.dot(X, beta)) size = 1/alph*mu**Q prob = size/(size+mu) ll = nbinom.logpmf(y, size, prob) return ll def _ll_nb1(y, X, beta, alph): '''Negative Binomial regression (type 1 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=1) return ll def _ll_nb2(y, X, beta, alph): '''Negative Binomial regression (type 2 likelihood)''' ll = _ll_nbp(y, X, beta, alph, Q=0) return ll def _ll_geom(y, X, beta): '''Geometric regression''' ll = _ll_nbp(y, X, beta, alph=1, Q=0) return ll def _ll_nbt(y, X, beta, alph, C=0): ''' Negative Binomial (truncated) Truncated densities for count models (Cameron & Trivedi, 2005, 680): .. math:: f(y|\beta, y \geq C+1) = \frac{f(y|\beta)}{1-F(C|\beta)} ''' Q = 0 mu = np.exp(np.dot(X, beta)) size = 1/alph*mu**Q prob = size/(size+mu) ll = nbinom.logpmf(y, size, prob) - np.log(1 - nbinom.cdf(C, size, prob)) return ll #### Model Classes #### class NBin(GenericLikelihoodModel): ''' Negative Binomial regression Parameters ---------- endog : array-like 1-d array of the response variable. exog : array-like `exog` is an n x p array where n is the number of observations and p is the number of regressors including the intercept if one is included in the data. ll_type: string log-likelihood type `nb2`: Negative Binomial type-2 (most common) `nb1`: Negative Binomial type-1 `nbp`: Negative Binomial type-P (Greene, 2008) `nbt`: Left-truncated Negative Binomial (type-2) `geom`: Geometric regression model C: integer Cut-point for `nbt` model ''' def __init__(self, endog, exog, ll_type='nb2', C=0, **kwds): self.exog = np.array(exog) self.endog = np.array(endog) self.C = C super(NBin, self).__init__(endog, exog, **kwds) # Check user input if ll_type not in ['nb2', 'nb1', 'nbp', 'nbt', 'geom']: raise NameError('Valid ll_type are: nb2, nb1, nbp, nbt, geom') self.ll_type = ll_type # Starting values (assumes first column of exog is constant) if ll_type == 'geom': self.start_params_default = np.zeros(self.exog.shape[1]) elif ll_type == 'nbp': # Greene recommends starting NB-P at NB-2 start_mod = NBin(endog, exog, 'nb2') start_res = start_mod.fit(disp=False) self.start_params_default = np.append(start_res.params, 0) else: self.start_params_default = np.append(np.zeros(self.exog.shape[1]), .5) self.start_params_default[0] = np.log(self.endog.mean()) # Define loglik based on ll_type argument if ll_type == 'nb1': self.ll_func = _ll_nb1 elif ll_type == 'nb2': self.ll_func = _ll_nb2 elif ll_type == 'geom': self.ll_func = _ll_geom elif ll_type == 'nbp': self.ll_func = _ll_nbp elif ll_type == 'nbt': self.ll_func = _ll_nbt def nloglikeobs(self, params): alph = params[-1] beta = params[:self.exog.shape[1]] if self.ll_type == 'geom': return -self.ll_func(self.endog, self.exog, beta) elif self.ll_type == 'nbt': return -self.ll_func(self.endog, self.exog, beta, alph, self.C) elif self.ll_type == 'nbp': Q = params[-2] return -self.ll_func(self.endog, self.exog, beta, alph, Q) else: return -self.ll_func(self.endog, self.exog, beta, alph) def fit(self, start_params=None, maxiter=10000, maxfun=5000, **kwds): if start_params==None: countfit = super(NBin, self).fit(start_params=self.start_params_default, maxiter=maxiter, maxfun=maxfun, **kwds) else: countfit = super(NBin, self).fit(start_params=start_params, maxiter=maxiter, maxfun=maxfun, **kwds) countfit = CountResults(self, countfit) return countfit class CountResults(GenericLikelihoodModelResults): def __init__(self, model, mlefit): self.model = model self.__dict__.update(mlefit.__dict__) def summary(self, yname=None, xname=None, title=None, alpha=.05, yname_list=None): top_left = [('Dep. Variable:', None), ('Model:', [self.model.__class__.__name__]), ('Method:', ['MLE']), ('Date:', None), ('Time:', None), ('Converged:', ["%s" % self.mle_retvals['converged']]) ] top_right = [('No. Observations:', None), ('Log-Likelihood:', None), ] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" #boiler plate from statsmodels.iolib.summary import Summary smry = Summary() # for top of table smry.add_table_2cols(self, gleft=top_left, gright=top_right, #[], yname=yname, xname=xname, title=title) # for parameters, etc smry.add_table_params(self, yname=yname_list, xname=xname, alpha=alpha, use_t=True) return smry #### Score function for NB-P #### from scipy.special import digamma def _score_nbp(y, X, beta, thet, Q): ''' Negative Binomial Score -- type P likelihood from Greene (2007) .. math:: \lambda_i = exp(X\beta)\\ g_i = \theta \lambda_i^Q \\ w_i = g_i/(g_i + \lambda_i) \\ r_i = \theta / (\theta+\lambda_i) \\ A_i = \left [ \Psi(y_i+g_i) - \Psi(g_i) + ln w_i \right ] \\ B_i = \left [ g_i (1-w_i) - y_iw_i \right ] \\ \partial ln \mathcal{L}_i / \partial \begin{pmatrix} \lambda_i \\ \theta \\ Q \end{pmatrix}= [A_i+B_i] \begin{pmatrix} Q/\lambda_i \\ 1/\theta \\ ln(\lambda_i) \end{pmatrix} -B_i \begin{pmatrix} 1/\lambda_i\\ 0 \\ 0 \end{pmatrix} \\ \frac{\partial \lambda}{\partial \beta} = \lambda_i \mathbf{x}_i \\ \frac{\partial \mathcal{L}_i}{\partial \beta} = \left (\frac{\partial\mathcal{L}_i}{\partial \lambda_i} \right ) \frac{\partial \lambda_i}{\partial \beta} ''' lamb = np.exp(np.dot(X, beta)) g = thet * lamb**Q w = g / (g + lamb) r = thet / (thet+lamb) A = digamma(y+g) - digamma(g) + np.log(w) B = g*(1-w) - y*w dl = (A+B) * Q/lamb - B * 1/lamb dt = (A+B) * 1/thet dq = (A+B) * np.log(lamb) db = X * (dl * lamb)[:,np.newaxis] sc = np.array([dt.sum(), dq.sum()]) sc = np.concatenate([db.sum(axis=0), sc]) return sc #### Tests #### from statsmodels.compat.python import urlopen from numpy.testing import assert_almost_equal import pandas import patsy medpar = pandas.read_csv(urlopen('http://vincentarelbundock.github.com/Rdatasets/csv/COUNT/medpar.csv')) mdvis = pandas.read_csv(urlopen('http://vincentarelbundock.github.com/Rdatasets/csv/COUNT/mdvis.csv')) # NB-2 ''' # R v2.15.1 library(MASS) library(COUNT) data(medpar) f <- los~factor(type)+hmo+white mod <- glm.nb(f, medpar) summary(mod) Call: glm.nb(formula = f, data = medpar, init.theta = 2.243376203, link = log) Deviance Residuals: Min 1Q Median 3Q Max -2.4671 -0.9090 -0.2693 0.4320 3.8668 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 2.31028 0.06745 34.253 < 2e-16 *** factor(type)2 0.22125 0.05046 4.385 1.16e-05 *** factor(type)3 0.70616 0.07600 9.292 < 2e-16 *** hmo -0.06796 0.05321 -1.277 0.202 white -0.12907 0.06836 -1.888 0.059 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for Negative Binomial(2.2434) family taken to be 1) Null deviance: 1691.1 on 1494 degrees of freedom Residual deviance: 1568.1 on 1490 degrees of freedom AIC: 9607 Number of Fisher Scoring iterations: 1 Theta: 2.2434 Std. Err.: 0.0997 2 x log-likelihood: -9594.9530 ''' def test_nb2(): y, X = patsy.dmatrices('los ~ C(type) + hmo + white', medpar) y = np.array(y)[:,0] nb2 = NBin(y,X,'nb2').fit(maxiter=10000, maxfun=5000) assert_almost_equal(nb2.params, [2.31027893349935, 0.221248978197356, 0.706158824346228, -0.067955221930748, -0.129065442248951, 0.4457567], decimal=2) # NB-1 ''' # R v2.15.1 # COUNT v1.2.3 library(COUNT) data(medpar) f <- los~factor(type)+hmo+white ml.nb1(f, medpar) Estimate SE Z LCL UCL (Intercept) 2.34918407 0.06023641 38.9994023 2.23112070 2.46724744 factor(type)2 0.16175471 0.04585569 3.5274735 0.07187757 0.25163186 factor(type)3 0.41879257 0.06553258 6.3906006 0.29034871 0.54723643 hmo -0.04533566 0.05004714 -0.9058592 -0.14342805 0.05275673 white -0.12951295 0.06071130 -2.1332593 -0.24850710 -0.01051880 alpha 4.57898241 0.22015968 20.7984603 4.14746943 5.01049539 ''' #def test_nb1(): #y, X = patsy.dmatrices('los ~ C(type) + hmo + white', medpar) #y = np.array(y)[:,0] ## TODO: Test fails with some of the other optimization methods #nb1 = NBin(y,X,'nb1').fit(method='ncg', maxiter=10000, maxfun=5000) #assert_almost_equal(nb1.params, #[2.34918407014186, 0.161754714412848, 0.418792569970658, #-0.0453356614650342, -0.129512952033423, 4.57898241219275], #decimal=2) # NB-Geometric ''' MASS v7.3-20 R v2.15.1 library(MASS) data(medpar) f <- los~factor(type)+hmo+white mod <- glm(f, family=negative.binomial(1), data=medpar) summary(mod) Call: glm(formula = f, family = negative.binomial(1), data = medpar) Deviance Residuals: Min 1Q Median 3Q Max -1.7942 -0.6545 -0.1896 0.3044 2.6844 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2.30849 0.07071 32.649 < 2e-16 *** factor(type)2 0.22121 0.05283 4.187 2.99e-05 *** factor(type)3 0.70599 0.08092 8.724 < 2e-16 *** hmo -0.06779 0.05521 -1.228 0.2197 white -0.12709 0.07169 -1.773 0.0765 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for Negative Binomial(1) family taken to be 0.5409721) Null deviance: 872.29 on 1494 degrees of freedom Residual deviance: 811.95 on 1490 degrees of freedom AIC: 9927.3 Number of Fisher Scoring iterations: 5 ''' #def test_geom(): #y, X = patsy.dmatrices('los ~ C(type) + hmo + white', medpar) #y = np.array(y)[:,0] ## TODO: remove alph from geom params #geom = NBin(y,X,'geom').fit(maxiter=10000, maxfun=5000) #assert_almost_equal(geom.params, #[2.3084850946241, 0.221206159108742, 0.705986369841159, #-0.0677871843613577, -0.127088772164963], #decimal=4) test_nb2()
bsd-3-clause
vdrhtc/Measurement-automation
lib3/core/_measurement_results/sParMeas2D.py
1
8113
# Standard library imports # Third party imports from matplotlib import pyplot as plt from matplotlib import colorbar import numpy as np # Local application imports from lib3.core.measurementResult import MeasurementResult from lib3.core.contextBase import ContextBase # TODO: write docstring for every function here class SParMeas2D(MeasurementResult): """ Base class for vizualization of measurements of S-parameters dependence on 2 parameters. Result output is two 2D heatmaps for 2 components of the S parameter. Components can be: - Real and Imaginary parts - dBc and phase (in radiance) """ def __init__(self, name, sample_name): super().__init__(name, sample_name) self._context = ContextBase() self._is_finished = False self._phase_units = "rad" self.max_phase = -1 self.min_phase = 1 self._plot_limits_fixed = False self.max_abs = 1 self.min_abs = 0 self._unwrap_phase = False self._amps_map = None self._phas_map = None self._amp_cb = None self._phas_cb = None self._amps_map = None self._phas_map = None self._amp_cb = None self._phas_cb = None def _prepare_figure(self): fig, axes = plt.subplots(1, 2, figsize=(15, 7), sharey=True, sharex=True) ax_amps, ax_phas = axes ax_amps.ticklabel_format(axis='x', style='sci', scilimits=(-2, 2)) ax_amps.set_ylabel("Frequency [GHz]") xlabel = self._parameter_names[0] ax_amps.set_xlabel(xlabel) ax_phas.ticklabel_format(axis='x', style='sci', scilimits=(-2, 2)) ax_phas.set_xlabel(xlabel) plt.tight_layout(pad=2, h_pad=-10) cax_amps, kw = colorbar.make_axes(ax_amps, aspect=40) cax_phas, kw = colorbar.make_axes(ax_phas, aspect=40) cax_amps.set_title("$|S_{21}|$", position=(0.5, -0.05)) cax_phas.set_title("$\\angle S_{21}$\n [%s]" % self._phase_units, position=(0.5, -0.1)) ax_amps.grid() ax_phas.grid() fig.canvas.set_window_title(self._name) return fig, axes, (cax_amps, cax_phas) def set_phase_units(self, units): """ Sets the units of the phase in the plots Parameters: ----------- units: "rad" or "deg" units in which the phase will be displayed """ if units in ["deg", "rad"]: self._phase_units = units else: print("Phase units invalid") def set_unwrap_phase(self, unwrap_phase): """ Set if the phase plot should be unwrapped Parameters: ----------- unwrap_phase: boolean True or False to control the unwrapping """ self._unwrap_phase = unwrap_phase def _plot(self, data): ax_amps, ax_phas = self._axes cax_amps, cax_phas = self._caxes if "data" not in data.keys(): return X, Y, Z = self._prepare_data_for_plot(data) if not self._unwrap_phase: phases = abs(np.angle(Z).T) else: phases = np.unwrap(np.angle(Z)).T phases[Z.T == 0] = 0 phases = phases if self._phase_units == "rad" else phases * 180 / np.pi if self._plot_limits_fixed is False: self.max_abs = max(abs(Z)[abs(Z) != 0]) self.min_abs = min(abs(Z)[abs(Z) != 0]) self.max_phase = max(phases[phases != 0]) self.min_phase = min(phases[phases != 0]) step_x = np.min(np.abs(np.diff(X))) step_y = np.min(np.abs(np.diff(Y))) extent = [np.min(X) - step_x / 2, np.max(X) + step_x / 2, np.min(Y) - step_y / 2, np.max(Y) + step_y / 2] if self._amps_map is None or not self._dynamic: self._amps_map = ax_amps.imshow(abs(Z).T, origin='lower', cmap="RdBu_r", aspect='auto', vmax=self.max_abs, vmin=self.min_abs, extent=extent, interpolation='none') self._amp_cb = plt.colorbar(self._amps_map, cax=cax_amps) self._amp_cb.formatter.set_powerlimits((0, 0)) self._amp_cb.update_ticks() else: self._amps_map.set_data(abs(Z).T) self._amps_map.set_clim(self.min_abs, self.max_abs) if self._phas_map is None or not self._dynamic: self._phas_map = ax_phas.imshow(phases, origin='lower', aspect='auto', cmap="RdBu_r", vmin=self.min_phase, vmax=self.max_phase, extent=extent, interpolation='none') self._phas_cb = plt.colorbar(self._phas_map, cax=cax_phas) else: self._phas_map.set_data(phases) self._phas_map.set_clim(self.min_phase, self.max_phase) plt.draw() def set_plot_range(self, min_abs, max_abs, min_phas=None, max_phas=None): self.max_phase = max_phas self.min_phase = min_phas self.max_abs = max_abs self.min_abs = min_abs def _prepare_data_for_plot(self, data): s_data = self._remove_delay(data["Frequency [Hz]"], data["data"]) parameter_list = data[self._parameter_names[0]] # if parameter_list[0] > parameter_list[-1]: # parameter_list = parameter_list[::-1] # s_data = s_data[::-1, :] # s_data = self.remove_background('avg_cur') return parameter_list, data["Frequency [Hz]"] / 1e9, s_data def remove_delay(self): copy = self.copy() s_data, frequencies = copy.get_data()["data"], copy.get_data()[ "Frequency [Hz]"] copy.get_data()["data"] = self._remove_delay(frequencies, s_data) return copy def _remove_delay(self, frequencies, s_data): phases = np.unwrap(np.angle(s_data)) k, b = np.polyfit(frequencies, phases[0], 1) phases = phases - k * frequencies - b corr_s_data = abs(s_data) * np.exp(1j * phases) corr_s_data[abs(corr_s_data) < 1e-14] = 0 return corr_s_data def remove_background(self, direction): """ Remove background Parameters: ----------- direction: str "avg_cur" for bias slice subtraction "avg_freq" for if_freq slice subtraction """ s_data = self.get_data()["data"] len_freq = s_data.shape[1] len_cur = s_data.shape[0] if direction is "avg_cur": avg = np.zeros(len_freq, dtype=complex) for j in range(len_freq): counter_av = 0 for i in range(len_cur): if s_data[i, j] != 0: counter_av += 1 avg[j] += s_data[i, j] avg[j] = avg[j] / counter_av s_data[:, j] = s_data[:, j] / avg[j] elif direction is "avg_freq": avg = np.zeros(len_cur, dtype=complex) for j in range(len_cur): counter_av = 0 for i in range(len_freq): if s_data[j, i] != 0: counter_av += 1 avg[j] += s_data[j, i] avg[j] = avg[j] / counter_av s_data[j, :] = s_data[j, :] / avg[j] self.get_data()["data"] = s_data return s_data def __setstate__(self, state): self._amps_map = None self._phas_map = None super().__setstate__(state) def __getstate__(self): d = super().__getstate__() d["_amps_map"] = None d["_phas_map"] = None d["_amp_cb"] = None d["_phas_cb"] = None return d # Not tested yet
gpl-3.0
r0mai/metashell
3rd/templight/llvm/tools/clang/utils/analyzer/CmpRuns.py
27
15658
#!/usr/bin/env python """ CmpRuns - A simple tool for comparing two static analyzer runs to determine which reports have been added, removed, or changed. This is designed to support automated testing using the static analyzer, from two perspectives: 1. To monitor changes in the static analyzer's reports on real code bases, for regression testing. 2. For use by end users who want to integrate regular static analyzer testing into a buildbot like environment. Usage: # Load the results of both runs, to obtain lists of the corresponding # AnalysisDiagnostic objects. # resultsA = loadResultsFromSingleRun(singleRunInfoA, deleteEmpty) resultsB = loadResultsFromSingleRun(singleRunInfoB, deleteEmpty) # Generate a relation from diagnostics in run A to diagnostics in run B # to obtain a list of triples (a, b, confidence). diff = compareResults(resultsA, resultsB) """ from __future__ import division, print_function from collections import defaultdict from math import log from optparse import OptionParser import json import os import plistlib import re import sys STATS_REGEXP = re.compile(r"Statistics: (\{.+\})", re.MULTILINE | re.DOTALL) class Colors(object): """ Color for terminal highlight. """ RED = '\x1b[2;30;41m' GREEN = '\x1b[6;30;42m' CLEAR = '\x1b[0m' # Information about analysis run: # path - the analysis output directory # root - the name of the root directory, which will be disregarded when # determining the source file name class SingleRunInfo(object): def __init__(self, path, root="", verboseLog=None): self.path = path self.root = root.rstrip("/\\") self.verboseLog = verboseLog class AnalysisDiagnostic(object): def __init__(self, data, report, htmlReport): self._data = data self._loc = self._data['location'] self._report = report self._htmlReport = htmlReport self._reportSize = len(self._data['path']) def getFileName(self): root = self._report.run.root fileName = self._report.files[self._loc['file']] if fileName.startswith(root) and len(root) > 0: return fileName[len(root) + 1:] return fileName def getRootFileName(self): path = self._data['path'] if not path: return self.getFileName() p = path[0] if 'location' in p: fIdx = p['location']['file'] else: # control edge fIdx = path[0]['edges'][0]['start'][0]['file'] out = self._report.files[fIdx] root = self._report.run.root if out.startswith(root): return out[len(root):] return out def getLine(self): return self._loc['line'] def getColumn(self): return self._loc['col'] def getPathLength(self): return self._reportSize def getCategory(self): return self._data['category'] def getDescription(self): return self._data['description'] def getIssueIdentifier(self): id = self.getFileName() + "+" if 'issue_context' in self._data: id += self._data['issue_context'] + "+" if 'issue_hash_content_of_line_in_context' in self._data: id += str(self._data['issue_hash_content_of_line_in_context']) return id def getReport(self): if self._htmlReport is None: return " " return os.path.join(self._report.run.path, self._htmlReport) def getReadableName(self): if 'issue_context' in self._data: funcnamePostfix = "#" + self._data['issue_context'] else: funcnamePostfix = "" rootFilename = self.getRootFileName() fileName = self.getFileName() if rootFilename != fileName: filePrefix = "[%s] %s" % (rootFilename, fileName) else: filePrefix = rootFilename return '%s%s:%d:%d, %s: %s' % (filePrefix, funcnamePostfix, self.getLine(), self.getColumn(), self.getCategory(), self.getDescription()) # Note, the data format is not an API and may change from one analyzer # version to another. def getRawData(self): return self._data class AnalysisReport(object): def __init__(self, run, files): self.run = run self.files = files self.diagnostics = [] class AnalysisRun(object): def __init__(self, info): self.path = info.path self.root = info.root self.info = info self.reports = [] # Cumulative list of all diagnostics from all the reports. self.diagnostics = [] self.clang_version = None self.stats = [] def getClangVersion(self): return self.clang_version def readSingleFile(self, p, deleteEmpty): data = plistlib.readPlist(p) if 'statistics' in data: self.stats.append(json.loads(data['statistics'])) data.pop('statistics') # We want to retrieve the clang version even if there are no # reports. Assume that all reports were created using the same # clang version (this is always true and is more efficient). if 'clang_version' in data: if self.clang_version is None: self.clang_version = data.pop('clang_version') else: data.pop('clang_version') # Ignore/delete empty reports. if not data['files']: if deleteEmpty: os.remove(p) return # Extract the HTML reports, if they exists. if 'HTMLDiagnostics_files' in data['diagnostics'][0]: htmlFiles = [] for d in data['diagnostics']: # FIXME: Why is this named files, when does it have multiple # files? assert len(d['HTMLDiagnostics_files']) == 1 htmlFiles.append(d.pop('HTMLDiagnostics_files')[0]) else: htmlFiles = [None] * len(data['diagnostics']) report = AnalysisReport(self, data.pop('files')) diagnostics = [AnalysisDiagnostic(d, report, h) for d, h in zip(data.pop('diagnostics'), htmlFiles)] assert not data report.diagnostics.extend(diagnostics) self.reports.append(report) self.diagnostics.extend(diagnostics) def loadResults(path, opts, root="", deleteEmpty=True): """ Backwards compatibility API. """ return loadResultsFromSingleRun(SingleRunInfo(path, root, opts.verboseLog), deleteEmpty) def loadResultsFromSingleRun(info, deleteEmpty=True): """ # Load results of the analyzes from a given output folder. # - info is the SingleRunInfo object # - deleteEmpty specifies if the empty plist files should be deleted """ path = info.path run = AnalysisRun(info) if os.path.isfile(path): run.readSingleFile(path, deleteEmpty) else: for (dirpath, dirnames, filenames) in os.walk(path): for f in filenames: if (not f.endswith('plist')): continue p = os.path.join(dirpath, f) run.readSingleFile(p, deleteEmpty) return run def cmpAnalysisDiagnostic(d): return d.getIssueIdentifier() def compareResults(A, B, opts): """ compareResults - Generate a relation from diagnostics in run A to diagnostics in run B. The result is the relation as a list of triples (a, b) where each element {a,b} is None or a matching element from the respective run """ res = [] # Map size_before -> size_after path_difference_data = [] # Quickly eliminate equal elements. neqA = [] neqB = [] eltsA = list(A.diagnostics) eltsB = list(B.diagnostics) eltsA.sort(key=cmpAnalysisDiagnostic) eltsB.sort(key=cmpAnalysisDiagnostic) while eltsA and eltsB: a = eltsA.pop() b = eltsB.pop() if (a.getIssueIdentifier() == b.getIssueIdentifier()): if a.getPathLength() != b.getPathLength(): if opts.relative_path_histogram: path_difference_data.append( float(a.getPathLength()) / b.getPathLength()) elif opts.relative_log_path_histogram: path_difference_data.append( log(float(a.getPathLength()) / b.getPathLength())) elif opts.absolute_path_histogram: path_difference_data.append( a.getPathLength() - b.getPathLength()) res.append((a, b)) elif a.getIssueIdentifier() > b.getIssueIdentifier(): eltsB.append(b) neqA.append(a) else: eltsA.append(a) neqB.append(b) neqA.extend(eltsA) neqB.extend(eltsB) # FIXME: Add fuzzy matching. One simple and possible effective idea would # be to bin the diagnostics, print them in a normalized form (based solely # on the structure of the diagnostic), compute the diff, then use that as # the basis for matching. This has the nice property that we don't depend # in any way on the diagnostic format. for a in neqA: res.append((a, None)) for b in neqB: res.append((None, b)) if opts.relative_log_path_histogram or opts.relative_path_histogram or \ opts.absolute_path_histogram: from matplotlib import pyplot pyplot.hist(path_difference_data, bins=100) pyplot.show() return res def computePercentile(l, percentile): """ Return computed percentile. """ return sorted(l)[int(round(percentile * len(l) + 0.5)) - 1] def deriveStats(results): # Assume all keys are the same in each statistics bucket. combined_data = defaultdict(list) # Collect data on paths length. for report in results.reports: for diagnostic in report.diagnostics: combined_data['PathsLength'].append(diagnostic.getPathLength()) for stat in results.stats: for key, value in stat.items(): combined_data[key].append(value) combined_stats = {} for key, values in combined_data.items(): combined_stats[str(key)] = { "max": max(values), "min": min(values), "mean": sum(values) / len(values), "90th %tile": computePercentile(values, 0.9), "95th %tile": computePercentile(values, 0.95), "median": sorted(values)[len(values) // 2], "total": sum(values) } return combined_stats def compareStats(resultsA, resultsB): statsA = deriveStats(resultsA) statsB = deriveStats(resultsB) keys = sorted(statsA.keys()) for key in keys: print(key) for kkey in statsA[key]: valA = float(statsA[key][kkey]) valB = float(statsB[key][kkey]) report = "%.3f -> %.3f" % (valA, valB) # Only apply highlighting when writing to TTY and it's not Windows if sys.stdout.isatty() and os.name != 'nt': if valB != 0: ratio = (valB - valA) / valB if ratio < -0.2: report = Colors.GREEN + report + Colors.CLEAR elif ratio > 0.2: report = Colors.RED + report + Colors.CLEAR print("\t %s %s" % (kkey, report)) def dumpScanBuildResultsDiff(dirA, dirB, opts, deleteEmpty=True, Stdout=sys.stdout): # Load the run results. resultsA = loadResults(dirA, opts, opts.rootA, deleteEmpty) resultsB = loadResults(dirB, opts, opts.rootB, deleteEmpty) if opts.show_stats: compareStats(resultsA, resultsB) if opts.stats_only: return # Open the verbose log, if given. if opts.verboseLog: auxLog = open(opts.verboseLog, "wb") else: auxLog = None diff = compareResults(resultsA, resultsB, opts) foundDiffs = 0 totalAdded = 0 totalRemoved = 0 for res in diff: a, b = res if a is None: Stdout.write("ADDED: %r\n" % b.getReadableName()) foundDiffs += 1 totalAdded += 1 if auxLog: auxLog.write("('ADDED', %r, %r)\n" % (b.getReadableName(), b.getReport())) elif b is None: Stdout.write("REMOVED: %r\n" % a.getReadableName()) foundDiffs += 1 totalRemoved += 1 if auxLog: auxLog.write("('REMOVED', %r, %r)\n" % (a.getReadableName(), a.getReport())) else: pass TotalReports = len(resultsB.diagnostics) Stdout.write("TOTAL REPORTS: %r\n" % TotalReports) Stdout.write("TOTAL ADDED: %r\n" % totalAdded) Stdout.write("TOTAL REMOVED: %r\n" % totalRemoved) if auxLog: auxLog.write("('TOTAL NEW REPORTS', %r)\n" % TotalReports) auxLog.write("('TOTAL DIFFERENCES', %r)\n" % foundDiffs) auxLog.close() return foundDiffs, len(resultsA.diagnostics), len(resultsB.diagnostics) def generate_option_parser(): parser = OptionParser("usage: %prog [options] [dir A] [dir B]") parser.add_option("", "--rootA", dest="rootA", help="Prefix to ignore on source files for directory A", action="store", type=str, default="") parser.add_option("", "--rootB", dest="rootB", help="Prefix to ignore on source files for directory B", action="store", type=str, default="") parser.add_option("", "--verbose-log", dest="verboseLog", help="Write additional information to LOG \ [default=None]", action="store", type=str, default=None, metavar="LOG") parser.add_option("--relative-path-differences-histogram", action="store_true", dest="relative_path_histogram", default=False, help="Show histogram of relative paths differences. \ Requires matplotlib") parser.add_option("--relative-log-path-differences-histogram", action="store_true", dest="relative_log_path_histogram", default=False, help="Show histogram of log relative paths differences. \ Requires matplotlib") parser.add_option("--absolute-path-differences-histogram", action="store_true", dest="absolute_path_histogram", default=False, help="Show histogram of absolute paths differences. \ Requires matplotlib") parser.add_option("--stats-only", action="store_true", dest="stats_only", default=False, help="Only show statistics on reports") parser.add_option("--show-stats", action="store_true", dest="show_stats", default=False, help="Show change in statistics") return parser def main(): parser = generate_option_parser() (opts, args) = parser.parse_args() if len(args) != 2: parser.error("invalid number of arguments") dirA, dirB = args dumpScanBuildResultsDiff(dirA, dirB, opts) if __name__ == '__main__': main()
gpl-3.0
ml-lab/neuralnilm
neuralnilm/monitor/monitor.py
4
10943
from __future__ import print_function, division from time import sleep import pymongo from monary import Monary import numpy as np import pandas as pd import matplotlib.pyplot as plt from neuralnilm.consts import DATA_FOLD_NAMES from neuralnilm.utils import get_colors from neuralnilm.config import config class Monitor(object): def __init__(self, experiment_id, output_path='.', update_period=1, max_num_lines=1000, mongo_db='neuralnilm', mongo_host=None): """ Parameters ---------- max_num_lines : int Number of pixels. """ self.experiment_id = experiment_id self.output_path = output_path self.update_period = update_period self.max_num_lines = max_num_lines self._last_iteration_processed = {'train': 0, 'validation': 0} if mongo_host is None: self.mongo_host = config.get("MongoDB", "address") else: self.mongo_host = mongo_host self.mongo_client = pymongo.MongoClient(self.mongo_host) self.db = self.mongo_client[mongo_db] self.mongo_db = mongo_db self._validation_metric_names = None def start(self): while True: if self._new_scores_available('train'): self._plot_train_scores() if self._new_scores_available('validation'): self._plot_validation_scores() sleep(self.update_period) def _new_costs_available(self, train_or_validation): """Returns True if new training costs are available from DB. Parameters ---------- train_or_validation : str, {'train', 'validation'} """ collection = self.db[train_or_validation + '_scores'] document = collection.find_one( filter={ 'experiment_id': self.experiment_id, 'iteration': { '$gt': self._last_iteration_processed[train_or_validation]} } ) return bool(document) def _get_validation_mse(self): monary = Monary(host=self.mongo_host) def get_mse_for_fold(fold): iterations, loss, source_id = monary.query( db=self.mongo_db, coll='validation_scores', query={'experiment_id': self.experiment_id, 'fold': fold}, fields=['iteration', 'scores.regression.mean_squared_error', 'source_id'], types=['int32', 'float32', 'int8'] ) scores_df = pd.DataFrame( {'loss': loss, 'source_id': source_id}, index=iterations) scores_df = scores_df.sort_index() return scores_df FOLDS = ['unseen_appliances', 'unseen_activations_of_seen_appliances'] scores = {} for fold in FOLDS: scores[fold] = get_mse_for_fold(fold) return scores def _get_train_costs(self): # Get train scores monary = Monary(host=self.mongo_host) iterations, loss, source_id = monary.query( db=self.mongo_db, coll='train_scores', query={'experiment_id': self.experiment_id}, fields=['iteration', 'loss', 'source_id'], types=['int32', 'float32', 'int8'] ) scores_df = pd.DataFrame( {'loss': loss, 'source_id': source_id}, index=iterations) scores_df = scores_df.sort_index() return scores_df def _plot_train_scores(self): train_scores_df = self._get_train_costs() all_scores = self._get_validation_mse() all_scores.update({'train': train_scores_df}) fig, ax = plt.subplots(1) source_names = self.source_names for fold, scores_df in all_scores.iteritems(): sources = scores_df['source_id'].unique() for source_i in sources: # Get losses for just this source mask = scores_df['source_id'] == source_i loss = scores_df[mask]['loss'] # Downsample if necessary loss_for_source = self._downsample(loss) # Plot ax.plot(loss_for_source.index, loss_for_source.values, label='{} : {}'.format(fold, source_names[source_i])) ax.legend() plt.title('Training costs') ax.set_xlabel('Iteration') ax.set_ylabel('Mean squared error') plt.show() try: self._last_iteration_processed['train'] = train_scores_df.index[-1] except IndexError: # No data loaded pass @property def validation_metric_names(self): """ Returns ------- metric_names : list e.g. ['regression.mean_squared_error', 'classification_2_state.f1_score'] """ if self._validation_metric_names is None: scores = self.db.validation_scores.find_one( filter={'experiment_id': self.experiment_id})['scores'] self._validation_metric_names = [] for metric_type, metrics in scores.iteritems(): for metric_name in metrics: self._validation_metric_names.append( metric_type + '.' + metric_name) return self._validation_metric_names @property def source_names(self): """ Returns ------- source_names : dict """ metadata = self.db.experiments.find_one({'_id': self.experiment_id}) sources = metadata['data']['pipeline']['sources'] source_names = {int(i): sources[i]['name'] for i in sources} return source_names def _plot_validation_scores(self): validation_sources = self.db.validation_scores.distinct( key='source_id', filter={'experiment_id': self.experiment_id}) validation_sources.sort() num_cols = len(validation_sources) fig, axes = plt.subplots( nrows=3, ncols=num_cols, sharex="col", sharey=True, squeeze=False) fig.patch.set_facecolor('white') source_names = self.source_names for col, source_id in enumerate(validation_sources): for row, fold in enumerate(DATA_FOLD_NAMES): ax = axes[row, col] self._plot_validation_scores_for_source_and_fold( ax=ax, source_id=source_id, fold=fold, show_axes_labels=(row == 0), show_scales=(col == num_cols-1)) if row == 0: ax.set_title(source_names[source_id], position=(.5, 1.05)) elif row == 2: ax.set_xlabel('Iteration', labelpad=10) if col == 0: ax.set_ylabel(fold.replace("_", " ").title(), labelpad=10) ax.patch.set_facecolor((0.95, 0.95, 0.95)) plt.subplots_adjust( top=0.91, bottom=0.05, left=0.03, right=0.7, hspace=0.15, wspace=0.1) plt.show() def _plot_validation_scores_for_source_and_fold(self, ax, source_id, fold, show_axes_labels, show_scales): fields = ['iteration'] + ['scores.' + metric_name for metric_name in self.validation_metric_names] monary = Monary(host=self.mongo_host) result = monary.query( db=self.mongo_db, coll='validation_scores', query={ 'experiment_id': self.experiment_id, 'source_id': source_id, 'fold': fold }, fields=fields, types=['int32'] + ['float32'] * len(self.validation_metric_names) ) index = result[0] data = {metric_name: result[i+1] for i, metric_name in enumerate(self.validation_metric_names)} df = pd.DataFrame(data, index=index) df = df.sort_index() df = self._downsample(df) # Create multiple independent axes. Adapted from Joe Kington's answer: # http://stackoverflow.com/a/7734614 # Colours n = len(self.validation_metric_names) colors = get_colors(n) # Twin the x-axis to make independent y-axes. axes = [ax] for metric_name in self.validation_metric_names[1:]: axes.append(ax.twinx()) SEP = 0.2 if show_scales: for i, axis in enumerate(axes): axis.yaxis.tick_right() if i != 0: # To make the border of the right-most axis visible, # we need to turn the frame on. This hides the other plots, # however, so we need to turn its fill off. axis.set_frame_on(True) axis.patch.set_visible(False) # Move the last y-axes spines over to the right. axis.spines['right'].set_position( ('axes', 1 + (SEP * i))) else: for axis in axes: axis.tick_params(labelright=False, labelleft=False) axis.yaxis.set_ticks_position('none') axis.spines['right'].set_visible(False) for axis in axes: for spine in ['top', 'left', 'bottom']: axis.spines[spine].set_visible(False) axis.xaxis.set_ticks_position('none') lines = [] for i, (axis, metric_name, color) in enumerate( zip(axes, self.validation_metric_names, colors)): axis.tick_params(axis='y', colors=color, direction='out') label = metric_name.replace("regression.", "") label = label.replace("classification_", "") label = label.replace("_", " ") label = label.replace(".", " ") label = label.replace(" ", "\n") line, = axis.plot( df.index, df[metric_name].values, color=color, label=label) if show_axes_labels and show_scales: axis.set_ylabel( label, color=color, rotation=0, fontsize=8, va='bottom') if i == 0: coords = (1.05, 1.1) else: coords = (1.05 + (SEP * i), 1.1) axis.yaxis.set_label_coords(*coords) lines.append(line) self._last_iteration_processed['validation'] = index[-1] return lines def _downsample(self, data): """Downsample `data` if necessary.""" if len(data) > self.max_num_lines: divisor = int(np.ceil(len(data) / self.max_num_lines)) data = data.groupby(lambda x: x // divisor).mean() data.index *= divisor return data
apache-2.0
JPFrancoia/scikit-learn
examples/text/hashing_vs_dict_vectorizer.py
93
3243
""" =========================================== FeatureHasher and DictVectorizer Comparison =========================================== Compares FeatureHasher and DictVectorizer by using both to vectorize text documents. The example demonstrates syntax and speed only; it doesn't actually do anything useful with the extracted vectors. See the example scripts {document_classification_20newsgroups,clustering}.py for actual learning on text documents. A discrepancy between the number of terms reported for DictVectorizer and for FeatureHasher is to be expected due to hash collisions. """ # Author: Lars Buitinck # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import re import sys from time import time import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction import DictVectorizer, FeatureHasher def n_nonzero_columns(X): """Returns the number of non-zero columns in a CSR matrix X.""" return len(np.unique(X.nonzero()[1])) def tokens(doc): """Extract tokens from doc. This uses a simple regex to break strings into tokens. For a more principled approach, see CountVectorizer or TfidfVectorizer. """ return (tok.lower() for tok in re.findall(r"\w+", doc)) def token_freqs(doc): """Extract a dict mapping tokens from doc to their frequencies.""" freq = defaultdict(int) for tok in tokens(doc): freq[tok] += 1 return freq categories = [ 'alt.atheism', 'comp.graphics', 'comp.sys.ibm.pc.hardware', 'misc.forsale', 'rec.autos', 'sci.space', 'talk.religion.misc', ] # Uncomment the following line to use a larger set (11k+ documents) #categories = None print(__doc__) print("Usage: %s [n_features_for_hashing]" % sys.argv[0]) print(" The default number of features is 2**18.") print() try: n_features = int(sys.argv[1]) except IndexError: n_features = 2 ** 18 except ValueError: print("not a valid number of features: %r" % sys.argv[1]) sys.exit(1) print("Loading 20 newsgroups training data") raw_data = fetch_20newsgroups(subset='train', categories=categories).data data_size_mb = sum(len(s.encode('utf-8')) for s in raw_data) / 1e6 print("%d documents - %0.3fMB" % (len(raw_data), data_size_mb)) print() print("DictVectorizer") t0 = time() vectorizer = DictVectorizer() vectorizer.fit_transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % len(vectorizer.get_feature_names())) print() print("FeatureHasher on frequency dicts") t0 = time() hasher = FeatureHasher(n_features=n_features) X = hasher.transform(token_freqs(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X)) print() print("FeatureHasher on raw tokens") t0 = time() hasher = FeatureHasher(n_features=n_features, input_type="string") X = hasher.transform(tokens(d) for d in raw_data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_size_mb / duration)) print("Found %d unique terms" % n_nonzero_columns(X))
bsd-3-clause
schets/scikit-learn
sklearn/linear_model/stochastic_gradient.py
8
50342
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.seq_dataset import ArrayDataset, CSRDataset from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} SPARSE_INTERCEPT_DECAY = 0.01 """For sparse data intercept updates are scaled by this decay factor to avoid intercept oscillation.""" DEFAULT_EPSILON = 0.1 """Default value of ``epsilon`` parameter. """ class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _make_dataset(X, y_i, sample_weight): """Create ``Dataset`` abstraction for sparse and dense inputs. This also returns the ``intercept_decay`` which is different for sparse datasets. """ if sp.issparse(X): dataset = CSRDataset(X.data, X.indptr, X.indices, y_i, sample_weight) intercept_decay = SPARSE_INTERCEPT_DECAY else: dataset = ArrayDataset(X, y_i, sample_weight) intercept_decay = 1.0 return dataset, intercept_decay def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = _make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight == 'auto': raise ValueError("class_weight 'auto' is not supported for " "partial_fit. In order to use 'auto' weights, " "use compute_class_weight('auto', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.") return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "auto" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "auto" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = y.astype(np.float64) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self.decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = _make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. `average_coef_` : array, shape (n_features,) Averaged weights assigned to the features. `average_intercept_` : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
pothosware/gnuradio
gr-filter/examples/synth_filter.py
58
2552
#!/usr/bin/env python # # Copyright 2010,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import filter from gnuradio import blocks import sys try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) def main(): N = 1000000 fs = 8000 freqs = [100, 200, 300, 400, 500] nchans = 7 sigs = list() for fi in freqs: s = analog.sig_source_c(fs, analog.GR_SIN_WAVE, fi, 1) sigs.append(s) taps = filter.firdes.low_pass_2(len(freqs), fs, fs/float(nchans)/2, 100, 100) print "Num. Taps = %d (taps per filter = %d)" % (len(taps), len(taps)/nchans) filtbank = filter.pfb_synthesizer_ccf(nchans, taps) head = blocks.head(gr.sizeof_gr_complex, N) snk = blocks.vector_sink_c() tb = gr.top_block() tb.connect(filtbank, head, snk) for i,si in enumerate(sigs): tb.connect(si, (filtbank, i)) tb.run() if 1: f1 = pylab.figure(1) s1 = f1.add_subplot(1,1,1) s1.plot(snk.data()[1000:]) fftlen = 2048 f2 = pylab.figure(2) s2 = f2.add_subplot(1,1,1) winfunc = scipy.blackman s2.psd(snk.data()[10000:], NFFT=fftlen, Fs = nchans*fs, noverlap=fftlen/4, window = lambda d: d*winfunc(fftlen)) pylab.show() if __name__ == "__main__": main()
gpl-3.0
yiqingj/airflow
airflow/contrib/plugins/metastore_browser/main.py
62
5773
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime import json from flask import Blueprint, request from flask_admin import BaseView, expose import pandas as pd from airflow.hooks.hive_hooks import HiveMetastoreHook, HiveCliHook from airflow.hooks.mysql_hook import MySqlHook from airflow.hooks.presto_hook import PrestoHook from airflow.plugins_manager import AirflowPlugin from airflow.www import utils as wwwutils METASTORE_CONN_ID = 'metastore_default' METASTORE_MYSQL_CONN_ID = 'metastore_mysql' PRESTO_CONN_ID = 'presto_default' HIVE_CLI_CONN_ID = 'hive_default' DEFAULT_DB = 'default' DB_WHITELIST = None DB_BLACKLIST = ['tmp'] TABLE_SELECTOR_LIMIT = 2000 # Keeping pandas from truncating long strings pd.set_option('display.max_colwidth', -1) # Creating a flask admin BaseView class MetastoreBrowserView(BaseView, wwwutils.DataProfilingMixin): @expose('/') def index(self): sql = """ SELECT a.name as db, db_location_uri as location, count(1) as object_count, a.desc as description FROM DBS a JOIN TBLS b ON a.DB_ID = b.DB_ID GROUP BY a.name, db_location_uri, a.desc """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) df.db = ( '<a href="/admin/metastorebrowserview/db/?db=' + df.db + '">' + df.db + '</a>') table = df.to_html( classes="table table-striped table-bordered table-hover", index=False, escape=False, na_rep='',) return self.render( "metastore_browser/dbs.html", table=table) @expose('/table/') def table(self): table_name = request.args.get("table") m = HiveMetastoreHook(METASTORE_CONN_ID) table = m.get_table(table_name) return self.render( "metastore_browser/table.html", table=table, table_name=table_name, datetime=datetime, int=int) @expose('/db/') def db(self): db = request.args.get("db") m = HiveMetastoreHook(METASTORE_CONN_ID) tables = sorted(m.get_tables(db=db), key=lambda x: x.tableName) return self.render( "metastore_browser/db.html", tables=tables, db=db) @wwwutils.gzipped @expose('/partitions/') def partitions(self): schema, table = request.args.get("table").split('.') sql = """ SELECT a.PART_NAME, a.CREATE_TIME, c.LOCATION, c.IS_COMPRESSED, c.INPUT_FORMAT, c.OUTPUT_FORMAT FROM PARTITIONS a JOIN TBLS b ON a.TBL_ID = b.TBL_ID JOIN DBS d ON b.DB_ID = d.DB_ID JOIN SDS c ON a.SD_ID = c.SD_ID WHERE b.TBL_NAME like '{table}' AND d.NAME like '{schema}' ORDER BY PART_NAME DESC """.format(**locals()) h = MySqlHook(METASTORE_MYSQL_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @wwwutils.gzipped @expose('/objects/') def objects(self): where_clause = '' if DB_WHITELIST: dbs = ",".join(["'" + db + "'" for db in DB_WHITELIST]) where_clause = "AND b.name IN ({})".format(dbs) if DB_BLACKLIST: dbs = ",".join(["'" + db + "'" for db in DB_BLACKLIST]) where_clause = "AND b.name NOT IN ({})".format(dbs) sql = """ SELECT CONCAT(b.NAME, '.', a.TBL_NAME), TBL_TYPE FROM TBLS a JOIN DBS b ON a.DB_ID = b.DB_ID WHERE a.TBL_NAME NOT LIKE '%tmp%' AND a.TBL_NAME NOT LIKE '%temp%' AND b.NAME NOT LIKE '%tmp%' AND b.NAME NOT LIKE '%temp%' {where_clause} LIMIT {LIMIT}; """.format(where_clause=where_clause, LIMIT=TABLE_SELECTOR_LIMIT) h = MySqlHook(METASTORE_MYSQL_CONN_ID) d = [ {'id': row[0], 'text': row[0]} for row in h.get_records(sql)] return json.dumps(d) @wwwutils.gzipped @expose('/data/') def data(self): table = request.args.get("table") sql = "SELECT * FROM {table} LIMIT 1000;".format(table=table) h = PrestoHook(PRESTO_CONN_ID) df = h.get_pandas_df(sql) return df.to_html( classes="table table-striped table-bordered table-hover", index=False, na_rep='',) @expose('/ddl/') def ddl(self): table = request.args.get("table") sql = "SHOW CREATE TABLE {table};".format(table=table) h = HiveCliHook(HIVE_CLI_CONN_ID) return h.run_cli(sql) v = MetastoreBrowserView(category="Plugins", name="Hive Metadata Browser") # Creating a flask blueprint to intergrate the templates and static folder bp = Blueprint( "metastore_browser", __name__, template_folder='templates', static_folder='static', static_url_path='/static/metastore_browser') # Defining the plugin class class MetastoreBrowserPlugin(AirflowPlugin): name = "metastore_browser" flask_blueprints = [bp] admin_views = [v]
apache-2.0
Udzu/pudzu
dataviz/euheight.py
1
2023
from pudzu.charts import * from pudzu.sandbox.bamboo import * import seaborn as sns # generate map df = pd.read_csv("datasets/euheight.csv").set_index("country").fillna(0) palette = tmap(RGBA, sns.cubehelix_palette(7, start=0.5, rot=-0.85)) basketball = Image.open("icons/basketball.png").convert("RGBA").resize((18,18)) def colorfn(c): if c not in df.index: return "white" if c in ['Sea', 'Borders'] else "grey" return palette[(int(df['height'][c]) - 172) // 2] def labelfn(c): if c not in df.index or df['eurobasket'][c] == 0: return None return Image.from_row([basketball]*int(df['eurobasket'][c]), bg=0, padding=2) map = map_chart("maps/Europe.png", colorfn, labelfn) # legend legendboxes = Image.from_array([ [Image.new("RGBA", (40,40), palette[i]), Image.from_text("{}-{} cm".format(i * 2 + 172, str(i * 2 + 174)[-1]), arial(16))] for i in reversed(range(6))] + [ [Image.new("RGBA", (40,40), "grey"), Image.from_text("No data", arial(16))], [Image.new("RGBA", (40,40), "white").place(basketball), Image.from_text("Eurobasket wins\nsince 1993*", arial(16))] ], xalign=(0.5, 0), padding=(3,0), bg="white") legend = Image.from_column([ Image.from_text("Heights", arial(16, bold=True), padding=5), legendboxes, Image.from_text("* Eurobasket wins for\nFRY are under Serbia.", arial(16, italics=True), align="left") ], bg="white", xalign=0).pad(5, "white").pad(1, "black") chart = map.place(legend, align=(1,0), padding=10) # title title = Image.from_column([ Image.from_text("AVERAGE 18 YEAR OLD MALE HEIGHT (2014)", arial(48, bold=True)), Image.from_text("and number of Eurobasket wins since 1993", arial(36))], bg="white") # title = Image.from_text("Europe by number of, and longest borders", arial(48, bold=True), bg="white") img = Image.from_column([title, chart], bg="white", padding=2) img.place(Image.from_text("/u/Udzu", font("arial", 16), fg="black", bg="white", padding=5).pad((1,1,0,0), "black"), align=1, padding=10, copy=False) img.save("output/euheight.png")
mit
mugizico/scikit-learn
examples/cluster/plot_lena_segmentation.py
271
2444
""" ========================================= Segmenting the picture of Lena in regions ========================================= This example uses :ref:`spectral_clustering` on a graph created from voxel-to-voxel difference on an image to break this image into multiple partly-homogeneous regions. This procedure (spectral clustering on an image) is an efficient approximate solution for finding normalized graph cuts. There are two options to assign labels: * with 'kmeans' spectral clustering will cluster samples in the embedding space using a kmeans algorithm * whereas 'discrete' will iteratively search for the closest partition space to the embedding space. """ print(__doc__) # Author: Gael Varoquaux <[email protected]>, Brian Cheung # License: BSD 3 clause import time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction import image from sklearn.cluster import spectral_clustering lena = sp.misc.lena() # Downsample the image by a factor of 4 lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] # Convert the image into a graph with the value of the gradient on the # edges. graph = image.img_to_graph(lena) # Take a decreasing function of the gradient: an exponential # The smaller beta is, the more independent the segmentation is of the # actual image. For beta=1, the segmentation is close to a voronoi beta = 5 eps = 1e-6 graph.data = np.exp(-beta * graph.data / lena.std()) + eps # Apply spectral clustering (this step goes much faster if you have pyamg # installed) N_REGIONS = 11 ############################################################################### # Visualize the resulting regions for assign_labels in ('kmeans', 'discretize'): t0 = time.time() labels = spectral_clustering(graph, n_clusters=N_REGIONS, assign_labels=assign_labels, random_state=1) t1 = time.time() labels = labels.reshape(lena.shape) plt.figure(figsize=(5, 5)) plt.imshow(lena, cmap=plt.cm.gray) for l in range(N_REGIONS): plt.contour(labels == l, contours=1, colors=[plt.cm.spectral(l / float(N_REGIONS)), ]) plt.xticks(()) plt.yticks(()) plt.title('Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))) plt.show()
bsd-3-clause
antoinecarme/pyaf
pyaf/TS/Plots.py
1
10299
# Copyright (C) 2016 Antoine Carme <[email protected]> # All rights reserved. # This file is part of the Python Automatic Forecasting (PyAF) library and is made available under # the terms of the 3 Clause BSD license import pandas as pd import numpy as np from io import BytesIO import base64 SIGNAL_COLOR='green' FORECAST_COLOR='blue' RESIDUE_COLOR='red' COMPONENT_COLOR='navy' SHADED_COLOR='turquoise' UPPER_COLOR='grey' LOWER_COLOR='black' def add_patched_legend(ax , names): # matplotlib does not like labels starting with '_' patched_names = [] for name in names: # remove leading '_' => here, this is almost OK: no signal transformation patched_name = name.lstrip('_') patched_names = patched_names + [ patched_name ] # print("add_patched_legend" , names, patched_names) ax.legend(patched_names) def fig_to_png_base64(fig): figfile = BytesIO() fig.savefig(figfile, format='png') figfile.seek(0) # rewind to beginning of file figdata_png = base64.b64encode(figfile.getvalue()) return figdata_png.decode('utf8') def decomp_plot_internal(df, time, signal, estimator, residue, name = None, format='png', max_length = 1000, horizon = 1) : assert(df.shape[0] > 0) assert(df.shape[1] > 0) assert(time in df.columns) assert(signal in df.columns) assert(estimator in df.columns) assert(residue in df.columns) import matplotlib import matplotlib.pyplot as plt # print("MATPLOTLIB_BACKEND", matplotlib.get_backend()) # matplotlib.use('Agg') df1 = df.tail(max(max_length , 4 * horizon)); if(name is not None): plt.switch_backend('Agg') fig, axs = plt.subplots(ncols=2, figsize=(32, 16)) lColor = COMPONENT_COLOR; if(name is not None and name.endswith("Forecast")): lColor = FORECAST_COLOR; df1.plot.line(time, [signal, estimator, residue], color=[SIGNAL_COLOR, lColor, RESIDUE_COLOR], ax=axs[0] , grid = True, legend=False) add_patched_legend(axs[0] , [signal, estimator, residue]) residues = df1[residue].values import scipy.stats as scistats resid = residues[~np.isnan(residues)] scistats.probplot(resid, dist="norm", plot=axs[1]) return fig def decomp_plot(df, time, signal, estimator, residue, name = None, format='png', max_length = 1000, horizon = 1) : fig = decomp_plot_internal(df, time, signal, estimator, residue, name, format, max_length, horizon) if(name is not None): import matplotlib import matplotlib.pyplot as plt plt.switch_backend('Agg') fig.savefig(name + '_decomp_output.' + format) plt.close(fig) def decomp_plot_as_png_base64(df, time, signal, estimator, residue, name = None, max_length = 1000, horizon = 1) : fig = decomp_plot_internal(df, time, signal, estimator, residue, name, format, max_length, horizon) import matplotlib import matplotlib.pyplot as plt png_b64 = fig_to_png_base64(fig) plt.close(fig) return png_b64 def prediction_interval_plot_internal(df, time, signal, estimator, lower, upper, name = None, format='png', max_length = 1000, horizon = 1) : assert(df.shape[0] > 0) assert(df.shape[1] > 0) assert(time in df.columns) assert(signal in df.columns) assert(estimator in df.columns) assert(lower in df.columns) assert(upper in df.columns) df1 = df.tail(max(max_length, 4 * horizon)).copy(); lMin = np.mean(df1[signal]) - np.std(df1[signal]) * 10; lMax = np.mean(df1[signal]) + np.std(df1[signal]) * 10; df1[lower] = df1[lower].apply(lambda x : x if (np.isnan(x) or x >= lMin) else np.nan); df1[upper] = df1[upper].apply(lambda x : x if (np.isnan(x) or x <= lMax) else np.nan); # last value of the signal lLastSignalPos = df1[signal].dropna().tail(1).index[0]; lEstimtorValue = df1[estimator][lLastSignalPos]; df1.loc[lLastSignalPos , lower] = lEstimtorValue; df1.loc[lLastSignalPos , upper] = lEstimtorValue; import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt if(name is not None): plt.switch_backend('Agg') fig, axs = plt.subplots(ncols=1, figsize=(16, 8)) df1.plot.line(time, [signal, estimator, lower, upper], color=[SIGNAL_COLOR, FORECAST_COLOR, LOWER_COLOR, UPPER_COLOR], ax=axs, grid = True, legend=False) add_patched_legend(axs , [signal, estimator, lower, upper]) x = df1[time]; type1 = np.dtype(x) if(type1.kind == 'M'): x = x.apply(lambda t : t.date()); axs.fill_between(x.values, df1[lower], df1[upper], color=SHADED_COLOR, alpha=.2) return fig def prediction_interval_plot(df, time, signal, estimator, lower, upper, name = None, format='png', max_length = 1000, horizon = 1) : fig = prediction_interval_plot_internal(df, time, signal, estimator, lower, upper, name, format, max_length, horizon) if(name is not None): import matplotlib import matplotlib.pyplot as plt plt.switch_backend('Agg') fig.savefig(name + '_prediction_intervals_output.' + format) plt.close(fig) def prediction_interval_plot_as_png_base64(df, time, signal, estimator, lower, upper, name = None, max_length = 1000, horizon = 1) : fig = prediction_interval_plot_internal(df, time, signal, estimator, lower, upper, name, format, max_length, horizon) import matplotlib import matplotlib.pyplot as plt png_b64 = fig_to_png_base64(fig) plt.close(fig) return png_b64 def quantiles_plot_internal(df, time, signal, estimator, iQuantiles, name = None, format='png', horizon = 1) : assert(df.shape[0] > 0) assert(df.shape[1] > 0) assert(time in df.columns) assert(signal in df.columns) assert(estimator in df.columns) lQuantileNames = [estimator + '_Quantile_' + str(q) for q in iQuantiles] df1 = df.tail(horizon) import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt if(name is not None): plt.switch_backend('Agg') lMin, lMax = df1[lQuantileNames].values.min(), df1[lQuantileNames].values.max() cm = plt.cm.get_cmap('RdYlBu_r') fig, axs = plt.subplots(horizon, 1, figsize=(12, 12), squeeze = True) # plt.subplots_adjust(hspace=1) # print(axs) if (horizon == 1): axs = [axs] for h in range(horizon): lIdx = df1.index[h] lTime = df1.loc[lIdx, time] q_values = df1.loc[lIdx, lQuantileNames].tolist() _, bins1, patches = axs[h].hist(q_values, bins = q_values, weights=[1]*len(lQuantileNames), density = True) for i, p in enumerate(patches): j = (bins1[i] - lMin) / (lMax - lMin) plt.setp(p, 'facecolor', cm(j)) if(h == 0): axs[h].set_title('Forecast Quantiles') axs[h].set_xlim((lMin,lMax)) # axs[h].set_ylim((0, 1.0)) axs[h].set_ylabel('H_' + str(h + 1)) axs[h].set_yticklabels([]) if(h < (horizon - 1)): axs[h].set_xlabel('') axs[h].set_xticklabels([]) return fig def quantiles_plot(df, time, signal, estimator, iQuantiles, name = None, format='png', horizon = 1) : fig = quantiles_plot_internal(df, time, signal, estimator, iQuantiles, name, format, horizon) import matplotlib import matplotlib.pyplot as plt if(name is not None): plt.switch_backend('Agg') fig.savefig(name + '_quantiles_output.' + format) plt.close(fig) def quantiles_plot_as_png_base64(df, time, signal, estimator, iQuantiles, name = None, format='png', horizon = 1) : fig = quantiles_plot_internal(df, time, signal, estimator, iQuantiles, name, format, horizon) import matplotlib import matplotlib.pyplot as plt png_b64 = fig_to_png_base64(fig) plt.close(fig) return png_b64 def qqplot_residues(df , residue): pass def build_record_label(labels_list): out = "<f0>" + str(labels_list[0]); i = 1; for l in labels_list[1:]: out = out + " | <f" + str(i) + "> " + str(l) ; i = i + 1; return out + ""; def plot_hierarchy_internal(structure , iAnnotations, name): import pydot graph = pydot.Dot(graph_type='graph', rankdir='LR', fontsize="12.0"); graph.set_node_defaults(shape='record') lLevelsReversed = sorted(structure.keys(), reverse=True); for level in lLevelsReversed: color = '#%02x%02x%02x' % (255, 255, 127 + int(128 * (1.0 - (level + 1.0) / len(lLevelsReversed)))); for col in structure[level].keys(): lLabel = col if iAnnotations is None else str(iAnnotations[col]); if iAnnotations is not None: lLabel = build_record_label(iAnnotations[col]); node_col = pydot.Node(col, label=lLabel, style="filled", fillcolor=color, fontsize="12.0") graph.add_node(node_col); for col1 in structure[level][col]: lLabel1 = col1 if iAnnotations is not None: lLabel1 = build_record_label(iAnnotations[col1]); color1 = '#%02x%02x%02x' % (255, 255, 128 + int(128 * (1.0 - (level + 2.0) / len(lLevelsReversed)))); node_col1 = pydot.Node(col1, label=lLabel1, style="filled", fillcolor=color1, fontsize="12.0") graph.add_node(node_col1); lEdgeLabel = ""; if iAnnotations is not None: lEdgeLabel = iAnnotations[col + "_" + col1]; lEdge = pydot.Edge(node_col, node_col1, color="red", label=lEdgeLabel, fontsize="12.0") graph.add_edge(lEdge) # print(graph.obj_dict) return graph def plot_hierarchy(structure , iAnnotations, name): graph = plot_hierarchy_internal(structure , iAnnotations, name) if(name is not None): graph.write_png(name); else: from IPython.display import Image, display plot1 = Image(graph.create_png()) display(plot1) def plot_hierarchy_as_png_base64(structure , iAnnotations, name): graph = plot_hierarchy_internal(structure , iAnnotations, name) figdata_png = base64.b64encode(graph.create_png()) return figdata_png.decode('utf8')
bsd-3-clause
tylerjereddy/scipy
scipy/stats/_multivariate.py
7
153934
# # Author: Joris Vankerschaver 2013 # import math import numpy as np from numpy import asarray_chkfinite, asarray import scipy.linalg from scipy._lib import doccer from scipy.special import gammaln, psi, multigammaln, xlogy, entr, betaln from scipy._lib._util import check_random_state from scipy.linalg.blas import drot from scipy.linalg.misc import LinAlgError from scipy.linalg.lapack import get_lapack_funcs from ._discrete_distns import binom from . import mvn __all__ = ['multivariate_normal', 'matrix_normal', 'dirichlet', 'wishart', 'invwishart', 'multinomial', 'special_ortho_group', 'ortho_group', 'random_correlation', 'unitary_group', 'multivariate_t', 'multivariate_hypergeom'] _LOG_2PI = np.log(2 * np.pi) _LOG_2 = np.log(2) _LOG_PI = np.log(np.pi) _doc_random_state = """\ random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. """ def _squeeze_output(out): """ Remove single-dimensional entries from array and convert to scalar, if necessary. """ out = out.squeeze() if out.ndim == 0: out = out[()] return out def _eigvalsh_to_eps(spectrum, cond=None, rcond=None): """Determine which eigenvalues are "small" given the spectrum. This is for compatibility across various linear algebra functions that should agree about whether or not a Hermitian matrix is numerically singular and what is its numerical matrix rank. This is designed to be compatible with scipy.linalg.pinvh. Parameters ---------- spectrum : 1d ndarray Array of eigenvalues of a Hermitian matrix. cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. Returns ------- eps : float Magnitude cutoff for numerical negligibility. """ if rcond is not None: cond = rcond if cond in [None, -1]: t = spectrum.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps eps = cond * np.max(abs(spectrum)) return eps def _pinv_1d(v, eps=1e-5): """A helper function for computing the pseudoinverse. Parameters ---------- v : iterable of numbers This may be thought of as a vector of eigenvalues or singular values. eps : float Values with magnitude no greater than eps are considered negligible. Returns ------- v_pinv : 1d float ndarray A vector of pseudo-inverted numbers. """ return np.array([0 if abs(x) <= eps else 1/x for x in v], dtype=float) class _PSD: """ Compute coordinated functions of a symmetric positive semidefinite matrix. This class addresses two issues. Firstly it allows the pseudoinverse, the logarithm of the pseudo-determinant, and the rank of the matrix to be computed using one call to eigh instead of three. Secondly it allows these functions to be computed in a way that gives mutually compatible results. All of the functions are computed with a common understanding as to which of the eigenvalues are to be considered negligibly small. The functions are designed to coordinate with scipy.linalg.pinvh() but not necessarily with np.linalg.det() or with np.linalg.matrix_rank(). Parameters ---------- M : array_like Symmetric positive semidefinite matrix (2-D). cond, rcond : float, optional Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of M. (Default: lower) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. allow_singular : bool, optional Whether to allow a singular matrix. (Default: True) Notes ----- The arguments are similar to those of scipy.linalg.pinvh(). """ def __init__(self, M, cond=None, rcond=None, lower=True, check_finite=True, allow_singular=True): # Compute the symmetric eigendecomposition. # Note that eigh takes care of array conversion, chkfinite, # and assertion that the matrix is square. s, u = scipy.linalg.eigh(M, lower=lower, check_finite=check_finite) eps = _eigvalsh_to_eps(s, cond, rcond) if np.min(s) < -eps: raise ValueError('the input matrix must be positive semidefinite') d = s[s > eps] if len(d) < len(s) and not allow_singular: raise np.linalg.LinAlgError('singular matrix') s_pinv = _pinv_1d(s, eps) U = np.multiply(u, np.sqrt(s_pinv)) # Initialize the eagerly precomputed attributes. self.rank = len(d) self.U = U self.log_pdet = np.sum(np.log(d)) # Initialize an attribute to be lazily computed. self._pinv = None @property def pinv(self): if self._pinv is None: self._pinv = np.dot(self.U, self.U.T) return self._pinv class multi_rv_generic: """ Class which encapsulates common functionality between all multivariate distributions. """ def __init__(self, seed=None): super().__init__() self._random_state = check_random_state(seed) @property def random_state(self): """ Get or set the Generator object for generating random variates. If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def _get_random_state(self, random_state): if random_state is not None: return check_random_state(random_state) else: return self._random_state class multi_rv_frozen: """ Class which encapsulates common functionality between all frozen multivariate distributions. """ @property def random_state(self): return self._dist._random_state @random_state.setter def random_state(self, seed): self._dist._random_state = check_random_state(seed) _mvn_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional Whether to allow a singular covariance matrix. (Default: False) """ _mvn_doc_callparams_note = \ """Setting the parameter `mean` to `None` is equivalent to having `mean` be the zero-vector. The parameter `cov` can be a scalar, in which case the covariance matrix is the identity times that value, a vector of diagonal entries for the covariance matrix, or a two-dimensional array_like. """ _mvn_doc_frozen_callparams = "" _mvn_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mvn_docdict_params = { '_mvn_doc_default_callparams': _mvn_doc_default_callparams, '_mvn_doc_callparams_note': _mvn_doc_callparams_note, '_doc_random_state': _doc_random_state } mvn_docdict_noparams = { '_mvn_doc_default_callparams': _mvn_doc_frozen_callparams, '_mvn_doc_callparams_note': _mvn_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_normal_gen(multi_rv_generic): r"""A multivariate normal random variable. The `mean` keyword specifies the mean. The `cov` keyword specifies the covariance matrix. Methods ------- ``pdf(x, mean=None, cov=1, allow_singular=False)`` Probability density function. ``logpdf(x, mean=None, cov=1, allow_singular=False)`` Log of the probability density function. ``cdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)`` Cumulative distribution function. ``logcdf(x, mean=None, cov=1, allow_singular=False, maxpts=1000000*dim, abseps=1e-5, releps=1e-5)`` Log of the cumulative distribution function. ``rvs(mean=None, cov=1, size=1, random_state=None)`` Draw random samples from a multivariate normal distribution. ``entropy()`` Compute the differential entropy of the multivariate normal. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" multivariate normal random variable: rv = multivariate_normal(mean=None, cov=1, allow_singular=False) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_mvn_doc_callparams_note)s The covariance matrix `cov` must be a (symmetric) positive semi-definite matrix. The determinant and inverse of `cov` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `cov` does not need to have full rank. The probability density function for `multivariate_normal` is .. math:: f(x) = \frac{1}{\sqrt{(2 \pi)^k \det \Sigma}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right), where :math:`\mu` is the mean, :math:`\Sigma` the covariance matrix, and :math:`k` is the dimension of the space where :math:`x` takes values. .. versionadded:: 0.14.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_normal >>> x = np.linspace(0, 5, 10, endpoint=False) >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129, 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349]) >>> fig1 = plt.figure() >>> ax = fig1.add_subplot(111) >>> ax.plot(x, y) The input quantiles can be any shape of array, as long as the last axis labels the components. This allows us for instance to display the frozen pdf for a non-isotropic random variable in 2D as follows: >>> x, y = np.mgrid[-1:1:.01, -1:1:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]]) >>> fig2 = plt.figure() >>> ax2 = fig2.add_subplot(111) >>> ax2.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mvn_docdict_params) def __call__(self, mean=None, cov=1, allow_singular=False, seed=None): """Create a frozen multivariate normal distribution. See `multivariate_normal_frozen` for more information. """ return multivariate_normal_frozen(mean, cov, allow_singular=allow_singular, seed=seed) def _process_parameters(self, dim, mean, cov): """ Infer dimensionality from mean or covariance matrix, ensure that mean and covariance are full vector resp. matrix. """ # Try to infer dimensionality if dim is None: if mean is None: if cov is None: dim = 1 else: cov = np.asarray(cov, dtype=float) if cov.ndim < 2: dim = 1 else: dim = cov.shape[0] else: mean = np.asarray(mean, dtype=float) dim = mean.size else: if not np.isscalar(dim): raise ValueError("Dimension of random variable must be " "a scalar.") # Check input sizes and return full arrays for mean and cov if # necessary if mean is None: mean = np.zeros(dim) mean = np.asarray(mean, dtype=float) if cov is None: cov = 1.0 cov = np.asarray(cov, dtype=float) if dim == 1: mean.shape = (1,) cov.shape = (1, 1) if mean.ndim != 1 or mean.shape[0] != dim: raise ValueError("Array 'mean' must be a vector of length %d." % dim) if cov.ndim == 0: cov = cov * np.eye(dim) elif cov.ndim == 1: cov = np.diag(cov) elif cov.ndim == 2 and cov.shape != (dim, dim): rows, cols = cov.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(cov.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'mean' is a vector of length %d.") msg = msg % (str(cov.shape), len(mean)) raise ValueError(msg) elif cov.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % cov.ndim) return dim, mean, cov def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _logpdf(self, x, mean, prec_U, log_det_cov, rank): """Log of the multivariate normal probability density function. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution prec_U : ndarray A decomposition such that np.dot(prec_U, prec_U.T) is the precision matrix, i.e. inverse of the covariance matrix. log_det_cov : float Logarithm of the determinant of the covariance matrix rank : int Rank of the covariance matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ dev = x - mean maha = np.sum(np.square(np.dot(dev, prec_U)), axis=-1) return -0.5 * (rank * _LOG_2PI + log_det_cov + maha) def logpdf(self, x, mean=None, cov=1, allow_singular=False): """Log of the multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Log of the probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank) return _squeeze_output(out) def pdf(self, x, mean=None, cov=1, allow_singular=False): """Multivariate normal probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Probability density function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) psd = _PSD(cov, allow_singular=allow_singular) out = np.exp(self._logpdf(x, mean, psd.U, psd.log_pdet, psd.rank)) return _squeeze_output(out) def _cdf(self, x, mean, cov, maxpts, abseps, releps): """Log of the multivariate normal cumulative distribution function. Parameters ---------- x : ndarray Points at which to evaluate the cumulative distribution function. mean : ndarray Mean of the distribution cov : array_like Covariance matrix of the distribution maxpts : integer The maximum number of points to use for integration abseps : float Absolute error tolerance releps : float Relative error tolerance Notes ----- As this function does no argument checking, it should not be called directly; use 'cdf' instead. .. versionadded:: 1.0.0 """ lower = np.full(mean.shape, -np.inf) # mvnun expects 1-d arguments, so process points sequentially func1d = lambda x_slice: mvn.mvnun(lower, x_slice, mean, cov, maxpts, abseps, releps)[0] out = np.apply_along_axis(func1d, -1, x) return _squeeze_output(out) def logcdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None, abseps=1e-5, releps=1e-5): """Log of the multivariate normal cumulative distribution function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s maxpts : integer, optional The maximum number of points to use for integration (default `1000000*dim`) abseps : float, optional Absolute error tolerance (default 1e-5) releps : float, optional Relative error tolerance (default 1e-5) Returns ------- cdf : ndarray or scalar Log of the cumulative distribution function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s .. versionadded:: 1.0.0 """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) # Use _PSD to check covariance matrix _PSD(cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * dim out = np.log(self._cdf(x, mean, cov, maxpts, abseps, releps)) return out def cdf(self, x, mean=None, cov=1, allow_singular=False, maxpts=None, abseps=1e-5, releps=1e-5): """Multivariate normal cumulative distribution function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvn_doc_default_callparams)s maxpts : integer, optional The maximum number of points to use for integration (default `1000000*dim`) abseps : float, optional Absolute error tolerance (default 1e-5) releps : float, optional Relative error tolerance (default 1e-5) Returns ------- cdf : ndarray or scalar Cumulative distribution function evaluated at `x` Notes ----- %(_mvn_doc_callparams_note)s .. versionadded:: 1.0.0 """ dim, mean, cov = self._process_parameters(None, mean, cov) x = self._process_quantiles(x, dim) # Use _PSD to check covariance matrix _PSD(cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * dim out = self._cdf(x, mean, cov, maxpts, abseps, releps) return out def rvs(self, mean=None, cov=1, size=1, random_state=None): """Draw random samples from a multivariate normal distribution. Parameters ---------- %(_mvn_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) random_state = self._get_random_state(random_state) out = random_state.multivariate_normal(mean, cov, size) return _squeeze_output(out) def entropy(self, mean=None, cov=1): """Compute the differential entropy of the multivariate normal. Parameters ---------- %(_mvn_doc_default_callparams)s Returns ------- h : scalar Entropy of the multivariate normal distribution Notes ----- %(_mvn_doc_callparams_note)s """ dim, mean, cov = self._process_parameters(None, mean, cov) _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov) return 0.5 * logdet multivariate_normal = multivariate_normal_gen() class multivariate_normal_frozen(multi_rv_frozen): def __init__(self, mean=None, cov=1, allow_singular=False, seed=None, maxpts=None, abseps=1e-5, releps=1e-5): """Create a frozen multivariate normal distribution. Parameters ---------- mean : array_like, optional Mean of the distribution (default zero) cov : array_like, optional Covariance matrix of the distribution (default one) allow_singular : bool, optional If this flag is True then tolerate a singular covariance matrix (default False). seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. maxpts : integer, optional The maximum number of points to use for integration of the cumulative distribution function (default `1000000*dim`) abseps : float, optional Absolute error tolerance for the cumulative distribution function (default 1e-5) releps : float, optional Relative error tolerance for the cumulative distribution function (default 1e-5) Examples -------- When called with the default parameters, this will create a 1D random variable with mean 0 and covariance 1: >>> from scipy.stats import multivariate_normal >>> r = multivariate_normal() >>> r.mean array([ 0.]) >>> r.cov array([[1.]]) """ self._dist = multivariate_normal_gen(seed) self.dim, self.mean, self.cov = self._dist._process_parameters( None, mean, cov) self.cov_info = _PSD(self.cov, allow_singular=allow_singular) if not maxpts: maxpts = 1000000 * self.dim self.maxpts = maxpts self.abseps = abseps self.releps = releps def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.mean, self.cov_info.U, self.cov_info.log_pdet, self.cov_info.rank) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def logcdf(self, x): return np.log(self.cdf(x)) def cdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._cdf(x, self.mean, self.cov, self.maxpts, self.abseps, self.releps) return _squeeze_output(out) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.cov, size, random_state) def entropy(self): """Computes the differential entropy of the multivariate normal. Returns ------- h : scalar Entropy of the multivariate normal distribution """ log_pdet = self.cov_info.log_pdet rank = self.cov_info.rank return 0.5 * (rank * (_LOG_2PI + 1) + log_pdet) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'logcdf', 'cdf', 'rvs']: method = multivariate_normal_gen.__dict__[name] method_frozen = multivariate_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvn_docdict_params) _matnorm_doc_default_callparams = """\ mean : array_like, optional Mean of the distribution (default: `None`) rowcov : array_like, optional Among-row covariance matrix of the distribution (default: `1`) colcov : array_like, optional Among-column covariance matrix of the distribution (default: `1`) """ _matnorm_doc_callparams_note = \ """If `mean` is set to `None` then a matrix of zeros is used for the mean. The dimensions of this matrix are inferred from the shape of `rowcov` and `colcov`, if these are provided, or set to `1` if ambiguous. `rowcov` and `colcov` can be two-dimensional array_likes specifying the covariance matrices directly. Alternatively, a one-dimensional array will be be interpreted as the entries of a diagonal matrix, and a scalar or zero-dimensional array will be interpreted as this value times the identity matrix. """ _matnorm_doc_frozen_callparams = "" _matnorm_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" matnorm_docdict_params = { '_matnorm_doc_default_callparams': _matnorm_doc_default_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_callparams_note, '_doc_random_state': _doc_random_state } matnorm_docdict_noparams = { '_matnorm_doc_default_callparams': _matnorm_doc_frozen_callparams, '_matnorm_doc_callparams_note': _matnorm_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class matrix_normal_gen(multi_rv_generic): r"""A matrix normal random variable. The `mean` keyword specifies the mean. The `rowcov` keyword specifies the among-row covariance matrix. The 'colcov' keyword specifies the among-column covariance matrix. Methods ------- ``pdf(X, mean=None, rowcov=1, colcov=1)`` Probability density function. ``logpdf(X, mean=None, rowcov=1, colcov=1)`` Log of the probability density function. ``rvs(mean=None, rowcov=1, colcov=1, size=1, random_state=None)`` Draw random samples. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the mean and covariance parameters, returning a "frozen" matrix normal random variable: rv = matrix_normal(mean=None, rowcov=1, colcov=1) - Frozen object with the same methods but holding the given mean and covariance fixed. Notes ----- %(_matnorm_doc_callparams_note)s The covariance matrices specified by `rowcov` and `colcov` must be (symmetric) positive definite. If the samples in `X` are :math:`m \times n`, then `rowcov` must be :math:`m \times m` and `colcov` must be :math:`n \times n`. `mean` must be the same shape as `X`. The probability density function for `matrix_normal` is .. math:: f(X) = (2 \pi)^{-\frac{mn}{2}}|U|^{-\frac{n}{2}} |V|^{-\frac{m}{2}} \exp\left( -\frac{1}{2} \mathrm{Tr}\left[ U^{-1} (X-M) V^{-1} (X-M)^T \right] \right), where :math:`M` is the mean, :math:`U` the among-row covariance matrix, :math:`V` the among-column covariance matrix. The `allow_singular` behaviour of the `multivariate_normal` distribution is not currently supported. Covariance matrices must be full rank. The `matrix_normal` distribution is closely related to the `multivariate_normal` distribution. Specifically, :math:`\mathrm{Vec}(X)` (the vector formed by concatenating the columns of :math:`X`) has a multivariate normal distribution with mean :math:`\mathrm{Vec}(M)` and covariance :math:`V \otimes U` (where :math:`\otimes` is the Kronecker product). Sampling and pdf evaluation are :math:`\mathcal{O}(m^3 + n^3 + m^2 n + m n^2)` for the matrix normal, but :math:`\mathcal{O}(m^3 n^3)` for the equivalent multivariate normal, making this equivalent form algorithmically inefficient. .. versionadded:: 0.17.0 Examples -------- >>> from scipy.stats import matrix_normal >>> M = np.arange(6).reshape(3,2); M array([[0, 1], [2, 3], [4, 5]]) >>> U = np.diag([1,2,3]); U array([[1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> V = 0.3*np.identity(2); V array([[ 0.3, 0. ], [ 0. , 0.3]]) >>> X = M + 0.1; X array([[ 0.1, 1.1], [ 2.1, 3.1], [ 4.1, 5.1]]) >>> matrix_normal.pdf(X, mean=M, rowcov=U, colcov=V) 0.023410202050005054 >>> # Equivalent multivariate normal >>> from scipy.stats import multivariate_normal >>> vectorised_X = X.T.flatten() >>> equiv_mean = M.T.flatten() >>> equiv_cov = np.kron(V,U) >>> multivariate_normal.pdf(vectorised_X, mean=equiv_mean, cov=equiv_cov) 0.023410202050005054 """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, matnorm_docdict_params) def __call__(self, mean=None, rowcov=1, colcov=1, seed=None): """Create a frozen matrix normal distribution. See `matrix_normal_frozen` for more information. """ return matrix_normal_frozen(mean, rowcov, colcov, seed=seed) def _process_parameters(self, mean, rowcov, colcov): """ Infer dimensionality from mean or covariance matrices. Handle defaults. Ensure compatible dimensions. """ # Process mean if mean is not None: mean = np.asarray(mean, dtype=float) meanshape = mean.shape if len(meanshape) != 2: raise ValueError("Array `mean` must be two dimensional.") if np.any(meanshape == 0): raise ValueError("Array `mean` has invalid shape.") # Process among-row covariance rowcov = np.asarray(rowcov, dtype=float) if rowcov.ndim == 0: if mean is not None: rowcov = rowcov * np.identity(meanshape[0]) else: rowcov = rowcov * np.identity(1) elif rowcov.ndim == 1: rowcov = np.diag(rowcov) rowshape = rowcov.shape if len(rowshape) != 2: raise ValueError("`rowcov` must be a scalar or a 2D array.") if rowshape[0] != rowshape[1]: raise ValueError("Array `rowcov` must be square.") if rowshape[0] == 0: raise ValueError("Array `rowcov` has invalid shape.") numrows = rowshape[0] # Process among-column covariance colcov = np.asarray(colcov, dtype=float) if colcov.ndim == 0: if mean is not None: colcov = colcov * np.identity(meanshape[1]) else: colcov = colcov * np.identity(1) elif colcov.ndim == 1: colcov = np.diag(colcov) colshape = colcov.shape if len(colshape) != 2: raise ValueError("`colcov` must be a scalar or a 2D array.") if colshape[0] != colshape[1]: raise ValueError("Array `colcov` must be square.") if colshape[0] == 0: raise ValueError("Array `colcov` has invalid shape.") numcols = colshape[0] # Ensure mean and covariances compatible if mean is not None: if meanshape[0] != numrows: raise ValueError("Arrays `mean` and `rowcov` must have the " "same number of rows.") if meanshape[1] != numcols: raise ValueError("Arrays `mean` and `colcov` must have the " "same number of columns.") else: mean = np.zeros((numrows, numcols)) dims = (numrows, numcols) return dims, mean, rowcov, colcov def _process_quantiles(self, X, dims): """ Adjust quantiles array so that last two axes labels the components of each data point. """ X = np.asarray(X, dtype=float) if X.ndim == 2: X = X[np.newaxis, :] if X.shape[-2:] != dims: raise ValueError("The shape of array `X` is not compatible " "with the distribution parameters.") return X def _logpdf(self, dims, X, mean, row_prec_rt, log_det_rowcov, col_prec_rt, log_det_colcov): """Log of the matrix normal probability density function. Parameters ---------- dims : tuple Dimensions of the matrix variates X : ndarray Points at which to evaluate the log of the probability density function mean : ndarray Mean of the distribution row_prec_rt : ndarray A decomposition such that np.dot(row_prec_rt, row_prec_rt.T) is the inverse of the among-row covariance matrix log_det_rowcov : float Logarithm of the determinant of the among-row covariance matrix col_prec_rt : ndarray A decomposition such that np.dot(col_prec_rt, col_prec_rt.T) is the inverse of the among-column covariance matrix log_det_colcov : float Logarithm of the determinant of the among-column covariance matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ numrows, numcols = dims roll_dev = np.rollaxis(X-mean, axis=-1, start=0) scale_dev = np.tensordot(col_prec_rt.T, np.dot(roll_dev, row_prec_rt), 1) maha = np.sum(np.sum(np.square(scale_dev), axis=-1), axis=0) return -0.5 * (numrows*numcols*_LOG_2PI + numcols*log_det_rowcov + numrows*log_det_colcov + maha) def logpdf(self, X, mean=None, rowcov=1, colcov=1): """Log of the matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- logpdf : ndarray Log of the probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) X = self._process_quantiles(X, dims) rowpsd = _PSD(rowcov, allow_singular=False) colpsd = _PSD(colcov, allow_singular=False) out = self._logpdf(dims, X, mean, rowpsd.U, rowpsd.log_pdet, colpsd.U, colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X, mean=None, rowcov=1, colcov=1): """Matrix normal probability density function. Parameters ---------- X : array_like Quantiles, with the last two axes of `X` denoting the components. %(_matnorm_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `X` Notes ----- %(_matnorm_doc_callparams_note)s """ return np.exp(self.logpdf(X, mean, rowcov, colcov)) def rvs(self, mean=None, rowcov=1, colcov=1, size=1, random_state=None): """Draw random samples from a matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `dims`), where `dims` is the dimension of the random matrices. Notes ----- %(_matnorm_doc_callparams_note)s """ size = int(size) dims, mean, rowcov, colcov = self._process_parameters(mean, rowcov, colcov) rowchol = scipy.linalg.cholesky(rowcov, lower=True) colchol = scipy.linalg.cholesky(colcov, lower=True) random_state = self._get_random_state(random_state) std_norm = random_state.standard_normal(size=(dims[1], size, dims[0])) roll_rvs = np.tensordot(colchol, np.dot(std_norm, rowchol.T), 1) out = np.rollaxis(roll_rvs.T, axis=1, start=0) + mean[np.newaxis, :, :] if size == 1: out = out.reshape(mean.shape) return out matrix_normal = matrix_normal_gen() class matrix_normal_frozen(multi_rv_frozen): """Create a frozen matrix normal distribution. Parameters ---------- %(_matnorm_doc_default_callparams)s seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Examples -------- >>> from scipy.stats import matrix_normal >>> distn = matrix_normal(mean=np.zeros((3,3))) >>> X = distn.rvs(); X array([[-0.02976962, 0.93339138, -0.09663178], [ 0.67405524, 0.28250467, -0.93308929], [-0.31144782, 0.74535536, 1.30412916]]) >>> distn.pdf(X) 2.5160642368346784e-05 >>> distn.logpdf(X) -10.590229595124615 """ def __init__(self, mean=None, rowcov=1, colcov=1, seed=None): self._dist = matrix_normal_gen(seed) self.dims, self.mean, self.rowcov, self.colcov = \ self._dist._process_parameters(mean, rowcov, colcov) self.rowpsd = _PSD(self.rowcov, allow_singular=False) self.colpsd = _PSD(self.colcov, allow_singular=False) def logpdf(self, X): X = self._dist._process_quantiles(X, self.dims) out = self._dist._logpdf(self.dims, X, self.mean, self.rowpsd.U, self.rowpsd.log_pdet, self.colpsd.U, self.colpsd.log_pdet) return _squeeze_output(out) def pdf(self, X): return np.exp(self.logpdf(X)) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.mean, self.rowcov, self.colcov, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # matrix_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = matrix_normal_gen.