repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
ilyes14/scikit-learn
sklearn/semi_supervised/tests/test_label_propagation.py
307
1974
""" test the label propagation module """ import nose import numpy as np from sklearn.semi_supervised import label_propagation from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal ESTIMATORS = [ (label_propagation.LabelPropagation, {'kernel': 'rbf'}), (label_propagation.LabelPropagation, {'kernel': 'knn', 'n_neighbors': 2}), (label_propagation.LabelSpreading, {'kernel': 'rbf'}), (label_propagation.LabelSpreading, {'kernel': 'knn', 'n_neighbors': 2}) ] def test_fit_transduction(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) nose.tools.assert_equal(clf.transduction_[2], 1) def test_distribution(): samples = [[1., 0.], [0., 1.], [1., 1.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) if parameters['kernel'] == 'knn': continue # unstable test; changes in k-NN ordering break it assert_array_almost_equal(clf.predict_proba([[1., 0.0]]), np.array([[1., 0.]]), 2) else: assert_array_almost_equal(np.asarray(clf.label_distributions_[2]), np.array([.5, .5]), 2) def test_predict(): samples = [[1., 0.], [0., 2.], [1., 3.]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_equal(clf.predict([[0.5, 2.5]]), np.array([1])) def test_predict_proba(): samples = [[1., 0.], [0., 1.], [1., 2.5]] labels = [0, 1, -1] for estimator, parameters in ESTIMATORS: clf = estimator(**parameters).fit(samples, labels) assert_array_almost_equal(clf.predict_proba([[1., 1.]]), np.array([[0.5, 0.5]]))
bsd-3-clause
xavierwu/scikit-learn
sklearn/manifold/setup.py
99
1243
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
ZHYfeng/malicious-code-conceal
3-2-multi-programmes-big/Multiverso-master/binding/python/examples/theano/cnn.py
6
5128
#!/usr/bin/env python # coding:utf8 """ This code is adapted from https://github.com/benanne/theano-tutorial/blob/master/6_convnet.py The MIT License (MIT) Copyright (c) 2015 Sander Dieleman Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import theano import theano.tensor as T import numpy as np import matplotlib.pyplot as plt plt.ion() import load_data from theano.tensor.nnet import conv from theano.tensor.signal import downsample # MULTIVERSO: import multiverso import multiverso as mv # MULTIVERSO: the sharedvar in theano_ext acts same like Theano's # sharedVariables. But it use multiverso as the backend from multiverso.theano_ext import sharedvar x_train, t_train, x_test, t_test = load_data.load_cifar10() labels_test = np.argmax(t_test, axis=1) # reshape data x_train = x_train.reshape((x_train.shape[0], 3, 32, 32)) x_test = x_test.reshape((x_test.shape[0], 3, 32, 32)) # define symbolic Theano variables x = T.tensor4() t = T.matrix() # define model: neural network def floatX(x): return np.asarray(x, dtype=theano.config.floatX) def init_weights(shape, name): # MULTIVERSO: relace the shared variable with mv_shared return sharedvar.mv_shared(floatX(np.random.randn(*shape) * 0.1), name=name) def momentum(cost, params, learning_rate, momentum): grads = theano.grad(cost, params) updates = [] for p, g in zip(params, grads): # MULTIVERSO: relace the shared variable with mv_shared mparam_i = sharedvar.mv_shared(np.zeros(p.get_value().shape, dtype=theano.config.floatX)) v = momentum * mparam_i - learning_rate * g updates.append((mparam_i, v)) updates.append((p, p + v)) return updates def model(x, w_c1, b_c1, w_c2, b_c2, w_h3, b_h3, w_o, b_o): c1 = T.maximum(0, conv.conv2d(x, w_c1) + b_c1.dimshuffle('x', 0, 'x', 'x')) p1 = downsample.max_pool_2d(c1, (3, 3)) c2 = T.maximum(0, conv.conv2d(p1, w_c2) + b_c2.dimshuffle('x', 0, 'x', 'x')) p2 = downsample.max_pool_2d(c2, (2, 2)) p2_flat = p2.flatten(2) h3 = T.maximum(0, T.dot(p2_flat, w_h3) + b_h3) p_y_given_x = T.nnet.softmax(T.dot(h3, w_o) + b_o) return p_y_given_x # MULTIVERSO: you should call mv.init before call multiverso apis mv.init() worker_id = mv.worker_id() # MULTIVERSO: every process has distinct worker id workers_num = mv.workers_num() w_c1 = init_weights((4, 3, 3, 3), name="w_c1") b_c1 = init_weights((4,), name="b_c1") w_c2 = init_weights((8, 4, 3, 3), name="w_c2") b_c2 = init_weights((8,), name="b_c2") w_h3 = init_weights((8 * 4 * 4, 100), name="w_h3") b_h3 = init_weights((100,), name="b_h3") w_o = init_weights((100, 10), name="w_o") b_o = init_weights((10,), name="b_o") params = [w_c1, b_c1, w_c2, b_c2, w_h3, b_h3, w_o, b_o] p_y_given_x = model(x, *params) y = T.argmax(p_y_given_x, axis=1) cost = T.mean(T.nnet.categorical_crossentropy(p_y_given_x, t)) updates = momentum(cost, params, learning_rate=0.01, momentum=0.9) # compile theano functions train = theano.function([x, t], cost, updates=updates, allow_input_downcast=True) predict = theano.function([x], y, allow_input_downcast=True) # MULTIVERSO: all the workers will synchronize at the place you call barrier mv.barrier() # train model batch_size = 50 for i in range(50): for start in range(0, len(x_train), batch_size): # every process only train batches assigned to itself if start / batch_size % workers_num != worker_id: continue x_batch = x_train[start:start + batch_size] t_batch = t_train[start:start + batch_size] cost = train(x_batch, t_batch) # MULTIVERSO: sync value with multiverso after every batch sharedvar.sync_all_mv_shared_vars() # MULTIVERSO: all the workers will synchronize at the place you call barrier mv.barrier() # barrier every epoch # master will calc the accuracy if mv.is_master_worker(): predictions_test = predict(x_test) accuracy = np.mean(predictions_test == labels_test) print "epoch %d - accuracy: %.4f" % (i + 1, accuracy) # MULTIVERSO: You must call shutdown at the end of the file mv.shutdown()
apache-2.0
hsiaoyi0504/scikit-learn
sklearn/svm/tests/test_bounds.py
280
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
themrmax/scikit-learn
examples/cluster/plot_adjusted_for_chance_measures.py
105
4300
""" ========================================================== Adjustment for chance in clustering performance evaluation ========================================================== The following plots demonstrate the impact of the number of clusters and number of samples on various clustering performance evaluation metrics. Non-adjusted measures such as the V-Measure show a dependency between the number of clusters and the number of samples: the mean V-Measure of random labeling increases significantly as the number of clusters is closer to the total number of samples used to compute the measure. Adjusted for chance measure such as ARI display some random variations centered around a mean score of 0.0 for any number of samples and clusters. Only adjusted measures can hence safely be used as a consensus index to evaluate the average stability of clustering algorithms for a given value of k on various overlapping sub-samples of the dataset. """ print(__doc__) # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from time import time from sklearn import metrics def uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=None, n_runs=5, seed=42): """Compute score for 2 random uniform cluster labelings. Both random labelings have the same number of clusters for each value possible value in ``n_clusters_range``. When fixed_n_classes is not None the first labeling is considered a ground truth class assignment with fixed number of classes. """ random_labels = np.random.RandomState(seed).randint scores = np.zeros((len(n_clusters_range), n_runs)) if fixed_n_classes is not None: labels_a = random_labels(low=0, high=fixed_n_classes, size=n_samples) for i, k in enumerate(n_clusters_range): for j in range(n_runs): if fixed_n_classes is None: labels_a = random_labels(low=0, high=k, size=n_samples) labels_b = random_labels(low=0, high=k, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores score_funcs = [ metrics.adjusted_rand_score, metrics.v_measure_score, metrics.adjusted_mutual_info_score, metrics.mutual_info_score, ] # 2 independent random clusterings with equal cluster number n_samples = 100 n_clusters_range = np.linspace(2, n_samples, 10).astype(np.int) plt.figure(1) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, np.median(scores, axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for 2 random uniform labelings\n" "with equal number of clusters") plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.legend(plots, names) plt.ylim(ymin=-0.05, ymax=1.05) # Random labeling with varying n_clusters against ground class labels # with fixed number of clusters n_samples = 1000 n_clusters_range = np.linspace(2, 100, 10).astype(np.int) n_classes = 10 plt.figure(2) plots = [] names = [] for score_func in score_funcs: print("Computing %s for %d values of n_clusters and n_samples=%d" % (score_func.__name__, len(n_clusters_range), n_samples)) t0 = time() scores = uniform_labelings_scores(score_func, n_samples, n_clusters_range, fixed_n_classes=n_classes) print("done in %0.3fs" % (time() - t0)) plots.append(plt.errorbar( n_clusters_range, scores.mean(axis=1), scores.std(axis=1))[0]) names.append(score_func.__name__) plt.title("Clustering measures for random uniform labeling\n" "against reference assignment with %d classes" % n_classes) plt.xlabel('Number of clusters (Number of samples is fixed to %d)' % n_samples) plt.ylabel('Score value') plt.ylim(ymin=-0.05, ymax=1.05) plt.legend(plots, names) plt.show()
bsd-3-clause
RobertABT/heightmap
build/scipy/scipy/stats/_discrete_distns.py
4
20332
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from __future__ import division, print_function, absolute_import from scipy import special from scipy.special import gammaln as gamln from numpy import floor, ceil, log, exp, sqrt, log1p, expm1, tanh, cosh, sinh import numpy as np import numpy.random as mtrand from ._distn_infrastructure import ( rv_discrete, _lazywhere, _ncx2_pdf, _ncx2_cdf) __all__ = [ 'binom', 'bernoulli', 'nbinom', 'geom', 'hypergeom', 'logser', 'poisson', 'planck', 'boltzmann', 'randint', 'zipf', 'dlaplace', 'skellam' ] class binom_gen(rv_discrete): """A binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `binom` is:: binom.pmf(k) = choose(n, k) * p**k * (1-p)**(n-k) for ``k`` in ``{0, 1,..., n}``. `binom` takes ``n`` and ``p`` as shape parameters. %(example)s """ def _rvs(self, n, p): return mtrand.binomial(n, p, self._size) def _argcheck(self, n, p): self.b = n return (n >= 0) & (p >= 0) & (p <= 1) def _logpmf(self, x, n, p): k = floor(x) combiln = (gamln(n+1) - (gamln(k+1) + gamln(n-k+1))) return combiln + special.xlogy(k, p) + special.xlog1py(n-k, -p) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _cdf(self, x, n, p): k = floor(x) vals = special.bdtr(k, n, p) return vals def _sf(self, x, n, p): k = floor(x) return special.bdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.bdtrik(q, n, p)) vals1 = np.maximum(vals - 1, 0) temp = special.bdtr(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): q = 1.0-p mu = n * p var = n * p * q g1 = (q-p) / sqrt(n*p*q) g2 = (1.0-6*p*q)/(n*p*q) return mu, var, g1, g2 def _entropy(self, n, p): k = np.r_[0:n + 1] vals = self._pmf(k, n, p) h = -np.sum(special.xlogy(vals, vals), axis=0) return h binom = binom_gen(name='binom') class bernoulli_gen(binom_gen): """A Bernoulli discrete random variable. %(before_notes)s Notes ----- The probability mass function for `bernoulli` is:: bernoulli.pmf(k) = 1-p if k = 0 = p if k = 1 for ``k`` in ``{0, 1}``. `bernoulli` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, p): return binom_gen._rvs(self, 1, p) def _argcheck(self, p): return (p >= 0) & (p <= 1) def _logpmf(self, x, p): return binom._logpmf(x, 1, p) def _pmf(self, x, p): return binom._pmf(x, 1, p) def _cdf(self, x, p): return binom._cdf(x, 1, p) def _sf(self, x, p): return binom._sf(x, 1, p) def _ppf(self, q, p): return binom._ppf(q, 1, p) def _stats(self, p): return binom._stats(1, p) def _entropy(self, p): h = -special.xlogy(p, p) - special.xlogy(1 - p, 1 - p) return h bernoulli = bernoulli_gen(b=1, name='bernoulli') class nbinom_gen(rv_discrete): """A negative binomial discrete random variable. %(before_notes)s Notes ----- The probability mass function for `nbinom` is:: nbinom.pmf(k) = choose(k+n-1, n-1) * p**n * (1-p)**k for ``k >= 0``. `nbinom` takes ``n`` and ``p`` as shape parameters. %(example)s """ def _rvs(self, n, p): return mtrand.negative_binomial(n, p, self._size) def _argcheck(self, n, p): return (n >= 0) & (p >= 0) & (p <= 1) def _pmf(self, x, n, p): return exp(self._logpmf(x, n, p)) def _logpmf(self, x, n, p): coeff = gamln(n+x) - gamln(x+1) - gamln(n) return coeff + n*log(p) + x*log(1-p) def _cdf(self, x, n, p): k = floor(x) return special.betainc(n, k+1, p) def _sf_skip(self, x, n, p): # skip because special.nbdtrc doesn't work for 0<n<1 k = floor(x) return special.nbdtrc(k, n, p) def _ppf(self, q, n, p): vals = ceil(special.nbdtrik(q, n, p)) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, n, p) return np.where(temp >= q, vals1, vals) def _stats(self, n, p): Q = 1.0 / p P = Q - 1.0 mu = n*P var = n*P*Q g1 = (Q+P)/sqrt(n*P*Q) g2 = (1.0 + 6*P*Q) / (n*P*Q) return mu, var, g1, g2 nbinom = nbinom_gen(name='nbinom') class geom_gen(rv_discrete): """A geometric discrete random variable. %(before_notes)s Notes ----- The probability mass function for `geom` is:: geom.pmf(k) = (1-p)**(k-1)*p for ``k >= 1``. `geom` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, p): return mtrand.geometric(p, size=self._size) def _argcheck(self, p): return (p <= 1) & (p >= 0) def _pmf(self, k, p): return np.power(1-p, k-1) * p def _logpmf(self, k, p): return (k-1) * log(1-p) + log(p) def _cdf(self, x, p): k = floor(x) return -expm1(log1p(-p)*k) def _sf(self, x, p): return np.exp(self._logsf(x, p)) def _logsf(self, x, p): k = floor(x) return k*log1p(-p) def _ppf(self, q, p): vals = ceil(log(1.0-q)/log(1-p)) temp = self._cdf(vals-1, p) return np.where((temp >= q) & (vals > 0), vals-1, vals) def _stats(self, p): mu = 1.0/p qr = 1.0-p var = qr / p / p g1 = (2.0-p) / sqrt(qr) g2 = np.polyval([1, -6, 6], p)/(1.0-p) return mu, var, g1, g2 geom = geom_gen(a=1, name='geom', longname="A geometric") class hypergeom_gen(rv_discrete): """A hypergeometric discrete random variable. The hypergeometric distribution models drawing objects from a bin. M is the total number of objects, n is total number of Type I objects. The random variate represents the number of Type I objects in N drawn without replacement from the total population. %(before_notes)s Notes ----- The probability mass function is defined as:: pmf(k, M, n, N) = choose(n, k) * choose(M - n, N - k) / choose(M, N), for max(0, N - (M-n)) <= k <= min(n, N) Examples -------- >>> from scipy.stats import hypergeom >>> import matplotlib.pyplot as plt Suppose we have a collection of 20 animals, of which 7 are dogs. Then if we want to know the probability of finding a given number of dogs if we choose at random 12 of the 20 animals, we can initialize a frozen distribution and plot the probability mass function: >>> [M, n, N] = [20, 7, 12] >>> rv = hypergeom(M, n, N) >>> x = np.arange(0, n+1) >>> pmf_dogs = rv.pmf(x) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x, pmf_dogs, 'bo') >>> ax.vlines(x, 0, pmf_dogs, lw=2) >>> ax.set_xlabel('# of dogs in our group of chosen animals') >>> ax.set_ylabel('hypergeom PMF') >>> plt.show() Instead of using a frozen distribution we can also use `hypergeom` methods directly. To for example obtain the cumulative distribution function, use: >>> prb = hypergeom.cdf(x, M, n, N) And to generate random numbers: >>> R = hypergeom.rvs(M, n, N, size=10) """ def _rvs(self, M, n, N): return mtrand.hypergeometric(n, M-n, N, size=self._size) def _argcheck(self, M, n, N): cond = rv_discrete._argcheck(self, M, n, N) cond &= (n <= M) & (N <= M) self.a = max(N-(M-n), 0) self.b = min(n, N) return cond def _logpmf(self, k, M, n, N): tot, good = M, n bad = tot - good return gamln(good+1) - gamln(good-k+1) - gamln(k+1) + gamln(bad+1) \ - gamln(bad-N+k+1) - gamln(N-k+1) - gamln(tot+1) + gamln(tot-N+1) \ + gamln(N+1) def _pmf(self, k, M, n, N): # same as the following but numerically more precise # return comb(good, k) * comb(bad, N-k) / comb(tot, N) return exp(self._logpmf(k, M, n, N)) def _stats(self, M, n, N): # tot, good, sample_size = M, n, N # "wikipedia".replace('N', 'M').replace('n', 'N').replace('K', 'n') M, n, N = 1.*M, 1.*n, 1.*N m = M - n p = n/M mu = N*p var = m*n*N*(M - N)*1.0/(M*M*(M-1)) g1 = (m - n)*(M-2*N) / (M-2.0) * sqrt((M-1.0) / (m*n*N*(M-N))) g2 = M*(M+1) - 6.*N*(M-N) - 6.*n*m g2 *= (M-1)*M*M g2 += 6.*n*N*(M-N)*m*(5.*M-6) g2 /= n * N * (M-N) * m * (M-2.) * (M-3.) return mu, var, g1, g2 def _entropy(self, M, n, N): k = np.r_[N - (M - n):min(n, N) + 1] vals = self.pmf(k, M, n, N) h = -np.sum(special.xlogy(vals, vals), axis=0) return h def _sf(self, k, M, n, N): """More precise calculation, 1 - cdf doesn't cut it.""" # This for loop is needed because `k` can be an array. If that's the # case, the sf() method makes M, n and N arrays of the same shape. We # therefore unpack all inputs args, so we can do the manual # integration. res = [] for quant, tot, good, draw in zip(k, M, n, N): # Manual integration over probability mass function. More accurate # than integrate.quad. k2 = np.arange(quant + 1, draw + 1) res.append(np.sum(self._pmf(k2, tot, good, draw))) return np.asarray(res) hypergeom = hypergeom_gen(name='hypergeom') # FIXME: Fails _cdfvec class logser_gen(rv_discrete): """A Logarithmic (Log-Series, Series) discrete random variable. %(before_notes)s Notes ----- The probability mass function for `logser` is:: logser.pmf(k) = - p**k / (k*log(1-p)) for ``k >= 1``. `logser` takes ``p`` as shape parameter. %(example)s """ def _rvs(self, p): # looks wrong for p>0.5, too few k=1 # trying to use generic is worse, no k=1 at all return mtrand.logseries(p, size=self._size) def _argcheck(self, p): return (p > 0) & (p < 1) def _pmf(self, k, p): return -np.power(p, k) * 1.0 / k / log(1 - p) def _stats(self, p): r = log(1 - p) mu = p / (p - 1.0) / r mu2p = -p / r / (p - 1.0)**2 var = mu2p - mu*mu mu3p = -p / r * (1.0+p) / (1.0 - p)**3 mu3 = mu3p - 3*mu*mu2p + 2*mu**3 g1 = mu3 / np.power(var, 1.5) mu4p = -p / r * ( 1.0 / (p-1)**2 - 6*p / (p - 1)**3 + 6*p*p / (p-1)**4) mu4 = mu4p - 4*mu3p*mu + 6*mu2p*mu*mu - 3*mu**4 g2 = mu4 / var**2 - 3.0 return mu, var, g1, g2 logser = logser_gen(a=1, name='logser', longname='A logarithmic') class poisson_gen(rv_discrete): """A Poisson discrete random variable. %(before_notes)s Notes ----- The probability mass function for `poisson` is:: poisson.pmf(k) = exp(-mu) * mu**k / k! for ``k >= 0``. `poisson` takes ``mu`` as shape parameter. %(example)s """ def _rvs(self, mu): return mtrand.poisson(mu, self._size) def _logpmf(self, k, mu): Pk = k*log(mu)-gamln(k+1) - mu return Pk def _pmf(self, k, mu): return exp(self._logpmf(k, mu)) def _cdf(self, x, mu): k = floor(x) return special.pdtr(k, mu) def _sf(self, x, mu): k = floor(x) return special.pdtrc(k, mu) def _ppf(self, q, mu): vals = ceil(special.pdtrik(q, mu)) vals1 = np.maximum(vals - 1, 0) temp = special.pdtr(vals1, mu) return np.where(temp >= q, vals1, vals) def _stats(self, mu): var = mu tmp = np.asarray(mu) g1 = sqrt(1.0 / tmp) g2 = 1.0 / tmp return mu, var, g1, g2 poisson = poisson_gen(name="poisson", longname='A Poisson') class planck_gen(rv_discrete): """A Planck discrete exponential random variable. %(before_notes)s Notes ----- The probability mass function for `planck` is:: planck.pmf(k) = (1-exp(-lambda_))*exp(-lambda_*k) for ``k*lambda_ >= 0``. `planck` takes ``lambda_`` as shape parameter. %(example)s """ def _argcheck(self, lambda_): if (lambda_ > 0): self.a = 0 self.b = np.inf return 1 elif (lambda_ < 0): self.a = -np.inf self.b = 0 return 1 else: return 0 def _pmf(self, k, lambda_): fact = (1-exp(-lambda_)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_): k = floor(x) return 1-exp(-lambda_*(k+1)) def _ppf(self, q, lambda_): vals = ceil(-1.0/lambda_ * log1p(-q)-1) vals1 = (vals-1).clip(self.a, np.inf) temp = self._cdf(vals1, lambda_) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_): mu = 1/(exp(lambda_)-1) var = exp(-lambda_)/(expm1(-lambda_))**2 g1 = 2*cosh(lambda_/2.0) g2 = 4+2*cosh(lambda_) return mu, var, g1, g2 def _entropy(self, lambda_): l = lambda_ C = (1-exp(-l)) return l*exp(-l)/C - log(C) planck = planck_gen(name='planck', longname='A discrete exponential ') class boltzmann_gen(rv_discrete): """A Boltzmann (Truncated Discrete Exponential) random variable. %(before_notes)s Notes ----- The probability mass function for `boltzmann` is:: boltzmann.pmf(k) = (1-exp(-lambda_)*exp(-lambda_*k)/(1-exp(-lambda_*N)) for ``k = 0,..., N-1``. `boltzmann` takes ``lambda_`` and ``N`` as shape parameters. %(example)s """ def _pmf(self, k, lambda_, N): fact = (1-exp(-lambda_))/(1-exp(-lambda_*N)) return fact*exp(-lambda_*k) def _cdf(self, x, lambda_, N): k = floor(x) return (1-exp(-lambda_*(k+1)))/(1-exp(-lambda_*N)) def _ppf(self, q, lambda_, N): qnew = q*(1-exp(-lambda_*N)) vals = ceil(-1.0/lambda_ * log(1-qnew)-1) vals1 = (vals-1).clip(0.0, np.inf) temp = self._cdf(vals1, lambda_, N) return np.where(temp >= q, vals1, vals) def _stats(self, lambda_, N): z = exp(-lambda_) zN = exp(-lambda_*N) mu = z/(1.0-z)-N*zN/(1-zN) var = z/(1.0-z)**2 - N*N*zN/(1-zN)**2 trm = (1-zN)/(1-z) trm2 = (z*trm**2 - N*N*zN) g1 = z*(1+z)*trm**3 - N**3*zN*(1+zN) g1 = g1 / trm2**(1.5) g2 = z*(1+4*z+z*z)*trm**4 - N**4 * zN*(1+4*zN+zN*zN) g2 = g2 / trm2 / trm2 return mu, var, g1, g2 boltzmann = boltzmann_gen(name='boltzmann', longname='A truncated discrete exponential ') class randint_gen(rv_discrete): """A uniform discrete random variable. %(before_notes)s Notes ----- The probability mass function for `randint` is:: randint.pmf(k) = 1./(high - low) for ``k = low, ..., high - 1``. `randint` takes ``low`` and ``high`` as shape parameters. Note the difference to the numpy ``random_integers`` which returns integers on a *closed* interval ``[low, high]``. %(example)s """ def _argcheck(self, low, high): self.a = low self.b = high - 1 return (high > low) def _pmf(self, k, low, high): p = np.ones_like(k) / (high - low) return np.where((k >= low) & (k < high), p, 0.) def _cdf(self, x, low, high): k = floor(x) return (k - low + 1.) / (high - low) def _ppf(self, q, low, high): vals = ceil(q * (high - low) + low) - 1 vals1 = (vals - 1).clip(low, high) temp = self._cdf(vals1, low, high) return np.where(temp >= q, vals1, vals) def _stats(self, low, high): m2, m1 = np.asarray(high), np.asarray(low) mu = (m2 + m1 - 1.0) / 2 d = m2 - m1 var = (d*d - 1) / 12.0 g1 = 0.0 g2 = -6.0/5.0 * (d*d + 1.0) / (d*d - 1.0) return mu, var, g1, g2 def _rvs(self, low, high=None): """An array of *size* random integers >= ``low`` and < ``high``. If ``high`` is ``None``, then range is >=0 and < low """ return mtrand.randint(low, high, self._size) def _entropy(self, low, high): return log(high - low) randint = randint_gen(name='randint', longname='A discrete uniform ' '(random integer)') # FIXME: problems sampling. class zipf_gen(rv_discrete): """A Zipf discrete random variable. %(before_notes)s Notes ----- The probability mass function for `zipf` is:: zipf.pmf(k, a) = 1/(zeta(a) * k**a) for ``k >= 1``. `zipf` takes ``a`` as shape parameter. %(example)s """ def _rvs(self, a): return mtrand.zipf(a, size=self._size) def _argcheck(self, a): return a > 1 def _pmf(self, k, a): Pk = 1.0 / special.zeta(a, 1) / k**a return Pk def _munp(self, n, a): return _lazywhere( a > n + 1, (a, n), lambda a, n: special.zeta(a - n, 1) / special.zeta(a, 1), np.inf) zipf = zipf_gen(a=1, name='zipf', longname='A Zipf') class dlaplace_gen(rv_discrete): """A Laplacian discrete random variable. %(before_notes)s Notes ----- The probability mass function for `dlaplace` is:: dlaplace.pmf(k) = tanh(a/2) * exp(-a*abs(k)) for ``a > 0``. `dlaplace` takes ``a`` as shape parameter. %(example)s """ def _pmf(self, k, a): return tanh(a/2.0) * exp(-a * abs(k)) def _cdf(self, x, a): k = floor(x) f = lambda k, a: 1.0 - exp(-a * k) / (exp(a) + 1) f2 = lambda k, a: exp(a * (k+1)) / (exp(a) + 1) return _lazywhere(k >= 0, (k, a), f=f, f2=f2) def _ppf(self, q, a): const = 1 + exp(a) vals = ceil(np.where(q < 1.0 / (1 + exp(-a)), log(q*const) / a - 1, -log((1-q) * const) / a)) vals1 = vals - 1 return np.where(self._cdf(vals1, a) >= q, vals1, vals) def _stats(self, a): ea = exp(a) mu2 = 2.*ea/(ea-1.)**2 mu4 = 2.*ea*(ea**2+10.*ea+1.) / (ea-1.)**4 return 0., mu2, 0., mu4/mu2**2 - 3. def _entropy(self, a): return a / sinh(a) - log(tanh(a/2.0)) dlaplace = dlaplace_gen(a=-np.inf, name='dlaplace', longname='A discrete Laplacian') class skellam_gen(rv_discrete): """A Skellam discrete random variable. %(before_notes)s Notes ----- Probability distribution of the difference of two correlated or uncorrelated Poisson random variables. Let k1 and k2 be two Poisson-distributed r.v. with expected values lam1 and lam2. Then, ``k1 - k2`` follows a Skellam distribution with parameters ``mu1 = lam1 - rho*sqrt(lam1*lam2)`` and ``mu2 = lam2 - rho*sqrt(lam1*lam2)``, where rho is the correlation coefficient between k1 and k2. If the two Poisson-distributed r.v. are independent then ``rho = 0``. Parameters mu1 and mu2 must be strictly positive. For details see: http://en.wikipedia.org/wiki/Skellam_distribution `skellam` takes ``mu1`` and ``mu2`` as shape parameters. %(example)s """ def _rvs(self, mu1, mu2): n = self._size return mtrand.poisson(mu1, n) - mtrand.poisson(mu2, n) def _pmf(self, x, mu1, mu2): px = np.where(x < 0, _ncx2_pdf(2*mu2, 2*(1-x), 2*mu1)*2, _ncx2_pdf(2*mu1, 2*(1+x), 2*mu2)*2) # ncx2.pdf() returns nan's for extremely low probabilities return px def _cdf(self, x, mu1, mu2): x = floor(x) px = np.where(x < 0, _ncx2_cdf(2*mu2, -2*x, 2*mu1), 1-_ncx2_cdf(2*mu1, 2*(x+1), 2*mu2)) return px def _stats(self, mu1, mu2): mean = mu1 - mu2 var = mu1 + mu2 g1 = mean / sqrt((var)**3) g2 = 1 / var return mean, var, g1, g2 skellam = skellam_gen(a=-np.inf, name="skellam", longname='A Skellam')
mit
Obus/scikit-learn
examples/decomposition/plot_image_denoising.py
84
5820
""" ========================================= Image denoising using dictionary learning ========================================= An example comparing the effect of reconstructing noisy fragments of the Lena image using firstly online :ref:`DictionaryLearning` and various transform methods. The dictionary is fitted on the distorted left half of the image, and subsequently used to reconstruct the right half. Note that even better performance could be achieved by fitting to an undistorted (i.e. noiseless) image, but here we start from the assumption that it is not available. A common practice for evaluating the results of image denoising is by looking at the difference between the reconstruction and the original image. If the reconstruction is perfect this will look like Gaussian noise. It can be seen from the plots that the results of :ref:`omp` with two non-zero coefficients is a bit less biased than when keeping only one (the edges look less prominent). It is in addition closer from the ground truth in Frobenius norm. The result of :ref:`least_angle_regression` is much more strongly biased: the difference is reminiscent of the local intensity value of the original image. Thresholding is clearly not useful for denoising, but it is here to show that it can produce a suggestive output with very high speed, and thus be useful for other tasks such as object classification, where performance is not necessarily related to visualisation. """ print(__doc__) from time import time import matplotlib.pyplot as plt import numpy as np from scipy.misc import lena from sklearn.decomposition import MiniBatchDictionaryLearning from sklearn.feature_extraction.image import extract_patches_2d from sklearn.feature_extraction.image import reconstruct_from_patches_2d ############################################################################### # Load Lena image and extract patches lena = lena() / 256.0 # downsample for higher speed lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2] lena /= 4.0 height, width = lena.shape # Distort the right half of the image print('Distorting image...') distorted = lena.copy() distorted[:, height // 2:] += 0.075 * np.random.randn(width, height // 2) # Extract all reference patches from the left half of the image print('Extracting reference patches...') t0 = time() patch_size = (7, 7) data = extract_patches_2d(distorted[:, :height // 2], patch_size) data = data.reshape(data.shape[0], -1) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) print('done in %.2fs.' % (time() - t0)) ############################################################################### # Learn the dictionary from reference patches print('Learning the dictionary...') t0 = time() dico = MiniBatchDictionaryLearning(n_components=100, alpha=1, n_iter=500) V = dico.fit(data).components_ dt = time() - t0 print('done in %.2fs.' % dt) plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(V[:100]): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape(patch_size), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Dictionary learned from Lena patches\n' + 'Train time %.1fs on %d patches' % (dt, len(data)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) ############################################################################### # Display the distorted image def show_with_diff(image, reference, title): """Helper function to display denoising""" plt.figure(figsize=(5, 3.3)) plt.subplot(1, 2, 1) plt.title('Image') plt.imshow(image, vmin=0, vmax=1, cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.subplot(1, 2, 2) difference = image - reference plt.title('Difference (norm: %.2f)' % np.sqrt(np.sum(difference ** 2))) plt.imshow(difference, vmin=-0.5, vmax=0.5, cmap=plt.cm.PuOr, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle(title, size=16) plt.subplots_adjust(0.02, 0.02, 0.98, 0.79, 0.02, 0.2) show_with_diff(distorted, lena, 'Distorted image') ############################################################################### # Extract noisy patches and reconstruct them using the dictionary print('Extracting noisy patches... ') t0 = time() data = extract_patches_2d(distorted[:, height // 2:], patch_size) data = data.reshape(data.shape[0], -1) intercept = np.mean(data, axis=0) data -= intercept print('done in %.2fs.' % (time() - t0)) transform_algorithms = [ ('Orthogonal Matching Pursuit\n1 atom', 'omp', {'transform_n_nonzero_coefs': 1}), ('Orthogonal Matching Pursuit\n2 atoms', 'omp', {'transform_n_nonzero_coefs': 2}), ('Least-angle regression\n5 atoms', 'lars', {'transform_n_nonzero_coefs': 5}), ('Thresholding\n alpha=0.1', 'threshold', {'transform_alpha': .1})] reconstructions = {} for title, transform_algorithm, kwargs in transform_algorithms: print(title + '...') reconstructions[title] = lena.copy() t0 = time() dico.set_params(transform_algorithm=transform_algorithm, **kwargs) code = dico.transform(data) patches = np.dot(code, V) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() patches += intercept patches = patches.reshape(len(data), *patch_size) if transform_algorithm == 'threshold': patches -= patches.min() patches /= patches.max() reconstructions[title][:, height // 2:] = reconstruct_from_patches_2d( patches, (width, height // 2)) dt = time() - t0 print('done in %.2fs.' % dt) show_with_diff(reconstructions[title], lena, title + ' (time: %.1fs)' % dt) plt.show()
bsd-3-clause
bartosh/zipline
tests/test_benchmark.py
5
8023
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from pandas.util.testing import assert_series_equal from zipline.data.data_portal import DataPortal from zipline.errors import ( BenchmarkAssetNotAvailableTooEarly, BenchmarkAssetNotAvailableTooLate, InvalidBenchmarkAsset) from zipline.sources.benchmark_source import BenchmarkSource from zipline.testing import ( MockDailyBarReader, create_minute_bar_data, tmp_bcolz_equity_minute_bar_reader, ) from zipline.testing.fixtures import ( WithDataPortal, WithSimParams, WithTradingCalendars, ZiplineTestCase, ) class TestBenchmark(WithDataPortal, WithSimParams, WithTradingCalendars, ZiplineTestCase): START_DATE = pd.Timestamp('2006-01-03', tz='utc') END_DATE = pd.Timestamp('2006-12-29', tz='utc') @classmethod def make_equity_info(cls): return pd.DataFrame.from_dict( { 1: { 'symbol': 'A', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE + pd.Timedelta(days=1), "exchange": "TEST", }, 2: { 'symbol': 'B', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE + pd.Timedelta(days=1), "exchange": "TEST", }, 3: { 'symbol': 'C', 'start_date': pd.Timestamp('2006-05-26', tz='utc'), 'end_date': pd.Timestamp('2006-08-09', tz='utc'), "exchange": "TEST", }, 4: { 'symbol': 'D', 'start_date': cls.START_DATE, 'end_date': cls.END_DATE + pd.Timedelta(days=1), "exchange": "TEST", }, }, orient='index', ) @classmethod def make_adjustment_writer_equity_daily_bar_reader(cls): return MockDailyBarReader() @classmethod def make_stock_dividends_data(cls): declared_date = cls.sim_params.sessions[45] ex_date = cls.sim_params.sessions[50] record_date = pay_date = cls.sim_params.sessions[55] return pd.DataFrame({ 'sid': np.array([4], dtype=np.uint32), 'payment_sid': np.array([5], dtype=np.uint32), 'ratio': np.array([2], dtype=np.float64), 'declared_date': np.array([declared_date], dtype='datetime64[ns]'), 'ex_date': np.array([ex_date], dtype='datetime64[ns]'), 'record_date': np.array([record_date], dtype='datetime64[ns]'), 'pay_date': np.array([pay_date], dtype='datetime64[ns]'), }) def test_normal(self): days_to_use = self.sim_params.sessions[1:] source = BenchmarkSource( self.env.asset_finder.retrieve_asset(1), self.trading_calendar, days_to_use, self.data_portal ) # should be the equivalent of getting the price history, then doing # a pct_change on it manually_calculated = self.data_portal.get_history_window( [1], days_to_use[-1], len(days_to_use), "1d", "close", "daily", )[1].pct_change() # compare all the fields except the first one, for which we don't have # data in manually_calculated for idx, day in enumerate(days_to_use[1:]): self.assertEqual( source.get_value(day), manually_calculated[idx + 1] ) # compare a slice of the data assert_series_equal( source.get_range(days_to_use[1], days_to_use[10]), manually_calculated[1:11] ) def test_asset_not_trading(self): benchmark = self.env.asset_finder.retrieve_asset(3) benchmark_start = benchmark.start_date benchmark_end = benchmark.end_date with self.assertRaises(BenchmarkAssetNotAvailableTooEarly) as exc: BenchmarkSource( benchmark, self.trading_calendar, self.sim_params.sessions[1:], self.data_portal ) self.assertEqual( 'Equity(3 [C]) does not exist on %s. It started trading on %s.' % (self.sim_params.sessions[1], benchmark_start), exc.exception.message ) with self.assertRaises(BenchmarkAssetNotAvailableTooLate) as exc2: BenchmarkSource( benchmark, self.trading_calendar, self.sim_params.sessions[120:], self.data_portal ) self.assertEqual( 'Equity(3 [C]) does not exist on %s. It stopped trading on %s.' % (self.sim_params.sessions[-1], benchmark_end), exc2.exception.message ) def test_asset_IPOed_same_day(self): # gotta get some minute data up in here. # add sid 4 for a couple of days minutes = self.trading_calendar.minutes_for_sessions_in_range( self.sim_params.sessions[0], self.sim_params.sessions[5] ) tmp_reader = tmp_bcolz_equity_minute_bar_reader( self.trading_calendar, self.trading_calendar.all_sessions, create_minute_bar_data(minutes, [2]), ) with tmp_reader as reader: data_portal = DataPortal( self.env.asset_finder, self.trading_calendar, first_trading_day=reader.first_trading_day, equity_minute_reader=reader, equity_daily_reader=self.bcolz_equity_daily_bar_reader, adjustment_reader=self.adjustment_reader, ) source = BenchmarkSource( self.env.asset_finder.retrieve_asset(2), self.trading_calendar, self.sim_params.sessions, data_portal ) days_to_use = self.sim_params.sessions # first value should be 0.0, coming from daily data self.assertAlmostEquals(0.0, source.get_value(days_to_use[0])) manually_calculated = data_portal.get_history_window( [2], days_to_use[-1], len(days_to_use), "1d", "close", "daily", )[2].pct_change() for idx, day in enumerate(days_to_use[1:]): self.assertEqual( source.get_value(day), manually_calculated[idx + 1] ) def test_no_stock_dividends_allowed(self): # try to use sid(4) as benchmark, should blow up due to the presence # of a stock dividend with self.assertRaises(InvalidBenchmarkAsset) as exc: BenchmarkSource( self.env.asset_finder.retrieve_asset(4), self.trading_calendar, self.sim_params.sessions, self.data_portal ) self.assertEqual("Equity(4 [D]) cannot be used as the benchmark " "because it has a stock dividend on 2006-03-16 " "00:00:00. Choose another asset to use as the " "benchmark.", exc.exception.message)
apache-2.0
StuntsPT/Structure_threader
setup.py
1
3703
#!/usr/bin/python3 # Copyright 2016-2021 Francisco Pina Martins <[email protected]> # This file is part of structure_threader. # structure_threader is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # structure_threader is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with structure_threader. If not, see <http://www.gnu.org/licenses/>. import sys try: from setuptools import setup except ImportError: import ez_setup ez_setup.use_setuptools() from setuptools import setup class NotSupportedException(BaseException): pass if sys.version_info.major < 3: raise NotSupportedException("Only Python 3.x Supported") def platform_detection(install_binaries=True): """ Detect the platform and adapt the binaries location. """ if install_binaries is True: if sys.platform == "linux": bin_dir = "structure_threader/bins/linux" elif sys.platform == "darwin": bin_dir = "structure_threader/bins/osx" else: return None else: return None structure_bin = bin_dir + "/structure" faststructure_bin = bin_dir + "/fastStructure" maverick_bin = bin_dir + "/MavericK" return [('bin', [faststructure_bin, structure_bin, maverick_bin])] # Set some variables (PKGBUILD inspired) DATA_FILES = platform_detection() try: DATA_FILES[0][1].append("structure_threader/wrappers/alstructure_wrapper.R") except TypeError: DATA_FILES = [('bin', ["structure_threader/wrappers/alstructure_wrapper.R"])] VERSION = "1.3.10" URL = "https://gitlab.com/StuntsPT/Structure_threader" setup( name="structure_threader", version=VERSION, packages=["structure_threader", "structure_threader.evanno", "structure_threader.plotter", "structure_threader.sanity_checks", "structure_threader.colorer", "structure_threader.wrappers", "structure_threader.skeletons"], install_requires=["plotly>=4.1.1", "colorlover", "numpy>=1.12.1", "matplotlib"], description=("A program to parallelize runs of 'Structure', " "'fastStructure' and 'MavericK'."), url=URL, download_url="{0}/-/archive/{1}/Structure_threader-{1}.tar.gz".format(URL, VERSION), author="Francisco Pina-Martins", author_email="[email protected]", license="GPL3", classifiers=["Intended Audience :: Science/Research", "License :: OSI Approved :: GNU General Public License v3 (" "GPLv3)", "Natural Language :: English", "Operating System :: POSIX :: Linux", "Topic :: Scientific/Engineering :: Bio-Informatics", "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7"], data_files=DATA_FILES, entry_points={ "console_scripts": [ "structure_threader = structure_threader.structure_threader:main", ] }, )
gpl-3.0
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/pandas/tests/test_compat.py
9
2357