__dict__[name] method_frozen = matrix_normal_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, matnorm_docdict_params) _dirichlet_doc_default_callparams = """\ alpha : array_like The concentration parameters. The number of entries determines the dimensionality of the distribution. """ _dirichlet_doc_frozen_callparams = "" _dirichlet_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" dirichlet_docdict_params = { '_dirichlet_doc_default_callparams': _dirichlet_doc_default_callparams, '_doc_random_state': _doc_random_state } dirichlet_docdict_noparams = { '_dirichlet_doc_default_callparams': _dirichlet_doc_frozen_callparams, '_doc_random_state': _doc_random_state } def _dirichlet_check_parameters(alpha): alpha = np.asarray(alpha) if np.min(alpha) <= 0: raise ValueError("All parameters must be greater than 0") elif alpha.ndim != 1: raise ValueError("Parameter vector 'a' must be one dimensional, " "but a.shape = %s." % (alpha.shape, )) return alpha def _dirichlet_check_input(alpha, x): x = np.asarray(x) if x.shape[0] + 1 != alpha.shape[0] and x.shape[0] != alpha.shape[0]: raise ValueError("Vector 'x' must have either the same number " "of entries as, or one entry fewer than, " "parameter vector 'a', but alpha.shape = %s " "and x.shape = %s." % (alpha.shape, x.shape)) if x.shape[0] != alpha.shape[0]: xk = np.array([1 - np.sum(x, 0)]) if xk.ndim == 1: x = np.append(x, xk) elif xk.ndim == 2: x = np.vstack((x, xk)) else: raise ValueError("The input must be one dimensional or a two " "dimensional matrix containing the entries.") if np.min(x) < 0: raise ValueError("Each entry in 'x' must be greater than or equal " "to zero.") if np.max(x) > 1: raise ValueError("Each entry in 'x' must be smaller or equal one.") # Check x_i > 0 or alpha_i > 1 xeq0 = (x == 0) alphalt1 = (alpha < 1) if x.shape != alpha.shape: alphalt1 = np.repeat(alphalt1, x.shape[-1], axis=-1).reshape(x.shape) chk = np.logical_and(xeq0, alphalt1) if np.sum(chk): raise ValueError("Each entry in 'x' must be greater than zero if its " "alpha is less than one.") if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any(): raise ValueError("The input vector 'x' must lie within the normal " "simplex. but np.sum(x, 0) = %s." % np.sum(x, 0)) return x def _lnB(alpha): r"""Internal helper function to compute the log of the useful quotient. .. math:: B(\alpha) = \frac{\prod_{i=1}{K}\Gamma(\alpha_i)} {\Gamma\left(\sum_{i=1}^{K} \alpha_i \right)} Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- B : scalar Helper quotient, internal use only """ return np.sum(gammaln(alpha)) - gammaln(np.sum(alpha)) class dirichlet_gen(multi_rv_generic): r"""A Dirichlet random variable. The `alpha` keyword specifies the concentration parameters of the distribution. .. versionadded:: 0.15.0 Methods ------- ``pdf(x, alpha)`` Probability density function. ``logpdf(x, alpha)`` Log of the probability density function. ``rvs(alpha, size=1, random_state=None)`` Draw random samples from a Dirichlet distribution. ``mean(alpha)`` The mean of the Dirichlet distribution ``var(alpha)`` The variance of the Dirichlet distribution ``entropy(alpha)`` Compute the differential entropy of the Dirichlet distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix concentration parameters, returning a "frozen" Dirichlet random variable: rv = dirichlet(alpha) - Frozen object with the same methods but holding the given concentration parameters fixed. Notes ----- Each :math:`\alpha` entry must be positive. The distribution has only support on the simplex defined by .. math:: \sum_{i=1}^{K} x_i = 1 where 0 < x_i < 1. If the quantiles don't lie within the simplex, a ValueError is raised. The probability density function for `dirichlet` is .. math:: f(x) = \frac{1}{\mathrm{B}(\boldsymbol\alpha)} \prod_{i=1}^K x_i^{\alpha_i - 1} where .. math:: \mathrm{B}(\boldsymbol\alpha) = \frac{\prod_{i=1}^K \Gamma(\alpha_i)} {\Gamma\bigl(\sum_{i=1}^K \alpha_i\bigr)} and :math:`\boldsymbol\alpha=(\alpha_1,\ldots,\alpha_K)`, the concentration parameters and :math:`K` is the dimension of the space where :math:`x` takes values. Note that the dirichlet interface is somewhat inconsistent. The array returned by the rvs function is transposed with respect to the format expected by the pdf and logpdf. Examples -------- >>> from scipy.stats import dirichlet Generate a dirichlet random variable >>> quantiles = np.array([0.2, 0.2, 0.6]) # specify quantiles >>> alpha = np.array([0.4, 5, 15]) # specify concentration parameters >>> dirichlet.pdf(quantiles, alpha) 0.2843831684937255 The same PDF but following a log scale >>> dirichlet.logpdf(quantiles, alpha) -1.2574327653159187 Once we specify the dirichlet distribution we can then calculate quantities of interest >>> dirichlet.mean(alpha) # get the mean of the distribution array([0.01960784, 0.24509804, 0.73529412]) >>> dirichlet.var(alpha) # get variance array([0.00089829, 0.00864603, 0.00909517]) >>> dirichlet.entropy(alpha) # calculate the differential entropy -4.3280162474082715 We can also return random samples from the distribution >>> dirichlet.rvs(alpha, size=1, random_state=1) array([[0.00766178, 0.24670518, 0.74563305]]) >>> dirichlet.rvs(alpha, size=2, random_state=2) array([[0.01639427, 0.1292273 , 0.85437844], [0.00156917, 0.19033695, 0.80809388]]) """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, dirichlet_docdict_params) def __call__(self, alpha, seed=None): return dirichlet_frozen(alpha, seed=seed) def _logpdf(self, x, alpha): """Log of the Dirichlet probability density function. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function %(_dirichlet_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ lnB = _lnB(alpha) return - lnB + np.sum((xlogy(alpha - 1, x.T)).T, 0) def logpdf(self, x, alpha): """Log of the Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray or scalar Log of the probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = self._logpdf(x, alpha) return _squeeze_output(out) def pdf(self, x, alpha): """The Dirichlet probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_dirichlet_doc_default_callparams)s Returns ------- pdf : ndarray or scalar The probability density function evaluated at `x`. """ alpha = _dirichlet_check_parameters(alpha) x = _dirichlet_check_input(alpha, x) out = np.exp(self._logpdf(x, alpha)) return _squeeze_output(out) def mean(self, alpha): """Compute the mean of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- mu : ndarray or scalar Mean of the Dirichlet distribution. """ alpha = _dirichlet_check_parameters(alpha) out = alpha / (np.sum(alpha)) return _squeeze_output(out) def var(self, alpha): """Compute the variance of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- v : ndarray or scalar Variance of the Dirichlet distribution. """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) out = (alpha * (alpha0 - alpha)) / ((alpha0 * alpha0) * (alpha0 + 1)) return _squeeze_output(out) def entropy(self, alpha): """Compute the differential entropy of the dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s Returns ------- h : scalar Entropy of the Dirichlet distribution """ alpha = _dirichlet_check_parameters(alpha) alpha0 = np.sum(alpha) lnB = _lnB(alpha) K = alpha.shape[0] out = lnB + (alpha0 - K) * scipy.special.psi(alpha0) - np.sum( (alpha - 1) * scipy.special.psi(alpha)) return _squeeze_output(out) def rvs(self, alpha, size=1, random_state=None): """Draw random samples from a Dirichlet distribution. Parameters ---------- %(_dirichlet_doc_default_callparams)s size : int, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `N`), where `N` is the dimension of the random variable. """ alpha = _dirichlet_check_parameters(alpha) random_state = self._get_random_state(random_state) return random_state.dirichlet(alpha, size=size) dirichlet = dirichlet_gen() class dirichlet_frozen(multi_rv_frozen): def __init__(self, alpha, seed=None): self.alpha = _dirichlet_check_parameters(alpha) self._dist = dirichlet_gen(seed) def logpdf(self, x): return self._dist.logpdf(x, self.alpha) def pdf(self, x): return self._dist.pdf(x, self.alpha) def mean(self): return self._dist.mean(self.alpha) def var(self): return self._dist.var(self.alpha) def entropy(self): return self._dist.entropy(self.alpha) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.alpha, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multivariate_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs', 'mean', 'var', 'entropy']: method = dirichlet_gen.__dict__[name] method_frozen = dirichlet_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, dirichlet_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, dirichlet_docdict_params) _wishart_doc_default_callparams = """\ df : int Degrees of freedom, must be greater than or equal to dimension of the scale matrix scale : array_like Symmetric positive definite scale matrix of the distribution """ _wishart_doc_callparams_note = "" _wishart_doc_frozen_callparams = "" _wishart_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" wishart_docdict_params = { '_doc_default_callparams': _wishart_doc_default_callparams, '_doc_callparams_note': _wishart_doc_callparams_note, '_doc_random_state': _doc_random_state } wishart_docdict_noparams = { '_doc_default_callparams': _wishart_doc_frozen_callparams, '_doc_callparams_note': _wishart_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class wishart_gen(multi_rv_generic): r"""A Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal precision matrix (the inverse of the covariance matrix). These arguments must satisfy the relationship ``df > scale.ndim - 1``, but see notes on using the `rvs` method with ``df < scale.ndim``. Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from a Wishart distribution. ``entropy()`` Compute the differential entropy of the Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" Wishart random variable: rv = wishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- invwishart, chi2 Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The Wishart distribution is often denoted .. math:: W_p(\nu, \Sigma) where :math:`\nu` is the degrees of freedom and :math:`\Sigma` is the :math:`p \times p` scale matrix. The probability density function for `wishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|S|^{\frac{\nu - p - 1}{2}}}{2^{ \frac{\nu p}{2} } |\Sigma|^\frac{\nu}{2} \Gamma_p \left ( \frac{\nu}{2} \right )} \exp\left( -tr(\Sigma^{-1} S) / 2 \right) If :math:`S \sim W_p(\nu, \Sigma)` (Wishart) then :math:`S^{-1} \sim W_p^{-1}(\nu, \Sigma^{-1})` (inverse Wishart). If the scale matrix is 1-dimensional and equal to one, then the Wishart distribution :math:`W_1(\nu, 1)` collapses to the :math:`\chi^2(\nu)` distribution. The algorithm [2]_ implemented by the `rvs` method may produce numerically singular matrices with :math:`p - 1 < \nu < p`; the user may wish to check for this condition and generate replacement samples as necessary. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] W.B. Smith and R.R. Hocking, "Algorithm AS 53: Wishart Variate Generator", Applied Statistics, vol. 21, pp. 341-345, 1972. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import wishart, chi2 >>> x = np.linspace(1e-5, 8, 100) >>> w = wishart.pdf(x, df=3, scale=1); w[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> c = chi2.pdf(x, 3); c[:5] array([ 0.00126156, 0.10892176, 0.14793434, 0.17400548, 0.1929669 ]) >>> plt.plot(x, w) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """Create a frozen Wishart distribution. See `wishart_frozen` for more information. """ return wishart_frozen(df, scale, seed) def _process_parameters(self, df, scale): if scale is None: scale = 1.0 scale = np.asarray(scale, dtype=float) if scale.ndim == 0: scale = scale[np.newaxis, np.newaxis] elif scale.ndim == 1: scale = np.diag(scale) elif scale.ndim == 2 and not scale.shape[0] == scale.shape[1]: raise ValueError("Array 'scale' must be square if it is two" " dimensional, but scale.scale = %s." % str(scale.shape)) elif scale.ndim > 2: raise ValueError("Array 'scale' must be at most two-dimensional," " but scale.ndim = %d" % scale.ndim) dim = scale.shape[0] if df is None: df = dim elif not np.isscalar(df): raise ValueError("Degrees of freedom must be a scalar.") elif df <= dim - 1: raise ValueError("Degrees of freedom must be greater than the " "dimension of scale matrix minus 1.") return dim, df, scale def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x * np.eye(dim)[:, :, np.newaxis] if x.ndim == 1: if dim == 1: x = x[np.newaxis, np.newaxis, :] else: x = np.diag(x)[:, :, np.newaxis] elif x.ndim == 2: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square if they are two" " dimensional, but x.shape = %s." % str(x.shape)) x = x[:, :, np.newaxis] elif x.ndim == 3: if not x.shape[0] == x.shape[1]: raise ValueError("Quantiles must be square in the first two" " dimensions if they are three dimensional" ", but x.shape = %s." % str(x.shape)) elif x.ndim > 3: raise ValueError("Quantiles must be at most two-dimensional with" " an additional dimension for multiple" "components, but x.ndim = %d" % x.ndim) # Now we have 3-dim array; should have shape [dim, dim, *] if not x.shape[0:2] == (dim, dim): raise ValueError('Quantiles have incompatible dimensions: should' ' be %s, got %s.' % ((dim, dim), x.shape[0:2])) return x def _process_size(self, size): size = np.asarray(size) if size.ndim == 0: size = size[np.newaxis] elif size.ndim > 1: raise ValueError('Size must be an integer or tuple of integers;' ' thus must have dimension <= 1.' ' Got size.ndim = %s' % str(tuple(size))) n = size.prod() shape = tuple(size) return n, shape def _logpdf(self, x, dim, df, scale, log_det_scale, C): """Log of the Wishart probability density function. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix C : ndarray Cholesky factorization of the scale matrix, lower triagular. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ # log determinant of x # Note: x has components along the last axis, so that x.T has # components alone the 0-th axis. Then since det(A) = det(A'), this # gives us a 1-dim vector of determinants # Retrieve tr(scale^{-1} x) log_det_x = np.empty(x.shape[-1]) scale_inv_x = np.empty(x.shape) tr_scale_inv_x = np.empty(x.shape[-1]) for i in range(x.shape[-1]): _, log_det_x[i] = self._cholesky_logdet(x[:, :, i]) scale_inv_x[:, :, i] = scipy.linalg.cho_solve((C, True), x[:, :, i]) tr_scale_inv_x[i] = scale_inv_x[:, :, i].trace() # Log PDF out = ((0.5 * (df - dim - 1) * log_det_x - 0.5 * tr_scale_inv_x) - (0.5 * df * dim * _LOG_2 + 0.5 * df * log_det_scale + multigammaln(0.5*df, dim))) return out def logpdf(self, x, df, scale): """Log of the Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) # Cholesky decomposition of scale, get log(det(scale)) C, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale, C) return _squeeze_output(out) def pdf(self, x, df, scale): """Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """Mean of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ return df * scale def mean(self, df, scale): """Mean of the Wishart distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) def _mode(self, dim, df, scale): """Mode of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ if df >= dim + 1: out = (df-dim-1) * scale else: out = None return out def mode(self, df, scale): """Mode of the Wishart distribution Only valid if the degrees of freedom are greater than the dimension of the scale matrix. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float or None The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) if out is not None else out def _var(self, dim, df, scale): """Variance of the Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ var = scale**2 diag = scale.diagonal() # 1 x dim array var += np.outer(diag, diag) var *= df return var def var(self, df, scale): """Variance of the Wishart distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) def _standard_rvs(self, n, shape, dim, df, random_state): """ Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ # Random normal variates for off-diagonal elements n_tril = dim * (dim-1) // 2 covariances = random_state.normal( size=n*n_tril).reshape(shape+(n_tril,)) # Random chi-square variates for diagonal elements variances = (np.r_[[random_state.chisquare(df-(i+1)+1, size=n)**0.5 for i in range(dim)]].reshape((dim,) + shape[::-1]).T) # Create the A matri(ces) - lower triangular A = np.zeros(shape + (dim, dim)) # Input the covariances size_idx = tuple([slice(None, None, None)]*len(shape)) tril_idx = np.tril_indices(dim, k=-1) A[size_idx + tril_idx] = covariances # Input the variances diag_idx = np.diag_indices(dim) A[size_idx + diag_idx] = variances return A def _rvs(self, n, shape, dim, df, C, random_state): """Draw random samples from a Wishart distribution. Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triangular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Calculate the matrices A, which are actually lower triangular # Cholesky factorizations of a matrix B such that B ~ W(df, I) A = self._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = C A A' C', where SA ~ W(df, scale) # Note: this is the product of a (lower) (lower) (lower)' (lower)' # or, denoting B = AA', it is C B C' where C is the lower # triangular Cholesky factorization of the scale matrix. # this appears to conflict with the instructions in [1]_, which # suggest that it should be D' B D where D is the lower # triangular factorization of the scale matrix. However, it is # meant to refer to the Bartlett (1933) representation of a # Wishart random variate as L A A' L' where L is lower triangular # so it appears that understanding D' to be upper triangular # is either a typo in or misreading of [1]_. for index in np.ndindex(shape): CA = np.dot(C, A[index]) A[index] = np.dot(CA, CA.T) return A def rvs(self, df, scale, size=1, random_state=None): """Draw random samples from a Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Cholesky decomposition of scale C = scipy.linalg.cholesky(scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def _entropy(self, dim, df, log_det_scale): """Compute the differential entropy of the Wishart. Parameters ---------- dim : int Dimension of the scale matrix df : int Degrees of freedom log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'entropy' instead. """ return ( 0.5 * (dim+1) * log_det_scale + 0.5 * dim * (dim+1) * _LOG_2 + multigammaln(0.5*df, dim) - 0.5 * (df - dim - 1) * np.sum( [psi(0.5*(df + 1 - (i+1))) for i in range(dim)] ) + 0.5 * df * dim ) def entropy(self, df, scale): """Compute the differential entropy of the Wishart. Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Wishart distribution Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) _, log_det_scale = self._cholesky_logdet(scale) return self._entropy(dim, df, log_det_scale) def _cholesky_logdet(self, scale): """Compute Cholesky decomposition and determine (log(det(scale)). Parameters ---------- scale : ndarray Scale matrix. Returns ------- c_decomp : ndarray The Cholesky decomposition of `scale`. logdet : scalar The log of the determinant of `scale`. Notes ----- This computation of ``logdet`` is equivalent to ``np.linalg.slogdet(scale)``. It is ~2x faster though. """ c_decomp = scipy.linalg.cholesky(scale, lower=True) logdet = 2 * np.sum(np.log(c_decomp.diagonal())) return c_decomp, logdet wishart = wishart_gen() class wishart_frozen(multi_rv_frozen): """Create a frozen Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. """ def __init__(self, df, scale, seed=None): self._dist = wishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale) self.C, self.log_det_scale = self._dist._cholesky_logdet(self.scale) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale, self.C) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): return self._dist._entropy(self.dim, self.df, self.log_det_scale) # Set frozen generator docstrings from corresponding docstrings in # Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs', 'entropy']: method = wishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) def _cho_inv_batch(a, check_finite=True): """ Invert the matrices a_i, using a Cholesky factorization of A, where a_i resides in the last two dimensions of a and the other indices describe the index i. Overwrites the data in a. Parameters ---------- a : array Array of matrices to invert, where the matrices themselves are stored in the last two dimensions. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Returns ------- x : array Array of inverses of the matrices ``a_i``. See Also -------- scipy.linalg.cholesky : Cholesky factorization of a matrix """ if check_finite: a1 = asarray_chkfinite(a) else: a1 = asarray(a) if len(a1.shape) < 2 or a1.shape[-2] != a1.shape[-1]: raise ValueError('expected square matrix in last two dimensions') potrf, potri = get_lapack_funcs(('potrf', 'potri'), (a1,)) triu_rows, triu_cols = np.triu_indices(a.shape[-2], k=1) for index in np.ndindex(a1.shape[:-2]): # Cholesky decomposition a1[index], info = potrf(a1[index], lower=True, overwrite_a=False, clean=False) if info > 0: raise LinAlgError("%d-th leading minor not positive definite" % info) if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Inversion a1[index], info = potri(a1[index], lower=True, overwrite_c=False) if info > 0: raise LinAlgError("the inverse could not be computed") if info < 0: raise ValueError('illegal value in %d-th argument of internal' ' potrf' % -info) # Make symmetric (dpotri only fills in the lower triangle) a1[index][triu_rows, triu_cols] = a1[index][triu_cols, triu_rows] return a1 class invwishart_gen(wishart_gen): r"""An inverse Wishart random variable. The `df` keyword specifies the degrees of freedom. The `scale` keyword specifies the scale matrix, which must be symmetric and positive definite. In this context, the scale matrix is often interpreted in terms of a multivariate normal covariance matrix. Methods ------- ``pdf(x, df, scale)`` Probability density function. ``logpdf(x, df, scale)`` Log of the probability density function. ``rvs(df, scale, size=1, random_state=None)`` Draw random samples from an inverse Wishart distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Alternatively, the object may be called (as a function) to fix the degrees of freedom and scale parameters, returning a "frozen" inverse Wishart random variable: rv = invwishart(df=1, scale=1) - Frozen object with the same methods but holding the given degrees of freedom and scale fixed. See Also -------- wishart Notes ----- %(_doc_callparams_note)s The scale matrix `scale` must be a symmetric positive definite matrix. Singular matrices, including the symmetric positive semi-definite case, are not supported. The inverse Wishart distribution is often denoted .. math:: W_p^{-1}(\nu, \Psi) where :math:`\nu` is the degrees of freedom and :math:`\Psi` is the :math:`p \times p` scale matrix. The probability density function for `invwishart` has support over positive definite matrices :math:`S`; if :math:`S \sim W^{-1}_p(\nu, \Sigma)`, then its PDF is given by: .. math:: f(S) = \frac{|\Sigma|^\frac{\nu}{2}}{2^{ \frac{\nu p}{2} } |S|^{\frac{\nu + p + 1}{2}} \Gamma_p \left(\frac{\nu}{2} \right)} \exp\left( -tr(\Sigma S^{-1}) / 2 \right) If :math:`S \sim W_p^{-1}(\nu, \Psi)` (inverse Wishart) then :math:`S^{-1} \sim W_p(\nu, \Psi^{-1})` (Wishart). If the scale matrix is 1-dimensional and equal to one, then the inverse Wishart distribution :math:`W_1(\nu, 1)` collapses to the inverse Gamma distribution with parameters shape = :math:`\frac{\nu}{2}` and scale = :math:`\frac{1}{2}`. .. versionadded:: 0.16.0 References ---------- .. [1] M.L. Eaton, "Multivariate Statistics: A Vector Space Approach", Wiley, 1983. .. [2] M.C. Jones, "Generating Inverse Wishart Matrices", Communications in Statistics - Simulation and Computation, vol. 14.2, pp.511-514, 1985. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import invwishart, invgamma >>> x = np.linspace(0.01, 1, 100) >>> iw = invwishart.pdf(x, df=6, scale=1) >>> iw[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> ig = invgamma.pdf(x, 6/2., scale=1./2) >>> ig[:3] array([ 1.20546865e-15, 5.42497807e-06, 4.45813929e-03]) >>> plt.plot(x, iw) The input quantiles can be any shape of array, as long as the last axis labels the components. """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, wishart_docdict_params) def __call__(self, df=None, scale=None, seed=None): """Create a frozen inverse Wishart distribution. See `invwishart_frozen` for more information. """ return invwishart_frozen(df, scale, seed) def _logpdf(self, x, dim, df, scale, log_det_scale): """Log of the inverse Wishart probability density function. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function. dim : int Dimension of the scale matrix df : int Degrees of freedom scale : ndarray Scale matrix log_det_scale : float Logarithm of the determinant of the scale matrix Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ log_det_x = np.empty(x.shape[-1]) x_inv = np.copy(x).T if dim > 1: _cho_inv_batch(x_inv) # works in-place else: x_inv = 1./x_inv tr_scale_x_inv = np.empty(x.shape[-1]) for i in range(x.shape[-1]): C, lower = scipy.linalg.cho_factor(x[:, :, i], lower=True) log_det_x[i] = 2 * np.sum(np.log(C.diagonal())) tr_scale_x_inv[i] = np.dot(scale, x_inv[i]).trace() # Log PDF out = ((0.5 * df * log_det_scale - 0.5 * tr_scale_x_inv) - (0.5 * df * dim * _LOG_2 + 0.5 * (df + dim + 1) * log_det_x) - multigammaln(0.5*df, dim)) return out def logpdf(self, x, df, scale): """Log of the inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Log of the probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ dim, df, scale = self._process_parameters(df, scale) x = self._process_quantiles(x, dim) _, log_det_scale = self._cholesky_logdet(scale) out = self._logpdf(x, dim, df, scale, log_det_scale) return _squeeze_output(out) def pdf(self, x, df, scale): """Inverse Wishart probability density function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. Each quantile must be a symmetric positive definite matrix. %(_doc_default_callparams)s Returns ------- pdf : ndarray Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpdf(x, df, scale)) def _mean(self, dim, df, scale): """Mean of the inverse Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mean' instead. """ if df > dim + 1: out = scale / (df - dim - 1) else: out = None return out def mean(self, df, scale): """Mean of the inverse Wishart distribution. Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus one. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float or None The mean of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mean(dim, df, scale) return _squeeze_output(out) if out is not None else out def _mode(self, dim, df, scale): """Mode of the inverse Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'mode' instead. """ return scale / (df + dim + 1) def mode(self, df, scale): """Mode of the inverse Wishart distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- mode : float The Mode of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._mode(dim, df, scale) return _squeeze_output(out) def _var(self, dim, df, scale): """Variance of the inverse Wishart distribution. Parameters ---------- dim : int Dimension of the scale matrix %(_doc_default_callparams)s Notes ----- As this function does no argument checking, it should not be called directly; use 'var' instead. """ if df > dim + 3: var = (df - dim + 1) * scale**2 diag = scale.diagonal() # 1 x dim array var += (df - dim - 1) * np.outer(diag, diag) var /= (df - dim) * (df - dim - 1)**2 * (df - dim - 3) else: var = None return var def var(self, df, scale): """Variance of the inverse Wishart distribution. Only valid if the degrees of freedom are greater than the dimension of the scale matrix plus three. Parameters ---------- %(_doc_default_callparams)s Returns ------- var : float The variance of the distribution """ dim, df, scale = self._process_parameters(df, scale) out = self._var(dim, df, scale) return _squeeze_output(out) if out is not None else out def _rvs(self, n, shape, dim, df, C, random_state): """Draw random samples from an inverse Wishart distribution. Parameters ---------- n : integer Number of variates to generate shape : iterable Shape of the variates to generate dim : int Dimension of the scale matrix df : int Degrees of freedom C : ndarray Cholesky factorization of the scale matrix, lower triagular. %(_doc_random_state)s Notes ----- As this function does no argument checking, it should not be called directly; use 'rvs' instead. """ random_state = self._get_random_state(random_state) # Get random draws A such that A ~ W(df, I) A = super()._standard_rvs(n, shape, dim, df, random_state) # Calculate SA = (CA)'^{-1} (CA)^{-1} ~ iW(df, scale) eye = np.eye(dim) trtrs = get_lapack_funcs(('trtrs'), (A,)) for index in np.ndindex(A.shape[:-2]): # Calculate CA CA = np.dot(C, A[index]) # Get (C A)^{-1} via triangular solver if dim > 1: CA, info = trtrs(CA, eye, lower=True) if info > 0: raise LinAlgError("Singular matrix.") if info < 0: raise ValueError('Illegal value in %d-th argument of' ' internal trtrs' % -info) else: CA = 1. / CA # Get SA A[index] = np.dot(CA.T, CA) return A def rvs(self, df, scale, size=1, random_state=None): """Draw random samples from an inverse Wishart distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray Random variates of shape (`size`) + (`dim`, `dim), where `dim` is the dimension of the scale matrix. Notes ----- %(_doc_callparams_note)s """ n, shape = self._process_size(size) dim, df, scale = self._process_parameters(df, scale) # Invert the scale eye = np.eye(dim) L, lower = scipy.linalg.cho_factor(scale, lower=True) inv_scale = scipy.linalg.cho_solve((L, lower), eye) # Cholesky decomposition of inverted scale C = scipy.linalg.cholesky(inv_scale, lower=True) out = self._rvs(n, shape, dim, df, C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError invwishart = invwishart_gen() class invwishart_frozen(multi_rv_frozen): def __init__(self, df, scale, seed=None): """Create a frozen inverse Wishart distribution. Parameters ---------- df : array_like Degrees of freedom of the distribution scale : array_like Scale matrix of the distribution seed : {None, int, `numpy.random.Generator`}, optional If `seed` is None the `numpy.random.Generator` singleton is used. If `seed` is an int, a new ``Generator`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` instance then that instance is used. """ self._dist = invwishart_gen(seed) self.dim, self.df, self.scale = self._dist._process_parameters( df, scale ) # Get the determinant via Cholesky factorization C, lower = scipy.linalg.cho_factor(self.scale, lower=True) self.log_det_scale = 2 * np.sum(np.log(C.diagonal())) # Get the inverse using the Cholesky factorization eye = np.eye(self.dim) self.inv_scale = scipy.linalg.cho_solve((C, lower), eye) # Get the Cholesky factorization of the inverse scale self.C = scipy.linalg.cholesky(self.inv_scale, lower=True) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) out = self._dist._logpdf(x, self.dim, self.df, self.scale, self.log_det_scale) return _squeeze_output(out) def pdf(self, x): return np.exp(self.logpdf(x)) def mean(self): out = self._dist._mean(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def mode(self): out = self._dist._mode(self.dim, self.df, self.scale) return _squeeze_output(out) def var(self): out = self._dist._var(self.dim, self.df, self.scale) return _squeeze_output(out) if out is not None else out def rvs(self, size=1, random_state=None): n, shape = self._dist._process_size(size) out = self._dist._rvs(n, shape, self.dim, self.df, self.C, random_state) return _squeeze_output(out) def entropy(self): # Need to find reference for inverse Wishart entropy raise AttributeError # Set frozen generator docstrings from corresponding docstrings in # inverse Wishart and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'mean', 'mode', 'var', 'rvs']: method = invwishart_gen.__dict__[name] method_frozen = wishart_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, wishart_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, wishart_docdict_params) _multinomial_doc_default_callparams = """\ n : int Number of trials p : array_like Probability of a trial falling into each category; should sum to 1 """ _multinomial_doc_callparams_note = \ """`n` should be a positive integer. Each element of `p` should be in the interval :math:`[0,1]` and the elements should sum to 1. If they do not sum to 1, the last element of the `p` array is not used and is replaced with the remaining probability left over from the earlier elements. """ _multinomial_doc_frozen_callparams = "" _multinomial_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" multinomial_docdict_params = { '_doc_default_callparams': _multinomial_doc_default_callparams, '_doc_callparams_note': _multinomial_doc_callparams_note, '_doc_random_state': _doc_random_state } multinomial_docdict_noparams = { '_doc_default_callparams': _multinomial_doc_frozen_callparams, '_doc_callparams_note': _multinomial_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multinomial_gen(multi_rv_generic): r"""A multinomial random variable. Methods ------- ``pmf(x, n, p)`` Probability mass function. ``logpmf(x, n, p)`` Log of the probability mass function. ``rvs(n, p, size=1, random_state=None)`` Draw random samples from a multinomial distribution. ``entropy(n, p)`` Compute the entropy of the multinomial distribution. ``cov(n, p)`` Compute the covariance matrix of the multinomial distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s %(_doc_random_state)s Notes ----- %(_doc_callparams_note)s Alternatively, the object may be called (as a function) to fix the `n` and `p` parameters, returning a "frozen" multinomial random variable: The probability mass function for `multinomial` is .. math:: f(x) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, supported on :math:`x=(x_1, \ldots, x_k)` where each :math:`x_i` is a nonnegative integer and their sum is :math:`n`. .. versionadded:: 0.19.0 Examples -------- >>> from scipy.stats import multinomial >>> rv = multinomial(8, [0.3, 0.2, 0.5]) >>> rv.pmf([1, 3, 4]) 0.042000000000000072 The multinomial distribution for :math:`k=2` is identical to the corresponding binomial distribution (tiny numerical differences notwithstanding): >>> from scipy.stats import binom >>> multinomial.pmf([3, 4], n=7, p=[0.4, 0.6]) 0.29030399999999973 >>> binom.pmf(3, 7, 0.4) 0.29030400000000012 The functions ``pmf``, ``logpmf``, ``entropy``, and ``cov`` support broadcasting, under the convention that the vector parameters (``x`` and ``p``) are interpreted as if each row along the last axis is a single object. For instance: >>> multinomial.pmf([[3, 4], [3, 5]], n=[7, 8], p=[.3, .7]) array([0.2268945, 0.25412184]) Here, ``x.shape == (2, 2)``, ``n.shape == (2,)``, and ``p.shape == (2,)``, but following the rules mentioned above they behave as if the rows ``[3, 4]`` and ``[3, 5]`` in ``x`` and ``[.3, .7]`` in ``p`` were a single object, and as if we had ``x.shape = (2,)``, ``n.shape = (2,)``, and ``p.shape = ()``. To obtain the individual elements without broadcasting, we would do this: >>> multinomial.pmf([3, 4], n=7, p=[.3, .7]) 0.2268945 >>> multinomial.pmf([3, 5], 8, p=[.3, .7]) 0.25412184 This broadcasting also works for ``cov``, where the output objects are square matrices of size ``p.shape[-1]``. For example: >>> multinomial.cov([4, 5], [[.3, .7], [.4, .6]]) array([[[ 0.84, -0.84], [-0.84, 0.84]], [[ 1.2 , -1.2 ], [-1.2 , 1.2 ]]]) In this example, ``n.shape == (2,)`` and ``p.shape == (2, 2)``, and following the rules above, these broadcast as if ``p.shape == (2,)``. Thus the result should also be of shape ``(2,)``, but since each output is a :math:`2 \times 2` matrix, the result in fact has shape ``(2, 2, 2)``, where ``result[0]`` is equal to ``multinomial.cov(n=4, p=[.3, .7])`` and ``result[1]`` is equal to ``multinomial.cov(n=5, p=[.4, .6])``. See also -------- scipy.stats.binom : The binomial distribution. numpy.random.Generator.multinomial : Sampling from the multinomial distribution. scipy.stats.multivariate_hypergeom : The multivariate hypergeometric distribution. """ # noqa: E501 def __init__(self, seed=None): super().__init__(seed) self.__doc__ = \ doccer.docformat(self.__doc__, multinomial_docdict_params) def __call__(self, n, p, seed=None): """Create a frozen multinomial distribution. See `multinomial_frozen` for more information. """ return multinomial_frozen(n, p, seed) def _process_parameters(self, n, p): """Returns: n_, p_, npcond. n_ and p_ are arrays of the correct shape; npcond is a boolean array flagging values out of the domain. """ p = np.array(p, dtype=np.float64, copy=True) p[..., -1] = 1. - p[..., :-1].sum(axis=-1) # true for bad p pcond = np.any(p < 0, axis=-1) pcond |= np.any(p > 1, axis=-1) n = np.array(n, dtype=np.int_, copy=True) # true for bad n ncond = n <= 0 return n, p, ncond | pcond def _process_quantiles(self, x, n, p): """Returns: x_, xcond. x_ is an int array; xcond is a boolean array flagging values out of the domain. """ xx = np.asarray(x, dtype=np.int_) if xx.ndim == 0: raise ValueError("x must be an array.") if xx.size != 0 and not xx.shape[-1] == p.shape[-1]: raise ValueError("Size of each quantile should be size of p: " "received %d, but expected %d." % (xx.shape[-1], p.shape[-1])) # true for x out of the domain cond = np.any(xx != x, axis=-1) cond |= np.any(xx < 0, axis=-1) cond = cond | (np.sum(xx, axis=-1) != n) return xx, cond def _checkresult(self, result, cond, bad_value): result = np.asarray(result) if cond.ndim != 0: result[cond] = bad_value elif cond: if result.ndim == 0: return bad_value result[...] = bad_value return result def _logpmf(self, x, n, p): return gammaln(n+1) + np.sum(xlogy(x, p) - gammaln(x+1), axis=-1) def logpmf(self, x, n, p): """Log of the Multinomial probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- logpmf : ndarray or scalar Log of the probability mass function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) x, xcond = self._process_quantiles(x, n, p) result = self._logpmf(x, n, p) # replace values for which x was out of the domain; broadcast # xcond to the right shape xcond_ = xcond | np.zeros(npcond.shape, dtype=np.bool_) result = self._checkresult(result, xcond_, np.NINF) # replace values bad for n or p; broadcast npcond to the right shape npcond_ = npcond | np.zeros(xcond.shape, dtype=np.bool_) return self._checkresult(result, npcond_, np.NAN) def pmf(self, x, n, p): """Multinomial probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- pmf : ndarray or scalar Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ return np.exp(self.logpmf(x, n, p)) def mean(self, n, p): """Mean of the Multinomial distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : float The mean of the distribution """ n, p, npcond = self._process_parameters(n, p) result = n[..., np.newaxis]*p return self._checkresult(result, npcond, np.NAN) def cov(self, n, p): """Covariance matrix of the multinomial distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- cov : ndarray The covariance matrix of the distribution """ n, p, npcond = self._process_parameters(n, p) nn = n[..., np.newaxis, np.newaxis] result = nn * np.einsum('...j,...k->...jk', -p, p) # change the diagonal for i in range(p.shape[-1]): result[..., i, i] += n*p[..., i] return self._checkresult(result, npcond, np.nan) def entropy(self, n, p): r"""Compute the entropy of the multinomial distribution. The entropy is computed using this expression: .. math:: f(x) = - \log n! - n\sum_{i=1}^k p_i \log p_i + \sum_{i=1}^k \sum_{x=0}^n \binom n x p_i^x(1-p_i)^{n-x} \log x! Parameters ---------- %(_doc_default_callparams)s Returns ------- h : scalar Entropy of the Multinomial distribution Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) x = np.r_[1:np.max(n)+1] term1 = n*np.sum(entr(p), axis=-1) term1 -= gammaln(n+1) n = n[..., np.newaxis] new_axes_needed = max(p.ndim, n.ndim) - x.ndim + 1 x.shape += (1,)*new_axes_needed term2 = np.sum(binom.pmf(x, n, p)*gammaln(x+1), axis=(-1, -1-new_axes_needed)) return self._checkresult(term1 + term2, npcond, np.nan) def rvs(self, n, p, size=None, random_state=None): """Draw random samples from a Multinomial distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of shape (`size`, `len(p)`) Notes ----- %(_doc_callparams_note)s """ n, p, npcond = self._process_parameters(n, p) random_state = self._get_random_state(random_state) return random_state.multinomial(n, p, size) multinomial = multinomial_gen() class multinomial_frozen(multi_rv_frozen): r"""Create a frozen Multinomial distribution. Parameters ---------- n : int number of trials p: array_like probability of a trial falling into each category; should sum to 1 seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. """ def __init__(self, n, p, seed=None): self._dist = multinomial_gen(seed) self.n, self.p, self.npcond = self._dist._process_parameters(n, p) # monkey patch self._dist def _process_parameters(n, p): return self.n, self.p, self.npcond self._dist._process_parameters = _process_parameters def logpmf(self, x): return self._dist.logpmf(x, self.n, self.p) def pmf(self, x): return self._dist.pmf(x, self.n, self.p) def mean(self): return self._dist.mean(self.n, self.p) def cov(self): return self._dist.cov(self.n, self.p) def entropy(self): return self._dist.entropy(self.n, self.p) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.n, self.p, size, random_state) # Set frozen generator docstrings from corresponding docstrings in # multinomial and fill in default strings in class docstrings for name in ['logpmf', 'pmf', 'mean', 'cov', 'rvs']: method = multinomial_gen.__dict__[name] method_frozen = multinomial_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, multinomial_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, multinomial_docdict_params) class special_ortho_group_gen(multi_rv_generic): r"""A matrix-valued SO(N) random variable. Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from SO(N). Parameters ---------- dim : scalar Dimension of matrices Notes ----- This class is wrapping the random_rot code from the MDP Toolkit, https://github.com/mdp-toolkit/mdp-toolkit Return a random rotation matrix, drawn from the Haar distribution (the only uniform distribution on SO(n)). The algorithm is described in the paper Stewart, G.W., "The efficient generation of random orthogonal matrices with an application to condition estimators", SIAM Journal on Numerical Analysis, 17(3), pp. 403-409, 1980. For more information see https://en.wikipedia.org/wiki/Orthogonal_matrix#Randomization See also the similar `ortho_group`. For a random rotation in three dimensions, see `scipy.spatial.transform.Rotation.random`. Examples -------- >>> from scipy.stats import special_ortho_group >>> x = special_ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> scipy.linalg.det(x) 1.0 This generates one random matrix from SO(3). It is orthogonal and has a determinant of 1. See Also -------- ortho_group, scipy.spatial.transform.Rotation.random """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def __call__(self, dim=None, seed=None): """Create a frozen SO(N) distribution. See `special_ortho_group_frozen` for more information. """ return special_ortho_group_frozen(dim, seed=seed) def _process_parameters(self, dim): """Dimension N must be specified; it cannot be inferred.""" if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("""Dimension of rotation must be specified, and must be a scalar greater than 1.""") return dim def rvs(self, dim, size=1, random_state=None): """Draw random samples from SO(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ random_state = self._get_random_state(random_state) size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) H = np.eye(dim) D = np.empty((dim,)) for n in range(dim-1): x = random_state.normal(size=(dim-n,)) norm2 = np.dot(x, x) x0 = x[0].item() D[n] = np.sign(x[0]) if x[0] != 0 else 1 x[0] += D[n]*np.sqrt(norm2) x /= np.sqrt((norm2 - x0**2 + x[0]**2) / 2.) # Householder transformation H[:, n:] -= np.outer(np.dot(H[:, n:], x), x) D[-1] = (-1)**(dim-1)*D[:-1].prod() # Equivalent to np.dot(np.diag(D), H) but faster, apparently H = (D*H.T).T return H special_ortho_group = special_ortho_group_gen() class special_ortho_group_frozen(multi_rv_frozen): def __init__(self, dim=None, seed=None): """Create a frozen SO(N) distribution. Parameters ---------- dim : scalar Dimension of matrices seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Examples -------- >>> from scipy.stats import special_ortho_group >>> g = special_ortho_group(5) >>> x = g.rvs() """ self._dist = special_ortho_group_gen(seed) self.dim = self._dist._process_parameters(dim) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.dim, size, random_state) class ortho_group_gen(multi_rv_generic): r"""A matrix-valued O(N) random variable. Return a random orthogonal matrix, drawn from the O(N) Haar distribution (the only uniform distribution on O(N)). The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from O(N). Parameters ---------- dim : scalar Dimension of matrices Notes ----- This class is closely related to `special_ortho_group`. Some care is taken to avoid numerical error, as per the paper by Mezzadri. References ---------- .. [1] F. Mezzadri, "How to generate random matrices from the classical compact groups", :arXiv:`math-ph/0609050v2`. Examples -------- >>> from scipy.stats import ortho_group >>> x = ortho_group.rvs(3) >>> np.dot(x, x.T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) >>> import scipy.linalg >>> np.fabs(scipy.linalg.det(x)) 1.0 This generates one random matrix from O(3). It is orthogonal and has a determinant of +1 or -1. """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, dim): """Dimension N must be specified; it cannot be inferred.""" if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("Dimension of rotation must be specified," "and must be a scalar greater than 1.") return dim def rvs(self, dim, size=1, random_state=None): """Draw random samples from O(N). Parameters ---------- dim : integer Dimension of rotation space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ random_state = self._get_random_state(random_state) size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) H = np.eye(dim) for n in range(dim): x = random_state.normal(size=(dim-n,)) norm2 = np.dot(x, x) x0 = x[0].item() # random sign, 50/50, but chosen carefully to avoid roundoff error D = np.sign(x[0]) if x[0] != 0 else 1 x[0] += D * np.sqrt(norm2) x /= np.sqrt((norm2 - x0**2 + x[0]**2) / 2.) # Householder transformation H[:, n:] = -D * (H[:, n:] - np.outer(np.dot(H[:, n:], x), x)) return H ortho_group = ortho_group_gen() class random_correlation_gen(multi_rv_generic): r"""A random correlation matrix. Return a random correlation matrix, given a vector of eigenvalues. The `eigs` keyword specifies the eigenvalues of the correlation matrix, and implies the dimension. Methods ------- ``rvs(eigs=None, random_state=None)`` Draw random correlation matrices, all with eigenvalues eigs. Parameters ---------- eigs : 1d ndarray Eigenvalues of correlation matrix. Notes ----- Generates a random correlation matrix following a numerically stable algorithm spelled out by Davies & Higham. This algorithm uses a single O(N) similarity transformation to construct a symmetric positive semi-definite matrix, and applies a series of Givens rotations to scale it to have ones on the diagonal. References ---------- .. [1] Davies, Philip I; Higham, Nicholas J; "Numerically stable generation of correlation matrices and their factors", BIT 2000, Vol. 40, No. 4, pp. 640 651 Examples -------- >>> from scipy.stats import random_correlation >>> rng = np.random.default_rng() >>> x = random_correlation.rvs((.5, .8, 1.2, 1.5), random_state=rng) >>> x array([[ 1. , -0.07198934, -0.20411041, -0.24385796], [-0.07198934, 1. , 0.12968613, -0.29471382], [-0.20411041, 0.12968613, 1. , 0.2828693 ], [-0.24385796, -0.29471382, 0.2828693 , 1. ]]) >>> import scipy.linalg >>> e, v = scipy.linalg.eigh(x) >>> e array([ 0.5, 0.8, 1.2, 1.5]) """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, eigs, tol): eigs = np.asarray(eigs, dtype=float) dim = eigs.size if eigs.ndim != 1 or eigs.shape[0] != dim or dim <= 1: raise ValueError("Array 'eigs' must be a vector of length " "greater than 1.") if np.fabs(np.sum(eigs) - dim) > tol: raise ValueError("Sum of eigenvalues must equal dimensionality.") for x in eigs: if x < -tol: raise ValueError("All eigenvalues must be non-negative.") return dim, eigs def _givens_to_1(self, aii, ajj, aij): """Computes a 2x2 Givens matrix to put 1's on the diagonal. The input matrix is a 2x2 symmetric matrix M = [ aii aij ; aij ajj ]. The output matrix g is a 2x2 anti-symmetric matrix of the form [ c s ; -s c ]; the elements c and s are returned. Applying the output matrix to the input matrix (as b=g.T M g) results in a matrix with bii=1, provided tr(M) - det(M) >= 1 and floating point issues do not occur. Otherwise, some other valid rotation is returned. When tr(M)==2, also bjj=1. """ aiid = aii - 1. ajjd = ajj - 1. if ajjd == 0: # ajj==1, so swap aii and ajj to avoid division by zero return 0., 1. dd = math.sqrt(max(aij**2 - aiid*ajjd, 0)) # The choice of t should be chosen to avoid cancellation [1] t = (aij + math.copysign(dd, aij)) / ajjd c = 1. / math.sqrt(1. + t*t) if c == 0: # Underflow s = 1.0 else: s = c*t return c, s def _to_corr(self, m): """ Given a psd matrix m, rotate to put one's on the diagonal, turning it into a correlation matrix. This also requires the trace equal the dimensionality. Note: modifies input matrix """ # Check requirements for in-place Givens if not (m.flags.c_contiguous and m.dtype == np.float64 and m.shape[0] == m.shape[1]): raise ValueError() d = m.shape[0] for i in range(d-1): if m[i, i] == 1: continue elif m[i, i] > 1: for j in range(i+1, d): if m[j, j] < 1: break else: for j in range(i+1, d): if m[j, j] > 1: break c, s = self._givens_to_1(m[i, i], m[j, j], m[i, j]) # Use BLAS to apply Givens rotations in-place. Equivalent to: # g = np.eye(d) # g[i, i] = g[j,j] = c # g[j, i] = -s; g[i, j] = s # m = np.dot(g.T, np.dot(m, g)) mv = m.ravel() drot(mv, mv, c, -s, n=d, offx=i*d, incx=1, offy=j*d, incy=1, overwrite_x=True, overwrite_y=True) drot(mv, mv, c, -s, n=d, offx=i, incx=d, offy=j, incy=d, overwrite_x=True, overwrite_y=True) return m def rvs(self, eigs, random_state=None, tol=1e-13, diag_tol=1e-7): """Draw random correlation matrices. Parameters ---------- eigs : 1d ndarray Eigenvalues of correlation matrix tol : float, optional Tolerance for input parameter checks diag_tol : float, optional Tolerance for deviation of the diagonal of the resulting matrix. Default: 1e-7 Raises ------ RuntimeError Floating point error prevented generating a valid correlation matrix. Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim), each having eigenvalues eigs. """ dim, eigs = self._process_parameters(eigs, tol=tol) random_state = self._get_random_state(random_state) m = ortho_group.rvs(dim, random_state=random_state) m = np.dot(np.dot(m, np.diag(eigs)), m.T) # Set the trace of m m = self._to_corr(m) # Carefully rotate to unit diagonal # Check diagonal if abs(m.diagonal() - 1).max() > diag_tol: raise RuntimeError("Failed to generate a valid correlation matrix") return m random_correlation = random_correlation_gen() class unitary_group_gen(multi_rv_generic): r"""A matrix-valued U(N) random variable. Return a random unitary matrix. The `dim` keyword specifies the dimension N. Methods ------- ``rvs(dim=None, size=1, random_state=None)`` Draw random samples from U(N). Parameters ---------- dim : scalar Dimension of matrices Notes ----- This class is similar to `ortho_group`. References ---------- .. [1] F. Mezzadri, "How to generate random matrices from the classical compact groups", :arXiv:`math-ph/0609050v2`. Examples -------- >>> from scipy.stats import unitary_group >>> x = unitary_group.rvs(3) >>> np.dot(x, x.conj().T) array([[ 1.00000000e+00, 1.13231364e-17, -2.86852790e-16], [ 1.13231364e-17, 1.00000000e+00, -1.46845020e-16], [ -2.86852790e-16, -1.46845020e-16, 1.00000000e+00]]) This generates one random matrix from U(3). The dot product confirms that it is unitary up to machine precision. """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__) def _process_parameters(self, dim): """Dimension N must be specified; it cannot be inferred.""" if dim is None or not np.isscalar(dim) or dim <= 1 or dim != int(dim): raise ValueError("Dimension of rotation must be specified," "and must be a scalar greater than 1.") return dim def rvs(self, dim, size=1, random_state=None): """Draw random samples from U(N). Parameters ---------- dim : integer Dimension of space (N). size : integer, optional Number of samples to draw (default 1). Returns ------- rvs : ndarray or scalar Random size N-dimensional matrices, dimension (size, dim, dim) """ random_state = self._get_random_state(random_state) size = int(size) if size > 1: return np.array([self.rvs(dim, size=1, random_state=random_state) for i in range(size)]) dim = self._process_parameters(dim) z = 1/math.sqrt(2)*(random_state.normal(size=(dim, dim)) + 1j*random_state.normal(size=(dim, dim))) q, r = scipy.linalg.qr(z) d = r.diagonal() q *= d/abs(d) return q unitary_group = unitary_group_gen() _mvt_doc_default_callparams = \ """ loc : array_like, optional Location of the distribution. (default ``0``) shape : array_like, optional Positive semidefinite matrix of the distribution. (default ``1``) df : float, optional Degrees of freedom of the distribution; must be greater than zero. If ``np.inf`` then results are multivariate normal. The default is ``1``. allow_singular : bool, optional Whether to allow a singular matrix. (default ``False``) """ _mvt_doc_callparams_note = \ """Setting the parameter `loc` to ``None`` is equivalent to having `loc` be the zero-vector. The parameter `shape` can be a scalar, in which case the shape matrix is the identity times that value, a vector of diagonal entries for the shape matrix, or a two-dimensional array_like. """ _mvt_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mvt_docdict_params = { '_mvt_doc_default_callparams': _mvt_doc_default_callparams, '_mvt_doc_callparams_note': _mvt_doc_callparams_note, '_doc_random_state': _doc_random_state } mvt_docdict_noparams = { '_mvt_doc_default_callparams': "", '_mvt_doc_callparams_note': _mvt_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_t_gen(multi_rv_generic): r"""A multivariate t-distributed random variable. The `loc` parameter specifies the location. The `shape` parameter specifies the positive semidefinite shape matrix. The `df` parameter specifies the degrees of freedom. In addition to calling the methods below, the object itself may be called as a function to fix the location, shape matrix, and degrees of freedom parameters, returning a "frozen" multivariate t-distribution random. Methods ------- ``pdf(x, loc=None, shape=1, df=1, allow_singular=False)`` Probability density function. ``logpdf(x, loc=None, shape=1, df=1, allow_singular=False)`` Log of the probability density function. ``rvs(loc=None, shape=1, df=1, size=1, random_state=None)`` Draw random samples from a multivariate t-distribution. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_mvt_doc_default_callparams)s %(_doc_random_state)s Notes ----- %(_mvt_doc_callparams_note)s The matrix `shape` must be a (symmetric) positive semidefinite matrix. The determinant and inverse of `shape` are computed as the pseudo-determinant and pseudo-inverse, respectively, so that `shape` does not need to have full rank. The probability density function for `multivariate_t` is .. math:: f(x) = \frac{\Gamma(\nu + p)/2}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}|\Sigma|^{1/2}} \exp\left[1 + \frac{1}{\nu} (\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]^{-(\nu + p)/2}, where :math:`p` is the dimension of :math:`\mathbf{x}`, :math:`\boldsymbol{\mu}` is the :math:`p`-dimensional location, :math:`\boldsymbol{\Sigma}` the :math:`p \times p`-dimensional shape matrix, and :math:`\nu` is the degrees of freedom. .. versionadded:: 1.6.0 Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy.stats import multivariate_t >>> x, y = np.mgrid[-1:3:.01, -2:1.5:.01] >>> pos = np.dstack((x, y)) >>> rv = multivariate_t([1.0, -0.5], [[2.1, 0.3], [0.3, 1.5]], df=2) >>> fig, ax = plt.subplots(1, 1) >>> ax.set_aspect('equal') >>> plt.contourf(x, y, rv.pdf(pos)) """ def __init__(self, seed=None): """Initialize a multivariate t-distributed random variable. Parameters ---------- seed : Random state. """ super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mvt_docdict_params) self._random_state = check_random_state(seed) def __call__(self, loc=None, shape=1, df=1, allow_singular=False, seed=None): """Create a frozen multivariate t-distribution. See `multivariate_t_frozen` for parameters. """ if df == np.inf: return multivariate_normal_frozen(mean=loc, cov=shape, allow_singular=allow_singular, seed=seed) return multivariate_t_frozen(loc=loc, shape=shape, df=df, allow_singular=allow_singular, seed=seed) def pdf(self, x, loc=None, shape=1, df=1, allow_singular=False): """Multivariate t-distribution probability density function. Parameters ---------- x : array_like Points at which to evaluate the probability density function. %(_mvt_doc_default_callparams)s Returns ------- pdf : Probability density function evaluated at `x`. Examples -------- >>> from scipy.stats import multivariate_t >>> x = [0.4, 5] >>> loc = [0, 1] >>> shape = [[1, 0.1], [0.1, 1]] >>> df = 7 >>> multivariate_t.pdf(x, loc, shape, df) array([0.00075713]) """ dim, loc, shape, df = self._process_parameters(loc, shape, df) x = self._process_quantiles(x, dim) shape_info = _PSD(shape, allow_singular=allow_singular) logpdf = self._logpdf(x, loc, shape_info.U, shape_info.log_pdet, df, dim, shape_info.rank) return np.exp(logpdf) def logpdf(self, x, loc=None, shape=1, df=1): """Log of the multivariate t-distribution probability density function. Parameters ---------- x : array_like Points at which to evaluate the log of the probability density function. %(_mvt_doc_default_callparams)s Returns ------- logpdf : Log of the probability density function evaluated at `x`. Examples -------- >>> from scipy.stats import multivariate_t >>> x = [0.4, 5] >>> loc = [0, 1] >>> shape = [[1, 0.1], [0.1, 1]] >>> df = 7 >>> multivariate_t.logpdf(x, loc, shape, df) array([-7.1859802]) See Also -------- pdf : Probability density function. """ dim, loc, shape, df = self._process_parameters(loc, shape, df) x = self._process_quantiles(x, dim) shape_info = _PSD(shape) return self._logpdf(x, loc, shape_info.U, shape_info.log_pdet, df, dim, shape_info.rank) def _logpdf(self, x, loc, prec_U, log_pdet, df, dim, rank): """Utility method `pdf`, `logpdf` for parameters. Parameters ---------- x : ndarray Points at which to evaluate the log of the probability density function. loc : ndarray Location of the distribution. prec_U : ndarray A decomposition such that `np.dot(prec_U, prec_U.T)` is the inverse of the shape matrix. log_pdet : float Logarithm of the determinant of the shape matrix. df : float Degrees of freedom of the distribution. dim : int Dimension of the quantiles x. rank : int Rank of the shape matrix. Notes ----- As this function does no argument checking, it should not be called directly; use 'logpdf' instead. """ if df == np.inf: return multivariate_normal._logpdf(x, loc, prec_U, log_pdet, rank) dev = x - loc maha = np.square(np.dot(dev, prec_U)).sum(axis=-1) t = 0.5 * (df + dim) A = gammaln(t) B = gammaln(0.5 * df) C = dim/2. * np.log(df * np.pi) D = 0.5 * log_pdet E = -t * np.log(1 + (1./df) * maha) return _squeeze_output(A - B - C - D + E) def rvs(self, loc=None, shape=1, df=1, size=1, random_state=None): """Draw random samples from a multivariate t-distribution. Parameters ---------- %(_mvt_doc_default_callparams)s size : integer, optional Number of samples to draw (default 1). %(_doc_random_state)s Returns ------- rvs : ndarray or scalar Random variates of size (`size`, `P`), where `P` is the dimension of the random variable. Examples -------- >>> from scipy.stats import multivariate_t >>> x = [0.4, 5] >>> loc = [0, 1] >>> shape = [[1, 0.1], [0.1, 1]] >>> df = 7 >>> multivariate_t.rvs(loc, shape, df) array([[0.93477495, 3.00408716]]) """ # For implementation details, see equation (3): # # Hofert, "On Sampling from the Multivariatet Distribution", 2013 # http://rjournal.github.io/archive/2013-2/hofert.pdf # dim, loc, shape, df = self._process_parameters(loc, shape, df) if random_state is not None: rng = check_random_state(random_state) else: rng = self._random_state if np.isinf(df): x = np.ones(size) else: x = rng.chisquare(df, size=size) / df z = rng.multivariate_normal(np.zeros(dim), shape, size=size) samples = loc + z / np.sqrt(x)[:, None] return _squeeze_output(samples) def _process_quantiles(self, x, dim): """ Adjust quantiles array so that last axis labels the components of each data point. """ x = np.asarray(x, dtype=float) if x.ndim == 0: x = x[np.newaxis] elif x.ndim == 1: if dim == 1: x = x[:, np.newaxis] else: x = x[np.newaxis, :] return x def _process_parameters(self, loc, shape, df): """ Infer dimensionality from location array and shape matrix, handle defaults, and ensure compatible dimensions. """ if loc is None and shape is None: loc = np.asarray(0, dtype=float) shape = np.asarray(1, dtype=float) dim = 1 elif loc is None: shape = np.asarray(shape, dtype=float) if shape.ndim < 2: dim = 1 else: dim = shape.shape[0] loc = np.zeros(dim) elif shape is None: loc = np.asarray(loc, dtype=float) dim = loc.size shape = np.eye(dim) else: shape = np.asarray(shape, dtype=float) loc = np.asarray(loc, dtype=float) dim = loc.size if dim == 1: loc.shape = (1,) shape.shape = (1, 1) if loc.ndim != 1 or loc.shape[0] != dim: raise ValueError("Array 'loc' must be a vector of length %d." % dim) if shape.ndim == 0: shape = shape * np.eye(dim) elif shape.ndim == 1: shape = np.diag(shape) elif shape.ndim == 2 and shape.shape != (dim, dim): rows, cols = shape.shape if rows != cols: msg = ("Array 'cov' must be square if it is two dimensional," " but cov.shape = %s." % str(shape.shape)) else: msg = ("Dimension mismatch: array 'cov' is of shape %s," " but 'loc' is a vector of length %d.") msg = msg % (str(shape.shape), len(loc)) raise ValueError(msg) elif shape.ndim > 2: raise ValueError("Array 'cov' must be at most two-dimensional," " but cov.ndim = %d" % shape.ndim) # Process degrees of freedom. if df is None: df = 1 elif df <= 0: raise ValueError("'df' must be greater than zero.") elif np.isnan(df): raise ValueError("'df' is 'nan' but must be greater than zero or 'np.inf'.") return dim, loc, shape, df class multivariate_t_frozen(multi_rv_frozen): def __init__(self, loc=None, shape=1, df=1, allow_singular=False, seed=None): """Create a frozen multivariate t distribution. Parameters ---------- %(_mvt_doc_default_callparams)s Examples -------- >>> loc = np.zeros(3) >>> shape = np.eye(3) >>> df = 10 >>> dist = multivariate_t(loc, shape, df) >>> dist.rvs() array([[ 0.81412036, -1.53612361, 0.42199647]]) >>> dist.pdf([1, 1, 1]) array([0.01237803]) """ self._dist = multivariate_t_gen(seed) dim, loc, shape, df = self._dist._process_parameters(loc, shape, df) self.dim, self.loc, self.shape, self.df = dim, loc, shape, df self.shape_info = _PSD(shape, allow_singular=allow_singular) def logpdf(self, x): x = self._dist._process_quantiles(x, self.dim) U = self.shape_info.U log_pdet = self.shape_info.log_pdet return self._dist._logpdf(x, self.loc, U, log_pdet, self.df, self.dim, self.shape_info.rank) def pdf(self, x): return np.exp(self.logpdf(x)) def rvs(self, size=1, random_state=None): return self._dist.rvs(loc=self.loc, shape=self.shape, df=self.df, size=size, random_state=random_state) multivariate_t = multivariate_t_gen() # Set frozen generator docstrings from corresponding docstrings in # matrix_normal_gen and fill in default strings in class docstrings for name in ['logpdf', 'pdf', 'rvs']: method = multivariate_t_gen.__dict__[name] method_frozen = multivariate_t_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat(method.__doc__, mvt_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mvt_docdict_params) _mhg_doc_default_callparams = """\ m : array_like The number of each type of object in the population. That is, :math:`m[i]` is the number of objects of type :math:`i`. n : array_like The number of samples taken from the population. """ _mhg_doc_callparams_note = """\ `m` must be an array of positive integers. If the quantile :math:`i` contains values out of the range :math:`[0, m_i]` where :math:`m_i` is the number of objects of type :math:`i` in the population or if the parameters are inconsistent with one another (e.g. ``x.sum() != n``), methods return the appropriate value (e.g. ``0`` for ``pmf``). If `m` or `n` contain negative values, the result will contain ``nan`` there. """ _mhg_doc_frozen_callparams = "" _mhg_doc_frozen_callparams_note = \ """See class definition for a detailed description of parameters.""" mhg_docdict_params = { '_doc_default_callparams': _mhg_doc_default_callparams, '_doc_callparams_note': _mhg_doc_callparams_note, '_doc_random_state': _doc_random_state } mhg_docdict_noparams = { '_doc_default_callparams': _mhg_doc_frozen_callparams, '_doc_callparams_note': _mhg_doc_frozen_callparams_note, '_doc_random_state': _doc_random_state } class multivariate_hypergeom_gen(multi_rv_generic): r"""A multivariate hypergeometric random variable. Methods ------- ``pmf(x, m, n)`` Probability mass function. ``logpmf(x, m, n)`` Log of the probability mass function. ``rvs(m, n, size=1, random_state=None)`` Draw random samples from a multivariate hypergeometric distribution. ``mean(m, n)`` Mean of the multivariate hypergeometric distribution. ``var(m, n)`` Variance of the multivariate hypergeometric distribution. ``cov(m, n)`` Compute the covariance matrix of the multivariate hypergeometric distribution. Parameters ---------- %(_doc_default_callparams)s %(_doc_random_state)s Notes ----- %(_doc_callparams_note)s The probability mass function for `multivariate_hypergeom` is .. math:: P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) = \frac{\binom{m_1}{x_1} \binom{m_2}{x_2} \cdots \binom{m_k}{x_k}}{\binom{M}{n}}, \\ \quad (x_1, x_2, \ldots, x_k) \in \mathbb{N}^k \text{ with } \sum_{i=1}^k x_i = n where :math:`m_i` are the number of objects of type :math:`i`, :math:`M` is the total number of objects in the population (sum of all the :math:`m_i`), and :math:`n` is the size of the sample to be taken from the population. .. versionadded:: 1.6.0 Examples -------- To evaluate the probability mass function of the multivariate hypergeometric distribution, with a dichotomous population of size :math:`10` and :math:`20`, at a sample of size :math:`12` with :math:`8` objects of the first type and :math:`4` objects of the second type, use: >>> from scipy.stats import multivariate_hypergeom >>> multivariate_hypergeom.pmf(x=[8, 4], m=[10, 20], n=12) 0.0025207176631464523 The `multivariate_hypergeom` distribution is identical to the corresponding `hypergeom` distribution (tiny numerical differences notwithstanding) when only two types (good and bad) of objects are present in the population as in the example above. Consider another example for a comparison with the hypergeometric distribution: >>> from scipy.stats import hypergeom >>> multivariate_hypergeom.pmf(x=[3, 1], m=[10, 5], n=4) 0.4395604395604395 >>> hypergeom.pmf(k=3, M=15, n=4, N=10) 0.43956043956044005 The functions ``pmf``, ``logpmf``, ``mean``, ``var``, ``cov``, and ``rvs`` support broadcasting, under the convention that the vector parameters (``x``, ``m``, and ``n``) are interpreted as if each row along the last axis is a single object. For instance, we can combine the previous two calls to `multivariate_hypergeom` as >>> multivariate_hypergeom.pmf(x=[[8, 4], [3, 1]], m=[[10, 20], [10, 5]], ... n=[12, 4]) array([0.00252072, 0.43956044]) This broadcasting also works for ``cov``, where the output objects are square matrices of size ``m.shape[-1]``. For example: >>> multivariate_hypergeom.cov(m=[[7, 9], [10, 15]], n=[8, 12]) array([[[ 1.05, -1.05], [-1.05, 1.05]], [[ 1.56, -1.56], [-1.56, 1.56]]]) That is, ``result[0]`` is equal to ``multivariate_hypergeom.cov(m=[7, 9], n=8)`` and ``result[1]`` is equal to ``multivariate_hypergeom.cov(m=[10, 15], n=12)``. Alternatively, the object may be called (as a function) to fix the `m` and `n` parameters, returning a "frozen" multivariate hypergeometric random variable. >>> rv = multivariate_hypergeom(m=[10, 20], n=12) >>> rv.pmf(x=[8, 4]) 0.0025207176631464523 See Also -------- scipy.stats.hypergeom : The hypergeometric distribution. scipy.stats.multinomial : The multinomial distribution. References ---------- .. [1] The Multivariate Hypergeometric Distribution, http://www.randomservices.org/random/urn/MultiHypergeometric.html .. [2] Thomas J. Sargent and John Stachurski, 2020, Multivariate Hypergeometric Distribution https://python.quantecon.org/_downloads/pdf/multi_hyper.pdf """ def __init__(self, seed=None): super().__init__(seed) self.__doc__ = doccer.docformat(self.__doc__, mhg_docdict_params) def __call__(self, m, n, seed=None): """Create a frozen multivariate_hypergeom distribution. See `multivariate_hypergeom_frozen` for more information. """ return multivariate_hypergeom_frozen(m, n, seed=seed) def _process_parameters(self, m, n): m = np.asarray(m) n = np.asarray(n) if m.size == 0: m = m.astype(int) if n.size == 0: n = n.astype(int) if not np.issubdtype(m.dtype, np.integer): raise TypeError("'m' must an array of integers.") if not np.issubdtype(n.dtype, np.integer): raise TypeError("'n' must an array of integers.") if m.ndim == 0: raise ValueError("'m' must be an array with" " at least one dimension.") # check for empty arrays if m.size != 0: n = n[..., np.newaxis] m, n = np.broadcast_arrays(m, n) # check for empty arrays if m.size != 0: n = n[..., 0] mcond = m < 0 M = m.sum(axis=-1) ncond = (n < 0) | (n > M) return M, m, n, mcond, ncond, np.any(mcond, axis=-1) | ncond def _process_quantiles(self, x, M, m, n): x = np.asarray(x) if not np.issubdtype(x.dtype, np.integer): raise TypeError("'x' must an array of integers.") if x.ndim == 0: raise ValueError("'x' must be an array with" " at least one dimension.") if not x.shape[-1] == m.shape[-1]: raise ValueError(f"Size of each quantile must be size of 'm': " f"received {x.shape[-1]}, " f"but expected {m.shape[-1]}.") # check for empty arrays if m.size != 0: n = n[..., np.newaxis] M = M[..., np.newaxis] x, m, n, M = np.broadcast_arrays(x, m, n, M) # check for empty arrays if m.size != 0: n, M = n[..., 0], M[..., 0] xcond = (x < 0) | (x > m) return (x, M, m, n, xcond, np.any(xcond, axis=-1) | (x.sum(axis=-1) != n)) def _checkresult(self, result, cond, bad_value): result = np.asarray(result) if cond.ndim != 0: result[cond] = bad_value elif cond: return bad_value if result.ndim == 0: return result[()] return result def _logpmf(self, x, M, m, n, mxcond, ncond): # This equation of the pmf comes from the relation, # n combine r = beta(n+1, 1) / beta(r+1, n-r+1) num = np.zeros_like(m, dtype=np.float_) den = np.zeros_like(n, dtype=np.float_) m, x = m[~mxcond], x[~mxcond] M, n = M[~ncond], n[~ncond] num[~mxcond] = (betaln(m+1, 1) - betaln(x+1, m-x+1)) den[~ncond] = (betaln(M+1, 1) - betaln(n+1, M-n+1)) num[mxcond] = np.nan den[ncond] = np.nan num = num.sum(axis=-1) return num - den def logpmf(self, x, m, n): """Log of the multivariate hypergeometric probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- logpmf : ndarray or scalar Log of the probability mass function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ M, m, n, mcond, ncond, mncond = self._process_parameters(m, n) (x, M, m, n, xcond, xcond_reduced) = self._process_quantiles(x, M, m, n) mxcond = mcond | xcond ncond = ncond | np.zeros(n.shape, dtype=np.bool_) result = self._logpmf(x, M, m, n, mxcond, ncond) # replace values for which x was out of the domain; broadcast # xcond to the right shape xcond_ = xcond_reduced | np.zeros(mncond.shape, dtype=np.bool_) result = self._checkresult(result, xcond_, np.NINF) # replace values bad for n or m; broadcast # mncond to the right shape mncond_ = mncond | np.zeros(xcond_reduced.shape, dtype=np.bool_) return self._checkresult(result, mncond_, np.nan) def pmf(self, x, m, n): """Multivariate hypergeometric probability mass function. Parameters ---------- x : array_like Quantiles, with the last axis of `x` denoting the components. %(_doc_default_callparams)s Returns ------- pmf : ndarray or scalar Probability density function evaluated at `x` Notes ----- %(_doc_callparams_note)s """ out = np.exp(self.logpmf(x, m, n)) return out def mean(self, m, n): """Mean of the multivariate hypergeometric distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- mean : array_like or scalar The mean of the distribution """ M, m, n, _, _, mncond = self._process_parameters(m, n) # check for empty arrays if m.size != 0: M, n = M[..., np.newaxis], n[..., np.newaxis] cond = (M == 0) M = np.ma.masked_array(M, mask=cond) mu = n*(m/M) if m.size != 0: mncond = (mncond[..., np.newaxis] | np.zeros(mu.shape, dtype=np.bool_)) return self._checkresult(mu, mncond, np.nan) def var(self, m, n): """Variance of the multivariate hypergeometric distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- array_like The variances of the components of the distribution. This is the diagonal of the covariance matrix of the distribution """ M, m, n, _, _, mncond = self._process_parameters(m, n) # check for empty arrays if m.size != 0: M, n = M[..., np.newaxis], n[..., np.newaxis] cond = (M == 0) & (M-1 == 0) M = np.ma.masked_array(M, mask=cond) output = n * m/M * (M-m)/M * (M-n)/(M-1) if m.size != 0: mncond = (mncond[..., np.newaxis] | np.zeros(output.shape, dtype=np.bool_)) return self._checkresult(output, mncond, np.nan) def cov(self, m, n): """Covariance matrix of the multivariate hypergeometric distribution. Parameters ---------- %(_doc_default_callparams)s Returns ------- cov : array_like The covariance matrix of the distribution """ # see [1]_ for the formula and [2]_ for implementation # cov( x_i,x_j ) = -n * (M-n)/(M-1) * (K_i*K_j) / (M**2) M, m, n, _, _, mncond = self._process_parameters(m, n) # check for empty arrays if m.size != 0: M = M[..., np.newaxis, np.newaxis] n = n[..., np.newaxis, np.newaxis] cond = (M == 0) & (M-1 == 0) M = np.ma.masked_array(M, mask=cond) output = (-n * (M-n)/(M-1) * np.einsum("...i,...j->...ij", m, m) / (M**2)) # check for empty arrays if m.size != 0: M, n = M[..., 0, 0], n[..., 0, 0] cond = cond[..., 0, 0] dim = m.shape[-1] # diagonal entries need to be computed differently for i in range(dim): output[..., i, i] = (n * (M-n) * m[..., i]*(M-m[..., i])) output[..., i, i] = output[..., i, i] / (M-1) output[..., i, i] = output[..., i, i] / (M**2) if m.size != 0: mncond = (mncond[..., np.newaxis, np.newaxis] | np.zeros(output.shape, dtype=np.bool_)) return self._checkresult(output, mncond, np.nan) def rvs(self, m, n, size=None, random_state=None): """Draw random samples from a multivariate hypergeometric distribution. Parameters ---------- %(_doc_default_callparams)s size : integer or iterable of integers, optional Number of samples to draw. Default is ``None``, in which case a single variate is returned as an array with shape ``m.shape``. %(_doc_random_state)s Returns ------- rvs : array_like Random variates of shape ``size`` or ``m.shape`` (if ``size=None``). Notes ----- %(_doc_callparams_note)s Also note that NumPy's `multivariate_hypergeometric` sampler is not used as it doesn't support broadcasting. """ M, m, n, _, _, _ = self._process_parameters(m, n) random_state = self._get_random_state(random_state) if size is not None and isinstance(size, int): size = (size, ) if size is None: rvs = np.empty(m.shape, dtype=m.dtype) else: rvs = np.empty(size + (m.shape[-1], ), dtype=m.dtype) rem = M # This sampler has been taken from numpy gh-13794 # https://github.com/numpy/numpy/pull/13794 for c in range(m.shape[-1] - 1): rem = rem - m[..., c] rvs[..., c] = ((n != 0) * random_state.hypergeometric(m[..., c], rem, n + (n == 0), size=size)) n = n - rvs[..., c] rvs[..., m.shape[-1] - 1] = n return rvs multivariate_hypergeom = multivariate_hypergeom_gen() class multivariate_hypergeom_frozen(multi_rv_frozen): def __init__(self, m, n, seed=None): self._dist = multivariate_hypergeom_gen(seed) (self.M, self.m, self.n, self.mcond, self.ncond, self.mncond) = self._dist._process_parameters(m, n) # monkey patch self._dist def _process_parameters(m, n): return (self.M, self.m, self.n, self.mcond, self.ncond, self.mncond) self._dist._process_parameters = _process_parameters def logpmf(self, x): return self._dist.logpmf(x, self.m, self.n) def pmf(self, x): return self._dist.pmf(x, self.m, self.n) def mean(self): return self._dist.mean(self.m, self.n) def var(self): return self._dist.var(self.m, self.n) def cov(self): return self._dist.cov(self.m, self.n) def rvs(self, size=1, random_state=None): return self._dist.rvs(self.m, self.n, size=size, random_state=random_state) # Set frozen generator docstrings from corresponding docstrings in # multivariate_hypergeom and fill in default strings in class docstrings for name in ['logpmf', 'pmf', 'mean', 'var', 'cov', 'rvs']: method = multivariate_hypergeom_gen.__dict__[name] method_frozen = multivariate_hypergeom_frozen.__dict__[name] method_frozen.__doc__ = doccer.docformat( method.__doc__, mhg_docdict_noparams) method.__doc__ = doccer.docformat(method.__doc__, mhg_docdict_params)
bsd-3-clause
jskDr/jamespy_py3
medic/kdl.py
1
53787
""" KDL - deep learning for medic """ import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.signal import convolve2d, fftconvolve from sklearn import preprocessing, model_selection, metrics import os from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D, Conv2D from keras.layers.normalization import BatchNormalization from keras.utils import np_utils from keras import backend as K from keras import callbacks import kkeras from . import beads def fig2array(fig): fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) # ones_255 = np.ones_like( data) * 255 # data = 255 - data return data def _gen_cell_r0(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=5, # max_bd >= 1 bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images """ if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = pos_cell + (r_cell + r_bd) * \ np.array((np.cos(th), np.sin(th))) return pos_bd #print( pos_cell, pos_bd) circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: for bd_n in range(np.random.randint(max_bd)+1): circle_d["bd{}".format(bd_n)] = plt.Circle(rand_pos_bd(), r_bd, color='w') # circle_d["bd2"] = plt.Circle(rand_pos_bd(), r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a def _gen_cell_r1(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=5, # max_bd >= 1 # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd={'mean':2, 'std':2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. """ if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = pos_cell + (r_cell + r_bd) * \ np.array((np.cos(th), np.sin(th))) return pos_bd # print( pos_cell, pos_bd) circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: for bd_n in range(np.random.randint(max_bd)+1): circle_d["bd{}".format(bd_n)] = plt.Circle(rand_pos_bd(), r_bd, color='w') # circle_d["bd2"] = plt.Circle(rand_pos_bd(), r_bd, color='w') if stat_ext_bd is not None: n_ext_bd = np.max((0, int(np.random.randn()*stat_ext_bd['std'] + stat_ext_bd['mean']))) for ext_bd_n in range(n_ext_bd): ext_bd_pos = np.random.rand(2) circle_d["ext_bd{}".format(ext_bd_n)] = plt.Circle(ext_bd_pos, r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a def _gen_cell_r2(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=3, # max_bd >= 1 # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd={'mean':2, 'std':2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = pos_cell + (r_cell + r_bd) * \ np.array((np.cos(th), np.sin(th))) return pos_bd #print( pos_cell, pos_bd) circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: for bd_n in range(np.random.randint(max_bd)+1): circle_d["bd{}".format(bd_n)] = plt.Circle(rand_pos_bd(), r_bd, color='w') # circle_d["bd2"] = plt.Circle(rand_pos_bd(), r_bd, color='w') if stat_ext_bd is not None: #n_ext_bd = np.max((0, int(np.random.randn()*stat_ext_bd['std'] + stat_ext_bd['mean']))) n_ext_bd = np.random.randint(stat_ext_bd['mean']+1) for ext_bd_n in range(n_ext_bd): ext_bd_pos = np.random.rand(2) circle_d["ext_bd{}".format(ext_bd_n)] = plt.Circle(ext_bd_pos, r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a def _gen_cell_db_r0(N=5, rand_pos_cell=False, disp=False): db_l = [] cell_img_org = gen_cell(bd_on=False, rand_pos_cell=rand_pos_cell) for i in range(N): if disp: # 1, 2, True (not 0 or False) print('Iteration:', i) elif disp == 2: print(i, end=",") if rand_pos_cell: cell_img = gen_cell(bd_on=False, rand_pos_cell=rand_pos_cell) else: cell_img = cell_img_org.copy() cellbd_img = gen_cell(bd_on=True, rand_pos_cell=rand_pos_cell) db_l.append(cell_img[:, :, 0]) # No RGB Info db_l.append(cellbd_img[:, :, 0]) # No RGB Info print("The end.") return db_l def gen_cell_db(N=5, rand_pos_cell=False, extra_bead_on=True, max_bd=3, disp=False): """ db_l = gen_cell_db(N=5, rand_pos_cell=False, extra_bead_on=True, disp=False) Generate cell_db Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ fig, ax = plt.subplots(figsize=(2, 2)) # ax.set_axis_bgcolor('red') if extra_bead_on: stat_ext_bd = {'mean': 5, 'std': 1} else: stat_ext_bd = None db_l = [] cell_img_org = gen_cell(bd_on=False, rand_pos_cell=rand_pos_cell, fig=fig, ax=ax, stat_ext_bd=stat_ext_bd) for i in range(N): if disp: print(i, end=",") if rand_pos_cell: cell_img = gen_cell( bd_on=False, rand_pos_cell=rand_pos_cell, max_bd=max_bd, fig=fig, ax=ax, stat_ext_bd=stat_ext_bd) else: cell_img = cell_img_org.copy() cellbd_img = gen_cell( bd_on=True, rand_pos_cell=rand_pos_cell, fig=fig, ax=ax, stat_ext_bd=stat_ext_bd) db_l.append(cell_img[:, :, 0]) # No RGB Info db_l.append(cellbd_img[:, :, 0]) # No RGB Info plt.close(fig) print("The end.") return db_l def save_cell_db(db_l, fname_gz="sheet.gz/cell_db.cvs.gz"): df_l = [] celltype = 0 for i, db in enumerate(db_l): df_i = pd.DataFrame() df_i["ID"] = [i] * np.prod(db.shape) df_i["celltype"] = celltype df_i["x"] = np.repeat(np.arange(db.shape[0]), db.shape[1]) df_i["y"] = list(range(db.shape[1])) * db.shape[0] df_i["image"] = db.reshape(-1) celltype ^= 1 df_l.append(df_i) cell_df = pd.concat(df_l, ignore_index=True) cell_df.to_csv(fname_gz, index=False, compression='gzip') return cell_df # =================================== # Functions for the Center_Cell mode # - gen_cell_n_beads, # gen_cell_db_center_cell, # save_cell_db_center_cell # =================================== def gen_cell(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=3, # max_bd >= 1 stat_ext_bd={'mean':2, 'std':2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ return gen_cell_n_beads(bd_on=bd_on, rand_pos_cell=rand_pos_cell, r_cell=r_cell, # 0<r_cell<=1 r_bd=r_bd, # 0<r_bd<=1 max_bd=max_bd, # max_bd >= 1 rand_bead_flag=True, # This is onlu changed part. # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd=stat_ext_bd, bound_flag=bound_flag, visible=visible, disp=disp, fig=fig, ax=ax) def gen_cell_n_beads(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=3, # max_bd >= 1 rand_bead_flag=False, # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd={'mean': 2, 'std': 2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = pos_cell + (r_cell + r_bd) * \ np.array((np.cos(th), np.sin(th))) return pos_bd #print( pos_cell, pos_bd) circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: if rand_bead_flag: final_max_bd = np.random.randint(max_bd) + 1 else: # Now, the number of total beads attached a cell is fixed (not random). final_max_bd = max_bd for bd_n in range(final_max_bd): circle_d["bd{}".format(bd_n)] = \ plt.Circle(rand_pos_bd(), r_bd, color='w') if stat_ext_bd is not None: #n_ext_bd = np.max((0, int(np.random.randn()*stat_ext_bd['std'] + stat_ext_bd['mean']))) n_ext_bd = np.random.randint(stat_ext_bd['mean']+1) for ext_bd_n in range(n_ext_bd): ext_bd_pos = np.random.rand(2) circle_d["ext_bd{}".format(ext_bd_n)] = \ plt.Circle(ext_bd_pos, r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a class CELL(): def __init__(self, flag_no_overlap_beads=False): self.flag_no_overlap_beads = flag_no_overlap_beads def gen(self, bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=3, # max_bd >= 1 rand_bead_flag=False, # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd={'mean': 2, 'std': 2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def get_pos_bd(th): return pos_cell + (r_cell + r_bd) * np.array((np.cos(th), np.sin(th))) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = get_pos_bd(th) return pos_bd circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: if rand_bead_flag: final_max_bd = np.random.randint(max_bd) + 1 else: # Now, the number of total beads attached # a cell is fixed (not random). final_max_bd = max_bd if not self.flag_no_overlap_beads: rand_pos_bd_l = [] for bd_n in range(final_max_bd): rand_pos_bd_l.append(rand_pos_bd()) else: bead_center_l = [] cnt = 0 while len(bead_center_l) < final_max_bd: # generate beads until the number of it reaches the limit bead_center_l = beads.BEADS(r_cell, r_bd).gen_bead_centers(final_max_bd) cnt += 1 assert cnt < 100, 'Try to reduce the number of beads!' rand_pos_bd_l = [get_pos_bd(th/180*np.pi) for th in bead_center_l] for bd_n in range(final_max_bd): circle_d["bd{}".format(bd_n)] = \ plt.Circle(rand_pos_bd_l[bd_n], r_bd, color='w') if stat_ext_bd is not None: n_ext_bd = np.random.randint(stat_ext_bd['mean'] + 1) for ext_bd_n in range(n_ext_bd): ext_bd_pos = np.random.rand(2) circle_d["ext_bd{}".format(ext_bd_n)] = \ plt.Circle(ext_bd_pos, r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a def gen_cell_n_nooverlap_beads(bd_on=True, rand_pos_cell=False, r_cell=0.1, # 0<r_cell<=1 r_bd=0.05, # 0<r_bd<=1 max_bd=3, # max_bd >= 1 rand_bead_flag=False, # stat_ext_bd=None, # or {'mean':5, 'std':1} stat_ext_bd={'mean': 2, 'std': 2}, bound_flag=True, visible=False, disp=False, fig=None, ax=None): """ Generate cell images The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ if fig is None or ax is None: assert fig is None and ax is None fig, ax = plt.subplots(figsize=(2, 2)) # set_axis_bgcolor is not working because of plt.axis('off') # ax.set_axis_bgcolor('red') close_fig_flag = True else: close_fig_flag = False fig.patch.set_facecolor('black') circle_d = {} if rand_pos_cell: if bound_flag: # Not generate cells in the boundary B = r_cell + 2.0 * r_bd pos_cell = B + (1.0 - 2 * B) * np.random.random(2) else: pos_cell = np.random.random(2) else: pos_cell = np.array([0.5, 0.5]) def rand_pos_bd(): th = np.random.random() * 2 * np.pi pos_bd = pos_cell + (r_cell + r_bd) * \ np.array((np.cos(th), np.sin(th))) return pos_bd #print( pos_cell, pos_bd) circle_d["cell"] = plt.Circle(pos_cell, r_cell, color='w') if bd_on: if rand_bead_flag: final_max_bd = np.random.randint(max_bd) + 1 else: # Now, the number of total beads attached a cell is fixed (not random). final_max_bd = max_bd for bd_n in range(final_max_bd): circle_d["bd{}".format(bd_n)] = \ plt.Circle(rand_pos_bd(), r_bd, color='w') if stat_ext_bd is not None: #n_ext_bd = np.max((0, int(np.random.randn()*stat_ext_bd['std'] + stat_ext_bd['mean']))) n_ext_bd = np.random.randint(stat_ext_bd['mean']+1) for ext_bd_n in range(n_ext_bd): ext_bd_pos = np.random.rand(2) circle_d["ext_bd{}".format(ext_bd_n)] = \ plt.Circle(ext_bd_pos, r_bd, color='w') for k in circle_d.keys(): ax.add_artist(circle_d[k]) plt.axis('off') data_a = fig2array(fig) if disp: print("Image array shape = ", data_a.shape) if visible: plt.show() else: if close_fig_flag: plt.close() else: plt.cla() return data_a def gen_cell_db_center_cell(N=5, rand_pos_cell=False, extra_bead_on=True, max_bd=3, flag_no_overlap_beads=False, disp=False): """ db_l = gen_cell_db(N=5, rand_pos_cell=False, extra_bead_on=True, disp=False) Generate cell_db Inputs ====== max_bd, int, default=3 The number of the maximum beads attached to a cell. """ cellgen = CELL(flag_no_overlap_beads=flag_no_overlap_beads) fig, ax = plt.subplots(figsize=(2, 2)) # ax.set_axis_bgcolor('red') if extra_bead_on: stat_ext_bd = {'mean': 5, 'std': 1} else: stat_ext_bd = None db_l = [] for i in range(N): if disp: print(i, end=",") # no_beads is circulated from 0 to max_bd-1 # Hence, gen_cell_no_beads should be prepared. n_beads = i % max_bd cellbd_img = cellgen.gen(bd_on=True, rand_pos_cell=rand_pos_cell, # max_bd is repeated from 0 to max_bd max_bd=n_beads, rand_bead_flag=False, fig=fig, ax=ax, stat_ext_bd=stat_ext_bd) db_l.append(cellbd_img[:, :, 0]) # No RGB Info plt.close(fig) print("The end.") return db_l def save_cell_db_center_cell(db_l, max_bd, fname_gz="sheet.gz/cell_db.cvs.gz"): """ Each image include a cell at the center location and the numbers of beads in a cell is equally distributed circulately. That is, 0 beads, 1 beads, ..., max_bd are repeated for all images. """ df_l = [] celltype = 0 for i, db in enumerate(db_l): df_i = pd.DataFrame() df_i["ID"] = [i] * np.prod(db.shape) df_i["n_beads"] = [i % max_bd] * np.prod(db.shape) df_i["x"] = np.repeat(np.arange(db.shape[0]), db.shape[1]) df_i["y"] = list(range(db.shape[1])) * db.shape[0] df_i["image"] = db.reshape(-1) celltype ^= 1 df_l.append(df_i) cell_df = pd.concat(df_l, ignore_index=True) cell_df.to_csv(fname_gz, index=False, compression='gzip') return cell_df def _gen_save_cell_db_r0(N=5, fname_gz="sheet.gz/cell_db.cvs.gz", extra_bead_on=True, rand_pos_cell=False, max_bd=3, classification_mode="Cancer_Normal_Cell", disp=False): """ - Image show without pausing is needed. (Oct 31, 2016) Parameters ========== rand_pos_cell, Default=False If it is True, the position of cell is varied Otherwise, the position is fixed to be the center (0,0). max_bd, int, default=3 The number of the maximum beads attached to a cell. classification_mode, string, default="Cancer_Normal" if it is "Cancer_Normal_Cell", this function classifies cancer or normal. If it is "Center_Cell", this fucntion classifies numer of beads in each cell. In this case, the number of beads in cells are equaly distributed from 0 to max_bd. For example, if N=100 & max_bd=4, 0-beads, 1-beads, 2-beads and 3-beads cell images are repeated 25 times. """ def save(save_fn, db_l, max_bd=None, fname_gz=None): fname_gz_fold, fname_gz_file = os.path.split(fname_gz) os.makedirs(fname_gz_fold, exist_ok=True) if max_bd is None: cell_df = save_fn(db_l, fname_gz=fname_gz) else: cell_df = save_fn(db_l, max_bd, fname_gz=fname_gz) return cell_df if classification_mode == "Cancer_Normal_Cell": db_l = gen_cell_db(N, rand_pos_cell=rand_pos_cell, extra_bead_on=extra_bead_on, max_bd=max_bd, # classification_mode=classification_mode, disp=disp) if disp: print("Saving...") cell_df = save(save_cell_db, db_l, fname_gz=fname_gz) elif classification_mode == "Center_Cell": assert int(N % max_bd) == 0, "N % max_bd should zero in the Center_Cell mode" db_l = gen_cell_db_center_cell(N, rand_pos_cell=rand_pos_cell, extra_bead_on=extra_bead_on, max_bd=max_bd, disp=disp) if disp: print("Saving...") cell_df = save(save_cell_db_center_cell, db_l, max_bd, fname_gz=fname_gz) else: raise ValueError("classification_mode = {} is not supported.".format(classification_mode)) return cell_df def gen_save_cell_db(N=5, fname_gz="sheet.gz/cell_db.cvs.gz", extra_bead_on=True, rand_pos_cell=False, max_bd=3, classification_mode="Cancer_Normal_Cell", flag_no_overlap_beads=False, disp=False): """ - Image show without pausing is needed. (Oct 31, 2016) Parameters ========== rand_pos_cell, Default=False If it is True, the position of cell is varied Otherwise, the position is fixed to be the center (0,0). max_bd, int, default=3 The number of the maximum beads attached to a cell. classification_mode, string, default="Cancer_Normal" if it is "Cancer_Normal_Cell", this function classifies cancer or normal. If it is "Center_Cell", this fucntion classifies numer of beads in each cell. In this case, the number of beads in cells are equaly distributed from 0 to max_bd. For example, if N=100 & max_bd=4, 0-beads, 1-beads, 2-beads and 3-beads cell images are repeated 25 times. """ def save(save_fn, db_l, max_bd=None, fname_gz=None): fname_gz_fold, fname_gz_file = os.path.split(fname_gz) os.makedirs(fname_gz_fold, exist_ok=True) if max_bd is None: cell_df = save_fn(db_l, fname_gz=fname_gz) else: cell_df = save_fn(db_l, max_bd, fname_gz=fname_gz) return cell_df if classification_mode == "Cancer_Normal_Cell": db_l = gen_cell_db(N, rand_pos_cell=rand_pos_cell, extra_bead_on=extra_bead_on, max_bd=max_bd, disp=disp) if disp: print("Saving...") cell_df = save(save_cell_db, db_l, fname_gz=fname_gz) elif classification_mode == "Center_Cell": assert int(N % max_bd) == 0, "N % max_bd should zero in the Center_Cell mode" db_l = gen_cell_db_center_cell(N, rand_pos_cell=rand_pos_cell, extra_bead_on=extra_bead_on, max_bd=max_bd, flag_no_overlap_beads=flag_no_overlap_beads, disp=disp) if disp: print("Saving...") cell_df = save(save_cell_db_center_cell, db_l, max_bd, fname_gz=fname_gz) else: raise ValueError("classification_mode = {} is not supported.".format(classification_mode)) return cell_df def gen_save_cell_db_no_overlap(N_each, max_bd_p1 = 4, disp=2): """ N_each is the number of cell images for each bead case. max_pd_p1 is max_pd puls 1. """ N = N_each * max_bd_p1 max_bd = max_bd_p1 - 1 fname_gz="sheet.gz/cell_db{0}_center_cell_{1}_nooverlap.cvs.gz".format(N, max_bd) print("Output file name is", fname_gz) return gen_save_cell_db(N = N, fname_gz=fname_gz, rand_pos_cell=False, max_bd=max_bd_p1, classification_mode="Center_Cell", extra_bead_on=False, flag_no_overlap_beads=True, disp=disp) class obj: def __init__(self, r, L=144): """ The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um. """ # Initial values self.Lx, self.Ly = L, L self.downsamples = 4 self.d_um = 2.2 / self.downsamples # Input and generated values self.r = r self.r_pixels_x = self.r * self.Lx self.r_pixels_y = self.r * self.Ly self.r_x_um = self.r_pixels_x * self.d_um self.r_y_um = self.r_pixels_y * self.d_um def get_h2d(nx, ny, l=700, z=0.5, dx=0.8, dy=0.8): """ 1D Freznel Differaction Formulation Input ===== x, np.array x position z, np.array hight l, float lambda """ k = 2.0 * np.pi / l x_vec = (np.arange(1, nx+1).reshape(1, -1) - nx/2)*dx x = np.dot(np.ones((nx, 1)), x_vec) y_vec = (np.arange(1, ny+1).reshape(-1, 1) - ny/2)*dy y = y_vec * np.ones((1, ny)) #k = 2.0 * np.pi / l return np.exp(1j * k * z) / (1j * l * z) * np.exp((1j * k / (2 * z)) * (np.power(x, 2) + np.power(y, 2))) def get_h2d_inv(nx, ny, l=700, z=0.5, dx=0.8, dy=0.8): """ 1D Freznel Differaction Formulation Input ===== x, np.array x position z, np.array hight l, float lambda """ k = 2.0 * np.pi / l x_vec = (np.arange(1, nx+1).reshape(1, -1) - nx/2)*dx x = np.dot(np.ones((nx, 1)), x_vec) y_vec = (np.arange(1, ny+1).reshape(-1, 1) - ny/2)*dy y = y_vec * np.ones((1, ny)) #k = 2.0 * np.pi / l return np.exp(-1j * k * z) / (1j * l * z) * np.exp((-1j * k / (2 * z)) * (np.power(x, 2) + np.power(y, 2))) # Freznel def get_h(ny, nx, z_mm=0.5, dx_um=2.2, dy_um=2.2, l_nm=405): """ 1D Freznel Differaction Formulation Input ===== x, np.array x position z, np.array hight l, float lambda "The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um." """ # nano-meter to micro-meter transform (nm -> um) l_um = l_nm / 1000 z_um = z_mm * 1000 x_vec_um = (np.arange(1, nx+1).reshape(1, -1) - nx/2)*dx_um x_um = np.dot(np.ones((ny, 1)), x_vec_um) y_vec_um = (np.arange(1, ny+1).reshape(-1, 1) - ny/2)*dy_um y_um = y_vec_um * np.ones((1, nx)) return np.exp((1j * np.pi) / (l_um * z_um) * (np.power(x_um, 2) + np.power(y_um, 2))) def get_h_inv(ny, nx, z_mm=0.5, dx_um=2.2, dy_um=2.2, l_nm=405): """ 1D Freznel Differaction Formulation Input ===== x, np.array x position z, np.array hight l, float lambda "The PS bead size is 6 um and silica bead is 5 um. Lymphoma cell size varies in a larger variance, but the mean value is around 9-12 um." """ # nano-meter to micro-meter transform (nm -> um) l_um = l_nm / 1000 z_um = z_mm * 1000 x_vec_um = (np.arange(1, nx+1).reshape(1, -1) - nx/2)*dx_um x_um = np.dot(np.ones((ny, 1)), x_vec_um) y_vec_um = (np.arange(1, ny+1).reshape(-1, 1) - ny/2)*dy_um y_um = y_vec_um * np.ones((1, nx)) return np.exp((-1j * np.pi) / (l_um * z_um) * (np.power(x_um, 2) + np.power(y_um, 2))) def fd_conv(Img_xy, h2d, mode ='same'): #return convolve2d(Img_xy, h2d, mode=mode) return fftconvolve(Img_xy, h2d, mode=mode) def cell_fd_info(cell_df): Lx = cell_df['x'].max() + 1 Ly = cell_df['y'].max() + 1 Limg = cell_df['ID'].max() + 1 #print( Lx, Ly, Limg) return Limg, Lx, Ly def cell_fd_conv(cell_df, h144=None): Limg, Lx, Ly = cell_fd_info(cell_df) if h144 is None: h144 = get_h2d(Lx, Ly, l=405, z=0.5, dx=2.2/4, dy=2.2/4) cell_img_fd_l = [] for l in range(Limg): cell_img = cell_df[cell_df["ID"] == l]["image"].values.reshape(Lx, Ly) #cell_img_fd = fd_conv(cell_img, h144) cell_img_fd = fftconvolve(cell_img, h144, mode='same') cell_img_fd_l.append(cell_img_fd) cell_img_fd_a = np.array(cell_img_fd_l) #print( cell_img_fd_a.shape) return cell_img_fd_a def cell_fd_extention(fname_org='sheet.gz/cell_db.cvs.gz', camera_bit_resolution=14): cell_df = pd.read_csv(fname_org) Limg, Lx, Ly = cell_fd_info(cell_df) cell_df_ext = cell_df.copy() # Fresnel diffraction cell_img_fd_a = cell_fd_conv(cell_df) cell_df_ext['freznel image'] = cell_img_fd_a.reshape(-1) # max_v, min_v = np.max(cell_df["image"]), np.min(cell_df["image"]) cell_img_fd_a_2d = cell_img_fd_a.reshape(Limg, -1) cell_img_fd_a_2d_scale = preprocessing.minmax_scale( np.abs(cell_img_fd_a_2d)) * (2**camera_bit_resolution) cell_img_fd_a_2d_scale_200x144x144 = cell_img_fd_a_2d_scale.reshape( Limg, Lx, Ly).astype(int) cell_df_ext[ 'mag freznel image'] = cell_img_fd_a_2d_scale_200x144x144.reshape(-1) return cell_df_ext def cell_fd_ext_save(fname_org='sheet.gz/cell_db100.cvs.gz', fname_ext='sheet.gz/cell_fd_db100.cvs.gz'): cell_df_ext = cell_fd_extention(fname_org) # Save data cell_df_ext.to_csv(fname_ext, index=False, compression='gzip') return cell_df_ext class CELL_FD_EXT(): def __init__(self, fname_org, h2d=None, h2d_inv=None): cell_df = pd.read_csv(fname_org) Limg, Lx, Ly = cell_fd_info(cell_df) if h2d is None: h2d = get_h(Ly, Lx, z_mm=0.5, dx_um=2.2/4, dy_um=2.2/4, l_nm=405) if h2d_inv is None: h2d_inv = get_h_inv(Ly, Lx, z_mm=0.5, dx_um=2.2/4, dy_um=2.2/4, l_nm=405) self.fname_org = fname_org self.h2d = h2d self.h2d_inv = h2d_inv def save(self): fname_org = self.fname_org fname_ext = fname_org[:-7] + '_fd' + fname_org[-7:] print('fname_ext is', fname_ext) cell_df_ext = self.extention() # Save data cell_df_ext.to_csv(fname_ext, index=False, compression='gzip') return cell_df_ext def extention(self, camera_bit_resolution=14): fname_org = self.fname_org h2d = self.h2d cell_df = pd.read_csv(fname_org) Limg, Lx, Ly = cell_fd_info(cell_df) cell_df_ext = cell_df.copy() # Fresnel diffraction cell_img_fd_a = cell_fd_conv(cell_df, h2d) cell_df_ext['freznel image'] = cell_img_fd_a.reshape(-1) # max_v, min_v = np.max(cell_df["image"]), np.min(cell_df["image"]) cell_img_fd_a_2d = cell_img_fd_a.reshape(Limg, -1) cell_img_fd_a_2d_scale = preprocessing.minmax_scale( np.abs(cell_img_fd_a_2d)) * (2**camera_bit_resolution) cell_img_fd_a_2d_scale_200x144x144 = cell_img_fd_a_2d_scale.reshape( Limg, Lx, Ly).astype(int) cell_df_ext[ 'mag freznel image'] = cell_img_fd_a_2d_scale_200x144x144.reshape(-1) return cell_df_ext #Deep Learning def run_dl_mgh_params_1cl_do(X, y, Lx, Ly, nb_epoch=5000, batch_size = 128, nb_classes = 2): # input image dimensions img_rows, img_cols = Lx, Ly # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling pool_size = (50, 50) # convolution kernel size kernel_size = (20, 20) # the data, shuffled and split between train and test sets X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=0) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(4)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) earlyStopping = callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='auto') history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) kkeras.plot_acc(history) plt.show() kkeras.plot_loss(history) # Deep Learning def run_dl_mgh_params_1cl_bn(X, y, Lx, Ly, nb_epoch=5000, batch_size=128, nb_classes=2): # input image dimensions img_rows, img_cols = Lx, Ly # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling pool_size = (50, 50) # convolution kernel size kernel_size = (20, 20) # the data, shuffled and split between train and test sets X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.2, random_state=0) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Conv2D(nb_filters, kernel_size, padding='valid', input_shape=input_shape)) model.add(BatchNormalization()) # model.add(Activation('relu')) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=pool_size)) #model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(4)) model.add(BatchNormalization()) model.add(Activation('tanh')) #model.add(Activation('relu')) #model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # earlyStopping=callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='auto') history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) #, callbacks=[earlyStopping]) score = model.evaluate(X_test, Y_test, verbose=0) Y_test_pred = model.predict(X_test, verbose=0) print('Confusion metrix') # y_test_pred = np_utils.categorical_probas_to_classes(Y_test_pred) y_test_pred = np.argmax(Y_test_pred, axis=1) print(metrics.confusion_matrix(y_test, y_test_pred)) print('Test score:', score[0]) print('Test accuracy:', score[1]) kkeras.plot_acc(history) plt.show() kkeras.plot_loss(history) run_dl_mgh_params = run_dl_mgh_params_1cl_bn def run_dl_mgh_params_1cl_bn_do(X, y, Lx, Ly, nb_epoch=5000, batch_size = 128, nb_classes = 2): # input image dimensions img_rows, img_cols = Lx, Ly # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling pool_size = (50, 50) # convolution kernel size kernel_size = (20, 20) # the data, shuffled and split between train and test sets X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y, test_size=0.2, random_state=0) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape)) model.add(BatchNormalization()) # model.add(Activation('relu')) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(4)) model.add(BatchNormalization()) model.add(Activation('tanh')) #model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # earlyStopping=callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='auto') history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) #, callbacks=[earlyStopping]) score = model.evaluate(X_test, Y_test, verbose=0) Y_test_pred = model.predict(X_test, verbose=0) print('Confusion metrix') # y_test_pred = np_utils.categorical_probas_to_classes(Y_test_pred) y_test_pred = np.argmax(Y_test_pred, axis=1) print(metrics.confusion_matrix(y_test, y_test_pred)) print('Test score:', score[0]) print('Test accuracy:', score[1]) kkeras.plot_acc( history) plt.show() kkeras.plot_loss( history) def run_dl_mgh_params_2cl_bn(X, y, Lx, Ly, nb_epoch=5000, batch_size = 128, nb_classes = 2): # input image dimensions img_rows, img_cols = Lx, Ly # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling pool_size = (10, 10) # convolution kernel size kernel_size = (20, 20) # the data, shuffled and split between train and test sets X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y, test_size=0.2, random_state=0) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape)) model.add(BatchNormalization()) # model.add(Activation('relu')) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=pool_size)) #model.add(Dropout(0.25)) model.add(Convolution2D(5, 5, 5, border_mode='valid')) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(5,5))) model.add(Flatten()) model.add(Dense(4)) model.add(BatchNormalization()) model.add(Activation('tanh')) #model.add(Activation('relu')) #model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # earlyStopping=callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='auto') history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) #, callbacks=[earlyStopping]) score = model.evaluate(X_test, Y_test, verbose=0) Y_test_pred = model.predict(X_test, verbose=0) print('Confusion metrix') # y_test_pred = np_utils.categorical_probas_to_classes(Y_test_pred) y_test_pred = np.argmax(Y_test_pred, axis=1) print(metrics.confusion_matrix(y_test, y_test_pred)) print('Test score:', score[0]) print('Test accuracy:', score[1]) kkeras.plot_acc( history) plt.show() kkeras.plot_loss( history) # function name alias run_dl_mgh_params_2cl = run_dl_mgh_params_2cl_bn def run_dl_mgh_params_2cl_bn_do(X, y, Lx, Ly, nb_epoch=5000, batch_size = 128, nb_classes = 2): """ Dropout is also included after batchnormalization to protect overfitting. """ # input image dimensions img_rows, img_cols = Lx, Ly # number of convolutional filters to use nb_filters = 8 # size of pooling area for max pooling pool_size = (10, 10) # convolution kernel size kernel_size = (20, 20) # the data, shuffled and split between train and test sets X_train, X_test, y_train, y_test = model_selection.train_test_split(X,y, test_size=0.2, random_state=0) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape)) model.add(BatchNormalization()) # model.add(Activation('relu')) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=pool_size)) model.add(Dropout(0.1)) model.add(Convolution2D(5, 5, 5, border_mode='valid')) model.add(BatchNormalization()) model.add(Activation('tanh')) model.add(MaxPooling2D(pool_size=(5,5))) model.add(Dropout(0.1)) model.add(Flatten()) model.add(Dense(4)) model.add(BatchNormalization()) model.add(Activation('tanh')) #model.add(Activation('relu')) model.add(Dropout(0.1)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) # earlyStopping=callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='auto') history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0, validation_data=(X_test, Y_test)) #, callbacks=[earlyStopping]) score = model.evaluate(X_test, Y_test, verbose=0) Y_test_pred = model.predict(X_test, verbose=0) print('Confusion metrix') # y_test_pred = np_utils.categorical_probas_to_classes(Y_test_pred) y_test_pred = np.argmax(Y_test_pred, axis=1) print(metrics.confusion_matrix(y_test, y_test_pred)) print('Test score:', score[0]) print('Test accuracy:', score[1]) kkeras.plot_acc( history) plt.show() kkeras.plot_loss( history) run_dl_mgh_params_2cl_do = run_dl_mgh_params_2cl_bn_do """ Fresenel Diffraction with a new approach """ def f(x_um, y_um, z_mm=0.5, l_nm=405): return np.exp(1j * np.pi * (np.power(x_um, 2) + np.power(y_um,2)) / (l_nm * z_mm)) def cimshow(f_impulse): plt.figure(figsize=(7,5)) plt.subplot(2,2,1) plt.imshow(np.real(f_impulse)) plt.colorbar() plt.title('Re{}') plt.subplot(2,2,2) plt.imshow(np.imag(f_impulse)) plt.colorbar() plt.title('Img{}') plt.subplot(2,2,2+1) plt.imshow(np.abs(f_impulse)) plt.colorbar() plt.title('Magnitude') plt.subplot(2,2,2+2) plt.imshow(np.angle(f_impulse)) plt.colorbar() plt.title('Phase') def xy(MAX_x_um = 55, pixel_um=2.2, oversample_rate=4): N = int(MAX_x_um / (pixel_um / oversample_rate)) x = np.dot(np.ones((N,1)), np.linspace(-MAX_x_um,MAX_x_um,N).reshape(1,-1)) y = np.dot(np.linspace(-MAX_x_um,MAX_x_um,N).reshape(-1,1), np.ones((1,N))) return x, y def u(x, y, alpha): out = np.zeros_like(x) out[(y>=-alpha/2)&(y<=alpha/2)&(x>=-alpha/2)&(x<=alpha/2)] = 1.0 return out def u_circle(x,y,radius): xy2 = np.power(x,2) + np.power(y,2) # Since x is already matrix for griding, out shape is copied just from x. # If x is a vector, the shape of out should be redefined to have 2-D form. out = np.zeros_like(x) out[xy2<=np.power(radius,2)] = 1.0 return out # Code for generation H in frequency domain: H <--> h # Gbp(n,m) = exp(1i*k*Dz*sqrt(1-lambda^2*fx(n,m)^2-lambda^2*fy(n,m)^2)) class GenG(): def upsampling(self, Pow2factor, dx1): """ Utility codes """ dx2 = dx1 / (2**Pow2factor) return dx2 def __init__(self, NxNy=(144, 144), Dz_mm=0.5, delta_um = 2.2, UpsampleFactor=2, lambda_nm=405): """ oversample=2^UpsampleFactor """ delta_m = delta_um * 1e-6 delta2_m = self.upsampling(UpsampleFactor, delta_m) Nx, Ny = NxNy dfx = 1/(Nx*delta2_m) dfy = 1/(Ny*delta2_m) x = np.arange(-Ny/2, Ny/2)*dfy y = np.arange(-Nx/2, Nx/2)*dfx self.xv, self.yv = np.meshgrid(x, y) self.lambda_m = lambda_nm * 1e-9 self.k_rad = 2*np.pi/self.lambda_m self.Dz_m = Dz_mm * 1e-3 def bp(self): x, y = self.xv, self.yv l = self.lambda_m k = self.k_rad Dz = self.Dz_m return np.exp(1j * k * Dz * np.sqrt(1-np.power(l*x,2)-np.power(l*y,2))) def fp(self): x, y = self.xv, self.yv l = self.lambda_m k = self.k_rad Dz = self.Dz_m return np.exp(-1j * k * Dz * np.sqrt(1-np.power(l*x,2)-np.power(l*y,2)))
mit
GuyAllard/markov_clustering
markov_clustering/mcl.py
1
7864
import numpy as np from scipy.sparse import isspmatrix, dok_matrix, csc_matrix import sklearn.preprocessing from .utils import MessagePrinter def sparse_allclose(a, b, rtol=1e-5, atol=1e-8): """ Version of np.allclose for use with sparse matrices """ c = np.abs(a - b) - rtol * np.abs(b) # noinspection PyUnresolvedReferences return c.max() <= atol def normalize(matrix): """ Normalize the columns of the given matrix :param matrix: The matrix to be normalized :returns: The normalized matrix """ return sklearn.preprocessing.normalize(matrix, norm="l1", axis=0) def inflate(matrix, power): """ Apply cluster inflation to the given matrix by raising each element to the given power. :param matrix: The matrix to be inflated :param power: Cluster inflation parameter :returns: The inflated matrix """ if isspmatrix(matrix): return normalize(matrix.power(power)) return normalize(np.power(matrix, power)) def expand(matrix, power): """ Apply cluster expansion to the given matrix by raising the matrix to the given power. :param matrix: The matrix to be expanded :param power: Cluster expansion parameter :returns: The expanded matrix """ if isspmatrix(matrix): return matrix ** power return np.linalg.matrix_power(matrix, power) def add_self_loops(matrix, loop_value): """ Add self-loops to the matrix by setting the diagonal to loop_value :param matrix: The matrix to add loops to :param loop_value: Value to use for self-loops :returns: The matrix with self-loops """ shape = matrix.shape assert shape[0] == shape[1], "Error, matrix is not square" if isspmatrix(matrix): new_matrix = matrix.todok() else: new_matrix = matrix.copy() for i in range(shape[0]): new_matrix[i, i] = loop_value if isspmatrix(matrix): return new_matrix.tocsc() return new_matrix def prune(matrix, threshold): """ Prune the matrix so that very small edges are removed. The maximum value in each column is never pruned. :param matrix: The matrix to be pruned :param threshold: The value below which edges will be removed :returns: The pruned matrix """ if isspmatrix(matrix): pruned = dok_matrix(matrix.shape) pruned[matrix >= threshold] = matrix[matrix >= threshold] pruned = pruned.tocsc() else: pruned = matrix.copy() pruned[pruned < threshold] = 0 # keep max value in each column. same behaviour for dense/sparse num_cols = matrix.shape[1] row_indices = matrix.argmax(axis=0).reshape((num_cols,)) col_indices = np.arange(num_cols) pruned[row_indices, col_indices] = matrix[row_indices, col_indices] return pruned def converged(matrix1, matrix2): """ Check for convergence by determining if matrix1 and matrix2 are approximately equal. :param matrix1: The matrix to compare with matrix2 :param matrix2: The matrix to compare with matrix1 :returns: True if matrix1 and matrix2 approximately equal """ if isspmatrix(matrix1) or isspmatrix(matrix2): return sparse_allclose(matrix1, matrix2) return np.allclose(matrix1, matrix2) def iterate(matrix, expansion, inflation): """ Run a single iteration (expansion + inflation) of the mcl algorithm :param matrix: The matrix to perform the iteration on :param expansion: Cluster expansion factor :param inflation: Cluster inflation factor """ # Expansion matrix = expand(matrix, expansion) # Inflation matrix = inflate(matrix, inflation) return matrix def get_clusters(matrix): """ Retrieve the clusters from the matrix :param matrix: The matrix produced by the MCL algorithm :returns: A list of tuples where each tuple represents a cluster and contains the indices of the nodes belonging to the cluster """ if not isspmatrix(matrix): # cast to sparse so that we don't need to handle different # matrix types matrix = csc_matrix(matrix) # get the attractors - non-zero elements of the matrix diagonal attractors = matrix.diagonal().nonzero()[0] # somewhere to put the clusters clusters = set() # the nodes in the same row as each attractor form a cluster for attractor in attractors: cluster = tuple(matrix.getrow(attractor).nonzero()[1].tolist()) clusters.add(cluster) return sorted(list(clusters)) def run_mcl(matrix, expansion=2, inflation=2, loop_value=1, iterations=100, pruning_threshold=0.001, pruning_frequency=1, convergence_check_frequency=1, verbose=False): """ Perform MCL on the given similarity matrix :param matrix: The similarity matrix to cluster :param expansion: The cluster expansion factor :param inflation: The cluster inflation factor :param loop_value: Initialization value for self-loops :param iterations: Maximum number of iterations (actual number of iterations will be less if convergence is reached) :param pruning_threshold: Threshold below which matrix elements will be set set to 0 :param pruning_frequency: Perform pruning every 'pruning_frequency' iterations. :param convergence_check_frequency: Perform the check for convergence every convergence_check_frequency iterations :param verbose: Print extra information to the console :returns: The final matrix """ assert expansion > 1, "Invalid expansion parameter" assert inflation > 1, "Invalid inflation parameter" assert loop_value >= 0, "Invalid loop_value" assert iterations > 0, "Invalid number of iterations" assert pruning_threshold >= 0, "Invalid pruning_threshold" assert pruning_frequency > 0, "Invalid pruning_frequency" assert convergence_check_frequency > 0, "Invalid convergence_check_frequency" printer = MessagePrinter(verbose) printer.print("-" * 50) printer.print("MCL Parameters") printer.print("Expansion: {}".format(expansion)) printer.print("Inflation: {}".format(inflation)) if pruning_threshold > 0: printer.print("Pruning threshold: {}, frequency: {} iteration{}".format( pruning_threshold, pruning_frequency, "s" if pruning_frequency > 1 else "")) else: printer.print("No pruning") printer.print("Convergence check: {} iteration{}".format( convergence_check_frequency, "s" if convergence_check_frequency > 1 else "")) printer.print("Maximum iterations: {}".format(iterations)) printer.print("{} matrix mode".format("Sparse" if isspmatrix(matrix) else "Dense")) printer.print("-" * 50) # Initialize self-loops if loop_value > 0: matrix = add_self_loops(matrix, loop_value) # Normalize matrix = normalize(matrix) # iterations for i in range(iterations): printer.print("Iteration {}".format(i + 1)) # store current matrix for convergence checking last_mat = matrix.copy() # perform MCL expansion and inflation matrix = iterate(matrix, expansion, inflation) # prune if pruning_threshold > 0 and i % pruning_frequency == pruning_frequency - 1: printer.print("Pruning") matrix = prune(matrix, pruning_threshold) # Check for convergence if i % convergence_check_frequency == convergence_check_frequency - 1: printer.print("Checking for convergence") if converged(matrix, last_mat): printer.print("Converged after {} iteration{}".format(i + 1, "s" if i > 0 else "")) break printer.print("-" * 50) return matrix
mit
RobertABT/heightmap
build/matplotlib/lib/matplotlib/dates.py
4
42875
#!/usr/bin/env python """ Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and :mod:`dateutils`. :class:`datetime` objects are converted to floating point numbers which represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25. The helper functions :func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate easy conversion to and from :mod:`datetime` and numeric ranges. .. note:: Like Python's datetime, mpl uses the Gregorian calendar for all conversions between dates and floating point numbers. This practice is not universal, and calendar differences can cause confusing differences between what Python and mpl give as the number of days since 0001-01-01 and what other software and databases yield. For example, the US Naval Observatory uses a calendar that switches from Julian to Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and 2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:: In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal() Out[31]:732401 A wide range of specific and general purpose date tick locators and formatters are provided in this module. See :mod:`matplotlib.ticker` for general information on tick locators and formatters. These are described below. All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is given by the timezone parameter in your :file:`matplotlibrc` file. If you leave out a :class:`tz` timezone instance, the default from your rc file will be assumed. If you want to use a custom time zone, pass a :class:`pytz.timezone` instance with the tz keyword argument to :func:`num2date`, :func:`plot_date`, and any custom date tickers or locators you create. See `pytz <http://pytz.sourceforge.net>`_ for information on :mod:`pytz` and timezone handling. The `dateutil module <http://labix.org/python-dateutil>`_ provides additional code to handle date ticking, making it easy to place ticks on any kinds of dates. See examples below. Date tickers ------------ Most of the date tickers can locate single or multiple values. For example:: # tick on mondays every week loc = WeekdayLocator(byweekday=MO, tz=tz) # tick on mondays and saturdays loc = WeekdayLocator(byweekday=(MO, SA)) In addition, most of the constructors take an interval argument:: # tick on mondays every second week loc = WeekdayLocator(byweekday=MO, interval=2) The rrule locator allows completely general date ticking:: # tick every 5th easter rule = rrulewrapper(YEARLY, byeaster=1, interval=5) loc = RRuleLocator(rule) Here are all the date tickers: * :class:`MinuteLocator`: locate minutes * :class:`HourLocator`: locate hours * :class:`DayLocator`: locate specifed days of the month * :class:`WeekdayLocator`: Locate days of the week, eg MO, TU * :class:`MonthLocator`: locate months, eg 7 for july * :class:`YearLocator`: locate years that are multiples of base * :class:`RRuleLocator`: locate using a :class:`matplotlib.dates.rrulewrapper`. The :class:`rrulewrapper` is a simple wrapper around a :class:`dateutil.rrule` (`dateutil <http://labix.org/python-dateutil>`_) which allow almost arbitrary date tick specifications. See `rrule example <../examples/pylab_examples/date_demo_rrule.html>`_. * :class:`AutoDateLocator`: On autoscale, this class picks the best :class:`MultipleDateLocator` to set the view limits and the tick locations. Date formatters --------------- Here all all the date formatters: * :class:`AutoDateFormatter`: attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. * :class:`DateFormatter`: use :func:`strftime` format strings * :class:`IndexDateFormatter`: date plots with implicit *x* indexing. """ from __future__ import print_function import re import time import math import datetime from itertools import izip import warnings from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY) from dateutil.relativedelta import relativedelta import dateutil.parser import numpy as np import matplotlib import matplotlib.units as units import matplotlib.cbook as cbook import matplotlib.ticker as ticker __all__ = ('date2num', 'num2date', 'drange', 'epoch2num', 'num2epoch', 'mx2num', 'DateFormatter', 'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator', 'RRuleLocator', 'AutoDateLocator', 'YearLocator', 'MonthLocator', 'WeekdayLocator', 'DayLocator', 'HourLocator', 'MinuteLocator', 'SecondLocator', 'MicrosecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta', 'seconds', 'minutes', 'hours', 'weeks') # Make a simple UTC instance so we don't always have to import # pytz. From the python datetime library docs: class _UTC(datetime.tzinfo): """UTC""" def utcoffset(self, dt): return datetime.timedelta(0) def tzname(self, dt): return "UTC" def dst(self, dt): return datetime.timedelta(0) UTC = _UTC() def _get_rc_timezone(): s = matplotlib.rcParams['timezone'] if s == 'UTC': return UTC import pytz return pytz.timezone(s) MICROSECONDLY = SECONDLY + 1 HOURS_PER_DAY = 24. MINUTES_PER_DAY = 60. * HOURS_PER_DAY SECONDS_PER_DAY = 60. * MINUTES_PER_DAY MUSECONDS_PER_DAY = 1e6 * SECONDS_PER_DAY SEC_PER_MIN = 60 SEC_PER_HOUR = 3600 SEC_PER_DAY = SEC_PER_HOUR * 24 SEC_PER_WEEK = SEC_PER_DAY * 7 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( MO, TU, WE, TH, FR, SA, SU) WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) def _to_ordinalf(dt): """ Convert :mod:`datetime` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """ if hasattr(dt, 'tzinfo') and dt.tzinfo is not None: delta = dt.tzinfo.utcoffset(dt) if delta is not None: dt -= delta base = float(dt.toordinal()) if hasattr(dt, 'hour'): base += (dt.hour / HOURS_PER_DAY + dt.minute / MINUTES_PER_DAY + dt.second / SECONDS_PER_DAY + dt.microsecond / MUSECONDS_PER_DAY ) return base def _from_ordinalf(x, tz=None): """ Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a :class:`datetime`. """ if tz is None: tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix) remainder = float(x) - ix hour, remainder = divmod(24 * remainder, 1) minute, remainder = divmod(60 * remainder, 1) second, remainder = divmod(60 * remainder, 1) microsecond = int(1e6 * remainder) if microsecond < 10: microsecond = 0 # compensate for rounding errors dt = datetime.datetime( dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond, tzinfo=UTC).astimezone(tz) if microsecond > 999990: # compensate for rounding errors dt += datetime.timedelta(microseconds=1e6 - microsecond) return dt class strpdate2num: """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :file:`examples/load_demo.py`. """ def __init__(self, fmt): """ fmt: any valid strptime format is supported """ self.fmt = fmt def __call__(self, s): """s : string to be converted return value: a date2num float """ return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) def datestr2num(d): """ Convert a date string to a datenum using :func:`dateutil.parser.parse`. *d* can be a single string or a sequence of strings. """ if cbook.is_string_like(d): dt = dateutil.parser.parse(d) return date2num(dt) else: return date2num([dateutil.parser.parse(s) for s in d]) def date2num(d): """ *d* is either a :class:`datetime` instance or a sequence of datetimes. Return value is a floating point number (or sequence of floats) which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. """ if not cbook.iterable(d): return _to_ordinalf(d) else: return np.asarray([_to_ordinalf(val) for val in d]) def julian2num(j): 'Convert a Julian date (or sequence) to a matplotlib date (or sequence).' if cbook.iterable(j): j = np.asarray(j) return j - 1721424.5 def num2julian(n): 'Convert a matplotlib date (or sequence) to a Julian date (or sequence).' if cbook.iterable(n): n = np.asarray(n) return n + 1721424.5 def num2date(x, tz=None): """ *x* is a float value which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. Return value is a :class:`datetime` instance in timezone *tz* (default to rcparams TZ value). If *x* is a sequence, a sequence of :class:`datetime` objects will be returned. """ if tz is None: tz = _get_rc_timezone() if not cbook.iterable(x): return _from_ordinalf(x, tz) else: return [_from_ordinalf(val, tz) for val in x] def drange(dstart, dend, delta): """ Return a date range as float Gregorian ordinals. *dstart* and *dend* are :class:`datetime` instances. *delta* is a :class:`datetime.timedelta` instance. """ step = (delta.days + delta.seconds / SECONDS_PER_DAY + delta.microseconds / MUSECONDS_PER_DAY) f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) # calculate the difference between dend and dstart in times of delta num = int(np.ceil((f2 - f1) / step)) # calculate end of the interval which will be generated dinterval_end = dstart + num * delta # ensure, that an half open interval will be generated [dstart, dend) if dinterval_end >= dend: # if the endpoint is greated than dend, just subtract one delta dinterval_end -= delta num -= 1 f2 = _to_ordinalf(dinterval_end) # new float-endpoint return np.linspace(f1, f2, num + 1) ### date tickers and formatters ### class DateFormatter(ticker.Formatter): """ Tick location is seconds since the epoch. Use a :func:`strftime` format string. Python only supports :mod:`datetime` :func:`strftime` formatting for years greater than 1900. Thanks to Andrew Dalke, Dalke Scientific Software who contributed the :func:`strftime` code below to include dates earlier than this year. """ illegal_s = re.compile(r"((^|[^%])(%%)*%s)") def __init__(self, fmt, tz=None): """ *fmt* is an :func:`strftime` format string; *tz* is the :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): if x == 0: raise ValueError('DateFormatter found a value of x=0, which is ' 'an illegal date. This usually occurs because ' 'you have not informed the axis that it is ' 'plotting dates, eg with ax.xaxis_date()') dt = num2date(x, self.tz) return self.strftime(dt, self.fmt) def set_tzinfo(self, tz): self.tz = tz def _findall(self, text, substr): # Also finds overlaps sites = [] i = 0 while 1: j = text.find(substr, i) if j == -1: break sites.append(j) i = j + 1 return sites # Dalke: I hope I did this math right. Every 28 years the # calendar repeats, except through century leap years excepting # the 400 year leap years. But only if you're using the Gregorian # calendar. def strftime(self, dt, fmt): fmt = self.illegal_s.sub(r"\1", fmt) fmt = fmt.replace("%s", "s") if dt.year > 1900: return cbook.unicode_safe(dt.strftime(fmt)) year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6 * (delta // 100 + delta // 400) year = year + off # Move to around the year 2000 year = year + ((2000 - year) // 28) * 28 timetuple = dt.timetuple() s1 = time.strftime(fmt, (year,) + timetuple[1:]) sites1 = self._findall(s1, str(year)) s2 = time.strftime(fmt, (year + 28,) + timetuple[1:]) sites2 = self._findall(s2, str(year + 28)) sites = [] for site in sites1: if site in sites2: sites.append(site) s = s1 syear = "%4d" % (dt.year,) for site in sites: s = s[:site] + syear + s[site + 4:] return cbook.unicode_safe(s) class IndexDateFormatter(ticker.Formatter): """ Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format strings by index. """ def __init__(self, t, fmt, tz=None): """ *t* is a sequence of dates (floating point days). *fmt* is a :func:`strftime` format string. """ if tz is None: tz = _get_rc_timezone() self.t = t self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): 'Return the label for time *x* at position *pos*' ind = int(round(x)) if ind >= len(self.t) or ind <= 0: return '' dt = num2date(self.t[ind], self.tz) return cbook.unicode_safe(dt.strftime(self.fmt)) class AutoDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days between one major tick) and a format string. The default looks like this:: self.scaled = { 365.0 : '%Y', 30. : '%b %Y', 1.0 : '%b %d %Y', 1./24. : '%H:%M:%D', 1. / (24. * 60.): '%H:%M:%S.%f', } The algorithm picks the key in the dictionary that is >= the current scale and uses that format string. You can customize this dictionary by doing:: formatter = AutoDateFormatter() formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec """ # This can be improved by providing some user-level direction on # how to choose the best format (precedence, etc...) # Perhaps a 'struct' that has a field for each time-type where a # zero would indicate "don't show" and a number would indicate # "show" with some sort of priority. Same priorities could mean # show all with the same priority. # Or more simply, perhaps just a format string for each # possibility... def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'): """ Autofmt the date labels. The default format is the one to use if none of the times in scaled match """ self._locator = locator self._tz = tz self.defaultfmt = defaultfmt self._formatter = DateFormatter(self.defaultfmt, tz) self.scaled = {365.0: '%Y', 30.: '%b %Y', 1.0: '%b %d %Y', 1. / 24.: '%H:%M:%S', 1. / (24. * 60.): '%H:%M:%S.%f'} def __call__(self, x, pos=0): scale = float(self._locator._get_unit()) fmt = self.defaultfmt for k in sorted(self.scaled): if k >= scale: fmt = self.scaled[k] break self._formatter = DateFormatter(fmt, self._tz) return self._formatter(x, pos) class rrulewrapper: def __init__(self, freq, **kwargs): self._construct = kwargs.copy() self._construct["freq"] = freq self._rrule = rrule(**self._construct) def set(self, **kwargs): self._construct.update(kwargs) self._rrule = rrule(**self._construct) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] return getattr(self._rrule, name) class DateLocator(ticker.Locator): hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0} def __init__(self, tz=None): """ *tz* is a :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.tz = tz def set_tzinfo(self, tz): self.tz = tz def datalim_to_dt(self): dmin, dmax = self.axis.get_data_interval() return num2date(dmin, self.tz), num2date(dmax, self.tz) def viewlim_to_dt(self): vmin, vmax = self.axis.get_view_interval() return num2date(vmin, self.tz), num2date(vmax, self.tz) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1 def _get_interval(self): """ Return the number of units for each tick. """ return 1 def nonsingular(self, vmin, vmax): """ Given the proposed upper and lower extent, adjust the range if it is too close to being singular (i.e. a range of ~0). """ unit = self._get_unit() interval = self._get_interval() if abs(vmax - vmin) < 1e-6: vmin -= 2 * unit * interval vmax += 2 * unit * interval return vmin, vmax class RRuleLocator(DateLocator): # use the dateutil rrule instance def __init__(self, o, tz=None): DateLocator.__init__(self, tz) self.rule = o def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] if dmin > dmax: dmax, dmin = dmin, dmax delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf(1.0) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop, count=self.MAXTICKS + 1) # estimate the number of ticks very approximately so we don't # have to do a very expensive (and potentially near infinite) # 'between' calculation, only to find out it will fail. nmax, nmin = date2num((dmax, dmin)) estimate = (nmax - nmin) / (self._get_unit() * self._get_interval()) # This estimate is only an estimate, so be really conservative # about bailing... if estimate > self.MAXTICKS * 2: raise RuntimeError( 'RRuleLocator estimated to generate %d ticks from %s to %s: ' 'exceeds Locator.MAXTICKS * 2 (%d) ' % (estimate, dmin, dmax, self.MAXTICKS * 2)) dates = self.rule.between(dmin, dmax, True) if len(dates) == 0: return date2num([dmin, dmax]) return self.raise_if_exceeds(date2num(dates)) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ freq = self.rule._rrule._freq return self.get_unit_generic(freq) @staticmethod def get_unit_generic(freq): if (freq == YEARLY): return 365.0 elif (freq == MONTHLY): return 30.0 elif (freq == WEEKLY): return 7.0 elif (freq == DAILY): return 1.0 elif (freq == HOURLY): return (1.0 / 24.0) elif (freq == MINUTELY): return (1.0 / (24 * 60)) elif (freq == SECONDLY): return (1.0 / (24 * 3600)) else: # error return -1 # or should this just return '1'? def _get_interval(self): return self.rule._rrule._interval def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() if dmin > dmax: dmax, dmin = dmin, dmax delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf(1.0) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop) dmin, dmax = self.datalim_to_dt() vmin = self.rule.before(dmin, True) if not vmin: vmin = dmin vmax = self.rule.after(dmax, True) if not vmax: vmax = dmax vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class AutoDateLocator(DateLocator): """ On autoscale, this class picks the best :class:`DateLocator` to set the view limits and the tick locations. """ def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=False): """ *minticks* is the minimum number of ticks desired, which is used to select the type of ticking (yearly, monthly, etc.). *maxticks* is the maximum number of ticks desired, which controls any interval between ticks (ticking every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This can be used to keep the number of ticks appropriate to the format chosen in :class:`AutoDateFormatter`. Any frequency not specified in this dictionary is given a default value. *tz* is a :class:`tzinfo` instance. *interval_multiples* is a boolean that indicates whether ticks should be chosen to be multiple of the interval. This will lock ticks to 'nicer' locations. For example, this will force the ticks to be at hours 0,6,12,18 when hourly ticking is done at 6 hour intervals. The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:: self.intervald = { YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000], } The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance, every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can customize this dictionary by doing:: locator = AutoDateLocator() locator.intervald[HOURLY] = [3] # only show every 3 hours """ DateLocator.__init__(self, tz) self._locator = YearLocator() self._freq = YEARLY self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY] self.minticks = minticks self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8} if maxticks is not None: try: self.maxticks.update(maxticks) except TypeError: # Assume we were given an integer. Use this as the maximum # number of ticks for every frequency and create a # dictionary for this self.maxticks = dict(izip(self._freqs, [maxticks] * len(self._freqs))) self.interval_multiples = interval_multiples self.intervald = { YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]} self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def nonsingular(self, vmin, vmax): # whatever is thrown at us, we can scale the unit. # But default nonsingular date plots at an ~4 year period. if vmin == vmax: vmin = vmin - 365 * 2 vmax = vmax + 365 * 2 return vmin, vmax def set_axis(self, axis): DateLocator.set_axis(self, axis) self._locator.set_axis(axis) def refresh(self): 'Refresh internal information based on current limits.' dmin, dmax = self.viewlim_to_dt() self._locator = self.get_locator(dmin, dmax) def _get_unit(self): if self._freq in [MICROSECONDLY]: return 1. / MUSECONDS_PER_DAY else: return RRuleLocator.get_unit_generic(self._freq) def autoscale(self): 'Try to choose the view limits intelligently.' dmin, dmax = self.datalim_to_dt() self._locator = self.get_locator(dmin, dmax) return self._locator.autoscale() def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' delta = relativedelta(dmax, dmin) numYears = (delta.years * 1.0) numMonths = (numYears * 12.0) + delta.months numDays = (numMonths * 31.0) + delta.days numHours = (numDays * 24.0) + delta.hours numMinutes = (numHours * 60.0) + delta.minutes numSeconds = (numMinutes * 60.0) + delta.seconds numMicroseconds = (numSeconds * 1e6) + delta.microseconds nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds] use_rrule_locator = [True] * 6 + [False] # Default setting of bymonth, etc. to pass to rrule # [unused (for year), bymonth, bymonthday, byhour, byminute, # bysecond, unused (for microseconds)] byranges = [None, 1, 1, 0, 0, 0, None] # Loop over all the frequencies and try to find one that gives at # least a minticks tick positions. Once this is found, look for # an interval from an list specific to that frequency that gives no # more than maxticks tick positions. Also, set up some ranges # (bymonth, etc.) as appropriate to be passed to rrulewrapper. for i, (freq, num) in enumerate(izip(self._freqs, nums)): # If this particular frequency doesn't give enough ticks, continue if num < self.minticks: # Since we're not using this particular frequency, set # the corresponding by_ to None so the rrule can act as # appropriate byranges[i] = None continue # Find the first available interval that doesn't give too many # ticks for interval in self.intervald[freq]: if num <= interval * (self.maxticks[freq] - 1): break else: # We went through the whole loop without breaking, default to # the last interval in the list and raise a warning warnings.warn('AutoDateLocator was unable to pick an ' 'appropriate interval for this date range. ' 'It may be necessary to add an interval value ' "to the AutoDateLocator's intervald dictionary." ' Defaulting to {0}.'.format(interval)) # Set some parameters as appropriate self._freq = freq if self._byranges[i] and self.interval_multiples: byranges[i] = self._byranges[i][::interval] interval = 1 else: byranges[i] = self._byranges[i] # We found what frequency to use break else: raise ValueError('No sensible date limit could be found in the ' 'AutoDateLocator.') if use_rrule_locator[i]: _, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond) locator = RRuleLocator(rrule, self.tz) else: locator = MicrosecondLocator(interval, tz=self.tz) locator.set_axis(self.axis) locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator class YearLocator(DateLocator): """ Make ticks on a given day of each year that is a multiple of base. Examples:: # Tick every year on Jan 1st locator = YearLocator() # Tick every 5 years on July 4th locator = YearLocator(5, month=7, day=4) """ def __init__(self, base=1, month=1, day=1, tz=None): """ Mark years that are multiple of base on a given month and day (default jan 1). """ DateLocator.__init__(self, tz) self.base = ticker.Base(base) self.replaced = {'month': month, 'day': day, 'hour': 0, 'minute': 0, 'second': 0, 'tzinfo': tz } def __call__(self): dmin, dmax = self.viewlim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) ticks = [dmin.replace(year=ymin, **self.replaced)] while 1: dt = ticks[-1] if dt.year >= ymax: return date2num(ticks) year = dt.year + self.base.get_base() ticks.append(dt.replace(year=year, **self.replaced)) def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) vmin = dmin.replace(year=ymin, **self.replaced) vmax = dmax.replace(year=ymax, **self.replaced) vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class MonthLocator(RRuleLocator): """ Make ticks on occurances of each month month, eg 1, 3, 12. """ def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): """ Mark every month in *bymonth*; *bymonth* can be an int or sequence. Default is ``range(1,13)``, i.e. every month. *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurance. """ if bymonth is None: bymonth = range(1, 13) o = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class WeekdayLocator(RRuleLocator): """ Make ticks on occurances of each weekday. """ def __init__(self, byweekday=1, interval=1, tz=None): """ Mark every weekday in *byweekday*; *byweekday* can be a number or sequence. Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, SU, the constants from :mod:`dateutils.rrule`. *interval* specifies the number of weeks to skip. For example, ``interval=2`` plots every second week. """ o = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class DayLocator(RRuleLocator): """ Make ticks on occurances of each day of the month. For example, 1, 15, 30. """ def __init__(self, bymonthday=None, interval=1, tz=None): """ Mark every day in *bymonthday*; *bymonthday* can be an int or sequence. Default is to tick every day of the month: ``bymonthday=range(1,32)`` """ if bymonthday is None: bymonthday = range(1, 32) o = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz) class HourLocator(RRuleLocator): """ Make ticks on occurances of each hour. """ def __init__(self, byhour=None, interval=1, tz=None): """ Mark every hour in *byhour*; *byhour* can be an int or sequence. Default is to tick every hour: ``byhour=range(24)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byhour is None: byhour = range(24) rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0) RRuleLocator.__init__(self, rule, tz) class MinuteLocator(RRuleLocator): """ Make ticks on occurances of each minute. """ def __init__(self, byminute=None, interval=1, tz=None): """ Mark every minute in *byminute*; *byminute* can be an int or sequence. Default is to tick every minute: ``byminute=range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byminute is None: byminute = range(60) rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0) RRuleLocator.__init__(self, rule, tz) class SecondLocator(RRuleLocator): """ Make ticks on occurances of each second. """ def __init__(self, bysecond=None, interval=1, tz=None): """ Mark every second in *bysecond*; *bysecond* can be an int or sequence. Default is to tick every second: ``bysecond = range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if bysecond is None: bysecond = range(60) rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) RRuleLocator.__init__(self, rule, tz) class MicrosecondLocator(DateLocator): """ Make ticks on occurances of each microsecond. """ def __init__(self, interval=1, tz=None): """ *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second microsecond. """ self._interval = interval self._wrapped_locator = ticker.MultipleLocator(interval) self.tz = tz def set_axis(self, axis): self._wrapped_locator.set_axis(axis) return DateLocator.set_axis(self, axis) def set_view_interval(self, vmin, vmax): self._wrapped_locator.set_view_interval(vmin, vmax) return DateLocator.set_view_interval(self, vmin, vmax) def set_data_interval(self, vmin, vmax): self._wrapped_locator.set_data_interval(vmin, vmax) return DateLocator.set_data_interval(self, vmin, vmax) def __call__(self, *args, **kwargs): vmin, vmax = self.axis.get_view_interval() vmin *= MUSECONDS_PER_DAY vmax *= MUSECONDS_PER_DAY ticks = self._wrapped_locator.tick_values(vmin, vmax) ticks = [tick / MUSECONDS_PER_DAY for tick in ticks] return ticks def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1. / MUSECONDS_PER_DAY def _get_interval(self): """ Return the number of units for each tick. """ return self._interval def _close_to_dt(d1, d2, epsilon=5): 'Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.' delta = d2 - d1 mus = abs(delta.days * MUSECONDS_PER_DAY + delta.seconds * 1e6 + delta.microseconds) assert(mus < epsilon) def _close_to_num(o1, o2, epsilon=5): """ Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds. """ delta = abs((o2 - o1) * MUSECONDS_PER_DAY) assert(delta < epsilon) def epoch2num(e): """ Convert an epoch or sequence of epochs to the new date format, that is days since 0001. """ spd = 24. * 3600. return 719163 + np.asarray(e) / spd def num2epoch(d): """ Convert days since 0001 to epoch. *d* can be a number or sequence. """ spd = 24. * 3600. return (np.asarray(d) - 719163) * spd def mx2num(mxdates): """ Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format. """ scalar = False if not cbook.iterable(mxdates): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret def date_ticker_factory(span, tz=None, numticks=5): """ Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter). """ if span == 0: span = 1 / 24. minutes = span * 24 * 60 hours = span * 24 days = span weeks = span / 7. months = span / 31. # approx years = span / 365. if years > numticks: locator = YearLocator(int(years / numticks), tz=tz) # define fmt = '%Y' elif months > numticks: locator = MonthLocator(tz=tz) fmt = '%b %Y' elif weeks > numticks: locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif days > numticks: locator = DayLocator(interval=int(math.ceil(days / numticks)), tz=tz) fmt = '%b %d' elif hours > numticks: locator = HourLocator(interval=int(math.ceil(hours / numticks)), tz=tz) fmt = '%H:%M\n%b %d' elif minutes > numticks: locator = MinuteLocator(interval=int(math.ceil(minutes / numticks)), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return locator, formatter def seconds(s): 'Return seconds as days.' return float(s) / SEC_PER_DAY def minutes(m): 'Return minutes as days.' return float(m) / MINUTES_PER_DAY def hours(h): 'Return hours as days.' return h / 24. def weeks(w): 'Return weeks as days.' return w * 7. class DateConverter(units.ConversionInterface): """ Converter for datetime.date and datetime.datetime data, or for date/time data represented as it would be converted by :func:`date2num`. The 'unit' tag for such data is None or a tzinfo instance. """ @staticmethod def axisinfo(unit, axis): """ Return the :class:`~matplotlib.units.AxisInfo` for *unit*. *unit* is a tzinfo instance or None. The *axis* argument is required but not used. """ tz = unit majloc = AutoDateLocator(tz=tz) majfmt = AutoDateFormatter(majloc, tz=tz) datemin = datetime.date(2000, 1, 1) datemax = datetime.date(2010, 1, 1) return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) @staticmethod def convert(value, unit, axis): """ If *value* is not already a number or sequence of numbers, convert it with :func:`date2num`. The *unit* and *axis* arguments are not used. """ if units.ConversionInterface.is_numlike(value): return value return date2num(value) @staticmethod def default_units(x, axis): 'Return the tzinfo instance of *x* or of its first element, or None' try: x = x[0] except (TypeError, IndexError): pass try: return x.tzinfo except AttributeError: pass return None units.registry[datetime.date] = DateConverter() units.registry[datetime.datetime] = DateConverter()
mit
lache/RacingKingLee
monitor/engine.win64/2.74/python/lib/site-packages/numpy/lib/twodim_base.py
37
26758
""" Basic functions for manipulating 2d arrays """ from __future__ import division, absolute_import, print_function from numpy.core.numeric import ( asanyarray, arange, zeros, greater_equal, multiply, ones, asarray, where, int8, int16, int32, int64, empty, promote_types ) from numpy.core import iinfo __all__ = [ 'diag', 'diagflat', 'eye', 'fliplr', 'flipud', 'rot90', 'tri', 'triu', 'tril', 'vander', 'histogram2d', 'mask_indices', 'tril_indices', 'tril_indices_from', 'triu_indices', 'triu_indices_from', ] i1 = iinfo(int8) i2 = iinfo(int16) i4 = iinfo(int32) def _min_int(low, high): """ get small int that fits the range """ if high <= i1.max and low >= i1.min: return int8 if high <= i2.max and low >= i2.min: return int16 if high <= i4.max and low >= i4.min: return int32 return int64 def fliplr(m): """ Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to A[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.fliplr(A) array([[ 0., 0., 1.], [ 0., 2., 0.], [ 3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A)==A[:,::-1,...]) True """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must be >= 2-d.") return m[:, ::-1] def flipud(m): """ Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``A[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag([1.0, 2, 3]) >>> A array([[ 1., 0., 0.], [ 0., 2., 0.], [ 0., 0., 3.]]) >>> np.flipud(A) array([[ 0., 0., 3.], [ 0., 2., 0.], [ 1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A)==A[::-1,...]) True >>> np.flipud([1,2]) array([2, 1]) """ m = asanyarray(m) if m.ndim < 1: raise ValueError("Input must be >= 1-d.") return m[::-1, ...] def rot90(m, k=1): """ Rotate an array by 90 degrees in the counter-clockwise direction. The first two dimensions are rotated; therefore, the array must be at least 2-D. Parameters ---------- m : array_like Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. Returns ------- y : ndarray Rotated array. See Also -------- fliplr : Flip an array horizontally. flipud : Flip an array vertically. Examples -------- >>> m = np.array([[1,2],[3,4]], int) >>> m array([[1, 2], [3, 4]]) >>> np.rot90(m) array([[2, 4], [1, 3]]) >>> np.rot90(m, 2) array([[4, 3], [2, 1]]) """ m = asanyarray(m) if m.ndim < 2: raise ValueError("Input must >= 2-d.") k = k % 4 if k == 0: return m elif k == 1: return fliplr(m).swapaxes(0, 1) elif k == 2: return fliplr(flipud(m)) else: # k == 3 return fliplr(m.swapaxes(0, 1)) def eye(N, M=None, k=0, dtype=float): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to `N`. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the `k`-th diagonal, whose values are equal to one. See Also -------- identity : (almost) equivalent function diag : diagonal 2-D array from a 1-D array specified by the user. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]]) >>> np.eye(3, k=1) array([[ 0., 1., 0.], [ 0., 0., 1.], [ 0., 0., 0.]]) """ if M is None: M = N m = zeros((N, M), dtype=dtype) if k >= M: return m if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m def diag(v, k=0): """ Extract a diagonal or construct a diagonal array. See the more detailed documentation for ``numpy.diagonal`` if you use this function to extract a diagonal and wish to write to the resulting array; whether it returns a copy or a view depends on what version of numpy you are using. Parameters ---------- v : array_like If `v` is a 2-D array, return a copy of its `k`-th diagonal. If `v` is a 1-D array, return a 2-D array with `v` on the `k`-th diagonal. k : int, optional Diagonal in question. The default is 0. Use `k>0` for diagonals above the main diagonal, and `k<0` for diagonals below the main diagonal. Returns ------- out : ndarray The extracted diagonal or constructed diagonal array. See Also -------- diagonal : Return specified diagonals. diagflat : Create a 2-D array with the flattened input as a diagonal. trace : Sum along diagonals. triu : Upper triangle of an array. tril : Lower triangle of an array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ v = asarray(v) s = v.shape if len(s) == 1: n = s[0]+abs(k) res = zeros((n, n), v.dtype) if k >= 0: i = k else: i = (-k) * n res[:n-k].flat[i::n+1] = v return res elif len(s) == 2: return v.diagonal(k) else: raise ValueError("Input must be 1- or 2-d.") def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ try: wrap = v.__array_wrap__ except AttributeError: wrap = None v = asarray(v).ravel() s = len(v) n = s + abs(k) res = zeros((n, n), v.dtype) if (k >= 0): i = arange(0, n-k) fi = i+k+i*n else: i = arange(0, n+k) fi = i+(i-k)*n res.flat[fi] = v if not wrap: return res return wrap(res) def tri(N, M=None, k=0, dtype=float): """ An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[ 0., 0., 0., 0., 0.], [ 1., 0., 0., 0., 0.], [ 1., 1., 0., 0., 0.]]) """ if M is None: M = N m = greater_equal.outer(arange(N, dtype=_min_int(0, N)), arange(-k, M-k, dtype=_min_int(-k, M - k))) # Avoid making a copy if the requested type is already bool m = m.astype(dtype, copy=False) return m def tril(m, k=0): """ Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : array_like, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> np.tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 0, 0, 0], [ 4, 0, 0], [ 7, 8, 0], [10, 11, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k, dtype=bool) return where(mask, m, zeros(1, m.dtype)) def triu(m, k=0): """ Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ m = asanyarray(m) mask = tri(*m.shape[-2:], k=k-1, dtype=bool) return where(mask, zeros(1, m.dtype), m) # Originally borrowed from John Hunter and matplotlib def vander(x, N=None, increasing=False): """ Generate a Vandermonde matrix. The columns of the output matrix are powers of the input vector. The order of the powers is determined by the `increasing` boolean argument. Specifically, when `increasing` is False, the `i`-th output column is the input vector raised element-wise to the power of ``N - i - 1``. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde. Parameters ---------- x : array_like 1-D input array. N : int, optional Number of columns in the output. If `N` is not specified, a square array is returned (``N = len(x)``). increasing : bool, optional Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. .. versionadded:: 1.9.0 Returns ------- out : ndarray Vandermonde matrix. If `increasing` is False, the first column is ``x^(N-1)``, the second ``x^(N-2)`` and so forth. If `increasing` is True, the columns are ``x^0, x^1, ..., x^(N-1)``. See Also -------- polynomial.polynomial.polyvander Examples -------- >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: >>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48 """ x = asarray(x) if x.ndim != 1: raise ValueError("x must be a one-dimensional array or sequence.") if N is None: N = len(x) v = empty((len(x), N), dtype=promote_types(x.dtype, int)) tmp = v[:, ::-1] if not increasing else v if N > 0: tmp[:, 0] = 1 if N > 1: tmp[:, 1:] = x[:, None] multiply.accumulate(tmp[:, 1:], out=tmp[:, 1:], axis=1) return v def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): """ Compute the bi-dimensional histogram of two data samples. Parameters ---------- x : array_like, shape (N,) An array containing the x coordinates of the points to be histogrammed. y : array_like, shape (N,) An array containing the y coordinates of the points to be histogrammed. bins : int or [int, int] or array_like or [array, array], optional The bin specification: * If int, the number of bins for the two dimensions (nx=ny=bins). * If [int, int], the number of bins in each dimension (nx, ny = bins). * If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). * If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). range : array_like, shape(2,2), optional The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the `bins` parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range will be considered outliers and not tallied in the histogram. normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_area``. weights : array_like, shape(N,), optional An array of values ``w_i`` weighing each sample ``(x_i, y_i)``. Weights are normalized to 1 if `normed` is True. If `normed` is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray, shape(nx, ny) The bi-dimensional histogram of samples `x` and `y`. Values in `x` are histogrammed along the first dimension and values in `y` are histogrammed along the second dimension. xedges : ndarray, shape(nx,) The bin edges along the first dimension. yedges : ndarray, shape(ny,) The bin edges along the second dimension. See Also -------- histogram : 1D histogram histogramdd : Multidimensional histogram Notes ----- When `normed` is True, then the returned histogram is the sample density, defined such that the sum over bins of the product ``bin_value * bin_area`` is 1. Please note that the histogram does not follow the Cartesian convention where `x` values are on the abscissa and `y` values on the ordinate axis. Rather, `x` is histogrammed along the first dimension of the array (vertical), and `y` along the second dimension of the array (horizontal). This ensures compatibility with `histogramdd`. Examples -------- >>> import matplotlib as mpl >>> import matplotlib.pyplot as plt Construct a 2D-histogram with variable bin width. First define the bin edges: >>> xedges = [0, 1, 1.5, 3, 5] >>> yedges = [0, 2, 3, 4, 6] Next we create a histogram H with random bin content: >>> x = np.random.normal(3, 1, 100) >>> y = np.random.normal(1, 1, 100) >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) Or we fill the histogram H with a determined bin content: >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) >>> print H[::-1] # This shows the bin content in the order as plotted [[ 13. 14. 15. 16.] [ 9. 10. 11. 12.] [ 5. 6. 7. 8.] [ 1. 2. 3. 4.]] Imshow can only do an equidistant representation of bins: >>> fig = plt.figure(figsize=(7, 3)) >>> ax = fig.add_subplot(131) >>> ax.set_title('imshow: equidistant') >>> im = plt.imshow(H, interpolation='nearest', origin='low', extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) pcolormesh can display exact bin edges: >>> ax = fig.add_subplot(132) >>> ax.set_title('pcolormesh: exact bin edges') >>> X, Y = np.meshgrid(xedges, yedges) >>> ax.pcolormesh(X, Y, H) >>> ax.set_aspect('equal') NonUniformImage displays exact bin edges with interpolation: >>> ax = fig.add_subplot(133) >>> ax.set_title('NonUniformImage: interpolated') >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) >>> im.set_data(xcenters, ycenters, H) >>> ax.images.append(im) >>> ax.set_xlim(xedges[0], xedges[-1]) >>> ax.set_ylim(yedges[0], yedges[-1]) >>> ax.set_aspect('equal') >>> plt.show() """ from numpy import histogramdd try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins, float) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, normed, weights) return hist, edges[0], edges[1] def mask_indices(n, mask_func, k=0): """ Return the indices to access (n, n) arrays, given a masking function. Assume `mask_func` is a function that, for a square array a of size ``(n, n)`` with a possible offset argument `k`, when called as ``mask_func(a, k)`` returns a new array with zeros in certain locations (functions like `triu` or `tril` do precisely this). Then this function returns the indices where the non-zero values would be located. Parameters ---------- n : int The returned indices will be valid to access arrays of shape (n, n). mask_func : callable A function whose call signature is similar to that of `triu`, `tril`. That is, ``mask_func(x, k)`` returns a boolean array, shaped like `x`. `k` is an optional argument to the function. k : scalar An optional argument which is passed through to `mask_func`. Functions like `triu`, `tril` take a second argument that is interpreted as an offset. Returns ------- indices : tuple of arrays. The `n` arrays of indices corresponding to the locations where ``mask_func(np.ones((n, n)), k)`` is True. See Also -------- triu, tril, triu_indices, tril_indices Notes ----- .. versionadded:: 1.4.0 Examples -------- These are the indices that would allow you to access the upper triangular part of any 3x3 array: >>> iu = np.mask_indices(3, np.triu) For example, if `a` is a 3x3 array: >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> a[iu] array([0, 1, 2, 4, 5, 8]) An offset can be passed also to the masking function. This gets us the indices starting on the first diagonal right of the main one: >>> iu1 = np.mask_indices(3, np.triu, 1) with which we now extract only three elements: >>> a[iu1] array([1, 2, 5]) """ m = ones((n, n), int) a = mask_func(m, k) return where(a != 0) def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ return where(tri(n, m, k=k, dtype=bool)) def tril_indices_from(arr, k=0): """ Return the indices for the lower-triangle of arr. See `tril_indices` for full details. Parameters ---------- arr : array_like The indices will be valid for square arrays whose dimensions are the same as arr. k : int, optional Diagonal offset (see `tril` for details). See Also -------- tril_indices, tril Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return tril_indices(arr.shape[-2], k=k, m=arr.shape[-1]) def triu_indices(n, k=0, m=None): """ Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Notes ----- .. versionadded:: 1.4.0 Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, 3, 5, 6, 7, 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return where(~tri(n, m, k=k-1, dtype=bool)) def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu Notes ----- .. versionadded:: 1.4.0 """ if arr.ndim != 2: raise ValueError("input array must be 2-d") return triu_indices(arr.shape[-2], k=k, m=arr.shape[-1])
mit
carrillo/scikit-learn
setup.py
76
9370