# -*- coding: utf-8 -*- """ Testing that functions from compat work as expected """ from pandas.compat import ( range, zip, map, filter, lrange, lzip, lmap, lfilter, builtins ) import unittest import nose import pandas.util.testing as tm class TestBuiltinIterators(tm.TestCase): def check_result(self, actual, expected, lengths): for (iter_res, list_res), exp, length in zip(actual, expected, lengths): self.assertNotIsInstance(iter_res, list) tm.assertIsInstance(list_res, list) iter_res = list(iter_res) self.assertEqual(len(list_res), length) self.assertEqual(len(iter_res), length) self.assertEqual(iter_res, exp) self.assertEqual(list_res, exp) def test_range(self): actual1 = range(10) actual2 = lrange(10) actual = [actual1, actual2], expected = list(builtins.range(10)), lengths = 10, actual1 = range(1, 10, 2) actual2 = lrange(1, 10, 2) actual += [actual1, actual2], lengths += 5, expected += list(builtins.range(1, 10, 2)), self.check_result(actual, expected, lengths) def test_map(self): func = lambda x, y, z: x + y + z lst = [builtins.range(10), builtins.range(10), builtins.range(10)] actual1 = map(func, *lst) actual2 = lmap(func, *lst) actual = [actual1, actual2], expected = list(builtins.map(func, *lst)), lengths = 10, self.check_result(actual, expected, lengths) def test_filter(self): func = lambda x: x lst = list(builtins.range(10)) actual1 = filter(func, lst) actual2 = lfilter(func, lst) actual = [actual1, actual2], lengths = 9, expected = list(builtins.filter(func, lst)), self.check_result(actual, expected, lengths) def test_zip(self): lst = [builtins.range(10), builtins.range(10), builtins.range(10)] actual = [zip(*lst), lzip(*lst)], expected = list(builtins.zip(*lst)), lengths = 10, self.check_result(actual, expected, lengths) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], # '--with-coverage', '--cover-package=pandas.core'], exit=False)
apache-2.0
icdishb/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <[email protected]> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
ericdill/scikit-beam-examples
demos/1_time_correlation/one-time-correlation.py
3
2993
import numpy as np from matplotlib.ticker import MaxNLocator from matplotlib.colors import LogNorm import matplotlib.pyplot as plt import matplotlib.patches as mp import skxray.core.correlation as corr import skxray.core.roi as roi # it would be great to have a link to what this multi-tau scheme is! num_levels = 7 num_bufs = 8 # load the data img_stack = np.load("100_500_NIPA_GEL.npy") # plot the first image to make sure the data loaded correctly fig, ax = plt.subplots() ax.imshow(img_stack[0]) ax.set_title("NIPA_GEL_250K") # define the ROIs roi_start = 65 # in pixels roi_width = 9 # in pixels roi_spacing = (5.0, 4.0) x_center = 7. # in pixels y_center = (129.) # in pixels num_rings = 3 # get the edges of the rings edges = roi.ring_edges(roi_start, width=roi_width, spacing=roi_spacing, num_rings=num_rings) # get the label array from the ring shaped 3 region of interests(ROI's) labeled_roi_array = roi.rings( edges, (y_center, x_center), img_stack.shape[1:]) # extarct the ROI's lables and pixel indices corresponding to those labels roi_indices, pixel_list = corr.extract_label_indices(labeled_roi_array) # define the ROIs roi_start = 65 # in pixels roi_width = 9 # in pixels roi_spacing = (5.0, 4.0) x_center = 7. # in pixels y_center = (129.) # in pixels num_rings = 3 # get the edges of the rings edges = roi.ring_edges(roi_start, width=roi_width, spacing=roi_spacing, num_rings=num_rings) # get the label array from the ring shaped 3 region of interests(ROI's) labeled_roi_array = roi.rings( edges, (y_center, x_center), img_stack.shape[1:]) # extarct the ROI's lables and pixel indices corresponding to those labels roi_indices, pixel_list = corr.extract_label_indices(labeled_roi_array) def overlay_rois(ax, inds, pix_list, img_dim, image): """ This will plot the reqiured roi's on the image """ tt = np.zeros(img_dim).ravel() * np.nan tt[pix_list] = inds im = ax.imshow(image, interpolation='none', norm=LogNorm()) im = ax.imshow(tt.reshape(*img_dim), cmap='Paired', interpolation='nearest') roi_names = ['gray', 'orange', 'brown'] tt = np.zeros(img_stack.shape[1:]).ravel() tt[pixel_list] = roi_indices fig, ax = plt.subplots() ax.set_title("NIPA_GEL_250K") overlay_rois(ax, roi_indices, pixel_list, img_stack.shape[1:], img_stack[0]) # g2 one time correlation results for 3 ROI's g2, lag_steps = corr.multi_tau_auto_corr( num_levels, num_bufs, labeled_roi_array, img_stack) # lag_staps are delays for multiple tau analysis lag_time = 0.001 lag_step = lag_steps[:g2.shape[0]] lags = lag_step*lag_time fig, axes = plt.subplots(num_rings, sharex=True, figsize=(5,10)) axes[num_rings-1].set_xlabel("lags") for i, roi_color in zip(range(num_rings), roi_names): axes[i].set_ylabel("g2") axes[i].semilogx(lags, g2[:, i], 'o', markerfacecolor=roi_color, markersize=10) axes[i].set_ylim(bottom=1, top=np.max(g2[1:, i])) plt.show()
bsd-3-clause
FireCARES/data
sources/nfirs/scripts/jupyter_notebook_config.py
1
25267
# Configuration file for jupyter-notebook. #------------------------------------------------------------------------------ # Application(SingletonConfigurable) configuration #------------------------------------------------------------------------------ ## This is an application. ## The date format used by logging formatters for %(asctime)s #c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' ## The Logging format template #c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' ## Set the log level by value or name. #c.Application.log_level = 30 #------------------------------------------------------------------------------ # JupyterApp(Application) configuration #------------------------------------------------------------------------------ ## Base class for Jupyter applications ## Answer yes to any prompts. #c.JupyterApp.answer_yes = False ## Full path of a config file. #c.JupyterApp.config_file = u'' ## Specify a config file to load. #c.JupyterApp.config_file_name = u'' ## Generate default config file. #c.JupyterApp.generate_config = False #------------------------------------------------------------------------------ # NotebookApp(JupyterApp) configuration #------------------------------------------------------------------------------ ## Set the Access-Control-Allow-Credentials: true header #c.NotebookApp.allow_credentials = False ## Set the Access-Control-Allow-Origin header # # Use '*' to allow any origin to access your server. # # Takes precedence over allow_origin_pat. #c.NotebookApp.allow_origin = '' ## Use a regular expression for the Access-Control-Allow-Origin header # # Requests from an origin matching the expression will get replies with: # # Access-Control-Allow-Origin: origin # # where `origin` is the origin of the request. # # Ignored if allow_origin is set. #c.NotebookApp.allow_origin_pat = '' ## Whether to allow the user to run the notebook as root. #c.NotebookApp.allow_root = False ## DEPRECATED use base_url #c.NotebookApp.base_project_url = '/' ## The base URL for the notebook server. # # Leading and trailing slashes can be omitted, and will automatically be added. #c.NotebookApp.base_url = '/' ## Specify what command to use to invoke a web browser when opening the notebook. # If not specified, the default browser will be determined by the `webbrowser` # standard library module, which allows setting of the BROWSER environment # variable to override it. #c.NotebookApp.browser = u'' ## The full path to an SSL/TLS certificate file. #c.NotebookApp.certfile = u'' ## The full path to a certificate authority certificate for SSL/TLS client # authentication. #c.NotebookApp.client_ca = u'' ## The config manager class to use #c.NotebookApp.config_manager_class = 'notebook.services.config.manager.ConfigManager' ## The notebook manager class to use. #c.NotebookApp.contents_manager_class = 'notebook.services.contents.largefilemanager.LargeFileManager' ## Extra keyword arguments to pass to `set_secure_cookie`. See tornado's # set_secure_cookie docs for details. #c.NotebookApp.cookie_options = {} ## The random bytes used to secure cookies. By default this is a new random # number every time you start the Notebook. Set it to a value in a config file # to enable logins to persist across server sessions. # # Note: Cookie secrets should be kept private, do not share config files with # cookie_secret stored in plaintext (you can read the value from a file). #c.NotebookApp.cookie_secret = '' ## The file where the cookie secret is stored. #c.NotebookApp.cookie_secret_file = u'' ## The default URL to redirect to from `/` #c.NotebookApp.default_url = '/tree' ## Disable cross-site-request-forgery protection # # Jupyter notebook 4.3.1 introduces protection from cross-site request # forgeries, requiring API requests to either: # # - originate from pages served by this server (validated with XSRF cookie and # token), or - authenticate with a token # # Some anonymous compute resources still desire the ability to run code, # completely without authentication. These services can disable all # authentication and security checks, with the full knowledge of what that # implies. #c.NotebookApp.disable_check_xsrf = False ## Whether to enable MathJax for typesetting math/TeX # # MathJax is the javascript library Jupyter uses to render math/LaTeX. It is # very large, so you may want to disable it if you have a slow internet # connection, or for offline use of the notebook. # # When disabled, equations etc. will appear as their untransformed TeX source. #c.NotebookApp.enable_mathjax = True ## extra paths to look for Javascript notebook extensions #c.NotebookApp.extra_nbextensions_path = [] ## Extra paths to search for serving static files. # # This allows adding javascript/css to be available from the notebook server # machine, or overriding individual files in the IPython #c.NotebookApp.extra_static_paths = [] ## Extra paths to search for serving jinja templates. # # Can be used to override templates from notebook.templates. #c.NotebookApp.extra_template_paths = [] ## #c.NotebookApp.file_to_run = '' ## Deprecated: Use minified JS file or not, mainly use during dev to avoid JS # recompilation #c.NotebookApp.ignore_minified_js = False ## (bytes/sec) Maximum rate at which stream output can be sent on iopub before # they are limited. #c.NotebookApp.iopub_data_rate_limit = 1000000 ## (msgs/sec) Maximum rate at which messages can be sent on iopub before they are # limited. #c.NotebookApp.iopub_msg_rate_limit = 1000 ## The IP address the notebook server will listen on. c.NotebookApp.ip = '192.168.33.15' ## Supply extra arguments that will be passed to Jinja environment. #c.NotebookApp.jinja_environment_options = {} ## Extra variables to supply to jinja templates when rendering. #c.NotebookApp.jinja_template_vars = {} ## The kernel manager class to use. #c.NotebookApp.kernel_manager_class = 'notebook.services.kernels.kernelmanager.MappingKernelManager' ## The kernel spec manager class to use. Should be a subclass of # `jupyter_client.kernelspec.KernelSpecManager`. # # The Api of KernelSpecManager is provisional and might change without warning # between this version of Jupyter and the next stable one. #c.NotebookApp.kernel_spec_manager_class = 'jupyter_client.kernelspec.KernelSpecManager' ## The full path to a private key file for usage with SSL/TLS. #c.NotebookApp.keyfile = u'' ## The login handler class to use. #c.NotebookApp.login_handler_class = 'notebook.auth.login.LoginHandler' ## The logout handler class to use. #c.NotebookApp.logout_handler_class = 'notebook.auth.logout.LogoutHandler' ## The MathJax.js configuration file that is to be used. #c.NotebookApp.mathjax_config = 'TeX-AMS-MML_HTMLorMML-full,Safe' ## A custom url for MathJax.js. Should be in the form of a case-sensitive url to # MathJax, for example: /static/components/MathJax/MathJax.js #c.NotebookApp.mathjax_url = '' ## Dict of Python modules to load as notebook server extensions.Entry values can # be used to enable and disable the loading ofthe extensions. The extensions # will be loaded in alphabetical order. #c.NotebookApp.nbserver_extensions = {} ## The directory to use for notebooks and kernels. #c.NotebookApp.notebook_dir = u'' ## Whether to open in a browser after starting. The specific browser used is # platform dependent and determined by the python standard library `webbrowser` # module, unless it is overridden using the --browser (NotebookApp.browser) # configuration option. c.NotebookApp.open_browser = True ## Hashed password to use for web authentication. # # To generate, type in a python/IPython shell: # # from notebook.auth import passwd; passwd() # # The string should be of the form type:salt:hashed-password. #c.NotebookApp.password = u'' ## Forces users to use a password for the Notebook server. This is useful in a # multi user environment, for instance when everybody in the LAN can access each # other's machine through ssh. # # In such a case, server the notebook server on localhost is not secure since # any user can connect to the notebook server via ssh. c.NotebookApp.password_required = False ## The port the notebook server will listen on. c.NotebookApp.port = 8007 ## The number of additional ports to try if the specified port is not available. c.NotebookApp.port_retries = 50 ## DISABLED: use %pylab or %matplotlib in the notebook to enable matplotlib. #c.NotebookApp.pylab = 'disabled' ## (sec) Time window used to check the message and data rate limits. #c.NotebookApp.rate_limit_window = 3 ## Reraise exceptions encountered loading server extensions? #c.NotebookApp.reraise_server_extension_failures = False ## DEPRECATED use the nbserver_extensions dict instead #c.NotebookApp.server_extensions = [] ## The session manager class to use. #c.NotebookApp.session_manager_class = 'notebook.services.sessions.sessionmanager.SessionManager' ## Supply SSL options for the tornado HTTPServer. See the tornado docs for # details. #c.NotebookApp.ssl_options = {} ## Supply overrides for terminado. Currently only supports "shell_command". #c.NotebookApp.terminado_settings = {} ## Token used for authenticating first-time connections to the server. # # When no password is enabled, the default is to generate a new, random token. # # Setting to an empty string disables authentication altogether, which is NOT # RECOMMENDED. #c.NotebookApp.token = '<generated>' ## Supply overrides for the tornado.web.Application that the Jupyter notebook # uses. #c.NotebookApp.tornado_settings = {} ## Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded- # For headerssent by the upstream reverse proxy. Necessary if the proxy handles # SSL #c.NotebookApp.trust_xheaders = False ## DEPRECATED, use tornado_settings #c.NotebookApp.webapp_settings = {} ## Specify Where to open the notebook on startup. This is the # `new` argument passed to the standard library method `webbrowser.open`. # The behaviour is not guaranteed, but depends on browser support. Valid # values are: # 2 opens a new tab, # 1 opens a new window, # 0 opens in an existing window. # See the `webbrowser.open` documentation for details. #c.NotebookApp.webbrowser_open_new = 2 ## Set the tornado compression options for websocket connections. # # This value will be returned from # :meth:`WebSocketHandler.get_compression_options`. None (default) will disable # compression. A dict (even an empty one) will enable compression. # # See the tornado docs for WebSocketHandler.get_compression_options for details. #c.NotebookApp.websocket_compression_options = None ## The base URL for websockets, if it differs from the HTTP server (hint: it # almost certainly doesn't). # # Should be in the form of an HTTP origin: ws[s]://hostname[:port] #c.NotebookApp.websocket_url = '' #------------------------------------------------------------------------------ # ConnectionFileMixin(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Mixin for configurable classes that work with connection files ## JSON file in which to store connection info [default: kernel-<pid>.json] # # This file will contain the IP, ports, and authentication key needed to connect # clients to this kernel. By default, this file will be created in the security # dir of the current profile, but can be specified by absolute path. #c.ConnectionFileMixin.connection_file = '' ## set the control (ROUTER) port [default: random] #c.ConnectionFileMixin.control_port = 0 ## set the heartbeat port [default: random] #c.ConnectionFileMixin.hb_port = 0 ## set the iopub (PUB) port [default: random] #c.ConnectionFileMixin.iopub_port = 0 ## Set the kernel's IP address [default localhost]. If the IP address is # something other than localhost, then Consoles on other machines will be able # to connect to the Kernel, so be careful! #c.ConnectionFileMixin.ip = u'' ## set the shell (ROUTER) port [default: random] #c.ConnectionFileMixin.shell_port = 0 ## set the stdin (ROUTER) port [default: random] #c.ConnectionFileMixin.stdin_port = 0 ## #c.ConnectionFileMixin.transport = 'tcp' #------------------------------------------------------------------------------ # KernelManager(ConnectionFileMixin) configuration #------------------------------------------------------------------------------ ## Manages a single kernel in a subprocess on this host. # # This version starts kernels with Popen. ## Should we autorestart the kernel if it dies. #c.KernelManager.autorestart = True ## DEPRECATED: Use kernel_name instead. # # The Popen Command to launch the kernel. Override this if you have a custom # kernel. If kernel_cmd is specified in a configuration file, Jupyter does not # pass any arguments to the kernel, because it cannot make any assumptions about # the arguments that the kernel understands. In particular, this means that the # kernel does not receive the option --debug if it given on the Jupyter command # line. #c.KernelManager.kernel_cmd = [] ## Time to wait for a kernel to terminate before killing it, in seconds. #c.KernelManager.shutdown_wait_time = 5.0 #------------------------------------------------------------------------------ # Session(Configurable) configuration #------------------------------------------------------------------------------ ## Object for handling serialization and sending of messages. # # The Session object handles building messages and sending them with ZMQ sockets # or ZMQStream objects. Objects can communicate with each other over the # network via Session objects, and only need to work with the dict-based IPython # message spec. The Session will handle serialization/deserialization, security, # and metadata. # # Sessions support configurable serialization via packer/unpacker traits, and # signing with HMAC digests via the key/keyfile traits. # # Parameters ---------- # # debug : bool # whether to trigger extra debugging statements # packer/unpacker : str : 'json', 'pickle' or import_string # importstrings for methods to serialize message parts. If just # 'json' or 'pickle', predefined JSON and pickle packers will be used. # Otherwise, the entire importstring must be used. # # The functions must accept at least valid JSON input, and output *bytes*. # # For example, to use msgpack: # packer = 'msgpack.packb', unpacker='msgpack.unpackb' # pack/unpack : callables # You can also set the pack/unpack callables for serialization directly. # session : bytes # the ID of this Session object. The default is to generate a new UUID. # username : unicode # username added to message headers. The default is to ask the OS. # key : bytes # The key used to initialize an HMAC signature. If unset, messages # will not be signed or checked. # keyfile : filepath # The file containing a key. If this is set, `key` will be initialized # to the contents of the file. ## Threshold (in bytes) beyond which an object's buffer should be extracted to # avoid pickling. #c.Session.buffer_threshold = 1024 ## Whether to check PID to protect against calls after fork. # # This check can be disabled if fork-safety is handled elsewhere. #c.Session.check_pid = True ## Threshold (in bytes) beyond which a buffer should be sent without copying. #c.Session.copy_threshold = 65536 ## Debug output in the Session #c.Session.debug = False ## The maximum number of digests to remember. # # The digest history will be culled when it exceeds this value. #c.Session.digest_history_size = 65536 ## The maximum number of items for a container to be introspected for custom # serialization. Containers larger than this are pickled outright. #c.Session.item_threshold = 64 ## execution key, for signing messages. #c.Session.key = '' ## path to file containing execution key. #c.Session.keyfile = '' ## Metadata dictionary, which serves as the default top-level metadata dict for # each message. #c.Session.metadata = {} ## The name of the packer for serializing messages. Should be one of 'json', # 'pickle', or an import name for a custom callable serializer. #c.Session.packer = 'json' ## The UUID identifying this session. #c.Session.session = u'' ## The digest scheme used to construct the message signatures. Must have the form # 'hmac-HASH'. #c.Session.signature_scheme = 'hmac-sha256' ## The name of the unpacker for unserializing messages. Only used with custom # functions for `packer`. #c.Session.unpacker = 'json' ## Username for the Session. Default is your system username. #c.Session.username = u'vagrant' #------------------------------------------------------------------------------ # MultiKernelManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for managing multiple kernels. ## The name of the default kernel to start #c.MultiKernelManager.default_kernel_name = 'python2' ## The kernel manager class. This is configurable to allow subclassing of the # KernelManager for customized behavior. #c.MultiKernelManager.kernel_manager_class = 'jupyter_client.ioloop.IOLoopKernelManager' #------------------------------------------------------------------------------ # MappingKernelManager(MultiKernelManager) configuration #------------------------------------------------------------------------------ ## A KernelManager that handles notebook mapping and HTTP error handling ## Whether messages from kernels whose frontends have disconnected should be # buffered in-memory. # # When True (default), messages are buffered and replayed on reconnect, avoiding # lost messages due to interrupted connectivity. # # Disable if long-running kernels will produce too much output while no # frontends are connected. #c.MappingKernelManager.buffer_offline_messages = True ## Whether to consider culling kernels which are busy. Only effective if # cull_idle_timeout is not 0. #c.MappingKernelManager.cull_busy = False ## Whether to consider culling kernels which have one or more connections. Only # effective if cull_idle_timeout is not 0. #c.MappingKernelManager.cull_connected = False ## Timeout (in seconds) after which a kernel is considered idle and ready to be # culled. Values of 0 or lower disable culling. The minimum timeout is 300 # seconds (5 minutes). Positive values less than the minimum value will be set # to the minimum. #c.MappingKernelManager.cull_idle_timeout = 0 ## The interval (in seconds) on which to check for idle kernels exceeding the # cull timeout value. #c.MappingKernelManager.cull_interval = 300 ## #c.MappingKernelManager.root_dir = u'' #------------------------------------------------------------------------------ # ContentsManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## Base class for serving files and directories. # # This serves any text or binary file, as well as directories, with special # handling for JSON notebook documents. # # Most APIs take a path argument, which is always an API-style unicode path, and # always refers to a directory. # # - unicode, not url-escaped # - '/'-separated # - leading and trailing '/' will be stripped # - if unspecified, path defaults to '', # indicating the root path. ## #c.ContentsManager.checkpoints = None ## #c.ContentsManager.checkpoints_class = 'notebook.services.contents.checkpoints.Checkpoints' ## #c.ContentsManager.checkpoints_kwargs = {} ## handler class to use when serving raw file requests. # # Default is a fallback that talks to the ContentsManager API, which may be # inefficient, especially for large files. # # Local files-based ContentsManagers can use a StaticFileHandler subclass, which # will be much more efficient. # # Access to these files should be Authenticated. #c.ContentsManager.files_handler_class = 'notebook.files.handlers.FilesHandler' ## Extra parameters to pass to files_handler_class. # # For example, StaticFileHandlers generally expect a `path` argument specifying # the root directory from which to serve files. #c.ContentsManager.files_handler_params = {} ## Glob patterns to hide in file and directory listings. #c.ContentsManager.hide_globs = [u'__pycache__', '*.pyc', '*.pyo', '.DS_Store', '*.so', '*.dylib', '*~'] ## Python callable or importstring thereof # # To be called on a contents model prior to save. # # This can be used to process the structure, such as removing notebook outputs # or other side effects that should not be saved. # # It will be called as (all arguments passed by keyword):: # # hook(path=path, model=model, contents_manager=self) # # - model: the model to be saved. Includes file contents. # Modifying this dict will affect the file that is stored. # - path: the API path of the save destination # - contents_manager: this ContentsManager instance #c.ContentsManager.pre_save_hook = None ## #c.ContentsManager.root_dir = '/' ## The base name used when creating untitled directories. #c.ContentsManager.untitled_directory = 'Untitled Folder' ## The base name used when creating untitled files. #c.ContentsManager.untitled_file = 'untitled' ## The base name used when creating untitled notebooks. #c.ContentsManager.untitled_notebook = 'Untitled' #------------------------------------------------------------------------------ # FileManagerMixin(Configurable) configuration #------------------------------------------------------------------------------ ## Mixin for ContentsAPI classes that interact with the filesystem. # # Provides facilities for reading, writing, and copying both notebooks and # generic files. # # Shared by FileContentsManager and FileCheckpoints. # # Note ---- Classes using this mixin must provide the following attributes: # # root_dir : unicode # A directory against against which API-style paths are to be resolved. # # log : logging.Logger ## By default notebooks are saved on disk on a temporary file and then if # succefully written, it replaces the old ones. This procedure, namely # 'atomic_writing', causes some bugs on file system whitout operation order # enforcement (like some networked fs). If set to False, the new notebook is # written directly on the old one which could fail (eg: full filesystem or quota # ) #c.FileManagerMixin.use_atomic_writing = True #------------------------------------------------------------------------------ # FileContentsManager(FileManagerMixin,ContentsManager) configuration #------------------------------------------------------------------------------ ## Python callable or importstring thereof # # to be called on the path of a file just saved. # # This can be used to process the file on disk, such as converting the notebook # to a script or HTML via nbconvert. # # It will be called as (all arguments passed by keyword):: # # hook(os_path=os_path, model=model, contents_manager=instance) # # - path: the filesystem path to the file just written - model: the model # representing the file - contents_manager: this ContentsManager instance #c.FileContentsManager.post_save_hook = None ## #c.FileContentsManager.root_dir = u'' ## DEPRECATED, use post_save_hook. Will be removed in Notebook 5.0 #c.FileContentsManager.save_script = False #------------------------------------------------------------------------------ # NotebookNotary(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## A class for computing and verifying notebook signatures. ## The hashing algorithm used to sign notebooks. #c.NotebookNotary.algorithm = 'sha256' ## The sqlite file in which to store notebook signatures. By default, this will # be in your Jupyter data directory. You can set it to ':memory:' to disable # sqlite writing to the filesystem. #c.NotebookNotary.db_file = u'' ## The secret key with which notebooks are signed. #c.NotebookNotary.secret = '' ## The file where the secret key is stored. #c.NotebookNotary.secret_file = u'' ## A callable returning the storage backend for notebook signatures. The default # uses an SQLite database. #c.NotebookNotary.store_factory = traitlets.Undefined #------------------------------------------------------------------------------ # KernelSpecManager(LoggingConfigurable) configuration #------------------------------------------------------------------------------ ## If there is no Python kernelspec registered and the IPython kernel is # available, ensure it is added to the spec list. #c.KernelSpecManager.ensure_native_kernel = True ## The kernel spec class. This is configurable to allow subclassing of the # KernelSpecManager for customized behavior. #c.KernelSpecManager.kernel_spec_class = 'jupyter_client.kernelspec.KernelSpec' ## Whitelist of allowed kernel names. # # By default, all installed kernels are allowed. #c.KernelSpecManager.whitelist = set([])
mit
Aegeaner/spark
python/pyspark/sql/functions.py
1
134163
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ A collections of builtin functions """ import sys import functools import warnings if sys.version < "3": from itertools import imap as map if sys.version >= '3': basestring = str from pyspark import since, SparkContext from pyspark.rdd import ignore_unicode_prefix, PythonEvalType from pyspark.sql.column import Column, _to_java_column, _to_seq, _create_column_from_literal from pyspark.sql.dataframe import DataFrame from pyspark.sql.types import StringType, DataType # Keep UserDefinedFunction import for backwards compatible import; moved in SPARK-22409 from pyspark.sql.udf import UserDefinedFunction, _create_udf def _create_name_function(name, doc=""): """ Create a function that takes a column name argument, by name""" def _(col): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col) return Column(jc) _.__name__ = name _.__doc__ = doc return _ def _create_function(name, doc=""): """ Create a function that takes a Column object, by name""" def _(col): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.functions, name)(_to_java_column(col)) return Column(jc) _.__name__ = name _.__doc__ = doc return _ def _wrap_deprecated_function(func, message): """ Wrap the deprecated function to print out deprecation warnings""" def _(col): warnings.warn(message, DeprecationWarning) return func(col) return functools.wraps(func)(_) def _create_binary_mathfunction(name, doc=""): """ Create a binary mathfunction by name""" def _(col1, col2): sc = SparkContext._active_spark_context # users might write ints for simplicity. This would throw an error on the JVM side. jc = getattr(sc._jvm.functions, name)(col1._jc if isinstance(col1, Column) else float(col1), col2._jc if isinstance(col2, Column) else float(col2)) return Column(jc) _.__name__ = name _.__doc__ = doc return _ def _create_window_function(name, doc=''): """ Create a window function by name """ def _(): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.functions, name)() return Column(jc) _.__name__ = name _.__doc__ = 'Window function: ' + doc return _ _lit_doc = """ Creates a :class:`Column` of literal value. >>> df.select(lit(5).alias('height')).withColumn('spark_user', lit(True)).take(1) [Row(height=5, spark_user=True)] """ _name_functions = { # name functions take a column name as their argument 'lit': _lit_doc, 'col': 'Returns a :class:`Column` based on the given column name.', 'column': 'Returns a :class:`Column` based on the given column name.', 'asc': 'Returns a sort expression based on the ascending order of the given column name.', 'desc': 'Returns a sort expression based on the descending order of the given column name.', } _functions = { 'upper': 'Converts a string expression to upper case.', 'lower': 'Converts a string expression to upper case.', 'sqrt': 'Computes the square root of the specified float value.', 'abs': 'Computes the absolute value.', 'max': 'Aggregate function: returns the maximum value of the expression in a group.', 'min': 'Aggregate function: returns the minimum value of the expression in a group.', 'count': 'Aggregate function: returns the number of items in a group.', 'sum': 'Aggregate function: returns the sum of all values in the expression.', 'avg': 'Aggregate function: returns the average of the values in a group.', 'mean': 'Aggregate function: returns the average of the values in a group.', 'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.', } _functions_1_4 = { # unary math functions 'acos': ':return: inverse cosine of `col`, as if computed by `java.lang.Math.acos()`', 'asin': ':return: inverse sine of `col`, as if computed by `java.lang.Math.asin()`', 'atan': ':return: inverse tangent of `col`, as if computed by `java.lang.Math.atan()`', 'cbrt': 'Computes the cube-root of the given value.', 'ceil': 'Computes the ceiling of the given value.', 'cos': """:param col: angle in radians :return: cosine of the angle, as if computed by `java.lang.Math.cos()`.""", 'cosh': """:param col: hyperbolic angle :return: hyperbolic cosine of the angle, as if computed by `java.lang.Math.cosh()`""", 'exp': 'Computes the exponential of the given value.', 'expm1': 'Computes the exponential of the given value minus one.', 'floor': 'Computes the floor of the given value.', 'log': 'Computes the natural logarithm of the given value.', 'log10': 'Computes the logarithm of the given value in Base 10.', 'log1p': 'Computes the natural logarithm of the given value plus one.', 'rint': 'Returns the double value that is closest in value to the argument and' + ' is equal to a mathematical integer.', 'signum': 'Computes the signum of the given value.', 'sin': """:param col: angle in radians :return: sine of the angle, as if computed by `java.lang.Math.sin()`""", 'sinh': """:param col: hyperbolic angle :return: hyperbolic sine of the given value, as if computed by `java.lang.Math.sinh()`""", 'tan': """:param col: angle in radians :return: tangent of the given value, as if computed by `java.lang.Math.tan()`""", 'tanh': """:param col: hyperbolic angle :return: hyperbolic tangent of the given value, as if computed by `java.lang.Math.tanh()`""", 'toDegrees': '.. note:: Deprecated in 2.1, use :func:`degrees` instead.', 'toRadians': '.. note:: Deprecated in 2.1, use :func:`radians` instead.', 'bitwiseNOT': 'Computes bitwise not.', } _name_functions_2_4 = { 'asc_nulls_first': 'Returns a sort expression based on the ascending order of the given' + ' column name, and null values return before non-null values.', 'asc_nulls_last': 'Returns a sort expression based on the ascending order of the given' + ' column name, and null values appear after non-null values.', 'desc_nulls_first': 'Returns a sort expression based on the descending order of the given' + ' column name, and null values appear before non-null values.', 'desc_nulls_last': 'Returns a sort expression based on the descending order of the given' + ' column name, and null values appear after non-null values', } _collect_list_doc = """ Aggregate function: returns a list of objects with duplicates. .. note:: The function is non-deterministic because the order of collected results depends on order of rows which may be non-deterministic after a shuffle. >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_list('age')).collect() [Row(collect_list(age)=[2, 5, 5])] """ _collect_set_doc = """ Aggregate function: returns a set of objects with duplicate elements eliminated. .. note:: The function is non-deterministic because the order of collected results depends on order of rows which may be non-deterministic after a shuffle. >>> df2 = spark.createDataFrame([(2,), (5,), (5,)], ('age',)) >>> df2.agg(collect_set('age')).collect() [Row(collect_set(age)=[5, 2])] """ _functions_1_6 = { # unary math functions 'stddev': 'Aggregate function: returns the unbiased sample standard deviation of' + ' the expression in a group.', 'stddev_samp': 'Aggregate function: returns the unbiased sample standard deviation of' + ' the expression in a group.', 'stddev_pop': 'Aggregate function: returns population standard deviation of' + ' the expression in a group.', 'variance': 'Aggregate function: returns the population variance of the values in a group.', 'var_samp': 'Aggregate function: returns the unbiased variance of the values in a group.', 'var_pop': 'Aggregate function: returns the population variance of the values in a group.', 'skewness': 'Aggregate function: returns the skewness of the values in a group.', 'kurtosis': 'Aggregate function: returns the kurtosis of the values in a group.', 'collect_list': _collect_list_doc, 'collect_set': _collect_set_doc } _functions_2_1 = { # unary math functions 'degrees': """ Converts an angle measured in radians to an approximately equivalent angle measured in degrees. :param col: angle in radians :return: angle in degrees, as if computed by `java.lang.Math.toDegrees()` """, 'radians': """ Converts an angle measured in degrees to an approximately equivalent angle measured in radians. :param col: angle in degrees :return: angle in radians, as if computed by `java.lang.Math.toRadians()` """, } # math functions that take two arguments as input _binary_mathfunctions = { 'atan2': """ :param col1: coordinate on y-axis :param col2: coordinate on x-axis :return: the `theta` component of the point (`r`, `theta`) in polar coordinates that corresponds to the point (`x`, `y`) in Cartesian coordinates, as if computed by `java.lang.Math.atan2()` """, 'hypot': 'Computes ``sqrt(a^2 + b^2)`` without intermediate overflow or underflow.', 'pow': 'Returns the value of the first argument raised to the power of the second argument.', } _window_functions = { 'row_number': """returns a sequential number starting at 1 within a window partition.""", 'dense_rank': """returns the rank of rows within a window partition, without any gaps. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the DENSE_RANK function in SQL.""", 'rank': """returns the rank of rows within a window partition. The difference between rank and dense_rank is that dense_rank leaves no gaps in ranking sequence when there are ties. That is, if you were ranking a competition using dense_rank and had three people tie for second place, you would say that all three were in second place and that the next person came in third. Rank would give me sequential numbers, making the person that came in third place (after the ties) would register as coming in fifth. This is equivalent to the RANK function in SQL.""", 'cume_dist': """returns the cumulative distribution of values within a window partition, i.e. the fraction of rows that are below the current row.""", 'percent_rank': """returns the relative rank (i.e. percentile) of rows within a window partition.""", } # Wraps deprecated functions (keys) with the messages (values). _functions_deprecated = { } for _name, _doc in _name_functions.items(): globals()[_name] = since(1.3)(_create_name_function(_name, _doc)) for _name, _doc in _functions.items(): globals()[_name] = since(1.3)(_create_function(_name, _doc)) for _name, _doc in _functions_1_4.items(): globals()[_name] = since(1.4)(_create_function(_name, _doc)) for _name, _doc in _binary_mathfunctions.items(): globals()[_name] = since(1.4)(_create_binary_mathfunction(_name, _doc)) for _name, _doc in _window_functions.items(): globals()[_name] = since(1.6)(_create_window_function(_name, _doc)) for _name, _doc in _functions_1_6.items(): globals()[_name] = since(1.6)(_create_function(_name, _doc)) for _name, _doc in _functions_2_1.items(): globals()[_name] = since(2.1)(_create_function(_name, _doc)) for _name, _message in _functions_deprecated.items(): globals()[_name] = _wrap_deprecated_function(globals()[_name], _message) for _name, _doc in _name_functions_2_4.items(): globals()[_name] = since(2.4)(_create_name_function(_name, _doc)) del _name, _doc @since(2.1) def approx_count_distinct(col, rsd=None): """Aggregate function: returns a new :class:`Column` for approximate distinct count of column `col`. :param rsd: maximum estimation error allowed (default = 0.05). For rsd < 0.01, it is more efficient to use :func:`countDistinct` >>> df.agg(approx_count_distinct(df.age).alias('distinct_ages')).collect() [Row(distinct_ages=2)] """ sc = SparkContext._active_spark_context if rsd is None: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col)) else: jc = sc._jvm.functions.approx_count_distinct(_to_java_column(col), rsd) return Column(jc) @since(1.6) def broadcast(df): """Marks a DataFrame as small enough for use in broadcast joins.""" sc = SparkContext._active_spark_context return DataFrame(sc._jvm.functions.broadcast(df._jdf), df.sql_ctx) @since(1.4) def coalesce(*cols): """Returns the first column that is not null. >>> cDf = spark.createDataFrame([(None, None), (1, None), (None, 2)], ("a", "b")) >>> cDf.show() +----+----+ | a| b| +----+----+ |null|null| | 1|null| |null| 2| +----+----+ >>> cDf.select(coalesce(cDf["a"], cDf["b"])).show() +--------------+ |coalesce(a, b)| +--------------+ | null| | 1| | 2| +--------------+ >>> cDf.select('*', coalesce(cDf["a"], lit(0.0))).show() +----+----+----------------+ | a| b|coalesce(a, 0.0)| +----+----+----------------+ |null|null| 0.0| | 1|null| 1.0| |null| 2| 0.0| +----+----+----------------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.coalesce(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.6) def corr(col1, col2): """Returns a new :class:`Column` for the Pearson Correlation Coefficient for ``col1`` and ``col2``. >>> a = range(20) >>> b = [2 * x for x in range(20)] >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(corr("a", "b").alias('c')).collect() [Row(c=1.