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <[email protected]> # 2010 Fabian Pedregosa <[email protected]> # License: 3-clause BSD descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean from pkg_resources import parse_version if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = '[email protected]' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if (filename.endswith('.so') or filename.endswith('.pyd') or filename.endswith('.dll') or filename.endswith('.pyc')): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config scipy_min_version = '0.9' numpy_min_version = '1.6.1' def get_scipy_status(): """ Returns a dictionary containing a boolean specifying whether SciPy is up-to-date, along with the version string (empty string if not installed). """ scipy_status = {} try: import scipy scipy_version = scipy.__version__ scipy_status['up_to_date'] = parse_version( scipy_version) >= parse_version(scipy_min_version) scipy_status['version'] = scipy_version except ImportError: scipy_status['up_to_date'] = False scipy_status['version'] = "" return scipy_status def get_numpy_status(): """ Returns a dictionary containing a boolean specifying whether NumPy is up-to-date, along with the version string (empty string if not installed). """ numpy_status = {} try: import numpy numpy_version = numpy.__version__ numpy_status['up_to_date'] = parse_version( numpy_version) >= parse_version(numpy_min_version) numpy_status['version'] = numpy_version except ImportError: numpy_status['up_to_date'] = False numpy_status['version'] = "" return numpy_status def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: numpy_status = get_numpy_status() numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format( numpy_min_version) scipy_status = get_scipy_status() scipy_req_str = "scikit-learn requires SciPy >= {0}.\n".format( scipy_min_version) instructions = ("Installation instructions are available on the " "scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if numpy_status['up_to_date'] is False: if numpy_status['version']: raise ImportError("Your installation of Numerical Python " "(NumPy) {0} is out-of-date.\n{1}{2}" .format(numpy_status['version'], numpy_req_str, instructions)) else: raise ImportError("Numerical Python (NumPy) is not " "installed.\n{0}{1}" .format(numpy_req_str, instructions)) if scipy_status['up_to_date'] is False: if scipy_status['version']: raise ImportError("Your installation of Scientific Python " "(SciPy) {0} is out-of-date.\n{1}{2}" .format(scipy_status['version'], scipy_req_str, instructions)) else: raise ImportError("Scientific Python (SciPy) is not " "installed.\n{0}{1}" .format(scipy_req_str, instructions)) from numpy.distutils.core import setup metadata['configuration'] = configuration setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
springer-math/Mathematics-of-Epidemics-on-Networks
setup.py
1
1049
#!/usr/bin/env python r''' Setup script for EoN (Epidemics on Networks) to install from this script, run python setup.py install Alternately, you can install with pip. pip install EoN If this is a "release candidate" (has an "rc" in the version name below), then pip will download the previous version - see the download_url below. ''' from setuptools import setup setup(name='EoN', packages = ['EoN'], version='1.2rc1', #http://semver.org/ description = 'Epidemics on Networks', author = 'Joel C. Miller, Istvan Z. Kiss, and Peter Simon', author_email = '[email protected]', url = 'https://springer-math.github.io/Mathematics-of-Epidemics-on-Networks/', #download_url = 'https://github.com/springer-math/Mathematics-of-Epidemics-on-Networks/archive/1.1.tar.gz', keywords = ['Epidemics on Networks', 'Epidemic Sonnet Works'], install_requires = [ 'networkx>=2', 'numpy', 'scipy', 'matplotlib' ], )
mit
mjgrav2001/scikit-learn
sklearn/linear_model/coordinate_descent.py
37
74167
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # Olivier Grisel <[email protected]> # Gael Varoquaux <[email protected]> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y, deprecated from ..utils.validation import check_random_state from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) y = check_array(y, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) if Xy is not None: Xy = check_array(Xy, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already. X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): precompute = check_array(precompute, 'csc', dtype=np.float64, order='F') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ return self._decision_function(X) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
pyrrho314/recipesystem
trunk/gempy/adlibrary/extract.py
1
37277
#! /usr/bin/env python import sys, os import time import numpy as np from matplotlib import pyplot as pl import pyfits as pf from astrodata import AstroData, new_pyfits_version from astrodata import Lookups from gempy.library import gfit from gempy.adlibrary import segmentation as seg # Load the timestamp keyword dictionary. timestamp_keys = Lookups.get_lookup_table("Gemini/timestamp_keywords", "timestamp_keys") def print_timing(func): def wrapper(*arg,**kargs): t1 = time.time() res = func(*arg,**kargs) t2 = time.time() print '%s took %0.3fs' % (func.func_name, (t2-t1)) return res return wrapper def trace_footprints(ad, function='polynomial', order=2, trace_threshold=1., debug=False): """ This function finds the footprints edges of spectroscopic flats, creates a BINTABLE extension with the footprint parameters and appends it to the output AstroData object. :param ad: Input Astrodata object. :param function: Name of the fitting function to use. :type function: Default is 'polynomial'. :param order: Degree of the polynomial. :type order: Default is 2 :param trace_threshold: Threshold in units of sigma to applied to the filtered image. :type trace_threshold: Default is 1. :param debug: For debugging purposes. :return adoutput: Output Astrodata object containing the input ad object plus the TRACEFP binary table. """ #try: # Find edges in the image, pair them in spectrum edges. footprints = find_footprints(ad, function=function, order=order, trace_threshold=trace_threshold,debug=debug) # Create a FootprintTrace object. ft = FootprintTrace(footprints) # Use the footprint information to prepare BINTABLE format. # tb_adout is of type AD tb_adout = ft.as_bintable() # Append to the input AD object ad.append(tb_adout) #except: # raise SystemError(repr(sys.exc_info()[1])) return ad def find_footprints(ad, function='polynomial', order=2, trace_threshold=1., debug=False): """ Function to find footprint edges in an image that has been processed with the Sobel convolution kernel. These are the steps to find the footprint: 1) Use the edge_detector_data() function to read the input data and MDF metadata from the AstroData object. 2) The function in 1) returns an <instrument>_EdgeDetector subclass object. 3) Use this class method find_edges() returning two lists of lists, one is the list of (x,y) coordinates for all the left/bottom edges in the image and the other is the list of all the right/top edges in each spectrum. :: Input ad: AstroData object. function: Name of the fitting function to use. order: Degree of the polynomial. trace_threshold: Threshold in units of sigma to applied to the filtered image. Output: List of Footprint objects where each object contains: id: Integer reference number for footprint region: Section of the image where the footprint solution is valid, (x1, x2, y1, y2) edges: Tuple of Edge object (edge_1,edge_2) defining the long edges of the footprint. width: Average width of the footprint (calculated with the edges) """ # After setting metadata instantiate an EdgeDetector # class object, returning the object as the sublclass # instance to which the 'ad' object indicates. edt= seg.EdgeDetector(ad) # Get a list of lists with (x,y) for each edge. (xylist_1,xylist_2) = edt.find_edges() # --- Create 2 lists of Edge objects. One (edge_1) # has the left/bottom edge of the footprints and # edge_2 has the right/top edge of the footprints. # get orientation in degress orientation = [0, 90][edt.axis] # initialize list of lef/bottom (edge_1) edges and # right/top (edge_2) edges. edges_1 = [] edges_2 = [] # the lists xylist_1 and _2 are list of lists: # xylist_ = [[] for _ in range(len(reference_edges))] k=0 for xy_1,xy_2 in zip(xylist_1,xylist_2): low = edt.footprint_low[k] high = edt.footprint_high[k] # For the current footprint (has 2 edges) # get the list of x's and y's. xx1 = np.asarray([x for x,y in xy_1]) yy1 = np.asarray([y for x,y in xy_1]) xx2 = np.asarray([x for x,y in xy_2]) yy2 = np.asarray([y for x,y in xy_2]) # For vertical edges, the yy1,yy2 are the independent # variable arrays. Instantiate the Edge class. # Instantiates left and right Edge objects ed1 = seg.Edge(xx1,yy1) ed2 = seg.Edge(xx2,yy2) ed1.orientation = orientation ed2.orientation = orientation # Set the low and high location in the dispersion # direction. Fit edges. set_dispersion_limits(low,high,ed1,ed2,function,order) k += 1 # add to the current lists of edges. edges_1.append(ed1) edges_2.append(ed2) # --- Now that we have both footprint edges, make a list of # Footprint objects. footprints = [] sn = 1 for ed1,ed2 in zip(edges_1,edges_2): footprint = Footprint(sn, ed1, ed2) footprints.append(footprint) sn += 1 if debug: _plot_footprints(edt.image, footprints) return footprints def set_dispersion_limits(low,high,ed1,ed2,function,order): """ Dispersion limits (low,high) are the minimum and maximum value in the dispersion direction. They are calculated using the instrument parameters like gratings and filters plus tables in dictionaries and others. Please see footprint_len() for instrument specific details. If low and high are defined, set them as values in the Edge.trace (xx,yy) members and recalculate the fit function. """ # Change the function and/or order if they are not the defaults. if (function !='polynomial') | (order != 2): for ed1,ed2 in zip(edges_1,edges_2): ed1.setfunction(function) ed1.setorder(order) ed2.setfunction(function) ed2.setorder(order) for ed in [ed1,ed2]: xx,yy = ed.trace # fit Edges ed.fitfunction() # Make sure we have points in the range (iy1,iy2) in dispersion if ed.orientation == 90: g = np.where((yy >= low) & (yy <= high)) xx,yy = (xx[g],yy[g]) # Evaluate the spatial coordinate low and high xx[0],xx[-1] = ed.evalfunction([low,high]) yy[0],yy[-1] = (low,high) else: g = np.where((xx >= low) & (xx <= high)) # Evaluate the spatial coordinate low and high xx[0],xx[-1] = (low,high) yy[0],yy[-1] = ed.evalfunction([low,high]) # Reset the trace attribute with these update coordinates. ed.trace = (xx,yy) # Now that we have good extreme points, fit again to set # xlim,ylim as well. ed.fitfunction() return def _plot_footprints(image,footprints): """ NOTE: This for development. Not for public release Plot the edges in the list array self.trace Plot the footprint edges using the fitting functions. """ try: from stsci.numdisplay import display except ImportError: from numdisplay import display orientation = footprints[0].edges[0].orientation pl.clf() med = np.median(np.where(image>0,image,0)) for k,footprint in enumerate(footprints): edge1 = footprint.edges[0]; edge2 = footprint.edges[1] xx1,yy1 = np.asarray(edge1.trace,int) xx2,yy2 = np.asarray(edge2.trace,int) # Plot (x_array,y_array) evf1 = edge1.evalfunction evf2 = edge2.evalfunction if orientation == 90: xx1 = np.asarray(evf1(yy1),int) xx2 = np.asarray(evf2(yy2),int) pl.plot(xx1,yy1,'b',xx2,yy2,'r') else: yy1 = np.asarray(evf1(xx1),int) yy2 = np.asarray(evf2(xx2),int) pl.plot(xx1,yy1,'b',xx2,yy2,'r') image[yy1,xx1]=med*2 image[yy2,xx2]=med*2 display(image,frame=2,quiet=True) def _fit_edges(edges): """ Fit a function to each edge. Input: edges: List of Edge object with (x,y) traces returns: edges: Same as input plus fit coefficients for each edge. """ for edge in edges: # Use default edge.function, edge.order edge.fitfunction() class Footprint(object): """ Provides facilities to create a footprint each containing a pair of edge traces. :: Footprint attributes: id: Integer reference number for footprint region: Section of the image where the footprint solution is valid, (x1, x2, y1, y2) edges: Tuple of Edge object (edge_1,edge_2) defining the long edges of the footprint. width: Average width of the footprint. """ def __init__(self, id, edge_1,edge_2): self.id = id self.edges = (edge_1,edge_2) x1 = np.min(edge_1.xlim+edge_2.xlim) x2 = np.max(edge_1.xlim+edge_2.xlim) y1 = np.min(edge_1.ylim+edge_2.ylim) y2 = np.max(edge_1.ylim+edge_2.ylim) if edge_1.orientation == 90: # Evaluate x2 with the fitting function using the # largest of y2 from both edges. x2 = edge_2.evalfunction(y2)[0] self.width = edge_2.evalfunction(y1)-edge_1.evalfunction(y1) else: # Evaluate y2 with the fitting function using the # largest of x2 from both edges. y2 = edge_2.evalfunction(x2)[0] self.width = edge_2.evalfunction(x1)-edge_1.evalfunction(x1) self.region = (x1, x2, y1, y2) class FootprintTrace(object): """ FootprintTrace provides facilities to create a BINTABLE extension with the input footprint list of objects. Attributes: footprints: Footprint object list. Methods: as_bintable: Creates BINTABLE """ def __init__(self,footprints): self.footprints = footprints def as_bintable(self): """ Creates a BINTABLE object from the FootprintTrace object. Input: self.footprints: list of Footprint objects. Output: AD: HDU astrodata object with a TRACEFP bintable extension. **Column discription** :: 'id' : integer reference number for footprint. 'region' : (x1,x2,y1,y2), window of pixel co-ords enclosing this footprint. The origin of these coordinates could be the lower left of the original image. 'range1' : (x1,x2,y1,y2), range where edge_1 is valid. The origin of these coordinates is the lower left of the original image. 'function1': Fit function name (default: polynomial) fitting edge_1. 'coeff1' : Arrray of coefficients, high to low order, such that pol(x) = c1*x**2 + c2*x + c3 (for order 2). 'order1' : Order or polynomial (default: 2). 'range2' : ditto for edge_2. 'function2': ditto for edges_2 'coeff2' : ditto for edges_2 'order2' : ditto for edges_2 'cutrange1' : (x1,x2,y1,y2), range where edge_1 is valid. The origin of these coordinates is the lower left of the cutout region. 'cutfunction1': Fit function name (default: polynomial). 'cutcoeff1' : Arrray of coefficients, high to low order, such that pol(x) = c1*x**2 + c2*x + c3 (for order 2) 'cutorder1' : Order or polynomial (default: 2). 'cutrange2' : ditto for edge_2 'cutfunction2': ditto for edge_2 'cutcoeff2' : ditto for edge_2 'cutorder2' : ditto for edge_2 """ footprints = self.footprints # Get n_coeffs'. We are assuming they are the same for all edges. n_coeff = len(footprints[0].edges[0].coefficients) c1 = pf.Column (name='id',format='J') c2 = pf.Column (name='region',format='4E') c3 = pf.Column (name='range1',format='4E') c4 = pf.Column (name='function1',format='15A') c5 = pf.Column (name='order1',format='J') c6 = pf.Column (name='coeff1',format='%dE'%n_coeff) c7 = pf.Column (name='range2',format='4E') c8 = pf.Column (name='function2',format='15A') c9 = pf.Column (name='order2',format='J') c10 = pf.Column (name='coeff2',format='%dE'%n_coeff) c11 = pf.Column (name='cutrange1',format='4E') c12 = pf.Column (name='cutfunction1',format='15A') c13 = pf.Column (name='cutorder1',format='J') c14 = pf.Column (name='cutcoeff1',format='%dE'%n_coeff) c15 = pf.Column (name='cutrange2',format='4E') c16 = pf.Column (name='cutfunction2',format='15A') c17 = pf.Column (name='cutorder2',format='J') c18 = pf.Column (name='cutcoeff2',format='%dE'%n_coeff) nrows = len(footprints) tbhdu = pf.new_table(pf.ColDefs([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,\ c11,c12,c13,c14,c15,c16,c17,c18]),nrows=nrows) tb = tbhdu # an alias # Write data to table columns orientation = footprints[0].edges[0].orientation for k,footprint in enumerate(footprints): edge1 = footprint.edges[0]; edge2 = footprint.edges[1] tb.data.field('id')[k] = footprint.id tb.data.field('region')[k] = np.asarray(footprint.region) # EGDE_1 DATA with respect to original image co-ords range1 = np.asarray(edge1.xlim+edge1.ylim) # (x1, x2, y1, y2) tb.data.field('range1')[k] = range1 tb.data.field('function1')[k] = edge1.function tb.data.field('order1')[k] = edge1.order tb.data.field('coeff1')[k] = edge1.coefficients # EGDE_2 DATA with respect to original image co-ords range2 = np.asarray(edge2.xlim+edge2.ylim) # (x1, x2, y1, y2) tb.data.field('range2')[k] = range2 tb.data.field('function2')[k] = edge2.function tb.data.field('order2')[k] = edge2.order tb.data.field('coeff2')[k] = edge2.coefficients region_x1 = footprint.region[0] region_y1 = footprint.region[2] # Setup the coefficient of the edge fit functions. We are # shifting the origin; so refit lcoeff=[] zval=[] for xx,yy in [edge1.trace,edge2.trace]: # We need to refit inside the cutregion xmr = xx - region_x1 ymr = yy - region_y1 if orientation == 0: z = gfit.Gfit(xmr,ymr,edge1.function,edge1.order) else: z = gfit.Gfit(ymr,xmr,edge1.function,edge1.order) lcoeff.append(z.coeff) zval.append(z) xlim1 = np.asarray(edge1.xlim) ylim1 = np.asarray(edge1.ylim) xlim2 = np.asarray(edge2.xlim) ylim2 = np.asarray(edge2.ylim) # Get the maximum values from both edges, so we can zero # the areas outside the footprint when cutting. # if orientation == 0: # Choose the largest x between both edges. xmax = max(xlim1[1],xlim2[1]) xlim1[1] = xmax xlim2[1] = xmax x1,x2 = (min(0,xlim1[0]),xmax) # And reevaluate the y values at this xmax y1 = ylim1[0] - region_y1 y2 = zval[1](xmax)[0] else: # Choose the largest y between both edges ymax = max(ylim1[1],ylim2[1]) ylim1[1] = ymax ylim2[1] = ymax y1,y2 = (min(0,ylim1[0]),ymax) # And reevaluate the x values at this ymax x1 = xlim1[0] - region_x1 x2 = zval[1](ymax)[0] # --- Set edge_1 data with respect to cutout image co-ords. tb.data.field('cutrange1')[k] = (x1,x2,y1,y2) tb.data.field('cutfunction1')[k] = edge1.function tb.data.field('cutorder1')[k] = edge1.order tb.data.field('cutcoeff1')[k] = lcoeff[0] # --- Set edge_2 data with respect to cutout image co-ords # Applied offsets to range2 from footprint.region(x1,y1) tb.data.field('cutrange2')[k] = (x1,x2,y1,y2) tb.data.field('cutfunction2')[k] = edge2.function tb.data.field('cutorder2')[k] = edge2.order tb.data.field('cutcoeff2')[k] = lcoeff[1] # Add comment to TTYPE card hdr = tb.header if new_pyfits_version: hdr.update = hdr.set hdr.update('TTYPE2',hdr['TTYPE2'], comment='(x1,y1,x2,y2): footprint window of pixel co-ords.') hdr.update('TTYPE3',hdr['TTYPE3'], comment='type of fitting function.') hdr.update('TTYPE4',hdr['TTYPE4'], comment='Number of coefficients.') hdr.update('TTYPE5',hdr['TTYPE5'], comment='Coeff array: c[0]*x**3 + c[1]*x**2+ c[2]*x+c[3]') hdr.update('TTYPE6',hdr['TTYPE6'], comment='(x1,y1,x2,y2): Edge fit window definition.') tb.header = hdr # Create an AD object with this tabad = AstroData(tbhdu) tabad.rename_ext("TRACEFP", 1) return tabad def _plot_footprints(self): """ NOTE: This for development. Not for public release plot the edges in the list array self.trace i: sequential number, can be edge number Plot the footprint edges using the fitting functions. """ footprints = self.footprints orientation = footprints[0].edges[0].orientation for k,footprint in enumerate(footprints): edge1 = footprint.edges[0]; edge2 = footprint.edges[1] xx1,yy1 = edge1.trace xx2,yy2 = edge2.trace evf1 = edge1.evalfunction evf2 = edge2.evalfunction if orientation == 0: pl.plot(xx1,evf1(xx1),'b',xx2,evf2(xx2),'r') else: pl.plot(evf1(yy1),yy1,'b',evf2(yy2),yy2,'r') import pywcs def cut_footprints(ad, debug=False): """ Creates individual footprint images from the information in the 'TRACEFP' extension in the input AD object. It returns an AD object with a list of IMAGE extensions; each one containing a footprint cut. INPUT :param ad: Astrodata object with a 'TRACEFP' bintable extension. :type adinput: Astrodata :param debug: Display and plot. If True it will display on DS9 the cuts performed with the enclosed footprint. The footprints will have the edges highlighted to show how good the tracing was. It also shows the cut and the edges on a plot. OUTPUT :return adout: AD object with a list of IMAGE extensions containing one footprint per cut as describe in the TRACEFP bintable extension of the input AD object. """ try: # Instantiate a CutFootprints object cl = CutFootprints(ad,debug) # Cut rectangular regions containing a footprint with its DQ and VAR # region if any. The adout contains as many images extension as there # entries in the TRACEFP table. cl.cut_regions() adout = cl.as_astrodata() except: raise SystemError(repr(sys.exc_info()[1])) return adout class CutFootprints(): """ CutFootprints provides facilites to build a list of footprint sections from the input TRACEFP table in the Astrodata object. :: Methods ------- cut_regions Loop through the records of the TRACEFP table creating one tuple per iteration containing (region, data,dq,and var cut out pixel data) cut_out: Cut a region enclosing a footprint. _init_as_astrodata Initialize parameters to be used by as_astrodata. as_astrodata Form an hdu and each cutout and append it to adout. Members ------- ad: AD object containing the extension 'TRACEFP' created by the ULF 'trace_footprint'. has_var,has_dq: Booleans to tell whether the VAR or DQ image sections are in the input AD object. orientation: Int. Zero value for F2 and 90 for GMOS or GNIRS. filename,instrument: Use for output information when debug is True. science,var,dq: Reference to the input SCI, VAR and DQ image data. cut_list: List with the tuples. Each contains region, sci_cut, var_cut and dq_cut footprint cut pixel data. wcs: Input header WCS from pywcs. debug:Display and plot. If True it will display on DS9 the cuts performed with the enclosed footprint. The footprints will have the edges highlighted to show how good the tracing was. It also shows the cut and the edges on a plot. """ def __init__(self,ad,debug=False): self.ad = ad self.has_dq = ad['DQ',1] != None self.has_var = ad['VAR',1] != None self.debug = debug instrument = ad.instrument() if instrument == 'F2': self.orientation = 90 else: if ad['SCI',1].dispersion_axis() == 1: self.orientation = 0 else: self.orientation = 90 if debug: self.filename = ad.filename self.instrument = instrument self.dq = None self.var = None self.science = self.ad['SCI',1].data if self.has_dq: self.dq = self.ad['DQ', 1].data if self.has_var: self.var = self.ad['VAR',1].data self.cut_list = [] # Contains the list of Cut objects self.nregions = None # The number of records in TRACEFP def cut_regions(self): """ Loop through the records of the TRACEFP table creating one tuple per iteration with region,sci,dq,and var sections. Then it appends each tuple to a list of cuts. """ table = self.ad['TRACEFP'].data self.nregions = len(table.field('id')) if self.debug: plot_footprint(self.ad) for rec in table: cut_data = self.cut_out(rec) self.cut_list.append(cut_data) def cut_out(self,rec): """ Cut a region enclosing a footprint. Each cut is defined by 'region' and the footprint in it is defined by the edges fitting functions. The science section is zero out between the rectangle borders and the footprint edge. The DQ section is bitwise ORed with 1. :: Input: rec: TRACEFP record Output: Tuple with region, sci_cut, dq_cut, var_cut data """ # Input frames to get cut outs from science = self.science var = self.var dq = self.dq t1=time.time() id = rec.field('id') region = rec.field('region') cutrange1 = rec.field('cutrange1') cutrange2 = rec.field('cutrange2') evf1 = set_evalfunction(rec.field('cutcoeff1')) evf2 = set_evalfunction(rec.field('cutcoeff2')) # This is the rectangle coordinates containing one footprint rx1,rx2,ry1,ry2 = region # Get data sections. We add 1 to get the last element of the range. sci_cut = science[ry1:ry2+1,rx1:rx2+1].copy() # Define empty DQ, VAR cut array elements, in case the AD instance does # not have them. dq_cut,var_cut=(None,None) has_dq = self.has_dq has_var = self.has_var if has_dq: dq_cut = dq[ry1:ry2+1,rx1:rx2+1].copy() if has_var: var_cut = var[ry1:ry2+1,rx1:rx2+1].copy() # Now clear (zero out) the area of the data and dq cuts # between the rectangle and the footprint edges. # Make indices representing the indices of a grid. y,x=np.indices(sci_cut.shape) # Generate mask values for the whole rectangular cut # except for the footprint. if self.orientation == 90: # Mask values between indices of the cut left side # and the indices of the left edge. mask_1 = x < evf1(y) # Mask values between the right edge indices and # the indices of the cut right side. # index of the left edge mask_2 = evf2(y) < x mask = mask_1 + mask_2 else: # bottom mask_1 = y < evf1(x) # top mask_2 = evf2(x) < y mask = mask_1 + mask_2 sci_cut[mask] = 0 if has_var: var_cut[mask] = 0 if has_dq: dq_cut[mask] = np.bitwise_or(dq_cut[mask],1) if self.debug: # plot and display plot_footprint_cut(sci_cut,x,y,self.orientation,evf1,evf2, region, self.filename,self.instrument) return (region, sci_cut, var_cut, dq_cut) def _init_as_astrodata(self): """ Initialize parameters to be used by as_astrodata. Creates a WCS object (pywcs) from the SCI header and form the output AD object with the PHU and MDF from the input AD. We are adding the TRACEFP extension as well for later use on the spectral reduction process. Input: self.ad: AD object. Output: adout: Output AD object with AD phu and MDF """ ad = self.ad # Start output AD with the original phu and the MDF extension. adout = AstroData(phu=ad.phu) adout.append(ad['MDF']) adout.append(ad['TRACEFP']) # Get wcs information. It is in the PHU try: self.wcs = pywcs.WCS(ad.phu.header) if not hasattr(self.wcs.wcs, 'cd'): self.wcs = None except: # Something wrong with WCS, set it to None self.wcs = None return adout def as_astrodata(self): """ With each cut object in the cut_list having the SCI,DQ,VAR set, form an hdu and append it to adout. Update keywords EXTNAME= 'SCI', EXTVER=<footprint#>, CCDSEC, DISPAXIS, CUTSECT, CUTORDER in the header and reset WCS information if there was a WCS in the input AD header. :: Input: self.cut_list: List of Cut objects. self.adout: Output AD object with MDF and TRACEFP extensions. Output: adout: contains the appended HDUs. """ adout = self._init_as_astrodata() ad = self.ad scihdr = ad['SCI',1].header.copy() if self.has_dq: dqheader = ad['DQ', 1].header.copy() if self.has_var: varheader = ad['VAR',1].header.copy() # Update NSCIEXT keyword to represent the current number of cuts. if new_pyfits_version: adout.phu.header.update = adout.phu.header.set adout.phu.header.update('NSCIEXT',len(self.cut_list)) # This is a function renaming when using Pyfits 3.1 if new_pyfits_version: scihdr.update = scihdr.set extver = 1 # Generate the cuts using the region's sci_cut,var_cut and # dq_cut for region,sci_cut,var_cut,dq_cut in self.cut_list: rx1,rx2,ry1,ry2 = np.asarray(region) + 1 # To 1-based csec = '[%d:%d,%d:%d]'%(rx1,rx2,ry1,ry2) scihdr.update('NSCUTSEC',csec, comment="Region extracted by 'cut_footprints'") scihdr.update('NSCUTSPC',extver,comment="Spectral order") form_extn_wcs(scihdr, self.wcs, region) new_sci_ext = AstroData(data=sci_cut,header=scihdr) new_sci_ext.rename_ext(name='SCI',ver=extver) adout.append(new_sci_ext) if self.has_dq: new_dq_ext = AstroData(data=dq_cut, header=dqheader) new_dq_ext.rename_ext(name='DQ',ver=extver) adout.append(new_dq_ext) if self.has_var: new_var_ext = AstroData(data=var_cut, header=varheader) new_var_ext.rename_ext(name='VAR',ver=extver) adout.append(new_var_ext) extver += 1 return adout def set_evalfunction(coeff): """ Utility function to form a polynomial given a coefficients array. Input: coeff: coefficients array, no greater than 4 elements. Output: eval: Evaluator function """ terms = ['','*x', '*x**2', '*x**3','*x**4'] func = 'lambda x:' cc = coeff[::-1] # The coefficients are from high order to low for i in range(len(cc)): func = func + '+%g'%cc[i]+terms[i] evf = eval(func) return evf def form_extn_wcs(scihdr, wcs, region): """ Form wcs information for this cut and update the header. The original WCS information is used to calculate CRVAL1,2 of the center of the cut. The CD matrix is unchanged. We used PYWCS module for the transformations. Input: scihdr: SCI header from the original FITS WCS wcs: WCS instance of pywcs region: coords of the cut. """ if wcs == None: return # Don't do anything if wcs is bad kwlist = ['equinox','ctype1','cunit1','crpix1','crval1','ctype2','cunit2', 'crpix2','crval2'] # Get the WCS keywords from the PHU pheader = wcs.to_header() rx1,rx2,ry1,ry2 = np.asarray(region) + 1 # To 1-based # Calculate crpix,crval for this section middle point cpix1 = (rx2-rx1+1)/2.0+rx1 cpix2 = (ry2-ry1+1)/2.0+ry1 (pheader['crval1'],pheader['crval2']), = wcs.wcs_pix2sky([[cpix1,cpix2]],1) pheader['crpix1'] = cpix1-rx1+1 # Set origin of the section to (1,1) pheader['crpix2'] = cpix2-ry1+1 if new_pyfits_version: scihdr.update = scihdr.set # Now form the WCS header for kw in kwlist: scihdr.update(kw,pheader[kw]) # Now CD. PC are the pywcs names for the CD's scihdr.update('cd1_1',pheader['pc1_1']) scihdr.update('cd1_2',pheader['pc1_2']) scihdr.update('cd2_1',pheader['pc2_1']) scihdr.update('cd2_2',pheader['pc2_2']) return def plot_footprint(ad): """ Plot and display the edges found by trace_footprints. This information is the TRACEFP bintable extension in the AD object. """ try: from stsci.numdisplay import display except ImportError: from numdisplay import display if type(ad) is list: ad=ad[0] if ad.instrument() == 'F2': orientation = 90 else: if ad['SCI',1].dispersion_axis() == 1: orientation = 0 else: orientation = 90 pl.clf() tb = ad['TRACEFP'].data data = ad['SCI',1].data for rec in tb: region = rec.field('region') cutrange1 = rec.field('cutrange1') cutrange2 = rec.field('cutrange2') coeff1 = rec.field('cutcoeff1') coeff2 = rec.field('cutcoeff2') evf1 = set_evalfunction(coeff1) evf2 = set_evalfunction(coeff2) if orientation == 0: x1,x2,y1,y2 = region x = np.arange(x1,x2+1) pl.plot(x,evf1(x)+y1,'b') # edge_1 pl.plot(x,evf2(x)+y1,'r') # edge_2 for x in np.arange(int(x1),int(x2+1.),20): xi = slice(x,x+5) xr = np.arange(x,x+5) yi = list(evf1(xr)+y1) + list(evf2(xr)+y1) data[yi,xi] = 9999 else: # Orientation is 90 x1,x2,y1,y2 = region y = np.arange(y1,y2+1) pl.plot(evf1(y)+x1,y,'b') # edge 1 pl.plot(evf2(y)+x1,y,'r') # edges 2 off = evf1(y1) for y in range(int(y1),int(y2+1.),20): yi = slice(y,y+5) xi = list(evf1(np.arange(y,y+5))+x1-off) + \ list(evf2(np.arange(y,y+5))+x1-off) data[yi,xi] = 99999 fname = os.path.basename(ad.filename) pl.title(fname+' ('+ad.instrument()+')') display(data,frame=1,quiet=True) time.sleep(3) def plot_footprint_cut(data,x,y,orientation,evf1,evf2,region,filename,instru): """ Plot the footprint cut inside a rectangle then display the same cut on frame 2. """ try: from stsci.numdisplay import display except ImportError: from numdisplay import display pl.clf() bval = data.max() bval += bval/10. #rx1,rx2,ry1,ry2 = region ny,nx = data.shape rxmin,rymin=(nx,ny) rxmax,rymax=(0,0) if (True): if orientation == 0: x = np.arange(nx) rxmin,rxmax = (0,nx) for evf,color in zip([evf1,evf2],['b','r']): zy = evf(x) pl.plot(x,zy,color) imin = np.argmin(zy) imax = np.argmax(zy) rymin = min(rymin,zy[imin]) rymax = max(rymax,zy[imax]) pl.fill([rxmin,rxmax,rxmax,rxmin], [rymin,rymin,rymax,rymax],fill=False) else: # Orientation is 90 y = np.arange(ny) rymin,rymax = (0,ny) for evf,color in zip([evf1,evf2],['b','r']): zx = evf(y) pl.plot(zx,y,color) imin = np.argmin(zx) imax = np.argmax(zx) rxmin = min(rxmin,zx[imin]) rxmax = max(rxmax,zx[imax]) pl.fill([rxmin,rxmax,rxmax,rxmin], [rymin,rymin,rymax,rymax],fill=False) fname = os.path.basename(filename) pl.title(fname+' ('+instru+')') #pl.xlabel(str(region)) pl.draw() display(data,frame=2,z1=0,z2=bval,quiet=True) time.sleep(1) if __name__ == '__main__': """ Testing in the unix shell """ from astrodata import AstroData import time f2='/data2/ed/data/fS20120104S0070.fits' gnirs = '/data2/ed/data/nN20101215S0475_comb.fits' gmos = '/data2/ed/data/mgS20100113S0110.fits' t1=time.time() for ff in [gmos,f2,gnirs]: ad = AstroData(ff) print 'MAIN:>>>>>>>>>>>>>>>>>',ad.instrument(),ad.filename adout = trace_footprints(ad,debug=False) print adout.info() t2 = time.time() print '.....trace_footprints:','(%.2f curr: %.1f)'%(t2-t1,t2-t1) cl = CutFootprints(adout,debug=False) t4=time.time() cl.cut_regions() t5=time.time() print '.....cut_regions:','(%.2f curr: %.1f)'%(t5-t4,t5-t1) adcut=cl.as_astrodata() t6=time.time() print '...cl.as_astrodata:','(%.2f curr: %.1f)'%(t6-t5,t6-t1) #adcut.filename='adcut.fits' #adcut.write(clobber=True) #raw_input('Enter...to continue') """ k=1 for ad in adcut: ad.filename='adlist'+str(k)+'.fits' print '...Writing', ad.filename ad.write(clobber=True) k=k+1 print 'Total time:',time.time()-t1 """ #nN20120305S0080_comb.fits # GNIRS 4 files comb (.15 pixscale) [4 secs] (new:3.5) #fS20120104S0070.fits # F2 MOS [21 secs] (new: 8 sec) #gS20100113S0110.fits # prepare gmos MOS flat #mgS20100113S0110.fits # Mosaic GMOS [58 secs] (new: 12 sec)
mpl-2.0
andrewcbennett/iris
docs/iris/example_code/General/polynomial_fit.py
7
1443
""" Fitting a polynomial ==================== This example demonstrates computing a polynomial fit to 1D data from an Iris cube, adding the fit to the cube's metadata, and plotting both the 1D data and the fit. """ import matplotlib.pyplot as plt import numpy as np import iris import iris.quickplot as qplt def main(): fname = iris.sample_data_path('A1B_north_america.nc') cube = iris.load_cube(fname) # Extract a single time series at a latitude and longitude point. location = next(cube.slices(['time'])) # Calculate a polynomial fit to the data at this time series. x_points = location.coord('time').points y_points = location.data degree = 2 p = np.polyfit(x_points, y_points, degree) y_fitted = np.polyval(p, x_points) # Add the polynomial fit values to the time series to take # full advantage of Iris plotting functionality. long_name = 'degree_{}_polynomial_fit_of_{}'.format(degree, cube.name()) fit = iris.coords.AuxCoord(y_fitted, long_name=long_name, units=location.units) location.add_aux_coord(fit, 0) qplt.plot(location.coord('time'), location, label='data') qplt.plot(location.coord('time'), location.coord(long_name), 'g-', label='polynomial fit') plt.legend(loc='best') plt.title('Trend of US air temperature over time') qplt.show() if __name__ == '__main__': main()
gpl-3.0
jasonyaw/keras
examples/kaggle_otto_nn.py
70
3775
from __future__ import absolute_import from __future__ import print_function import numpy as np import pandas as pd np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import PReLU from keras.utils import np_utils, generic_utils from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler ''' This demonstrates how to reach a score of 0.4890 (local validation) on the Kaggle Otto challenge, with a deep net using Keras. Compatible Python 2.7-3.4. Requires Scikit-Learn and Pandas. Recommended to run on GPU: Command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python kaggle_otto_nn.py On EC2 g2.2xlarge instance: 19s/epoch. 6-7 minutes total training time. Best validation score at epoch 21: 0.4881 Try it at home: - with/without BatchNormalization (BatchNormalization helps!) - with ReLU or with PReLU (PReLU helps!) - with smaller layers, largers layers - with more layers, less layers - with different optimizers (SGD+momentum+decay is probably better than Adam!) Get the data from Kaggle: https://www.kaggle.com/c/otto-group-product-classification-challenge/data ''' def load_data(path, train=True): df = pd.read_csv(path) X = df.values.copy() if train: np.random.shuffle(X) # https://youtu.be/uyUXoap67N8 X, labels = X[:, 1:-1].astype(np.float32), X[:, -1] return X, labels else: X, ids = X[:, 1:].astype(np.float32), X[:, 0].astype(str) return X, ids def preprocess_data(X, scaler=None): if not scaler: scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) return X, scaler def preprocess_labels(labels, encoder=None, categorical=True): if not encoder: encoder = LabelEncoder() encoder.fit(labels) y = encoder.transform(labels).astype(np.int32) if categorical: y = np_utils.to_categorical(y) return y, encoder def make_submission(y_prob, ids, encoder, fname): with open(fname, 'w') as f: f.write('id,') f.write(','.join([str(i) for i in encoder.classes_])) f.write('\n') for i, probs in zip(ids, y_prob): probas = ','.join([i] + [str(p) for p in probs.tolist()]) f.write(probas) f.write('\n') print("Wrote submission to file {}.".format(fname)) print("Loading data...") X, labels = load_data('train.csv', train=True) X, scaler = preprocess_data(X) y, encoder = preprocess_labels(labels) X_test, ids = load_data('test.csv', train=False) X_test, _ = preprocess_data(X_test, scaler) nb_classes = y.shape[1] print(nb_classes, 'classes') dims = X.shape[1] print(dims, 'dims') print("Building model...") model = Sequential() model.add(Dense(dims, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, 512, init='glorot_uniform')) model.add(PReLU((512,))) model.add(BatchNormalization((512,))) model.add(Dropout(0.5)) model.add(Dense(512, nb_classes, init='glorot_uniform')) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer="adam") print("Training model...") model.fit(X, y, nb_epoch=20, batch_size=128, validation_split=0.15) print("Generating submission...") proba = model.predict_proba(X_test) make_submission(proba, ids, encoder, fname='keras-otto.csv')
mit
aarshayj/easyML
easyML/models_classification.py
1
59771
##################################################################### ##### IMPORT STANDARD MODULES ##################################################################### #Python 3 support: from __future__ import absolute_import, division from __future__ import print_function, unicode_literals import pandas as pd import numpy as np import matplotlib.pyplot as plt # import pydot import os from scipy.stats.mstats import chisquare, mode from sklearn.linear_model import LogisticRegression from sklearn.model_selection import KFold, GridSearchCV from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn import metrics, model_selection from sklearn.feature_selection import RFE, RFECV from abc import ABCMeta, abstractmethod # from StringIO import StringIO # import xgboost as xgb # from xgboost.sklearn import XGBClassifier from .genericmodelclass import GenericModelClass from .data import DataBlock ##################################################################### ##### GENERIC MODEL CLASS ##################################################################### class base_classification(GenericModelClass): """ A base class which defines the generic classification functions and variable definitions. Parameters ---------- alg : object An sklearn-style estimator data_block : object An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ #Define as a meta class to disable direct instances __metaclass__ = ABCMeta # Map possible inputs to functions in sklean.metrics. # Each value of the dictionary is a tuple of 3: # (function, multi-class support, requires-probabilities) # function: the sklearn metrics function # multi-class support: if True, function allows multi-class support # requires-probabilities: if True, the function requires # probabilities to be passed as arguments metrics_map = { 'accuracy':(metrics.accuracy_score,True,False), 'auc':(metrics.roc_auc_score,False,True), 'log_loss':(metrics.log_loss,True,True), 'f1':(metrics.f1_score,True,False), 'average_precision':(metrics.average_precision_score,False,True) } def __init__( self, alg, data_block, predictors=[],cv_folds=5, scoring_metric='accuracy',additional_display_metrics=[] ): GenericModelClass.__init__( self, alg=alg, data_block=data_block, predictors=predictors, cv_folds=cv_folds,scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics) #Run input datatype checks: self.check_datatype(data_block,'data_block',DataBlock) self.subset_check(predictors) self.check_datatype(cv_folds,'cv_folds',int) self.check_datatype(scoring_metric,'scoring_metric',basestring) self.check_datatype( additional_display_metrics,'additional_display_metrics',list) #Store predicted probabilities in a dictionary with keys as the # name of the dataset (train/test/predict) and values as the actual # predictions. self.predictions_probabilities = {} #Boolean to store whether the estimator chosen allows probability # predictions self.probabilities_available = True #Define number of classes in target. self.num_target_class = len( self.datablock.train[self.datablock.target].unique()) #A Series object to store generic classification model outcomes. self.classification_output=pd.Series( index = ['ModelID','CVScore_mean','CVScore_std','AUC', 'ActualScore (manual entry)','CVMethod','Predictors'] ) #Get the dictionary of available dataframes self.dp = self.datablock.data_present() #Check all the entered metrics. Note that this check has to be #placed after declaration of num_target_class attribute for metric in [scoring_metric]+additional_display_metrics: self.check_metric(metric,self.num_target_class) @classmethod def check_metric(cls,metric,num_target_class): if metric not in cls.metrics_map: raise self.InvalidInput("The input '%s' is not a valid scoring metric for this module"%metric) if num_target_class>2: if not cls.metrics_map[metric][1]: raise self.InvalidInput("The %s metric does not support multi-class classification case"%metric) def fit_model( self, performCV=True, printResults=True, printTopN=None, printConfusionMatrix=True, printModelParameters=True): """An advanced model fit function which fits the model on the training data and performs cross-validation. It prints a model report containing the following: - The parameters being used to fit the model - Confusion matrix for the train and test data - Scoring metrics for the train and test data - CV mean and std scores for scoring metric - Additional scoring metrics on train and test data, if specified Note that you can decide which details are to be printed using method arguments. Parameters ---------- performCV : bool, default True if True, the model performs cross-validation using the number of folds as the cv_folds parameter of the model printResults : bool, default True if True, prints the report of the model. This should be kept as True unless the module being used in a background script printTopN : int, default None The number of top scored features to be displayed in the feature importance or coefficient plot of the model. If None, all the features will be displayed by default. Note: - For algorithms supporting real coefficient, the features will be sorted by their magnitudes (absolute values). - For algorithms supporting positive feature importance scores, features are sorted on the score itself. This will be ignored is printResults is False. printConfusionMatrix : bool, default True if True, the confusion matrix for the train and test dataframes are printed, otherwise they are ommitted. This will be ignored is printResults is False. print printModelParameters : bool, default True if True, the parameters being used to the run the model are printed. It helps in validating the parameters and also makes jupyter notebooks more informative if used """ self.check_datatype(performCV,'performCV',bool) self.check_datatype(printResults,'printResults',bool) self.check_datatype(printConfusionMatrix,'printConfusionMatrix',bool) self.check_datatype(printModelParameters,'printModelParameters',bool) if printTopN: self.check_datatype(printTopN,'printTopN',int) self.alg.fit( self.datablock.train[self.predictors], self.datablock.train[self.datablock.target]) #Get algo_specific_values self.algo_specific_fit(printTopN) #Get predictions: for key,data in self.dp.items(): self.predictions_class[key] = self.alg.predict( data[self.predictors]) if self.probabilities_available: for key,data in self.dp.items(): self.predictions_probabilities[key] = self.alg.predict_proba( data[self.predictors]) self.calc_model_characteristics(performCV) if printResults: self.printReport(printConfusionMatrix, printModelParameters) def calc_model_characteristics(self, performCV=True): # Determine key metrics to analyze the classification model. These # are stored in the classification_output series object belonginf to # this class. for metric in [self.scoring_metric]+self.additional_display_metrics: #Determine for both test and train, except predict: for key,data in self.dp.items(): if key!='predict': name = '%s_%s'%(metric,key) #Case where probabilities to be passed as arguments if base_classification.metrics_map[metric][2]: self.classification_output[name] = \ base_classification.metrics_map[metric][0]( data[self.datablock.target], self.predictions_probabilities[key]) #case where class predictions to be passed as arguments else: self.classification_output[name] = \ base_classification.metrics_map[metric][0]( data[self.datablock.target], self.predictions_class[key]) #Determine confusion matrix: name = 'ConfusionMatrix_%s'%key self.classification_output[name] = pd.crosstab( data[self.datablock.target], self.predictions_class[key] ).to_string() if performCV: cv_score = self.KFold_CrossValidation( scoring_metric=self.scoring_metric) else: cv_score = { 'mean_error': 0.0, 'std_error': 0.0 } self.classification_output['CVMethod'] = \ 'KFold - ' + str(self.cv_folds) self.classification_output['CVScore_mean'] = cv_score['mean_error'] self.classification_output['CVScore_std'] = cv_score['std_error'] self.classification_output['Predictors'] = str(self.predictors) def printReport(self, printConfusionMatrix, printModelParameters): # Print the metric determined in the previous function. print("\nModel Report") #Outpute the parameters used for modeling if printModelParameters: print('\nModel being built with the following parameters:') print(self.alg.get_params()) if printConfusionMatrix: for key,data in self.dp.items(): if key!='predict': print("\nConfusion Matrix for %s data:"%key) print(pd.crosstab( data[self.datablock.target], self.predictions_class[key]) ) print('Note: rows - actual; col - predicted') print("\nScoring Metric:") for key,data in self.dp.items(): if key!='predict': name = '%s_%s'%(self.scoring_metric,key) print("\t%s (%s): %s" % ( self.scoring_metric, key, "{0:.3%}".format(self.classification_output[name]) ) ) print("\nCV Score for Scoring Metric (%s):"%self.scoring_metric) print("\tMean - %f | Std - %f" % ( self.classification_output['CVScore_mean'], self.classification_output['CVScore_std']) ) if self.additional_display_metrics: print("\nAdditional Scoring Metrics:") for metric in self.additional_display_metrics: for key,data in self.dp.items(): if key!='predict': name = '%s_%s'%(metric,key) print("\t%s (%s): %s" % ( metric, key, "{0:.3%}".format( self.classification_output[name]) ) ) def plot_feature_importance(self, printTopN): num_print = len(self.feature_imp) if printTopN is not None: num_print = min(printTopN,len(self.feature_imp)) self.feature_imp.iloc[:num_print].plot( kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score') plt.show(block=False) def plot_abs_coefficients(self,coeff,printTopN): num_print = len(coeff) if printTopN is not None: num_print = min(printTopN,num_print) coeff_abs_sorted = sorted( abs(coeff).index, key=lambda x: abs(coeff_abs[x]), reverse=True ) coeff[coeff_abs_sorted].iloc[:num_print,].plot( kind='bar', title='Feature Coefficients (Sorted by Magnitude)' ) plt.ylabel('Magnitute of Coefficients') plt.show(block=False) def submission_proba( self, IDcol, proba_colnames,filename="Submission.csv"): """ """ submission = pd.DataFrame({ x: self.datablock.predict[x] for x in list(IDcol) }) if len(list(proba_colnames))>1: for i in range(len(proba_colnames)): submission[proba_colnames[i]] = self.test_pred_prob[:,i] else: submission[list(proba_colnames)[0]] = self.test_pred_prob[:,1] submission.to_csv(filename, index=False) def set_parameters(self, param=None, cv_folds=None, set_default=False): """ Set the parameters of the model. Only the parameters to be updated are required to be passed. Parameters __________ param : dict, default None A dictionary of key,value pairs where the keys are the parameters to be updated and values as the new value of those parameters. If None, no update performed Ignored if set_default iss True. cv_folds : int, default None Pass the number of CV folds to be used in the model. If None, no update performed. set_default : bool, default True if True, the model will be set to default parameters as defined in model definition by scikit-learn. Note that this will not affect the cv_folds parameter. """ #Check input self.check_datatype(param,'param',dict) self.check_datatype(set_default,'set_default',bool) if param: if set(param.keys()).issubset( set(base_classification.default_parameters.keys()) ): raise self.InvalidInput("""The parameters passed should be a subset of the model parameters""") if set_default: param = self.default_parameters self.alg.set_params(**param) self.model_output.update(pd.Series(param)) if cv_folds: self.cv_folds = cv_folds def export_model_base(self, IDcol, mstr): self.create_ensemble_dir() filename = os.path.join(os.getcwd(),'ensemble/%s_models.csv'%mstr) comb_series = self.classification_output.append( self.model_output, verify_integrity=True) if os.path.exists(filename): models = pd.read_csv(filename) mID = int(max(models['ModelID'])+1) else: mID = 1 models = pd.DataFrame(columns=comb_series.index) comb_series['ModelID'] = mID models = models.append(comb_series, ignore_index=True) models.to_csv(filename, index=False, float_format="%.5f") model_filename = os.path.join( os.getcwd(), 'ensemble/%s_%s.csv'%(mstr,str(mID)) ) self.submission(IDcol, model_filename) @abstractmethod def algo_specific_fit(self,printTopN): #Run algo-specific commands pass @abstractmethod def export_model(self,IDcol): #Export models pass ##################################################################### ##### LOGISTIC REGRESSION ##################################################################### class logistic_regression(base_classification): """ Create a Logistic Regression model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'C':1.0, 'tol':0.0001, 'solver':'liblinear', 'multi_class':'ovr', 'class_weight':'balanced' } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=LogisticRegression(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output=pd.Series(self.default_parameters) self.model_output['Coefficients'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): if self.num_target_class==2: coeff = pd.Series( np.concatenate( (self.alg.intercept_, self.alg.coef_[0])), index=["Intercept"]+self.predictors ) self.plot_abs_coefficients(coeff,printTopN) else: cols=['coef_class_%d'%i for i in range(0,self.num_target_class)] coeff = pd.DataFrame( self.alg.coef_.T, columns=cols, index=self.predictors ) print('\nCoefficients:') print(coeff) self.model_output['Coefficients'] = coeff.to_string() def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'logistic_reg') ##################################################################### ##### DECISION TREE ##################################################################### class decision_tree(base_classification): """ Create a Decision Tree model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'criterion':'gini', 'max_depth':None, 'min_samples_split':2, 'min_samples_leaf':1, 'max_features':None, 'random_state':None, 'max_leaf_nodes':None, 'class_weight':'balanced' } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=DecisionTreeClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output = pd.Series(self.default_parameters) self.model_output['Feature_Importance'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): # print Feature Importance Scores table self.feature_imp = pd.Series( self.alg.feature_importances_, index=self.predictors ).sort_values(ascending=False) self.plot_feature_importance(printTopN) self.model_output['Feature_Importance'] = \ self.feature_imp.to_string() def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'decision_tree') ## UNDER DEVELOPMENT CODE FOR PRINTING TREES # def get_tree(self): # return self.alg.tree_ # Print the tree in visual format # Inputs: # export_pdf - if True, a pdf will be exported with the # filename as specified in pdf_name argument # pdf_name - name of the pdf file if export_pdf is True # def printTree(self, export_pdf=True, file_name="Decision_Tree.pdf"): # dot_data = StringIO() # export_graphviz( # self.alg, out_file=dot_data, feature_names=self.predictors, # filled=True, rounded=True, special_characters=True) # export_graphviz( # self.alg, out_file='data.dot', feature_names=self.predictors, # filled=True, rounded=True, special_characters=True # ) # graph = pydot.graph_from_dot_data(dot_data.getvalue()) # if export_pdf: # graph.write_pdf(file_name) # return graph ##################################################################### ##### RANDOM FOREST ##################################################################### class random_forest(base_classification): """ Create a Random Forest model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'n_estimators':10, 'criterion':'gini', 'max_depth':None, 'min_samples_split':2, 'min_samples_leaf':1, 'max_features':'auto', 'max_leaf_nodes':None, 'oob_score':False, 'random_state':None, 'class_weight':'balanced', 'n_jobs':1 } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=RandomForestClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output = pd.Series(self.default_parameters) self.model_output['Feature_Importance'] = "-" self.model_output['OOB_Score'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): # print Feature Importance Scores table self.feature_imp = pd.Series( self.alg.feature_importances_, index=self.predictors ).sort_values(ascending=False) self.plot_feature_importance(printTopN) self.model_output['Feature_Importance'] = \ self.feature_imp.to_string() if self.model_output['oob_score']: print('OOB Score : %f' % self.alg.oob_score_) self.model_output['OOB_Score'] = self.alg.oob_score_ def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'random_forest') ##################################################################### ##### EXTRA TREES FOREST ##################################################################### class extra_trees(base_classification): """ Create an Extra Trees Forest model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'n_estimators':10, 'criterion':'gini', 'max_depth':None, 'min_samples_split':2, 'min_samples_leaf':1, 'max_features':'auto', 'max_leaf_nodes':None, 'oob_score':False, 'random_state':None, 'class_weight':'balanced', 'n_jobs':1 } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=ExtraTreesClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics) self.model_output = pd.Series(self.default_parameters) self.model_output['Feature_Importance'] = "-" self.model_output['OOB_Score'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): # print Feature Importance Scores table self.feature_imp = pd.Series( self.alg.feature_importances_, index=self.predictors ).sort_values(ascending=False) self.plot_feature_importance(printTopN) self.model_output['Feature_Importance'] = \ self.feature_imp.to_string() if self.model_output['oob_score']: print('OOB Score : %f' % self.alg.oob_score_) self.model_output['OOB_Score'] = self.alg.oob_score_ def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'extra_trees') ##################################################################### ##### ADABOOST CLASSIFICATION ##################################################################### class adaboost(base_classification): """ Create an AdaBoost model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'n_estimators':50, 'learning_rate':1.0 } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=AdaBoostClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output = pd.Series(self.default_parameters) self.model_output['Feature_Importance'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): # print Feature Importance Scores table self.feature_imp = pd.Series( self.alg.feature_importances_, index=self.predictors ).sort_values(ascending=False) self.plot_feature_importance(printTopN) self.model_output['Feature_Importance'] = \ self.feature_imp.to_string() plt.xlabel("AdaBoost Estimator") plt.ylabel("Estimator Error") plt.plot( range(1, int(self.model_output['n_estimators'])+1), self.alg.estimator_errors_ ) plt.plot( range(1, int(self.model_output['n_estimators'])+1), self.alg.estimator_weights_ ) plt.legend( ['estimator_errors','estimator_weights'], loc='upper left' ) plt.show(block=False) def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'adaboost') ##################################################################### ##### GRADIENT BOOSTING MACHINE ##################################################################### class gradient_boosting_machine(base_classification): """ Create a GBM (Gradient Boosting Machine) model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'loss':'deviance', 'learning_rate':0.1, 'n_estimators':100, 'subsample':1.0, 'min_samples_split':2, 'min_samples_leaf':1, 'max_depth':3, 'init':None, 'random_state':None, 'max_features':None, 'verbose':0, 'max_leaf_nodes':None, 'warm_start':False, 'presort':'auto' } def __init__( self, data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=GradientBoostingClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds, scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output = pd.Series(self.default_parameters) self.model_output['Feature_Importance'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) def algo_specific_fit(self, printTopN): # print Feature Importance Scores table self.feature_imp = pd.Series( self.alg.feature_importances_, index=self.predictors ).sort_values(ascending=False) self.plot_feature_importance(printTopN) self.model_output['Feature_Importance'] = \ self.feature_imp.to_string() #Plot OOB estimates if subsample <1: if self.model_output['subsample']<1: plt.xlabel("GBM Iteration") plt.ylabel("Score") plt.plot( range(1, self.model_output['n_estimators']+1), self.alg.oob_improvement_ ) plt.legend(['oob_improvement_','train_score_'], loc='upper left') plt.show(block=False) def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'gbm') ##################################################################### ##### Support Vector Classifier ##################################################################### class linear_svm(base_classification): """ Create a Linear Support Vector Machine model using implementation from scikit-learn. Parameters ---------- data_block : object of type easyML.DataBlock An object of easyML's DataBlock class. You should first create an object of that class and then pass it as a parameter. predictors : list of strings, default [] A list of columns which are to be used as predictors (also called independent variables or features). The default value is an empty list because these need not always be defined at the time of class initialization. The set_predictors method can be used later but before creating any predictive model. cv_folds : int, default 5 The number of folds to be created while performing CV. This parameter can be adjusted later by passing using the set_parameters method scoring_metric : str, default 'accuracy' The scoring metric to be used for evaluating the model across the different functions available. The available options are - 'accuracy' - 'auc' - 'log_loss' - 'f1' - 'average_precision' additional_display_metrics : list of string, default [] A list of additional display metrics to be shown for the test and train dataframes in data_block. Note: - These will be just shown for user reference and not actually used for model evaluation - The same available options as scoring_metric apply """ default_parameters = { 'C':1.0, 'kernel':'linear', #modified not default 'degree':3, 'gamma':'auto', 'coef0':0.0, 'shrinking':True, 'probability':False, 'tol':0.001, 'cache_size':200, 'class_weight':None, 'verbose':False, 'max_iter':-1, 'decision_function_shape':None, 'random_state':None } def __init__( self,data_block, predictors=[],cv_folds=10, scoring_metric='accuracy',additional_display_metrics=[]): base_classification.__init__( self, alg=SVC(), data_block=data_block, predictors=predictors, cv_folds=cv_folds,scoring_metric=scoring_metric, additional_display_metrics=additional_display_metrics ) self.model_output=pd.Series(self.default_parameters) self.model_output['Coefficients'] = "-" #Set parameters to default values: self.set_parameters(set_default=True) #Check if probabilities enables: if not self.alg.get_params()['probability']: self.probabilities_available = False def algo_specific_fit(self, printTopN): if self.num_target_class==2: coeff = pd.Series( np.concatenate((self.alg.intercept_,self.alg.coef_[0])), index=["Intercept"]+self.predictors ) #print the chart of importances self.plot_abs_coefficients(coeff, printTopN) else: cols=['coef_class_%d'%i for i in range(0,self.num_target_class)] coeff = pd.DataFrame( self.alg.coef_.T, columns=cols, index=self.predictors ) print('\nCoefficients:') print(coeff) self.model_output['Coefficients'] = coeff.to_string() def export_model(self, IDcol): #Export the model into the model file as well as create a submission #with model index. This will be used for creating an ensemble. self.export_model_base(IDcol,'linear_svm') ##################################################################### ##### XGBOOST ALGORITHM (UNDER DEVELOPMENT) ##################################################################### """ #Define the class similar to the overall classification class class XGBoost(base_classification): def __init__(self,data_block, predictors, cv_folds=5,scoring_metric_skl='accuracy', scoring_metric_xgb='error'): base_classification.__init__(self, alg=XGBClassifier(), data_block=data_block, predictors=predictors,cv_folds=cv_folds,scoring_metric=scoring_metric_skl) #Define default parameters on your own: self.default_parameters = { 'max_depth':3, 'learning_rate':0.1, 'n_estimators':100, 'silent':True, 'objective':"binary:logistic", 'nthread':1, 'gamma':0, 'min_child_weight':1, 'max_delta_step':0, 'subsample':1, 'colsample_bytree':1, 'colsample_bylevel':1, 'reg_alpha':0, 'reg_lambda':1, 'scale_pos_weight':1, 'base_score':0.5, 'seed':0, 'missing':None } self.model_output = pd.Series(self.default_parameters) #create DMatrix with nan as missing by default. If later this is changed then the matrix are re-calculated. If not set,will give error is nan present in data self.xgtrain = xgb.DMatrix(self.datablock.train[self.predictors].values, label=self.datablock.train[self.datablock.target].values, missing=np.nan) self.xgtest = xgb.DMatrix(self.datablock.predict[self.predictors].values, missing=np.nan) self.num_class = 2 self.n_estimators = 10 self.eval_metric = 'error' self.train_predictions = [] self.train_pred_prob = [] self.test_predictions = [] self.test_pred_prob = [] self.num_target_class = len(data_train[target].unique()) #define scoring metric: self.scoring_metric_skl = scoring_metric_skl # if scoring_metric_xgb=='f1': # self.scoring_metric_xgb = self.xg_f1 # else: self.scoring_metric_xgb = scoring_metric_xgb #Define a Series object to store generic classification model outcomes; self.classification_output=pd.Series(index=['ModelID','Accuracy','CVScore_mean','CVScore_std','SpecifiedMetric', 'ActualScore (manual entry)','CVMethod','ConfusionMatrix','Predictors']) #feature importance (g_scores) self.feature_imp = None self.model_output['Feature_Importance'] = "-" #Set parameters to default values: # self.set_parameters(set_default=True) #Define custom f1 score metric: def xg_f1(self,y,t): t = t.get_label() y_bin = [1. if y_cont > 0.5 else 0. for y_cont in y] # binaryzing your output return 'f1',metrics.f1_score(t,y_bin) # Set the parameters of the model. # Note: # > only the parameters to be updated are required to be passed # > if set_default is True, the passed parameters are ignored and default parameters are set which are defined in scikit learn module def set_parameters(self, param=None, set_default=False): if set_default: param = self.default_parameters self.alg.set_params(**param) self.model_output.update(pd.Series(param)) if 'missing' in param: #update DMatrix with missing: self.xgtrain = xgb.DMatrix(self.datablock.train[self.predictors].values, label=self.datablock.train[self.datablock.target].values, missing=param['missing']) self.xgtest = xgb.DMatrix(self.datablock.predict[self.predictors].values, missing=param['missing']) if 'num_class' in param: self.num_class = param['num_class'] if 'cv_folds' in param: self.cv_folds = param['cv_folds'] # def set_feature_importance(self): # fs = self.alg.booster().get_fscore() # ftimp = pd.DataFrame({ # 'feature': fs.keys(), # 'importance_Score': fs.values() # }) # ftimp['predictor'] = ftimp['feature'].apply(lambda x: self.predictors[int(x[1:])]) # self.feature_imp = pd.Series(ftimp['importance_Score'].values, index=ftimp['predictor'].values) #Fit the model using predictors and parameters specified before. # Inputs: # printCV - if True, CV is performed def modelfit(self, performCV=True, useTrainCV=False, TrainCVFolds=5, early_stopping_rounds=20, show_progress=True, printTopN='all'): if useTrainCV: xgb_param = self.alg.get_xgb_params() if self.num_class>2: xgb_param['num_class']=self.num_class if self.scoring_metric_xgb=='f1': cvresult = xgb.cv(xgb_param,self.xgtrain, num_boost_round=self.alg.get_params()['n_estimators'], nfold=self.cv_folds, metrics=['auc'],feval=self.xg_f1,early_stopping_rounds=early_stopping_rounds, show_progress=show_progress) else: cvresult = xgb.cv(xgb_param,self.xgtrain, num_boost_round=self.alg.get_params()['n_estimators'], nfold=self.cv_folds, metrics=self.scoring_metric_xgb, early_stopping_rounds=early_stopping_rounds, show_progress=show_progress) self.alg.set_params(n_estimators=cvresult.shape[0]) print(self.alg.get_params()) obj = self.alg.fit(self.datablock.train[self.predictors], self.datablock.train[self.datablock.target], eval_metric=self.eval_metric) #Print feature importance # self.set_feature_importance() self.feature_imp = pd.Series(self.alg.booster().get_fscore()).sort_values(ascending=False) num_print = len(self.feature_imp) if printTopN is not None: if printTopN != 'all': num_print = min(printTopN,len(self.feature_imp)) self.feature_imp.iloc[:num_print].plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score') plt.show(block=False) self.model_output['Feature_Importance'] = self.feature_imp.to_string() #Get train predictions: self.train_predictions = self.alg.predict(self.datablock.train[self.predictors]) self.train_pred_prob = self.alg.predict_proba(self.datablock.train[self.predictors]) #Get test predictions: self.test_predictions = self.alg.predict(self.datablock.predict[self.predictors]) self.test_pred_prob = self.alg.predict_proba(self.datablock.predict[self.predictors]) self.calc_model_characteristics(performCV) self.printReport() #Export the model into the model file as well as create a submission with model index. This will be used for creating an ensemble. def export_model(self, IDcol): self.create_ensemble_dir() filename = os.path.join(os.getcwd(),'ensemble/xgboost_models.csv') comb_series = self.classification_output.append(self.model_output, verify_integrity=True) if os.path.exists(filename): models = pd.read_csv(filename) mID = int(max(models['ModelID'])+1) else: mID = 1 models = pd.DataFrame(columns=comb_series.index) comb_series['ModelID'] = mID models = models.append(comb_series, ignore_index=True) models.to_csv(filename, index=False, float_format="%.5f") model_filename = os.path.join(os.getcwd(),'ensemble/xgboost_'+str(mID)+'.csv') self.submission(IDcol, model_filename) """ ##################################################################### ##### ENSEMBLE (UNDER DEVELOPMENT) ##################################################################### """ #Class for creating an ensemble model using the exported files from previous classes class Ensemble_Classification(object): #initialize the object with target variable def __init__(self, target, IDcol): self.datablock.target = target self.data = None self.relationMatrix_chi2 = None self.relationMatrix_diff = None self.IDcol = IDcol #create the ensemble data # Inputs: # models - dictionary with key as the model name and values as list containing the model numbers to be ensebled # Note: all the models in the list specified should be present in the ensemble folder. Please cross-check once def create_ensemble_data(self, models): self.data = None for key, value in models.items(): # print key,value for i in value: fname = key + '_' + str(i) fpath = os.path.join(os.getcwd(), 'ensemble', fname+'.csv') tempdata = pd.read_csv(fpath) tempdata = tempdata.rename(columns = {self.datablock.target: fname}) if self.data is None: self.data = tempdata else: self.data = self.data.merge(tempdata,on=self.data.columns[0]) #get the data being used for ensemble def get_ensemble_data(self): return self.data #Check chisq test between different model outputs to check which combination of ensemble will generate better results. Note: Models with high correlation should not be combined together. def chisq_independence(self, col1, col2, verbose = False): contingencyTable = pd.crosstab(col1,col2,margins=True) if len(col1)/((contingencyTable.shape[0] - 1) * (contingencyTable.shape[1] - 1)) <= 5: return "TMC" expected = contingencyTable.copy() total = contingencyTable.loc["All","All"] # print contingencyTable.index # print contingencyTable.columns for m in contingencyTable.index: for n in contingencyTable.columns: expected.loc[m,n] = contingencyTable.loc[m,"All"]*contingencyTable.loc["All",n]/float(total) if verbose: print('\n\nAnalysis of models: %s and %s' % (col1.name, col2.name)) print('Contingency Table:') print(contingencyTable) # print '\nExpected Frequency Table:' # print expected observed_frq = contingencyTable.iloc[:-1,:-1].values.ravel() expected_frq = expected.iloc[:-1,:-1].values.ravel() numless1 = len(expected_frq[expected_frq<1]) perless5 = len(expected_frq[expected_frq<5])/len(expected_frq) #Adjustment in DOF so use the 1D chisquare to matrix shaped data; -1 in row n col because of All row and column matrixadj = (contingencyTable.shape[0] - 1) + (contingencyTable.shape[1] - 1) - 2 # print matrixadj pval = np.round(chisquare(observed_frq, expected_frq,ddof=matrixadj)[1],3) if numless1>0 or perless5>=0.2: return str(pval)+"*" else: return pval #Create the relational matrix between models def check_ch2(self, verbose=False): col = self.data.columns[1:] self.relationMatrix_chi2 = pd.DataFrame(index=col,columns=col) for i in range(len(col)): for j in range(i, len(col)): if i==j: self.relationMatrix_chi2.loc[col[i],col[j]] = 1 else: pval = self.chisq_independence(self.data.iloc[:,i+1],self.data.iloc[:,j+1], verbose=verbose) self.relationMatrix_chi2.loc[col[j],col[i]] = pval self.relationMatrix_chi2.loc[col[i],col[j]] = pval print('\n\n Relational Matrix (based on Chi-square test):') print(self.relationMatrix_chi2) def check_diff(self): col = self.data.columns[1:] self.relationMatrix_diff = pd.DataFrame(index=col,columns=col) nrow = self.data.shape[0] for i in range(len(col)): for j in range(i, len(col)): if i==j: self.relationMatrix_diff.loc[col[i],col[j]] = '-' else: # print col[i],col[j] pval = "{0:.2%}".format(sum( np.abs(self.data.iloc[:,i+1]-self.data.iloc[:,j+1]) )/float(nrow)) self.relationMatrix_diff.loc[col[j],col[i]] = pval self.relationMatrix_diff.loc[col[i],col[j]] = pval print('\n\n Relational Matrix (based on perc difference):') print(self.relationMatrix_diff) #Generate submission for the ensembled model by combining the mentioned models. # Inputs: # models_to_use - list with model names to use; if None- all models will be used # filename - the filename of the final submission # Note: the models should be odd in nucmber to allow a clear winner in terms of mode otherwise the first element will be chosen def submission(self, models_to_use=None, filename="Submission_ensemble.csv"): #if models_to_use is None then use all, else filter: if models_to_use is None: data_ens = self.data else: data_ens = self.data[models_to_use] def mode_ens(x): return int(mode(x).mode[0]) ensemble_output = data_ens.apply(mode_ens,axis=1) submission = pd.DataFrame({ self.IDcol: self.data.iloc[:,0], self.datablock.target: ensemble_output }) submission.to_csv(filename, index=False) """
bsd-3-clause
sumanthjamadagni/OZ_Examples
IsothermCalculation.py
1
1267
import numpy as np import sys import matplotlib.pyplot as plt import matplotlib #from itertools import cycle import OZ.Potentials as Potentials import OZ.OZ_Functions as OZF import OZ.PP_Functions as PP_Functions #import FigFuncs #import HNC import OZ.RHNC as RHNC from OZ.SinglePointCalculation import * dr = 0.02 nr = 2048 sig=1.0 r,k = OZF.Create_r_k(dr, nr) Ur_ref = Potentials.WCAPotential(r,sig=1.0, eps=1.0, m=12, n=6) Ur = Potentials.LJPotential(r,sig=1.0, eps=1.0, m=12, n=6) T = float(sys.argv[1]) OutFile = sys.argv[2] OutFileH = open(OutFile, 'w') branch = sys.argv[3] if branch == 'vap': rho_array = np.arange(0.01,0.25,0.005) elif branch == 'liq' rho_array = np.arange(0.80,0.50,-0.01) else: print "Unknown branch. Has to be 'vap' or 'liq'" sys.exit() cr_guess = None i = 0 for rho in rho_array: i = i + 1 try: ListHeader, ListValues , gr, cr, Sk = SinglePointCalculation(r, k, Ur, Ur_ref, T, rho, OutFile=None, cr_guess = cr_guess) cr_guess = cr print ListHeader print ListValues if i == 1: OutFileH.write(OZF.ListToTabbedStr(ListHeader)) OutFileH.write(OZF.ListToTabbedStr(ListValues)) except TypeError: break
gpl-3.0
igsr/igsr_analysis
scripts/VCF/QC/BENCHMARKING_TRUESET/calc_gtconcordance.py
1
1544
#!/usr/bin/env python3 ''' author: ernesto lowy ([email protected]) This script will parse a .tsv file in the following format: POS REF ALT GT 18948096 G T 0|1 18948246 G A 0|1 18948886 T A 0|1 18949107 A G 0|1 ... And will generate some contigency tables in order to have a feeling on the Genotype concordance of the 2 call sets USAGE: python calc_gtconcordance <igsr.tsv> <giab.tsv> ''' import pandas as pd import sys #read-in the igsr tsv file DF_igsr=pd.read_csv(sys.argv[1], sep='\t',index_col=0,names=['POS','REF','ALT','GT']) #read-in the GIAB tsv file DF_giab=pd.read_csv(sys.argv[2], sep='\t',index_col=0,names=['POS','REF','ALT','GT']) #combine 2 dataframes by index final_DF=pd.merge(DF_igsr,DF_giab,left_index=True, right_index=True, suffixes=('_igsr', '_giab')) # contigency tables for ref and alt alleles ref_table=pd.crosstab(final_DF.REF_igsr, final_DF.REF_giab) print("\n###Correspondence between REF alleles:") print(ref_table) alt_table=pd.crosstab(final_DF.ALT_igsr, final_DF.ALT_giab) print("\n###Correspondence between ALT alleles:") print(alt_table) #contigency tables for genotype concordance gt_tables=pd.crosstab(final_DF.GT_igsr, final_DF.GT_giab,margins=True, margins_name="Total") print("\n### GT concordance (counts):") print(gt_tables) gt_tables=pd.crosstab(final_DF.GT_igsr, final_DF.GT_giab,margins=True, margins_name="Total",normalize=True).round(4)*100 print("\n### GT concordance (%):") print(gt_tables)
apache-2.0
iproduct/course-social-robotics
11-dnn-keras/venv/Lib/site-packages/pandas/tests/indexes/timedeltas/test_scalar_compat.py
3
4487
""" Tests for TimedeltaIndex methods behaving like their Timedelta counterparts """ import numpy as np import pytest from pandas._libs.tslibs.offsets import INVALID_FREQ_ERR_MSG from pandas import Index, Series, Timedelta, TimedeltaIndex, timedelta_range import pandas._testing as tm class TestVectorizedTimedelta: def test_tdi_total_seconds(self): # GH#10939 # test index rng = timedelta_range("1 days, 10:11:12.100123456", periods=2, freq="s") expt = [ 1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9, 1 * 86400 + 10 * 3600 + 11 * 60 + 13 + 100123456.0 / 1e9, ] tm.assert_almost_equal(rng.total_seconds(), Index(expt)) # test Series ser = Series(rng) s_expt = Series(expt, index=[0, 1]) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) # with nat ser[1] = np.nan s_expt = Series( [1 * 86400 + 10 * 3600 + 11 * 60 + 12 + 100123456.0 / 1e9, np.nan], index=[0, 1], ) tm.assert_series_equal(ser.dt.total_seconds(), s_expt) # with both nat ser = Series([np.nan, np.nan], dtype="timedelta64[ns]") tm.assert_series_equal( ser.dt.total_seconds(), Series([np.nan, np.nan], index=[0, 1]) ) def test_tdi_round(self): td = timedelta_range(start="16801 days", periods=5, freq="30Min") elt = td[1] expected_rng = TimedeltaIndex( [ Timedelta("16801 days 00:00:00"), Timedelta("16801 days 00:00:00"), Timedelta("16801 days 01:00:00"), Timedelta("16801 days 02:00:00"), Timedelta("16801 days 02:00:00"), ] ) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq="H"), expected_rng) assert elt.round(freq="H") == expected_elt msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): td.round(freq="foo") with pytest.raises(ValueError, match=msg): elt.round(freq="foo") msg = "<MonthEnd> is a non-fixed frequency" with pytest.raises(ValueError, match=msg): td.round(freq="M") with pytest.raises(ValueError, match=msg): elt.round(freq="M") @pytest.mark.parametrize( "freq,msg", [ ("Y", "<YearEnd: month=12> is a non-fixed frequency"), ("M", "<MonthEnd> is a non-fixed frequency"), ("foobar", "Invalid frequency: foobar"), ], ) def test_tdi_round_invalid(self, freq, msg): t1 = timedelta_range("1 days", periods=3, freq="1 min 2 s 3 us") with pytest.raises(ValueError, match=msg): t1.round(freq) with pytest.raises(ValueError, match=msg): # Same test for TimedeltaArray t1._data.round(freq) # TODO: de-duplicate with test_tdi_round def test_round(self): t1 = timedelta_range("1 days", periods=3, freq="1 min 2 s 3 us") t2 = -1 * t1 t1a = timedelta_range("1 days", periods=3, freq="1 min 2 s") t1c = TimedeltaIndex([1, 1, 1], unit="D") # note that negative times round DOWN! so don't give whole numbers for (freq, s1, s2) in [ ("N", t1, t2), ("U", t1, t2), ( "L", t1a, TimedeltaIndex( ["-1 days +00:00:00", "-2 days +23:58:58", "-2 days +23:57:56"] ), ), ( "S", t1a, TimedeltaIndex( ["-1 days +00:00:00", "-2 days +23:58:58", "-2 days +23:57:56"] ), ), ("12T", t1c, TimedeltaIndex(["-1 days", "-1 days", "-1 days"])), ("H", t1c, TimedeltaIndex(["-1 days", "-1 days", "-1 days"])), ("d", t1c, TimedeltaIndex([-1, -1, -1], unit="D")), ]: r1 = t1.round(freq) tm.assert_index_equal(r1, s1) r2 = t2.round(freq) tm.assert_index_equal(r2, s2) def test_components(self): rng = timedelta_range("1 days, 10:11:12", periods=2, freq="s") rng.components # with nat s = Series(rng) s[1] = np.nan result = s.dt.components assert not result.iloc[0].isna().all() assert result.iloc[1].isna().all()
gpl-2.0
mahak/spark
python/pyspark/pandas/tests/data_type_ops/test_binary_ops.py
7
6774
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd from pandas.api.types import CategoricalDtype from pyspark import pandas as ps from pyspark.pandas.config import option_context from pyspark.pandas.tests.data_type_ops.testing_utils import TestCasesUtils from pyspark.testing.pandasutils import PandasOnSparkTestCase class BinaryOpsTest(PandasOnSparkTestCase, TestCasesUtils): @property def pser(self): return pd.Series([b"1", b"2", b"3"]) @property def psser(self): return ps.from_pandas(self.pser) def test_add(self): psser = self.psser pser = self.pser self.assert_eq(psser + b"1", pser + b"1") self.assert_eq(psser + psser, pser + pser) self.assert_eq(psser + psser.astype("bytes"), pser + pser.astype("bytes")) self.assertRaises(TypeError, lambda: psser + "x") self.assertRaises(TypeError, lambda: psser + 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser + psser) self.assert_eq(self.psser + self.psser, self.pser + self.pser) def test_sub(self): self.assertRaises(TypeError, lambda: self.psser - "x") self.assertRaises(TypeError, lambda: self.psser - 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser - psser) def test_mul(self): self.assertRaises(TypeError, lambda: self.psser * "x") self.assertRaises(TypeError, lambda: self.psser * 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser * psser) def test_truediv(self): self.assertRaises(TypeError, lambda: self.psser / "x") self.assertRaises(TypeError, lambda: self.psser / 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser / psser) def test_floordiv(self): self.assertRaises(TypeError, lambda: self.psser // "x") self.assertRaises(TypeError, lambda: self.psser // 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser // psser) def test_mod(self): self.assertRaises(TypeError, lambda: self.psser % "x") self.assertRaises(TypeError, lambda: self.psser % 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser % psser) def test_pow(self): self.assertRaises(TypeError, lambda: self.psser ** "x") self.assertRaises(TypeError, lambda: self.psser ** 1) with option_context("compute.ops_on_diff_frames", True): for psser in self.pssers: self.assertRaises(TypeError, lambda: self.psser ** psser) def test_radd(self): self.assert_eq(b"1" + self.psser, b"1" + self.pser) self.assertRaises(TypeError, lambda: "x" + self.psser) self.assertRaises(TypeError, lambda: 1 + self.psser) def test_rsub(self): self.assertRaises(TypeError, lambda: "x" - self.psser) self.assertRaises(TypeError, lambda: 1 - self.psser) def test_rmul(self): self.assertRaises(TypeError, lambda: "x" * self.psser) self.assertRaises(TypeError, lambda: 2 * self.psser) def test_rtruediv(self): self.assertRaises(TypeError, lambda: "x" / self.psser) self.assertRaises(TypeError, lambda: 1 / self.psser) def test_rfloordiv(self): self.assertRaises(TypeError, lambda: "x" // self.psser) self.assertRaises(TypeError, lambda: 1 // self.psser) def test_rmod(self): self.assertRaises(TypeError, lambda: 1 % self.psser) def test_rpow(self): self.assertRaises(TypeError, lambda: "x" ** self.psser) self.assertRaises(TypeError, lambda: 1 ** self.psser) def test_and(self): self.assertRaises(TypeError, lambda: self.psser & True) self.assertRaises(TypeError, lambda: self.psser & False) self.assertRaises(TypeError, lambda: self.psser & self.psser) def test_rand(self): self.assertRaises(TypeError, lambda: True & self.psser) self.assertRaises(TypeError, lambda: False & self.psser) def test_or(self): self.assertRaises(TypeError, lambda: self.psser | True) self.assertRaises(TypeError, lambda: self.psser | False) self.assertRaises(TypeError, lambda: self.psser | self.psser) def test_ror(self): self.assertRaises(TypeError, lambda: True | self.psser) self.assertRaises(TypeError, lambda: False | self.psser) def test_from_to_pandas(self): data = [b"1", b"2", b"3"] pser = pd.Series(data) psser = ps.Series(data) self.assert_eq(pser, psser.to_pandas()) self.assert_eq(ps.from_pandas(pser), psser) def test_isnull(self): self.assert_eq(self.pser.isnull(), self.psser.isnull()) def test_astype(self): pser = self.pser psser = self.psser self.assert_eq(pd.Series(["1", "2", "3"]), psser.astype(str)) self.assert_eq(pser.astype("category"), psser.astype("category")) cat_type = CategoricalDtype(categories=[b"2", b"3", b"1"]) self.assert_eq(pser.astype(cat_type), psser.astype(cat_type)) if __name__ == "__main__": import unittest from pyspark.pandas.tests.data_type_ops.test_binary_ops import * # noqa: F401 try: import xmlrunner # type: ignore[import] testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
bmazin/ARCONS-pipeline
examples/Pal2012-sdss/sdssview_frameBlue.py
1
1595
from sdssgaussfitter import gaussfit import numpy as np from util import utils import matplotlib.pyplot as plt import sys ### this is used to view a single frame from display stack or psffit npz. Into the command type "python sdssview_frameBlue.py 3" to view image number 3. def aperture(startpx,startpy,radius=3): r = radius length = 2*r height = length allx = xrange(startpx-int(np.ceil(length/2.0)),startpx+int(np.floor(length/2.0))+1) ally = xrange(startpy-int(np.ceil(height/2.0)),startpy+int(np.floor(height/2.0))+1) pixx = [] pixy = [] mask=np.ones((46,44)) for x in allx: for y in ally: if (np.abs(x-startpx))**2+(np.abs(y-startpy))**2 <= (r)**2 and 0 <= y and y < 46 and 0 <= x and x < 44: mask[y,x]=0. return mask def gaussian(height, center_x, center_y, width_x, width_y,offset): """Returns a gaussian function with the given parameters""" width_x = float(width_x) width_y = float(width_y) return lambda x,y: height*np.exp(-(((center_x-x)/width_x)**2+((center_y-y)/width_y)**2)/2)+offset stackDict = np.load('/Scratch/dataProcessing/SDSS_J0926/Dec8ImageStackAllInt3Aperture510.npz') stack = stackDict['stack'] if len(sys.argv) == 1: print 'Useage: ',sys.argv[0],' iFrame' print """ set0 Frames 0-179 """ exit(1) iFrame = int(sys.argv[1]) frame = stack[:,:,iFrame] # plt.hist(np.ravel(frame),bins=100,range=(0,5000)) # plt.show() nanMask = np.isnan(frame) frame[nanMask] = 0 frame = np.ma.masked_array(frame,mask=nanMask) utils.plotArray(frame,cbar=True)
gpl-2.0
annahs/atmos_research
WHI_add_gc_co_to_db.py
1
13375
import matplotlib.pyplot as plt import numpy as np import os import sys from pprint import pprint from datetime import datetime from datetime import timedelta import pickle import copy from pyhdf.SD import SD, SDC, SDS import collections import calendar import mysql.connector #database tables ### filter_by_RH = True high_RH_limit = 90 if filter_by_RH == False: high_RH_limit = 101 #### #database connection cnx = mysql.connector.connect(user='root', password='Suresh15', host='localhost', database='black_carbon') cursor = cnx.cursor() calib_stability_uncertainty = 0.1 #fire times timezone = timedelta(hours = -8) fire_time1 = [datetime.strptime('2009/07/27 00:00', '%Y/%m/%d %H:%M'), datetime.strptime('2009/08/08 00:00', '%Y/%m/%d %H:%M')] #row_datetimes follwing Takahama et al (2011) doi:10.5194/acp-11-6367-2011 #PST fire_time1_UNIX_UTC_start = float(calendar.timegm((fire_time1[0]-timezone).utctimetuple())) fire_time1_UNIX_UTC_end = float(calendar.timegm((fire_time1[1]-timezone).utctimetuple())) fire_time2 = [datetime.strptime('2010/07/26 09:00', '%Y/%m/%d %H:%M'), datetime.strptime('2010/07/28 09:30', '%Y/%m/%d %H:%M')] #jason's BC clear report #PST fire_time2_UNIX_UTC_start = float(calendar.timegm((fire_time2[0]-timezone).utctimetuple())) fire_time2_UNIX_UTC_end = float(calendar.timegm((fire_time2[1]-timezone).utctimetuple())) ############Meaurements #get full rBC record (in PST and 10 min binned intervals) and put in dictionaries keyed by date rBC_24h_data = {} #does not include BB data rBC_BB_24h_data = {} rBC_FT_data_cluster_NPac = {} rBC_FT_data_cluster_SPac = {} rBC_FT_data_cluster_Cont = {} rBC_FT_data_cluster_LRT = {} rBC_FT_data_cluster_GBPS = {} rBC_FT_data_cluster_BB = {} ## #select data (spikes already rmoved) and exclude fire times SP2_data_query = ('SELECT * FROM whi_sp2_rbc_record_2009to2012_spikes_removed WHERE UNIX_GMT_ts NOT BETWEEN %(fire_time1_start)s AND %(fire_time1_end)s AND UNIX_GMT_ts NOT BETWEEN %(fire_time2_start)s AND %(fire_time2_end)s') query_terms ={ 'fire_time1_start':fire_time1_UNIX_UTC_start, 'fire_time1_end':fire_time1_UNIX_UTC_end, 'fire_time2_start':fire_time2_UNIX_UTC_start, 'fire_time2_end':fire_time2_UNIX_UTC_end } cursor.execute(SP2_data_query,query_terms) SP2_data = cursor.fetchall() start_hour = 4 #PST 20000 end_hour = 16 #PST 0800 for row in SP2_data: UNIX_UTC_ts = row[8] date_time_UTC = datetime.utcfromtimestamp(UNIX_UTC_ts) BC_mass_conc = row[3] BC_mass_conc_LL = row[4] BC_mass_conc_UL = row[5] #avoid high RH times if filter_by_RH == True: cursor.execute(('SELECT RH from whi_high_rh_times_2009to2012 where high_RH_start_time <= %s and high_RH_end_time > %s'),(UNIX_UTC_ts,UNIX_UTC_ts)) RH_data = cursor.fetchall() if len(RH_data): if RH_data[0] > high_RH_limit: continue #use night only data if start_hour <= date_time_UTC.hour < end_hour: cursor.execute(('SELECT * from whi_ft_cluster_times_2009to2012 where cluster_start_time <= %s and cluster_end_time >= %s'),(UNIX_UTC_ts,UNIX_UTC_ts)) cluster_data = cursor.fetchall() #we have a few samples from teh first day of 2009 and 2012 that are before our first cluster, so this ignores those . . if len(cluster_data) == 0: continue cluster_midtime = datetime.strptime(cluster_data[0][4], '%Y-%m-%d %H:%M:%S') cluster_number = cluster_data[0][3] #####get abs err if np.isnan(BC_mass_conc_LL): abs_err = np.nan else: abs_err = (BC_mass_conc-BC_mass_conc_LL) #add data to list in cluster dictionaries (1 list per cluster time early night/late night) if cluster_number == 9: correction_factor_for_massdistr = 1./0.5411 mass_distr_correction_error = 0.015 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = BC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluster_midtime in rBC_FT_data_cluster_SPac: rBC_FT_data_cluster_SPac[cluster_midtime].append(row_data) else: rBC_FT_data_cluster_SPac[cluster_midtime] = [row_data] if cluster_number == 4: correction_factor_for_massdistr = 1./0.4028 mass_distr_correction_error = 0.028 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = BC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluster_midtime in rBC_FT_data_cluster_Cont: rBC_FT_data_cluster_Cont[cluster_midtime].append(row_data) else: rBC_FT_data_cluster_Cont[cluster_midtime] = [row_data] if cluster_number in [6,8]: correction_factor_for_massdistr = 1./0.4626 mass_distr_correction_error = 0.032 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = BC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluster_midtime in rBC_FT_data_cluster_SPac: rBC_FT_data_cluster_SPac[cluster_midtime].append(row_data) else: rBC_FT_data_cluster_SPac[cluster_midtime] = [row_data] if cluster_number in [2,7]: correction_factor_for_massdistr = 1./0.5280 mass_distr_correction_error = 0.019 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = BC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluster_midtime in rBC_FT_data_cluster_LRT: rBC_FT_data_cluster_LRT[cluster_midtime].append(row_data) else: rBC_FT_data_cluster_LRT[cluster_midtime] = [row_data] if cluster_number in [1,3,5,10]: correction_factor_for_massdistr = 1./0.3525 mass_distr_correction_error = 0.015 #this is the uncertainty in the firt of the mass distribution for this period. from WHI_long_term_v2_size_distr_fitting_and_plotting.py corrected_mass_conc = BC_mass_conc*correction_factor_for_massdistr row_data = [corrected_mass_conc, abs_err+(corrected_mass_conc*(mass_distr_correction_error+calib_stability_uncertainty)) ] if cluster_midtime in rBC_FT_data_cluster_NPac: rBC_FT_data_cluster_NPac[cluster_midtime].append(row_data) else: rBC_FT_data_cluster_NPac[cluster_midtime] = [row_data] ##print data set lengths #for cluster in [rBC_FT_data_cluster_NPac,rBC_FT_data_cluster_SPac,rBC_FT_data_cluster_Cont,rBC_FT_data_cluster_GBPS,rBC_FT_data_cluster_LRT]: # print len(cluster) # data_pts = 0 # for midtime in cluster: # data_pts = data_pts + len(cluster[midtime]) # print data_pts # print '\n' #sys.exit() #6h rBC-meas avgs (FT data) SP2_6h_NPac = [] SP2_6h_SPac = [] SP2_6h_Cont = [] SP2_6h_LRT = [] SP2_6h_BB = [] SP2_6h_all_non_BB = [] all_dict = {} #6h means for date, mass_data in rBC_FT_data_cluster_NPac.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_NPac.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) if date in all_dict: print 'alert!',date else: all_dict[date] = [date_mean,date_mean_err] for date, mass_data in rBC_FT_data_cluster_SPac.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_SPac.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) if date in all_dict: print 'alert!',date else: all_dict[date] = [date_mean,date_mean_err] for date, mass_data in rBC_FT_data_cluster_Cont.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_Cont.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) if date in all_dict: print 'alert!',date else: all_dict[date] = [date_mean,date_mean_err] for date, mass_data in rBC_FT_data_cluster_LRT.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_LRT.append([date_mean,date_mean_err]) SP2_6h_all_non_BB.append([date_mean,date_mean_err]) if date in all_dict: print 'alert!',date else: all_dict[date] = [date_mean,date_mean_err] for date, mass_data in rBC_FT_data_cluster_BB.iteritems(): mass_concs = [row[0] for row in mass_data] mass_concs_abs_err = [row[1] for row in mass_data] date_mean = np.mean(mass_concs) date_mean_err = np.mean(mass_concs_abs_err)/date_mean SP2_6h_BB.append([date_mean,date_mean_err]) ###################GEOS-Chem ##sampling times sampling_times_file = 'C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/Junwei_runs/WHI_SP2_6h_rBC_mass_concs.txt' sampling_times = [] with open(sampling_times_file,'r') as f: f.readline() for line in f: newline = line.split() sampling_date = newline[0] sampling_time = newline[1] sampling_datetime = datetime(int(sampling_date[0:4]),int(sampling_date[5:7]),int(sampling_date[8:10]),int(sampling_time[0:2])) sampling_times.append(sampling_datetime+timedelta(hours=8)) #get into UTC GC_data = {} GC_runs = ['default','Vancouver_emission','wet_scavenging','no_biomass','All_together'] lat = 20 #20 corresponds to 50deg lon = 7 #7 corresponds to -122.5deg level = 9 #1-47 #9 is closest to WHI avg P (WHI 95% CI = 770-793) molar_mass_BC = 12.0107 #in g/mol ng_per_g = 10**9 R = 8.3144621 # in m3*Pa/(K*mol) GEOS_Chem_factor = 10**-9 #start_hour = 3 #end_hour = 15 GC_run = 'default' #the runs are 'default','Vancouver_emission','wet_scavenging','no_biomass','All_together' print GC_run data_dir = 'C:/Users/Sarah Hanna/Documents/Data/WHI long term record/GOES-Chem/Junwei_runs/' + GC_run +'/' os.chdir(data_dir) for file in os.listdir(data_dir): if file.endswith('.hdf'): file_year = int(file[2:6]) file_month = int(file[6:8]) file_day = int(file[8:10]) file_hour = int(file[11:13]) GC_datetime = datetime(file_year,file_month,file_day,file_hour) GC_UNIX_UTC_ts = calendar.timegm(GC_datetime.utctimetuple()) #avoid high RH times if filter_by_RH == True: cursor.execute(('SELECT RH from whi_high_rh_times_2009to2012 where high_RH_start_time <= %s and high_RH_end_time > %s'),(GC_UNIX_UTC_ts,GC_UNIX_UTC_ts)) RH_data = cursor.fetchone() if RH_data != None: if RH_data[0] > high_RH_limit: continue ############ if start_hour <= file_hour < end_hour: #ignore any times not in the 2000-0800 PST window (0400-1600 UTC) hdf_file = SD(file, SDC.READ) if start_hour <= file_hour < (start_hour+6): period_midtime = datetime(file_year,file_month,file_day,7) period_starttime = datetime(file_year,file_month,file_day,4) period_endtime = datetime(file_year,file_month,file_day,10) if (start_hour+6) <= file_hour < end_hour: period_midtime = datetime(file_year,file_month,file_day,13) period_starttime = datetime(file_year,file_month,file_day,10) period_endtime = datetime(file_year,file_month,file_day,16) GC_CO = hdf_file.select('IJ-AVG-$::CO') #3d CO data in ppbv (molBC/molAIR) CO_ppbv = GC_CO[level,lat,lon] GC_CO_lvl = CO_ppbv#*GEOS_Chem_factor*(101325/(R*273)) #101325/(R*273) corrects to STP if period_midtime in all_dict: #this excludes BB times already if period_midtime not in GC_data: GC_data[period_midtime] = [] GC_data[period_midtime].append(CO_ppbv) hdf_file.end() #query to add 6h mass ocnc data add_6h_data = ('INSERT INTO whi_gc_co_data' '(UNIX_UTC_start_time,UNIX_UTC_end_time,CO_ppbv,RH_threshold,GC_scenario)' 'VALUES (%(UNIX_UTC_start_time)s,%(UNIX_UTC_end_time)s,%(CO_ppbv)s,%(RH_threshold)s,%(GC_scenario)s)' ) #get the means for each 6-h period for period_midtime in GC_data: period_starttime = period_midtime - timedelta(hours = 3) period_endtime = period_midtime + timedelta(hours = 3) CO_mean = np.mean(GC_data[period_midtime]) CO_data = { 'UNIX_UTC_start_time':float(calendar.timegm(period_starttime.utctimetuple())), 'UNIX_UTC_end_time':float(calendar.timegm(period_endtime.utctimetuple())), 'CO_ppbv':float(CO_mean), 'RH_threshold':high_RH_limit, 'GC_scenario': GC_run, } cursor.execute(('''UPDATE whi_gc_co_data SET CO_ppbv = %(CO_ppbv)s WHERE UNIX_UTC_start_time = %(UNIX_UTC_start_time)s AND UNIX_UTC_end_time = %(UNIX_UTC_end_time)s and GC_scenario = %(GC_scenario)s and RH_threshold = %(RH_threshold)s'''),(CO_data)) #cursor.execute(add_6h_data, CO_data) cnx.commit() cnx.close()
mit
cngo-github/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/polar.py
69
20981
import math import numpy as npy import matplotlib rcParams = matplotlib.rcParams from matplotlib.artist import kwdocd from matplotlib.axes import Axes from matplotlib import cbook from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import Formatter, Locator from matplotlib.transforms import Affine2D, Affine2DBase, Bbox, \ BboxTransformTo, IdentityTransform, Transform, TransformWrapper class PolarAxes(Axes): """ A polar graph projection, where the input dimensions are *theta*, *r*. Theta starts pointing east and goes anti-clockwise. """ name = 'polar' class PolarTransform(Transform): """ The base polar transform. This handles projection *theta* and *r* into Cartesian coordinate space *x* and *y*, but does not perform the ultimate affine transformation into the correct position. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): """ Create a new polar transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved polar space. """ Transform.__init__(self) self._resolution = resolution def transform(self, tr): xy = npy.zeros(tr.shape, npy.float_) t = tr[:, 0:1] r = tr[:, 1:2] x = xy[:, 0:1] y = xy[:, 1:2] x[:] = r * npy.cos(t) y[:] = r * npy.sin(t) return xy transform.__doc__ = Transform.transform.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): vertices = path.vertices t = vertices[:, 0:1] t[t != (npy.pi * 2.0)] %= (npy.pi * 2.0) if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]: return Path(self.transform(vertices), path.codes) ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path.__doc__ = Transform.transform_path.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def inverted(self): return PolarAxes.InvertedPolarTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class PolarAffine(Affine2DBase): """ The affine part of the polar projection. Scales the output so that maximum radius rests on the edge of the axes circle. """ def __init__(self, scale_transform, limits): u""" *limits* is the view limit of the data. The only part of its bounds that is used is ymax (for the radius maximum). The theta range is always fixed to (0, 2\u03c0). """ Affine2DBase.__init__(self) self._scale_transform = scale_transform self._limits = limits self.set_children(scale_transform, limits) self._mtx = None def get_matrix(self): if self._invalid: limits_scaled = self._limits.transformed(self._scale_transform) ymax = limits_scaled.ymax affine = Affine2D() \ .scale(0.5 / ymax) \ .translate(0.5, 0.5) self._mtx = affine.get_matrix() self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class InvertedPolarTransform(Transform): """ The inverse of the polar transform, mapping Cartesian coordinate space *x* and *y* back to *theta* and *r*. """ input_dims = 2 output_dims = 2 is_separable = False def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution def transform(self, xy): x = xy[:, 0:1] y = xy[:, 1:] r = npy.sqrt(x*x + y*y) theta = npy.arccos(x / r) theta = npy.where(y < 0, 2 * npy.pi - theta, theta) return npy.concatenate((theta, r), 1) transform.__doc__ = Transform.transform.__doc__ def inverted(self): return PolarAxes.PolarTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__ class ThetaFormatter(Formatter): u""" Used to format the *theta* tick labels. Converts the native unit of radians into degrees and adds a degree symbol (\u00b0). """ def __call__(self, x, pos=None): # \u00b0 : degree symbol if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % ((x / npy.pi) * 180.0) else: # we use unicode, rather than mathtext with \circ, so # that it will work correctly with any arbitrary font # (assuming it has a degree sign), whereas $5\circ$ # will only work correctly with one of the supported # math fonts (Computer Modern and STIX) return u"%0.0f\u00b0" % ((x / npy.pi) * 180.0) class RadialLocator(Locator): """ Used to locate radius ticks. Ensures that all ticks are strictly positive. For all other tasks, it delegates to the base :class:`~matplotlib.ticker.Locator` (which may be different depending on the scale of the *r*-axis. """ def __init__(self, base): self.base = base def __call__(self): ticks = self.base() return [x for x in ticks if x > 0] def autoscale(self): return self.base.autoscale() def pan(self, numsteps): return self.base.pan(numsteps) def zoom(self, direction): return self.base.zoom(direction) def refresh(self): return self.base.refresh() RESOLUTION = 75 def __init__(self, *args, **kwargs): """ Create a new Polar Axes for a polar plot. """ self._rpad = 0.05 self.resolution = kwargs.pop('resolution', self.RESOLUTION) Axes.__init__(self, *args, **kwargs) self.set_aspect('equal', adjustable='box', anchor='C') self.cla() __init__.__doc__ = Axes.__init__.__doc__ def cla(self): Axes.cla(self) self.title.set_y(1.05) self.xaxis.set_major_formatter(self.ThetaFormatter()) angles = npy.arange(0.0, 360.0, 45.0) self.set_thetagrids(angles) self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator())) self.grid(rcParams['polaraxes.grid']) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') def _set_lim_and_transforms(self): self.transAxes = BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = TransformWrapper(IdentityTransform()) # A (possibly non-linear) projection on the (already scaled) data self.transProjection = self.PolarTransform(self.resolution) # An affine transformation on the data, generally to limit the # range of the axes self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim) # The complete data transformation stack -- from data all the # way to display coordinates self.transData = self.transScale + self.transProjection + \ (self.transProjectionAffine + self.transAxes) # This is the transform for theta-axis ticks. It is # equivalent to transData, except it always puts r == 1.0 at # the edge of the axis circle. self._xaxis_transform = ( self.transProjection + self.PolarAffine(IdentityTransform(), Bbox.unit()) + self.transAxes) # The theta labels are moved from radius == 0.0 to radius == 1.1 self._theta_label1_position = Affine2D().translate(0.0, 1.1) self._xaxis_text1_transform = ( self._theta_label1_position + self._xaxis_transform) self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1) self._xaxis_text2_transform = ( self._theta_label2_position + self._xaxis_transform) # This is the transform for r-axis ticks. It scales the theta # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to # 2pi. self._yaxis_transform = ( Affine2D().scale(npy.pi * 2.0, 1.0) + self.transData) # The r-axis labels are put at an angle and padded in the r-direction self._r_label1_position = Affine2D().translate(22.5, self._rpad) self._yaxis_text1_transform = ( self._r_label1_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) self._r_label2_position = Affine2D().translate(22.5, self._rpad) self._yaxis_text2_transform = ( self._r_label2_position + Affine2D().scale(1.0 / 360.0, 1.0) + self._yaxis_transform ) def get_xaxis_transform(self): return self._xaxis_transform def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'center', 'center' def get_xaxis_text2_transform(self, pad): return self._xaxis_text2_transform, 'center', 'center' def get_yaxis_transform(self): return self._yaxis_transform def get_yaxis_text1_transform(self, pad): return self._yaxis_text1_transform, 'center', 'center' def get_yaxis_text2_transform(self, pad): return self._yaxis_text2_transform, 'center', 'center' def _gen_axes_patch(self): return Circle((0.5, 0.5), 0.5) def set_rmax(self, rmax): self.viewLim.y1 = rmax angle = self._r_label1_position.to_values()[4] self._r_label1_position.clear().translate( angle, rmax * self._rpad) self._r_label2_position.clear().translate( angle, -rmax * self._rpad) def get_rmax(self): return self.viewLim.ymax def set_yscale(self, *args, **kwargs): Axes.set_yscale(self, *args, **kwargs) self.yaxis.set_major_locator( self.RadialLocator(self.yaxis.get_major_locator())) set_rscale = Axes.set_yscale set_rticks = Axes.set_yticks def set_thetagrids(self, angles, labels=None, frac=None, **kwargs): """ Set the angles at which to place the theta grids (these gridlines are equal along the theta dimension). *angles* is in degrees. *labels*, if not None, is a ``len(angles)`` list of strings of the labels to use at each angle. If *labels* is None, the labels will be ``fmt %% angle`` *frac* is the fraction of the polar axes radius at which to place the label (1 is the edge). Eg. 1.05 is outside the axes and 0.95 is inside the axes. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ angles = npy.asarray(angles, npy.float_) self.set_xticks(angles * (npy.pi / 180.0)) if labels is not None: self.set_xticklabels(labels) if frac is not None: self._theta_label1_position.clear().translate(0.0, frac) self._theta_label2_position.clear().translate(0.0, 1.0 / frac) for t in self.xaxis.get_ticklabels(): t.update(kwargs) return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels() set_thetagrids.__doc__ = cbook.dedent(set_thetagrids.__doc__) % kwdocd def set_rgrids(self, radii, labels=None, angle=None, rpad=None, **kwargs): """ Set the radial locations and labels of the *r* grids. The labels will appear at radial distances *radii* at the given *angle* in degrees. *labels*, if not None, is a ``len(radii)`` list of strings of the labels to use at each radius. If *labels* is None, the built-in formatter will be used. *rpad* is a fraction of the max of *radii* which will pad each of the radial labels in the radial direction. Return value is a list of tuples (*line*, *label*), where *line* is :class:`~matplotlib.lines.Line2D` instances and the *label* is :class:`~matplotlib.text.Text` instances. kwargs are optional text properties for the labels: %(Text)s ACCEPTS: sequence of floats """ radii = npy.asarray(radii) rmin = radii.min() if rmin <= 0: raise ValueError('radial grids must be strictly positive') self.set_yticks(radii) if labels is not None: self.set_yticklabels(labels) if angle is None: angle = self._r_label1_position.to_values()[4] if rpad is not None: self._rpad = rpad rmax = self.get_rmax() self._r_label1_position.clear().translate(angle, self._rpad * rmax) self._r_label2_position.clear().translate(angle, -self._rpad * rmax) for t in self.yaxis.get_ticklabels(): t.update(kwargs) return self.yaxis.get_ticklines(), self.yaxis.get_ticklabels() set_rgrids.__doc__ = cbook.dedent(set_rgrids.__doc__) % kwdocd def set_xscale(self, scale, *args, **kwargs): if scale != 'linear': raise NotImplementedError("You can not set the xscale on a polar plot.") def set_xlim(self, *args, **kargs): # The xlim is fixed, no matter what you do self.viewLim.intervalx = (0.0, npy.pi * 2.0) def format_coord(self, theta, r): """ Return a format string formatting the coordinate using Unicode characters. """ theta /= math.pi # \u03b8: lower-case theta # \u03c0: lower-case pi # \u00b0: degree symbol return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r) def get_data_ratio(self): ''' Return the aspect ratio of the data itself. For a polar plot, this should always be 1.0 ''' return 1.0 ### Interactive panning def can_zoom(self): """ Return True if this axes support the zoom box """ return False def start_pan(self, x, y, button): angle = self._r_label1_position.to_values()[4] / 180.0 * npy.pi mode = '' if button == 1: epsilon = npy.pi / 45.0 t, r = self.transData.inverted().transform_point((x, y)) if t >= angle - epsilon and t <= angle + epsilon: mode = 'drag_r_labels' elif button == 3: mode = 'zoom' self._pan_start = cbook.Bunch( rmax = self.get_rmax(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), r_label_angle = self._r_label1_position.to_values()[4], x = x, y = y, mode = mode ) def end_pan(self): del self._pan_start def drag_pan(self, button, key, x, y): p = self._pan_start if p.mode == 'drag_r_labels': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) # Deal with theta dt0 = t - startt dt1 = startt - t if abs(dt1) < abs(dt0): dt = abs(dt1) * sign(dt0) * -1.0 else: dt = dt0 * -1.0 dt = (dt / npy.pi) * 180.0 rpad = self._r_label1_position.to_values()[5] self._r_label1_position.clear().translate( p.r_label_angle - dt, rpad) self._r_label2_position.clear().translate( p.r_label_angle - dt, -rpad) elif p.mode == 'zoom': startt, startr = p.trans_inverse.transform_point((p.x, p.y)) t, r = p.trans_inverse.transform_point((x, y)) dr = r - startr # Deal with r scale = r / startr self.set_rmax(p.rmax / scale) # These are a couple of aborted attempts to project a polar plot using # cubic bezier curves. # def transform_path(self, path): # twopi = 2.0 * npy.pi # halfpi = 0.5 * npy.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = npy.ceil(maxtd / halfpi) # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # vertices = self.transform(vertices) # result = npy.zeros((len(vertices) * 3 - 2, 2), npy.float_) # codes = mpath.Path.CURVE4 * npy.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((npy.sqrt(2.0) - 1.0) / 3.0) # kappa = 0.5 # p0 = vertices[0:-1] # p1 = vertices[1: ] # x0 = p0[:, 0:1] # y0 = p0[:, 1: ] # b0 = ((y0 - x0) - y0) / ((x0 + y0) - x0) # a0 = y0 - b0*x0 # x1 = p1[:, 0:1] # y1 = p1[:, 1: ] # b1 = ((y1 - x1) - y1) / ((x1 + y1) - x1) # a1 = y1 - b1*x1 # x = -(a0-a1) / (b0-b1) # y = a0 + b0*x # xk = (x - x0) * kappa + x0 # yk = (y - y0) * kappa + y0 # result[1::3, 0:1] = xk # result[1::3, 1: ] = yk # xk = (x - x1) * kappa + x1 # yk = (y - y1) * kappa + y1 # result[2::3, 0:1] = xk # result[2::3, 1: ] = yk # result[3::3] = p1 # print vertices[-2:] # print result[-2:] # return mpath.Path(result, codes) # twopi = 2.0 * npy.pi # halfpi = 0.5 * npy.pi # vertices = path.vertices # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # maxtd = td.max() # interpolate = npy.ceil(maxtd / halfpi) # print "interpolate", interpolate # if interpolate > 1.0: # vertices = self.interpolate(vertices, interpolate) # result = npy.zeros((len(vertices) * 3 - 2, 2), npy.float_) # codes = mpath.Path.CURVE4 * npy.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type) # result[0] = vertices[0] # codes[0] = mpath.Path.MOVETO # kappa = 4.0 * ((npy.sqrt(2.0) - 1.0) / 3.0) # tkappa = npy.arctan(kappa) # hyp_kappa = npy.sqrt(kappa*kappa + 1.0) # t0 = vertices[0:-1, 0] # t1 = vertices[1: , 0] # r0 = vertices[0:-1, 1] # r1 = vertices[1: , 1] # td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1)) # td_scaled = td / (npy.pi * 0.5) # rd = r1 - r0 # r0kappa = r0 * kappa * td_scaled # r1kappa = r1 * kappa * td_scaled # ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled # result[1::3, 0] = t0 + (tkappa * td_scaled) # result[1::3, 1] = r0*hyp_kappa # # result[1::3, 1] = r0 / npy.cos(tkappa * td_scaled) # npy.sqrt(r0*r0 + ravg_kappa*ravg_kappa) # result[2::3, 0] = t1 - (tkappa * td_scaled) # result[2::3, 1] = r1*hyp_kappa # # result[2::3, 1] = r1 / npy.cos(tkappa * td_scaled) # npy.sqrt(r1*r1 + ravg_kappa*ravg_kappa) # result[3::3, 0] = t1 # result[3::3, 1] = r1 # print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa # result = self.transform(result) # return mpath.Path(result, codes) # transform_path_non_affine = transform_path
agpl-3.0
Insight-book/data-science-from-scratch
scratch/gradient_descent.py
3
5298
from scratch.linear_algebra import Vector, dot def sum_of_squares(v: Vector) -> float: """Computes the sum of squared elements in v""" return dot(v, v) from typing import Callable def difference_quotient(f: Callable[[float], float], x: float, h: float) -> float: return (f(x + h) - f(x)) / h def square(x: float) -> float: return x * x def derivative(x: float) -> float: return 2 * x def estimate_gradient(f: Callable[[Vector], float], v: Vector, h: float = 0.0001): return [partial_difference_quotient(f, v, i, h) for i in range(len(v))] import random from scratch.linear_algebra import distance, add, scalar_multiply def gradient_step(v: Vector, gradient: Vector, step_size: float) -> Vector: """Moves `step_size` in the `gradient` direction from `v`""" assert len(v) == len(gradient) step = scalar_multiply(step_size, gradient) return add(v, step) def sum_of_squares_gradient(v: Vector) -> Vector: return [2 * v_i for v_i in v] # x ranges from -50 to 49, y is always 20 * x + 5 inputs = [(x, 20 * x + 5) for x in range(-50, 50)] def linear_gradient(x: float, y: float, theta: Vector) -> Vector: slope, intercept = theta predicted = slope * x + intercept # The prediction of the model. error = (predicted - y) # error is (predicted - actual) squared_error = error ** 2 # We'll minimize squared error grad = [2 * error * x, 2 * error] # using its gradient. return grad from typing import TypeVar, List, Iterator T = TypeVar('T') # this allows us to type "generic" functions def minibatches(dataset: List[T], batch_size: int, shuffle: bool = True) -> Iterator[List[T]]: """Generates `batch_size`-sized minibatches from the dataset""" # Start indexes 0, batch_size, 2 * batch_size, ... batch_starts = [start for start in range(0, len(dataset), batch_size)] if shuffle: random.shuffle(batch_starts) # shuffle the batches for start in batch_starts: end = start + batch_size yield dataset[start:end] def main(): xs = range(-10, 11) actuals = [derivative(x) for x in xs] estimates = [difference_quotient(square, x, h=0.001) for x in xs] # plot to show they're basically the same import matplotlib.pyplot as plt plt.title("Actual Derivatives vs. Estimates") plt.plot(xs, actuals, 'rx', label='Actual') # red x plt.plot(xs, estimates, 'b+', label='Estimate') # blue + plt.legend(loc=9) # plt.show() plt.close() def partial_difference_quotient(f: Callable[[Vector], float], v: Vector, i: int, h: float) -> float: """Returns the i-th partial difference quotient of f at v""" w = [v_j + (h if j == i else 0) # add h to just the ith element of v for j, v_j in enumerate(v)] return (f(w) - f(v)) / h # "Using the Gradient" example # pick a random starting point v = [random.uniform(-10, 10) for i in range(3)] for epoch in range(1000): grad = sum_of_squares_gradient(v) # compute the gradient at v v = gradient_step(v, grad, -0.01) # take a negative gradient step print(epoch, v) assert distance(v, [0, 0, 0]) < 0.001 # v should be close to 0 # First "Using Gradient Descent to Fit Models" example from scratch.linear_algebra import vector_mean # Start with random values for slope and intercept. theta = [random.uniform(-1, 1), random.uniform(-1, 1)] learning_rate = 0.001 for epoch in range(5000): # Compute the mean of the gradients grad = vector_mean([linear_gradient(x, y, theta) for x, y in inputs]) # Take a step in that direction theta = gradient_step(theta, grad, -learning_rate) print(epoch, theta) slope, intercept = theta assert 19.9 < slope < 20.1, "slope should be about 20" assert 4.9 < intercept < 5.1, "intercept should be about 5" # Minibatch gradient descent example theta = [random.uniform(-1, 1), random.uniform(-1, 1)] for epoch in range(1000): for batch in minibatches(inputs, batch_size=20): grad = vector_mean([linear_gradient(x, y, theta) for x, y in batch]) theta = gradient_step(theta, grad, -learning_rate) print(epoch, theta) slope, intercept = theta assert 19.9 < slope < 20.1, "slope should be about 20" assert 4.9 < intercept < 5.1, "intercept should be about 5" # Stochastic gradient descent example theta = [random.uniform(-1, 1), random.uniform(-1, 1)] for epoch in range(100): for x, y in inputs: grad = linear_gradient(x, y, theta) theta = gradient_step(theta, grad, -learning_rate) print(epoch, theta) slope, intercept = theta assert 19.9 < slope < 20.1, "slope should be about 20" assert 4.9 < intercept < 5.1, "intercept should be about 5" if __name__ == "__main__": main()
unlicense
fzalkow/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
bhargav/scikit-learn
sklearn/neighbors/tests/test_approximate.py
55
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
bikong2/scikit-learn
examples/svm/plot_svm_margin.py
318
2328
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy + a * margin yy_up = yy - a * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
roaminsight/roamresearch
Papers/Mittens/bootstrap.py
2
13431
from numpy.random import randint from scipy.stats import norm import numpy as np import warnings class InstabilityWarning(UserWarning): """Issued when results may be unstable.""" pass # On import, make sure that InstabilityWarnings are not filtered out. warnings.simplefilter('always',InstabilityWarning) def ci(data, statfunction=np.average, alpha=0.05, n_samples=10000, method='bca', output='lowhigh', epsilon=0.001, multi=None): """ Given a set of data ``data``, and a statistics function ``statfunction`` that applies to that data, computes the bootstrap confidence interval for ``statfunction`` on that data. Data points are assumed to be delineated by axis 0. Parameters ---------- data: array_like, shape (N, ...) OR tuple of array_like all with shape (N, ...) Input data. Data points are assumed to be delineated by axis 0. Beyond this, the shape doesn't matter, so long as ``statfunction`` can be applied to the array. If a tuple of array_likes is passed, then samples from each array (along axis 0) are passed in order as separate parameters to the statfunction. The type of data (single array or tuple of arrays) can be explicitly specified by the multi parameter. statfunction: function (data, weights=(weights, optional)) -> value This function should accept samples of data from ``data``. It is applied to these samples individually. If using the ABC method, the function _must_ accept a named ``weights`` parameter which will be an array_like with weights for each sample, and must return a _weighted_ result. Otherwise this parameter is not used or required. Note that numpy's np.average accepts this. (default=np.average) alpha: float or iterable, optional The percentiles to use for the confidence interval (default=0.05). If this is a float, the returned values are (alpha/2, 1-alpha/2) percentile confidence intervals. If it is an iterable, alpha is assumed to be an iterable of each desired percentile. n_samples: float, optional The number of bootstrap samples to use (default=10000) method: string, optional The method to use: one of 'pi', 'bca', or 'abc' (default='bca') output: string, optional The format of the output. 'lowhigh' gives low and high confidence interval values. 'errorbar' gives transposed abs(value-confidence interval value) values that are suitable for use with matplotlib's errorbar function. (default='lowhigh') epsilon: float, optional (only for ABC method) The step size for finite difference calculations in the ABC method. Ignored for all other methods. (default=0.001) multi: boolean, optional If False, assume data is a single array. If True, assume data is a tuple/other iterable of arrays of the same length that should be sampled together. If None, decide based on whether the data is an actual tuple. (default=None) Returns ------- confidences: tuple of floats The confidence percentiles specified by alpha Calculation Methods ------------------- 'pi': Percentile Interval (Efron 13.3) The percentile interval method simply returns the 100*alphath bootstrap sample's values for the statistic. This is an extremely simple method of confidence interval calculation. However, it has several disadvantages compared to the bias-corrected accelerated method, which is the default. 'bca': Bias-Corrected Accelerated Non-Parametric (Efron 14.3) (default) This method is much more complex to explain. However, it gives considerably better results, and is generally recommended for normal situations. Note that in cases where the statistic is smooth, and can be expressed with weights, the ABC method will give approximated results much, much faster. 'abc': Approximate Bootstrap Confidence (Efron 14.4, 22.6) This method provides approximated bootstrap confidence intervals without actually taking bootstrap samples. This requires that the statistic be smooth, and allow for weighting of individual points with a weights= parameter (note that np.average allows this). This is _much_ faster than all other methods for situations where it can be used. Examples -------- To calculate the confidence intervals for the mean of some numbers: >> boot.ci( np.randn(100), np.average ) Given some data points in arrays x and y calculate the confidence intervals for all linear regression coefficients simultaneously: >> boot.ci( (x,y), scipy.stats.linregress ) References ---------- Efron, An Introduction to the Bootstrap. Chapman & Hall 1993 """ # Deal with the alpha values if np.iterable(alpha): alphas = np.array(alpha) else: alphas = np.array([alpha/2,1-alpha/2]) if multi == None: if isinstance(data, tuple): multi = True else: multi = False # Ensure that the data is actually an array. This isn't nice to pandas, # but pandas seems much much slower and the indexes become a problem. if multi == False: data = np.array(data) tdata = (data,) else: tdata = tuple( np.array(x) for x in data ) # Deal with ABC *now*, as it doesn't need samples. if method == 'abc': n = tdata[0].shape[0]*1.0 nn = tdata[0].shape[0] I = np.identity(nn) ep = epsilon / n*1.0 p0 = np.repeat(1.0/n,nn) t1 = np.zeros(nn); t2 = np.zeros(nn) try: t0 = statfunction(*tdata,weights=p0) except TypeError as e: raise TypeError("statfunction does not accept correct arguments for ABC ({0})".format(e.message)) # There MUST be a better way to do this! for i in range(0,nn): di = I[i] - p0 tp = statfunction(*tdata,weights=p0+ep*di) tm = statfunction(*tdata,weights=p0-ep*di) t1[i] = (tp-tm)/(2*ep) t2[i] = (tp-2*t0+tm)/ep**2 sighat = np.sqrt(np.sum(t1**2))/n a = (np.sum(t1**3))/(6*n**3*sighat**3) delta = t1/(n**2*sighat) cq = (statfunction(*tdata,weights=p0+ep*delta)-2*t0+statfunction(*tdata,weights=p0-ep*delta))/(2*sighat*ep**2) bhat = np.sum(t2)/(2*n**2) curv = bhat/sighat-cq z0 = norm.ppf(2*norm.cdf(a)*norm.cdf(-curv)) Z = z0+norm.ppf(alphas) za = Z/(1-a*Z)**2 # stan = t0 + sighat * norm.ppf(alphas) abc = np.zeros_like(alphas) for i in range(0,len(alphas)): abc[i] = statfunction(*tdata,weights=p0+za[i]*delta) if output == 'lowhigh': return abc elif output == 'errorbar': return abs(abc-statfunction(tdata))[np.newaxis].T else: raise ValueError("Output option {0} is not supported.".format(output)) # We don't need to generate actual samples; that would take more memory. # Instead, we can generate just the indexes, and then apply the statfun # to those indexes. bootindexes = bootstrap_indexes( tdata[0], n_samples ) stat = np.array([statfunction(*(x[indexes] for x in tdata)) for indexes in bootindexes]) stat.sort(axis=0) # Percentile Interval Method if method == 'pi': avals = alphas # Bias-Corrected Accelerated Method elif method == 'bca': # The value of the statistic function applied just to the actual data. ostat = statfunction(*tdata) # The bias correction value. z0 = norm.ppf( ( 1.0*np.sum(stat < ostat, axis=0) ) / n_samples ) # Statistics of the jackknife distribution jackindexes = jackknife_indexes(tdata[0]) jstat = [statfunction(*(x[indexes] for x in tdata)) for indexes in jackindexes] jmean = np.mean(jstat,axis=0) # Acceleration value a = np.sum( (jmean - jstat)**3, axis=0 ) / ( 6.0 * np.sum( (jmean - jstat)**2, axis=0)**1.5 ) zs = z0 + norm.ppf(alphas).reshape(alphas.shape+(1,)*z0.ndim) avals = norm.cdf(z0 + zs/(1-a*zs)) else: raise ValueError("Method {0} is not supported.".format(method)) nvals = np.round((n_samples-1)*avals).astype('int') if np.any(nvals==0) or np.any(nvals==n_samples-1): warnings.warn("Some values used extremal samples; results are probably unstable.", InstabilityWarning) elif np.any(nvals<10) or np.any(nvals>=n_samples-10): warnings.warn("Some values used top 10 low/high samples; results may be unstable.", InstabilityWarning) if output == 'lowhigh': if nvals.ndim == 1: # All nvals are the same. Simple broadcasting return stat[nvals] else: # Nvals are different for each data point. Not simple broadcasting. # Each set of nvals along axis 0 corresponds to the data at the same # point in other axes. return stat[(nvals, np.indices(nvals.shape)[1:].squeeze())] elif output == 'errorbar': if nvals.ndim == 1: return abs(statfunction(data)-stat[nvals])[np.newaxis].T else: return abs(statfunction(data)-stat[(nvals, np.indices(nvals.shape)[1:])])[np.newaxis].T else: raise ValueError("Output option {0} is not supported.".format(output)) def ci_abc(data, stat=lambda x,y: np.average(x,weights=y), alpha=0.05, epsilon = 0.001): """ .. note:: Deprecated. This functionality is now rolled into ci. Given a set of data ``data``, and a statistics function ``statfunction`` that applies to that data, computes the non-parametric approximate bootstrap confidence (ABC) interval for ``stat`` on that data. Data points are assumed to be delineated by axis 0. Parameters ---------- data: array_like, shape (N, ...) Input data. Data points are assumed to be delineated by axis 0. Beyond this, the shape doesn't matter, so long as ``statfunction`` can be applied to the array. stat: function (data, weights) -> value The _weighted_ statistic function. This must accept weights, unlike for other methods. alpha: float or iterable, optional The percentiles to use for the confidence interval (default=0.05). If this is a float, the returned values are (alpha/2, 1-alpha/2) percentile confidence intervals. If it is an iterable, alpha is assumed to be an iterable of each desired percentile. epsilon: float The step size for finite difference calculations. (default=0.001) Returns ------- confidences: tuple of floats The confidence percentiles specified by alpha References ---------- Efron, An Introduction to the Bootstrap. Chapman & Hall 1993 bootstrap R package: http://cran.r-project.org/web/packages/bootstrap/ """ # Deal with the alpha values if not np.iterable(alpha): alpha = np.array([alpha/2,1-alpha/2]) else: alpha = np.array(alpha) # Ensure that the data is actually an array. This isn't nice to pandas, # but pandas seems much much slower and the indexes become a problem. data = np.array(data) n = data.shape[0]*1.0 nn = data.shape[0] I = np.identity(nn) ep = epsilon / n*1.0 p0 = np.repeat(1.0/n,nn) t1 = np.zeros(nn); t2 = np.zeros(nn) t0 = stat(data,p0) # There MUST be a better way to do this! for i in range(0,nn): di = I[i] - p0 tp = stat(data,p0+ep*di) tm = stat(data,p0-ep*di) t1[i] = (tp-tm)/(2*ep) t2[i] = (tp-2*t0+tm)/ep**2 sighat = np.sqrt(np.sum(t1**2))/n a = (np.sum(t1**3))/(6*n**3*sighat**3) delta = t1/(n**2*sighat) cq = (stat(data,p0+ep*delta)-2*t0+stat(data,p0-ep*delta))/(2*sighat*ep**2) bhat = np.sum(t2)/(2*n**2) curv = bhat/sighat-cq z0 = norm.ppf(2*norm.cdf(a)*norm.cdf(-curv)) Z = z0+norm.ppf(alpha) za = Z/(1-a*Z)**2 # stan = t0 + sighat * norm.ppf(alpha) abc = np.zeros_like(alpha) for i in range(0,len(alpha)): abc[i] = stat(data,p0+za[i]*delta) return abc def bootstrap_indexes(data, n_samples=10000): """ Given data points data, where axis 0 is considered to delineate points, return an array where each row is a set of bootstrap indexes. This can be used as a list of bootstrap indexes as well. """ return randint(data.shape[0],size=(n_samples,data.shape[0]) ) def jackknife_indexes(data): """ Given data points data, where axis 0 is considered to delineate points, return a list of arrays where each array is a set of jackknife indexes. For a given set of data Y, the jackknife sample J[i] is defined as the data set Y with the ith data point deleted. """ base = np.arange(0,len(data)) return (np.delete(base,i) for i in base) def subsample_indexes(data, n_samples=1000, size=0.5): """ Given data points data, where axis 0 is considered to delineate points, return a list of arrays where each array is indexes a subsample of the data of size ``size``. If size is >= 1, then it will be taken to be an absolute size. If size < 1, it will be taken to be a fraction of the data size. If size == -1, it will be taken to mean subsamples the same size as the sample (ie, permuted samples) """ if size == -1: size = len(data) elif (size < 1) and (size > 0): size = round(size*len(data)) elif size > 1: pass else: raise ValueError("size cannot be {0}".format(size)) base = np.tile(np.arange(len(data)),(n_samples,1)) for sample in base: np.random.shuffle(sample) return base[:,0:size]
apache-2.0
jakejhansen/minesweeper_solver
policy_gradients/full_6x6_CNN/train.py
1
10287
import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.ops.nn import relu, softmax import gym import pickle from sklearn.preprocessing import normalize import sys import os sys.path.append('../../') from minesweeper_tk import Minesweeper model = os.path.realpath(__file__).split('/')[-2] # training settings epochs = 100000 # number of training batches batch_size = 200 # number of timesteps in a batch rollout_limit = 50 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.00005 # you know this by now #0.001, #5600: 78% win --> LR: 0.0001 #6801: 87% win --> LR: 0.00002 early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ condensed epochs = 100000 # number of training batches batch_size = 400 # number of timesteps in a batch rollout_limit = 50 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.00004 # you know this by now #0.0005 early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ """ 261 epocs to learn 2 specific board (overfit) epochs = 10000 # number of training batches batch_size = 200 # number of timesteps in a batch rollout_limit = 130 # max rollout length discount_factor = 0 # reward discount factor (gamma), 1.0 = no discount learning_rate = 0.001 # you know this by now early_stop_loss = 0 # stop training if loss < early_stop_loss, 0 or False to disable """ # setup policy network n = 6 n_inputs = n*n*10 n_hidden = 6*6*8 n_hidden2 = 220 n_hidden3 = 220 n_hidden4 = 220 n_outputs = n*n tf.reset_default_graph() states_pl = tf.placeholder(tf.float32, [None, n_inputs], name='states_pl') actions_pl = tf.placeholder(tf.int32, [None, 2], name='actions_pl') advantages_pl = tf.placeholder(tf.float32, [None], name='advantages_pl') learning_rate_pl = tf.placeholder(tf.float32, name='learning_rate_pl') input_layer = tf.reshape(states_pl, [-1, n, n, 10]) conv1 = tf.layers.conv2d(inputs=input_layer,filters=18,kernel_size=[5, 5],padding="same", activation=tf.nn.relu) conv2 = tf.layers.conv2d(inputs=conv1,filters=36,kernel_size=[3, 3],padding="same", activation=tf.nn.relu) conv2_flat = tf.contrib.layers.flatten(conv2) l_hidden = tf.layers.dense(inputs=conv2_flat, units=n_hidden, activation=relu, name='l_hidden') l_hidden2 = tf.layers.dense(inputs=l_hidden, units=n_hidden2, activation=relu, name='l_hidden2') l_hidden3 = tf.layers.dense(inputs=l_hidden2, units=n_hidden3, activation=relu, name='l_hidden3') l_out = tf.layers.dense(inputs=l_hidden3, units=n_outputs, activation=softmax, name='l_out') # print network print('states_pl:', states_pl.get_shape()) print('actions_pl:', actions_pl.get_shape()) print('advantages_pl:', advantages_pl.get_shape()) print('l_hidden:', l_hidden.get_shape()) print('l_hidden2:', l_hidden2.get_shape()) print('l_hidden3:', l_hidden3.get_shape()) print('l_out:', l_out.get_shape()) total_parameters = 0 for variable in tf.trainable_variables(): # shape is an array of tf.Dimension #import IPython #IPython.embed() name = variable.name shape = variable.get_shape() print(name, shape, len(shape)) variable_parameters = 1 for dim in shape: #print(dim) variable_parameters *= dim.value print(variable_parameters) total_parameters += variable_parameters print(total_parameters) # define loss and optimizer loss_f = -tf.reduce_mean(tf.multiply(tf.log(tf.gather_nd(l_out, actions_pl)), advantages_pl)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate_pl, beta1=0.8, beta2=0.92) train_f = optimizer.minimize(loss_f) saver = tf.train.Saver() # we use this later to save the model # test forward pass from minesweeper_tk import Minesweeper env = Minesweeper(display=False, ROWS = n, COLS = n, MINES = 6, OUT = "FULL", rewards = {"win" : 1, "loss" : -1, "progress" : 0.9, "noprogress" : -0.3, "YOLO" : -0.3}) state = env.stateConverter(env.get_state()).flatten() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) action_probabilities = sess.run(fetches=l_out, feed_dict={states_pl: [state]}) print(action_probabilities) # helper functions def get_rollout(sess, env, rollout_limit=None, stochastic=False, seed=None): """Generate rollout by iteratively evaluating the current policy on the environment.""" rollout_limit = rollout_limit env.reset() s = env.stateConverter(env.get_state()).flatten() states, actions, rewards = [], [], [] for i in range(rollout_limit): a = get_action(sess, s, stochastic) s1, r, done, _ = env.step(a) states.append(s) actions.append(a) rewards.append(r) s = s1 if done: break return states, actions, rewards, i+1 def get_action(sess, state, stochastic=False): """Choose an action, given a state, with the current policy network.""" a_prob = sess.run(fetches=l_out, feed_dict={states_pl: np.atleast_2d(state)}) if stochastic: # sample action from distribution return (np.cumsum(np.asarray(a_prob)) > np.random.rand()).argmax() else: # select action with highest probability return a_prob.argmax() def get_advantages(rewards, rollout_limit, discount_factor, eps=1e-12): """Compute advantages""" returns = get_returns(rewards, rollout_limit, discount_factor) # standardize columns of returns to get advantages advantages = (returns - np.mean(returns, axis=0)) / (np.std(returns, axis=0) + eps) # restore original rollout lengths advantages = [adv[:len(rewards[i])] for i, adv in enumerate(advantages)] return advantages def get_returns(rewards, rollout_limit, discount_factor): """Compute the cumulative discounted rewards, a.k.a. returns.""" returns = np.zeros((len(rewards), rollout_limit)) for i, r in enumerate(rewards): returns[i, len(r) - 1] = r[-1] for j in reversed(range(len(r)-1)): returns[i,j] = r[j] + discount_factor * returns[i,j+1] return returns def get_winrate(sess, env): games = 0 moves = 0 stuck = 0 won_games = 0 lost_games = 0 r = 0 while games < 1000: while True: s = env.stateConverter(env.get_state()).flatten() if r < 0: a = get_action(sess, s, stochastic=True) else: a = get_action(sess, s, stochastic=False) moves += 1 s, r, done, _ = env.step(a) if r == 1: won_games += 1 if r == -1: lost_games += 1 if done: games += 1 env.reset() moves = 0 break elif moves >= 30: stuck += 1 games += 1 env.lost = env.lost + 1 env.reset() moves = 0 break return(won_games/games) # train policy network try: statistics = [] win_rate = 0 win_rate_best = 0 with tf.Session() as sess: #Load last model try: stats = stats = pickle.load(open("stats.p", "rb")) saver.restore(sess, "{}.ckpt".format(model)) epoch_start = stats[len(stats)-1][0] env.nb_actions = stats[len(stats)-1][1] win_rate = stats[len(stats)-1][4] win_rate_best = win_rate except: print("Couldn't find old model") sess.run(tf.global_variables_initializer()) epoch_start = 0 for epoch in range(epoch_start, epochs): # generate rollouts until batch_size total timesteps are collected states, actions, rewards = [], [], [] timesteps = 0 while timesteps < batch_size: _rollout_limit = min(rollout_limit, batch_size - timesteps) # limit rollout to match batch_size s, a, r, t = get_rollout(sess, env, rollout_limit, stochastic=True, seed=epoch) states.append(s) actions.append(a) rewards.append(r) timesteps += t # compute advantages advantages = get_advantages(rewards, rollout_limit, discount_factor) # policy gradient update loss, _ = sess.run(fetches=[loss_f, train_f], feed_dict={ states_pl: np.concatenate(states), actions_pl: np.column_stack((np.arange(timesteps), np.concatenate(actions))), advantages_pl: np.concatenate(advantages), learning_rate_pl: learning_rate }) # store and print training statistics mtr = np.mean([np.sum(r) for r in rewards]) statistics.append([epoch, env.get_nbactions(), mtr, loss, win_rate]) if epoch % 10 == 0: print('%4d. training reward: %6.2f, loss: %7.4f' % (epoch+1, mtr, loss)) if epoch % 100 == 0: saver.save(sess, "{}.ckpt".format(model)) if epoch % 400 == 0: #Get win-rate win_rate = get_winrate(sess, env) print(win_rate) if win_rate > win_rate_best: saver.save(sess, "{}_best.ckpt".format(model)) print('done') # save session try: stats = pickle.load(open("stats.p", "rb")) for i in range(len(statistics)): stats.append(statistics[i]) statistics = stats except: print("No old model data found, saving into new file") pickle.dump(statistics, open("stats.p", "wb")) except KeyboardInterrupt: print('Saving Statistics') try: stats = pickle.load(open("stats.p", "rb")) for i in range(len(statistics)): stats.append(statistics[i]) statistics = stats except: print("No old model data found, saving into new file") pickle.dump(statistics, open("stats.p", "wb"))
mit
jp-barron/Susi_Simulation
tools/pyBAR_converter_old.py
2
10125
"""This script converts a hdf5 table into a CERN ROOT Ttree. """ import tables as tb import numpy as np import ctypes import progressbar import os import math import ROOT as r from pybar.fei4 import register_utils from pybar.analysis.RawDataConverter import data_struct def get_charge_calibration(tdc_calibation_file, plsr_dac_calibation_file): with tb.openFile(tdc_calibation_file, mode="r") as in_file_calibration_h5: tdc_calibration, tdc_error = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 1], in_file_calibration_h5.root.HitOrCalibration[:, :, :, 3] tot_calibration, tot_error = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 0], in_file_calibration_h5.root.HitOrCalibration[:, :, :, 2] tdc_calibration_values = in_file_calibration_h5.root.HitOrCalibration.attrs.scan_parameter_values[:] global_config = register_utils.parse_global_config(plsr_dac_calibation_file) c_high, vcal_c0, vcal_c1 = global_config['C_Inj_High'], global_config['Vcal_Coeff_0'], global_config['Vcal_Coeff_1'] charge_calibration_values = (vcal_c0 + vcal_c1 * tdc_calibration_values) * c_high / 0.16022 return charge_calibration_values, tdc_calibration, tdc_error, tot_calibration, tot_error def create_hit_table(input_file_name, tdc_calibation_file, plsr_dac_calibation_file, n_sub_files=8): # loops over all root files and merges the data into a hdf5 file aligned at the event number print 'Converting data from CERN ROOT TTree to hdf5 table' charge_calibration_values, tdc_calibration, tdc_error, tot_calibration, tot_error = get_charge_calibration(tdc_calibation_file, plsr_dac_calibation_file) # add all files that have the input_file_name praefix and load their data input_file_names = [input_file_name + '_t%d.root' % index for index in range(n_sub_files) if os.path.isfile(input_file_name + '_t%d.root' % index)] n_files = len(input_file_names) input_files_root = [r.TFile(file_name, 'read') for file_name in input_file_names] pixel_digits = [input_file_root.Get('EventData').Get('Pixel Digits') for input_file_root in input_files_root] n_hits = [pixel_digit.GetEntries() for pixel_digit in pixel_digits] # total pixel hits to analyze n_total_hits = sum(n_hits) with tb.open_file(input_file_name + '_interpreted.h5', 'w') as out_file_h5: hit_table = out_file_h5.create_table(out_file_h5.root, name='Hits', description=data_struct.HitInfoTable, title='hit_data', filters=tb.Filters(complib='blosc', complevel=5, fletcher32=False)) # tmp data structures to be filles by ROOT data = {} for index, pixel_digit in enumerate(pixel_digits): column_data = {} for branch in pixel_digit.GetListOfBranches(): # loop over the branches column_data[branch.GetName()] = np.zeros(shape=1, dtype=np.int32) branch.SetAddress(column_data[branch.GetName()].data) data[index] = column_data # result data structur to be filles in the following loop hits = np.zeros((n_total_hits,), dtype=tb.dtype_from_descr(data_struct.HitInfoTable)) # get file index with lowest event number for pixel_digit in pixel_digits: pixel_digit.GetEntry(0) min_event_number = min([data[index]['event'][0] for index in range(n_files)]) actual_file_index = np.where(np.array([data[index]['event'][0] for index in range(n_files)]) == min_event_number)[0][0] indices = [0] * n_files table_index = 0 actual_data = data[actual_file_index] actual_event_number = actual_data['event'][0] last_valid_event_number = 0 last_tdc = 0 expected_event_number = actual_event_number indices[actual_file_index] = 1 progress_bar = progressbar.ProgressBar(widgets=['', progressbar.Percentage(), ' ', progressbar.Bar(marker='*', left='|', right='|'), ' ', progressbar.AdaptiveETA()], maxval=n_total_hits, term_width=80) progress_bar.start() def add_actual_data(actual_data, table_index): if actual_data['column'] >= 0 and actual_data['column'] < 80 and actual_data['row'] >= 0 and actual_data['row'] < 336: tdc_interpolation = interp1d(x=charge_calibration_values, y=tdc_calibration[actual_data['column'], actual_data['row']], kind='slinear', bounds_error=False, fill_value=0) tdc = tdc_interpolation(actual_data['charge']) tot_interpolation = interp1d(x=charge_calibration_values, y=tot_calibration[actual_data['column'], actual_data['row']], kind='slinear', bounds_error=False, fill_value=0) tot = tot_interpolation(actual_data['charge']) if math.isnan(tdc): # do not add hits where tdc is nan, these pixel have a very high threshold or do not work return table_index if tdc == 0 and actual_data['charge'] > 10000: # no calibration for TDC due to high charge, thus mark as TDC overflow event hits[table_index]['event_status'] |= 0b0000010000000000 tdc = 4095 if tot == 0 and actual_data['charge'] > 10000: # no calibration for TOT due to high charge, thus set max tot tot = 13 hits[table_index]['event_status'] |= 0b0000000100000000 hits[table_index]['event_number'] = actual_data['event'][0].astype(np.int64) hits[table_index]['column'] = (actual_data['column'] + 1).astype(np.uint8) hits[table_index]['row'] = (actual_data['row'] + 1).astype(np.uint16) hits[table_index]['TDC'] = int(actual_data['charge'] / 300.) hits[table_index]['tot'] = int(tot) table_index += 1 return table_index while True: actual_event_number = actual_data['event'][0] if (actual_event_number == expected_event_number or actual_event_number == expected_event_number - 1): # check if event number increases actual_index, actual_digits, actual_data = indices[actual_file_index], pixel_digits[actual_file_index], data[actual_file_index] table_index = add_actual_data(actual_data, table_index) else: # event number does not increase, thus the events are in another file --> switch file or the event number is missing file_event_numbers = [data[file_index]['event'][0] for file_index in range(n_files)] # all files actual event number actual_file_index = np.where(file_event_numbers == min(file_event_numbers))[0][0] actual_index, actual_digits, actual_data = indices[actual_file_index], pixel_digits[actual_file_index], data[actual_file_index] actual_event_number = actual_data['event'][0] table_index = add_actual_data(actual_data, table_index) progress_bar.update(table_index) expected_event_number = actual_event_number + 1 actual_digits.GetEntry(actual_index) if indices[actual_file_index] < n_hits[actual_file_index]: # simply stop when the first file is fully iterated indices[actual_file_index] += 1 else: break # Set missing data and store to file hits[:table_index]['LVL1ID'] = hits[:table_index]['event_number'] % 255 hits[:table_index]['BCID'] = hits[:table_index]['LVL1ID'] hits[:table_index]['relative_BCID'] = 6 hit_table.append(hits[:table_index]) progress_bar.finish() for input_file_root in input_files_root: input_file_root.Close() if __name__ == "__main__": import matplotlib.pyplot as plt from scipy.interpolate import interp1d input_file_name = r'/home/davidlp/geant4/SourceSim-build/SourceSimulation' plsr_dac_calibation_file = r'/home/davidlp/git/SourceSim/converter/calibration_data/plsr_dac_scan.cfg' tdc_calibation_file = r'/home/davidlp/git/SourceSim/converter/calibration_data/hit_or_calibration_calibration.h5' create_hit_table(input_file_name, tdc_calibation_file, plsr_dac_calibation_file) # with tb.openFile(tdc_calibation_file, mode="r") as in_file_calibration_h5: # tdc_calibration, tdc_error = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 1], in_file_calibration_h5.root.HitOrCalibration[:, :, :, 3] # tot_calibration, tot_error = in_file_calibration_h5.root.HitOrCalibration[:, :, :, 0], in_file_calibration_h5.root.HitOrCalibration[:, :, :, 2] # tdc_calibration_values = in_file_calibration_h5.root.HitOrCalibration.attrs.scan_parameter_values[:] # global_config = register_utils.parse_global_config(plsr_dac_calibation_file) # c_high, vcal_c0, vcal_c1 = global_config['C_Inj_High'], global_config['Vcal_Coeff_0'], global_config['Vcal_Coeff_1'] # charge_calibration_values = (vcal_c0 + vcal_c1 * tdc_calibration_values) * c_high / 0.16022 # # column, row = 20, 30 # print charge_calibration_values, tdc_calibration[column, row] # tdc_interpolation = interp1d(x=charge_calibration_values, y=tdc_calibration[column, row], kind='slinear', bounds_error=False, fill_value=0) # tdc_error_interpolation = interp1d(x=charge_calibration_values, y=tdc_error[column, row], kind='slinear', bounds_error=False, fill_value=0) # tot_interpolation = interp1d(x=charge_calibration_values, y=tot_calibration[column, row], kind='slinear', bounds_error=False, fill_value=0) # tot_error_interpolation = interp1d(x=charge_calibration_values, y=tot_error[column, row], kind='slinear', bounds_error=False, fill_value=0) # plt.plot(np.arange(2000, 10000, 1), tdc_interpolation(np.arange(2000, 10000, 1)), '-') # plt.plot(np.arange(2000, 10000, 1), tdc_error_interpolation(np.arange(2000, 10000, 1)), '-') # plt.plot(np.arange(2000, 10000, 1), tot_interpolation(np.arange(2000, 10000, 1)), '-') # plt.plot(np.arange(2000, 10000, 1), tot_error_interpolation(np.arange(2000, 10000, 1)), '-') # plt.show()
bsd-2-clause
5aurabhpathak/masters-thesis
test/visualise_corpus.py
2
1736
#!/bin/env python3 #Author: Saurabh Pathak '''graph visualizer for corpus''' from matplotlib import pyplot as pl, rcParams from statistics import mean from os import environ from sys import argv def figplot(prefix, output=environ['THESISDIR']+'/data/'): with open(prefix+'.en', encoding='utf-8') as en_ip, open(prefix+'.hi', encoding='utf-8') as hi_ip: de, dh, f, k = [], [], [], 0 for hi_line, en_line in zip(hi_ip, en_ip): i, j = len(en_line.split()), len(hi_line.split()) de += i, dh += j, if j != 0: f += i/j, k += 1 pl.figure('Sentence lengths / Fertility -- '+prefix, figsize=(12,7)) pl.suptitle('Mean fertility ratio: {}\nNumber of pairs: {}'.format(round(mean(f), 4), k)) def plotter(t,n,a): pl.subplot(n) pl.title(t) counts, bins, patches = pl.hist(a, bins=[0,11,21,31,41,51,61,71,81,91,101]) pl.xlabel('Sentence lengths in words') xlabels = [0]+[b-1 for b in bins[1:]] pl.xticks(bins) pl.gca().set_xticklabels(xlabels) pl.ticklabel_format(axis='y', style='sci', scilimits=(0,4)) pl.xlim(xmin=0) pl.ylim(ymin=0) for i, v in enumerate(counts): pl.text(bins[i] + 1, v + 3000, round(v/100000, 1)) #for i, v in enumerate(counts): pl.text(bins[i] + 1, v + 3, int(v)) pl.rcParams['patch.force_edgecolor'] = True plotter('en', 122, de) plotter('hi', 121, dh) pl.ylabel('Number of sentences (x10$^5$)') #pl.ylabel('Number of sentences') pl.savefig(output+prefix.split('/')[-1]+'.png', format='png', bbox_inches='tight') pl.show() if __name__=="__main__": rcParams.update({'font.size': 16}) figplot(argv[1])
gpl-3.0
GCerar/PythonTecaj
LTFE/staticne_slike.py
1
3336
from PIL import Image, ImageEnhance, ImageOps import matplotlib as mpl import matplotlib.pyplot as plt def histogram(slika, pokazi=True): """Izriše histogram za dano sliko. Ta je lahko sivinska ali barvna. Args: slika (object): PIL/Pillow objekt pokazi (bool): Če želimo takoj videti graf. (Default: True) Retuns: object: PIL/Pillow objekt """ hst = slika.histogram() st_barv = len(histogram) // 256 # stevilo bar; 1 = sivinska, 3 = RGB if st_barv == 1: bl = hst plt.plot(bl, color='bl', alpha=0.5) plt.fill_between(range(255), bl, color='black', alpha=0.5) elif st_barv == 3: r, g, b = hst[:256], hst[256:512], hst[512:] # Razkosamo na 3 plt.plot(r, color='r', alpha=0.5) plt.fill_between(range(256), r, color='red', alpha=0.5) plt.plot(g, color='g', alpha=0.5) plt.fill_between(range(256), g, color='green', alpha=0.5) plt.plot(b, color='b', alpha=0.5) plt.fill_between(range(256), b, color='blue', alpha=0.5) else: raise TypeError('Znam procesirat samo 1 in 3 barvne histograme!') plt.autoscale(tight=True) if pokazi: plt.show() def v_sivinsko(slika, autokontrast=False, izravnava=False): """Sliko pretvori v sivinski barvni prostor. Args: slika: (object): PIL/Pillow objekt slike autokontrast (bool): Avtomatsko popravi kontrast slike. (Default: False) izravnava (bool): Skuša izravati histogram slike. (Default: False) Returns: object: PIL/Pillow objekt """ _slika = slika.copy() if _slika.mode != 'L': _slika.convert('L') if autokontrast: _slika = ImageOps.autocontrast(_slika) if izravnava: _slika = ImageOps.equalize(_slika) return _slika def v_crnobelo(slika, autokontrast=False, izravnava=False): """Sliko pretvori v dvorbarvni prostor. Args: slika: (object): PIL/Pillow objekt slike autokontrast (bool): Avtomatsko popravi kontrast slike. (Default: False) izravnava (bool): Skuša izravati histogram slike. (Default: False) Returns: object: PIL/Pillow objekt """ _slika = v_sivinsko(slika, autokontrast=autokontrast, izravnava=izravnava) return _slika.point(lambda x: 0 if x < 128 else 255, '1') def v_sepia(slika, autokontrast=False, izravnava=False): """Pretvori slika v sepia (učinek starinske slike). Args: slika: (object): PIL/Pillow objekt slike autokontrast (bool): Avtomatsko popravi kontrast slike. (Default: False) izravnava (bool): Skuša izravati histogram slike. (Default: False) Returns: object: PIL/Pillow objekt """ def linearizacija(bela_barva): """Linearizira barvni prostor med med črno in poljubno barvo. Args: bela_barva (array): Mora biti oblike [int, int, int]. Returns: array: Linearizirana barvna paleta """ ramp = [] r, g, b = bela_barva for i in range(255): ramp.extend((round(r*i/255), round(g*i/255), round(b*i/255))) return ramp sepia = linearizacija([255, 240, 192]) sivinska = v_sivinsko(slika, autokontrast=autokontrast, izravnava=izravnava) return sivinska.putpalette(sepia)
mit
yavalvas/yav_com
build/matplotlib/examples/api/sankey_demo_links.py
9
1721
"""Demonstrate/test the Sankey class by producing a long chain of connections. """ from itertools import cycle import matplotlib.pyplot as plt from matplotlib.sankey import Sankey links_per_side = 6 def side(sankey, n=1): """Generate a side chain.""" prior = len(sankey.diagrams) colors = cycle(['orange', 'b', 'g', 'r', 'c', 'm', 'y']) for i in range(0, 2*n, 2): sankey.add(flows=[1, -1], orientations=[-1, -1], patchlabel=str(prior+i), facecolor=next(colors), prior=prior+i-1, connect=(1, 0), alpha=0.5) sankey.add(flows=[1, -1], orientations=[1, 1], patchlabel=str(prior+i+1), facecolor=next(colors), prior=prior+i, connect=(1, 0), alpha=0.5) def corner(sankey): """Generate a corner link.""" prior = len(sankey.diagrams) sankey.add(flows=[1, -1], orientations=[0, 1], patchlabel=str(prior), facecolor='k', prior=prior-1, connect=(1, 0), alpha=0.5) fig = plt.figure() ax = fig.add_subplot(1, 1, 1, xticks=[], yticks=[], title="Why would you want to do this?\n(But you could.)") sankey = Sankey(ax=ax, unit=None) sankey.add(flows=[1, -1], orientations=[0, 1], patchlabel="0", facecolor='k', rotation=45) side(sankey, n=links_per_side) corner(sankey) side(sankey, n=links_per_side) corner(sankey) side(sankey, n=links_per_side) corner(sankey) side(sankey, n=links_per_side) sankey.finish() # Notice: # 1. The alignment doesn't drift significantly (if at all; with 16007 # subdiagrams there is still closure). # 2. The first diagram is rotated 45 deg, so all other diagrams are rotated # accordingly. plt.show()
mit
aymanim/rosdep
test/test_rosdep_dependency_graph.py
7
7886
# Copyright (c) 2012, Willow Garage, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Author William Woodall/[email protected] def test_DependencyGraph_Linear(): from rosdep2.dependency_graph import DependencyGraph # Normal A-B-C dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['B']['installer_key'] = 'b_installer' dg['B']['install_keys'] = ['b'] dg['B']['dependencies'] = ['C'] dg['C']['installer_key'] = 'c_installer' dg['C']['install_keys'] = ['c'] dg['C']['dependencies'] = [] result = dg.get_ordered_dependency_list() expected = [('c_installer', ['c']), ('b_installer', ['b']), ('a_installer', ['a'])] assert result == expected, "Results did not match expectations: %s == %s"%(str(result),str(expected)) def test_DependencyGraph_Cycle(): from rosdep2.dependency_graph import DependencyGraph # Full Loop A-B-C-A-... dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['B']['installer_key'] = 'b_installer' dg['B']['install_keys'] = ['b'] dg['B']['dependencies'] = ['C'] dg['C']['installer_key'] = 'c_installer' dg['C']['install_keys'] = ['c'] dg['C']['dependencies'] = ['A'] try: result = dg.get_ordered_dependency_list() assert False, "Doesn't fail, it should fail with an AssertionError because of the cycle." except AssertionError as e: if not str(e).startswith("A cycle in the dependency graph occurred with key"): assert False, "Throws AssertionError, but with the wrong message. Error was: %s: %s"%(type(e),str(e)) except Exception as e: assert False, "Throws and Exception, but not an AssertionError. Error was: %s: %s"%(type(e),str(e)) def test_DependencyGraph_Short_Cycle(): from rosdep2.dependency_graph import DependencyGraph # Short cycle A-B-C-D-B-C-D-... dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['B']['installer_key'] = 'b_installer' dg['B']['install_keys'] = ['b'] dg['B']['dependencies'] = ['C'] dg['C']['installer_key'] = 'c_installer' dg['C']['install_keys'] = ['c'] dg['C']['dependencies'] = ['D'] dg['D']['installer_key'] = 'd_installer' dg['D']['install_keys'] = ['d'] dg['D']['dependencies'] = ['B'] try: result = dg.get_ordered_dependency_list() assert False, "Doesn't fail, it should fail with an AssertionError because of the cycle." except AssertionError as e: if not str(e).startswith("A cycle in the dependency graph occurred with key"): assert False, "Throws AssertionError, but with the wrong message. Error was: %s: %s"%(type(e),str(e)) except Exception as e: assert False, "Throws and Exception, but not an AssertionError. Error was: %s: %s"%(type(e),str(e)) def test_DependencyGraph_Invalid_Key(): from rosdep2.dependency_graph import DependencyGraph # Invalid graph A-B-C where C doesn't exist dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['B']['installer_key'] = 'b_installer' dg['B']['install_keys'] = ['b'] dg['B']['dependencies'] = ['C'] try: result = dg.get_ordered_dependency_list() assert False, "Doesn't fail, it should fail with an KeyError because of the invalid rosdep key." except KeyError as e: if not str(e).endswith("does not exist in the dictionary of resolutions.'"): assert False, "Throws KeyError, but with the wrong message. Error was: %s: %s"%(type(e),str(e)) except Exception as e: assert False, "Throws and Exception, but not an KeyError. Error was: %s: %s"%(type(e),str(e)) def test_DependencyGraph_Invalid_Key2(): from rosdep2.dependency_graph import DependencyGraph # Invalid graph A-B-C where B doesn't exist dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['C']['installer_key'] = 'c_installer' dg['C']['install_keys'] = ['c'] dg['C']['dependencies'] = [] try: result = dg.get_ordered_dependency_list() assert False, "Doesn't fail, it should fail with an KeyError because of the invalid rosdep key." except KeyError as e: if not str(e).endswith("does not exist in the dictionary of resolutions.'"): assert False, "Throws KeyError, but with the wrong message. Error was: %s: %s"%(type(e),str(e)) except Exception as e: assert False, "Throws and Exception, but not an KeyError. Error was: %s: %s"%(type(e),str(e)) def test_DependencyGraph_Multi_Root(): from rosdep2.dependency_graph import DependencyGraph # Multi root, shared dependency: A-B-C, D-C dg = DependencyGraph() dg['A']['installer_key'] = 'a_installer' dg['A']['install_keys'] = ['a'] dg['A']['dependencies'] = ['B'] dg['B']['installer_key'] = 'b_installer' dg['B']['install_keys'] = ['b'] dg['B']['dependencies'] = ['C'] dg['C']['installer_key'] = 'c_installer' dg['C']['install_keys'] = ['c'] dg['C']['dependencies'] = [] dg['D']['installer_key'] = 'd_installer' dg['D']['install_keys'] = ['d'] dg['D']['dependencies'] = ['C'] result = dg.get_ordered_dependency_list() # TODO: The expected might also have a different order, for example it might be: # [('c_installer', ['c']), ('d_installer', ['d']), ('b_installer', ['b']), ('a_installer', ['a'])] # But that wont invalidate the order from a dependency graph stand point expected = [ [('c_installer', ['c']), ('b_installer', ['b']), ('a_installer', ['a']), ('d_installer', ['d'])], [('c_installer', ['c']), ('d_installer', ['d']), ('b_installer', ['b']), ('a_installer', ['a'])], ] assert result in expected, "Results did not match expectations: %s == %s"%(str(result),str(expected)) def test_DependencyGraph_Realworld(): from rosdep2.dependency_graph import DependencyGraph # Real world example dg = DependencyGraph() dg['python-matplotlib']['installer_key'] = 'pip' dg['python-matplotlib']['install_keys'] = ['matplotlib'] dg['python-matplotlib']['dependencies'] = ['pkg-config'] dg['pkg-config']['installer_key'] = 'homebrew' dg['pkg-config']['install_keys'] = ['pkg-config'] dg['pkg-config']['dependencies'] = [] result = dg.get_ordered_dependency_list() expected = [('homebrew', ['pkg-config']), ('pip', ['matplotlib'])] assert result == expected, "Results did not match expectations: %s == %s"%(str(result),str(expected))
bsd-3-clause
unnikrishnankgs/va
venv/lib/python3.5/site-packages/mpl_toolkits/tests/test_axes_grid1.py
5
4246
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison, cleanup from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1 import AxesGrid from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes, mark_inset from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar from matplotlib.colors import LogNorm import numpy as np @image_comparison(baseline_images=['divider_append_axes']) def test_divider_append_axes(): # the random data np.random.seed(0) x = np.random.randn(1000) y = np.random.randn(1000) fig, axScatter = plt.subplots() # the scatter plot: axScatter.scatter(x, y) # create new axes on the right and on the top of the current axes # The first argument of the new_vertical(new_horizontal) method is # the height (width) of the axes to be created in inches. divider = make_axes_locatable(axScatter) axHistbot = divider.append_axes("bottom", 1.2, pad=0.1, sharex=axScatter) axHistright = divider.append_axes("right", 1.2, pad=0.1, sharey=axScatter) axHistleft = divider.append_axes("left", 1.2, pad=0.1, sharey=axScatter) axHisttop = divider.append_axes("top", 1.2, pad=0.1, sharex=axScatter) # now determine nice limits by hand: binwidth = 0.25 xymax = np.max([np.max(np.fabs(x)), np.max(np.fabs(y))]) lim = (int(xymax/binwidth) + 1) * binwidth bins = np.arange(-lim, lim + binwidth, binwidth) axHisttop.hist(x, bins=bins) axHistbot.hist(x, bins=bins) axHistleft.hist(y, bins=bins, orientation='horizontal') axHistright.hist(y, bins=bins, orientation='horizontal') axHistbot.invert_yaxis() axHistleft.invert_xaxis() axHisttop.xaxis.set_ticklabels(()) axHistbot.xaxis.set_ticklabels(()) axHistleft.yaxis.set_ticklabels(()) axHistright.yaxis.set_ticklabels(()) @cleanup def test_axesgrid_colorbar_log_smoketest(): fig = plt.figure() grid = AxesGrid(fig, 111, # modified to be only subplot nrows_ncols=(1, 1), label_mode="L", cbar_location="top", cbar_mode="single", ) Z = 10000 * np.random.rand(10, 10) im = grid[0].imshow(Z, interpolation="nearest", norm=LogNorm()) grid.cbar_axes[0].colorbar(im) @image_comparison( baseline_images=['inset_locator'], style='default', extensions=['png'], remove_text=True) def test_inset_locator(): def get_demo_image(): from matplotlib.cbook import get_sample_data import numpy as np f = get_sample_data("axes_grid/bivariate_normal.npy", asfileobj=False) z = np.load(f) # z is a numpy array of 15x15 return z, (-3, 4, -4, 3) fig, ax = plt.subplots(figsize=[5, 4]) # prepare the demo image Z, extent = get_demo_image() Z2 = np.zeros([150, 150], dtype="d") ny, nx = Z.shape Z2[30:30 + ny, 30:30 + nx] = Z # extent = [-3, 4, -4, 3] ax.imshow(Z2, extent=extent, interpolation="nearest", origin="lower") axins = zoomed_inset_axes(ax, 6, loc=1) # zoom = 6 axins.imshow(Z2, extent=extent, interpolation="nearest", origin="lower") axins.yaxis.get_major_locator().set_params(nbins=7) axins.xaxis.get_major_locator().set_params(nbins=7) # sub region of the original image x1, x2, y1, y2 = -1.5, -0.9, -2.5, -1.9 axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) plt.xticks(visible=False) plt.yticks(visible=False) # draw a bbox of the region of the inset axes in the parent axes and # connecting lines between the bbox and the inset axes area mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") asb = AnchoredSizeBar(ax.transData, 0.5, '0.5', loc=8, pad=0.1, borderpad=0.5, sep=5, frameon=False) ax.add_artist(asb) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
bsd-2-clause
quantum13/mlbootcamp5
qml_workdir/ensembling/level1_models_extra1.py
1
1967
import datetime import numpy as np from hyperopt import hp, fmin, tpe import os import sys from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier sys.path.insert(0, os.getcwd()) import qml_workdir.classes.config from qml.cv import QCV from qml.models import QXgb, QXgb2 from qml_workdir.classes.models import qm if __name__ == "__main__": CV_SCORE_TO_STOP = 0.544 DATAS = [266, 269] EVALS_ROUNDS = 4000 rounds = EVALS_ROUNDS cv = QCV(qm) counter = 0 def fn(params): global counter counter +=1 params['max_features'] = params['max_features'] / 10 params['n_estimators'] = int(1.3 ** params['n_estimators']) model_id = qm.add_by_params( ExtraTreesClassifier( max_depth=int(params['max_depth']), n_estimators=int(params['n_estimators']), max_features=float(params['max_features']), n_jobs=-1 ), 'hyperopt rand_forest', predict_fn='predict_proba' ) res = cv.cross_val(model_id, params['data_id'], seed=1000, early_stop_cv=lambda x: x>CV_SCORE_TO_STOP) res = np.float64(res) res_arr = [res] # if res < CV_SCORE_TO_STOP: # for i in range(7): # res = cv.cross_val(model_id, data_id, seed=1001 + i, force=True) # res = np.float64(res) # res_arr.append(res) print(params['data_id'], model_id, "{}/{}".format(counter, rounds), res_arr, datetime.datetime.now(), params) return np.mean(res_arr) space = { 'max_depth': hp.quniform('max_depth', 3, 10, 1), 'n_estimators': hp.quniform('n_estimators', 18, 26, 1), 'max_features': hp.quniform('max_features', 2, 10, 1) } counter = 0 space['data_id'] = hp.choice('data_id', DATAS) rounds = EVALS_ROUNDS fmin(fn, space, algo=tpe.suggest, max_evals=rounds)
mit
ky822/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
142
4467
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ print(__doc__) # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA() fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
ProjectQ-Framework/ProjectQ
projectq/backends/_circuits/_plot.py
1
21374