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.corr(_to_java_column(col1), _to_java_column(col2))) @since(2.0) def covar_pop(col1, col2): """Returns a new :class:`Column` for the population covariance of ``col1`` and ``col2``. >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_pop("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_pop(_to_java_column(col1), _to_java_column(col2))) @since(2.0) def covar_samp(col1, col2): """Returns a new :class:`Column` for the sample covariance of ``col1`` and ``col2``. >>> a = [1] * 10 >>> b = [1] * 10 >>> df = spark.createDataFrame(zip(a, b), ["a", "b"]) >>> df.agg(covar_samp("a", "b").alias('c')).collect() [Row(c=0.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.covar_samp(_to_java_column(col1), _to_java_column(col2))) @since(1.3) def countDistinct(col, *cols): """Returns a new :class:`Column` for distinct count of ``col`` or ``cols``. >>> df.agg(countDistinct(df.age, df.name).alias('c')).collect() [Row(c=2)] >>> df.agg(countDistinct("age", "name").alias('c')).collect() [Row(c=2)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.countDistinct(_to_java_column(col), _to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.3) def first(col, ignorenulls=False): """Aggregate function: returns the first value in a group. The function by default returns the first values it sees. It will return the first non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. note:: The function is non-deterministic because its results depends on order of rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.first(_to_java_column(col), ignorenulls) return Column(jc) @since(2.0) def grouping(col): """ Aggregate function: indicates whether a specified column in a GROUP BY list is aggregated or not, returns 1 for aggregated or 0 for not aggregated in the result set. >>> df.cube("name").agg(grouping("name"), sum("age")).orderBy("name").show() +-----+--------------+--------+ | name|grouping(name)|sum(age)| +-----+--------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+--------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping(_to_java_column(col)) return Column(jc) @since(2.0) def grouping_id(*cols): """ Aggregate function: returns the level of grouping, equals to (grouping(c1) << (n-1)) + (grouping(c2) << (n-2)) + ... + grouping(cn) .. note:: The list of columns should match with grouping columns exactly, or empty (means all the grouping columns). >>> df.cube("name").agg(grouping_id(), sum("age")).orderBy("name").show() +-----+-------------+--------+ | name|grouping_id()|sum(age)| +-----+-------------+--------+ | null| 1| 7| |Alice| 0| 2| | Bob| 0| 5| +-----+-------------+--------+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.grouping_id(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.6) def input_file_name(): """Creates a string column for the file name of the current Spark task. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.input_file_name()) @since(1.6) def isnan(col): """An expression that returns true iff the column is NaN. >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(isnan("a").alias("r1"), isnan(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnan(_to_java_column(col))) @since(1.6) def isnull(col): """An expression that returns true iff the column is null. >>> df = spark.createDataFrame([(1, None), (None, 2)], ("a", "b")) >>> df.select(isnull("a").alias("r1"), isnull(df.a).alias("r2")).collect() [Row(r1=False, r2=False), Row(r1=True, r2=True)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.isnull(_to_java_column(col))) @since(1.3) def last(col, ignorenulls=False): """Aggregate function: returns the last value in a group. The function by default returns the last values it sees. It will return the last non-null value it sees when ignoreNulls is set to true. If all values are null, then null is returned. .. note:: The function is non-deterministic because its results depends on order of rows which may be non-deterministic after a shuffle. """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.last(_to_java_column(col), ignorenulls) return Column(jc) @since(1.6) def monotonically_increasing_id(): """A column that generates monotonically increasing 64-bit integers. The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive. The current implementation puts the partition ID in the upper 31 bits, and the record number within each partition in the lower 33 bits. The assumption is that the data frame has less than 1 billion partitions, and each partition has less than 8 billion records. .. note:: The function is non-deterministic because its result depends on partition IDs. As an example, consider a :class:`DataFrame` with two partitions, each with 3 records. This expression would return the following IDs: 0, 1, 2, 8589934592 (1L << 33), 8589934593, 8589934594. >>> df0 = sc.parallelize(range(2), 2).mapPartitions(lambda x: [(1,), (2,), (3,)]).toDF(['col1']) >>> df0.select(monotonically_increasing_id().alias('id')).collect() [Row(id=0), Row(id=1), Row(id=2), Row(id=8589934592), Row(id=8589934593), Row(id=8589934594)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.monotonically_increasing_id()) @since(1.6) def nanvl(col1, col2): """Returns col1 if it is not NaN, or col2 if col1 is NaN. Both inputs should be floating point columns (:class:`DoubleType` or :class:`FloatType`). >>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.nanvl(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(1.4) def rand(seed=None): """Generates a random column with independent and identically distributed (i.i.d.) samples from U[0.0, 1.0]. .. note:: The function is non-deterministic in general case. >>> df.withColumn('rand', rand(seed=42) * 3).collect() [Row(age=2, name=u'Alice', rand=1.1568609015300986), Row(age=5, name=u'Bob', rand=1.403379671529166)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.rand(seed) else: jc = sc._jvm.functions.rand() return Column(jc) @ignore_unicode_prefix @since(1.4) def randn(seed=None): """Generates a column with independent and identically distributed (i.i.d.) samples from the standard normal distribution. .. note:: The function is non-deterministic in general case. >>> df.withColumn('randn', randn(seed=42)).collect() [Row(age=2, name=u'Alice', randn=-0.7556247885860078), Row(age=5, name=u'Bob', randn=-0.0861619008451133)] """ sc = SparkContext._active_spark_context if seed is not None: jc = sc._jvm.functions.randn(seed) else: jc = sc._jvm.functions.randn() return Column(jc) @since(1.5) def round(col, scale=0): """ Round the given value to `scale` decimal places using HALF_UP rounding mode if `scale` >= 0 or at integral part when `scale` < 0. >>> spark.createDataFrame([(2.5,)], ['a']).select(round('a', 0).alias('r')).collect() [Row(r=3.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.round(_to_java_column(col), scale)) @since(2.0) def bround(col, scale=0): """ Round the given value to `scale` decimal places using HALF_EVEN rounding mode if `scale` >= 0 or at integral part when `scale` < 0. >>> spark.createDataFrame([(2.5,)], ['a']).select(bround('a', 0).alias('r')).collect() [Row(r=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.bround(_to_java_column(col), scale)) @since(1.5) def shiftLeft(col, numBits): """Shift the given value numBits left. >>> spark.createDataFrame([(21,)], ['a']).select(shiftLeft('a', 1).alias('r')).collect() [Row(r=42)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shiftLeft(_to_java_column(col), numBits)) @since(1.5) def shiftRight(col, numBits): """(Signed) shift the given value numBits right. >>> spark.createDataFrame([(42,)], ['a']).select(shiftRight('a', 1).alias('r')).collect() [Row(r=21)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRight(_to_java_column(col), numBits) return Column(jc) @since(1.5) def shiftRightUnsigned(col, numBits): """Unsigned shift the given value numBits right. >>> df = spark.createDataFrame([(-42,)], ['a']) >>> df.select(shiftRightUnsigned('a', 1).alias('r')).collect() [Row(r=9223372036854775787)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.shiftRightUnsigned(_to_java_column(col), numBits) return Column(jc) @since(1.6) def spark_partition_id(): """A column for partition ID. .. note:: This is indeterministic because it depends on data partitioning and task scheduling. >>> df.repartition(1).select(spark_partition_id().alias("pid")).collect() [Row(pid=0), Row(pid=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.spark_partition_id()) @since(1.5) def expr(str): """Parses the expression string into the column that it represents >>> df.select(expr("length(name)")).collect() [Row(length(name)=5), Row(length(name)=3)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.expr(str)) @ignore_unicode_prefix @since(1.4) def struct(*cols): """Creates a new struct column. :param cols: list of column names (string) or list of :class:`Column` expressions >>> df.select(struct('age', 'name').alias("struct")).collect() [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))] >>> df.select(struct([df.age, df.name]).alias("struct")).collect() [Row(struct=Row(age=2, name=u'Alice')), Row(struct=Row(age=5, name=u'Bob'))] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.struct(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.5) def greatest(*cols): """ Returns the greatest value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(greatest(df.a, df.b, df.c).alias("greatest")).collect() [Row(greatest=4)] """ if len(cols) < 2: raise ValueError("greatest should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.greatest(_to_seq(sc, cols, _to_java_column))) @since(1.5) def least(*cols): """ Returns the least value of the list of column names, skipping null values. This function takes at least 2 parameters. It will return null iff all parameters are null. >>> df = spark.createDataFrame([(1, 4, 3)], ['a', 'b', 'c']) >>> df.select(least(df.a, df.b, df.c).alias("least")).collect() [Row(least=1)] """ if len(cols) < 2: raise ValueError("least should take at least two columns") sc = SparkContext._active_spark_context return Column(sc._jvm.functions.least(_to_seq(sc, cols, _to_java_column))) @since(1.4) def when(condition, value): """Evaluates a list of conditions and returns one of multiple possible result expressions. If :func:`Column.otherwise` is not invoked, None is returned for unmatched conditions. :param condition: a boolean :class:`Column` expression. :param value: a literal value, or a :class:`Column` expression. >>> df.select(when(df['age'] == 2, 3).otherwise(4).alias("age")).collect() [Row(age=3), Row(age=4)] >>> df.select(when(df.age == 2, df.age + 1).alias("age")).collect() [Row(age=3), Row(age=None)] """ sc = SparkContext._active_spark_context if not isinstance(condition, Column): raise TypeError("condition should be a Column") v = value._jc if isinstance(value, Column) else value jc = sc._jvm.functions.when(condition._jc, v) return Column(jc) @since(1.5) def log(arg1, arg2=None): """Returns the first argument-based logarithm of the second argument. If there is only one argument, then this takes the natural logarithm of the argument. >>> df.select(log(10.0, df.age).alias('ten')).rdd.map(lambda l: str(l.ten)[:7]).collect() ['0.30102', '0.69897'] >>> df.select(log(df.age).alias('e')).rdd.map(lambda l: str(l.e)[:7]).collect() ['0.69314', '1.60943'] """ sc = SparkContext._active_spark_context if arg2 is None: jc = sc._jvm.functions.log(_to_java_column(arg1)) else: jc = sc._jvm.functions.log(arg1, _to_java_column(arg2)) return Column(jc) @since(1.5) def log2(col): """Returns the base-2 logarithm of the argument. >>> spark.createDataFrame([(4,)], ['a']).select(log2('a').alias('log2')).collect() [Row(log2=2.0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.log2(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def conv(col, fromBase, toBase): """ Convert a number in a string column from one base to another. >>> df = spark.createDataFrame([("010101",)], ['n']) >>> df.select(conv(df.n, 2, 16).alias('hex')).collect() [Row(hex=u'15')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.conv(_to_java_column(col), fromBase, toBase)) @since(1.5) def factorial(col): """ Computes the factorial of the given value. >>> df = spark.createDataFrame([(5,)], ['n']) >>> df.select(factorial(df.n).alias('f')).collect() [Row(f=120)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.factorial(_to_java_column(col))) # --------------- Window functions ------------------------ @since(1.4) def lag(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows before the current row, and `defaultValue` if there is less than `offset` rows before the current row. For example, an `offset` of one will return the previous row at any given point in the window partition. This is equivalent to the LAG function in SQL. :param col: name of column or expression :param offset: number of row to extend :param default: default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lag(_to_java_column(col), offset, default)) @since(1.4) def lead(col, offset=1, default=None): """ Window function: returns the value that is `offset` rows after the current row, and `defaultValue` if there is less than `offset` rows after the current row. For example, an `offset` of one will return the next row at any given point in the window partition. This is equivalent to the LEAD function in SQL. :param col: name of column or expression :param offset: number of row to extend :param default: default value """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lead(_to_java_column(col), offset, default)) @since(1.4) def ntile(n): """ Window function: returns the ntile group id (from 1 to `n` inclusive) in an ordered window partition. For example, if `n` is 4, the first quarter of the rows will get value 1, the second quarter will get 2, the third quarter will get 3, and the last quarter will get 4. This is equivalent to the NTILE function in SQL. :param n: an integer """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.ntile(int(n))) # ---------------------- Date/Timestamp functions ------------------------------ @since(1.5) def current_date(): """ Returns the current date as a :class:`DateType` column. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_date()) def current_timestamp(): """ Returns the current timestamp as a :class:`TimestampType` column. """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.current_timestamp()) @ignore_unicode_prefix @since(1.5) def date_format(date, format): """ Converts a date/timestamp/string to a value of string in the format specified by the date format given by the second argument. A pattern could be for instance `dd.MM.yyyy` and could return a string like '18.03.1993'. All pattern letters of the Java class `java.time.format.DateTimeFormatter` can be used. .. note:: Use when ever possible specialized functions like `year`. These benefit from a specialized implementation. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_format('dt', 'MM/dd/yyy').alias('date')).collect() [Row(date=u'04/08/2015')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_format(_to_java_column(date), format)) @since(1.5) def year(col): """ Extract the year of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(year('dt').alias('year')).collect() [Row(year=2015)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.year(_to_java_column(col))) @since(1.5) def quarter(col): """ Extract the quarter of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(quarter('dt').alias('quarter')).collect() [Row(quarter=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.quarter(_to_java_column(col))) @since(1.5) def month(col): """ Extract the month of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(month('dt').alias('month')).collect() [Row(month=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.month(_to_java_column(col))) @since(2.3) def dayofweek(col): """ Extract the day of the week of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofweek('dt').alias('day')).collect() [Row(day=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofweek(_to_java_column(col))) @since(1.5) def dayofmonth(col): """ Extract the day of the month of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofmonth('dt').alias('day')).collect() [Row(day=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofmonth(_to_java_column(col))) @since(1.5) def dayofyear(col): """ Extract the day of the year of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(dayofyear('dt').alias('day')).collect() [Row(day=98)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.dayofyear(_to_java_column(col))) @since(1.5) def hour(col): """ Extract the hours of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(hour('ts').alias('hour')).collect() [Row(hour=13)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.hour(_to_java_column(col))) @since(1.5) def minute(col): """ Extract the minutes of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(minute('ts').alias('minute')).collect() [Row(minute=8)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.minute(_to_java_column(col))) @since(1.5) def second(col): """ Extract the seconds of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08 13:08:15',)], ['ts']) >>> df.select(second('ts').alias('second')).collect() [Row(second=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.second(_to_java_column(col))) @since(1.5) def weekofyear(col): """ Extract the week number of a given date as integer. >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(weekofyear(df.dt).alias('week')).collect() [Row(week=15)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.weekofyear(_to_java_column(col))) @since(1.5) def date_add(start, days): """ Returns the date that is `days` days after `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_add(df.dt, 1).alias('next_date')).collect() [Row(next_date=datetime.date(2015, 4, 9))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_add(_to_java_column(start), days)) @since(1.5) def date_sub(start, days): """ Returns the date that is `days` days before `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(date_sub(df.dt, 1).alias('prev_date')).collect() [Row(prev_date=datetime.date(2015, 4, 7))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_sub(_to_java_column(start), days)) @since(1.5) def datediff(end, start): """ Returns the number of days from `start` to `end`. >>> df = spark.createDataFrame([('2015-04-08','2015-05-10')], ['d1', 'd2']) >>> df.select(datediff(df.d2, df.d1).alias('diff')).collect() [Row(diff=32)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.datediff(_to_java_column(end), _to_java_column(start))) @since(1.5) def add_months(start, months): """ Returns the date that is `months` months after `start` >>> df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> df.select(add_months(df.dt, 1).alias('next_month')).collect() [Row(next_month=datetime.date(2015, 5, 8))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.add_months(_to_java_column(start), months)) @since(1.5) def months_between(date1, date2, roundOff=True): """ Returns number of months between dates date1 and date2. If date1 is later than date2, then the result is positive. If date1 and date2 are on the same day of month, or both are the last day of month, returns an integer (time of day will be ignored). The result is rounded off to 8 digits unless `roundOff` is set to `False`. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', '1996-10-30')], ['date1', 'date2']) >>> df.select(months_between(df.date1, df.date2).alias('months')).collect() [Row(months=3.94959677)] >>> df.select(months_between(df.date1, df.date2, False).alias('months')).collect() [Row(months=3.9495967741935485)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.months_between( _to_java_column(date1), _to_java_column(date2), roundOff)) @since(2.2) def to_date(col, format=None): """Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or :class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `DateTimeFormatter <https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html>`_. # noqa By default, it follows casting rules to :class:`pyspark.sql.types.DateType` if the format is omitted (equivalent to ``col.cast("date")``). >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_date(df.t, 'yyyy-MM-dd HH:mm:ss').alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_date(_to_java_column(col)) else: jc = sc._jvm.functions.to_date(_to_java_column(col), format) return Column(jc) @since(2.2) def to_timestamp(col, format=None): """Converts a :class:`Column` of :class:`pyspark.sql.types.StringType` or :class:`pyspark.sql.types.TimestampType` into :class:`pyspark.sql.types.DateType` using the optionally specified format. Specify formats according to `DateTimeFormatter <https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html>`_. # noqa By default, it follows casting rules to :class:`pyspark.sql.types.TimestampType` if the format is omitted (equivalent to ``col.cast("timestamp")``). >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t).alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] >>> df = spark.createDataFrame([('1997-02-28 10:30:00',)], ['t']) >>> df.select(to_timestamp(df.t, 'yyyy-MM-dd HH:mm:ss').alias('dt')).collect() [Row(dt=datetime.datetime(1997, 2, 28, 10, 30))] """ sc = SparkContext._active_spark_context if format is None: jc = sc._jvm.functions.to_timestamp(_to_java_column(col)) else: jc = sc._jvm.functions.to_timestamp(_to_java_column(col), format) return Column(jc) @since(1.5) def trunc(date, format): """ Returns date truncated to the unit specified by the format. :param format: 'year', 'yyyy', 'yy' or 'month', 'mon', 'mm' >>> df = spark.createDataFrame([('1997-02-28',)], ['d']) >>> df.select(trunc(df.d, 'year').alias('year')).collect() [Row(year=datetime.date(1997, 1, 1))] >>> df.select(trunc(df.d, 'mon').alias('month')).collect() [Row(month=datetime.date(1997, 2, 1))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.trunc(_to_java_column(date), format)) @since(2.3) def date_trunc(format, timestamp): """ Returns timestamp truncated to the unit specified by the format. :param format: 'year', 'yyyy', 'yy', 'month', 'mon', 'mm', 'day', 'dd', 'hour', 'minute', 'second', 'week', 'quarter' >>> df = spark.createDataFrame([('1997-02-28 05:02:11',)], ['t']) >>> df.select(date_trunc('year', df.t).alias('year')).collect() [Row(year=datetime.datetime(1997, 1, 1, 0, 0))] >>> df.select(date_trunc('mon', df.t).alias('month')).collect() [Row(month=datetime.datetime(1997, 2, 1, 0, 0))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.date_trunc(format, _to_java_column(timestamp))) @since(1.5) def next_day(date, dayOfWeek): """ Returns the first date which is later than the value of the date column. Day of the week parameter is case insensitive, and accepts: "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun". >>> df = spark.createDataFrame([('2015-07-27',)], ['d']) >>> df.select(next_day(df.d, 'Sun').alias('date')).collect() [Row(date=datetime.date(2015, 8, 2))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.next_day(_to_java_column(date), dayOfWeek)) @since(1.5) def last_day(date): """ Returns the last day of the month which the given date belongs to. >>> df = spark.createDataFrame([('1997-02-10',)], ['d']) >>> df.select(last_day(df.d).alias('date')).collect() [Row(date=datetime.date(1997, 2, 28))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.last_day(_to_java_column(date))) @ignore_unicode_prefix @since(1.5) def from_unixtime(timestamp, format="yyyy-MM-dd HH:mm:ss"): """ Converts the number of seconds from unix epoch (1970-01-01 00:00:00 UTC) to a string representing the timestamp of that moment in the current system time zone in the given format. >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([(1428476400,)], ['unix_time']) >>> time_df.select(from_unixtime('unix_time').alias('ts')).collect() [Row(ts=u'2015-04-08 00:00:00')] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.from_unixtime(_to_java_column(timestamp), format)) @since(1.5) def unix_timestamp(timestamp=None, format='yyyy-MM-dd HH:mm:ss'): """ Convert time string with given pattern ('yyyy-MM-dd HH:mm:ss', by default) to Unix time stamp (in seconds), using the default timezone and the default locale, return null if fail. if `timestamp` is None, then it returns current timestamp. >>> spark.conf.set("spark.sql.session.timeZone", "America/Los_Angeles") >>> time_df = spark.createDataFrame([('2015-04-08',)], ['dt']) >>> time_df.select(unix_timestamp('dt', 'yyyy-MM-dd').alias('unix_time')).collect() [Row(unix_time=1428476400)] >>> spark.conf.unset("spark.sql.session.timeZone") """ sc = SparkContext._active_spark_context if timestamp is None: return Column(sc._jvm.functions.unix_timestamp()) return Column(sc._jvm.functions.unix_timestamp(_to_java_column(timestamp), format)) @since(1.5) def from_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in UTC, and renders that timestamp as a timestamp in the given time zone. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from UTC timezone to the given timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. :param timestamp: the column that contains timestamps :param tz: a string that has the ID of timezone, e.g. "GMT", "America/Los_Angeles", etc .. versionchanged:: 2.4 `tz` can take a :class:`Column` containing timezone ID strings. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(from_utc_timestamp(df.ts, "PST").alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 2, 30))] >>> df.select(from_utc_timestamp(df.ts, df.tz).alias('local_time')).collect() [Row(local_time=datetime.datetime(1997, 2, 28, 19, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.from_utc_timestamp(_to_java_column(timestamp), tz)) @since(1.5) def to_utc_timestamp(timestamp, tz): """ This is a common function for databases supporting TIMESTAMP WITHOUT TIMEZONE. This function takes a timestamp which is timezone-agnostic, and interprets it as a timestamp in the given timezone, and renders that timestamp as a timestamp in UTC. However, timestamp in Spark represents number of microseconds from the Unix epoch, which is not timezone-agnostic. So in Spark this function just shift the timestamp value from the given timezone to UTC timezone. This function may return confusing result if the input is a string with timezone, e.g. '2018-03-13T06:18:23+00:00'. The reason is that, Spark firstly cast the string to timestamp according to the timezone in the string, and finally display the result by converting the timestamp to string according to the session local timezone. :param timestamp: the column that contains timestamps :param tz: a string that has the ID of timezone, e.g. "GMT", "America/Los_Angeles", etc .. versionchanged:: 2.4 `tz` can take a :class:`Column` containing timezone ID strings. >>> df = spark.createDataFrame([('1997-02-28 10:30:00', 'JST')], ['ts', 'tz']) >>> df.select(to_utc_timestamp(df.ts, "PST").alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 18, 30))] >>> df.select(to_utc_timestamp(df.ts, df.tz).alias('utc_time')).collect() [Row(utc_time=datetime.datetime(1997, 2, 28, 1, 30))] """ sc = SparkContext._active_spark_context if isinstance(tz, Column): tz = _to_java_column(tz) return Column(sc._jvm.functions.to_utc_timestamp(_to_java_column(timestamp), tz)) @since(2.0) @ignore_unicode_prefix def window(timeColumn, windowDuration, slideDuration=None, startTime=None): """Bucketize rows into one or more time windows given a timestamp specifying column. Window starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10) but not in [12:00,12:05). Windows can support microsecond precision. Windows in the order of months are not supported. The time column must be of :class:`pyspark.sql.types.TimestampType`. Durations are provided as strings, e.g. '1 second', '1 day 12 hours', '2 minutes'. Valid interval strings are 'week', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond'. If the ``slideDuration`` is not provided, the windows will be tumbling windows. The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide `startTime` as `15 minutes`. The output column will be a struct called 'window' by default with the nested columns 'start' and 'end', where 'start' and 'end' will be of :class:`pyspark.sql.types.TimestampType`. >>> df = spark.createDataFrame([("2016-03-11 09:00:07", 1)]).toDF("date", "val") >>> w = df.groupBy(window("date", "5 seconds")).agg(sum("val").alias("sum")) >>> w.select(w.window.start.cast("string").alias("start"), ... w.window.end.cast("string").alias("end"), "sum").collect() [Row(start=u'2016-03-11 09:00:05', end=u'2016-03-11 09:00:10', sum=1)] """ def check_string_field(field, fieldName): if not field or type(field) is not str: raise TypeError("%s should be provided as a string" % fieldName) sc = SparkContext._active_spark_context time_col = _to_java_column(timeColumn) check_string_field(windowDuration, "windowDuration") if slideDuration and startTime: check_string_field(slideDuration, "slideDuration") check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration, startTime) elif slideDuration: check_string_field(slideDuration, "slideDuration") res = sc._jvm.functions.window(time_col, windowDuration, slideDuration) elif startTime: check_string_field(startTime, "startTime") res = sc._jvm.functions.window(time_col, windowDuration, windowDuration, startTime) else: res = sc._jvm.functions.window(time_col, windowDuration) return Column(res) # ---------------------------- misc functions ---------------------------------- @since(1.5) @ignore_unicode_prefix def crc32(col): """ Calculates the cyclic redundancy check value (CRC32) of a binary column and returns the value as a bigint. >>> spark.createDataFrame([('ABC',)], ['a']).select(crc32('a').alias('crc32')).collect() [Row(crc32=2743272264)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.crc32(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def md5(col): """Calculates the MD5 digest and returns the value as a 32 character hex string. >>> spark.createDataFrame([('ABC',)], ['a']).select(md5('a').alias('hash')).collect() [Row(hash=u'902fbdd2b1df0c4f70b4a5d23525e932')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.md5(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def sha1(col): """Returns the hex string result of SHA-1. >>> spark.createDataFrame([('ABC',)], ['a']).select(sha1('a').alias('hash')).collect() [Row(hash=u'3c01bdbb26f358bab27f267924aa2c9a03fcfdb8')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha1(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def sha2(col, numBits): """Returns the hex string result of SHA-2 family of hash functions (SHA-224, SHA-256, SHA-384, and SHA-512). The numBits indicates the desired bit length of the result, which must have a value of 224, 256, 384, 512, or 0 (which is equivalent to 256). >>> digests = df.select(sha2(df.name, 256).alias('s')).collect() >>> digests[0] Row(s=u'3bc51062973c458d5a6f2d8d64a023246354ad7e064b1e4e009ec8a0699a3043') >>> digests[1] Row(s=u'cd9fb1e148ccd8442e5aa74904cc73bf6fb54d1d54d333bd596aa9bb4bb4e961') """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.sha2(_to_java_column(col), numBits) return Column(jc) @since(2.0) def hash(*cols): """Calculates the hash code of given columns, and returns the result as an int column. >>> spark.createDataFrame([('ABC',)], ['a']).select(hash('a').alias('hash')).collect() [Row(hash=-757602832)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hash(_to_seq(sc, cols, _to_java_column)) return Column(jc) # ---------------------- String/Binary functions ------------------------------ _string_functions = { 'ascii': 'Computes the numeric value of the first character of the string column.', 'base64': 'Computes the BASE64 encoding of a binary column and returns it as a string column.', 'unbase64': 'Decodes a BASE64 encoded string column and returns it as a binary column.', 'ltrim': 'Trim the spaces from left end for the specified string value.', 'rtrim': 'Trim the spaces from right end for the specified string value.', 'trim': 'Trim the spaces from both ends for the specified string column.', } for _name, _doc in _string_functions.items(): globals()[_name] = since(1.5)(_create_function(_name, _doc)) del _name, _doc @since(1.5) @ignore_unicode_prefix def concat_ws(sep, *cols): """ Concatenates multiple input string columns together into a single string column, using the given separator. >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat_ws('-', df.s, df.d).alias('s')).collect() [Row(s=u'abcd-123')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat_ws(sep, _to_seq(sc, cols, _to_java_column))) @since(1.5) def decode(col, charset): """ Computes the first argument into a string from a binary using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.decode(_to_java_column(col), charset)) @since(1.5) def encode(col, charset): """ Computes the first argument into a binary from a string using the provided character set (one of 'US-ASCII', 'ISO-8859-1', 'UTF-8', 'UTF-16BE', 'UTF-16LE', 'UTF-16'). """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.encode(_to_java_column(col), charset)) @ignore_unicode_prefix @since(1.5) def format_number(col, d): """ Formats the number X to a format like '#,--#,--#.--', rounded to d decimal places with HALF_EVEN round mode, and returns the result as a string. :param col: the column name of the numeric value to be formatted :param d: the N decimal places >>> spark.createDataFrame([(5,)], ['a']).select(format_number('a', 4).alias('v')).collect() [Row(v=u'5.0000')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_number(_to_java_column(col), d)) @ignore_unicode_prefix @since(1.5) def format_string(format, *cols): """ Formats the arguments in printf-style and returns the result as a string column. :param col: the column name of the numeric value to be formatted :param d: the N decimal places >>> df = spark.createDataFrame([(5, "hello")], ['a', 'b']) >>> df.select(format_string('%d %s', df.a, df.b).alias('v')).collect() [Row(v=u'5 hello')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.format_string(format, _to_seq(sc, cols, _to_java_column))) @since(1.5) def instr(str, substr): """ Locate the position of the first occurrence of substr column in the given string. Returns null if either of the arguments are null. .. note:: The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(instr(df.s, 'b').alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.instr(_to_java_column(str), substr)) @since(1.5) @ignore_unicode_prefix def substring(str, pos, len): """ Substring starts at `pos` and is of length `len` when str is String type or returns the slice of byte array that starts at `pos` in byte and is of length `len` when str is Binary type. .. note:: The position is not zero based, but 1 based index. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(substring(df.s, 1, 2).alias('s')).collect() [Row(s=u'ab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring(_to_java_column(str), pos, len)) @since(1.5) @ignore_unicode_prefix def substring_index(str, delim, count): """ Returns the substring from string str before count occurrences of the delimiter delim. If count is positive, everything the left of the final delimiter (counting from left) is returned. If count is negative, every to the right of the final delimiter (counting from the right) is returned. substring_index performs a case-sensitive match when searching for delim. >>> df = spark.createDataFrame([('a.b.c.d',)], ['s']) >>> df.select(substring_index(df.s, '.', 2).alias('s')).collect() [Row(s=u'a.b')] >>> df.select(substring_index(df.s, '.', -3).alias('s')).collect() [Row(s=u'b.c.d')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.substring_index(_to_java_column(str), delim, count)) @ignore_unicode_prefix @since(1.5) def levenshtein(left, right): """Computes the Levenshtein distance of the two given strings. >>> df0 = spark.createDataFrame([('kitten', 'sitting',)], ['l', 'r']) >>> df0.select(levenshtein('l', 'r').alias('d')).collect() [Row(d=3)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.levenshtein(_to_java_column(left), _to_java_column(right)) return Column(jc) @since(1.5) def locate(substr, str, pos=1): """ Locate the position of the first occurrence of substr in a string column, after position pos. .. note:: The position is not zero based, but 1 based index. Returns 0 if substr could not be found in str. :param substr: a string :param str: a Column of :class:`pyspark.sql.types.StringType` :param pos: start position (zero based) >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(locate('b', df.s, 1).alias('s')).collect() [Row(s=2)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.locate(substr, _to_java_column(str), pos)) @since(1.5) @ignore_unicode_prefix def lpad(col, len, pad): """ Left-pad the string column to width `len` with `pad`. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(lpad(df.s, 6, '#').alias('s')).collect() [Row(s=u'##abcd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.lpad(_to_java_column(col), len, pad)) @since(1.5) @ignore_unicode_prefix def rpad(col, len, pad): """ Right-pad the string column to width `len` with `pad`. >>> df = spark.createDataFrame([('abcd',)], ['s',]) >>> df.select(rpad(df.s, 6, '#').alias('s')).collect() [Row(s=u'abcd##')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.rpad(_to_java_column(col), len, pad)) @since(1.5) @ignore_unicode_prefix def repeat(col, n): """ Repeats a string column n times, and returns it as a new string column. >>> df = spark.createDataFrame([('ab',)], ['s',]) >>> df.select(repeat(df.s, 3).alias('s')).collect() [Row(s=u'ababab')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.repeat(_to_java_column(col), n)) @since(1.5) @ignore_unicode_prefix def split(str, pattern, limit=-1): """ Splits str around matches of the given pattern. :param str: a string expression to split :param pattern: a string representing a regular expression. The regex string should be a Java regular expression. :param limit: an integer which controls the number of times `pattern` is applied. * ``limit > 0``: The resulting array's length will not be more than `limit`, and the resulting array's last entry will contain all input beyond the last matched pattern. * ``limit <= 0``: `pattern` will be applied as many times as possible, and the resulting array can be of any size. .. versionchanged:: 3.0 `split` now takes an optional `limit` field. If not provided, default limit value is -1. >>> df = spark.createDataFrame([('oneAtwoBthreeC',)], ['s',]) >>> df.select(split(df.s, '[ABC]', 2).alias('s')).collect() [Row(s=[u'one', u'twoBthreeC'])] >>> df.select(split(df.s, '[ABC]', -1).alias('s')).collect() [Row(s=[u'one', u'two', u'three', u''])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.split(_to_java_column(str), pattern, limit)) @ignore_unicode_prefix @since(1.5) def regexp_extract(str, pattern, idx): r"""Extract a specific group matched by a Java regex, from the specified string column. If the regex did not match, or the specified group did not match, an empty string is returned. >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)-(\d+)', 1).alias('d')).collect() [Row(d=u'100')] >>> df = spark.createDataFrame([('foo',)], ['str']) >>> df.select(regexp_extract('str', r'(\d+)', 1).alias('d')).collect() [Row(d=u'')] >>> df = spark.createDataFrame([('aaaac',)], ['str']) >>> df.select(regexp_extract('str', '(a+)(b)?