# -*- coding: utf-8 -*- # Copyright 2017 ProjectQ-Framework (www.projectq.ch) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module provides the basic functionality required to plot a quantum circuit in a matplotlib figure. It is mainly used by the CircuitDrawerMatplotlib compiler engine. Currently, it supports all single-qubit gates, including their controlled versions to an arbitrary number of control qubits. It also supports multi-target qubit gates under some restrictions. Namely that the target qubits must be neighbours in the output figure (which cannot be determined durinng compilation at this time). """ from copy import deepcopy import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection, LineCollection from matplotlib.lines import Line2D from matplotlib.patches import Circle, Arc, Rectangle # Important note on units for the plot parameters. # The following entries are in inches: # - column_spacing # - labels_margin # - wire_height # # The following entries are in data units (matplotlib) # - control_radius # - gate_offset # - mgate_width # - not_radius # - swap_delta # - x_offset # # The rest have misc. units (as defined by matplotlib) _DEFAULT_PLOT_PARAMS = dict( fontsize=14.0, column_spacing=0.5, control_radius=0.015, labels_margin=1, linewidth=1.0, not_radius=0.03, gate_offset=0.05, mgate_width=0.1, swap_delta=0.02, x_offset=0.05, wire_height=1, ) # ============================================================================== def to_draw(qubit_lines, qubit_labels=None, drawing_order=None, **kwargs): """ Translates a given circuit to a matplotlib figure. Args: qubit_lines (dict): list of gates for each qubit axis qubit_labels (dict): label to print in front of the qubit wire for each qubit ID drawing_order (dict): index of the wire for each qubit ID to be drawn. **kwargs (dict): additional parameters are used to update the default plot parameters Returns: A tuple with (figure, axes) Note: Numbering of qubit wires starts at 0 at the bottom and increases vertically. Note: Additional keyword arguments can be passed to this function in order to further customize the figure output by matplotlib (default value in parentheses): - fontsize (14): Font size in pt - column_spacing (.5): Vertical spacing between two neighbouring gates (roughly in inches) - control_radius (.015): Radius of the circle for controls - labels_margin (1): Margin between labels and begin of wire (roughly in inches) - linewidth (1): Width of line - not_radius (.03): Radius of the circle for X/NOT gates - gate_offset (.05): Inner margins for gates with a text representation - mgate_width (.1): Width of the measurement gate - swap_delta (.02): Half-size of the SWAP gate - x_offset (.05): Absolute X-offset for drawing within the axes - wire_height (1): Vertical spacing between two qubit wires (roughly in inches) """ if qubit_labels is None: qubit_labels = {qubit_id: r'$|0\rangle$' for qubit_id in qubit_lines} else: if list(qubit_labels) != list(qubit_lines): raise RuntimeError('Qubit IDs in qubit_labels do not match qubit IDs in qubit_lines!') if drawing_order is None: n_qubits = len(qubit_lines) drawing_order = {qubit_id: n_qubits - qubit_id - 1 for qubit_id in list(qubit_lines)} else: if list(drawing_order) != list(qubit_lines): raise RuntimeError('Qubit IDs in drawing_order do not match ' + 'qubit IDs in qubit_lines!') if list(sorted(drawing_order.values())) != list(range(len(drawing_order))): raise RuntimeError( 'Indices of qubit wires in drawing_order must be between 0 and {}!'.format(len(drawing_order)) ) plot_params = deepcopy(_DEFAULT_PLOT_PARAMS) plot_params.update(kwargs) n_labels = len(list(qubit_lines)) wire_height = plot_params['wire_height'] # Grid in inches wire_grid = np.arange(wire_height, (n_labels + 1) * wire_height, wire_height, dtype=float) fig, axes = create_figure(plot_params) # Grid in inches gate_grid = calculate_gate_grid(axes, qubit_lines, plot_params) width = gate_grid[-1] + plot_params['column_spacing'] height = wire_grid[-1] + wire_height resize_figure(fig, axes, width, height, plot_params) # Convert grids into data coordinates units_per_inch = plot_params['units_per_inch'] gate_grid *= units_per_inch gate_grid = gate_grid + plot_params['x_offset'] wire_grid *= units_per_inch plot_params['column_spacing'] *= units_per_inch draw_wires(axes, n_labels, gate_grid, wire_grid, plot_params) draw_labels(axes, qubit_labels, drawing_order, wire_grid, plot_params) draw_gates(axes, qubit_lines, drawing_order, gate_grid, wire_grid, plot_params) return fig, axes # ============================================================================== # Functions used to calculate the layout def gate_width(axes, gate_str, plot_params): """ Calculate the width of a gate based on its string representation. Args: axes (matplotlib.axes.Axes): axes object gate_str (str): string representation of a gate plot_params (dict): plot parameters Returns: The width of a gate on the figure (in inches) """ if gate_str == 'X': return 2 * plot_params['not_radius'] / plot_params['units_per_inch'] if gate_str == 'Swap': return 2 * plot_params['swap_delta'] / plot_params['units_per_inch'] if gate_str == 'Measure': return plot_params['mgate_width'] obj = axes.text( 0, 0, gate_str, visible=True, bbox=dict(edgecolor='k', facecolor='w', fill=True, lw=1.0), fontsize=14, ) obj.figure.canvas.draw() width = obj.get_window_extent(obj.figure.canvas.get_renderer()).width / axes.figure.dpi obj.remove() return width + 2 * plot_params['gate_offset'] def calculate_gate_grid(axes, qubit_lines, plot_params): """ Calculate an optimal grid spacing for a list of quantum gates. Args: axes (matplotlib.axes.Axes): axes object qubit_lines (dict): list of gates for each qubit axis plot_params (dict): plot parameters Returns: An array (np.ndarray) with the gate x positions. """ # NB: column_spacing is still in inch when this function is called column_spacing = plot_params['column_spacing'] data = list(qubit_lines.values()) depth = len(data[0]) width_list = [ max(gate_width(axes, line[idx][0], plot_params) if line[idx] else 0 for line in data) for idx in range(depth) ] gate_grid = np.array([0] * (depth + 1), dtype=float) gate_grid[0] = plot_params['labels_margin'] if depth > 0: gate_grid[0] += width_list[0] * 0.5 for idx in range(1, depth): gate_grid[idx] = gate_grid[idx - 1] + column_spacing + (width_list[idx] + width_list[idx - 1]) * 0.5 gate_grid[-1] = gate_grid[-2] + column_spacing + width_list[-1] * 0.5 return gate_grid # ============================================================================== # Basic helper functions def text(axes, gate_pos, wire_pos, textstr, plot_params): """ Draws a text box on the figure. Args: axes (matplotlib.axes.Axes): axes object gate_pos (float): x coordinate of the gate [data units] wire_pos (float): y coordinate of the qubit wire textstr (str): text of the gate and box plot_params (dict): plot parameters box (bool): draw the rectangle box if box is True """ return axes.text( gate_pos, wire_pos, textstr, color='k', ha='center', va='center', clip_on=True, size=plot_params['fontsize'], ) # ============================================================================== def create_figure(plot_params): """ Create a new figure as well as a new axes instance Args: plot_params (dict): plot parameters Returns: A tuple with (figure, axes) """ fig = plt.figure(facecolor='w', edgecolor='w') axes = plt.axes() axes.set_axis_off() axes.set_aspect('equal') plot_params['units_per_inch'] = fig.dpi / axes.get_window_extent().width return fig, axes def resize_figure(fig, axes, width, height, plot_params): """ Resizes a figure and adjust the limits of the axes instance to make sure that the distances in data coordinates on the screen stay constant. Args: fig (matplotlib.figure.Figure): figure object axes (matplotlib.axes.Axes): axes object width (float): new figure width height (float): new figure height plot_params (dict): plot parameters Returns: A tuple with (figure, axes) """ fig.set_size_inches(width, height) new_limits = plot_params['units_per_inch'] * np.array([width, height]) axes.set_xlim(0, new_limits[0]) axes.set_ylim(0, new_limits[1]) def draw_gates( # pylint: disable=too-many-arguments axes, qubit_lines, drawing_order, gate_grid, wire_grid, plot_params ): """ Draws the gates. Args: qubit_lines (dict): list of gates for each qubit axis drawing_order (dict): index of the wire for each qubit ID to be drawn gate_grid (np.ndarray): x positions of the gates wire_grid (np.ndarray): y positions of the qubit wires plot_params (dict): plot parameters Returns: A tuple with (figure, axes) """ for qubit_line in qubit_lines.values(): for idx, data in enumerate(qubit_line): if data is not None: (gate_str, targets, controls) = data targets_order = [drawing_order[tgt] for tgt in targets] draw_gate( axes, gate_str, gate_grid[idx], [wire_grid[tgt] for tgt in targets_order], targets_order, [wire_grid[drawing_order[ctrl]] for ctrl in controls], plot_params, ) def draw_gate( axes, gate_str, gate_pos, target_wires, targets_order, control_wires, plot_params ): # pylint: disable=too-many-arguments """ Draws a single gate at a given location. Args: axes (AxesSubplot): axes object gate_str (str): string representation of a gate gate_pos (float): x coordinate of the gate [data units] target_wires (list): y coordinates of the target qubits targets_order (list): index of the wires corresponding to the target qubit IDs control_wires (list): y coordinates of the control qubits plot_params (dict): plot parameters Returns: A tuple with (figure, axes) """ # Special cases if gate_str == 'Z' and len(control_wires) == 1: draw_control_z_gate(axes, gate_pos, target_wires[0], control_wires[0], plot_params) elif gate_str == 'X': draw_x_gate(axes, gate_pos, target_wires[0], plot_params) elif gate_str == 'Swap': draw_swap_gate(axes, gate_pos, target_wires[0], target_wires[1], plot_params) elif gate_str == 'Measure': draw_measure_gate(axes, gate_pos, target_wires[0], plot_params) else: if len(target_wires) == 1: draw_generic_gate(axes, gate_pos, target_wires[0], gate_str, plot_params) else: if sorted(targets_order) != list(range(min(targets_order), max(targets_order) + 1)): raise RuntimeError( 'Multi-qubit gate with non-neighbouring qubits!\n' + 'Gate: {} on wires {}'.format(gate_str, targets_order) ) multi_qubit_gate( axes, gate_str, gate_pos, min(target_wires), max(target_wires), plot_params, ) if not control_wires: return for control_wire in control_wires: axes.add_patch( Circle( (gate_pos, control_wire), plot_params['control_radius'], ec='k', fc='k', fill=True, lw=plot_params['linewidth'], ) ) all_wires = target_wires + control_wires axes.add_line( Line2D( (gate_pos, gate_pos), (min(all_wires), max(all_wires)), color='k', lw=plot_params['linewidth'], ) ) def draw_generic_gate(axes, gate_pos, wire_pos, gate_str, plot_params): """ Draws a measurement gate. Args: axes (AxesSubplot): axes object gate_pos (float): x coordinate of the gate [data units] wire_pos (float): y coordinate of the qubit wire gate_str (str) : string representation of a gate plot_params (dict): plot parameters """ obj = text(axes, gate_pos, wire_pos, gate_str, plot_params) obj.set_zorder(7) factor = plot_params['units_per_inch'] / obj.figure.dpi gate_offset = plot_params['gate_offset'] renderer = obj.figure.canvas.get_renderer() width = obj.get_window_extent(renderer).width * factor + 2 * gate_offset height = obj.get_window_extent(renderer).height * factor + 2 * gate_offset axes.add_patch( Rectangle( (gate_pos - width / 2, wire_pos - height / 2), width, height, ec='k', fc='w', fill=True, lw=plot_params['linewidth'], zorder=6, ) ) def draw_measure_gate(axes, gate_pos, wire_pos, plot_params): """ Draws a measurement gate. Args: axes (AxesSubplot): axes object gate_pos (float): x coordinate of the gate [data units] wire_pos (float): y coordinate of the qubit wire plot_params (dict): plot parameters """ # pylint: disable=invalid-name width = plot_params['mgate_width'] height = 0.9 * width y_ref = wire_pos - 0.3 * height # Cannot use PatchCollection for the arc due to bug in matplotlib code... arc = Arc( (gate_pos, y_ref), width * 0.7, height * 0.8, theta1=0, theta2=180, ec='k', fc='w', zorder=5, ) axes.add_patch(arc) patches = [ Rectangle((gate_pos - width / 2, wire_pos - height / 2), width, height, fill=True), Line2D( (gate_pos, gate_pos + width * 0.35), (y_ref, wire_pos + height * 0.35), color='k', linewidth=1, ), ] gate = PatchCollection( patches, edgecolors='k', facecolors='w', linewidths=plot_params['linewidth'], zorder=5, ) gate.set_label('Measure') axes.add_collection(gate) def multi_qubit_gate( # pylint: disable=too-many-arguments axes, gate_str, gate_pos, wire_pos_min, wire_pos_max, plot_params ): """ Draws a multi-target qubit gate. Args: axes (matplotlib.axes.Axes): axes object gate_str (str): string representation of a gate gate_pos (float): x coordinate of the gate [data units] wire_pos_min (float): y coordinate of the lowest qubit wire wire_pos_max (float): y coordinate of the highest qubit wire plot_params (dict): plot parameters """ gate_offset = plot_params['gate_offset'] y_center = (wire_pos_max - wire_pos_min) / 2 + wire_pos_min obj = axes.text( gate_pos, y_center, gate_str, color='k', ha='center', va='center', size=plot_params['fontsize'], zorder=7, ) height = wire_pos_max - wire_pos_min + 2 * gate_offset inv = axes.transData.inverted() width = inv.transform_bbox(obj.get_window_extent(obj.figure.canvas.get_renderer())).width return axes.add_patch( Rectangle( (gate_pos - width / 2, wire_pos_min - gate_offset), width, height, edgecolor='k', facecolor='w', fill=True, lw=plot_params['linewidth'], zorder=6, ) ) def draw_x_gate(axes, gate_pos, wire_pos, plot_params): """ Draws the symbol for a X/NOT gate. Args: axes (matplotlib.axes.Axes): axes object gate_pos (float): x coordinate of the gate [data units] wire_pos (float): y coordinate of the qubit wire [data units] plot_params (dict): plot parameters """ not_radius = plot_params['not_radius'] gate = PatchCollection( [ Circle((gate_pos, wire_pos), not_radius, fill=False), Line2D((gate_pos, gate_pos), (wire_pos - not_radius, wire_pos + not_radius)), ], edgecolors='k', facecolors='w', linewidths=plot_params['linewidth'], ) gate.set_label('NOT') axes.add_collection(gate) def draw_control_z_gate(axes, gate_pos, wire_pos1, wire_pos2, plot_params): """ Draws the symbol for a controlled-Z gate. Args: axes (matplotlib.axes.Axes): axes object wire_pos (float): x coordinate of the gate [data units] y1 (float): y coordinate of the 1st qubit wire y2 (float): y coordinate of the 2nd qubit wire plot_params (dict): plot parameters """ gate = PatchCollection( [ Circle((gate_pos, wire_pos1), plot_params['control_radius'], fill=True), Circle((gate_pos, wire_pos2), plot_params['control_radius'], fill=True), Line2D((gate_pos, gate_pos), (wire_pos1, wire_pos2)), ], edgecolors='k', facecolors='k', linewidths=plot_params['linewidth'], ) gate.set_label('CZ') axes.add_collection(gate) def draw_swap_gate(axes, gate_pos, wire_pos1, wire_pos2, plot_params): """ Draws the symbol for a SWAP gate. Args: axes (matplotlib.axes.Axes): axes object x (float): x coordinate [data units] y1 (float): y coordinate of the 1st qubit wire y2 (float): y coordinate of the 2nd qubit wire plot_params (dict): plot parameters """ delta = plot_params['swap_delta'] lines = [] for wire_pos in (wire_pos1, wire_pos2): lines.append([(gate_pos - delta, wire_pos - delta), (gate_pos + delta, wire_pos + delta)]) lines.append([(gate_pos - delta, wire_pos + delta), (gate_pos + delta, wire_pos - delta)]) lines.append([(gate_pos, wire_pos1), (gate_pos, wire_pos2)]) gate = LineCollection(lines, colors='k', linewidths=plot_params['linewidth']) gate.set_label('SWAP') axes.add_collection(gate) def draw_wires(axes, n_labels, gate_grid, wire_grid, plot_params): """ Draws all the circuit qubit wires. Args: axes (matplotlib.axes.Axes): axes object n_labels (int): number of qubit gate_grid (ndarray): array with the ref. x positions of the gates wire_grid (ndarray): array with the ref. y positions of the qubit wires plot_params (dict): plot parameters """ # pylint: disable=invalid-name lines = [] for i in range(n_labels): lines.append( ( (gate_grid[0] - plot_params['column_spacing'], wire_grid[i]), (gate_grid[-1], wire_grid[i]), ) ) all_lines = LineCollection(lines, linewidths=plot_params['linewidth'], edgecolor='k') all_lines.set_label('qubit_wires') axes.add_collection(all_lines) def draw_labels(axes, qubit_labels, drawing_order, wire_grid, plot_params): """ Draws the labels at the start of each qubit wire Args: axes (matplotlib.axes.Axes): axes object qubit_labels (list): labels of the qubit to be drawn drawing_order (dict): Mapping between wire indices and qubit IDs gate_grid (ndarray): array with the ref. x positions of the gates wire_grid (ndarray): array with the ref. y positions of the qubit wires plot_params (dict): plot parameters """ for qubit_id in qubit_labels: wire_idx = drawing_order[qubit_id] text( axes, plot_params['x_offset'], wire_grid[wire_idx], qubit_labels[qubit_id], plot_params, )
apache-2.0
enigmampc/catalyst
catalyst/errors.py
1
22282
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from textwrap import dedent from catalyst.utils.memoize import lazyval class ZiplineError(Exception): msg = None def __init__(self, **kwargs): self.kwargs = kwargs @lazyval def message(self): return str(self) def __str__(self): msg = self.msg.format(**self.kwargs) return msg __unicode__ = __str__ __repr__ = __str__ class NoTradeDataAvailable(ZiplineError): pass class NoTradeDataAvailableTooEarly(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It started trading on {start_dt}." class NoTradeDataAvailableTooLate(NoTradeDataAvailable): msg = "{sid} does not exist on {dt}. It stopped trading on {end_dt}." class BenchmarkAssetNotAvailableTooEarly(NoTradeDataAvailableTooEarly): pass class BenchmarkAssetNotAvailableTooLate(NoTradeDataAvailableTooLate): pass class InvalidBenchmarkAsset(ZiplineError): msg = """ {sid} cannot be used as the benchmark because it has a stock \ dividend on {dt}. Choose another asset to use as the benchmark. """.strip() class WrongDataForTransform(ZiplineError): """ Raised whenever a rolling transform is called on an event that does not have the necessary properties. """ msg = "{transform} requires {fields}. Event cannot be processed." class UnsupportedSlippageModel(ZiplineError): """ Raised if a user script calls the set_slippage magic with a slipage object that isn't a VolumeShareSlippage or FixedSlipapge """ msg = """ You attempted to set slippage with an unsupported class. \ Please use VolumeShareSlippage or FixedSlippage. """.strip() class IncompatibleSlippageModel(ZiplineError): """ Raised if a user tries to set a futures slippage model for equities or vice versa. """ msg = """ You attempted to set an incompatible slippage model for {asset_type}. \ The slippage model '{given_model}' only supports {supported_asset_types}. """.strip() class SetSlippagePostInit(ZiplineError): # Raised if a users script calls set_slippage magic # after the initialize method has returned. msg = """ You attempted to set slippage outside of `initialize`. \ You may only call 'set_slippage' in your initialize method. """.strip() class SetCancelPolicyPostInit(ZiplineError): # Raised if a users script calls set_cancel_policy # after the initialize method has returned. msg = """ You attempted to set the cancel policy outside of `initialize`. \ You may only call 'set_cancel_policy' in your initialize method. """.strip() class RegisterTradingControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set a trading control outside of `initialize`. \ Trading controls may only be set in your initialize method. """.strip() class RegisterAccountControlPostInit(ZiplineError): # Raised if a user's script register's a trading control after initialize # has been run. msg = """ You attempted to set an account control outside of `initialize`. \ Account controls may only be set in your initialize method. """.strip() class UnsupportedCommissionModel(ZiplineError): """ Raised if a user script calls the set_commission magic with a commission object that isn't a PerShare, PerTrade or PerDollar commission """ msg = """ You attempted to set commission with an unsupported class. \ Please use PerShare or PerTrade. """.strip() class IncompatibleCommissionModel(ZiplineError): """ Raised if a user tries to set a futures commission model for equities or vice versa. """ msg = """ You attempted to set an incompatible commission model for {asset_type}. \ The commission model '{given_model}' only supports {supported_asset_types}. """.strip() class UnsupportedCancelPolicy(ZiplineError): """ Raised if a user script calls set_cancel_policy with an object that isn't a CancelPolicy. """ msg = """ You attempted to set the cancel policy with an unsupported class. Please use an instance of CancelPolicy. """.strip() class SetCommissionPostInit(ZiplineError): """ Raised if a users script calls set_commission magic after the initialize method has returned. """ msg = """ You attempted to override commission outside of `initialize`. \ You may only call 'set_commission' in your initialize method. """.strip() class TransactionWithNoVolume(ZiplineError): """ Raised if a transact call returns a transaction with zero volume. """ msg = """ Transaction {txn} has a volume of zero. """.strip() class TransactionWithWrongDirection(ZiplineError): """ Raised if a transact call returns a transaction with a direction that does not match the order. """ msg = """ Transaction {txn} not in same direction as corresponding order {order}. """.strip() class TransactionWithNoAmount(ZiplineError): """ Raised if a transact call returns a transaction with zero amount. """ msg = """ Transaction {txn} has an amount of zero. """.strip() class TransactionVolumeExceedsOrder(ZiplineError): """ Raised if a transact call returns a transaction with a volume greater than the corresponding order. """ msg = """ Transaction volume of {txn} exceeds the order volume of {order}. """.strip() class UnsupportedOrderParameters(ZiplineError): """ Raised if a set of mutually exclusive parameters are passed to an order call. """ msg = "{msg}" class CannotOrderDelistedAsset(ZiplineError): """ Raised if an order is for a delisted asset. """ msg = "{msg}" class BadOrderParameters(ZiplineError): """ Raised if any impossible parameters (nan, negative limit/stop) are passed to an order call. """ msg = "{msg}" class OrderDuringInitialize(ZiplineError): """ Raised if order is called during initialize() """ msg = "{msg}" class SetBenchmarkOutsideInitialize(ZiplineError): """ Raised if set_benchmark is called outside initialize() """ msg = "'set_benchmark' can only be called within initialize function." class AccountControlViolation(ZiplineError): """ Raised if the account violates a constraint set by a AccountControl. """ msg = """ Account violates account constraint {constraint}. """.strip() class TradingControlViolation(ZiplineError): """ Raised if an order would violate a constraint set by a TradingControl. """ msg = """ Order for {amount} shares of {asset} at {datetime} violates trading constraint {constraint}. """.strip() class IncompatibleHistoryFrequency(ZiplineError): """ Raised when a frequency is given to history which is not supported. At least, not yet. """ msg = """ Requested history at frequency '{frequency}' cannot be created with data at frequency '{data_frequency}'. """.strip() class HistoryInInitialize(ZiplineError): """ Raised when an algorithm calls history() in initialize. """ msg = "history() should only be called in handle_data()" class OrderInBeforeTradingStart(ZiplineError): """ Raised when an algorithm calls an order method in before_trading_start. """ msg = "Cannot place orders inside before_trading_start." class MultipleSymbolsFound(ZiplineError): """ Raised when a symbol() call contains a symbol that changed over time and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple symbols with the name '{symbol}' found. Use the as_of_date' argument to to specify when the date symbol-lookup should be valid. Possible options: {options} """.strip() class SymbolNotFound(ZiplineError): """ Raised when a symbol() call contains a non-existant symbol. """ msg = """ Symbol '{symbol}' was not found. """.strip() class RootSymbolNotFound(ZiplineError): """ Raised when a lookup_future_chain() call contains a non-existant symbol. """ msg = """ Root symbol '{root_symbol}' was not found. """.strip() class ValueNotFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value does not exist for the specified mapping type. """ msg = """ Value '{value}' was not found for field '{field}'. """.strip() class MultipleValuesFoundForField(ZiplineError): """ Raised when a lookup_by_supplementary_mapping() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple occurrences of the value '{value}' found for field '{field}'. Use the as_of_date' argument to specify when the lookup should be valid. Possible options: {options} """.strip() class NoValueForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a sid that does not have a value for the specified mapping type. """ msg = """ No '{field}' value found for sid '{sid}'. """.strip() class MultipleValuesFoundForSid(ZiplineError): """ Raised when a get_supplementary_field() call contains a value that changed over time for the specified field and is thus not resolvable without additional information provided via as_of_date. """ msg = """ Multiple '{field}' values found for sid '{sid}'. Use the as_of_date' argument to specify when the lookup should be valid. Possible options: {options} """.strip() class SidsNotFound(ZiplineError): """ Raised when a retrieve_asset() or retrieve_all() call contains a non-existent sid. """ @lazyval def plural(self): return len(self.sids) > 1 @lazyval def sids(self): return self.kwargs['sids'] @lazyval def msg(self): if self.plural: return "No assets found for sids: {sids}." return "No asset found for sid: {sids[0]}." class EquitiesNotFound(SidsNotFound): """ Raised when a call to `retrieve_equities` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No equities found for sids: {sids}." return "No equity found for sid: {sids[0]}." class FutureContractsNotFound(SidsNotFound): """ Raised when a call to `retrieve_futures_contracts` fails to find an asset. """ @lazyval def msg(self): if self.plural: return "No future contracts found for sids: {sids}." return "No future contract found for sid: {sids[0]}." class ConsumeAssetMetaDataError(ZiplineError): """ Raised when AssetFinder.consume() is called on an invalid object. """ msg = """ AssetFinder can not consume metadata of type {obj}. Metadata must be a dict, a DataFrame, or a tables.Table. If the provided metadata is a Table, the rows must contain both or one of 'sid' or 'symbol'. """.strip() class MapAssetIdentifierIndexError(ZiplineError): """ Raised when AssetMetaData.map_identifier_index_to_sids() is called on an index of invalid objects. """ msg = """ AssetFinder can not map an index with values of type {obj}. Asset indices of DataFrames or Panels must be integer sids, string symbols, or Asset objects. """.strip() class SidAssignmentError(ZiplineError): """ Raised when an AssetFinder tries to build an Asset that does not have a sid and that AssetFinder is not permitted to assign sids. """ msg = """ AssetFinder metadata is missing a SID for identifier '{identifier}'. """.strip() class NoSourceError(ZiplineError): """ Raised when no source is given to the pipeline """ msg = """ No data source given. """.strip() class PipelineDateError(ZiplineError): """ Raised when only one date is passed to the pipeline """ msg = """ Only one simulation date given. Please specify both the 'start' and 'end' for the simulation, or neither. If neither is given, the start and end of the DataSource will be used. Given start = '{start}', end = '{end}' """.strip() class WindowLengthTooLong(ZiplineError): """ Raised when a trailing window is instantiated with a lookback greater than the length of the underlying array. """ msg = ( "Can't construct a rolling window of length " "{window_length} on an array of length {nrows}." ).strip() class WindowLengthNotPositive(ZiplineError): """ Raised when a trailing window would be instantiated with a length less than 1. """ msg = ( "Expected a window_length greater than 0, got {window_length}." ).strip() class NonWindowSafeInput(ZiplineError): """ Raised when a Pipeline API term that is not deemed window safe is specified as an input to another windowed term. This is an error because it's generally not safe to compose windowed functions on split/dividend adjusted data. """ msg = ( "Can't compute windowed expression {parent} with " "windowed input {child}." ) class TermInputsNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying inputs and that term does not have class-level default inputs. """ msg = "{termname} requires inputs, but no inputs list was passed." class TermOutputsEmpty(ZiplineError): """ Raised if a user attempts to construct a term with an empty outputs list. """ msg = ( "{termname} requires at least one output when passed an outputs " "argument." ) class InvalidOutputName(ZiplineError): """ Raised if a term's output names conflict with any of its attributes. """ msg = ( "{output_name!r} cannot be used as an output name for {termname}. " "Output names cannot start with an underscore or be contained in the " "following list: {disallowed_names}." ) class WindowLengthNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying window length and that term does not have a class-level default window length. """ msg = ( "{termname} requires a window_length, but no window_length was passed." ) class InvalidTermParams(ZiplineError): """ Raised if a user attempts to construct a Term using ParameterizedTermMixin without specifying a `params` list in the class body. """ msg = ( "Expected a list of strings as a class-level attribute for " "{termname}.params, but got {value} instead." ) class DTypeNotSpecified(ZiplineError): """ Raised if a user attempts to construct a term without specifying dtype and that term does not have class-level default dtype. """ msg = ( "{termname} requires a dtype, but no dtype was passed." ) class NotDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that isn't a numpy dtype object. """ msg = ( "{termname} expected a numpy dtype " "object for a dtype, but got {dtype} instead." ) class UnsupportedDType(ZiplineError): """ Raised when a pipeline Term is constructed with a dtype that's not supported. """ msg = ( "Failed to construct {termname}.\n" "Pipeline terms of dtype {dtype} are not yet supported." ) class BadPercentileBounds(ZiplineError): """ Raised by API functions accepting percentile bounds when the passed bounds are invalid. """ msg = ( "Percentile bounds must fall between 0.0 and {upper_bound}, and min " "must be less than max." "\nInputs were min={min_percentile}, max={max_percentile}." ) class UnknownRankMethod(ZiplineError): """ Raised during construction of a Rank factor when supplied a bad Rank method. """ msg = ( "Unknown ranking method: '{method}'. " "`method` must be one of {choices}" ) class AttachPipelineAfterInitialize(ZiplineError): """ Raised when a user tries to call add_pipeline outside of initialize. """ msg = ( "Attempted to attach a pipeline after initialize()." "attach_pipeline() can only be called during initialize." ) class PipelineOutputDuringInitialize(ZiplineError): """ Raised when a user tries to call `pipeline_output` during initialize. """ msg = ( "Attempted to call pipeline_output() during initialize. " "pipeline_output() can only be called once initialize has completed." ) class NoSuchPipeline(ZiplineError, KeyError): """ Raised when a user tries to access a non-existent pipeline by name. """ msg = ( "No pipeline named '{name}' exists. Valid pipeline names are {valid}. " "Did you forget to call attach_pipeline()?" ) class UnsupportedDataType(ZiplineError): """ Raised by CustomFactors with unsupported dtypes. """ msg = "{typename} instances with dtype {dtype} are not supported." class NoFurtherDataError(ZiplineError): """ Raised by calendar operations that would ask for dates beyond the extent of our known data. """ # This accepts an arbitrary message string because it's used in more places # that can be usefully templated. msg = '{msg}' @classmethod def from_lookback_window(cls, initial_message, first_date, lookback_start, lookback_length): return cls( msg=dedent( """ {initial_message} lookback window started at {lookback_start} earliest known date was {first_date} {lookback_length} extra rows of data were required """ ).format( initial_message=initial_message, first_date=first_date, lookback_start=lookback_start, lookback_length=lookback_length, ) ) class UnsupportedDatetimeFormat(ZiplineError): """ Raised when an unsupported datetime is passed to an API method. """ msg = ("The input '{input}' passed to '{method}' is not " "coercible to a pandas.Timestamp object.") class AssetDBVersionError(ZiplineError): """ Raised by an AssetDBWriter or AssetFinder if the version number in the versions table does not match the ASSET_DB_VERSION in asset_writer.py. """ msg = ( "The existing Asset database has an incorrect version: {db_version}. " "Expected version: {expected_version}. Try rebuilding your asset " "database or updating your version of Zipline." ) class AssetDBImpossibleDowngrade(ZiplineError): msg = ( "The existing Asset database is version: {db_version} which is lower " "than the desired downgrade version: {desired_version}." ) class HistoryWindowStartsBeforeData(ZiplineError): msg = ( "History window extends before {first_trading_day}. To use this " "history window, start the backtest on or after {suggested_start_day}." ) class NonExistentAssetInTimeFrame(ZiplineError): msg = ( "The target asset '{asset}' does not exist for the entire timeframe " "between {start_date} and {end_date}." ) class InvalidCalendarName(ZiplineError): """ Raised when a calendar with an invalid name is requested. """ msg = ( "The requested TradingCalendar, {calendar_name}, does not exist." ) class CalendarNameCollision(ZiplineError): """ Raised when the static calendar registry already has a calendar with a given name. """ msg = ( "A calendar with the name {calendar_name} is already registered." ) class CyclicCalendarAlias(ZiplineError): """ Raised when calendar aliases form a cycle. """ msg = "Cycle in calendar aliases: [{cycle}]" class ScheduleFunctionWithoutCalendar(ZiplineError): """ Raised when schedule_function is called but there is not a calendar to be used in the construction of an event rule. """ # TODO update message when new TradingSchedules are built msg = ( "To use schedule_function, the TradingAlgorithm must be running on an " "ExchangeTradingSchedule, rather than {schedule}." ) class ScheduleFunctionInvalidCalendar(ZiplineError): """ Raised when schedule_function is called with an invalid calendar argument. """ msg = ( "Invalid calendar '{given_calendar}' passed to schedule_function. " "Allowed options are {allowed_calendars}." ) class UnsupportedPipelineOutput(ZiplineError): """ Raised when a 1D term is added as a column to a pipeline. """ msg = ( "Cannot add column {column_name!r} with term {term}. Adding slices or " "single-column-output terms as pipeline columns is not currently " "supported." ) class NonSliceableTerm(ZiplineError): """ Raised when attempting to index into a non-sliceable term, e.g. instances of `catalyst.pipeline.term.LoadableTerm`. """ msg = "Taking slices of {term} is not currently supported." class IncompatibleTerms(ZiplineError): """ Raised when trying to compute correlations/regressions between two 2D factors with different masks. """ msg = ( "{term_1} and {term_2} must have the same mask in order to compute " "correlations and regressions asset-wise." )
apache-2.0
fengzhyuan/scikit-learn
sklearn/ensemble/tests/test_bagging.py
127
25365
""" Testing for the bagging ensemble module (sklearn.ensemble.bagging). """ # Author: Gilles Louppe # License: BSD 3 clause import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.grid_search import GridSearchCV, ParameterGrid from sklearn.ensemble import BaggingClassifier, BaggingRegressor from sklearn.linear_model import Perceptron, LogisticRegression from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.svm import SVC, SVR from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SelectKBest from sklearn.cross_validation import train_test_split from sklearn.datasets import load_boston, load_iris, make_hastie_10_2 from sklearn.utils import check_random_state from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # also load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_classification(): # Check classification for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [1, 2, 4], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyClassifier(), Perceptron(), DecisionTreeClassifier(), KNeighborsClassifier(), SVC()]: for params in grid: BaggingClassifier(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_classification(): # Check classification for various parameter settings on sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVC, self).fit(X, y) self.data_type_ = type(X) return self rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) def test_regression(): # Check regression for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [0.5, 1.0], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyRegressor(), DecisionTreeRegressor(), KNeighborsRegressor(), SVR()]: for params in grid: BaggingRegressor(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_regression(): # Check regression for various parameter settings on sparse input. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) class CustomSVR(SVR): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVR, self).fit(X, y) self.data_type_ = type(X) return self parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) assert_array_equal(sparse_results, dense_results) def test_bootstrap_samples(): # Test that bootstraping samples generate non-perfect base estimators. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) base_estimator = DecisionTreeRegressor().fit(X_train, y_train) # without bootstrap, all trees are perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=False, random_state=rng).fit(X_train, y_train) assert_equal(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) # with bootstrap, trees are no longer perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=True, random_state=rng).fit(X_train, y_train) assert_greater(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) def test_bootstrap_features(): # Test that bootstraping features may generate dupplicate features. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=False, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_equal(boston.data.shape[1], np.unique(features).shape[0]) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=True, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_greater(boston.data.shape[1], np.unique(features).shape[0]) def test_probability(): # Predict probabilities. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) with np.errstate(divide="ignore", invalid="ignore"): # Normal case ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(), random_state=rng).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) # Degenerate case, where some classes are missing ensemble = BaggingClassifier(base_estimator=LogisticRegression(), random_state=rng, max_samples=5).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) def test_oob_score_classification(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) for base_estimator in [DecisionTreeClassifier(), SVC()]: clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingClassifier(base_estimator=base_estimator, n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_oob_score_regression(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=50, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_single_estimator(): # Check singleton ensembles. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(), n_estimators=1, bootstrap=False, bootstrap_features=False, random_state=rng).fit(X_train, y_train) clf2 = KNeighborsRegressor().fit(X_train, y_train) assert_array_equal(clf1.predict(X_test), clf2.predict(X_test)) def test_error(): # Test that it gives proper exception on deficient input. X, y = iris.data, iris.target base = DecisionTreeClassifier() # Test max_samples assert_raises(ValueError, BaggingClassifier(base, max_samples=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=1000).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples="foobar").fit, X, y) # Test max_features assert_raises(ValueError, BaggingClassifier(base, max_features=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=5).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features="foobar").fit, X, y) # Test support of decision_function assert_false(hasattr(BaggingClassifier(base).fit(X, y), 'decision_function')) def test_parallel_classification(): # Check parallel classification. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) # predict_proba ensemble.set_params(n_jobs=1) y1 = ensemble.predict_proba(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y3) # decision_function ensemble = BaggingClassifier(SVC(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) decisions1 = ensemble.decision_function(X_test) ensemble.set_params(n_jobs=2) decisions2 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions2) ensemble = BaggingClassifier(SVC(), n_jobs=1, random_state=0).fit(X_train, y_train) decisions3 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions3) def test_parallel_regression(): # Check parallel regression. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_gridsearch(): # Check that bagging ensembles can be grid-searched. # Transform iris into a binary classification task X, y = iris.data, iris.target y[y == 2] = 1 # Grid search with scoring based on decision_function parameters = {'n_estimators': (1, 2), 'base_estimator__C': (1, 2)} GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y) def test_base_estimator(): # Check base_estimator and its default values. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, Perceptron)) # Regression X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, SVR)) def test_bagging_with_pipeline(): estimator = BaggingClassifier(make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2) estimator.fit(iris.data, iris.target) class DummyZeroEstimator(BaseEstimator): def fit(self, X, y): self.classes_ = np.unique(y) return self def predict(self, X): return self.classes_[np.zeros(X.shape[0], dtype=int)] def test_bagging_sample_weight_unsupported_but_passed(): estimator = BaggingClassifier(DummyZeroEstimator()) rng = check_random_state(0) estimator.fit(iris.data, iris.target).predict(iris.data) assert_raises(ValueError, estimator.fit, iris.data, iris.target, sample_weight=rng.randint(10, size=(iris.data.shape[0]))) def test_warm_start(random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = BaggingClassifier(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) def test_warm_start_smaller_n_estimators(): # Test if warm start'ed second fit with smaller n_estimators raises error. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_equal_n_estimators(): # Test that nothing happens when fitting without increasing n_estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # modify X to nonsense values, this should not change anything X_train += 1. assert_warns_message(UserWarning, "Warm-start fitting without increasing n_estimators does not", clf.fit, X_train, y_train) assert_array_equal(y_pred, clf.predict(X_test)) def test_warm_start_equivalence(): # warm started classifier with 5+5 estimators should be equivalent to # one classifier with 10 estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141) clf_ws.fit(X_train, y_train) clf_ws.set_params(n_estimators=10) clf_ws.fit(X_train, y_train) y1 = clf_ws.predict(X_test) clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141) clf.fit(X_train, y_train) y2 = clf.predict(X_test) assert_array_almost_equal(y1, y2) def test_warm_start_with_oob_score_fails(): # Check using oob_score and warm_start simultaneously fails X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True) assert_raises(ValueError, clf.fit, X, y) def test_oob_score_removed_on_warm_start(): X, y = make_hastie_10_2(n_samples=2000, random_state=1) clf = BaggingClassifier(n_estimators=50, oob_score=True) clf.fit(X, y) clf.set_params(warm_start=True, oob_score=False, n_estimators=100) clf.fit(X, y) assert_raises(AttributeError, getattr, clf, "oob_score_")
bsd-3-clause
alvason/stochastic-infectious-pulse
code/stochastic_SIR-Copy1.py
2
12878
# coding: utf-8 # # Stochastic infectious pulse # https://github.com/alvason/stochastic-infectious-pulse # # ### Stochastic version for evolutionary insights # In[1]: ''' author: Alvason Zhenhua Li date: 07/07/2015 ''' get_ipython().magic(u'matplotlib inline') import numpy as np import matplotlib.pyplot as plt import time import os dir_path = '/Users/al/Desktop/GitHub/stochastic-infectious-pulse/figure' file_name = 'stochastic-sir' import alva_machinery_probability as alva AlvaFontSize = 23 AlvaFigSize = (16, 8) numberingFig = 0 # stochastic evolution figure_name = '-stochastic-event' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) text_list = [r'$ Stochastic-SIR-evolution(all \ possible \ evolving \ events): $' , r'$ 1. event(new \ SIR \ in) = \mu(S+I+R) $' , r'$ 2. event(old \ S \ out) = \mu S $' , r'$ 3. event(old \ I \ out) = \mu I $' , r'$ 4. event(old \ R \ out) = \mu R $' , r'$ 5. event(SI \ infected) = \beta S(t)I(t) $' , r'$ 6. event(IR \ recovred) = \gamma I(t) $'] total_list = np.size(text_list) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize=(total_list*2, total_list)) plt.axis('off') for i in range(total_list): plt.text(0, (total_list - float(i))/total_list , text_list[i].replace('\\\n', '') , fontsize = 1.2*AlvaFontSize) plt.savefig(save_figure, dpi = 100) plt.show() # relating to the deterministic SIR equation text_list = [r'$ Corresponding \ to \ deterministic-SIR-equation $' , r'$ \frac{\partial S(t)}{\partial t} = \ -\beta S(t)I(t) +\mu N -\mu S(t) $' , r'$ \frac{\partial I(t)}{\partial t} = \ +\beta S(t)I(t) - \gamma I(t) -\mu I(t) $' , r'$ \frac{\partial R(t)}{\partial t} = \ +\gamma I(t) - \mu R(t) $'] total_list = np.size(text_list) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize=(total_list*2, total_list)) plt.axis('off') for i in range(total_list): plt.text(0, (total_list - float(i))/total_list , text_list[i].replace('\\\n', '') , fontsize = 1.2*AlvaFontSize) plt.show() # In[2]: # algorithm for stochastic evolution figure_name = '-Gillespie-algorithm' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) text_list = [r'$ Gillespie-algorithm: $' , r'$ 1. \ initialize \ the \ number \ of \ each \ group: \ S(t=0), I(t=0), R(t=0) $' , r'$ 2. \ compute \ the \ probability \ of \ each \ possible \ event_i \ at \ the \ moment \ \bf{t} $' , r'$ 3. \ randomly \ select \ event_{next} \ \ according \ to \ random{[0,1)} < \frac{\sum_{k=1}^{next}event_{k}}{\sum_{i=1}^{all} event_i} $' , r'$ 4. \ update \ the \ number \ of \ corresponding \ group $' , r'$ 5. \ compute \ \Delta t = \frac{-log_{e}(event_{next})}{\sum_{i}^{} event_i} $' , r'$ \ (according \ to \ probability-density-function: \ Pr(t < event_{next} < t+\Delta t) = \ exp(-\Delta t \sum_{i}^{} event_i )) $' , r'$ 7. \ update \ t = t + \Delta t $' , r'$ 6. \ go \ to \ step-2 $' ] total_list = np.size(text_list) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize=(total_list, total_list*1.5)) plt.axis('off') for i in range(total_list): plt.text(0, (total_list - float(i))/total_list , text_list[i].replace('\\\n', '') , fontsize = 1.2*AlvaFontSize) plt.savefig(save_figure, dpi = 100) plt.show() # In[3]: ''' define stochasticSIR function ''' def stochasticSIR(total_step, minT, maxT, initial_S, initial_I, initial_R , reprodNum, recovRate, inOutRate, infecRate): # intialized gT = np.zeros([total_step]) gS = np.zeros([total_step]) gI = np.zeros([total_step]) gR = np.zeros([total_step]) j = int(0) gT[j] = minT gS[j] = initial_S gI[j] = initial_I gR[j] = initial_R # all possible events event_SIRin = inOutRate*(gS[j] + gI[j] + gR[j]) event_Sout = inOutRate*gS[j] event_Iout = inOutRate*gI[j] event_Rout = inOutRate*gR[j] event_SI = infecRate*gS[j]*gI[j]/(gS[j] + gI[j] + gR[j]) event_IR = recovRate*gI[j] # configuration table eventRate_updateSIR = np.array([[event_SIRin, +1, 0, 0] , [event_Sout, -1, 0, 0] , [event_Iout, 0, -1, 0] , [event_Rout, 0, 0, -1] , [event_SI, -1, +1, 0] , [event_IR, 0, -1, +1]]) ### while (gT[j] < maxT): # randomly choose event if np.random.random() < (eventRate_updateSIR[0:0 + 1, 0].sum()/eventRate_updateSIR[:, 0].sum()): k = 0 elif np.random.random() < (eventRate_updateSIR[0:1 + 1, 0].sum()/eventRate_updateSIR[:, 0].sum()): k = 1 elif np.random.random() < (eventRate_updateSIR[0:2 + 1, 0].sum()/eventRate_updateSIR[:, 0].sum()): k = 2 elif np.random.random() < (eventRate_updateSIR[0:3 + 1, 0].sum()/eventRate_updateSIR[:, 0].sum()): k = 3 elif np.random.random() < (eventRate_updateSIR[0:4 + 1, 0].sum()/eventRate_updateSIR[:, 0].sum()): k = 4 else: k = 5 # update number of section gS[j] = gS[j] + eventRate_updateSIR[k, 1] gI[j] = gI[j] + eventRate_updateSIR[k, 2] gR[j] = gR[j] + eventRate_updateSIR[k, 3] # update event_rate event_SIRin = inOutRate*(gS[j] + gI[j] + gR[j]) event_Sout = inOutRate*gS[j] event_Iout = inOutRate*gI[j] event_Rout = inOutRate*gR[j] event_SI = infecRate*gS[j]*gI[j]/(gS[j] + gI[j] + gR[j]) event_IR = recovRate*gI[j] eventRate_updateSIR = np.array([[event_SIRin, 1, 0, 0] , [event_Sout, -1, 0, 0] , [event_Iout, 0, -1, 0] , [event_Rout, 0, 0, -1] , [event_SI, -1, +1, 0] , [event_IR, 0, -1, +1]]) # next step is based on current step dt = -np.log(np.random.random()) / eventRate_updateSIR[:, 0].sum() gT[j + 1] = gT[j] + dt gS[j + 1] = gS[j] gI[j + 1] = gI[j] gR[j + 1] = gR[j] j = j + 1 # set the value of remaining steps = value of the last step (for ending) gT[j:] = gT[j] gS[j:] = gS[j] gI[j:] = gI[j] gR[j:] = gR[j] ### return(gT, gS, gI, gR) # In[9]: ''' starting from one infected ''' # setting parameter timeUnit = 'day' if timeUnit == 'day': day = 1 year = 365 elif timeUnit == 'year': year = 1 day = float(1)/365 total_SIR = 300 initial_I = 1 initial_S = total_SIR - initial_I initial_R = total_SIR - initial_S - initial_I # set parameter reprodNum = float(1.5) # basic reproductive number R0: one infected person will transmit to 1.8 person recovRate = float(1)/(4*day) # 4 days per period ==> rate/year = 365/4 inOutRate = float(1)/(30*year) # birth rate per year infecRate = reprodNum*(recovRate + inOutRate)/1 # per year, per person, per total-population # initial boundary condition minT = float(0*day) maxT = float(90*day) total_step = int(maxT*total_SIR) # stochastic evolution way total_way = int(5) gTT = np.zeros([total_way, total_step]) gSS = np.zeros([total_way, total_step]) gII = np.zeros([total_way, total_step]) gRR = np.zeros([total_way, total_step]) for i in range(total_way): aaa = stochasticSIR(total_step, minT, maxT, initial_S, initial_I, initial_R , reprodNum, recovRate, inOutRate, infecRate) gTT[i] = aaa[0] gSS[i] = aaa[1] gII[i] = aaa[2] gRR[i] = aaa[3] # plotting figure_name = '-sir' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 figure = plt.figure(numberingFig, figsize = AlvaFigSize) for i in range(total_way): plt.plot(gTT[i], gSS[i], drawstyle = 'steps', label = r'$ S_{:}(t) $'.format(i), linewidth = (1 + i) , color = 'blue', alpha = float(0.5 + i/total_way)) plt.plot(gTT[i], gII[i], drawstyle = 'steps', label = r'$ I_{:}(t) $'.format(i), linewidth = (1 + i) , color = 'red', alpha = float(0.5 + i/total_way)) plt.plot(gTT[i], gRR[i], drawstyle = 'steps', label = r'$ R_{:}(t) $'.format(i), linewidth = (1 + i) , color = 'green', alpha = float(0.5 + i/total_way)) plt.plot(gTT[i], (gSS[i] + gII[i] + gRR[i]), drawstyle = 'steps', label = r'$ N_{:}(t) $'.format(i) , linewidth = (1 + i), color = 'black', alpha = float(0.5 + i/total_way)) plt.grid(True) plt.title(r'$ Stochastic \ SIR \ (Susceptible-Infected-Recovered) $', fontsize = AlvaFontSize) plt.xlabel(r'$ time \ ({:})$'.format(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Population $', fontsize = AlvaFontSize) plt.legend(loc = (1,0)) plt.text(maxT, total_SIR*6.0/6, r'$ R_0 = %f $'%(reprodNum), fontsize = AlvaFontSize) plt.text(maxT, total_SIR*5.0/6, r'$ \gamma = %f $'%(recovRate), fontsize = AlvaFontSize) plt.text(maxT, total_SIR*4.0/6, r'$ \beta = %f $'%(infecRate), fontsize = AlvaFontSize) plt.text(maxT, total_SIR*3.0/6, r'$ \mu = %f $'%(inOutRate), fontsize = AlvaFontSize) plt.xticks(fontsize = AlvaFontSize*0.7) plt.yticks(fontsize = AlvaFontSize*0.7) figure.tight_layout() plt.savefig(save_figure, dpi = 100, bbox_inches='tight') plt.show() # In[5]: if np.random.random() < 1.0/4: print 'k = 1' elif np.random.random() < 2.0/4: print 'k = 2' elif np.random.random() < 3.0/4: print 'k = 3' else: print 'k = 4' print 'end' # In[6]: '''uniform randomness --- uniform distribution''' total_event = int(100) gInput = np.arange(total_event) meanP = 0.5 randomSeed = np.random.uniform(0, 1, total_event) sumP = 0 for i in range(total_event): sumP = sumP + (meanP - randomSeed[i])**2 deviationP = (sumP/total_event)**(1.0/2) totalLevel = int(total_event/10) category = alva.AlvaLevel(randomSeed, totalLevel, False) gLevel = category[0] gLevel_int = gLevel.astype(int) numberLevel = category[1] #print ('level =', gLevel) #print ('level_int =', gLevel_int) # plotting figure_name = '' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 figure = plt.figure(numberingFig, figsize = AlvaFigSize) plot1 = figure.add_subplot(1, 2, 1) plot1.plot(gInput, randomSeed, color = 'gray', marker = 'o', label = 'data') plot1.plot(gInput, alva.AlvaMinMax(randomSeed), color = 'red', marker = 'o', label = 'minMaxListing') if total_event < 100: plot1.set_xticks(gInput, minor = True) plot1.set_yticks(randomSeed, minor = True) plot1.grid(True, which = 'minor') else: plot1.grid(True, which = 'major') plt.title(r'$ Exponential \ (mean = {:1.3f},\ deviation = {:1.3f}) $'.format(meanP, deviationP), fontsize = AlvaFontSize) plt.xlabel(r'$ event-input $', fontsize = AlvaFontSize) plt.ylabel(r'$ output $', fontsize = AlvaFontSize) plt.legend(loc = (0, -0.2)) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plot2 = figure.add_subplot(1, 2, 2) plot2.plot(numberLevel, gLevel, color = 'red', marker = 'o', label = 'category') if totalLevel < 100: plot2.set_xticks(numberLevel, minor = True) plot2.set_yticks(gLevel, minor = True) plot2.grid(True, which = 'minor') else: plot2.grid(True, which = 'major') plt.title(r'$ (events = {:},\ levels = {:}) $'.format(total_event, totalLevel) , fontsize = AlvaFontSize) plt.xlabel(r'$ event/level $', fontsize = AlvaFontSize) plt.ylabel(r'$ level-range $', fontsize = AlvaFontSize) plt.legend(loc = (0, -0.2)) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) figure.tight_layout() plt.savefig(save_figure, dpi = 100) plt.show() # In[7]: randomSeed = np.random.uniform(0, 1, 100) event_all_rate = randomSeed[0:10] print event_all_rate event_all_PD = event_all_rate/event_all_rate.sum() dt = 0.01 total_step = 10 gT = np.arange(total_step)*dt event_n = np.zeros([total_step, event_all_rate.size]) event_n[0] = event_all_PD for i in range(total_step): for j in range(event_all_rate.size): event_n[i, j] = np.exp(-dt * np.sum(event_all_rate)) event_all_rate[j] = event_n[i, j] # event_all_PD = event_all_PD/event_all_PD.sum() numberingFig = numberingFig + 1 figure = plt.figure(numberingFig, figsize = AlvaFigSize) for j in range(event_all_rate.size): plt.plot(gT, event_n[:, j], marker = 'o') plt.show()
gpl-2.0
saltastro/pysalt
lib/saltimagetools.py
2
4865
################################# LICENSE ################################## # Copyright (c) 2009, South African Astronomical Observatory (SAAO) # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer # # in the documentation and/or other materials provided with the # # distribution. # # * Neither the name of the South African Astronomical Observatory # # (SAAO) nor the names of its contributors may be used to endorse # # or promote products derived from this software without specific # # prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE SAAO ''AS IS'' AND ANY EXPRESS OR # # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL THE SAAO BE LIABLE FOR ANY # # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ############################################################################ """Module for working with image data.""" import numpy as np def find_centroid(image): """Find the centroid *(cx,cy)* of *image* where: .. math:: cx=\sum f\cdot x/\sum f cy=\sum f\cdot y/\sum f """ # Ensure that input is a numpy array image=np.asarray(image) # Setup indices x,y=np.indices(image.shape) # Calculate total flux tot=image.sum() cx=(image*x).sum()/tot cy=(image*y).sum()/tot return cx,cy def find_object(image,x,y,distance=5): """Returns image pixel coordinates of centroid in box of size:: 2*distance+1 around coordinates *(x,y)* in *image*. """ # Ensure input image is numpy array image=np.asarray(image).transpose() # Round to nearest integer for search box x=int(round(x)) y=int(round(y)) distance=int(round(distance)) #print image # Set range and check for regions outside boundary xstart=x-distance if xstart<0: xstart=0 ystart=y-distance if ystart<0: ystart=0 xend=x+distance+1 yend=y+distance+1 #print xstart,xend,ystart,yend #print image.shape section=image[xstart:xend,ystart:yend] #print section cx,cy=find_centroid(section) return cx+xstart,cy+ystart def zscale(image, contrast=1.0): """Implementation of the IRAF zscale algorithm to find vmin and vmax parameters for the dynamic range of a display. It finds the image values near the median image value without the time consuming process of computing a full image histogram.""" from scipy import optimize #import matplotlib.pyplot as plt # Get ordered list of points I=np.sort(image.flatten()) # Get number of points npoints=len(I) # Find the midpoint (median) midpoint=(npoints-1)/2 # Fit a linear function # I(i) = intercept + slope * (i - midpoint) fitfunc = lambda p, x: p[0]*x+p[1] errfunc = lambda p, x, y: fitfunc(p, x) - y # Initial guess for the parameters p0 = [(I[-1]-I[0])/npoints,I[midpoint]] # Fit i=np.arange(len(I)) p1, success = optimize.leastsq(errfunc, p0[:], args=(i, I)) # plt.plot(i,I,'r+') # plt.plot(i,fitfunc(p1,i)) # plt.show() if success in [1,2,3,4]: slope=p1[0] z1=I[midpoint]+(slope/contrast)*(1-midpoint) z2=I[midpoint]+(slope/contrast)*(npoints-midpoint) else: z1=np.min(image) z2=np.max(image) return z1, z2
bsd-3-clause
nikste/tensorflow
tensorflow/contrib/learn/python/learn/dataframe/tensorflow_dataframe.py
75
29377
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlowDataFrame implements convenience functions using TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import numpy as np from tensorflow.contrib.learn.python.learn.dataframe import dataframe as df from tensorflow.contrib.learn.python.learn.dataframe.transforms import batch from tensorflow.contrib.learn.python.learn.dataframe.transforms import csv_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import example_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import in_memory_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import reader_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import sparsify from tensorflow.contrib.learn.python.learn.dataframe.transforms import split_mask from tensorflow.python.client import session as sess from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner as qr def _expand_file_names(filepatterns): """Takes a list of file patterns and returns a list of resolved file names.""" if not isinstance(filepatterns, (list, tuple, set)): filepatterns = [filepatterns] filenames = set() for filepattern in filepatterns: names = set(gfile.Glob(filepattern)) filenames |= names return list(filenames) def _dtype_to_nan(dtype): if dtype is dtypes.string: return b"" elif dtype.is_integer: return np.nan elif dtype.is_floating: return np.nan elif dtype is dtypes.bool: return np.nan else: raise ValueError("Can't parse type without NaN into sparse tensor: %s" % dtype) def _get_default_value(feature_spec): if isinstance(feature_spec, parsing_ops.FixedLenFeature): return feature_spec.default_value else: return _dtype_to_nan(feature_spec.dtype) class TensorFlowDataFrame(df.DataFrame): """TensorFlowDataFrame implements convenience functions using TensorFlow.""" def run(self, num_batches=None, graph=None, session=None, start_queues=True, initialize_variables=True, **kwargs): """Builds and runs the columns of the `DataFrame` and yields batches. This is a generator that yields a dictionary mapping column names to evaluated columns. Args: num_batches: the maximum number of batches to produce. If none specified, the returned value will iterate through infinite batches. graph: the `Graph` in which the `DataFrame` should be built. session: the `Session` in which to run the columns of the `DataFrame`. start_queues: if true, queues will be started before running and halted after producting `n` batches. initialize_variables: if true, variables will be initialized. **kwargs: Additional keyword arguments e.g. `num_epochs`. Yields: A dictionary, mapping column names to the values resulting from running each column for a single batch. """ if graph is None: graph = ops.get_default_graph() with graph.as_default(): if session is None: session = sess.Session() self_built = self.build(**kwargs) keys = list(self_built.keys()) cols = list(self_built.values()) if initialize_variables: if variables.local_variables(): session.run(variables.local_variables_initializer()) if variables.global_variables(): session.run(variables.global_variables_initializer()) if start_queues: coord = coordinator.Coordinator() threads = qr.start_queue_runners(sess=session, coord=coord) i = 0 while num_batches is None or i < num_batches: i += 1 try: values = session.run(cols) yield collections.OrderedDict(zip(keys, values)) except errors.OutOfRangeError: break if start_queues: coord.request_stop() coord.join(threads) def select_rows(self, boolean_series): """Returns a `DataFrame` with only the rows indicated by `boolean_series`. Note that batches may no longer have consistent size after calling `select_rows`, so the new `DataFrame` may need to be rebatched. For example: ''' filtered_df = df.select_rows(df["country"] == "jp").batch(64) ''' Args: boolean_series: a `Series` that evaluates to a boolean `Tensor`. Returns: A new `DataFrame` with the same columns as `self`, but selecting only the rows where `boolean_series` evaluated to `True`. """ result = type(self)() for key, col in self._columns.items(): try: result[key] = col.select_rows(boolean_series) except AttributeError as e: raise NotImplementedError(( "The select_rows method is not implemented for Series type {}. " "Original error: {}").format(type(col), e)) return result def split(self, index_series, proportion, batch_size=None): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask left_rows = self.select_rows(left_mask) right_rows = self.select_rows(right_mask) if batch_size: left_rows = left_rows.batch(batch_size=batch_size, shuffle=False) right_rows = right_rows.batch(batch_size=batch_size, shuffle=False) return left_rows, right_rows def split_fast(self, index_series, proportion, batch_size, base_batch_size=1000): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. base_batch_size: the batch size to use for materialized data, prior to the split. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask self["left_mask__"] = left_mask self["right_mask__"] = right_mask # TODO(soergel): instead of base_batch_size can we just do one big batch? # avoid computing the hashes twice m = self.materialize_to_memory(batch_size=base_batch_size) left_rows_df = m.select_rows(m["left_mask__"]) right_rows_df = m.select_rows(m["right_mask__"]) del left_rows_df[["left_mask__", "right_mask__"]] del right_rows_df[["left_mask__", "right_mask__"]] # avoid recomputing the split repeatedly left_rows_df = left_rows_df.materialize_to_memory(batch_size=batch_size) right_rows_df = right_rows_df.materialize_to_memory(batch_size=batch_size) return left_rows_df, right_rows_df def run_one_batch(self): """Creates a new 'Graph` and `Session` and runs a single batch. Returns: A dictionary mapping column names to numpy arrays that contain a single batch of the `DataFrame`. """ return list(self.run(num_batches=1))[0] def run_one_epoch(self): """Creates a new 'Graph` and `Session` and runs a single epoch. Naturally this makes sense only for DataFrames that fit in memory. Returns: A dictionary mapping column names to numpy arrays that contain a single epoch of the `DataFrame`. """ # batches is a list of dicts of numpy arrays batches = [b for b in self.run(num_epochs=1)] # first invert that to make a dict of lists of numpy arrays pivoted_batches = {} for k in batches[0].keys(): pivoted_batches[k] = [] for b in batches: for k, v in b.items(): pivoted_batches[k].append(v) # then concat the arrays in each column result = {k: np.concatenate(column_batches) for k, column_batches in pivoted_batches.items()} return result def materialize_to_memory(self, batch_size): unordered_dict_of_arrays = self.run_one_epoch() # there may already be an 'index' column, in which case from_ordereddict) # below will complain because it wants to generate a new one. # for now, just remove it. # TODO(soergel): preserve index history, potentially many levels deep del unordered_dict_of_arrays["index"] # the order of the columns in this dict is arbitrary; we just need it to # remain consistent. ordered_dict_of_arrays = collections.OrderedDict(unordered_dict_of_arrays) return TensorFlowDataFrame.from_ordereddict(ordered_dict_of_arrays, batch_size=batch_size) def batch(self, batch_size, shuffle=False, num_threads=1, queue_capacity=None, min_after_dequeue=None, seed=None): """Resize the batches in the `DataFrame` to the given `batch_size`. Args: batch_size: desired batch size. shuffle: whether records should be shuffled. Defaults to true. num_threads: the number of enqueueing threads. queue_capacity: capacity of the queue that will hold new batches. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` with `batch_size` rows. """ column_names = list(self._columns.keys()) if shuffle: batcher = batch.ShuffleBatch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity, min_after_dequeue=min_after_dequeue, seed=seed) else: batcher = batch.Batch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity) batched_series = batcher(list(self._columns.values())) dataframe = type(self)() dataframe.assign(**(dict(zip(column_names, batched_series)))) return dataframe @classmethod def _from_csv_base(cls, filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. get_default_values: a function that produces a list of default values for each column, given the column names. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if column_names is None: if not has_header: raise ValueError("If column_names is None, has_header must be true.") with gfile.GFile(filenames[0]) as f: column_names = csv.DictReader(f).fieldnames if "index" in column_names: raise ValueError( "'index' is reserved and can not be used for a column name.") default_values = get_default_values(column_names) reader_kwargs = {"skip_header_lines": (1 if has_header else 0)} index, value = reader_source.TextFileSource( filenames, reader_kwargs=reader_kwargs, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = csv_parser.CSVParser(column_names, default_values) parsed = parser(value) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_csv(cls, filepatterns, default_values, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. default_values: a list of default values for each column. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): # pylint: disable=unused-argument return default_values return cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) @classmethod def from_csv_with_feature_spec(cls, filepatterns, feature_spec, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files, given a feature_spec. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. feature_spec: a dict mapping column names to `FixedLenFeature` or `VarLenFeature`. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): return [_get_default_value(feature_spec[name]) for name in column_names] dataframe = cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) # replace the dense columns with sparse ones in place in the dataframe for name in dataframe.columns(): if name != "index" and isinstance(feature_spec[name], parsing_ops.VarLenFeature): strip_value = _get_default_value(feature_spec[name]) (dataframe[name],) = sparsify.Sparsify(strip_value)(dataframe[name]) return dataframe @classmethod def from_examples(cls, filepatterns, features, reader_cls=io_ops.TFRecordReader, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from `tensorflow.Example`s. Args: filepatterns: a list of file patterns containing `tensorflow.Example`s. features: a dict mapping feature names to `VarLenFeature` or `FixedLenFeature`. reader_cls: a subclass of `tensorflow.ReaderBase` that will be used to read the `Example`s. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with `Example`s from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if "index" in features: raise ValueError( "'index' is reserved and can not be used for a feature name.") index, record = reader_source.ReaderSource( reader_cls, filenames, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = example_parser.ExampleParser(features) parsed = parser(record) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_pandas(cls, pandas_dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="pandas_data"): """Create a `tf.learn.DataFrame` from a `pandas.DataFrame`. Args: pandas_dataframe: `pandas.DataFrame` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given `pandas_dataframe`. """ pandas_source = in_memory_source.PandasSource( pandas_dataframe, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(pandas_source()._asdict())) return dataframe @classmethod def from_numpy(cls, numpy_array, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from a `numpy.ndarray`. The returned `DataFrame` contains two columns: 'index' and 'value'. The 'value' column contains a row from the array. The 'index' column contains the corresponding row number. Args: numpy_array: `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given array. """ numpy_source = in_memory_source.NumpySource( numpy_array, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe @classmethod def from_ordereddict(cls, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from an `OrderedDict` of `numpy.ndarray`. The returned `DataFrame` contains a column for each key of the dict plus an extra 'index' column. The 'index' column contains the row number. Each of the other columns contains a row from the corresponding array. Args: ordered_dict_of_arrays: `OrderedDict` of `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given arrays. Raises: ValueError: `ordered_dict_of_arrays` contains the reserved name 'index'. """ numpy_source = in_memory_source.OrderedDictNumpySource( ordered_dict_of_arrays, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe
apache-2.0
jpautom/scikit-learn
examples/linear_model/plot_ols.py
220
1940
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= This example uses the only the first feature of the `diabetes` dataset, in order to illustrate a two-dimensional plot of this regression technique. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, the residual sum of squares and the variance score are also calculated. """ print(__doc__) # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # Load the diabetes dataset diabetes = datasets.load_diabetes() # Use only one feature diabetes_X = diabetes.data[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes.target[:-20] diabetes_y_test = diabetes.target[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # The coefficients print('Coefficients: \n', regr.coef_) # The mean square error print("Residual sum of squares: %.2f" % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) # Explained variance score: 1 is perfect prediction print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color='black') plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
liuchenxjtu/Lung_Cancer
data0.py
1
6245
import logging import numpy as np import pandas as pd import os import video import settings class ChunkLoader(): def __init__(self, set_name, repo_dir, datum_dtype=np.uint8, nclasses=2, augment=False, test_mode=False): # assert test_mode is False, 'Test mode not implemented yet' np.random.seed(0) self.set_name = set_name # self.bsz = self.be.bsz self.augment = augment self.repo_dir = repo_dir self.is_training = (set_name == 'train') self.chunk_size = settings.chunk_size self.chunk_shape = (self.chunk_size, self.chunk_size, self.chunk_size) self.chunk_volume = np.prod(self.chunk_shape) self.metadata = pd.read_csv(os.path.join(self.repo_dir, set_name + '-metadata.csv')) self.data_size = self.metadata.shape[0] self.pos_users = self.metadata[self.metadata['flag']==1]['uid'] self.neg_users = self.metadata[self.metadata['flag']==0]['uid'] self.nvids = self.metadata.shape[0] self.chunks_filled = 0 self.video_idx = 0 if not test_mode: self.labels = pd.read_csv(os.path.join(self.repo_dir, 'labels.csv')) self.nega_labels = pd.read_csv(os.path.join(self.repo_dir, 'candidates.csv')) else: self.labels = None self.test_mode = test_mode self.chunks,self.starts,self.targets = [],[],[] ##positive points in lables.csv self.pos_labels = self.labels[self.labels['uid'].isin(self.pos_users)].shape[0] self.pos_neg_ratio = 6.0 self.chunk_from_neg_users = int(self.pos_labels*self.pos_neg_ratio/len(self.neg_users)) self.current_uid = self.current_flag = self.current_meta = None def reset(self): self.chunks,self.starts,self.targets = [],[],[] def next_video(self,video_idx): self.reset() self.current_meta = self.metadata.iloc[video_idx] uid = self.current_meta['uid'] self.current_uid = self.current_meta['uid'] self.current_flag = int(self.current_meta['flag']) data_filename = os.path.join(self.repo_dir, uid + '.' + settings.file_ext) vid_shape = (int(self.current_meta['z_len']), int(self.current_meta['y_len']), int(self.current_meta['x_len'])) vid_data = video.read_blp(data_filename, vid_shape) self.video_idx += 1 self.extract_chunks(vid_data) return self.chunks,self.starts,self.targets def slice_chunk(self, start, data): return data[start[0]:start[0] + self.chunk_size, start[1]:start[1] + self.chunk_size, start[2]:start[2] + self.chunk_size]#.ravel() def extract_one(self, data, data_shape, uid_data,idx): # assert uid_data.shape[0] != 0 if not self.test_mode: center = np.array((uid_data['z'].iloc[idx], uid_data['y'].iloc[idx], uid_data['x'].iloc[idx]), dtype=np.int32) # radius rad = 0.5 * uid_data['diam'].iloc[idx] if rad == 0: # Assign an arbitrary radius to candidate nodules rad = 20 / settings.resolution #comment by lc: low may <0 low = np.int32(center + rad - self.chunk_size) high = np.int32(center - rad) for j in range(3): low[j] = max(0, low[j]) high[j] = max(low[j] + 1, high[j]) high[j] = min(data_shape[j] - self.chunk_size, high[j]) low[j] = min(low[j], high[j] - 1) start = [np.random.randint(low=low[i], high=high[i]) for i in range(3)] else: start = self.generate_chunk_start(chunk_idx, data_shape) chunk = self.slice_chunk(start, data) return chunk,start def generate_chunk_start(self, chunk_idx, data_shape): chunk_spacing = np.int32((np.array(data_shape) - self.chunk_size) / settings.chunks_per_dim) z_chunk_idx = chunk_idx / settings.chunks_per_dim ** 2 y_chunk_idx = (chunk_idx - z_chunk_idx * settings.chunks_per_dim ** 2) / settings.chunks_per_dim x_chunk_idx = chunk_idx - z_chunk_idx * settings.chunks_per_dim ** 2 \ - y_chunk_idx * settings.chunks_per_dim start = [z_chunk_idx * chunk_spacing[0], y_chunk_idx * chunk_spacing[1], x_chunk_idx * chunk_spacing[2]] return start def extract_chunks(self, data): data_shape = np.array(data.shape, dtype=np.int32) if self.current_flag: uid_data = self.labels[self.labels['uid'] == self.current_uid] for idx in range(uid_data.shape[0]): chunk,start = self.extract_one(data, data_shape, uid_data, idx) if chunk is None: continue self.chunks.append(chunk) self.starts.append(start) self.targets.append(1) else: uid_data = self.labels[self.labels['uid'] == self.current_uid] for idx in range(min(self.chunk_from_neg_users,uid_data.shape[0])): chunk,start = self.extract_one(data, data_shape, uid_data, idx) if chunk is None: continue self.chunks.append(chunk) self.starts.append(start) self.targets.append(0) ## not enough negative from labels, then to candidates if uid_data.shape[0]<self.chunk_from_neg_users: left_chunk = self.chunk_from_neg_users-uid_data.shape[0] uid_data = self.nega_labels[self.nega_labels['uid'] == self.current_uid] for i in range(min(left_chunk,uid_data.shape[0])): idx = np.random.randint(uid_data.shape[0]) chunk,start = self.extract_one(data, data_shape, uid_data, idx) if chunk is None: continue self.chunks.append(chunk) self.starts.append(start) self.targets.append(0)
apache-2.0
fergalbyrne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_ps.py
69
50262
""" A PostScript backend, which can produce both PostScript .ps and .eps """ from __future__ import division import glob, math, os, shutil, sys, time def _fn_name(): return sys._getframe(1).f_code.co_name try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 from tempfile import gettempdir from cStringIO import StringIO from matplotlib import verbose, __version__, rcParams from matplotlib._pylab_helpers import Gcf from matplotlib.afm import AFM from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like, get_realpath_and_stat, \ is_writable_file_like, maxdict from matplotlib.mlab import quad2cubic from matplotlib.figure import Figure from matplotlib.font_manager import findfont, is_opentype_cff_font from matplotlib.ft2font import FT2Font, KERNING_DEFAULT, LOAD_NO_HINTING from matplotlib.ttconv import convert_ttf_to_ps from matplotlib.mathtext import MathTextParser from matplotlib._mathtext_data import uni2type1 from matplotlib.text import Text from matplotlib.path import Path from matplotlib.transforms import IdentityTransform import numpy as npy import binascii import re try: set except NameError: from sets import Set as set if sys.platform.startswith('win'): cmd_split = '&' else: cmd_split = ';' backend_version = 'Level II' debugPS = 0 papersize = {'letter': (8.5,11), 'legal': (8.5,14), 'ledger': (11,17), 'a0': (33.11,46.81), 'a1': (23.39,33.11), 'a2': (16.54,23.39), 'a3': (11.69,16.54), 'a4': (8.27,11.69), 'a5': (5.83,8.27), 'a6': (4.13,5.83), 'a7': (2.91,4.13), 'a8': (2.07,2.91), 'a9': (1.457,2.05), 'a10': (1.02,1.457), 'b0': (40.55,57.32), 'b1': (28.66,40.55), 'b2': (20.27,28.66), 'b3': (14.33,20.27), 'b4': (10.11,14.33), 'b5': (7.16,10.11), 'b6': (5.04,7.16), 'b7': (3.58,5.04), 'b8': (2.51,3.58), 'b9': (1.76,2.51), 'b10': (1.26,1.76)} def _get_papertype(w, h): keys = papersize.keys() keys.sort() keys.reverse() for key in keys: if key.startswith('l'): continue pw, ph = papersize[key] if (w < pw) and (h < ph): return key else: return 'a0' def _num_to_str(val): if is_string_like(val): return val ival = int(val) if val==ival: return str(ival) s = "%1.3f"%val s = s.rstrip("0") s = s.rstrip(".") return s def _nums_to_str(*args): return ' '.join(map(_num_to_str,args)) def quote_ps_string(s): "Quote dangerous characters of S for use in a PostScript string constant." s=s.replace("\\", "\\\\") s=s.replace("(", "\\(") s=s.replace(")", "\\)") s=s.replace("'", "\\251") s=s.replace("`", "\\301") s=re.sub(r"[^ -~\n]", lambda x: r"\%03o"%ord(x.group()), s) return s def seq_allequal(seq1, seq2): """ seq1 and seq2 are either None or sequences or numerix arrays Return True if both are None or both are seqs with identical elements """ if seq1 is None: return seq2 is None if seq2 is None: return False #ok, neither are None:, assuming iterable if len(seq1) != len(seq2): return False return npy.alltrue(npy.equal(seq1, seq2)) class RendererPS(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles. """ fontd = maxdict(50) afmfontd = maxdict(50) def __init__(self, width, height, pswriter, imagedpi=72): """ Although postscript itself is dpi independent, we need to imform the image code about a requested dpi to generate high res images and them scale them before embeddin them """ RendererBase.__init__(self) self.width = width self.height = height self._pswriter = pswriter if rcParams['text.usetex']: self.textcnt = 0 self.psfrag = [] self.imagedpi = imagedpi if rcParams['path.simplify']: self.simplify = (width * imagedpi, height * imagedpi) else: self.simplify = None # current renderer state (None=uninitialised) self.color = None self.linewidth = None self.linejoin = None self.linecap = None self.linedash = None self.fontname = None self.fontsize = None self.hatch = None self.image_magnification = imagedpi/72.0 self._clip_paths = {} self._path_collection_id = 0 self.used_characters = {} self.mathtext_parser = MathTextParser("PS") def track_characters(self, font, s): """Keeps track of which characters are required from each font.""" realpath, stat_key = get_realpath_and_stat(font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update([ord(x) for x in s]) def merge_used_characters(self, other): for stat_key, (realpath, charset) in other.items(): used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].update(charset) def set_color(self, r, g, b, store=1): if (r,g,b) != self.color: if r==g and r==b: self._pswriter.write("%1.3f setgray\n"%r) else: self._pswriter.write("%1.3f %1.3f %1.3f setrgbcolor\n"%(r,g,b)) if store: self.color = (r,g,b) def set_linewidth(self, linewidth, store=1): if linewidth != self.linewidth: self._pswriter.write("%1.3f setlinewidth\n"%linewidth) if store: self.linewidth = linewidth def set_linejoin(self, linejoin, store=1): if linejoin != self.linejoin: self._pswriter.write("%d setlinejoin\n"%linejoin) if store: self.linejoin = linejoin def set_linecap(self, linecap, store=1): if linecap != self.linecap: self._pswriter.write("%d setlinecap\n"%linecap) if store: self.linecap = linecap def set_linedash(self, offset, seq, store=1): if self.linedash is not None: oldo, oldseq = self.linedash if seq_allequal(seq, oldseq): return if seq is not None and len(seq): s="[%s] %d setdash\n"%(_nums_to_str(*seq), offset) self._pswriter.write(s) else: self._pswriter.write("[] 0 setdash\n") if store: self.linedash = (offset,seq) def set_font(self, fontname, fontsize, store=1): if rcParams['ps.useafm']: return if (fontname,fontsize) != (self.fontname,self.fontsize): out = ("/%s findfont\n" "%1.3f scalefont\n" "setfont\n" % (fontname,fontsize)) self._pswriter.write(out) if store: self.fontname = fontname if store: self.fontsize = fontsize def set_hatch(self, hatch): """ hatch can be one of: / - diagonal hatching \ - back diagonal | - vertical - - horizontal + - crossed X - crossed diagonal letters can be combined, in which case all the specified hatchings are done if same letter repeats, it increases the density of hatching in that direction """ hatches = {'horiz':0, 'vert':0, 'diag1':0, 'diag2':0} for letter in hatch: if (letter == '/'): hatches['diag2'] += 1 elif (letter == '\\'): hatches['diag1'] += 1 elif (letter == '|'): hatches['vert'] += 1 elif (letter == '-'): hatches['horiz'] += 1 elif (letter == '+'): hatches['horiz'] += 1 hatches['vert'] += 1 elif (letter.lower() == 'x'): hatches['diag1'] += 1 hatches['diag2'] += 1 def do_hatch(angle, density): if (density == 0): return "" return """\ gsave eoclip %s rotate 0.0 0.0 0.0 0.0 setrgbcolor 0 setlinewidth /hatchgap %d def pathbbox /hatchb exch def /hatchr exch def /hatcht exch def /hatchl exch def hatchl cvi hatchgap idiv hatchgap mul hatchgap hatchr cvi hatchgap idiv hatchgap mul {hatcht m 0 hatchb hatcht sub r } for stroke grestore """ % (angle, 12/density) self._pswriter.write("gsave\n") self._pswriter.write(do_hatch(90, hatches['horiz'])) self._pswriter.write(do_hatch(0, hatches['vert'])) self._pswriter.write(do_hatch(45, hatches['diag1'])) self._pswriter.write(do_hatch(-45, hatches['diag2'])) self._pswriter.write("grestore\n") def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop """ if rcParams['text.usetex']: texmanager = self.get_texmanager() fontsize = prop.get_size_in_points() l,b,r,t = texmanager.get_ps_bbox(s, fontsize) w = (r-l) h = (t-b) # TODO: We need a way to get a good baseline from # text.usetex return w, h, 0 if ismath: width, height, descent, pswriter, used_characters = \ self.mathtext_parser.parse(s, 72, prop) return width, height, descent if rcParams['ps.useafm']: if ismath: s = s[1:-1] font = self._get_font_afm(prop) l,b,w,h,d = font.get_str_bbox_and_descent(s) fontsize = prop.get_size_in_points() scale = 0.001*fontsize w *= scale h *= scale d *= scale return w, h, d font = self._get_font_ttf(prop) font.set_text(s, 0.0, flags=LOAD_NO_HINTING) w, h = font.get_width_height() w /= 64.0 # convert from subpixels h /= 64.0 d = font.get_descent() d /= 64.0 #print s, w, h return w, h, d def flipy(self): 'return true if small y numbers are top for renderer' return False def _get_font_afm(self, prop): key = hash(prop) font = self.afmfontd.get(key) if font is None: fname = findfont(prop, fontext='afm') font = self.afmfontd.get(fname) if font is None: font = AFM(file(findfont(prop, fontext='afm'))) self.afmfontd[fname] = font self.afmfontd[key] = font return font def _get_font_ttf(self, prop): key = hash(prop) font = self.fontd.get(key) if font is None: fname = findfont(prop) font = self.fontd.get(fname) if font is None: font = FT2Font(str(fname)) self.fontd[fname] = font self.fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, 72.0) return font def _rgba(self, im): return im.as_rgba_str() def _rgb(self, im): h,w,s = im.as_rgba_str() rgba = npy.fromstring(s, npy.uint8) rgba.shape = (h, w, 4) rgb = rgba[:,:,:3] return h, w, rgb.tostring() def _gray(self, im, rc=0.3, gc=0.59, bc=0.11): rgbat = im.as_rgba_str() rgba = npy.fromstring(rgbat[2], npy.uint8) rgba.shape = (rgbat[0], rgbat[1], 4) rgba_f = rgba.astype(npy.float32) r = rgba_f[:,:,0] g = rgba_f[:,:,1] b = rgba_f[:,:,2] gray = (r*rc + g*gc + b*bc).astype(npy.uint8) return rgbat[0], rgbat[1], gray.tostring() def _hex_lines(self, s, chars_per_line=128): s = binascii.b2a_hex(s) nhex = len(s) lines = [] for i in range(0,nhex,chars_per_line): limit = min(i+chars_per_line, nhex) lines.append(s[i:limit]) return lines def get_image_magnification(self): """ Get the factor by which to magnify images passed to draw_image. Allows a backend to have images at a different resolution to other artists. """ return self.image_magnification def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None): """ Draw the Image instance into the current axes; x is the distance in pixels from the left hand side of the canvas and y is the distance from bottom bbox is a matplotlib.transforms.BBox instance for clipping, or None """ im.flipud_out() if im.is_grayscale: h, w, bits = self._gray(im) imagecmd = "image" else: h, w, bits = self._rgb(im) imagecmd = "false 3 colorimage" hexlines = '\n'.join(self._hex_lines(bits)) xscale, yscale = ( w/self.image_magnification, h/self.image_magnification) figh = self.height*72 #print 'values', origin, flipud, figh, h, y clip = [] if bbox is not None: clipx,clipy,clipw,cliph = bbox.bounds clip.append('%s clipbox' % _nums_to_str(clipw, cliph, clipx, clipy)) if clippath is not None: id = self._get_clip_path(clippath, clippath_trans) clip.append('%s' % id) clip = '\n'.join(clip) #y = figh-(y+h) ps = """gsave %(clip)s %(x)s %(y)s translate %(xscale)s %(yscale)s scale /DataString %(w)s string def %(w)s %(h)s 8 [ %(w)s 0 0 -%(h)s 0 %(h)s ] { currentfile DataString readhexstring pop } bind %(imagecmd)s %(hexlines)s grestore """ % locals() self._pswriter.write(ps) # unflip im.flipud_out() def _convert_path(self, path, transform, simplify=None): path = transform.transform_path(path) ps = [] last_points = None for points, code in path.iter_segments(simplify): if code == Path.MOVETO: ps.append("%g %g m" % tuple(points)) elif code == Path.LINETO: ps.append("%g %g l" % tuple(points)) elif code == Path.CURVE3: points = quad2cubic(*(list(last_points[-2:]) + list(points))) ps.append("%g %g %g %g %g %g c" % tuple(points[2:])) elif code == Path.CURVE4: ps.append("%g %g %g %g %g %g c" % tuple(points)) elif code == Path.CLOSEPOLY: ps.append("cl") last_points = points ps = "\n".join(ps) return ps def _get_clip_path(self, clippath, clippath_transform): id = self._clip_paths.get((clippath, clippath_transform)) if id is None: id = 'c%x' % len(self._clip_paths) ps_cmd = ['/%s {' % id] ps_cmd.append(self._convert_path(clippath, clippath_transform)) ps_cmd.extend(['clip', 'newpath', '} bind def\n']) self._pswriter.write('\n'.join(ps_cmd)) self._clip_paths[(clippath, clippath_transform)] = id return id def draw_path(self, gc, path, transform, rgbFace=None): """ Draws a Path instance using the given affine transform. """ ps = self._convert_path(path, transform, self.simplify) self._draw_ps(ps, gc, rgbFace) def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None): """ Draw the markers defined by path at each of the positions in x and y. path coordinates are points, x and y coords will be transformed by the transform """ if debugPS: self._pswriter.write('% draw_markers \n') write = self._pswriter.write if rgbFace: if rgbFace[0]==rgbFace[1] and rgbFace[0]==rgbFace[2]: ps_color = '%1.3f setgray' % rgbFace[0] else: ps_color = '%1.3f %1.3f %1.3f setrgbcolor' % rgbFace # construct the generic marker command: ps_cmd = ['/o {', 'gsave', 'newpath', 'translate'] # dont want the translate to be global ps_cmd.append(self._convert_path(marker_path, marker_trans)) if rgbFace: ps_cmd.extend(['gsave', ps_color, 'fill', 'grestore']) ps_cmd.extend(['stroke', 'grestore', '} bind def']) tpath = trans.transform_path(path) for vertices, code in tpath.iter_segments(): if len(vertices): x, y = vertices[-2:] ps_cmd.append("%g %g o" % (x, y)) ps = '\n'.join(ps_cmd) self._draw_ps(ps, gc, rgbFace, fill=False, stroke=False) def draw_path_collection(self, master_transform, cliprect, clippath, clippath_trans, paths, all_transforms, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): write = self._pswriter.write path_codes = [] for i, (path, transform) in enumerate(self._iter_collection_raw_paths( master_transform, paths, all_transforms)): name = 'p%x_%x' % (self._path_collection_id, i) ps_cmd = ['/%s {' % name, 'newpath', 'translate'] ps_cmd.append(self._convert_path(path, transform)) ps_cmd.extend(['} bind def\n']) write('\n'.join(ps_cmd)) path_codes.append(name) for xo, yo, path_id, gc, rgbFace in self._iter_collection( path_codes, cliprect, clippath, clippath_trans, offsets, offsetTrans, facecolors, edgecolors, linewidths, linestyles, antialiaseds, urls): ps = "%g %g %s" % (xo, yo, path_id) self._draw_ps(ps, gc, rgbFace) self._path_collection_id += 1 def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!'): """ draw a Text instance """ w, h, bl = self.get_text_width_height_descent(s, prop, ismath) fontsize = prop.get_size_in_points() corr = 0#w/2*(fontsize-10)/10 pos = _nums_to_str(x-corr, y) thetext = 'psmarker%d' % self.textcnt color = '%1.3f,%1.3f,%1.3f'% gc.get_rgb()[:3] fontcmd = {'sans-serif' : r'{\sffamily %s}', 'monospace' : r'{\ttfamily %s}'}.get( rcParams['font.family'], r'{\rmfamily %s}') s = fontcmd % s tex = r'\color[rgb]{%s} %s' % (color, s) self.psfrag.append(r'\psfrag{%s}[bl][bl][1][%f]{\fontsize{%f}{%f}%s}'%(thetext, angle, fontsize, fontsize*1.25, tex)) ps = """\ gsave %(pos)s moveto (%(thetext)s) show grestore """ % locals() self._pswriter.write(ps) self.textcnt += 1 def draw_text(self, gc, x, y, s, prop, angle, ismath): """ draw a Text instance """ # local to avoid repeated attribute lookups write = self._pswriter.write if debugPS: write("% text\n") if ismath=='TeX': return self.tex(gc, x, y, s, prop, angle) elif ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) elif isinstance(s, unicode): return self.draw_unicode(gc, x, y, s, prop, angle) elif rcParams['ps.useafm']: font = self._get_font_afm(prop) l,b,w,h = font.get_str_bbox(s) fontsize = prop.get_size_in_points() l *= 0.001*fontsize b *= 0.001*fontsize w *= 0.001*fontsize h *= 0.001*fontsize if angle==90: l,b = -b, l # todo generalize for arb rotations pos = _nums_to_str(x-l, y-b) thetext = '(%s)' % s fontname = font.get_fontname() fontsize = prop.get_size_in_points() rotate = '%1.1f rotate' % angle setcolor = '%1.3f %1.3f %1.3f setrgbcolor' % gc.get_rgb()[:3] #h = 0 ps = """\ gsave /%(fontname)s findfont %(fontsize)s scalefont setfont %(pos)s moveto %(rotate)s %(thetext)s %(setcolor)s show grestore """ % locals() self._draw_ps(ps, gc, None) else: font = self._get_font_ttf(prop) font.set_text(s, 0, flags=LOAD_NO_HINTING) self.track_characters(font, s) self.set_color(*gc.get_rgb()) self.set_font(font.get_sfnt()[(1,0,0,6)], prop.get_size_in_points()) write("%s m\n"%_nums_to_str(x,y)) if angle: write("gsave\n") write("%s rotate\n"%_num_to_str(angle)) descent = font.get_descent() / 64.0 if descent: write("0 %s rmoveto\n"%_num_to_str(descent)) write("(%s) show\n"%quote_ps_string(s)) if angle: write("grestore\n") def new_gc(self): return GraphicsContextPS() def draw_unicode(self, gc, x, y, s, prop, angle): """draw a unicode string. ps doesn't have unicode support, so we have to do this the hard way """ if rcParams['ps.useafm']: self.set_color(*gc.get_rgb()) font = self._get_font_afm(prop) fontname = font.get_fontname() fontsize = prop.get_size_in_points() scale = 0.001*fontsize thisx = 0 thisy = font.get_str_bbox_and_descent(s)[4] * scale last_name = None lines = [] for c in s: name = uni2type1.get(ord(c), 'question') try: width = font.get_width_from_char_name(name) except KeyError: name = 'question' width = font.get_width_char('?') if last_name is not None: kern = font.get_kern_dist_from_name(last_name, name) else: kern = 0 last_name = name thisx += kern * scale lines.append('%f %f m /%s glyphshow'%(thisx, thisy, name)) thisx += width * scale thetext = "\n".join(lines) ps = """\ gsave /%(fontname)s findfont %(fontsize)s scalefont setfont %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) else: font = self._get_font_ttf(prop) font.set_text(s, 0, flags=LOAD_NO_HINTING) self.track_characters(font, s) self.set_color(*gc.get_rgb()) self.set_font(font.get_sfnt()[(1,0,0,6)], prop.get_size_in_points()) cmap = font.get_charmap() lastgind = None #print 'text', s lines = [] thisx = 0 thisy = font.get_descent() / 64.0 for c in s: ccode = ord(c) gind = cmap.get(ccode) if gind is None: ccode = ord('?') name = '.notdef' gind = 0 else: name = font.get_glyph_name(gind) glyph = font.load_char(ccode, flags=LOAD_NO_HINTING) if lastgind is not None: kern = font.get_kerning(lastgind, gind, KERNING_DEFAULT) else: kern = 0 lastgind = gind thisx += kern/64.0 lines.append('%f %f m /%s glyphshow'%(thisx, thisy, name)) thisx += glyph.linearHoriAdvance/65536.0 thetext = '\n'.join(lines) ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ if debugPS: self._pswriter.write("% mathtext\n") width, height, descent, pswriter, used_characters = \ self.mathtext_parser.parse(s, 72, prop) self.merge_used_characters(used_characters) self.set_color(*gc.get_rgb()) thetext = pswriter.getvalue() ps = """gsave %(x)f %(y)f translate %(angle)f rotate %(thetext)s grestore """ % locals() self._pswriter.write(ps) def _draw_ps(self, ps, gc, rgbFace, fill=True, stroke=True, command=None): """ Emit the PostScript sniplet 'ps' with all the attributes from 'gc' applied. 'ps' must consist of PostScript commands to construct a path. The fill and/or stroke kwargs can be set to False if the 'ps' string already includes filling and/or stroking, in which case _draw_ps is just supplying properties and clipping. """ # local variable eliminates all repeated attribute lookups write = self._pswriter.write if debugPS and command: write("% "+command+"\n") mightstroke = (gc.get_linewidth() > 0.0 and (len(gc.get_rgb()) <= 3 or gc.get_rgb()[3] != 0.0)) stroke = stroke and mightstroke fill = (fill and rgbFace is not None and (len(rgbFace) <= 3 or rgbFace[3] != 0.0)) if mightstroke: self.set_linewidth(gc.get_linewidth()) jint = gc.get_joinstyle() self.set_linejoin(jint) cint = gc.get_capstyle() self.set_linecap(cint) self.set_linedash(*gc.get_dashes()) self.set_color(*gc.get_rgb()[:3]) write('gsave\n') cliprect = gc.get_clip_rectangle() if cliprect: x,y,w,h=cliprect.bounds write('%1.4g %1.4g %1.4g %1.4g clipbox\n' % (w,h,x,y)) clippath, clippath_trans = gc.get_clip_path() if clippath: id = self._get_clip_path(clippath, clippath_trans) write('%s\n' % id) # Jochen, is the strip necessary? - this could be a honking big string write(ps.strip()) write("\n") if fill: if stroke: write("gsave\n") self.set_color(store=0, *rgbFace[:3]) write("fill\ngrestore\n") else: self.set_color(store=0, *rgbFace[:3]) write("fill\n") hatch = gc.get_hatch() if hatch: self.set_hatch(hatch) if stroke: write("stroke\n") write("grestore\n") class GraphicsContextPS(GraphicsContextBase): def get_capstyle(self): return {'butt':0, 'round':1, 'projecting':2}[GraphicsContextBase.get_capstyle(self)] def get_joinstyle(self): return {'miter':0, 'round':1, 'bevel':2}[GraphicsContextBase.get_joinstyle(self)] def new_figure_manager(num, *args, **kwargs): FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasPS(thisFig) manager = FigureManagerPS(canvas, num) return manager class FigureCanvasPS(FigureCanvasBase): def draw(self): pass filetypes = {'ps' : 'Postscript', 'eps' : 'Encapsulated Postscript'} def get_default_filetype(self): return 'ps' def print_ps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'ps', *args, **kwargs) def print_eps(self, outfile, *args, **kwargs): return self._print_ps(outfile, 'eps', *args, **kwargs) def _print_ps(self, outfile, format, *args, **kwargs): papertype = kwargs.get("papertype", rcParams['ps.papersize']) papertype = papertype.lower() if papertype == 'auto': pass elif papertype not in papersize: raise RuntimeError( '%s is not a valid papertype. Use one \ of %s'% (papertype, ', '.join( papersize.keys() )) ) orientation = kwargs.get("orientation", "portrait").lower() if orientation == 'landscape': isLandscape = True elif orientation == 'portrait': isLandscape = False else: raise RuntimeError('Orientation must be "portrait" or "landscape"') self.figure.set_dpi(72) # Override the dpi kwarg imagedpi = kwargs.get("dpi", 72) facecolor = kwargs.get("facecolor", "w") edgecolor = kwargs.get("edgecolor", "w") if rcParams['text.usetex']: self._print_figure_tex(outfile, format, imagedpi, facecolor, edgecolor, orientation, isLandscape, papertype) else: self._print_figure(outfile, format, imagedpi, facecolor, edgecolor, orientation, isLandscape, papertype) def _print_figure(self, outfile, format, dpi=72, facecolor='w', edgecolor='w', orientation='portrait', isLandscape=False, papertype=None): """ Render the figure to hardcopy. Set the figure patch face and edge colors. This is useful because some of the GUIs have a gray figure face color background and you'll probably want to override this on hardcopy If outfile is a string, it is interpreted as a file name. If the extension matches .ep* write encapsulated postscript, otherwise write a stand-alone PostScript file. If outfile is a file object, a stand-alone PostScript file is written into this file object. """ isEPSF = format == 'eps' passed_in_file_object = False if is_string_like(outfile): title = outfile tmpfile = os.path.join(gettempdir(), md5(outfile).hexdigest()) elif is_writable_file_like(outfile): title = None tmpfile = os.path.join(gettempdir(), md5(str(hash(outfile))).hexdigest()) passed_in_file_object = True else: raise ValueError("outfile must be a path or a file-like object") fh = file(tmpfile, 'w') # find the appropriate papertype width, height = self.figure.get_size_inches() if papertype == 'auto': if isLandscape: papertype = _get_papertype(height, width) else: papertype = _get_papertype(width, height) if isLandscape: paperHeight, paperWidth = papersize[papertype] else: paperWidth, paperHeight = papersize[papertype] if rcParams['ps.usedistiller'] and not papertype == 'auto': # distillers will improperly clip eps files if the pagesize is # too small if width>paperWidth or height>paperHeight: if isLandscape: papertype = _get_papertype(height, width) paperHeight, paperWidth = papersize[papertype] else: papertype = _get_papertype(width, height) paperWidth, paperHeight = papersize[papertype] # center the figure on the paper xo = 72*0.5*(paperWidth - width) yo = 72*0.5*(paperHeight - height) l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h rotation = 0 if isLandscape: llx, lly, urx, ury = lly, llx, ury, urx xo, yo = 72*paperHeight - yo, xo rotation = 90 bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) self._pswriter = StringIO() renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) self.figure.draw(renderer) self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # write the PostScript headers if isEPSF: print >>fh, "%!PS-Adobe-3.0 EPSF-3.0" else: print >>fh, "%!PS-Adobe-3.0" if title: print >>fh, "%%Title: "+title print >>fh, ("%%Creator: matplotlib version " +__version__+", http://matplotlib.sourceforge.net/") print >>fh, "%%CreationDate: "+time.ctime(time.time()) print >>fh, "%%Orientation: " + orientation if not isEPSF: print >>fh, "%%DocumentPaperSizes: "+papertype print >>fh, "%%%%BoundingBox: %d %d %d %d" % bbox if not isEPSF: print >>fh, "%%Pages: 1" print >>fh, "%%EndComments" Ndict = len(psDefs) print >>fh, "%%BeginProlog" if not rcParams['ps.useafm']: Ndict += len(renderer.used_characters) print >>fh, "/mpldict %d dict def"%Ndict print >>fh, "mpldict begin" for d in psDefs: d=d.strip() for l in d.split('\n'): print >>fh, l.strip() if not rcParams['ps.useafm']: for font_filename, chars in renderer.used_characters.values(): if len(chars): font = FT2Font(font_filename) cmap = font.get_charmap() glyph_ids = [] for c in chars: gind = cmap.get(c) or 0 glyph_ids.append(gind) # The ttf to ps (subsetting) support doesn't work for # OpenType fonts that are Postscript inside (like the # STIX fonts). This will simply turn that off to avoid # errors. if is_opentype_cff_font(font_filename): raise RuntimeError("OpenType CFF fonts can not be saved using the internal Postscript backend at this time.\nConsider using the Cairo backend.") else: fonttype = rcParams['ps.fonttype'] convert_ttf_to_ps(font_filename, fh, rcParams['ps.fonttype'], glyph_ids) print >>fh, "end" print >>fh, "%%EndProlog" if not isEPSF: print >>fh, "%%Page: 1 1" print >>fh, "mpldict begin" #print >>fh, "gsave" print >>fh, "%s translate"%_nums_to_str(xo, yo) if rotation: print >>fh, "%d rotate"%rotation print >>fh, "%s clipbox"%_nums_to_str(width*72, height*72, 0, 0) # write the figure print >>fh, self._pswriter.getvalue() # write the trailer #print >>fh, "grestore" print >>fh, "end" print >>fh, "showpage" if not isEPSF: print >>fh, "%%EOF" fh.close() if rcParams['ps.usedistiller'] == 'ghostscript': gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) if passed_in_file_object: fh = file(tmpfile) print >>outfile, fh.read() else: shutil.move(tmpfile, outfile) def _print_figure_tex(self, outfile, format, dpi, facecolor, edgecolor, orientation, isLandscape, papertype): """ If text.usetex is True in rc, a temporary pair of tex/eps files are created to allow tex to manage the text layout via the PSFrags package. These files are processed to yield the final ps or eps file. """ isEPSF = format == 'eps' title = outfile # write to a temp file, we'll move it to outfile when done tmpfile = os.path.join(gettempdir(), md5(outfile).hexdigest()) fh = file(tmpfile, 'w') self.figure.dpi = 72 # ignore the dpi kwarg width, height = self.figure.get_size_inches() xo = 0 yo = 0 l, b, w, h = self.figure.bbox.bounds llx = xo lly = yo urx = llx + w ury = lly + h bbox = (llx, lly, urx, ury) # generate PostScript code for the figure and store it in a string origfacecolor = self.figure.get_facecolor() origedgecolor = self.figure.get_edgecolor() self.figure.set_facecolor(facecolor) self.figure.set_edgecolor(edgecolor) self._pswriter = StringIO() renderer = RendererPS(width, height, self._pswriter, imagedpi=dpi) self.figure.draw(renderer) self.figure.set_facecolor(origfacecolor) self.figure.set_edgecolor(origedgecolor) # write the Encapsulated PostScript headers print >>fh, "%!PS-Adobe-3.0 EPSF-3.0" if title: print >>fh, "%%Title: "+title print >>fh, ("%%Creator: matplotlib version " +__version__+", http://matplotlib.sourceforge.net/") print >>fh, "%%CreationDate: "+time.ctime(time.time()) print >>fh, "%%%%BoundingBox: %d %d %d %d" % bbox print >>fh, "%%EndComments" Ndict = len(psDefs) print >>fh, "%%BeginProlog" print >>fh, "/mpldict %d dict def"%Ndict print >>fh, "mpldict begin" for d in psDefs: d=d.strip() for l in d.split('\n'): print >>fh, l.strip() print >>fh, "end" print >>fh, "%%EndProlog" print >>fh, "mpldict begin" #print >>fh, "gsave" print >>fh, "%s translate"%_nums_to_str(xo, yo) print >>fh, "%s clipbox"%_nums_to_str(width*72, height*72, 0, 0) # write the figure print >>fh, self._pswriter.getvalue() # write the trailer #print >>fh, "grestore" print >>fh, "end" print >>fh, "showpage" fh.close() if isLandscape: # now we are ready to rotate isLandscape = True width, height = height, width bbox = (lly, llx, ury, urx) temp_papertype = _get_papertype(width, height) if papertype=='auto': papertype = temp_papertype paperWidth, paperHeight = papersize[temp_papertype] else: paperWidth, paperHeight = papersize[papertype] if (width>paperWidth or height>paperHeight) and isEPSF: paperWidth, paperHeight = papersize[temp_papertype] verbose.report('Your figure is too big to fit on %s paper. %s \ paper will be used to prevent clipping.'%(papertype, temp_papertype), 'helpful') texmanager = renderer.get_texmanager() font_preamble = texmanager.get_font_preamble() custom_preamble = texmanager.get_custom_preamble() convert_psfrags(tmpfile, renderer.psfrag, font_preamble, custom_preamble, paperWidth, paperHeight, orientation) if rcParams['ps.usedistiller'] == 'ghostscript': gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['ps.usedistiller'] == 'xpdf': xpdf_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) elif rcParams['text.usetex']: if False: pass # for debugging else: gs_distill(tmpfile, isEPSF, ptype=papertype, bbox=bbox) if isinstance(outfile, file): fh = file(tmpfile) print >>outfile, fh.read() else: shutil.move(tmpfile, outfile) def convert_psfrags(tmpfile, psfrags, font_preamble, custom_preamble, paperWidth, paperHeight, orientation): """ When we want to use the LaTeX backend with postscript, we write PSFrag tags to a temporary postscript file, each one marking a position for LaTeX to render some text. convert_psfrags generates a LaTeX document containing the commands to convert those tags to text. LaTeX/dvips produces the postscript file that includes the actual text. """ tmpdir = os.path.split(tmpfile)[0] epsfile = tmpfile+'.eps' shutil.move(tmpfile, epsfile) latexfile = tmpfile+'.tex' outfile = tmpfile+'.output' latexh = file(latexfile, 'w') dvifile = tmpfile+'.dvi' psfile = tmpfile+'.ps' if orientation=='landscape': angle = 90 else: angle = 0 if rcParams['text.latex.unicode']: unicode_preamble = """\usepackage{ucs} \usepackage[utf8x]{inputenc}""" else: unicode_preamble = '' s = r"""\documentclass{article} %s %s %s \usepackage[dvips, papersize={%sin,%sin}, body={%sin,%sin}, margin={0in,0in}]{geometry} \usepackage{psfrag} \usepackage[dvips]{graphicx} \usepackage{color} \pagestyle{empty} \begin{document} \begin{figure} \centering \leavevmode %s \includegraphics*[angle=%s]{%s} \end{figure} \end{document} """% (font_preamble, unicode_preamble, custom_preamble, paperWidth, paperHeight, paperWidth, paperHeight, '\n'.join(psfrags), angle, os.path.split(epsfile)[-1]) if rcParams['text.latex.unicode']: latexh.write(s.encode('utf8')) else: try: latexh.write(s) except UnicodeEncodeError, err: verbose.report("You are using unicode and latex, but have " "not enabled the matplotlib 'text.latex.unicode' " "rcParam.", 'helpful') raise latexh.close() # the split drive part of the command is necessary for windows users with # multiple if sys.platform == 'win32': precmd = '%s &&'% os.path.splitdrive(tmpdir)[0] else: precmd = '' command = '%s cd "%s" && latex -interaction=nonstopmode "%s" > "%s"'\ %(precmd, tmpdir, latexfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('LaTeX was not able to process your file:\ \nHere is the full report generated by LaTeX: \n\n%s'% fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) command = '%s cd "%s" && dvips -q -R0 -o "%s" "%s" > "%s"'%(precmd, tmpdir, os.path.split(psfile)[-1], os.path.split(dvifile)[-1], outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('dvips was not able to \ process the following file:\n%s\nHere is the full report generated by dvips: \ \n\n'% dvifile + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(epsfile) shutil.move(psfile, tmpfile) if not debugPS: for fname in glob.glob(tmpfile+'.*'): os.remove(fname) def gs_distill(tmpfile, eps=False, ptype='letter', bbox=None): """ Use ghostscript's pswrite or epswrite device to distill a file. This yields smaller files without illegal encapsulated postscript operators. The output is low-level, converting text to outlines. """ paper = '-sPAPERSIZE=%s'% ptype psfile = tmpfile + '.ps' outfile = tmpfile + '.output' dpi = rcParams['ps.distiller.res'] if sys.platform == 'win32': gs_exe = 'gswin32c' else: gs_exe = 'gs' command = '%s -dBATCH -dNOPAUSE -r%d -sDEVICE=pswrite %s -sOutputFile="%s" \ "%s" > "%s"'% (gs_exe, dpi, paper, psfile, tmpfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('ghostscript was not able to process \ your image.\nHere is the full report generated by ghostscript:\n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(tmpfile) shutil.move(psfile, tmpfile) if eps: pstoeps(tmpfile, bbox) def xpdf_distill(tmpfile, eps=False, ptype='letter', bbox=None): """ Use ghostscript's ps2pdf and xpdf's/poppler's pdftops to distill a file. This yields smaller files without illegal encapsulated postscript operators. This distiller is preferred, generating high-level postscript output that treats text as text. """ pdffile = tmpfile + '.pdf' psfile = tmpfile + '.ps' outfile = tmpfile + '.output' command = 'ps2pdf -dAutoFilterColorImages=false \ -sColorImageFilter=FlateEncode -sPAPERSIZE=%s "%s" "%s" > "%s"'% \ (ptype, tmpfile, pdffile, outfile) if sys.platform == 'win32': command = command.replace('=', '#') verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('ps2pdf was not able to process your \ image.\n\Here is the report generated by ghostscript:\n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) command = 'pdftops -paper match -level2 "%s" "%s" > "%s"'% \ (pdffile, psfile, outfile) verbose.report(command, 'debug') exit_status = os.system(command) fh = file(outfile) if exit_status: raise RuntimeError('pdftops was not able to process your \ image.\nHere is the full report generated by pdftops: \n\n' + fh.read()) else: verbose.report(fh.read(), 'debug') fh.close() os.remove(outfile) os.remove(tmpfile) shutil.move(psfile, tmpfile) if eps: pstoeps(tmpfile, bbox) for fname in glob.glob(tmpfile+'.*'): os.remove(fname) def get_bbox(tmpfile, bbox): """ Use ghostscript's bbox device to find the center of the bounding box. Return an appropriately sized bbox centered around that point. A bit of a hack. """ outfile = tmpfile + '.output' if sys.platform == 'win32': gs_exe = 'gswin32c' else: gs_exe = 'gs' command = '%s -dBATCH -dNOPAUSE -sDEVICE=bbox "%s"' %\ (gs_exe, tmpfile) verbose.report(command, 'debug') stdin, stdout, stderr = os.popen3(command) verbose.report(stdout.read(), 'debug-annoying') bbox_info = stderr.read() verbose.report(bbox_info, 'helpful') bbox_found = re.search('%%HiResBoundingBox: .*', bbox_info) if bbox_found: bbox_info = bbox_found.group() else: raise RuntimeError('Ghostscript was not able to extract a bounding box.\ Here is the Ghostscript output:\n\n%s'% bbox_info) l, b, r, t = [float(i) for i in bbox_info.split()[-4:]] # this is a hack to deal with the fact that ghostscript does not return the # intended bbox, but a tight bbox. For now, we just center the ink in the # intended bbox. This is not ideal, users may intend the ink to not be # centered. if bbox is None: l, b, r, t = (l-1, b-1, r+1, t+1) else: x = (l+r)/2 y = (b+t)/2 dx = (bbox[2]-bbox[0])/2 dy = (bbox[3]-bbox[1])/2 l,b,r,t = (x-dx, y-dy, x+dx, y+dy) bbox_info = '%%%%BoundingBox: %d %d %d %d' % (l, b, npy.ceil(r), npy.ceil(t)) hires_bbox_info = '%%%%HiResBoundingBox: %.6f %.6f %.6f %.6f' % (l, b, r, t) return '\n'.join([bbox_info, hires_bbox_info]) def pstoeps(tmpfile, bbox): """ Convert the postscript to encapsulated postscript. """ bbox_info = get_bbox(tmpfile, bbox) epsfile = tmpfile + '.eps' epsh = file(epsfile, 'w') tmph = file(tmpfile) line = tmph.readline() # Modify the header: while line: if line.startswith('%!PS'): print >>epsh, "%!PS-Adobe-3.0 EPSF-3.0" print >>epsh, bbox_info elif line.startswith('%%EndComments'): epsh.write(line) print >>epsh, '%%BeginProlog' print >>epsh, 'save' print >>epsh, 'countdictstack' print >>epsh, 'mark' print >>epsh, 'newpath' print >>epsh, '/showpage {} def' print >>epsh, '/setpagedevice {pop} def' print >>epsh, '%%EndProlog' print >>epsh, '%%Page 1 1' break elif line.startswith('%%Bound') \ or line.startswith('%%HiResBound') \ or line.startswith('%%Pages'): pass else: epsh.write(line) line = tmph.readline() # Now rewrite the rest of the file, and modify the trailer. # This is done in a second loop such that the header of the embedded # eps file is not modified. line = tmph.readline() while line: if line.startswith('%%Trailer'): print >>epsh, '%%Trailer' print >>epsh, 'cleartomark' print >>epsh, 'countdictstack' print >>epsh, 'exch sub { end } repeat' print >>epsh, 'restore' if rcParams['ps.usedistiller'] == 'xpdf': # remove extraneous "end" operator: line = tmph.readline() else: epsh.write(line) line = tmph.readline() tmph.close() epsh.close() os.remove(tmpfile) shutil.move(epsfile, tmpfile) class FigureManagerPS(FigureManagerBase): pass FigureManager = FigureManagerPS # The following Python dictionary psDefs contains the entries for the # PostScript dictionary mpldict. This dictionary implements most of # the matplotlib primitives and some abbreviations. # # References: # http://www.adobe.com/products/postscript/pdfs/PLRM.pdf # http://www.mactech.com/articles/mactech/Vol.09/09.04/PostscriptTutorial/ # http://www.math.ubc.ca/people/faculty/cass/graphics/text/www/ # # The usage comments use the notation of the operator summary # in the PostScript Language reference manual. psDefs = [ # x y *m* - "/m { moveto } bind def", # x y *l* - "/l { lineto } bind def", # x y *r* - "/r { rlineto } bind def", # x1 y1 x2 y2 x y *c* - "/c { curveto } bind def", # *closepath* - "/cl { closepath } bind def", # w h x y *box* - """/box { m 1 index 0 r 0 exch r neg 0 r cl } bind def""", # w h x y *clipbox* - """/clipbox { box clip newpath } bind def""", ]
agpl-3.0
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/lib/matplotlib/mathtext.py
1
108907
r""" :mod:`~matplotlib.mathtext` is a module for parsing a subset of the TeX math syntax and drawing them to a matplotlib backend. For a tutorial of its usage see :ref:`mathtext-tutorial`. This document is primarily concerned with implementation details. The module uses pyparsing_ to parse the TeX expression. .. _pyparsing: http://pyparsing.wikispaces.com/ The Bakoma distribution of the TeX Computer Modern fonts, and STIX fonts are supported. There is experimental support for using arbitrary fonts, but results may vary without proper tweaking and metrics for those fonts. If you find TeX expressions that don't parse or render properly, please email [email protected], but please check KNOWN ISSUES below first. """ from __future__ import division import os from cStringIO import StringIO from math import ceil try: set except NameError: from sets import Set as set import unicodedata from warnings import warn from numpy import inf, isinf import numpy as np from matplotlib.pyparsing import Combine, Group, Optional, Forward, \ Literal, OneOrMore, ZeroOrMore, ParseException, Empty, \ ParseResults, Suppress, oneOf, StringEnd, ParseFatalException, \ FollowedBy, Regex, ParserElement # Enable packrat parsing ParserElement.enablePackrat() from matplotlib.afm import AFM from matplotlib.cbook import Bunch, get_realpath_and_stat, \ is_string_like, maxdict from matplotlib.ft2font import FT2Font, FT2Image, KERNING_DEFAULT, LOAD_FORCE_AUTOHINT, LOAD_NO_HINTING from matplotlib.font_manager import findfont, FontProperties from matplotlib._mathtext_data import latex_to_bakoma, \ latex_to_standard, tex2uni, latex_to_cmex, stix_virtual_fonts from matplotlib import get_data_path, rcParams import matplotlib.colors as mcolors import matplotlib._png as _png #################### ############################################################################## # FONTS def get_unicode_index(symbol): """get_unicode_index(symbol) -> integer Return the integer index (from the Unicode table) of symbol. *symbol* can be a single unicode character, a TeX command (i.e. r'\pi'), or a Type1 symbol name (i.e. 'phi'). """ # From UTF #25: U+2212 minus sign is the preferred # representation of the unary and binary minus sign rather than # the ASCII-derived U+002D hyphen-minus, because minus sign is # unambiguous and because it is rendered with a more desirable # length, usually longer than a hyphen. if symbol == '-': return 0x2212 try:# This will succeed if symbol is a single unicode char return ord(symbol) except TypeError: pass try:# Is symbol a TeX symbol (i.e. \alpha) return tex2uni[symbol.strip("\\")] except KeyError: message = """'%(symbol)s' is not a valid Unicode character or TeX/Type1 symbol"""%locals() raise ValueError, message def unichr_safe(index): """Return the Unicode character corresponding to the index, or the replacement character if this is a narrow build of Python and the requested character is outside the BMP.""" try: return unichr(index) except ValueError: return unichr(0xFFFD) class MathtextBackend(object): """ The base class for the mathtext backend-specific code. The purpose of :class:`MathtextBackend` subclasses is to interface between mathtext and a specific matplotlib graphics backend. Subclasses need to override the following: - :meth:`render_glyph` - :meth:`render_filled_rect` - :meth:`get_results` And optionally, if you need to use a Freetype hinting style: - :meth:`get_hinting_type` """ def __init__(self): self.fonts_object = None def set_canvas_size(self, w, h, d): 'Dimension the drawing canvas' self.width = w self.height = h self.depth = d def render_glyph(self, ox, oy, info): """ Draw a glyph described by *info* to the reference point (*ox*, *oy*). """ raise NotImplementedError() def render_filled_rect(self, x1, y1, x2, y2): """ Draw a filled black rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ raise NotImplementedError() def get_results(self, box): """ Return a backend-specific tuple to return to the backend after all processing is done. """ raise NotImplementedError() def get_hinting_type(self): """ Get the Freetype hinting type to use with this particular backend. """ return LOAD_NO_HINTING class MathtextBackendBbox(MathtextBackend): """ A backend whose only purpose is to get a precise bounding box. Only required for the Agg backend. """ def __init__(self, real_backend): MathtextBackend.__init__(self) self.bbox = [0, 0, 0, 0] self.real_backend = real_backend def _update_bbox(self, x1, y1, x2, y2): self.bbox = [min(self.bbox[0], x1), min(self.bbox[1], y1), max(self.bbox[2], x2), max(self.bbox[3], y2)] def render_glyph(self, ox, oy, info): self._update_bbox(ox + info.metrics.xmin, oy - info.metrics.ymax, ox + info.metrics.xmax, oy - info.metrics.ymin) def render_rect_filled(self, x1, y1, x2, y2): self._update_bbox(x1, y1, x2, y2) def get_results(self, box): orig_height = box.height orig_depth = box.depth ship(0, 0, box) bbox = self.bbox bbox = [bbox[0] - 1, bbox[1] - 1, bbox[2] + 1, bbox[3] + 1] self._switch_to_real_backend() self.fonts_object.set_canvas_size( bbox[2] - bbox[0], (bbox[3] - bbox[1]) - orig_depth, (bbox[3] - bbox[1]) - orig_height) ship(-bbox[0], -bbox[1], box) return self.fonts_object.get_results(box) def get_hinting_type(self): return self.real_backend.get_hinting_type() def _switch_to_real_backend(self): self.fonts_object.mathtext_backend = self.real_backend self.real_backend.fonts_object = self.fonts_object self.real_backend.ox = self.bbox[0] self.real_backend.oy = self.bbox[1] class MathtextBackendAggRender(MathtextBackend): """ Render glyphs and rectangles to an FTImage buffer, which is later transferred to the Agg image by the Agg backend. """ def __init__(self): self.ox = 0 self.oy = 0 self.image = None MathtextBackend.__init__(self) def set_canvas_size(self, w, h, d): MathtextBackend.set_canvas_size(self, w, h, d) self.image = FT2Image(ceil(w), ceil(h + d)) def render_glyph(self, ox, oy, info): info.font.draw_glyph_to_bitmap( self.image, ox, oy - info.metrics.iceberg, info.glyph) def render_rect_filled(self, x1, y1, x2, y2): height = max(int(y2 - y1) - 1, 0) if height == 0: center = (y2 + y1) / 2.0 y = int(center - (height + 1) / 2.0) else: y = int(y1) self.image.draw_rect_filled(int(x1), y, ceil(x2), y + height) def get_results(self, box): return (self.ox, self.oy, self.width, self.height + self.depth, self.depth, self.image, self.fonts_object.get_used_characters()) def get_hinting_type(self): if rcParams['text.hinting']: return LOAD_FORCE_AUTOHINT else: return LOAD_NO_HINTING def MathtextBackendAgg(): return MathtextBackendBbox(MathtextBackendAggRender()) class MathtextBackendBitmapRender(MathtextBackendAggRender): def get_results(self, box): return self.image, self.depth def MathtextBackendBitmap(): """ A backend to generate standalone mathtext images. No additional matplotlib backend is required. """ return MathtextBackendBbox(MathtextBackendBitmapRender()) class MathtextBackendPs(MathtextBackend): """ Store information to write a mathtext rendering to the PostScript backend. """ def __init__(self): self.pswriter = StringIO() self.lastfont = None def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset postscript_name = info.postscript_name fontsize = info.fontsize symbol_name = info.symbol_name if (postscript_name, fontsize) != self.lastfont: ps = """/%(postscript_name)s findfont %(fontsize)s scalefont setfont """ % locals() self.lastfont = postscript_name, fontsize self.pswriter.write(ps) ps = """%(ox)f %(oy)f moveto /%(symbol_name)s glyphshow\n """ % locals() self.pswriter.write(ps) def render_rect_filled(self, x1, y1, x2, y2): ps = "%f %f %f %f rectfill\n" % (x1, self.height - y2, x2 - x1, y2 - y1) self.pswriter.write(ps) def get_results(self, box): ship(0, -self.depth, box) #print self.depth return (self.width, self.height + self.depth, self.depth, self.pswriter, self.fonts_object.get_used_characters()) class MathtextBackendPdf(MathtextBackend): """ Store information to write a mathtext rendering to the PDF backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): filename = info.font.fname oy = self.height - oy + info.offset self.glyphs.append( (ox, oy, filename, info.fontsize, info.num, info.symbol_name)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append((x1, self.height - y2, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects, self.fonts_object.get_used_characters()) class MathtextBackendSvg(MathtextBackend): """ Store information to write a mathtext rendering to the SVG backend. """ def __init__(self): self.svg_glyphs = [] self.svg_rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset self.svg_glyphs.append( (info.font, info.fontsize, info.num, ox, oy, info.metrics)) def render_rect_filled(self, x1, y1, x2, y2): self.svg_rects.append( (x1, self.height - y1 + 1, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) svg_elements = Bunch(svg_glyphs = self.svg_glyphs, svg_rects = self.svg_rects) return (self.width, self.height + self.depth, self.depth, svg_elements, self.fonts_object.get_used_characters()) class MathtextBackendPath(MathtextBackend): """ Store information to write a mathtext rendering to the text path machinery. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = self.height - oy + info.offset thetext = info.num self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, self.height-y2 , x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class MathtextBackendCairo(MathtextBackend): """ Store information to write a mathtext rendering to the Cairo backend. """ def __init__(self): self.glyphs = [] self.rects = [] def render_glyph(self, ox, oy, info): oy = oy - info.offset - self.height thetext = unichr_safe(info.num) self.glyphs.append( (info.font, info.fontsize, thetext, ox, oy)) def render_rect_filled(self, x1, y1, x2, y2): self.rects.append( (x1, y1 - self.height, x2 - x1, y2 - y1)) def get_results(self, box): ship(0, -self.depth, box) return (self.width, self.height + self.depth, self.depth, self.glyphs, self.rects) class Fonts(object): """ An abstract base class for a system of fonts to use for mathtext. The class must be able to take symbol keys and font file names and return the character metrics. It also delegates to a backend class to do the actual drawing. """ def __init__(self, default_font_prop, mathtext_backend): """ *default_font_prop*: A :class:`~matplotlib.font_manager.FontProperties` object to use for the default non-math font, or the base font for Unicode (generic) font rendering. *mathtext_backend*: A subclass of :class:`MathTextBackend` used to delegate the actual rendering. """ self.default_font_prop = default_font_prop self.mathtext_backend = mathtext_backend # Make these classes doubly-linked self.mathtext_backend.fonts_object = self self.used_characters = {} def destroy(self): """ Fix any cyclical references before the object is about to be destroyed. """ self.used_characters = None def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): """ Get the kerning distance for font between *sym1* and *sym2*. *fontX*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *fontclassX*: TODO *symX*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsizeX*: the fontsize in points *dpi*: the current dots-per-inch """ return 0. def get_metrics(self, font, font_class, sym, fontsize, dpi): """ *font*: one of the TeX font names:: tt, it, rm, cal, sf, bf or default/regular (non-math) *font_class*: TODO *sym*: a symbol in raw TeX form. e.g. '1', 'x' or '\sigma' *fontsize*: font size in points *dpi*: current dots-per-inch Returns an object with the following attributes: - *advance*: The advance distance (in points) of the glyph. - *height*: The height of the glyph in points. - *width*: The width of the glyph in points. - *xmin*, *xmax*, *ymin*, *ymax* - the ink rectangle of the glyph - *iceberg* - the distance from the baseline to the top of the glyph. This corresponds to TeX's definition of "height". """ info = self._get_info(font, font_class, sym, fontsize, dpi) return info.metrics def set_canvas_size(self, w, h, d): """ Set the size of the buffer used to render the math expression. Only really necessary for the bitmap backends. """ self.width, self.height, self.depth = ceil(w), ceil(h), ceil(d) self.mathtext_backend.set_canvas_size(self.width, self.height, self.depth) def render_glyph(self, ox, oy, facename, font_class, sym, fontsize, dpi): """ Draw a glyph at - *ox*, *oy*: position - *facename*: One of the TeX face names - *font_class*: - *sym*: TeX symbol name or single character - *fontsize*: fontsize in points - *dpi*: The dpi to draw at. """ info = self._get_info(facename, font_class, sym, fontsize, dpi) realpath, stat_key = get_realpath_and_stat(info.font.fname) used_characters = self.used_characters.setdefault( stat_key, (realpath, set())) used_characters[1].add(info.num) self.mathtext_backend.render_glyph(ox, oy, info) def render_rect_filled(self, x1, y1, x2, y2): """ Draw a filled rectangle from (*x1*, *y1*) to (*x2*, *y2*). """ self.mathtext_backend.render_rect_filled(x1, y1, x2, y2) def get_xheight(self, font, fontsize, dpi): """ Get the xheight for the given *font* and *fontsize*. """ raise NotImplementedError() def get_underline_thickness(self, font, fontsize, dpi): """ Get the line thickness that matches the given font. Used as a base unit for drawing lines such as in a fraction or radical. """ raise NotImplementedError() def get_used_characters(self): """ Get the set of characters that were used in the math expression. Used by backends that need to subset fonts so they know which glyphs to include. """ return self.used_characters def get_results(self, box): """ Get the data needed by the backend to render the math expression. The return value is backend-specific. """ return self.mathtext_backend.get_results(box) def get_sized_alternatives_for_symbol(self, fontname, sym): """ Override if your font provides multiple sizes of the same symbol. Should return a list of symbols matching *sym* in various sizes. The expression renderer will select the most appropriate size for a given situation from this list. """ return [(fontname, sym)] class TruetypeFonts(Fonts): """ A generic base class for all font setups that use Truetype fonts (through FT2Font). """ class CachedFont: def __init__(self, font): self.font = font self.charmap = font.get_charmap() self.glyphmap = dict( [(glyphind, ccode) for ccode, glyphind in self.charmap.iteritems()]) def __repr__(self): return repr(self.font) def __init__(self, default_font_prop, mathtext_backend): Fonts.__init__(self, default_font_prop, mathtext_backend) self.glyphd = {} self._fonts = {} filename = findfont(default_font_prop) default_font = self.CachedFont(FT2Font(str(filename))) self._fonts['default'] = default_font self._fonts['regular'] = default_font def destroy(self): self.glyphd = None Fonts.destroy(self) def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self._fonts.get(basename) if cached_font is None: font = FT2Font(str(basename)) cached_font = self.CachedFont(font) self._fonts[basename] = cached_font self._fonts[font.postscript_name] = cached_font self._fonts[font.postscript_name.lower()] = cached_font return cached_font def _get_offset(self, cached_font, glyph, fontsize, dpi): if cached_font.font.postscript_name == 'Cmex10': return ((glyph.height/64.0/2.0) + (fontsize/3.0 * dpi/72.0)) return 0. def _get_info(self, fontname, font_class, sym, fontsize, dpi): key = fontname, font_class, sym, fontsize, dpi bunch = self.glyphd.get(key) if bunch is not None: return bunch cached_font, num, symbol_name, fontsize, slanted = \ self._get_glyph(fontname, font_class, sym, fontsize) font = cached_font.font font.set_size(fontsize, dpi) glyph = font.load_char( num, flags=self.mathtext_backend.get_hinting_type()) xmin, ymin, xmax, ymax = [val/64.0 for val in glyph.bbox] offset = self._get_offset(cached_font, glyph, fontsize, dpi) metrics = Bunch( advance = glyph.linearHoriAdvance/65536.0, height = glyph.height/64.0, width = glyph.width/64.0, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = glyph.horiBearingY/64.0 + offset, slanted = slanted ) result = self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.postscript_name, metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return result def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) cached_font.font.set_size(fontsize, dpi) pclt = cached_font.font.get_sfnt_table('pclt') if pclt is None: # Some fonts don't store the xHeight, so we do a poor man's xHeight metrics = self.get_metrics(font, rcParams['mathtext.default'], 'x', fontsize, dpi) return metrics.iceberg xHeight = (pclt['xHeight'] / 64.0) * (fontsize / 12.0) * (dpi / 100.0) return xHeight def get_underline_thickness(self, font, fontsize, dpi): # This function used to grab underline thickness from the font # metrics, but that information is just too un-reliable, so it # is now hardcoded. return ((0.75 / 12.0) * fontsize * dpi) / 72.0 def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return font.get_kerning(info1.num, info2.num, KERNING_DEFAULT) / 64.0 return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) class BakomaFonts(TruetypeFonts): """ Use the Bakoma TrueType fonts for rendering. Symbols are strewn about a number of font files, each of which has its own proprietary 8-bit encoding. """ _fontmap = { 'cal' : 'cmsy10', 'rm' : 'cmr10', 'tt' : 'cmtt10', 'it' : 'cmmi10', 'bf' : 'cmb10', 'sf' : 'cmss10', 'ex' : 'cmex10' } def __init__(self, *args, **kwargs): self._stix_fallback = StixFonts(*args, **kwargs) TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, val in self._fontmap.iteritems(): fullpath = findfont(val) self.fontmap[key] = fullpath self.fontmap[val] = fullpath _slanted_symbols = set(r"\int \oint".split()) def _get_glyph(self, fontname, font_class, sym, fontsize): symbol_name = None if fontname in self.fontmap and sym in latex_to_bakoma: basename, num = latex_to_bakoma[sym] slanted = (basename == "cmmi10") or sym in self._slanted_symbols try: cached_font = self._get_font(basename) except RuntimeError: pass else: symbol_name = cached_font.font.get_glyph_name(num) num = cached_font.glyphmap[num] elif len(sym) == 1: slanted = (fontname == "it") try: cached_font = self._get_font(fontname) except RuntimeError: pass else: num = ord(sym) gid = cached_font.charmap.get(num) if gid is not None: symbol_name = cached_font.font.get_glyph_name( cached_font.charmap[num]) if symbol_name is None: return self._stix_fallback._get_glyph( fontname, font_class, sym, fontsize) return cached_font, num, symbol_name, fontsize, slanted # The Bakoma fonts contain many pre-sized alternatives for the # delimiters. The AutoSizedChar class will use these alternatives # and select the best (closest sized) glyph. _size_alternatives = { '(' : [('rm', '('), ('ex', '\xa1'), ('ex', '\xb3'), ('ex', '\xb5'), ('ex', '\xc3')], ')' : [('rm', ')'), ('ex', '\xa2'), ('ex', '\xb4'), ('ex', '\xb6'), ('ex', '\x21')], '{' : [('cal', '{'), ('ex', '\xa9'), ('ex', '\x6e'), ('ex', '\xbd'), ('ex', '\x28')], '}' : [('cal', '}'), ('ex', '\xaa'), ('ex', '\x6f'), ('ex', '\xbe'), ('ex', '\x29')], # The fourth size of '[' is mysteriously missing from the BaKoMa # font, so I've ommitted it for both '[' and ']' '[' : [('rm', '['), ('ex', '\xa3'), ('ex', '\x68'), ('ex', '\x22')], ']' : [('rm', ']'), ('ex', '\xa4'), ('ex', '\x69'), ('ex', '\x23')], r'\lfloor' : [('ex', '\xa5'), ('ex', '\x6a'), ('ex', '\xb9'), ('ex', '\x24')], r'\rfloor' : [('ex', '\xa6'), ('ex', '\x6b'), ('ex', '\xba'), ('ex', '\x25')], r'\lceil' : [('ex', '\xa7'), ('ex', '\x6c'), ('ex', '\xbb'), ('ex', '\x26')], r'\rceil' : [('ex', '\xa8'), ('ex', '\x6d'), ('ex', '\xbc'), ('ex', '\x27')], r'\langle' : [('ex', '\xad'), ('ex', '\x44'), ('ex', '\xbf'), ('ex', '\x2a')], r'\rangle' : [('ex', '\xae'), ('ex', '\x45'), ('ex', '\xc0'), ('ex', '\x2b')], r'\__sqrt__' : [('ex', '\x70'), ('ex', '\x71'), ('ex', '\x72'), ('ex', '\x73')], r'\backslash': [('ex', '\xb2'), ('ex', '\x2f'), ('ex', '\xc2'), ('ex', '\x2d')], r'/' : [('rm', '/'), ('ex', '\xb1'), ('ex', '\x2e'), ('ex', '\xcb'), ('ex', '\x2c')], r'\widehat' : [('rm', '\x5e'), ('ex', '\x62'), ('ex', '\x63'), ('ex', '\x64')], r'\widetilde': [('rm', '\x7e'), ('ex', '\x65'), ('ex', '\x66'), ('ex', '\x67')], r'<' : [('cal', 'h'), ('ex', 'D')], r'>' : [('cal', 'i'), ('ex', 'E')] } for alias, target in [('\leftparen', '('), ('\rightparent', ')'), ('\leftbrace', '{'), ('\rightbrace', '}'), ('\leftbracket', '['), ('\rightbracket', ']')]: _size_alternatives[alias] = _size_alternatives[target] def get_sized_alternatives_for_symbol(self, fontname, sym): return self._size_alternatives.get(sym, [(fontname, sym)]) class UnicodeFonts(TruetypeFonts): """ An abstract base class for handling Unicode fonts. While some reasonably complete Unicode fonts (such as DejaVu) may work in some situations, the only Unicode font I'm aware of with a complete set of math symbols is STIX. This class will "fallback" on the Bakoma fonts when a required symbol can not be found in the font. """ use_cmex = True def __init__(self, *args, **kwargs): # This must come first so the backend's owner is set correctly if rcParams['mathtext.fallback_to_cm']: self.cm_fallback = BakomaFonts(*args, **kwargs) else: self.cm_fallback = None TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for texfont in "cal rm tt it bf sf".split(): prop = rcParams['mathtext.' + texfont] font = findfont(prop) self.fontmap[texfont] = font prop = FontProperties('cmex10') font = findfont(prop) self.fontmap['ex'] = font _slanted_symbols = set(r"\int \oint".split()) def _map_virtual_font(self, fontname, font_class, uniindex): return fontname, uniindex def _get_glyph(self, fontname, font_class, sym, fontsize): found_symbol = False if self.use_cmex: uniindex = latex_to_cmex.get(sym) if uniindex is not None: fontname = 'ex' found_symbol = True if not found_symbol: try: uniindex = get_unicode_index(sym) found_symbol = True except ValueError: uniindex = ord('?') warn("No TeX to unicode mapping for '%s'" % sym.encode('ascii', 'backslashreplace'), MathTextWarning) fontname, uniindex = self._map_virtual_font( fontname, font_class, uniindex) new_fontname = fontname # Only characters in the "Letter" class should be italicized in 'it' # mode. Greek capital letters should be Roman. if found_symbol: if fontname == 'it': if uniindex < 0x10000: unistring = unichr(uniindex) if (not unicodedata.category(unistring)[0] == "L" or unicodedata.name(unistring).startswith("GREEK CAPITAL")): new_fontname = 'rm' slanted = (new_fontname == 'it') or sym in self._slanted_symbols found_symbol = False try: cached_font = self._get_font(new_fontname) except RuntimeError: pass else: try: glyphindex = cached_font.charmap[uniindex] found_symbol = True except KeyError: pass if not found_symbol: if self.cm_fallback: warn("Substituting with a symbol from Computer Modern.", MathTextWarning) return self.cm_fallback._get_glyph( fontname, 'it', sym, fontsize) else: if fontname in ('it', 'regular') and isinstance(self, StixFonts): return self._get_glyph('rm', font_class, sym, fontsize) warn("Font '%s' does not have a glyph for '%s' [U%x]" % (new_fontname, sym.encode('ascii', 'backslashreplace'), uniindex), MathTextWarning) warn("Substituting with a dummy symbol.", MathTextWarning) fontname = 'rm' new_fontname = fontname cached_font = self._get_font(fontname) uniindex = 0xA4 # currency character, for lack of anything better glyphindex = cached_font.charmap[uniindex] slanted = False symbol_name = cached_font.font.get_glyph_name(glyphindex) return cached_font, uniindex, symbol_name, fontsize, slanted def get_sized_alternatives_for_symbol(self, fontname, sym): if self.cm_fallback: return self.cm_fallback.get_sized_alternatives_for_symbol( fontname, sym) return [(fontname, sym)] class StixFonts(UnicodeFonts): """ A font handling class for the STIX fonts. In addition to what UnicodeFonts provides, this class: - supports "virtual fonts" which are complete alpha numeric character sets with different font styles at special Unicode code points, such as "Blackboard". - handles sized alternative characters for the STIXSizeX fonts. """ _fontmap = { 'rm' : 'STIXGeneral', 'it' : 'STIXGeneral:italic', 'bf' : 'STIXGeneral:weight=bold', 'nonunirm' : 'STIXNonUnicode', 'nonuniit' : 'STIXNonUnicode:italic', 'nonunibf' : 'STIXNonUnicode:weight=bold', 0 : 'STIXGeneral', 1 : 'STIXSizeOneSym', 2 : 'STIXSizeTwoSym', 3 : 'STIXSizeThreeSym', 4 : 'STIXSizeFourSym', 5 : 'STIXSizeFiveSym' } use_cmex = False cm_fallback = False _sans = False def __init__(self, *args, **kwargs): TruetypeFonts.__init__(self, *args, **kwargs) self.fontmap = {} for key, name in self._fontmap.iteritems(): fullpath = findfont(name) self.fontmap[key] = fullpath self.fontmap[name] = fullpath def _map_virtual_font(self, fontname, font_class, uniindex): # Handle these "fonts" that are actually embedded in # other fonts. mapping = stix_virtual_fonts.get(fontname) if (self._sans and mapping is None and fontname not in ('regular', 'default')): mapping = stix_virtual_fonts['sf'] doing_sans_conversion = True else: doing_sans_conversion = False if mapping is not None: if isinstance(mapping, dict): mapping = mapping.get(font_class, 'rm') # Binary search for the source glyph lo = 0 hi = len(mapping) while lo < hi: mid = (lo+hi)//2 range = mapping[mid] if uniindex < range[0]: hi = mid elif uniindex <= range[1]: break else: lo = mid + 1 if uniindex >= range[0] and uniindex <= range[1]: uniindex = uniindex - range[0] + range[3] fontname = range[2] elif not doing_sans_conversion: # This will generate a dummy character uniindex = 0x1 fontname = rcParams['mathtext.default'] # Handle private use area glyphs if (fontname in ('it', 'rm', 'bf') and uniindex >= 0xe000 and uniindex <= 0xf8ff): fontname = 'nonuni' + fontname return fontname, uniindex _size_alternatives = {} def get_sized_alternatives_for_symbol(self, fontname, sym): alternatives = self._size_alternatives.get(sym) if alternatives: return alternatives alternatives = [] try: uniindex = get_unicode_index(sym) except ValueError: return [(fontname, sym)] fix_ups = { ord('<'): 0x27e8, ord('>'): 0x27e9 } uniindex = fix_ups.get(uniindex, uniindex) for i in range(6): cached_font = self._get_font(i) glyphindex = cached_font.charmap.get(uniindex) if glyphindex is not None: alternatives.append((i, unichr_safe(uniindex))) # The largest size of the radical symbol in STIX has incorrect # metrics that cause it to be disconnected from the stem. if sym == r'\__sqrt__': alternatives = alternatives[:-1] self._size_alternatives[sym] = alternatives return alternatives class StixSansFonts(StixFonts): """ A font handling class for the STIX fonts (that uses sans-serif characters by default). """ _sans = True class StandardPsFonts(Fonts): """ Use the standard postscript fonts for rendering to backend_ps Unlike the other font classes, BakomaFont and UnicodeFont, this one requires the Ps backend. """ basepath = os.path.join( get_data_path(), 'fonts', 'afm' ) fontmap = { 'cal' : 'pzcmi8a', # Zapf Chancery 'rm' : 'pncr8a', # New Century Schoolbook 'tt' : 'pcrr8a', # Courier 'it' : 'pncri8a', # New Century Schoolbook Italic 'sf' : 'phvr8a', # Helvetica 'bf' : 'pncb8a', # New Century Schoolbook Bold None : 'psyr' # Symbol } def __init__(self, default_font_prop): Fonts.__init__(self, default_font_prop, MathtextBackendPs()) self.glyphd = {} self.fonts = {} filename = findfont(default_font_prop, fontext='afm', directory=self.basepath) if filename is None: filename = findfont('Helvetica', fontext='afm', directory=self.basepath) default_font = AFM(file(filename, 'r')) default_font.fname = filename self.fonts['default'] = default_font self.fonts['regular'] = default_font self.pswriter = StringIO() def _get_font(self, font): if font in self.fontmap: basename = self.fontmap[font] else: basename = font cached_font = self.fonts.get(basename) if cached_font is None: fname = os.path.join(self.basepath, basename + ".afm") cached_font = AFM(file(fname, 'r')) cached_font.fname = fname self.fonts[basename] = cached_font self.fonts[cached_font.get_fontname()] = cached_font return cached_font def _get_info (self, fontname, font_class, sym, fontsize, dpi): 'load the cmfont, metrics and glyph with caching' key = fontname, sym, fontsize, dpi tup = self.glyphd.get(key) if tup is not None: return tup # Only characters in the "Letter" class should really be italicized. # This class includes greek letters, so we're ok if (fontname == 'it' and (len(sym) > 1 or not unicodedata.category(unicode(sym)).startswith("L"))): fontname = 'rm' found_symbol = False if sym in latex_to_standard: fontname, num = latex_to_standard[sym] glyph = chr(num) found_symbol = True elif len(sym) == 1: glyph = sym num = ord(glyph) found_symbol = True else: warn("No TeX to built-in Postscript mapping for '%s'" % sym, MathTextWarning) slanted = (fontname == 'it') font = self._get_font(fontname) if found_symbol: try: symbol_name = font.get_name_char(glyph) except KeyError: warn("No glyph in standard Postscript font '%s' for '%s'" % (font.postscript_name, sym), MathTextWarning) found_symbol = False if not found_symbol: glyph = sym = '?' num = ord(glyph) symbol_name = font.get_name_char(glyph) offset = 0 scale = 0.001 * fontsize xmin, ymin, xmax, ymax = [val * scale for val in font.get_bbox_char(glyph)] metrics = Bunch( advance = font.get_width_char(glyph) * scale, width = font.get_width_char(glyph) * scale, height = font.get_height_char(glyph) * scale, xmin = xmin, xmax = xmax, ymin = ymin+offset, ymax = ymax+offset, # iceberg is the equivalent of TeX's "height" iceberg = ymax + offset, slanted = slanted ) self.glyphd[key] = Bunch( font = font, fontsize = fontsize, postscript_name = font.get_fontname(), metrics = metrics, symbol_name = symbol_name, num = num, glyph = glyph, offset = offset ) return self.glyphd[key] def get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi): if font1 == font2 and fontsize1 == fontsize2: info1 = self._get_info(font1, fontclass1, sym1, fontsize1, dpi) info2 = self._get_info(font2, fontclass2, sym2, fontsize2, dpi) font = info1.font return (font.get_kern_dist(info1.glyph, info2.glyph) * 0.001 * fontsize1) return Fonts.get_kern(self, font1, fontclass1, sym1, fontsize1, font2, fontclass2, sym2, fontsize2, dpi) def get_xheight(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_xheight() * 0.001 * fontsize def get_underline_thickness(self, font, fontsize, dpi): cached_font = self._get_font(font) return cached_font.get_underline_thickness() * 0.001 * fontsize ############################################################################## # TeX-LIKE BOX MODEL # The following is based directly on the document 'woven' from the # TeX82 source code. This information is also available in printed # form: # # Knuth, Donald E.. 1986. Computers and Typesetting, Volume B: # TeX: The Program. Addison-Wesley Professional. # # The most relevant "chapters" are: # Data structures for boxes and their friends # Shipping pages out (Ship class) # Packaging (hpack and vpack) # Data structures for math mode # Subroutines for math mode # Typesetting math formulas # # Many of the docstrings below refer to a numbered "node" in that # book, e.g. node123 # # Note that (as TeX) y increases downward, unlike many other parts of # matplotlib. # How much text shrinks when going to the next-smallest level. GROW_FACTOR # must be the inverse of SHRINK_FACTOR. SHRINK_FACTOR = 0.7 GROW_FACTOR = 1.0 / SHRINK_FACTOR # The number of different sizes of chars to use, beyond which they will not # get any smaller NUM_SIZE_LEVELS = 6 # Percentage of x-height of additional horiz. space after sub/superscripts SCRIPT_SPACE = 0.2 # Percentage of x-height that sub/superscripts drop below the baseline SUBDROP = 0.3 # Percentage of x-height that superscripts drop below the baseline SUP1 = 0.5 # Percentage of x-height that subscripts drop below the baseline SUB1 = 0.0 # Percentage of x-height that superscripts are offset relative to the subscript DELTA = 0.18 class MathTextWarning(Warning): pass class Node(object): """ A node in the TeX box model """ def __init__(self): self.size = 0 def __repr__(self): return self.__internal_repr__() def __internal_repr__(self): return self.__class__.__name__ def get_kerning(self, next): return 0.0 def shrink(self): """ Shrinks one level smaller. There are only three levels of sizes, after which things will no longer get smaller. """ self.size += 1 def grow(self): """ Grows one level larger. There is no limit to how big something can get. """ self.size -= 1 def render(self, x, y): pass class Box(Node): """ Represents any node with a physical location. """ def __init__(self, width, height, depth): Node.__init__(self) self.width = width self.height = height self.depth = depth def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR def render(self, x1, y1, x2, y2): pass class Vbox(Box): """ A box with only height (zero width). """ def __init__(self, height, depth): Box.__init__(self, 0., height, depth) class Hbox(Box): """ A box with only width (zero height and depth). """ def __init__(self, width): Box.__init__(self, width, 0., 0.) class Char(Node): """ Represents a single character. Unlike TeX, the font information and metrics are stored with each :class:`Char` to make it easier to lookup the font metrics when needed. Note that TeX boxes have a width, height, and depth, unlike Type1 and Truetype which use a full bounding box and an advance in the x-direction. The metrics must be converted to the TeX way, and the advance (if different from width) must be converted into a :class:`Kern` node when the :class:`Char` is added to its parent :class:`Hlist`. """ def __init__(self, c, state): Node.__init__(self) self.c = c self.font_output = state.font_output assert isinstance(state.font, (str, unicode, int)) self.font = state.font self.font_class = state.font_class self.fontsize = state.fontsize self.dpi = state.dpi # The real width, height and depth will be set during the # pack phase, after we know the real fontsize self._update_metrics() def __internal_repr__(self): return '`%s`' % self.c def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) if self.c == ' ': self.width = metrics.advance else: self.width = metrics.width self.height = metrics.iceberg self.depth = -(metrics.iceberg - metrics.height) def is_slanted(self): return self._metrics.slanted def get_kerning(self, next): """ Return the amount of kerning between this and the given character. Called when characters are strung together into :class:`Hlist` to create :class:`Kern` nodes. """ advance = self._metrics.advance - self.width kern = 0. if isinstance(next, Char): kern = self.font_output.get_kern( self.font, self.font_class, self.c, self.fontsize, next.font, next.font_class, next.c, next.fontsize, self.dpi) return advance + kern def render(self, x, y): """ Render the character to the canvas """ self.font_output.render_glyph( x, y, self.font, self.font_class, self.c, self.fontsize, self.dpi) def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.fontsize *= SHRINK_FACTOR self.width *= SHRINK_FACTOR self.height *= SHRINK_FACTOR self.depth *= SHRINK_FACTOR def grow(self): Node.grow(self) self.fontsize *= GROW_FACTOR self.width *= GROW_FACTOR self.height *= GROW_FACTOR self.depth *= GROW_FACTOR class Accent(Char): """ The font metrics need to be dealt with differently for accents, since they are already offset correctly from the baseline in TrueType fonts. """ def _update_metrics(self): metrics = self._metrics = self.font_output.get_metrics( self.font, self.font_class, self.c, self.fontsize, self.dpi) self.width = metrics.xmax - metrics.xmin self.height = metrics.ymax - metrics.ymin self.depth = 0 def shrink(self): Char.shrink(self) self._update_metrics() def grow(self): Char.grow(self) self._update_metrics() def render(self, x, y): """ Render the character to the canvas. """ self.font_output.render_glyph( x - self._metrics.xmin, y + self._metrics.ymin, self.font, self.font_class, self.c, self.fontsize, self.dpi) class List(Box): """ A list of nodes (either horizontal or vertical). """ def __init__(self, elements): Box.__init__(self, 0., 0., 0.) self.shift_amount = 0. # An arbitrary offset self.children = elements # The child nodes of this list # The following parameters are set in the vpack and hpack functions self.glue_set = 0. # The glue setting of this list self.glue_sign = 0 # 0: normal, -1: shrinking, 1: stretching self.glue_order = 0 # The order of infinity (0 - 3) for the glue def __repr__(self): return '[%s <%.02f %.02f %.02f %.02f> %s]' % ( self.__internal_repr__(), self.width, self.height, self.depth, self.shift_amount, ' '.join([repr(x) for x in self.children])) def _determine_order(self, totals): """ A helper function to determine the highest order of glue used by the members of this list. Used by vpack and hpack. """ o = 0 for i in range(len(totals) - 1, 0, -1): if totals[i] != 0.0: o = i break return o def _set_glue(self, x, sign, totals, error_type): o = self._determine_order(totals) self.glue_order = o self.glue_sign = sign if totals[o] != 0.: self.glue_set = x / totals[o] else: self.glue_sign = 0 self.glue_ratio = 0. if o == 0: if len(self.children): warn("%s %s: %r" % (error_type, self.__class__.__name__, self), MathTextWarning) def shrink(self): for child in self.children: child.shrink() Box.shrink(self) if self.size < NUM_SIZE_LEVELS: self.shift_amount *= SHRINK_FACTOR self.glue_set *= SHRINK_FACTOR def grow(self): for child in self.children: child.grow() Box.grow(self) self.shift_amount *= GROW_FACTOR self.glue_set *= GROW_FACTOR class Hlist(List): """ A horizontal list of boxes. """ def __init__(self, elements, w=0., m='additional', do_kern=True): List.__init__(self, elements) if do_kern: self.kern() self.hpack() def kern(self): """ Insert :class:`Kern` nodes between :class:`Char` nodes to set kerning. The :class:`Char` nodes themselves determine the amount of kerning they need (in :meth:`~Char.get_kerning`), and this function just creates the linked list in the correct way. """ new_children = [] num_children = len(self.children) if num_children: for i in range(num_children): elem = self.children[i] if i < num_children - 1: next = self.children[i + 1] else: next = None new_children.append(elem) kerning_distance = elem.get_kerning(next) if kerning_distance != 0.: kern = Kern(kerning_distance) new_children.append(kern) self.children = new_children # This is a failed experiment to fake cross-font kerning. # def get_kerning(self, next): # if len(self.children) >= 2 and isinstance(self.children[-2], Char): # if isinstance(next, Char): # print "CASE A" # return self.children[-2].get_kerning(next) # elif isinstance(next, Hlist) and len(next.children) and isinstance(next.children[0], Char): # print "CASE B" # result = self.children[-2].get_kerning(next.children[0]) # print result # return result # return 0.0 def hpack(self, w=0., m='additional'): """ The main duty of :meth:`hpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. The computed sizes normally enclose all of the material inside the new box; but some items may stick out if negative glue is used, if the box is overfull, or if a ``\\vbox`` includes other boxes that have been shifted left. - *w*: specifies a width - *m*: is either 'exactly' or 'additional'. Thus, ``hpack(w, 'exactly')`` produces a box whose width is exactly *w*, while ``hpack(w, 'additional')`` yields a box whose width is the natural width plus *w*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. #self.shift_amount = 0. h = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Char): x += p.width h = max(h, p.height) d = max(d, p.depth) elif isinstance(p, Box): x += p.width if not isinf(p.height) and not isinf(p.depth): s = getattr(p, 'shift_amount', 0.) h = max(h, p.height - s) d = max(d, p.depth + s) elif isinstance(p, Glue): glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += p.width self.height = h self.depth = d if m == 'additional': w += x self.width = w x = w - x if x == 0.: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Vlist(List): """ A vertical list of boxes. """ def __init__(self, elements, h=0., m='additional'): List.__init__(self, elements) self.vpack() def vpack(self, h=0., m='additional', l=float(inf)): """ The main duty of :meth:`vpack` is to compute the dimensions of the resulting boxes, and to adjust the glue if one of those dimensions is pre-specified. - *h*: specifies a height - *m*: is either 'exactly' or 'additional'. - *l*: a maximum height Thus, ``vpack(h, 'exactly')`` produces a box whose height is exactly *h*, while ``vpack(h, 'additional')`` yields a box whose height is the natural height plus *h*. The default values produce a box with the natural width. """ # I don't know why these get reset in TeX. Shift_amount is pretty # much useless if we do. # self.shift_amount = 0. w = 0. d = 0. x = 0. total_stretch = [0.] * 4 total_shrink = [0.] * 4 for p in self.children: if isinstance(p, Box): x += d + p.height d = p.depth if not isinf(p.width): s = getattr(p, 'shift_amount', 0.) w = max(w, p.width + s) elif isinstance(p, Glue): x += d d = 0. glue_spec = p.glue_spec x += glue_spec.width total_stretch[glue_spec.stretch_order] += glue_spec.stretch total_shrink[glue_spec.shrink_order] += glue_spec.shrink elif isinstance(p, Kern): x += d + p.width d = 0. elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in Vlist.") self.width = w if d > l: x += d - l self.depth = l else: self.depth = d if m == 'additional': h += x self.height = h x = h - x if x == 0: self.glue_sign = 0 self.glue_order = 0 self.glue_ratio = 0. return if x > 0.: self._set_glue(x, 1, total_stretch, "Overfull") else: self._set_glue(x, -1, total_shrink, "Underfull") class Rule(Box): """ A :class:`Rule` node stands for a solid black rectangle; it has *width*, *depth*, and *height* fields just as in an :class:`Hlist`. However, if any of these dimensions is inf, the actual value will be determined by running the rule up to the boundary of the innermost enclosing box. This is called a "running dimension." The width is never running in an :class:`Hlist`; the height and depth are never running in a :class:`Vlist`. """ def __init__(self, width, height, depth, state): Box.__init__(self, width, height, depth) self.font_output = state.font_output def render(self, x, y, w, h): self.font_output.render_rect_filled(x, y, x + w, y + h) class Hrule(Rule): """ Convenience class to create a horizontal rule. """ def __init__(self, state, thickness=None): if thickness is None: thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = depth = thickness * 0.5 Rule.__init__(self, inf, height, depth, state) class Vrule(Rule): """ Convenience class to create a vertical rule. """ def __init__(self, state): thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) Rule.__init__(self, thickness, inf, inf, state) class Glue(Node): """ Most of the information in this object is stored in the underlying :class:`GlueSpec` class, which is shared between multiple glue objects. (This is a memory optimization which probably doesn't matter anymore, but it's easier to stick to what TeX does.) """ def __init__(self, glue_type, copy=False): Node.__init__(self) self.glue_subtype = 'normal' if is_string_like(glue_type): glue_spec = GlueSpec.factory(glue_type) elif isinstance(glue_type, GlueSpec): glue_spec = glue_type else: raise ArgumentError("glue_type must be a glue spec name or instance.") if copy: glue_spec = glue_spec.copy() self.glue_spec = glue_spec def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= SHRINK_FACTOR def grow(self): Node.grow(self) if self.glue_spec.width != 0.: self.glue_spec = self.glue_spec.copy() self.glue_spec.width *= GROW_FACTOR class GlueSpec(object): """ See :class:`Glue`. """ def __init__(self, width=0., stretch=0., stretch_order=0, shrink=0., shrink_order=0): self.width = width self.stretch = stretch self.stretch_order = stretch_order self.shrink = shrink self.shrink_order = shrink_order def copy(self): return GlueSpec( self.width, self.stretch, self.stretch_order, self.shrink, self.shrink_order) def factory(cls, glue_type): return cls._types[glue_type] factory = classmethod(factory) GlueSpec._types = { 'fil': GlueSpec(0., 1., 1, 0., 0), 'fill': GlueSpec(0., 1., 2, 0., 0), 'filll': GlueSpec(0., 1., 3, 0., 0), 'neg_fil': GlueSpec(0., 0., 0, 1., 1), 'neg_fill': GlueSpec(0., 0., 0, 1., 2), 'neg_filll': GlueSpec(0., 0., 0, 1., 3), 'empty': GlueSpec(0., 0., 0, 0., 0), 'ss': GlueSpec(0., 1., 1, -1., 1) } # Some convenient ways to get common kinds of glue class Fil(Glue): def __init__(self): Glue.__init__(self, 'fil') class Fill(Glue): def __init__(self): Glue.__init__(self, 'fill') class Filll(Glue): def __init__(self): Glue.__init__(self, 'filll') class NegFil(Glue): def __init__(self): Glue.__init__(self, 'neg_fil') class NegFill(Glue): def __init__(self): Glue.__init__(self, 'neg_fill') class NegFilll(Glue): def __init__(self): Glue.__init__(self, 'neg_filll') class SsGlue(Glue): def __init__(self): Glue.__init__(self, 'ss') class HCentered(Hlist): """ A convenience class to create an :class:`Hlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Hlist.__init__(self, [SsGlue()] + elements + [SsGlue()], do_kern=False) class VCentered(Hlist): """ A convenience class to create a :class:`Vlist` whose contents are centered within its enclosing box. """ def __init__(self, elements): Vlist.__init__(self, [SsGlue()] + elements + [SsGlue()]) class Kern(Node): """ A :class:`Kern` node has a width field to specify a (normally negative) amount of spacing. This spacing correction appears in horizontal lists between letters like A and V when the font designer said that it looks better to move them closer together or further apart. A kern node can also appear in a vertical list, when its *width* denotes additional spacing in the vertical direction. """ height = 0 depth = 0 def __init__(self, width): Node.__init__(self) self.width = width def __repr__(self): return "k%.02f" % self.width def shrink(self): Node.shrink(self) if self.size < NUM_SIZE_LEVELS: self.width *= SHRINK_FACTOR def grow(self): Node.grow(self) self.width *= GROW_FACTOR class SubSuperCluster(Hlist): """ :class:`SubSuperCluster` is a sort of hack to get around that fact that this code do a two-pass parse like TeX. This lets us store enough information in the hlist itself, namely the nucleus, sub- and super-script, such that if another script follows that needs to be attached, it can be reconfigured on the fly. """ def __init__(self): self.nucleus = None self.sub = None self.super = None Hlist.__init__(self, []) class AutoHeightChar(Hlist): """ :class:`AutoHeightChar` will create a character as close to the given height and depth as possible. When using a font with multiple height versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, height, depth, state, always=False): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() target_total = height + depth for fontname, sym in alternatives: state.font = fontname char = Char(sym, state) if char.height + char.depth >= target_total: break factor = target_total / (char.height + char.depth) state.fontsize *= factor char = Char(sym, state) shift = (depth - char.depth) Hlist.__init__(self, [char]) self.shift_amount = shift class AutoWidthChar(Hlist): """ :class:`AutoWidthChar` will create a character as close to the given width as possible. When using a font with multiple width versions of some characters (such as the BaKoMa fonts), the correct glyph will be selected, otherwise this will always just return a scaled version of the glyph. """ def __init__(self, c, width, state, always=False, char_class=Char): alternatives = state.font_output.get_sized_alternatives_for_symbol( state.font, c) state = state.copy() for fontname, sym in alternatives: state.font = fontname char = char_class(sym, state) if char.width >= width: break factor = width / char.width state.fontsize *= factor char = char_class(sym, state) Hlist.__init__(self, [char]) self.width = char.width class Ship(object): """ Once the boxes have been set up, this sends them to output. Since boxes can be inside of boxes inside of boxes, the main work of :class:`Ship` is done by two mutually recursive routines, :meth:`hlist_out` and :meth:`vlist_out`, which traverse the :class:`Hlist` nodes and :class:`Vlist` nodes inside of horizontal and vertical boxes. The global variables used in TeX to store state as it processes have become member variables here. """ def __call__(self, ox, oy, box): self.max_push = 0 # Deepest nesting of push commands so far self.cur_s = 0 self.cur_v = 0. self.cur_h = 0. self.off_h = ox self.off_v = oy + box.height self.hlist_out(box) def clamp(value): if value < -1000000000.: return -1000000000. if value > 1000000000.: return 1000000000. return value clamp = staticmethod(clamp) def hlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign base_line = self.cur_v left_edge = self.cur_h self.cur_s += 1 self.max_push = max(self.cur_s, self.max_push) clamp = self.clamp for p in box.children: if isinstance(p, Char): p.render(self.cur_h + self.off_h, self.cur_v + self.off_v) self.cur_h += p.width elif isinstance(p, Kern): self.cur_h += p.width elif isinstance(p, List): # node623 if len(p.children) == 0: self.cur_h += p.width else: edge = self.cur_h self.cur_v = base_line + p.shift_amount if isinstance(p, Hlist): self.hlist_out(p) else: # p.vpack(box.height + box.depth, 'exactly') self.vlist_out(p) self.cur_h = edge + p.width self.cur_v = base_line elif isinstance(p, Box): # node624 rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_height): rule_height = box.height if isinf(rule_depth): rule_depth = box.depth if rule_height > 0 and rule_width > 0: self.cur_v = baseline + rule_depth p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) self.cur_v = baseline self.cur_h += rule_width elif isinstance(p, Glue): # node625 glue_spec = p.glue_spec rule_width = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_width += cur_g self.cur_h += rule_width self.cur_s -= 1 def vlist_out(self, box): cur_g = 0 cur_glue = 0. glue_order = box.glue_order glue_sign = box.glue_sign self.cur_s += 1 self.max_push = max(self.max_push, self.cur_s) left_edge = self.cur_h self.cur_v -= box.height top_edge = self.cur_v clamp = self.clamp for p in box.children: if isinstance(p, Kern): self.cur_v += p.width elif isinstance(p, List): if len(p.children) == 0: self.cur_v += p.height + p.depth else: self.cur_v += p.height self.cur_h = left_edge + p.shift_amount save_v = self.cur_v p.width = box.width if isinstance(p, Hlist): self.hlist_out(p) else: self.vlist_out(p) self.cur_v = save_v + p.depth self.cur_h = left_edge elif isinstance(p, Box): rule_height = p.height rule_depth = p.depth rule_width = p.width if isinf(rule_width): rule_width = box.width rule_height += rule_depth if rule_height > 0 and rule_depth > 0: self.cur_v += rule_height p.render(self.cur_h + self.off_h, self.cur_v + self.off_v, rule_width, rule_height) elif isinstance(p, Glue): glue_spec = p.glue_spec rule_height = glue_spec.width - cur_g if glue_sign != 0: # normal if glue_sign == 1: # stretching if glue_spec.stretch_order == glue_order: cur_glue += glue_spec.stretch cur_g = round(clamp(float(box.glue_set) * cur_glue)) elif glue_spec.shrink_order == glue_order: # shrinking cur_glue += glue_spec.shrink cur_g = round(clamp(float(box.glue_set) * cur_glue)) rule_height += cur_g self.cur_v += rule_height elif isinstance(p, Char): raise RuntimeError("Internal mathtext error: Char node found in vlist") self.cur_s -= 1 ship = Ship() ############################################################################## # PARSER def Error(msg): """ Helper class to raise parser errors. """ def raise_error(s, loc, toks): raise ParseFatalException(msg + "\n" + s) empty = Empty() empty.setParseAction(raise_error) return empty class Parser(object): """ This is the pyparsing-based parser for math expressions. It actually parses full strings *containing* math expressions, in that raw text may also appear outside of pairs of ``$``. The grammar is based directly on that in TeX, though it cuts a few corners. """ _binary_operators = set(r''' + * \pm \sqcap \rhd \mp \sqcup \unlhd \times \vee \unrhd \div \wedge \oplus \ast \setminus \ominus \star \wr \otimes \circ \diamond \oslash \bullet \bigtriangleup \odot \cdot \bigtriangledown \bigcirc \cap \triangleleft \dagger \cup \triangleright \ddagger \uplus \lhd \amalg'''.split()) _relation_symbols = set(r''' = < > : \leq \geq \equiv \models \prec \succ \sim \perp \preceq \succeq \simeq \mid \ll \gg \asymp \parallel \subset \supset \approx \bowtie \subseteq \supseteq \cong \Join \sqsubset \sqsupset \neq \smile \sqsubseteq \sqsupseteq \doteq \frown \in \ni \propto \vdash \dashv \dots'''.split()) _arrow_symbols = set(r''' \leftarrow \longleftarrow \uparrow \Leftarrow \Longleftarrow \Uparrow \rightarrow \longrightarrow \downarrow \Rightarrow \Longrightarrow \Downarrow \leftrightarrow \longleftrightarrow \updownarrow \Leftrightarrow \Longleftrightarrow \Updownarrow \mapsto \longmapsto \nearrow \hookleftarrow \hookrightarrow \searrow \leftharpoonup \rightharpoonup \swarrow \leftharpoondown \rightharpoondown \nwarrow \rightleftharpoons \leadsto'''.split()) _spaced_symbols = _binary_operators | _relation_symbols | _arrow_symbols _punctuation_symbols = set(r', ; . ! \ldotp \cdotp'.split()) _overunder_symbols = set(r''' \sum \prod \coprod \bigcap \bigcup \bigsqcup \bigvee \bigwedge \bigodot \bigotimes \bigoplus \biguplus '''.split()) _overunder_functions = set( r"lim liminf limsup sup max min".split()) _dropsub_symbols = set(r'''\int \oint'''.split()) _fontnames = set("rm cal it tt sf bf default bb frak circled scr regular".split()) _function_names = set(""" arccos csc ker min arcsin deg lg Pr arctan det lim sec arg dim liminf sin cos exp limsup sinh cosh gcd ln sup cot hom log tan coth inf max tanh""".split()) _ambiDelim = set(r""" | \| / \backslash \uparrow \downarrow \updownarrow \Uparrow \Downarrow \Updownarrow .""".split()) _leftDelim = set(r"( [ { < \lfloor \langle \lceil".split()) _rightDelim = set(r") ] } > \rfloor \rangle \rceil".split()) def __init__(self): # All forward declarations are here font = Forward().setParseAction(self.font).setName("font") latexfont = Forward() subsuper = Forward().setParseAction(self.subsuperscript).setName("subsuper") placeable = Forward().setName("placeable") simple = Forward().setName("simple") autoDelim = Forward().setParseAction(self.auto_sized_delimiter) self._expression = Forward().setParseAction(self.finish).setName("finish") float = Regex(r"[-+]?([0-9]+\.?[0-9]*|\.[0-9]+)") lbrace = Literal('{').suppress() rbrace = Literal('}').suppress() start_group = (Optional(latexfont) - lbrace) start_group.setParseAction(self.start_group) end_group = rbrace.copy() end_group.setParseAction(self.end_group) bslash = Literal('\\') accent = oneOf(self._accent_map.keys() + list(self._wide_accents)) function = oneOf(list(self._function_names)) fontname = oneOf(list(self._fontnames)) latex2efont = oneOf(['math' + x for x in self._fontnames]) space =(FollowedBy(bslash) + oneOf([r'\ ', r'\/', r'\,', r'\;', r'\quad', r'\qquad', r'\!']) ).setParseAction(self.space).setName('space') customspace =(Literal(r'\hspace') - (( lbrace - float - rbrace ) | Error(r"Expected \hspace{n}")) ).setParseAction(self.customspace).setName('customspace') unicode_range = u"\U00000080-\U0001ffff" symbol =(Regex(UR"([a-zA-Z0-9 +\-*/<>=:,.;!\?&'@()\[\]|%s])|(\\[%%${}\[\]_|])" % unicode_range) | (Combine( bslash + oneOf(tex2uni.keys()) ) + FollowedBy(Regex("[^a-zA-Z]"))) ).setParseAction(self.symbol).leaveWhitespace() c_over_c =(Suppress(bslash) + oneOf(self._char_over_chars.keys()) ).setParseAction(self.char_over_chars) accent = Group( Suppress(bslash) + accent - placeable ).setParseAction(self.accent).setName("accent") function =(Suppress(bslash) + function ).setParseAction(self.function).setName("function") group = Group( start_group + ZeroOrMore( autoDelim ^ simple) - end_group ).setParseAction(self.group).setName("group") font <<(Suppress(bslash) + fontname) latexfont <<(Suppress(bslash) + latex2efont) frac = Group( Suppress(Literal(r"\frac")) + ((group + group) | Error(r"Expected \frac{num}{den}")) ).setParseAction(self.frac).setName("frac") stackrel = Group( Suppress(Literal(r"\stackrel")) + ((group + group) | Error(r"Expected \stackrel{num}{den}")) ).setParseAction(self.stackrel).setName("stackrel") binom = Group( Suppress(Literal(r"\binom")) + ((group + group) | Error(r"Expected \binom{num}{den}")) ).setParseAction(self.binom).setName("binom") ambiDelim = oneOf(list(self._ambiDelim)) leftDelim = oneOf(list(self._leftDelim)) rightDelim = oneOf(list(self._rightDelim)) rightDelimSafe = oneOf(list(self._rightDelim - set(['}']))) genfrac = Group( Suppress(Literal(r"\genfrac")) + ((Suppress(Literal('{')) + oneOf(list(self._ambiDelim | self._leftDelim | set(['']))) + Suppress(Literal('}')) + Suppress(Literal('{')) + oneOf(list(self._ambiDelim | (self._rightDelim - set(['}'])) | set(['', r'\}']))) + Suppress(Literal('}')) + Suppress(Literal('{')) + Regex("[0-9]*(\.?[0-9]*)?") + Suppress(Literal('}')) + group + group + group) | Error(r"Expected \genfrac{ldelim}{rdelim}{rulesize}{style}{num}{den}")) ).setParseAction(self.genfrac).setName("genfrac") sqrt = Group( Suppress(Literal(r"\sqrt")) + Optional( Suppress(Literal("[")) - Regex("[0-9]+") - Suppress(Literal("]")), default = None ) + (group | Error("Expected \sqrt{value}")) ).setParseAction(self.sqrt).setName("sqrt") overline = Group( Suppress(Literal(r"\overline")) + (group | Error("Expected \overline{value}")) ).setParseAction(self.overline).setName("overline") placeable <<(function ^ (c_over_c | symbol) ^ accent ^ group ^ frac ^ stackrel ^ binom ^ genfrac ^ sqrt ^ overline ) simple <<(space | customspace | font | subsuper ) subsuperop = oneOf(["_", "^"]) subsuper << Group( ( Optional(placeable) + OneOrMore( subsuperop - placeable ) ) | placeable ) autoDelim <<(Suppress(Literal(r"\left")) + ((leftDelim | ambiDelim) | Error("Expected a delimiter")) + Group( OneOrMore( autoDelim ^ simple)) + Suppress(Literal(r"\right")) + ((rightDelim | ambiDelim) | Error("Expected a delimiter")) ) math = OneOrMore( autoDelim ^ simple ).setParseAction(self.math).setName("math") math_delim = ~bslash + Literal('$') non_math = Regex(r"(?:(?:\\[$])|[^$])*" ).setParseAction(self.non_math).setName("non_math").leaveWhitespace() self._expression << ( non_math + ZeroOrMore( Suppress(math_delim) + Optional(math) + (Suppress(math_delim) | Error("Expected end of math '$'")) + non_math ) ) + StringEnd() self.clear() def clear(self): """ Clear any state before parsing. """ self._expr = None self._state_stack = None self._em_width_cache = {} def parse(self, s, fonts_object, fontsize, dpi): """ Parse expression *s* using the given *fonts_object* for output, at the given *fontsize* and *dpi*. Returns the parse tree of :class:`Node` instances. """ self._state_stack = [self.State(fonts_object, 'default', 'rm', fontsize, dpi)] try: self._expression.parseString(s) except ParseException, err: raise ValueError("\n".join([ "", err.line, " " * (err.column - 1) + "^", str(err)])) return self._expr # The state of the parser is maintained in a stack. Upon # entering and leaving a group { } or math/non-math, the stack # is pushed and popped accordingly. The current state always # exists in the top element of the stack. class State(object): """ Stores the state of the parser. States are pushed and popped from a stack as necessary, and the "current" state is always at the top of the stack. """ def __init__(self, font_output, font, font_class, fontsize, dpi): self.font_output = font_output self._font = font self.font_class = font_class self.fontsize = fontsize self.dpi = dpi def copy(self): return Parser.State( self.font_output, self.font, self.font_class, self.fontsize, self.dpi) def _get_font(self): return self._font def _set_font(self, name): if name in ('rm', 'it', 'bf'): self.font_class = name self._font = name font = property(_get_font, _set_font) def get_state(self): """ Get the current :class:`State` of the parser. """ return self._state_stack[-1] def pop_state(self): """ Pop a :class:`State` off of the stack. """ self._state_stack.pop() def push_state(self): """ Push a new :class:`State` onto the stack which is just a copy of the current state. """ self._state_stack.append(self.get_state().copy()) def finish(self, s, loc, toks): #~ print "finish", toks self._expr = Hlist(toks) return [self._expr] def math(self, s, loc, toks): #~ print "math", toks hlist = Hlist(toks) self.pop_state() return [hlist] def non_math(self, s, loc, toks): #~ print "non_math", toks s = toks[0].replace(r'\$', '$') symbols = [Char(c, self.get_state()) for c in s] hlist = Hlist(symbols) # We're going into math now, so set font to 'it' self.push_state() self.get_state().font = rcParams['mathtext.default'] return [hlist] def _make_space(self, percentage): # All spaces are relative to em width state = self.get_state() key = (state.font, state.fontsize, state.dpi) width = self._em_width_cache.get(key) if width is None: metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], 'm', state.fontsize, state.dpi) width = metrics.advance self._em_width_cache[key] = width return Kern(width * percentage) _space_widths = { r'\ ' : 0.3, r'\,' : 0.4, r'\;' : 0.8, r'\quad' : 1.6, r'\qquad' : 3.2, r'\!' : -0.4, r'\/' : 0.4 } def space(self, s, loc, toks): assert(len(toks)==1) num = self._space_widths[toks[0]] box = self._make_space(num) return [box] def customspace(self, s, loc, toks): return [self._make_space(float(toks[1]))] def symbol(self, s, loc, toks): # print "symbol", toks c = toks[0] if c == "'": c = '\prime' try: char = Char(c, self.get_state()) except ValueError: raise ParseFatalException("Unknown symbol: %s" % c) if c in self._spaced_symbols: return [Hlist( [self._make_space(0.2), char, self._make_space(0.2)] , do_kern = False)] elif c in self._punctuation_symbols: return [Hlist( [char, self._make_space(0.2)] , do_kern = False)] return [char] _char_over_chars = { # The first 2 entires in the tuple are (font, char, sizescale) for # the two symbols under and over. The third element is the space # (in multiples of underline height) r'AA' : ( ('rm', 'A', 1.0), (None, '\circ', 0.5), 0.0), } def char_over_chars(self, s, loc, toks): sym = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) under_desc, over_desc, space = \ self._char_over_chars.get(sym, (None, None, 0.0)) if under_desc is None: raise ParseFatalException("Error parsing symbol") over_state = state.copy() if over_desc[0] is not None: over_state.font = over_desc[0] over_state.fontsize *= over_desc[2] over = Accent(over_desc[1], over_state) under_state = state.copy() if under_desc[0] is not None: under_state.font = under_desc[0] under_state.fontsize *= under_desc[2] under = Char(under_desc[1], under_state) width = max(over.width, under.width) over_centered = HCentered([over]) over_centered.hpack(width, 'exactly') under_centered = HCentered([under]) under_centered.hpack(width, 'exactly') return Vlist([ over_centered, Vbox(0., thickness * space), under_centered ]) _accent_map = { r'hat' : r'\circumflexaccent', r'breve' : r'\combiningbreve', r'bar' : r'\combiningoverline', r'grave' : r'\combininggraveaccent', r'acute' : r'\combiningacuteaccent', r'ddot' : r'\combiningdiaeresis', r'tilde' : r'\combiningtilde', r'dot' : r'\combiningdotabove', r'vec' : r'\combiningrightarrowabove', r'"' : r'\combiningdiaeresis', r"`" : r'\combininggraveaccent', r"'" : r'\combiningacuteaccent', r'~' : r'\combiningtilde', r'.' : r'\combiningdotabove', r'^' : r'\circumflexaccent', r'overrightarrow' : r'\rightarrow', r'overleftarrow' : r'\leftarrow' } _wide_accents = set(r"widehat widetilde widebar".split()) def accent(self, s, loc, toks): assert(len(toks)==1) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) if len(toks[0]) != 2: raise ParseFatalException("Error parsing accent") accent, sym = toks[0] if accent in self._wide_accents: accent = AutoWidthChar( '\\' + accent, sym.width, state, char_class=Accent) else: accent = Accent(self._accent_map[accent], state) centered = HCentered([accent]) centered.hpack(sym.width, 'exactly') return Vlist([ centered, Vbox(0., thickness * 2.0), Hlist([sym]) ]) def function(self, s, loc, toks): #~ print "function", toks self.push_state() state = self.get_state() state.font = 'rm' hlist = Hlist([Char(c, state) for c in toks[0]]) self.pop_state() hlist.function_name = toks[0] return hlist def start_group(self, s, loc, toks): self.push_state() # Deal with LaTeX-style font tokens if len(toks): self.get_state().font = toks[0][4:] return [] def group(self, s, loc, toks): grp = Hlist(toks[0]) return [grp] def end_group(self, s, loc, toks): self.pop_state() return [] def font(self, s, loc, toks): assert(len(toks)==1) name = toks[0] self.get_state().font = name return [] def is_overunder(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._overunder_symbols elif isinstance(nucleus, Hlist) and hasattr(nucleus, 'function_name'): return nucleus.function_name in self._overunder_functions return False def is_dropsub(self, nucleus): if isinstance(nucleus, Char): return nucleus.c in self._dropsub_symbols return False def is_slanted(self, nucleus): if isinstance(nucleus, Char): return nucleus.is_slanted() return False def subsuperscript(self, s, loc, toks): assert(len(toks)==1) # print 'subsuperscript', toks nucleus = None sub = None super = None if len(toks[0]) == 1: return toks[0].asList() elif len(toks[0]) == 2: op, next = toks[0] nucleus = Hbox(0.0) if op == '_': sub = next else: super = next elif len(toks[0]) == 3: nucleus, op, next = toks[0] if op == '_': sub = next else: super = next elif len(toks[0]) == 5: nucleus, op1, next1, op2, next2 = toks[0] if op1 == op2: if op1 == '_': raise ParseFatalException("Double subscript") else: raise ParseFatalException("Double superscript") if op1 == '_': sub = next1 super = next2 else: super = next1 sub = next2 else: raise ParseFatalException( "Subscript/superscript sequence is too long. " "Use braces { } to remove ambiguity.") state = self.get_state() rule_thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) xHeight = state.font_output.get_xheight( state.font, state.fontsize, state.dpi) # Handle over/under symbols, such as sum or integral if self.is_overunder(nucleus): vlist = [] shift = 0. width = nucleus.width if super is not None: super.shrink() width = max(width, super.width) if sub is not None: sub.shrink() width = max(width, sub.width) if super is not None: hlist = HCentered([super]) hlist.hpack(width, 'exactly') vlist.extend([hlist, Kern(rule_thickness * 3.0)]) hlist = HCentered([nucleus]) hlist.hpack(width, 'exactly') vlist.append(hlist) if sub is not None: hlist = HCentered([sub]) hlist.hpack(width, 'exactly') vlist.extend([Kern(rule_thickness * 3.0), hlist]) shift = hlist.height vlist = Vlist(vlist) vlist.shift_amount = shift + nucleus.depth result = Hlist([vlist]) return [result] # Handle regular sub/superscripts shift_up = nucleus.height - SUBDROP * xHeight if self.is_dropsub(nucleus): shift_down = nucleus.depth + SUBDROP * xHeight else: shift_down = SUBDROP * xHeight if super is None: # node757 sub.shrink() x = Hlist([sub]) # x.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1) clr = x.height - (abs(xHeight * 4.0) / 5.0) shift_down = max(shift_down, clr) x.shift_amount = shift_down else: super.shrink() x = Hlist([super, Kern(SCRIPT_SPACE * xHeight)]) # x.width += SCRIPT_SPACE * xHeight clr = SUP1 * xHeight shift_up = max(shift_up, clr) clr = x.depth + (abs(xHeight) / 4.0) shift_up = max(shift_up, clr) if sub is None: x.shift_amount = -shift_up else: # Both sub and superscript sub.shrink() y = Hlist([sub]) # y.width += SCRIPT_SPACE * xHeight shift_down = max(shift_down, SUB1 * xHeight) clr = (2.0 * rule_thickness - ((shift_up - x.depth) - (y.height - shift_down))) if clr > 0.: shift_up += clr shift_down += clr if self.is_slanted(nucleus): x.shift_amount = DELTA * (shift_up + shift_down) x = Vlist([x, Kern((shift_up - x.depth) - (y.height - shift_down)), y]) x.shift_amount = shift_down result = Hlist([nucleus, x]) return [result] def _genfrac(self, ldelim, rdelim, rule, style, num, den): state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) rule = float(rule) num.shrink() den.shrink() cnum = HCentered([num]) cden = HCentered([den]) width = max(num.width, den.width) cnum.hpack(width, 'exactly') cden.hpack(width, 'exactly') vlist = Vlist([cnum, # numerator Vbox(0, thickness * 2.0), # space Hrule(state, rule), # rule Vbox(0, thickness * 2.0), # space cden # denominator ]) # Shift so the fraction line sits in the middle of the # equals sign metrics = state.font_output.get_metrics( state.font, rcParams['mathtext.default'], '=', state.fontsize, state.dpi) shift = (cden.height - ((metrics.ymax + metrics.ymin) / 2 - thickness * 3.0)) vlist.shift_amount = shift result = [Hlist([vlist, Hbox(thickness * 2.)])] if ldelim or rdelim: if ldelim == '': ldelim = '.' if rdelim == '': rdelim = '.' elif rdelim == r'\}': rdelim = '}' return self._auto_sized_delimiter(ldelim, result, rdelim) return result def genfrac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==6) return self._genfrac(*tuple(toks[0])) def frac(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) num, den = toks[0] return self._genfrac('', '', thickness, '', num, den) def stackrel(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) num, den = toks[0] return self._genfrac('', '', 0.0, '', num, den) def binom(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==2) num, den = toks[0] return self._genfrac('(', ')', 0.0, '', num, den) def sqrt(self, s, loc, toks): #~ print "sqrt", toks root, body = toks[0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) # Determine the height of the body, and add a little extra to # the height so it doesn't seem cramped height = body.height - body.shift_amount + thickness * 5.0 depth = body.depth + body.shift_amount check = AutoHeightChar(r'\__sqrt__', height, depth, state, always=True) height = check.height - check.shift_amount depth = check.depth + check.shift_amount # Put a little extra space to the left and right of the body padded_body = Hlist([Hbox(thickness * 2.0), body, Hbox(thickness * 2.0)]) rightside = Vlist([Hrule(state), Fill(), padded_body]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), depth, 'exactly') # Add the root and shift it upward so it is above the tick. # The value of 0.6 is a hard-coded hack ;) if root is None: root = Box(check.width * 0.5, 0., 0.) else: root = Hlist([Char(x, state) for x in root]) root.shrink() root.shrink() root_vlist = Vlist([Hlist([root])]) root_vlist.shift_amount = -height * 0.6 hlist = Hlist([root_vlist, # Root # Negative kerning to put root over tick Kern(-check.width * 0.5), check, # Check rightside]) # Body return [hlist] def overline(self, s, loc, toks): assert(len(toks)==1) assert(len(toks[0])==1) body = toks[0][0] state = self.get_state() thickness = state.font_output.get_underline_thickness( state.font, state.fontsize, state.dpi) height = body.height - body.shift_amount + thickness * 3.0 depth = body.depth + body.shift_amount # Place overline above body rightside = Vlist([Hrule(state), Fill(), Hlist([body])]) # Stretch the glue between the hrule and the body rightside.vpack(height + (state.fontsize * state.dpi) / (100.0 * 12.0), depth, 'exactly') hlist = Hlist([rightside]) return [hlist] def _auto_sized_delimiter(self, front, middle, back): state = self.get_state() height = max([x.height for x in middle]) depth = max([x.depth for x in middle]) parts = [] # \left. and \right. aren't supposed to produce any symbols if front != '.': parts.append(AutoHeightChar(front, height, depth, state)) parts.extend(middle) if back != '.': parts.append(AutoHeightChar(back, height, depth, state)) hlist = Hlist(parts) return hlist def auto_sized_delimiter(self, s, loc, toks): #~ print "auto_sized_delimiter", toks front, middle, back = toks return self._auto_sized_delimiter(front, middle.asList(), back) ### ############################################################################## # MAIN class MathTextParser(object): _parser = None _backend_mapping = { 'bitmap': MathtextBackendBitmap, 'agg' : MathtextBackendAgg, 'ps' : MathtextBackendPs, 'pdf' : MathtextBackendPdf, 'svg' : MathtextBackendSvg, 'path' : MathtextBackendPath, 'cairo' : MathtextBackendCairo, 'macosx': MathtextBackendAgg, } _font_type_mapping = { 'cm' : BakomaFonts, 'stix' : StixFonts, 'stixsans' : StixSansFonts, 'custom' : UnicodeFonts } def __init__(self, output): """ Create a MathTextParser for the given backend *output*. """ self._output = output.lower() self._cache = maxdict(50) def parse(self, s, dpi = 72, prop = None): """ Parse the given math expression *s* at the given *dpi*. If *prop* is provided, it is a :class:`~matplotlib.font_manager.FontProperties` object specifying the "default" font to use in the math expression, used for all non-math text. The results are cached, so multiple calls to :meth:`parse` with the same expression should be fast. """ if prop is None: prop = FontProperties() cacheKey = (s, dpi, hash(prop)) result = self._cache.get(cacheKey) if result is not None: return result if self._output == 'ps' and rcParams['ps.useafm']: font_output = StandardPsFonts(prop) else: backend = self._backend_mapping[self._output]() fontset = rcParams['mathtext.fontset'] fontset_class = self._font_type_mapping.get(fontset.lower()) if fontset_class is not None: font_output = fontset_class(prop, backend) else: raise ValueError( "mathtext.fontset must be either 'cm', 'stix', " "'stixsans', or 'custom'") fontsize = prop.get_size_in_points() # This is a class variable so we don't rebuild the parser # with each request. if self._parser is None: self.__class__._parser = Parser() box = self._parser.parse(s, font_output, fontsize, dpi) font_output.set_canvas_size(box.width, box.height, box.depth) result = font_output.get_results(box) self._cache[cacheKey] = result # Free up the transient data structures self._parser.clear() # Fix cyclical references font_output.destroy() font_output.mathtext_backend.fonts_object = None font_output.mathtext_backend = None return result def to_mask(self, texstr, dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) x = ftimage.as_array() return x, depth def to_rgba(self, texstr, color='black', dpi=120, fontsize=14): """ *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* Any matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns a tuple (*array*, *depth*) - *array* is an NxM uint8 alpha ubyte mask array of rasterized tex. - depth is the offset of the baseline from the bottom of the image in pixels. """ x, depth = self.to_mask(texstr, dpi=dpi, fontsize=fontsize) r, g, b = mcolors.colorConverter.to_rgb(color) RGBA = np.zeros((x.shape[0], x.shape[1], 4), dtype=np.uint8) RGBA[:,:,0] = int(255*r) RGBA[:,:,1] = int(255*g) RGBA[:,:,2] = int(255*b) RGBA[:,:,3] = x return RGBA, depth def to_png(self, filename, texstr, color='black', dpi=120, fontsize=14): """ Writes a tex expression to a PNG file. Returns the offset of the baseline from the bottom of the image in pixels. *filename* A writable filename or fileobject *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *color* A valid matplotlib color argument *dpi* The dots-per-inch to render the text *fontsize* The font size in points Returns the offset of the baseline from the bottom of the image in pixels. """ rgba, depth = self.to_rgba(texstr, color=color, dpi=dpi, fontsize=fontsize) numrows, numcols, tmp = rgba.shape _png.write_png(rgba.tostring(), numcols, numrows, filename) return depth def get_depth(self, texstr, dpi=120, fontsize=14): """ Returns the offset of the baseline from the bottom of the image in pixels. *texstr* A valid mathtext string, eg r'IQ: $\sigma_i=15$' *dpi* The dots-per-inch to render the text *fontsize* The font size in points """ assert(self._output=="bitmap") prop = FontProperties(size=fontsize) ftimage, depth = self.parse(texstr, dpi=dpi, prop=prop) return depth def math_to_image(s, filename_or_obj, prop=None, dpi=None, format=None): """ Given a math expression, renders it in a closely-clipped bounding box to an image file. *s* A math expression. The math portion should be enclosed in dollar signs. *filename_or_obj* A filepath or writable file-like object to write the image data to. *prop* If provided, a FontProperties() object describing the size and style of the text. *dpi* Override the output dpi, otherwise use the default associated with the output format. *format* The output format, eg. 'svg', 'pdf', 'ps' or 'png'. If not provided, will be deduced from the filename. """ from matplotlib import figure # backend_agg supports all of the core output formats from matplotlib.backends import backend_agg if prop is None: prop = FontProperties() parser = MathTextParser('path') width, height, depth, _, _ = parser.parse(s, dpi=72, prop=prop) fig = figure.Figure(figsize=(width / 72.0, height / 72.0)) fig.text(0, depth/height, s, fontproperties=prop) backend_agg.FigureCanvasAgg(fig) fig.savefig(filename_or_obj, dpi=dpi, format=format) return depth
gpl-2.0
qsnake/gpaw
gpaw/atom/aeatom.py
1
21867
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys from math import pi, log import numpy as np from scipy.special import gamma from numpy.linalg import eigh from scipy.interpolate import splrep, splev from ase.data import atomic_numbers, atomic_names, chemical_symbols from scipy.integrate import odeint import ase.units as units from ase.utils import devnull from gpaw.atom.configurations import configurations from gpaw.xc import XC from gpaw.utilities.progressbar import ProgressBar # Velocity of light in atomic units: c = 2 * units._hplanck / (units._mu0 * units._c * units._e**2) class GridDescriptor: def __init__(self, r1, rN=50.0, N=1000): """Grid descriptor for radial grid. The radial grid is:: a g r(g) = -------, g = 0, 1, ..., N - 1 1 - b g so that r(0)=0, r(1)=r1 and r(N)=rN.""" self.N = N self.a = (1 - 1.0 / N) / (1.0 / r1 - 1.0 / rN) self.b = 1.0 - self.a / r1 g_g = np.arange(N) self.r_g = self.a * g_g / (1 - self.b * g_g) self.dr_g = (self.b * self.r_g + self.a)**2 / self.a self.dv_g = 4 * pi * self.r_g**2 * self.dr_g def get_index(self, r): return int(1 / (self.b + self.a / r) + 0.5) def zeros(self, x=()): if isinstance(x, int): x = (x,) return np.zeros(x + (self.N,)) def empty(self, x=()): if isinstance(x, int): x = (x,) return np.zeros(x + (self.N,)) def integrate(self, a_xg, n=0): assert n > -2 return np.dot(a_xg[..., 1:], (self.r_g**(2 + n) * self.dr_g)[1:]) * (4 * pi) def derivative(self, n_g, dndr_g): """Finite-difference derivative of radial function.""" dndr_g[0] = n_g[1] - n_g[0] dndr_g[1:-1] = 0.5 * (n_g[2:] - n_g[:-2]) dndr_g[-1] = n_g[-1] - n_g[-2] dndr_g /= self.dr_g def derivative2(self, a_g, b_g): """Finite-difference derivative of radial function. For an infinitely dense grid, this method would be identical to the `derivative` method.""" c_g = a_g / self.dr_g b_g[0] = 0.5 * c_g[1] + c_g[0] b_g[1] = 0.5 * c_g[2] - c_g[0] b_g[1:-1] = 0.5 * (c_g[2:] - c_g[:-2]) b_g[-2] = c_g[-1] - 0.5 * c_g[-3] b_g[-1] = -c_g[-1] - 0.5 * c_g[-2] def poisson(self, n_g): a_g = -4 * pi * n_g * self.r_g * self.dr_g A_g = np.add.accumulate(a_g) vr_g = self.zeros() vr_g[1:] = A_g[:-1] + 0.5 * a_g[1:] vr_g -= A_g[-1] vr_g *= self.r_g a_g *= self.r_g A_g = np.add.accumulate(a_g) vr_g[1:] -= A_g[:-1] + 0.5 * a_g[1:] return vr_g def plot(self, a_g, n=0, rc=4.0, show=False): import matplotlib.pyplot as plt plt.plot(self.r_g, a_g * self.r_g**n) plt.axis(xmax=rc) if show: plt.show() class GaussianBasis: def __init__(self, l, alpha_B, gd, eps=1.0e-7): """Guassian basis set for spherically symmetric atom. l: int Angular momentum quantum number. alpha_B: ndarray Exponents. gd: GridDescriptor Grid descriptor. eps: float Cutoff for eigenvalues of overlap matrix.""" self.l = l self.alpha_B = alpha_B self.gd = gd A_BB = np.add.outer(alpha_B, alpha_B) M_BB = np.multiply.outer(alpha_B, alpha_B) # Overlap matrix: S_BB = (2 * M_BB**0.5 / A_BB)**(l + 1.5) # Kinetic energy matrix: T_BB = 2**(l + 2.5) * M_BB**(0.5 * l + 0.75) / gamma(l + 1.5) * ( gamma(l + 2.5) * M_BB / A_BB**(l + 2.5) - 0.5 * (l + 1) * gamma(l + 1.5) / A_BB**(l + 0.5) + 0.25 * (l + 1) * (2 * l + 1) * gamma(l + 0.5) / A_BB**(l + 0.5)) # Derivative matrix: D_BB = 2**(l + 2.5) * M_BB**(0.5 * l + 0.75) / gamma(l + 1.5) * ( 0.5 * (l + 1) * gamma(l + 1) / A_BB**(l + 1) - gamma(l + 2) * alpha_B / A_BB**(l + 2)) # 1/r matrix: K_BB = 2**(l + 2.5) * M_BB**(0.5 * l + 0.75) / gamma(l + 1.5) * ( 0.5 * gamma(l + 1) / A_BB**(l + 1)) # Find set of linearly independent functions. # We have len(alpha_B) gaussians (index B) and self.nbasis # linearly independent functions (index b). s_B, U_BB = eigh(S_BB) self.nbasis = int((s_B > eps).sum()) Q_Bb = np.dot(U_BB[:, -self.nbasis:], np.diag(s_B[-self.nbasis:]**-0.5)) self.T_bb = np.dot(np.dot(Q_Bb.T, T_BB), Q_Bb) self.D_bb = np.dot(np.dot(Q_Bb.T, D_BB), Q_Bb) self.K_bb = np.dot(np.dot(Q_Bb.T, K_BB), Q_Bb) r_g = gd.r_g # Avoid errors in debug mode from division by zero: old_settings = np.seterr(divide='ignore') self.basis_bg = (np.dot( Q_Bb.T, (2 * (2 * alpha_B[:, np.newaxis])**(l + 1.5) / gamma(l + 1.5))**0.5 * np.exp(-np.multiply.outer(alpha_B, r_g**2))) * r_g**l) np.seterr(**old_settings) def __len__(self): return self.nbasis def expand(self, C_xb): return np.dot(C_xb, self.basis_bg) def calculate_potential_matrix(self, vr_g): vr2dr_g = vr_g * self.gd.r_g * self.gd.dr_g V_bb = np.inner(self.basis_bg[:, 1:], self.basis_bg[:, 1:] * vr2dr_g[1:]) return V_bb class Channel: def __init__(self, l, s, f_n, basis): self.l = l self.s = s self.basis = basis self.C_nb = None # eigenvectors self.e_n = None # eigenvalues self.f_n = np.array(f_n, dtype=float) # occupation numbers self.name = 'spdf'[l] def solve(self, vr_g): """Diagonalize Schrödinger equation in basis set.""" H_bb = self.basis.calculate_potential_matrix(vr_g) H_bb += self.basis.T_bb self.e_n, C_bn = eigh(H_bb) self.C_nb = C_bn.T def calculate_density(self, n=None): """Calculate density.""" if n is None: n_g = 0.0 for n, f in enumerate(self.f_n): n_g += f * self.calculate_density(n) else: n_g = self.basis.expand(self.C_nb[n])**2 / (4 * pi) return n_g def get_eigenvalue_sum(self): f_n = self.f_n return np.dot(f_n, self.e_n[:len(f_n)]) class DiracChannel(Channel): def __init__(self, k, f_n, basis): l = (abs(2 * k + 1) - 1) // 2 Channel.__init__(self, l, 0, f_n, basis) self.k = k self.j = abs(k) - 0.5 self.c_nb = None # eigenvectors (small component) self.name += '(%d/2)' % (2 * self.j) def solve(self, vr_g): """Solve Dirac equation in basis set.""" nb = len(self.basis) V_bb = self.basis.calculate_potential_matrix(vr_g) H_bb = np.zeros((2 * nb, 2 * nb)) H_bb[:nb, :nb] = V_bb H_bb[nb:, nb:] = V_bb - 2 * c**2 * np.eye(nb) H_bb[nb:, :nb] = -c * (-self.basis.D_bb.T + self.k * self.basis.K_bb) e_n, C_bn = eigh(H_bb) if self.k < 0: n0 = nb else: n0 = nb + 1 self.e_n = e_n[n0:].copy() self.C_nb = C_bn[:nb, n0:].T.copy() # large component self.c_nb = C_bn[nb:, n0:].T.copy() # small component def calculate_density(self, n=None): """Calculate density.""" if n is None: n_g = Channel.calculate_density(self) else: n_g = (self.basis.expand(self.C_nb[n])**2 + self.basis.expand(self.c_nb[n])**2) / (4 * pi) if self.basis.l < 0: n_g[0] = n_g[1] return n_g class AllElectronAtom: def __init__(self, symbol, xc='LDA', spinpol=False, dirac=False, log=sys.stdout): """All-electron calculation for spherically symmetric atom. symbol: str (or int) Chemical symbol (or atomic number). xc: str Name of XC-functional. spinpol: bool If true, do spin-polarized calculation. Default is spin-paired. dirac: bool Solve Dirac equation instead of Schrödinger equation. log: stream Text output.""" if isinstance(symbol, int): symbol = chemical_symbols[symbol] self.symbol = symbol self.Z = atomic_numbers[symbol] self.nspins = 1 + int(bool(spinpol)) self.dirac = bool(dirac) if isinstance(xc, str): self.xc = XC(xc) else: self.xc = xc if log is None: log = devnull self.fd = log self.vr_sg = None # potential * r self.n_sg = 0.0 # density self.gd = None # radial grid descriptor # Energies: self.ekin = None self.eeig = None self.eH = None self.eZ = None self.channels = None self.initialize_configuration() self.log('Z: ', self.Z) self.log('Name: ', atomic_names[self.Z]) self.log('Symbol: ', symbol) self.log('XC-functional: ', self.xc.name) self.log('Equation: ', ['Schrödinger', 'Dirac'][self.dirac]) def log(self, *args, **kwargs): self.fd.write(kwargs.get('sep', ' ').join([str(arg) for arg in args]) + kwargs.get('end', '\n')) def initialize_configuration(self): self.f_lsn = {} for n, l, f, e in configurations[self.symbol][1]: if l not in self.f_lsn: self.f_lsn[l] = [[] for s in range(self.nspins)] if self.nspins == 1: self.f_lsn[l][0].append(f) else: # Use Hund's rule: f0 = min(f, 2 * l + 1) self.f_lsn[l][0].append(f0) self.f_lsn[l][1].append(f - f0) def add(self, n, l, df=+1, s=None): """Add (remove) electrons.""" if s is None: if self.nspins == 1: s = 0 else: self.add(n, l, 0.5 * df, 0) self.add(n, l, 0.5 * df, 1) return if l not in self.f_lsn: self.f_lsn[l] = [[] for x in range(self.nspins)] f_n = self.f_lsn[l][s] if len(f_n) < n - l: f_n.extend([0] * (n - l - len(f_n))) f_n[n - l - 1] += df def initialize(self, ngpts=1000, rcut=50.0, alpha1=0.01, alpha2=None, ngauss=50, eps=1.0e-7): """Initialize basis sets and radial grid. ngpts: int Number of grid points for radial grid. rcut: float Cutoff for radial grid. alpha1: float Smallest exponent for gaussian. alpha2: float Largest exponent for gaussian. ngauss: int Number of gaussians. eps: float Cutoff for eigenvalues of overlap matrix.""" if alpha2 is None: alpha2 = 50.0 * self.Z**2 self.gd = GridDescriptor(r1=1 / alpha2**0.5 / 50, rN=rcut, N=ngpts) self.log('Grid points: %d (%.5f, %.5f, %.5f, ..., %.3f, %.3f)' % ((self.gd.N,) + tuple(self.gd.r_g[[0, 1, 2, -2, -1]]))) # Distribute exponents between alpha1 and alpha2: alpha_B = alpha1 * (alpha2 / alpha1)**np.linspace(0, 1, ngauss) self.log('Exponents: %d (%.3f, %.3f, ..., %.3f, %.3f)' % ((ngauss,) + tuple(alpha_B[[0, 1, -2, -1]]))) # Maximum l value: lmax = max(self.f_lsn.keys()) self.channels = [] nb_l = [] if not self.dirac: for l in range(lmax + 1): basis = GaussianBasis(l, alpha_B, self.gd, eps) nb_l.append(len(basis)) for s in range(self.nspins): self.channels.append(Channel(l, s, self.f_lsn[l][s], basis)) else: for K in range(1, lmax + 2): leff = (K**2 - (self.Z / c)**2)**0.5 - 1 basis = GaussianBasis(leff, alpha_B, self.gd, eps) nb_l.append(len(basis)) for k, l in [(-K, K - 1), (K, K)]: if l > lmax: continue f_n = self.f_lsn[l][0] j = abs(k) - 0.5 f_n = (2 * j + 1) / (4 * l + 2) * np.array(f_n) self.channels.append(DiracChannel(k, f_n, basis)) self.log('Basis functions: %s (%s)' % (', '.join([str(nb) for nb in nb_l]), ', '.join('spdf'[:lmax + 1]))) self.vr_sg = self.gd.zeros(self.nspins) self.vr_sg[:] = -self.Z def solve(self): """Diagonalize Schrödinger equation.""" self.eeig = 0.0 for channel in self.channels: channel.solve(self.vr_sg[channel.s]) self.eeig += channel.get_eigenvalue_sum() def calculate_density(self): """Calculate elctron density and kinetic energy.""" self.n_sg = self.gd.zeros(self.nspins) for channel in self.channels: self.n_sg[channel.s] += channel.calculate_density() def calculate_electrostatic_potential(self): """Calculate electrostatic potential and energy.""" n_g = self.n_sg.sum(0) self.vHr_g = self.gd.poisson(n_g) self.eH = 0.5 * self.gd.integrate(n_g * self.vHr_g, -1) self.eZ = -self.Z * self.gd.integrate(n_g, -1) def calculate_xc_potential(self): self.vxc_sg = self.gd.zeros(self.nspins) self.exc = self.xc.calculate_spherical(self.gd, self.n_sg, self.vxc_sg) def step(self): self.solve() self.calculate_density() self.calculate_electrostatic_potential() self.calculate_xc_potential() self.vr_sg = self.vxc_sg * self.gd.r_g self.vr_sg += self.vHr_g self.vr_sg -= self.Z self.ekin = (self.eeig - self.gd.integrate((self.vr_sg * self.n_sg).sum(0), -1)) def run(self, mix=0.4, maxiter=117, dnmax=1e-9): if self.channels is None: self.initialize() dn = self.Z pb = ProgressBar(log(dnmax / dn), 0, 53, self.fd) self.log() for iter in range(maxiter): if iter > 1: self.vr_sg *= mix self.vr_sg += (1 - mix) * vr_old_sg dn = self.gd.integrate(abs(self.n_sg - n_old_sg).sum(0)) pb(log(dnmax / dn)) if dn <= dnmax: break vr_old_sg = self.vr_sg n_old_sg = self.n_sg self.step() self.summary() if dn > dnmax: raise RuntimeError('Did not converge!') def summary(self): self.write_states() self.write_energies() def write_states(self): self.log('\n state occupation eigenvalue <r>') if self.dirac: self.log(' nl(j) [Hartree] [eV] [Bohr]') else: self.log(' nl [Hartree] [eV] [Bohr]') self.log('=====================================================') states = [] for ch in self.channels: for n, f in enumerate(ch.f_n): states.append((ch.e_n[n], ch, n)) states.sort() for e, ch, n in states: name = str(n + ch.l + 1) + ch.name if self.nspins == 2: name += '(%s)' % '+-'[ch.s] n_g = ch.calculate_density(n) rave = self.gd.integrate(n_g, 1) self.log(' %-7s %6.3f %13.6f %13.5f %6.3f' % (name, ch.f_n[n], e, e * units.Hartree, rave)) self.log('=====================================================') def write_energies(self): self.log('\nEnergies: [Hartree] [eV]') self.log('============================================') for text, e in [('kinetic ', self.ekin), ('coulomb (e-e)', self.eH), ('coulomb (e-n)', self.eZ), ('xc ', self.exc), ('total ', self.ekin + self.eH + self.eZ + self.exc)]: self.log(' %s %+13.6f %+13.5f' % (text, e, units.Hartree * e)) self.log('============================================') def get_channel(self, l=None, s=0, k=None): if self.dirac: for channel in self.channels: if channel.k == k: return channel else: for channel in self.channels: if channel.l == l and channel.s == s: return channel raise ValueError def get_orbital(self, n, l=None, s=0, k=None): channel = self.get_channel(l, s, k) return channel.basis.expand(channel.C_nb[n]) def plot_wave_functions(self, rc=4.0): import matplotlib.pyplot as plt colors = 'krgbycm' for ch in self.channels: for n in range(len(ch.f_n)): fr_g = ch.basis.expand(ch.C_nb[n]) * self.gd.r_g name = str(n + ch.l + 1) + ch.name lw = 2 if self.nspins == 2: name += '(%s)' % '+-'[ch.s] if ch.s == 1: lw = 1 if self.dirac and ch.k > 0: lw = 1 ls = ['-', '--', '-.', ':'][ch.l] n_g = ch.calculate_density(n) rave = self.gd.integrate(n_g, 1) gave = self.gd.get_index(rave) fr_g *= cmp(fr_g[gave], 0) plt.plot(self.gd.r_g, fr_g, ls=ls, lw=lw, color=colors[n + ch.l], label=name) plt.legend(loc='best') plt.axis(xmax=rc) plt.show() def logarithmic_derivative(self, l, energies, rcut): vr = splrep(self.gd.r_g, self.vr_sg[0]) def v(r): return splev(r, vr) / r def f(y, r, e): if r == 0: return [y[1], -2.0] return [y[1], 2 * (v(r) - e) * y[0]] logderivs = [] for e in energies: u, dudr = odeint(f, [0, 1], [0, rcut], (e,))[1, :] logderivs.append(dudr / u) return logderivs def build_parser(): from optparse import OptionParser parser = OptionParser(usage='%prog [options] element', version='%prog 0.1') parser.add_option('-f', '--xc-functional', type='string', default='LDA', help='Exchange-Correlation functional ' + '(default value LDA)', metavar='<XC>') parser.add_option('--add', metavar='states', help='Add electron(s). Use "1s0.5a" to add 0.5 1s ' + 'electrons to the alpha-spin channel (use "b" for ' + 'beta-spin). The number of electrons defaults to ' + 'one. Examples: "1s", "2p2b", "4f0.1b,3d-0.1a".') parser.add_option('-s', '--spin-polarized', action='store_true') parser.add_option('-d', '--dirac', action='store_true') parser.add_option('-p', '--plot', action='store_true') parser.add_option('-e', '--exponents', help='Exponents a: exp(-a*r^2). Use "-e 0.1:20.0:30" ' + 'to get 30 exponents from 0.1 to 20.0.') parser.add_option('-l', '--logarithmic-derivatives', help='-l 1.3,spdf,-2,2,100') return parser def main(): parser = build_parser() opt, args = parser.parse_args() if len(args) != 1: parser.error('Incorrect number of arguments') symbol = args[0] nlfs = [] if opt.add: for x in opt.add.split(','): n = int(x[0]) l = 'spdfg'.find(x[1]) x = x[2:] if x and x[-1] in 'ab': s = int(x[-1] == 'b') opt.spin_polarized = True x = x[:-1] else: s = None if x: f = float(x) else: f = 1 nlfs.append((n, l, f, s)) aea = AllElectronAtom(symbol, xc=opt.xc_functional, spinpol=opt.spin_polarized, dirac=opt.dirac) if opt.exponents: parts = opt.exponents.split(':') kwargs = {} kwargs['alpha1'] = float(parts[0]) if len(parts) > 1: kwargs['alpha2'] = float(parts[1]) if len(parts) > 2: kwargs['ngauss'] = int(parts[2]) aea.initialize(**kwargs) for n, l, f, s in nlfs: aea.add(n, l, f, s) aea.run() if opt.logarithmic_derivatives: rcut, lvalues, emin, emax, npoints = \ opt.logarithmic_derivatives.split(',') rcut = float(rcut) lvalues = ['spdfg'.find(x) for x in lvalues] emin = float(emin) emax = float(emax) npoints = int(npoints) energies = np.linspace(emin, emax, npoints) import matplotlib.pyplot as plt for l in lvalues: ld = aea.logarithmic_derivative(l, energies, rcut) plt.plot(energies, ld) plt.show() if opt.plot: aea.plot_wave_functions() if __name__ == '__main__': main()
gpl-3.0
gameduell/dask
dask/dataframe/io/tests/test_demo.py
3
1460
import dask.dataframe as dd import pandas.util.testing as tm import pandas as pd def test_make_timeseries(): df = dd.demo.make_timeseries('2000', '2015', {'A': float, 'B': int, 'C': str}, freq='2D', partition_freq='6M') assert df.divisions[0] == pd.Timestamp('2000-01-31', offset='6M') assert df.divisions[-1] == pd.Timestamp('2014-07-31', offset='6M') tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C'])) assert df['A'].head().dtype == float assert df['B'].head().dtype == int assert df['C'].head().dtype == object assert df.divisions == tuple(pd.DatetimeIndex(start='2000', end='2015', freq='6M')) tm.assert_frame_equal(df.head(), df.head()) a = dd.demo.make_timeseries('2000', '2015', {'A': float, 'B': int, 'C': str}, freq='2D', partition_freq='6M', seed=123) b = dd.demo.make_timeseries('2000', '2015', {'A': float, 'B': int, 'C': str}, freq='2D', partition_freq='6M', seed=123) tm.assert_frame_equal(a.head(), b.head()) def test_no_overlaps(): df = dd.demo.make_timeseries('2000', '2001', {'A': float}, freq='3H', partition_freq='3M') assert all(df.get_partition(i).index.max().compute() < df.get_partition(i + 1).index.min().compute() for i in range(df.npartitions - 2))
bsd-3-clause
ctogle/dilapidator
src/dilap/BROKEN/structures/structgraph.py
1
7649
import dilap.core.base as db import dilap.core.vector as dpv import dilap.core.tools as dpr import dilap.core.graph as dgr import dilap.graph.twomanifold as tmg import dilap.mesh.tools as dtl import dilap.mesh.pointset as dps import dilap.mesh.piecewisecomplex as pwc import dilap.structures.tools as dstl import dilap.structures.graphnode as gnd import dilap.structures.graphedge as geg import matplotlib.pyplot as plt import random as rm import math import pdb class graph(tmg.twomanifold_graph): nodeclass = gnd.node edgeclass = geg.edge # given a collection of relevant walls # produce polygons for one side of a wall def model_interior_wall(self,ekeys): pass def model_rooms(self): ww = 0.75 # THIS IS THE NOT THE RIGHT VALUE... mpolys = [] for r in self.rooms: outlines = r #bbnd = [] #for x in outlines[0]: # nd = self.nodes[self.nodes_lookup[x]] # bbnd.append(nd.p.copy()) bbnd = self.get_node_points(outlines[0]) #tbnd = [] tbnd = self.get_node_points(outlines[-1]) for x in range(len(outlines[-1])): nd = self.nodes[self.nodes_lookup[outlines[-1][x]]] tbnd[x].translate_z(nd.height) dpr.inflate(bbnd,-ww/math.sqrt(2)) dpr.inflate(tbnd,-ww/math.sqrt(2)) mpolys.append((tuple(bbnd),())) mpolys.append((tuple(tbnd),())) return mpolys def model_walls(self): mpolys = [] for e in self.edges: if e is None:continue print('lookup',e.key(),self.rooms_lookup[e.key()]) if len(self.rooms_lookup[e.key()]) == 1: #e.cut_window(3,2,1,0.5) pass '''# wh1,wh2 = e.one.height+e.one.gap,e.two.height+e.two.gap wargs = (e.one.p,e.two.p,wh1,wh2,e.width) wkwargs = {'doors':e.doors,'windows':e.windows} mpolys.extend(dstl.wall(*wargs,**wkwargs)) '''# wh1,wh2 = e.one.height+e.one.gap,e.two.height+e.two.gap wargs = (e.one.p,e.two.p,wh1,wh2,e.width) wkwargs = {'doors':e.doors,'windows':e.windows} mpolys.extend(dstl.wall(*wargs,**wkwargs)) return mpolys def model_corners(self): ww = 0.75 # THIS IS THE NOT THE RIGHT VALUE... mpolys = [] for n in self.nodes: if n is None:continue print('node',n.key(),n.ring) mpolys.extend(dstl.post(n.p,4,ww,n.height+n.gap)) return mpolys def model_roof(self): ww = 0.75 # THIS IS THE NOT THE RIGHT VALUE... mpolys = [] for r in self.rooms: bnd = [] outlines = r for nd in self.get_nodes(outlines[-1]): np = nd.p.copy().translate_z(nd.height+nd.gap) bnd.append(np) mpolys.append((tuple(bnd),())) return mpolys def model(self): mpolys = [] plc1 = dtl.box(15,15,10) #plc2 = dtl.box(5,4,4).translate(dpv.vector(4,0,0)) plc2 = dtl.box(14,14,6).translate(dpv.vector(0,0,5)) plc3 = dtl.box(12,14,6).translate(dpv.vector(0,5,5)) #plc2 = dtl.box(8,3,2).translate(dpv.vector(0,0,1)) #plc2 = dtl.icosphere(2,1) #plc2.translate(dpv.vector(0,0,5.0)) '''# print('union input') ax = dtl.plot_axes() ax = plc1.plot(ax) ax = plc2.plot(ax) plt.show() '''# #plc4 = pwc.union(plc1,plc2) plc5 = pwc.union(plc1,plc3) #plc3 = pwc.difference(plc1,plc2) #plc3 = pwc.intersection(plc1,plc2) #plc2 = dtl.box(20,12,5).translate(dpv.vector(0,10,46.5)) #plc3 = pwc.difference(plc1,plc2) print('union output') ax = plc5.plot() plt.show() '''# plc2 = dtl.box(10,10,6).translate(dpv.vector(5,0,6)) plc3 = pwc.union(plc3,plc2) print('union output') ax = dtl.plot_axes() ax = plc3.plot(ax) plt.show() '''# pys = [] for px in range(plc5.polygoncount): pys.append(plc5.get_polygon_points(px)) mpolys = pys #mpolys.extend(self.model_rooms()) #mpolys.extend(self.model_walls()) #mpolys.extend(self.model_corners()) #mpolys.extend(self.model_roof()) #mpolys = dtl.merge_polygons(mpolys) return mpolys def plot(self,ax = None): ax = dgr.graph.plot(self,ax) dtl.plot_polygon(list(self.boundary),ax) return ax def __init__(self,boundary,**kwargs): dgr.graph.__init__(self,**kwargs) self.boundary = boundary self.rooms_lookup = {} self.rooms = [] self.roomcount = 0 # given the index of a node, apply the effects of its layer def _apply_node_layer(self,ndx): nd = self.nodes[ndx] if nd is None or nd.layer == 0:return zkey = (nd.p.x,nd.p.y,nd.layer-1) below = self.nodes[self.nodes_lookup[zkey]] zoff = below.p.z + below.height + below.gap nd.p.translate_z(zoff) def _add_node(self,ndkey,**kwargs): kwargs['height'] = 8 kwargs['gap'] = 1 return dgr.graph._add_node(self,ndkey,**kwargs) # add a new edge to the graph, or return existing index def _add_edge(self,ndkey1,ndkey2,**kwargs): nex = dgr.graph._add_edge(self,ndkey1,ndkey2,**kwargs) if nex == self.edgecount-1: ekey1,ekey2 = (ndkey1,ndkey2),(ndkey2,ndkey1) self.rooms_lookup[ekey1] = [] self.rooms_lookup[ekey2] = [] return nex # delete an existing edge from the graph def _del_edge(self,ndkey1,ndkey2): dgr.graph._del_edge(self,ndkey1,ndkey2) ekey1,ekey2 = (ndkey1,ndkey2),(ndkey2,ndkey1) del self.rooms_lookup[ekey1] del self.rooms_lookup[ekey2] # find edges which bound both rooms u and v def _find_edges(self,u,v): found = [] foundkeys = [] for ekey in self.rooms_lookup: if ekey in foundkeys:continue foundkeys.append(ekey) foundkeys.append(ekey[::-1]) ering = self.rooms_lookup[ekey] if u in ering and v in ering: found.append(self.edges_lookup[ekey]) elif v == -1 and len(ering) == 1: found.append(self.edges_lookup[ekey]) return found # add door to an edge which bound both rooms u and v def _connect_rooms(self,u,v): bwn = self._find_edges(u,v) if len(bwn) == 0:print('rooms are nonadjacent...',u,v) elif len(bwn) == 1:self.edges[bwn[0]].cut_door(2,3,0.5) else: elys = [self.edges[x].layer() for x in bwn] elym = min(elys) bwn = [bwn[x] for x in range(len(bwn)) if elys[x] == elym] self.edges[bwn[0]].cut_door(3,4,0.25) def _add_room(self,rmnds): self.rooms.append(rmnds) rl,rdex = self.rooms_lookup,self.roomcount outlines = rmnds for ox in range(len(outlines)): out = outlines[ox] for x in range(len(out)): ndkey1,ndkey2 = out[x-1],out[x] nex = self._add_edge(ndkey1,ndkey2) ekey1,ekey2 = (ndkey1,ndkey2),(ndkey2,ndkey1) if not rdex in rl[ekey1]:rl[ekey1].append(rdex) if not rdex in rl[ekey2]:rl[ekey2].append(rdex) self.roomcount += 1 return rdex
mit
arianhosseini/Question-Answering
utils.py
1
12623
# -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function #import joblib import random import os import numpy def read_word_vectors(filename, embed_dim=300, labled=False, splitter=' '): import sys import gzip import math word_vecs = {} if filename.endswith('.gz'): file_object = gzip.open(filename, 'r') else: file_object = open(filename, 'r') for line_num, line in enumerate(file_object): line = line.decode('utf-8').strip() splited = line.split(splitter) word = (' '.join(splited[:-embed_dim])).strip().encode('utf-8') if labled: word = word.split(':')[1] word_vecs[word] = numpy.array(map(float, splited[-embed_dim:])) # for index, vec_val in enumerate(splited[-embed_dim:]): # word_vecs[word][index] = float(vec_val) # word_vecs[word] /= math.sqrt((word_vecs[word]**2).sum() + 1e-6) #normalizer sys.stderr.write("Vectors read from: "+filename+" \n") return word_vecs def init_embedding_table(filename='embeddings/vocab_embeddings.txt', embed_dim=300, vocab_file='squad_rare/vocab.txt'): import theano vocab = ['<DUMMY>', '<EOA>', '@placeholder', '<UNK>'] + [ w.strip().split()[0] for w in open(vocab_file) ] reverse_vocab = {w: i for i, w in enumerate(vocab)} word_vecs = read_word_vectors(filename,embed_dim) embeddings = numpy.ndarray(shape=(len(vocab), embed_dim),dtype=theano.config.floatX) count = 0 for k,v in word_vecs.iteritems(): if k.upper() in ['<DUMMY>', '<EOA>', '@placeholder', '<UNK>']: k = k.upper() # print (count) # print (reverse_vocab[k]) count += 1 embeddings[reverse_vocab[k],:] = v return embeddings def write_vocab_embeddings(input_file, vocab_file='squad_rare/vocab.txt',embed_path='embeddings', embed_dim=300): word_vecs = read_word_vectors(input_file, embed_dim=embed_dim, splitter=' ') vocab = ['<DUMMY>', '<EOA>', '@placeholder', '<UNK>'] + [ w.strip().split()[0] for w in open(vocab_file) ] vocab_embeddings = open(os.path.join(embed_path,'vocab_embeddings.txt'),'w') unk_words = 0 sigma = 0.2 mu = 0 for i,word in enumerate(vocab): if word in word_vecs: embed_string = ' '.join(map(str,word_vecs[word].tolist())) else: #sigma * np.random.randn(...) + mu rand_embed = sigma * numpy.random.randn(embed_dim) + mu embed_string = ' '.join(map(str,rand_embed.tolist())) unk_words += 1 vocab_embeddings.write(word+' '+embed_string+'\n') vocab_embeddings.close() print("unk_words: %d"%unk_words) print("file written") def generate_squad_vocab(path, vocabulary_size=30000): import json import itertools # from operator import itemgetter from nltk.probability import FreqDist d = json.load(open(path)) tokenized_sentences = [] for reading in d['data']: for paragraph in reading['paragraphs']: sentence = paragraph['context'].lower() tokenized_sentences.append(nltk.tokenize.word_tokenize(sentence)) for question in paragraph['qas']: sentence = question['question'].lower() #TODO later check whether to add answer as well or not tokenized_sentences.append(nltk.tokenize.word_tokenize(sentence)) word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print('total uniq words:', len(word_freq)) # sorted_freq = sorted(dict(word_freq).items(), key=itemgetter(1))[::-1] full_vocab = word_freq.most_common(len(word_freq)) vocab = open('vocab_full.txt','w') for w in full_vocab: vocab.write(w[0]+'\t'+str(w[1])+'\n') vocab.close() shorted_vocab = word_freq.most_common(vocabulary_size-1) vocab = open('vocab.txt','w') for w in shorted_vocab: vocab.write(w[0]+'\t'+str(w[1])+'\n') vocab.close() def add_rare_to_vocab(vocab_path='squad/vocab.txt', rare_count=100): with open(vocab_path,'r+') as vocab: content = vocab.read() vocab.seek(0,0) for i in range(rare_count): vocab.write('@rare'+str(i)+' 0\n') vocab.write(content) def add_rare(ctx, q, a_list, vocab): rare_dict = {} rares = vocab[4:104] ctx = ctx.split(' ') q = q.split(' ') a = [a.split(' ') for a in a_list] iterable = [ctx,q] + a for i, words in enumerate(iterable): for index, word in enumerate(iterable[i]): if not word in vocab or any(ord(char) not in range(128) for char in word): if i >= 2: if word in rare_dict: iterable[i][index] = rare_dict[word] # print (word +' to '+ rare_dict[word]) else: rare_can = random.choice(rares) rares.remove(rare_can) rare_dict[word] = rare_can iterable[i][index] = rare_dict[word] print (rare_dict[word]) else: if word in rare_dict: if i >= 2: iterable[i][index] = rare_dict[word] # print (word +' to '+ rare_dict[word]) else: if len(rares) == 0: return (False,'','','') rare_can = random.choice(rares) rares.remove(rare_can) rare_dict[word] = rare_can iterable[i][index] = rare_dict[word] return (True, ' '.join(iterable[0]), ' '.join(iterable[1]), [' '.join(a) for a in iterable[2:]]) def add_rare_to_squad(data_path='squad/dev-v1.0_tokenized.json',new_path='squad_rare_test', vocab_file='squad_rare/vocab.txt'): import json import itertools import os d = json.load(open(data_path)) file_name = data_path.split('/')[1] tokenized_sentences = [] vocab = ['<DUMMY>', '<EOA>', '@placeholder', '<UNK>'] + [ w.strip().split()[0] for w in open(vocab_file) ] print(vocab[4:104]) for reading in d['data']: for paragraph in reading['paragraphs']: for question in paragraph['qas']: answers = [answer['text'].strip().lower() for answer in question['answers']] status,paragraph['context'],question['question'],answers = add_rare(paragraph['context'], question['question'], answers, vocab) for i,answer in enumerate(question['answers']): question['answers'][i]['text'] = answers[i] # print(question['answers']) with open(os.path.join(new_path, file_name),'w') as outfile: json.dump(d, outfile) def add_rare_to_cnn_document(i, file_name, data_path, new_path, vocab): global bad_ctxs_count if i % 1000 == 0: print('added rare to: %d'%i) lines = [l.decode("UTF-8").rstrip('\n') for l in open(os.path.join(data_path,file_name))] status, ctx, q, a = add_rare(lines[2].lower(), lines[4].lower(), lines[6].lower(), vocab) if not status: #bad_ctxs_count += 1 print('bad_ctxs_count')#: %d'%bad_ctxs_count) else: new_file = open(os.path.join(new_path,file_name),'w') new_file.write('\n'.join(lines[0:2])+'\n') new_file.write(ctx+'\n\n') new_file.write(q+'\n\n') new_file.write(a+'\n\n') new_file.close() def add_rare_to_cnn(data_path='deepmind-qa/cnn/questions/training',new_path='deepmind-qa/cnn_rare/questions/training', vocab_file='squad_rare/vocab.txt'): import itertools vocab = ['<DUMMY>', '<EOA>', '@placeholder', '<UNK>'] + [ w.strip().split()[0] for w in open(vocab_file) ] l = [f for f in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, f))] print("number of files: "+str(len(l))) joblib.Parallel(n_jobs=-1)(joblib.delayed(add_rare_to_cnn_document)(i,file_name,data_path,new_path,vocab) for i,file_name in enumerate(l)) def unanonymise_cnn(path='cnn_questions', new_path='cnn_new_questions'): import os import re l = [f for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))] print("number of files: "+str(len(l))) for i,file_name in enumerate(l): if i % 1000 == 0: print('unanonymised: %d'%i) lines = [l.rstrip('\n') for l in open(os.path.join(path,file_name))] entity_dict = dict([(s.split(':')[0],s.split(':')[1]) for s in lines[8:]]) new_lines = [] for line in lines: # print (line) for k,v in entity_dict.items(): line = re.sub(r"%s\b" % k , v, line) # print (line) new_lines.append(line) new_file = open(os.path.join(new_path,file_name),'w') new_file.write( '\n'.join(new_lines) ) new_file.close() def compute_length_coverage(train_path='new_dev-v1.0_tokenized.json'): import json import itertools # import matplotlib.pyplot as plt untokenized = json.load(open("squad/dev-v1.0.json")) d = json.load(open(train_path)) rared = json.load(open('squad_rare/dev-v1.0_tokenized.json')) lengths = [] count = 0 total = 0 for i,reading in enumerate(d['data']): for j,paragraph in enumerate(reading['paragraphs']): context = paragraph['context'] for k,question in enumerate(paragraph['qas']): answer = question['answers'][0]['text'] q = question['question'] total += 1 if answer in context: pass else: count += 1 print ("-------") print ("C: "+context) print ("C: "+untokenized['data'][i]['paragraphs'][j]['context']) print('--') print ('Q: '+q) print('--') print ("A: "+answer) lengths.append(len(question['answers'][0]['text'].split(' '))) print (count) print(total) def compute_average_margin(path, example_count=1836975): data = open(path,'r') data = data.readlines() count = 0.0 sum_of_margins = 0.0 for i in range(example_count): count += 1.0 sum_of_margins = (float(data[i*11 + 4].strip()) - float(data[i*11 + 8].strip())) print ("count: ", count) print ("sum_of_margins: ", sum_of_margins) print ("average margin: ", sum_of_margins/count) def tokenize_data(path, new_path): import json import nltk import itertools # from operator import itemgetter from nltk.probability import FreqDist d = json.load(open(path)) tokenized_sentences = [] for reading in d['data']: for paragraph in reading['paragraphs']: context_text = paragraph['context'].lower() for question in paragraph['qas']: question['question'] = ' '.join(nltk.tokenize.word_tokenize(question['question'].lower())) for i,answer in enumerate(question['answers']): answer_start_index = context_text.find(question['answers'][i]['text'].strip().lower()) if answer_start_index == -1: answer_start_index = question['answers'][i]['answer_start'] answer_length = len(question['answers'][i]['text'].strip()) answer_text = context_text[answer_start_index:answer_start_index + answer_length].strip() context_before_answer = context_text[:answer_start_index].lower() context_after_answer = context_text[answer_start_index+answer_length:].lower() tokenized_answer = nltk.tokenize.word_tokenize(answer_text) question['answers'][i]['text'] = ' '.join(tokenized_answer) # context_list = nltk.tokenize.word_tokenize(context_befor_answer) + tokenized_answer + nltk.tokenize.word_tokenize(context_after_answer) tokenized_context = ' '.join(nltk.tokenize.word_tokenize(context_before_answer)) + \ ' '+' '.join(tokenized_answer)+' '+\ ' '.join(nltk.tokenize.word_tokenize(context_after_answer)) paragraph['context'] = tokenized_context with open(new_path,'w') as outfile: json.dump(d, outfile) def main(): tokenize_data('squad/train-v1.0.json', 'squad/train-v1.0_tokenized.json' ) if __name__ == '__main__': main()
mit
awentland90/AQ_MachineLearning_Experiments
NeuralNets/AQ_simple_nn.py
1
3767
#!/usr/bin/env python """ AQ Simple NN Description: Testing a *very* primative neural network using the Python library pyneurgen (Don Smiley) Usage: User selects 1 observed variable to conduct ML using the NN python AQ_simple_nn.py Dataset: Observed atmospheric variable at Big Bend NP during the end of August/early September 2012 TODO: A lot. """ from __future__ import division import matplotlib matplotlib.use('TkAgg') # Display plots in GUI on Mac OS X import random import matplotlib.pyplot as plt import pandas as pd from pyneurgen.neuralnet import NeuralNet # ~~~~ USER OPTIONS ~~~~ # # Path to observations CSV csv_in = "data/OBS_BBE401_subset.csv" # Pick a variable to run the model on # 'TEMPERATURE', 'RELATIVE_HUMIDITY', 'SOLAR_RADIATION', 'OZONE', # 'PRECIPITATION', 'WINDSPEED', 'WIND_DIRECTION', 'WINDSPEED_SCALAR' var = 'TEMPERATURE' # ~~~~ END USER OPTIONS ~~~~ # def parse_obs(obs_file): names = ['DATE_TIME', 'TEMPERATURE', 'RELATIVE_HUMIDITY', 'SOLAR_RADIATION', 'OZONE', 'PRECIPITATION', 'WINDSPEED', 'WIND_DIRECTION', 'WINDSPEED_SCALAR'] obs_df = pd.read_csv(csv_in, names=names, header=1) return obs_df def parse_df(df, var): obs_len = len(df[var]) factor = 1.0 / float(obs_len) obs_arr = [[i, round(df[var][i])] for i in range(obs_len)] return factor, obs_arr def population_gen(obs_arr): """ This function shuffles the values of the population and yields the items in a random fashion. """ obs_sort = [item for item in obs_arr] random.shuffle(obs_sort) for item in obs_sort: yield item def run_nn(): net = NeuralNet() net.init_layers(2, [10], 1) net.randomize_network() net.set_halt_on_extremes(True) net.set_random_constraint(0.6) net.set_learnrate(.01) net.set_all_inputs(all_inputs) net.set_all_targets(all_targets) length = len(all_inputs) learn_end_point = int(length * .8) # Set learn range net.set_learn_range(0, learn_end_point) net.set_test_range(learn_end_point + 1, length - 1) # Hidden layer activation type net.layers[1].set_activation_type('sigmoid') net.learn(epochs=10, show_epoch_results=True, random_testing=False) mse = net.test() print "test mse = ", mse test_positions = [item[0][1] * 1000.0 for item in net.get_test_data()] all_targets1 = [item[0][0] for item in net.test_targets_activations] allactuals = [item[1][0] for item in net.test_targets_activations] return net, test_positions, all_targets1, allactuals def plot_results(ozone_obs, net, test_positions, all_targets1, allactuals): # Summarize results plt.subplot(3, 1, 1) plt.plot([i[1] for i in ozone_obs]) plt.title("Population") plt.grid(True) plt.subplot(3, 1, 2) plt.plot(test_positions, all_targets1, 'bo', label='targets') plt.plot(test_positions, allactuals, 'ro', label='actuals') plt.grid(True) plt.legend(loc='lower left', numpoints=1) plt.title("Test Target Points vs Actual Points") plt.subplot(3, 1, 3) plt.plot(range(1, len(net.accum_mse) + 1, 1), net.accum_mse) plt.xlabel('Epochs') plt.ylabel('MSE') plt.grid(True) plt.title("Mean Squared Error by Epoch") plt.show() if __name__ == '__main__': obs = parse_obs(csv_in) factor, obs_arr = parse_df(obs, var) all_inputs = [] all_targets = [] # Create NN inputs for position, target in population_gen(obs_arr): pos = float(position) all_inputs.append([random.random(), pos * factor]) all_targets.append([target]) net, test_positions, all_targets1, allactuals = run_nn() plot_results(obs_arr, net, test_positions, all_targets1, allactuals)
mit
shahankhatch/scikit-learn
sklearn/linear_model/tests/test_ridge.py
68
23597
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr", "sag"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver in ("cholesky", "sag"): # Currently the only solvers to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-8).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky', 'sag']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:-1]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) cv = KFold(n_samples, 5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1]) @ignore_warnings def test_n_iter(): # Test that self.n_iter_ is correct. n_targets = 2 X, y = X_diabetes, y_diabetes y_n = np.tile(y, (n_targets, 1)).T for max_iter in range(1, 4): for solver in ('sag', 'lsqr'): reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12) reg.fit(X, y_n) assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets)) for solver in ('sparse_cg', 'svd', 'cholesky'): reg = Ridge(solver=solver, max_iter=1, tol=1e-1) reg.fit(X, y_n) assert_equal(reg.n_iter_, None)
bsd-3-clause
trappedInARibosome/go-model
go_predict_blast.py
1
3616
import argparse import multiprocessing import warnings from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.Alphabet import generic_protein from sklearn.externals import joblib from sklearn.preprocessing import normalize from lib.hmmer import hmmstats from lib.hmmer import hmmscan def main(): """ The go_predict_blast module takes an input blast TSV file containing sequences and a SVC model object and makes predictions about gene ontology based on the domain scores generated from a HMM domain model database """ sh_parse = argparse.ArgumentParser(description="Predict the classification of a tsv file from cp-blast") sh_parse.add_argument("-f", "--file", dest="infile", help="Input sequence FILE", metavar="FILE", required=True) sh_parse.add_argument("-c", "--column", dest="column", help="Sequence column NUMBER (0-index)", metavar="NUMBER", required=True, type=int) sh_parse.add_argument("-o", "--out", dest="outfile", help="Output matrix FILE", metavar="FILE", required=True) sh_parse.add_argument("-d", "--db", dest="database", help="Database FILE", metavar="FILE", required=True) sh_parse.add_argument("-m", "--model", dest="modelfile", help="Model joblib FILE", metavar="FILE", required=True) sh_parse.add_argument("--cpu", dest="cores", help="Number of processor CORES to use", metavar="COREs", type=int, default=1) sh_args = sh_parse.parse_args() go_predict_blast(sh_args.infile, sh_args.database, sh_args.modelfile, out_file=sh_args.outfile, seq_column=sh_args.column, cores=sh_args.cores) def go_predict_blast(infile_name, database_path, modelfile_name, out_file=None, seq_column=0, cores=2): svc_model_est = joblib.load(modelfile_name) hmmer_pool = multiprocessing.Pool(processes=cores, maxtasksperchild=1000) with open(infile_name, mode="rU") as in_fh: hmmer_imap = hmmer_pool.imap(PredictFromDomains(database_path, svc_model_est).hmmscan_predict, line_generator(in_fh, column=seq_column)) with open(out_file, mode="w") as out_fh: for line, prediction, proba in hmmer_imap: print(line + "\t{}\t{}".format(prediction, proba), file=out_fh) def line_generator(in_fh, column=0): for line in in_fh: line = line.strip() if line[0] == "#": continue line_tabs = line.split("\t") sequence = SeqRecord(Seq(line_tabs[column].strip(), alphabet=generic_protein), id=line_tabs[1].strip(), name=line_tabs[1].strip()) yield (sequence, line) class PredictFromDomains: def __init__(self, database, model, alpha=0.98): self.database = database self.domain_idx = hmmstats(database) self.model = model self.alpha = alpha print("Protein domain file parsed: {} domains detected".format(len(self.domain_idx))) def hmmscan_predict(self, data): sequence, line = data sparse_data, _ = hmmscan(sequence, self.database, self.domain_idx) with warnings.catch_warnings(): warnings.simplefilter("ignore") predict_proba = self.model.predict_proba(normalize(sparse_data))[0] if predict_proba[1] > self.alpha: predict = True else: predict = False return line, predict, predict_proba[1] if __name__ == '__main__': main()
mit
pascalgutjahr/Praktikum-1
Schwingung/phaselinear.py
1
1829
import numpy as np import uncertainties.unumpy as unp from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) import matplotlib.pyplot as plt import matplotlib as mpl from scipy.optimize import curve_fit plt.rcParams['figure.figsize'] = (12, 8) plt.rcParams['font.size'] = 13 plt.rcParams['lines.linewidth'] = 1 csfont = {'fontname': 'Times New Roman'} # lineare Darstellung fre, t = np.genfromtxt('tables/phase.txt', unpack=True, skip_header=2) fre *= 1000 t /= 1e6 phirad = 2 * np.pi * fre * t #Theoriekurve L = 3.53 * (10**-3) C = 5.015 * (10**-9) w = fre * 2 * np.pi R = 271.6 # fre = np.linspace(np.log(15),np.log(20)) phi = np.arctan((w * R * C)/(1 - (L * C * (w**2)))) # bis zur Resonanz plotten #plt.plot(fre/1000, phi, 'b-', label='Theoriekurve') # plt.plot(fre/1000, -phi, 'b-', label='Theoriekurve') fre_theo = np.linspace(15000, 37500, 100) phi_theo = np.arctan((2*np.pi*fre_theo * R * C)/(1 - (L * C * ((2*np.pi*fre_theo)**2)))) fre_theo2 = np.linspace(38000, 55000, 100) phi_theo2 = np.arctan((2*np.pi*fre_theo2 * R * C)/(1 - (L * C * ((2*np.pi*fre_theo2)**2))))+np.pi plt.plot(fre_theo/1000, phi_theo, 'b-', label='Theoriekurve') plt.plot(fre_theo2/1000, phi_theo2, 'b-') plt.plot(fre/1000, phirad, 'rx', label='Messwerte') plt.plot((32.196, 32.196), (0.5, 2.5), 'g--', label='untere/obere Grenzfrequenz') plt.plot((44.442, 44.442), (0.5, 2.5), 'g--') plt.plot((36.822, 36.822), (0.5, 2.5), 'k--', label='Resonanzfrequenz') # plt.xlim(30, 45) plt.yticks(np.arange(0, np.pi, np.pi/4), ['$0$','$\mathrm{\pi}/4$','$\mathrm{\pi}/2$', '$3\mathrm{\pi}/4$']) # plt.ylim(min(phirad)-5, max(phirad)+5) plt.xlabel(r'$\mathrm{\nu} \,/\, \mathrm{kHz}$') plt.ylabel(r'$\mathrm{\varphi}$') plt.legend(loc='lower right') plt.grid() plt.tight_layout() plt.savefig('Bilder/phaselinear.pdf') plt.show()
mit
mjabri/holoviews
holoviews/ipython/parser.py
1
14035
""" The magics offered by the HoloViews IPython extension are powerful and support rich, compositional specifications. To avoid the the brittle, convoluted code that results from trying to support the syntax in pure Python, this file defines suitable parsers using pyparsing that are cleaner and easier to understand. Pyparsing is required by matplotlib and will therefore be available if HoloViews is being used in conjunction with matplotlib. """ import param from itertools import groupby import pyparsing as pp from holoviews.core.options import Options from ..operation import Compositor ascii_uppercase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' allowed = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!#$%&\()*+,-./:;<=>?@\\^_`{|}~' # To generate warning in the standard param style # Parameterize Parser and use warning method once param supports # logging at the class level. class ParserWarning(param.Parameterized):pass parsewarning = ParserWarning(name='Warning') class Parser(object): """ Base class for magic line parsers, designed for forgiving parsing of keyword lists. """ # Static namespace set in __init__.py of the extension namespace = {} # If True, raise SyntaxError on eval error otherwise warn abort_on_eval_failure = False @classmethod def _strip_commas(cls, kw): "Strip out any leading/training commas from the token" kw = kw[:-1] if kw[-1]==',' else kw return kw[1:] if kw[0]==',' else kw @classmethod def collect_tokens(cls, parseresult, mode): """ Collect the tokens from a (potentially) nested parse result. """ inner = '(%s)' if mode=='parens' else '[%s]' if parseresult is None: return [] tokens = [] for token in parseresult.asList(): # If value is a tuple, the token will be a list if isinstance(token, list): tokens[-1] = tokens[-1] + (inner % ''.join(token)) else: if token.strip() == ',': continue tokens.append(cls._strip_commas(token)) return tokens @classmethod def todict(cls, parseresult, mode='parens', ns={}): """ Helper function to return dictionary given the parse results from a pyparsing.nestedExpr object (containing keywords). The ns is a dynamic namespace (typically the IPython Notebook namespace) used to update the class-level namespace. """ grouped, kwargs = [], {} tokens = cls.collect_tokens(parseresult, mode) # Group tokens without '=' and append to last token containing '=' for group in groupby(tokens, lambda el: '=' in el): (val, items) = group if val is True: grouped += list(items) if val is False: elements =list(items) # Assume anything before ) or } can be joined with commas # (e.g tuples with spaces in them) joiner=',' if any(((')' in el) or ('}' in el)) for el in elements) else '' grouped[-1] += joiner + joiner.join(elements) for keyword in grouped: # Tuple ('a', 3) becomes (,'a',3) and '(,' is never valid # Same for some of the other joining errors corrected here for (fst,snd) in [('(,', '('), ('{,', '{'), ('=,','='), (',:',':')]: keyword = keyword.replace(fst, snd) try: kwargs.update(eval('dict(%s)' % keyword, dict(cls.namespace, **ns))) except: if cls.abort_on_eval_failure: raise SyntaxError("Could not evaluate keyword: %r" % keyword) msg = "Ignoring keyword pair that fails to evaluate: '%s'" parsewarning.warning(msg % keyword) return kwargs class OptsSpec(Parser): """ An OptsSpec is a string specification that describes an OptionTree. It is a list of tree path specifications (using dotted syntax) separated by keyword lists for any of the style, plotting or normalization options. These keyword lists are denoted 'plot(..)', 'style(...)' and 'norm(...)' respectively. These three groups may be specified even more concisely using keyword lists delimited by square brackets, parentheses and braces respectively. All these sets are optional and may be supplied in any order. For instance, the following string: Image (interpolation=None) plot(show_title=False) Curve style(color='r') Would specify an OptionTree where Image has "interpolation=None" for style and 'show_title=False' for plot options. The Curve has a style set such that color='r'. The parser is fairly forgiving; commas between keywords are optional and additional spaces are often allowed. The only restriction is that keywords *must* be immediately followed by the '=' sign (no space). """ plot_options_short = pp.nestedExpr('[', ']', content=pp.OneOrMore(pp.Word(allowed) ^ pp.quotedString) ).setResultsName('plot_options') plot_options_long = pp.nestedExpr(opener='plot[', closer=']', content=pp.OneOrMore(pp.Word(allowed) ^ pp.quotedString) ).setResultsName('plot_options') plot_options = (plot_options_short | plot_options_long) style_options_short = pp.nestedExpr(opener='(', closer=')', ignoreExpr=None ).setResultsName("style_options") style_options_long = pp.nestedExpr(opener='style(', closer=')', ignoreExpr=None ).setResultsName("style_options") style_options = (style_options_short | style_options_long) norm_options_short = pp.nestedExpr(opener='{', closer='}', ignoreExpr=None ).setResultsName("norm_options") norm_options_long = pp.nestedExpr(opener='norm{', closer='}', ignoreExpr=None ).setResultsName("norm_options") norm_options = (norm_options_short | norm_options_long) compositor_ops = pp.MatchFirst( [pp.Literal(el.group) for el in Compositor.definitions]) dotted_path = pp.Combine( pp.Word(ascii_uppercase, exact=1) + pp.Word(pp.alphanums+'._')) pathspec = (dotted_path | compositor_ops).setResultsName("pathspec") spec_group = pp.Group(pathspec + (pp.Optional(norm_options) & pp.Optional(plot_options) & pp.Optional(style_options))) opts_spec = pp.OneOrMore(spec_group) # Aliases that map to the current option name for backward compatibility aliases = {'horizontal_spacing':'hspace', 'vertical_spacing': 'vspace', 'figure_alpha':' fig_alpha', 'figure_bounds': 'fig_bounds', 'figure_inches': 'fig_inches', 'figure_latex': 'fig_latex', 'figure_rcparams': 'fig_rcparams', 'figure_size': 'fig_size', 'show_xaxis': 'xaxis', 'show_yaxis': 'yaxis'} @classmethod def process_normalization(cls, parse_group): """ Given a normalization parse group (i.e. the contents of the braces), validate the option list and compute the appropriate integer value for the normalization plotting option. """ if ('norm_options' not in parse_group): return None opts = parse_group['norm_options'][0].asList() if opts == []: return None options = ['+framewise', '-framewise', '+axiswise', '-axiswise'] for normopt in options: if opts.count(normopt) > 1: raise SyntaxError("Normalization specification must not" " contain repeated %r" % normopt) if not all(opt in options for opt in opts): raise SyntaxError("Normalization option not one of %s" % ", ".join(options)) excluded = [('+framewise', '-framewise'), ('+axiswise', '-axiswise')] for pair in excluded: if all(exclude in opts for exclude in pair): raise SyntaxError("Normalization specification cannot" " contain both %s and %s" % (pair[0], pair[1])) # If unspecified, default is -axiswise and -framewise if len(opts) == 1 and opts[0].endswith('framewise'): axiswise = False framewise = True if '+framewise' in opts else False elif len(opts) == 1 and opts[0].endswith('axiswise'): framewise = False axiswise = True if '+axiswise' in opts else False else: axiswise = True if '+axiswise' in opts else False framewise = True if '+framewise' in opts else False return dict(axiswise=axiswise, framewise=framewise) @classmethod def parse(cls, line, ns={}): """ Parse an options specification, returning a dictionary with path keys and {'plot':<options>, 'style':<options>} values. """ parses = [p for p in cls.opts_spec.scanString(line)] if len(parses) != 1: raise SyntaxError("Invalid specification syntax.") else: (k,s,e) = parses[0] processed = line[:e] if (processed.strip() != line.strip()): raise SyntaxError("Failed to parse remainder of string: %r" % line[e:]) parse = {} for group in cls.opts_spec.parseString(line): options = {} normalization = cls.process_normalization(group) if normalization is not None: options['norm'] = Options(**normalization) if 'plot_options' in group: plotopts = group['plot_options'][0] opts = cls.todict(plotopts, 'brackets', ns=ns) options['plot'] = Options(**{cls.aliases.get(k,k):v for k,v in opts.items()}) if 'style_options' in group: styleopts = group['style_options'][0] opts = cls.todict(styleopts, 'parens', ns=ns) options['style'] = Options(**{cls.aliases.get(k,k):v for k,v in opts.items()}) if group['pathspec'] in parse: # Update in case same pathspec accidentally repeated by the user. parse[group['pathspec']].update(options) else: parse[group['pathspec']] = options return parse class CompositorSpec(Parser): """ The syntax for defining a set of compositor is as follows: [ mode op(spec) [settings] value ]+ The components are: mode : Operation mode, either 'data' or 'display'. group : Value identifier with capitalized initial letter. op : The name of the operation to apply. spec : Overlay specification of form (A * B) where A and B are dotted path specifications. settings : Optional list of keyword arguments to be used as parameters to the operation (in square brackets). """ mode = pp.Word(pp.alphas+pp.nums+'_').setResultsName("mode") op = pp.Word(pp.alphas+pp.nums+'_').setResultsName("op") overlay_spec = pp.nestedExpr(opener='(', closer=')', ignoreExpr=None ).setResultsName("spec") value = pp.Word(pp.alphas+pp.nums+'_').setResultsName("value") op_settings = pp.nestedExpr(opener='[', closer=']', ignoreExpr=None ).setResultsName("op_settings") compositor_spec = pp.OneOrMore(pp.Group(mode + op + overlay_spec + value + pp.Optional(op_settings))) @classmethod def parse(cls, line, ns={}): """ Parse compositor specifications, returning a list Compositors """ definitions = [] parses = [p for p in cls.compositor_spec.scanString(line)] if len(parses) != 1: raise SyntaxError("Invalid specification syntax.") else: (k,s,e) = parses[0] processed = line[:e] if (processed.strip() != line.strip()): raise SyntaxError("Failed to parse remainder of string: %r" % line[e:]) opmap = {op.__name__:op for op in Compositor.operations} for group in cls.compositor_spec.parseString(line): if ('mode' not in group) or group['mode'] not in ['data', 'display']: raise SyntaxError("Either data or display mode must be specified.") mode = group['mode'] kwargs = {} operation = opmap[group['op']] spec = ' '.join(group['spec'].asList()[0]) if group['op'] not in opmap: raise SyntaxError("Operation %s not available for use with compositors." % group['op']) if 'op_settings' in group: kwargs = cls.todict(group['op_settings'][0], 'brackets', ns=ns) definition = Compositor(str(spec), operation, str(group['value']), mode, **kwargs) definitions.append(definition) return definitions
bsd-3-clause
saskartt/P4UL
pyRaster/geoTif2NumpyZ.py
1
2094
#!/usr/bin/env python import sys import argparse import numpy as np from gdalTools import * from mapTools import saveTileAsNumpyZ from utilities import filesFromList, writeLog from plotTools import addImagePlot import matplotlib.pyplot as plt ''' Description: Author: Mikko Auvinen [email protected] University of Helsinki & Finnish Meteorological Institute ''' #==========================================================# parser = argparse.ArgumentParser(prog='utmTilesFromGeoTiff.py') parser.add_argument("-f", "--filename", type=str, help="Name of the target .tif file", \ default=None) parser.add_argument("-b", "--bandSelect", help="Raster Band Selection. Default=1.",\ action="store_true", default=False) parser.add_argument("-p", "--printOn", help="Print the extracted tile.",\ action="store_true", default=False) parser.add_argument("-pp", "--printOnly", help="Only print the extracted tile. Don't save.",\ action="store_true", default=False) args = parser.parse_args() #==========================================================# # Rename ... that's all. filename = args.filename bandSelect = args.bandSelect printOn = args.printOn printOnly = args.printOnly dataset = openGeoTiff( filename ) nBands = numberOfRasterBands( dataset, True) # PrintOn = True/False ROrig, dPx = getGeoTransform( dataset ) # Both 2d arrays. XOrig is Top Left! # Ask for the band ID if the user so wants (given that it makes sense) ib = selectBand( nBands, bandSelect , 1 ) # last argument is for default rb = getRasterBand( dataset, ib ) printRasterBandStatistics(rb) # Read the raster R = readAsNumpyArray( rb ) # Construct the Raster dict Rdict = dict() Rdict['dPx'] = dPx Rdict['rotation'] = 0. Rdict['R'] = R Rdict['GlobOrig'] = ROrig if( not printOnly ): saveTileAsNumpyZ( filename.replace('.tif','.npz'), Rdict ) Rdict = None if( printOnly or printOn ): Rdims = np.array( R.shape ) figDims = 13.*(Rdims[::-1].astype(float)/np.max(Rdims)) fig = plt.figure(num=1, figsize=figDims) fig = addImagePlot( fig, R, filename ) plt.show()
mit
cl4rke/scikit-learn
examples/linear_model/plot_sparse_recovery.py
243
7461
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditioning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditioning of the design matrix. For a well-conditioned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditioned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print(__doc__) # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD 3 clause import warnings import matplotlib.pyplot as plt import numpy as np from scipy import linalg from sklearn.linear_model import (RandomizedLasso, lasso_stability_path, LassoLarsCV) from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh from sklearn.utils import ConvergenceWarning def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot(np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant))) return np.max(np.abs(projector).sum(axis=1)) for conditioning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditioned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditioning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) plt.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = plt.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = plt.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = plt.ylim() plt.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') plt.ylabel('Stability score: proportion of times selected') plt.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) plt.axis('tight') plt.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: # Stop the user warnings outputs- they are not necessary for the example # as it is specifically set up to be challenging. with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) warnings.simplefilter('ignore', ConvergenceWarning) lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) plt.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) plt.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) plt.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") plt.xlabel("Features") plt.ylabel("Score") # Plot only the 100 first coefficients plt.xlim(0, 100) plt.legend(loc='best') plt.title('Feature selection scores - Mutual incoherence: %.1f' % mi) plt.show()
bsd-3-clause