(c)', 2).alias('d')).collect() [Row(d=u'')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_extract(_to_java_column(str), pattern, idx) return Column(jc) @ignore_unicode_prefix @since(1.5) def regexp_replace(str, pattern, replacement): r"""Replace all substrings of the specified string value that match regexp with rep. >>> df = spark.createDataFrame([('100-200',)], ['str']) >>> df.select(regexp_replace('str', r'(\d+)', '--').alias('d')).collect() [Row(d=u'-----')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.regexp_replace(_to_java_column(str), pattern, replacement) return Column(jc) @ignore_unicode_prefix @since(1.5) def initcap(col): """Translate the first letter of each word to upper case in the sentence. >>> spark.createDataFrame([('ab cd',)], ['a']).select(initcap("a").alias('v')).collect() [Row(v=u'Ab Cd')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.initcap(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def soundex(col): """ Returns the SoundEx encoding for a string >>> df = spark.createDataFrame([("Peters",),("Uhrbach",)], ['name']) >>> df.select(soundex(df.name).alias("soundex")).collect() [Row(soundex=u'P362'), Row(soundex=u'U612')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.soundex(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def bin(col): """Returns the string representation of the binary value of the given column. >>> df.select(bin(df.age).alias('c')).collect() [Row(c=u'10'), Row(c=u'101')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.bin(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def hex(col): """Computes hex value of the given column, which could be :class:`pyspark.sql.types.StringType`, :class:`pyspark.sql.types.BinaryType`, :class:`pyspark.sql.types.IntegerType` or :class:`pyspark.sql.types.LongType`. >>> spark.createDataFrame([('ABC', 3)], ['a', 'b']).select(hex('a'), hex('b')).collect() [Row(hex(a)=u'414243', hex(b)=u'3')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.hex(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.5) def unhex(col): """Inverse of hex. Interprets each pair of characters as a hexadecimal number and converts to the byte representation of number. >>> spark.createDataFrame([('414243',)], ['a']).select(unhex('a')).collect() [Row(unhex(a)=bytearray(b'ABC'))] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.unhex(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def length(col): """Computes the character length of string data or number of bytes of binary data. The length of character data includes the trailing spaces. The length of binary data includes binary zeros. >>> spark.createDataFrame([('ABC ',)], ['a']).select(length('a').alias('length')).collect() [Row(length=4)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.length(_to_java_column(col))) @ignore_unicode_prefix @since(1.5) def translate(srcCol, matching, replace): """A function translate any character in the `srcCol` by a character in `matching`. The characters in `replace` is corresponding to the characters in `matching`. The translate will happen when any character in the string matching with the character in the `matching`. >>> spark.createDataFrame([('translate',)], ['a']).select(translate('a', "rnlt", "123") \\ ... .alias('r')).collect() [Row(r=u'1a2s3ae')] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.translate(_to_java_column(srcCol), matching, replace)) # ---------------------- Collection functions ------------------------------ @ignore_unicode_prefix @since(2.0) def create_map(*cols): """Creates a new map column. :param cols: list of column names (string) or list of :class:`Column` expressions that are grouped as key-value pairs, e.g. (key1, value1, key2, value2, ...). >>> df.select(create_map('name', 'age').alias("map")).collect() [Row(map={u'Alice': 2}), Row(map={u'Bob': 5})] >>> df.select(create_map([df.name, df.age]).alias("map")).collect() [Row(map={u'Alice': 2}), Row(map={u'Bob': 5})] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(2.4) def map_from_arrays(col1, col2): """Creates a new map from two arrays. :param col1: name of column containing a set of keys. All elements should not be null :param col2: name of column containing a set of values >>> df = spark.createDataFrame([([2, 5], ['a', 'b'])], ['k', 'v']) >>> df.select(map_from_arrays(df.k, df.v).alias("map")).show() +----------------+ | map| +----------------+ |[2 -> a, 5 -> b]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_arrays(_to_java_column(col1), _to_java_column(col2))) @since(1.4) def array(*cols): """Creates a new array column. :param cols: list of column names (string) or list of :class:`Column` expressions that have the same data type. >>> df.select(array('age', 'age').alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] >>> df.select(array([df.age, df.age]).alias("arr")).collect() [Row(arr=[2, 2]), Row(arr=[5, 5])] """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.array(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(1.5) def array_contains(col, value): """ Collection function: returns null if the array is null, true if the array contains the given value, and false otherwise. :param col: name of column containing array :param value: value to check for in array >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(array_contains(df.data, "a")).collect() [Row(array_contains(data, a)=True), Row(array_contains(data, a)=False)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_contains(_to_java_column(col), value)) @since(2.4) def arrays_overlap(a1, a2): """ Collection function: returns true if the arrays contain any common non-null element; if not, returns null if both the arrays are non-empty and any of them contains a null element; returns false otherwise. >>> df = spark.createDataFrame([(["a", "b"], ["b", "c"]), (["a"], ["b", "c"])], ['x', 'y']) >>> df.select(arrays_overlap(df.x, df.y).alias("overlap")).collect() [Row(overlap=True), Row(overlap=False)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_overlap(_to_java_column(a1), _to_java_column(a2))) @since(2.4) def slice(x, start, length): """ Collection function: returns an array containing all the elements in `x` from index `start` (or starting from the end if `start` is negative) with the specified `length`. >>> df = spark.createDataFrame([([1, 2, 3],), ([4, 5],)], ['x']) >>> df.select(slice(df.x, 2, 2).alias("sliced")).collect() [Row(sliced=[2, 3]), Row(sliced=[5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.slice(_to_java_column(x), start, length)) @ignore_unicode_prefix @since(2.4) def array_join(col, delimiter, null_replacement=None): """ Concatenates the elements of `column` using the `delimiter`. Null values are replaced with `null_replacement` if set, otherwise they are ignored. >>> df = spark.createDataFrame([(["a", "b", "c"],), (["a", None],)], ['data']) >>> df.select(array_join(df.data, ",").alias("joined")).collect() [Row(joined=u'a,b,c'), Row(joined=u'a')] >>> df.select(array_join(df.data, ",", "NULL").alias("joined")).collect() [Row(joined=u'a,b,c'), Row(joined=u'a,NULL')] """ sc = SparkContext._active_spark_context if null_replacement is None: return Column(sc._jvm.functions.array_join(_to_java_column(col), delimiter)) else: return Column(sc._jvm.functions.array_join( _to_java_column(col), delimiter, null_replacement)) @since(1.5) @ignore_unicode_prefix def concat(*cols): """ Concatenates multiple input columns together into a single column. The function works with strings, binary and compatible array columns. >>> df = spark.createDataFrame([('abcd','123')], ['s', 'd']) >>> df.select(concat(df.s, df.d).alias('s')).collect() [Row(s=u'abcd123')] >>> df = spark.createDataFrame([([1, 2], [3, 4], [5]), ([1, 2], None, [3])], ['a', 'b', 'c']) >>> df.select(concat(df.a, df.b, df.c).alias("arr")).collect() [Row(arr=[1, 2, 3, 4, 5]), Row(arr=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.concat(_to_seq(sc, cols, _to_java_column))) @since(2.4) def array_position(col, value): """ Collection function: Locates the position of the first occurrence of the given value in the given array. Returns null if either of the arguments are null. .. note:: The position is not zero based, but 1 based index. Returns 0 if the given value could not be found in the array. >>> df = spark.createDataFrame([(["c", "b", "a"],), ([],)], ['data']) >>> df.select(array_position(df.data, "a")).collect() [Row(array_position(data, a)=3), Row(array_position(data, a)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_position(_to_java_column(col), value)) @ignore_unicode_prefix @since(2.4) def element_at(col, extraction): """ Collection function: Returns element of array at given index in extraction if col is array. Returns value for the given key in extraction if col is map. :param col: name of column containing array or map :param extraction: index to check for in array or key to check for in map .. note:: The position is not zero based, but 1 based index. >>> df = spark.createDataFrame([(["a", "b", "c"],), ([],)], ['data']) >>> df.select(element_at(df.data, 1)).collect() [Row(element_at(data, 1)=u'a'), Row(element_at(data, 1)=None)] >>> df = spark.createDataFrame([({"a": 1.0, "b": 2.0},), ({},)], ['data']) >>> df.select(element_at(df.data, "a")).collect() [Row(element_at(data, a)=1.0), Row(element_at(data, a)=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.element_at(_to_java_column(col), extraction)) @since(2.4) def array_remove(col, element): """ Collection function: Remove all elements that equal to element from the given array. :param col: name of column containing array :param element: element to be removed from the array >>> df = spark.createDataFrame([([1, 2, 3, 1, 1],), ([],)], ['data']) >>> df.select(array_remove(df.data, 1)).collect() [Row(array_remove(data, 1)=[2, 3]), Row(array_remove(data, 1)=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_remove(_to_java_column(col), element)) @since(2.4) def array_distinct(col): """ Collection function: removes duplicate values from the array. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 2, 3, 2],), ([4, 5, 5, 4],)], ['data']) >>> df.select(array_distinct(df.data)).collect() [Row(array_distinct(data)=[1, 2, 3]), Row(array_distinct(data)=[4, 5])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_distinct(_to_java_column(col))) @ignore_unicode_prefix @since(2.4) def array_intersect(col1, col2): """ Collection function: returns an array of the elements in the intersection of col1 and col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_intersect(df.c1, df.c2)).collect() [Row(array_intersect(c1, c2)=[u'a', u'c'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_intersect(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(2.4) def array_union(col1, col2): """ Collection function: returns an array of the elements in the union of col1 and col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_union(df.c1, df.c2)).collect() [Row(array_union(c1, c2)=[u'b', u'a', u'c', u'd', u'f'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_union(_to_java_column(col1), _to_java_column(col2))) @ignore_unicode_prefix @since(2.4) def array_except(col1, col2): """ Collection function: returns an array of the elements in col1 but not in col2, without duplicates. :param col1: name of column containing array :param col2: name of column containing array >>> from pyspark.sql import Row >>> df = spark.createDataFrame([Row(c1=["b", "a", "c"], c2=["c", "d", "a", "f"])]) >>> df.select(array_except(df.c1, df.c2)).collect() [Row(array_except(c1, c2)=[u'b'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_except(_to_java_column(col1), _to_java_column(col2))) @since(1.4) def explode(col): """Returns a new row for each element in the given array or map. >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(explode(eDF.intlist).alias("anInt")).collect() [Row(anInt=1), Row(anInt=2), Row(anInt=3)] >>> eDF.select(explode(eDF.mapfield).alias("key", "value")).show() +---+-----+ |key|value| +---+-----+ | a| b| +---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode(_to_java_column(col)) return Column(jc) @since(2.1) def posexplode(col): """Returns a new row for each element with position in the given array or map. >>> from pyspark.sql import Row >>> eDF = spark.createDataFrame([Row(a=1, intlist=[1,2,3], mapfield={"a": "b"})]) >>> eDF.select(posexplode(eDF.intlist)).collect() [Row(pos=0, col=1), Row(pos=1, col=2), Row(pos=2, col=3)] >>> eDF.select(posexplode(eDF.mapfield)).show() +---+---+-----+ |pos|key|value| +---+---+-----+ | 0| a| b| +---+---+-----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode(_to_java_column(col)) return Column(jc) @since(2.3) def explode_outer(col): """Returns a new row for each element in the given array or map. Unlike explode, if the array/map is null or empty then null is produced. >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", explode_outer("a_map")).show() +---+----------+----+-----+ | id| an_array| key|value| +---+----------+----+-----+ | 1|[foo, bar]| x| 1.0| | 2| []|null| null| | 3| null|null| null| +---+----------+----+-----+ >>> df.select("id", "a_map", explode_outer("an_array")).show() +---+----------+----+ | id| a_map| col| +---+----------+----+ | 1|[x -> 1.0]| foo| | 1|[x -> 1.0]| bar| | 2| []|null| | 3| null|null| +---+----------+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.explode_outer(_to_java_column(col)) return Column(jc) @since(2.3) def posexplode_outer(col): """Returns a new row for each element with position in the given array or map. Unlike posexplode, if the array/map is null or empty then the row (null, null) is produced. >>> df = spark.createDataFrame( ... [(1, ["foo", "bar"], {"x": 1.0}), (2, [], {}), (3, None, None)], ... ("id", "an_array", "a_map") ... ) >>> df.select("id", "an_array", posexplode_outer("a_map")).show() +---+----------+----+----+-----+ | id| an_array| pos| key|value| +---+----------+----+----+-----+ | 1|[foo, bar]| 0| x| 1.0| | 2| []|null|null| null| | 3| null|null|null| null| +---+----------+----+----+-----+ >>> df.select("id", "a_map", posexplode_outer("an_array")).show() +---+----------+----+----+ | id| a_map| pos| col| +---+----------+----+----+ | 1|[x -> 1.0]| 0| foo| | 1|[x -> 1.0]| 1| bar| | 2| []|null|null| | 3| null|null|null| +---+----------+----+----+ """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.posexplode_outer(_to_java_column(col)) return Column(jc) @ignore_unicode_prefix @since(1.6) def get_json_object(col, path): """ Extracts json object from a json string based on json path specified, and returns json string of the extracted json object. It will return null if the input json string is invalid. :param col: string column in json format :param path: path to the json object to extract >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, get_json_object(df.jstring, '$.f1').alias("c0"), \\ ... get_json_object(df.jstring, '$.f2').alias("c1") ).collect() [Row(key=u'1', c0=u'value1', c1=u'value2'), Row(key=u'2', c0=u'value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.get_json_object(_to_java_column(col), path) return Column(jc) @ignore_unicode_prefix @since(1.6) def json_tuple(col, *fields): """Creates a new row for a json column according to the given field names. :param col: string column in json format :param fields: list of fields to extract >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, json_tuple(df.jstring, 'f1', 'f2')).collect() [Row(key=u'1', c0=u'value1', c1=u'value2'), Row(key=u'2', c0=u'value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.json_tuple(_to_java_column(col), _to_seq(sc, fields)) return Column(jc) @ignore_unicode_prefix @since(2.1) def from_json(col, schema, options={}): """ Parses a column containing a JSON string into a :class:`MapType` with :class:`StringType` as keys type, :class:`StructType` or :class:`ArrayType` with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in json format :param schema: a StructType or ArrayType of StructType to use when parsing the json column. :param options: options to control parsing. accepts the same options as the json datasource .. note:: Since Spark 2.3, the DDL-formatted string or a JSON format string is also supported for ``schema``. >>> from pyspark.sql.types import * >>> data = [(1, '''{"a": 1}''')] >>> schema = StructType([StructField("a", IntegerType())]) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "a INT").alias("json")).collect() [Row(json=Row(a=1))] >>> df.select(from_json(df.value, "MAP<STRING,INT>").alias("json")).collect() [Row(json={u'a': 1})] >>> data = [(1, '''[{"a": 1}]''')] >>> schema = ArrayType(StructType([StructField("a", IntegerType())])) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[Row(a=1)])] >>> schema = schema_of_json(lit('''{"a": 0}''')) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=Row(a=None))] >>> data = [(1, '''[1, 2, 3]''')] >>> schema = ArrayType(IntegerType()) >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(from_json(df.value, schema).alias("json")).collect() [Row(json=[1, 2, 3])] """ sc = SparkContext._active_spark_context if isinstance(schema, DataType): schema = schema.json() elif isinstance(schema, Column): schema = _to_java_column(schema) jc = sc._jvm.functions.from_json(_to_java_column(col), schema, options) return Column(jc) @ignore_unicode_prefix @since(2.1) def to_json(col, options={}): """ Converts a column containing a :class:`StructType`, :class:`ArrayType` or a :class:`MapType` into a JSON string. Throws an exception, in the case of an unsupported type. :param col: name of column containing a struct, an array or a map. :param options: options to control converting. accepts the same options as the JSON datasource. Additionally the function supports the `pretty` option which enables pretty JSON generation. >>> from pyspark.sql import Row >>> from pyspark.sql.types import * >>> data = [(1, Row(name='Alice', age=2))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'{"age":2,"name":"Alice"}')] >>> data = [(1, [Row(name='Alice', age=2), Row(name='Bob', age=3)])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'[{"age":2,"name":"Alice"},{"age":3,"name":"Bob"}]')] >>> data = [(1, {"name": "Alice"})] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'{"name":"Alice"}')] >>> data = [(1, [{"name": "Alice"}, {"name": "Bob"}])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'[{"name":"Alice"},{"name":"Bob"}]')] >>> data = [(1, ["Alice", "Bob"])] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_json(df.value).alias("json")).collect() [Row(json=u'["Alice","Bob"]')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_json(_to_java_column(col), options) return Column(jc) @ignore_unicode_prefix @since(2.4) def schema_of_json(json, options={}): """ Parses a JSON string and infers its schema in DDL format. :param json: a JSON string or a string literal containing a JSON string. :param options: options to control parsing. accepts the same options as the JSON datasource .. versionchanged:: 3.0 It accepts `options` parameter to control schema inferring. >>> df = spark.range(1) >>> df.select(schema_of_json(lit('{"a": 0}')).alias("json")).collect() [Row(json=u'struct<a:bigint>')] >>> schema = schema_of_json('{a: 1}', {'allowUnquotedFieldNames':'true'}) >>> df.select(schema.alias("json")).collect() [Row(json=u'struct<a:bigint>')] """ if isinstance(json, basestring): col = _create_column_from_literal(json) elif isinstance(json, Column): col = _to_java_column(json) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_json(col, options) return Column(jc) @ignore_unicode_prefix @since(3.0) def schema_of_csv(csv, options={}): """ Parses a CSV string and infers its schema in DDL format. :param col: a CSV string or a string literal containing a CSV string. :param options: options to control parsing. accepts the same options as the CSV datasource >>> df = spark.range(1) >>> df.select(schema_of_csv(lit('1|a'), {'sep':'|'}).alias("csv")).collect() [Row(csv=u'struct<_c0:int,_c1:string>')] >>> df.select(schema_of_csv('1|a', {'sep':'|'}).alias("csv")).collect() [Row(csv=u'struct<_c0:int,_c1:string>')] """ if isinstance(csv, basestring): col = _create_column_from_literal(csv) elif isinstance(csv, Column): col = _to_java_column(csv) else: raise TypeError("schema argument should be a column or string") sc = SparkContext._active_spark_context jc = sc._jvm.functions.schema_of_csv(col, options) return Column(jc) @ignore_unicode_prefix @since(3.0) def to_csv(col, options={}): """ Converts a column containing a :class:`StructType` into a CSV string. Throws an exception, in the case of an unsupported type. :param col: name of column containing a struct. :param options: options to control converting. accepts the same options as the CSV datasource. >>> from pyspark.sql import Row >>> data = [(1, Row(name='Alice', age=2))] >>> df = spark.createDataFrame(data, ("key", "value")) >>> df.select(to_csv(df.value).alias("csv")).collect() [Row(csv=u'2,Alice')] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.to_csv(_to_java_column(col), options) return Column(jc) @since(1.5) def size(col): """ Collection function: returns the length of the array or map stored in the column. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 2, 3],),([1],),([],)], ['data']) >>> df.select(size(df.data)).collect() [Row(size(data)=3), Row(size(data)=1), Row(size(data)=0)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.size(_to_java_column(col))) @since(2.4) def array_min(col): """ Collection function: returns the minimum value of the array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_min(df.data).alias('min')).collect() [Row(min=1), Row(min=-1)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_min(_to_java_column(col))) @since(2.4) def array_max(col): """ Collection function: returns the maximum value of the array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, 3],), ([None, 10, -1],)], ['data']) >>> df.select(array_max(df.data).alias('max')).collect() [Row(max=3), Row(max=10)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_max(_to_java_column(col))) @since(1.5) def sort_array(col, asc=True): """ Collection function: sorts the input array in ascending or descending order according to the natural ordering of the array elements. Null elements will be placed at the beginning of the returned array in ascending order or at the end of the returned array in descending order. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(sort_array(df.data).alias('r')).collect() [Row(r=[None, 1, 2, 3]), Row(r=[1]), Row(r=[])] >>> df.select(sort_array(df.data, asc=False).alias('r')).collect() [Row(r=[3, 2, 1, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.sort_array(_to_java_column(col), asc)) @since(2.4) def array_sort(col): """ Collection function: sorts the input array in ascending order. The elements of the input array must be orderable. Null elements will be placed at the end of the returned array. :param col: name of column or expression >>> df = spark.createDataFrame([([2, 1, None, 3],),([1],),([],)], ['data']) >>> df.select(array_sort(df.data).alias('r')).collect() [Row(r=[1, 2, 3, None]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_sort(_to_java_column(col))) @since(2.4) def shuffle(col): """ Collection function: Generates a random permutation of the given array. .. note:: The function is non-deterministic. :param col: name of column or expression >>> df = spark.createDataFrame([([1, 20, 3, 5],), ([1, 20, None, 3],)], ['data']) >>> df.select(shuffle(df.data).alias('s')).collect() # doctest: +SKIP [Row(s=[3, 1, 5, 20]), Row(s=[20, None, 3, 1])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.shuffle(_to_java_column(col))) @since(1.5) @ignore_unicode_prefix def reverse(col): """ Collection function: returns a reversed string or an array with reverse order of elements. :param col: name of column or expression >>> df = spark.createDataFrame([('Spark SQL',)], ['data']) >>> df.select(reverse(df.data).alias('s')).collect() [Row(s=u'LQS krapS')] >>> df = spark.createDataFrame([([2, 1, 3],) ,([1],) ,([],)], ['data']) >>> df.select(reverse(df.data).alias('r')).collect() [Row(r=[3, 1, 2]), Row(r=[1]), Row(r=[])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.reverse(_to_java_column(col))) @since(2.4) def flatten(col): """ Collection function: creates a single array from an array of arrays. If a structure of nested arrays is deeper than two levels, only one level of nesting is removed. :param col: name of column or expression >>> df = spark.createDataFrame([([[1, 2, 3], [4, 5], [6]],), ([None, [4, 5]],)], ['data']) >>> df.select(flatten(df.data).alias('r')).collect() [Row(r=[1, 2, 3, 4, 5, 6]), Row(r=None)] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.flatten(_to_java_column(col))) @since(2.3) def map_keys(col): """ Collection function: Returns an unordered array containing the keys of the map. :param col: name of column or expression >>> from pyspark.sql.functions import map_keys >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_keys("data").alias("keys")).show() +------+ | keys| +------+ |[1, 2]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_keys(_to_java_column(col))) @since(2.3) def map_values(col): """ Collection function: Returns an unordered array containing the values of the map. :param col: name of column or expression >>> from pyspark.sql.functions import map_values >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_values("data").alias("values")).show() +------+ |values| +------+ |[a, b]| +------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_values(_to_java_column(col))) @since(3.0) def map_entries(col): """ Collection function: Returns an unordered array of all entries in the given map. :param col: name of column or expression >>> from pyspark.sql.functions import map_entries >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as data") >>> df.select(map_entries("data").alias("entries")).show() +----------------+ | entries| +----------------+ |[[1, a], [2, b]]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_entries(_to_java_column(col))) @since(2.4) def map_from_entries(col): """ Collection function: Returns a map created from the given array of entries. :param col: name of column or expression >>> from pyspark.sql.functions import map_from_entries >>> df = spark.sql("SELECT array(struct(1, 'a'), struct(2, 'b')) as data") >>> df.select(map_from_entries("data").alias("map")).show() +----------------+ | map| +----------------+ |[1 -> a, 2 -> b]| +----------------+ """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.map_from_entries(_to_java_column(col))) @ignore_unicode_prefix @since(2.4) def array_repeat(col, count): """ Collection function: creates an array containing a column repeated count times. >>> df = spark.createDataFrame([('ab',)], ['data']) >>> df.select(array_repeat(df.data, 3).alias('r')).collect() [Row(r=[u'ab', u'ab', u'ab'])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.array_repeat(_to_java_column(col), count)) @since(2.4) def arrays_zip(*cols): """ Collection function: Returns a merged array of structs in which the N-th struct contains all N-th values of input arrays. :param cols: columns of arrays to be merged. >>> from pyspark.sql.functions import arrays_zip >>> df = spark.createDataFrame([(([1, 2, 3], [2, 3, 4]))], ['vals1', 'vals2']) >>> df.select(arrays_zip(df.vals1, df.vals2).alias('zipped')).collect() [Row(zipped=[Row(vals1=1, vals2=2), Row(vals1=2, vals2=3), Row(vals1=3, vals2=4)])] """ sc = SparkContext._active_spark_context return Column(sc._jvm.functions.arrays_zip(_to_seq(sc, cols, _to_java_column))) @since(2.4) def map_concat(*cols): """Returns the union of all the given maps. :param cols: list of column names (string) or list of :class:`Column` expressions >>> from pyspark.sql.functions import map_concat >>> df = spark.sql("SELECT map(1, 'a', 2, 'b') as map1, map(3, 'c', 1, 'd') as map2") >>> df.select(map_concat("map1", "map2").alias("map3")).show(truncate=False) +------------------------+ |map3 | +------------------------+ |[1 -> d, 2 -> b, 3 -> c]| +------------------------+ """ sc = SparkContext._active_spark_context if len(cols) == 1 and isinstance(cols[0], (list, set)): cols = cols[0] jc = sc._jvm.functions.map_concat(_to_seq(sc, cols, _to_java_column)) return Column(jc) @since(2.4) def sequence(start, stop, step=None): """ Generate a sequence of integers from `start` to `stop`, incrementing by `step`. If `step` is not set, incrementing by 1 if `start` is less than or equal to `stop`, otherwise -1. >>> df1 = spark.createDataFrame([(-2, 2)], ('C1', 'C2')) >>> df1.select(sequence('C1', 'C2').alias('r')).collect() [Row(r=[-2, -1, 0, 1, 2])] >>> df2 = spark.createDataFrame([(4, -4, -2)], ('C1', 'C2', 'C3')) >>> df2.select(sequence('C1', 'C2', 'C3').alias('r')).collect() [Row(r=[4, 2, 0, -2, -4])] """ sc = SparkContext._active_spark_context if step is None: return Column(sc._jvm.functions.sequence(_to_java_column(start), _to_java_column(stop))) else: return Column(sc._jvm.functions.sequence( _to_java_column(start), _to_java_column(stop), _to_java_column(step))) @ignore_unicode_prefix @since(3.0) def from_csv(col, schema, options={}): """ Parses a column containing a CSV string to a row with the specified schema. Returns `null`, in the case of an unparseable string. :param col: string column in CSV format :param schema: a string with schema in DDL format to use when parsing the CSV column. :param options: options to control parsing. accepts the same options as the CSV datasource >>> data = [("1,2,3",)] >>> df = spark.createDataFrame(data, ("value",)) >>> df.select(from_csv(df.value, "a INT, b INT, c INT").alias("csv")).collect() [Row(csv=Row(a=1, b=2, c=3))] >>> value = data[0][0] >>> df.select(from_csv(df.value, schema_of_csv(value)).alias("csv")).collect() [Row(csv=Row(_c0=1, _c1=2, _c2=3))] """ sc = SparkContext._active_spark_context if isinstance(schema, basestring): schema = _create_column_from_literal(schema) elif isinstance(schema, Column): schema = _to_java_column(schema) else: raise TypeError("schema argument should be a column or string") jc = sc._jvm.functions.from_csv(_to_java_column(col), schema, options) return Column(jc) # ---------------------------- User Defined Function ---------------------------------- class PandasUDFType(object): """Pandas UDF Types. See :meth:`pyspark.sql.functions.pandas_udf`. """ SCALAR = PythonEvalType.SQL_SCALAR_PANDAS_UDF GROUPED_MAP = PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF GROUPED_AGG = PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF @since(1.3) def udf(f=None, returnType=StringType()): """Creates a user defined function (UDF). .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. :param f: python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ """ # The following table shows most of Python data and SQL type conversions in normal UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-25666's PR to see the codes in order to generate the table below. # # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # |SQL Type \ Python Value(Type)|None(NoneType)|True(bool)|1(int)|1(long)| a(str)| a(unicode)| 1970-01-01(date)|1970-01-01 00:00:00(datetime)|1.0(float)|array('i', [1])(array)|[1](list)| (1,)(tuple)| ABC(bytearray)| 1(Decimal)|{'a': 1}(dict)|Row(kwargs=1)(Row)|Row(namedtuple=1)(Row)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # | boolean| None| True| None| None| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | tinyint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | smallint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | int| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | bigint| None| None| 1| 1| None| None| None| None| None| None| None| None| None| None| None| X| X| # noqa # | string| None| u'true'| u'1'| u'1'| u'a'| u'a'|u'java.util.Grego...| u'java.util.Grego...| u'1.0'| u'[I@24a83055'| u'[1]'|u'[Ljava.lang.Obj...| u'[B@49093632'| u'1'| u'{a=1}'| X| X| # noqa # | date| None| X| X| X| X| X|datetime.date(197...| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X| X| X| datetime.datetime...| X| X| X| X| X| X| X| X| X| # noqa # | float| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | double| None| None| None| None| None| None| None| None| 1.0| None| None| None| None| None| None| X| X| # noqa # | array<int>| None| None| None| None| None| None| None| None| None| [1]| [1]| [1]| [65, 66, 67]| None| None| X| X| # noqa # | binary| None| None| None| None|bytearray(b'a')|bytearray(b'a')| None| None| None| None| None| None|bytearray(b'ABC')| None| None| X| X| # noqa # | decimal(10,0)| None| None| None| None| None| None| None| None| None| None| None| None| None|Decimal('1')| None| X| X| # noqa # | map<string,int>| None| None| None| None| None| None| None| None| None| None| None| None| None| None| {u'a': 1}| X| X| # noqa # | struct<_1:int>| None| X| X| X| X| X| X| X| X| X|Row(_1=1)| Row(_1=1)| X| X| Row(_1=None)| Row(_1=1)| Row(_1=1)| # noqa # +-----------------------------+--------------+----------+------+-------+---------------+---------------+--------------------+-----------------------------+----------+----------------------+---------+--------------------+-----------------+------------+--------------+------------------+----------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: Python 2 is used to generate this table since it is used to check the backward # compatibility often in practice. # Note: 'X' means it throws an exception during the conversion. # decorator @udf, @udf(), @udf(dataType()) if f is None or isinstance(f, (str, DataType)): # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType return functools.partial(_create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF) @since(2.3) def pandas_udf(f=None, returnType=None, functionType=None): """ Creates a vectorized user defined function (UDF). :param f: user-defined function. A python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. :param functionType: an enum value in :class:`pyspark.sql.functions.PandasUDFType`. Default: SCALAR. .. note:: Experimental The function type of the UDF can be one of the following: 1. SCALAR A scalar UDF defines a transformation: One or more `pandas.Series` -> A `pandas.Series`. The length of the returned `pandas.Series` must be of the same as the input `pandas.Series`. If the return type is :class:`StructType`, the returned value should be a `pandas.DataFrame`. :class:`MapType`, nested :class:`StructType` are currently not supported as output types. Scalar UDFs are used with :meth:`pyspark.sql.DataFrame.withColumn` and :meth:`pyspark.sql.DataFrame.select`. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> from pyspark.sql.types import IntegerType, StringType >>> slen = pandas_udf(lambda s: s.str.len(), IntegerType()) # doctest: +SKIP >>> @pandas_udf(StringType()) # doctest: +SKIP ... def to_upper(s): ... return s.str.upper() ... >>> @pandas_udf("integer", PandasUDFType.SCALAR) # doctest: +SKIP ... def add_one(x): ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ... ("id", "name", "age")) # doctest: +SKIP >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")) \\ ... .show() # doctest: +SKIP +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+ >>> @pandas_udf("first string, last string") # doctest: +SKIP ... def split_expand(n): ... return n.str.split(expand=True) >>> df.select(split_expand("name")).show() # doctest: +SKIP +------------------+ |split_expand(name)| +------------------+ | [John, Doe]| +------------------+ .. note:: The length of `pandas.Series` within a scalar UDF is not that of the whole input column, but is the length of an internal batch used for each call to the function. Therefore, this can be used, for example, to ensure the length of each returned `pandas.Series`, and can not be used as the column length. 2. GROUPED_MAP A grouped map UDF defines transformation: A `pandas.DataFrame` -> A `pandas.DataFrame` The returnType should be a :class:`StructType` describing the schema of the returned `pandas.DataFrame`. The column labels of the returned `pandas.DataFrame` must either match the field names in the defined returnType schema if specified as strings, or match the field data types by position if not strings, e.g. integer indices. The length of the returned `pandas.DataFrame` can be arbitrary. Grouped map UDFs are used with :meth:`pyspark.sql.GroupedData.apply`. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) # doctest: +SKIP ... def normalize(pdf): ... v = pdf.v ... return pdf.assign(v=(v - v.mean()) / v.std()) >>> df.groupby("id").apply(normalize).show() # doctest: +SKIP +---+-------------------+ | id| v| +---+-------------------+ | 1|-0.7071067811865475| | 1| 0.7071067811865475| | 2|-0.8320502943378437| | 2|-0.2773500981126146| | 2| 1.1094003924504583| +---+-------------------+ Alternatively, the user can define a function that takes two arguments. In this case, the grouping key(s) will be passed as the first argument and the data will be passed as the second argument. The grouping key(s) will be passed as a tuple of numpy data types, e.g., `numpy.int32` and `numpy.float64`. The data will still be passed in as a `pandas.DataFrame` containing all columns from the original Spark DataFrame. This is useful when the user does not want to hardcode grouping key(s) in the function. >>> import pandas as pd # doctest: +SKIP >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) # doctest: +SKIP >>> @pandas_udf("id long, v double", PandasUDFType.GROUPED_MAP) # doctest: +SKIP ... def mean_udf(key, pdf): ... # key is a tuple of one numpy.int64, which is the value ... # of 'id' for the current group ... return pd.DataFrame([key + (pdf.v.mean(),)]) >>> df.groupby('id').apply(mean_udf).show() # doctest: +SKIP +---+---+ | id| v| +---+---+ | 1|1.5| | 2|6.0| +---+---+ >>> @pandas_udf( ... "id long, `ceil(v / 2)` long, v double", ... PandasUDFType.GROUPED_MAP) # doctest: +SKIP >>> def sum_udf(key, pdf): ... # key is a tuple of two numpy.int64s, which is the values ... # of 'id' and 'ceil(df.v / 2)' for the current group ... return pd.DataFrame([key + (pdf.v.sum(),)]) >>> df.groupby(df.id, ceil(df.v / 2)).apply(sum_udf).show() # doctest: +SKIP +---+-----------+----+ | id|ceil(v / 2)| v| +---+-----------+----+ | 2| 5|10.0| | 1| 1| 3.0| | 2| 3| 5.0| | 2| 2| 3.0| +---+-----------+----+ .. note:: If returning a new `pandas.DataFrame` constructed with a dictionary, it is recommended to explicitly index the columns by name to ensure the positions are correct, or alternatively use an `OrderedDict`. For example, `pd.DataFrame({'id': ids, 'a': data}, columns=['id', 'a'])` or `pd.DataFrame(OrderedDict([('id', ids), ('a', data)]))`. .. seealso:: :meth:`pyspark.sql.GroupedData.apply` 3. GROUPED_AGG A grouped aggregate UDF defines a transformation: One or more `pandas.Series` -> A scalar The `returnType` should be a primitive data type, e.g., :class:`DoubleType`. The returned scalar can be either a python primitive type, e.g., `int` or `float` or a numpy data type, e.g., `numpy.int64` or `numpy.float64`. :class:`MapType` and :class:`StructType` are currently not supported as output types. Group aggregate UDFs are used with :meth:`pyspark.sql.GroupedData.agg` and :class:`pyspark.sql.Window` This example shows using grouped aggregated UDFs with groupby: >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) >>> @pandas_udf("double", PandasUDFType.GROUPED_AGG) # doctest: +SKIP ... def mean_udf(v): ... return v.mean() >>> df.groupby("id").agg(mean_udf(df['v'])).show() # doctest: +SKIP +---+-----------+ | id|mean_udf(v)| +---+-----------+ | 1| 1.5| | 2| 6.0| +---+-----------+ This example shows using grouped aggregated UDFs as window functions. >>> from pyspark.sql.functions import pandas_udf, PandasUDFType >>> from pyspark.sql import Window >>> df = spark.createDataFrame( ... [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)], ... ("id", "v")) >>> @pandas_udf("double", PandasUDFType.GROUPED_AGG) # doctest: +SKIP ... def mean_udf(v): ... return v.mean() >>> w = (Window.partitionBy('id') ... .orderBy('v') ... .rowsBetween(-1, 0)) >>> df.withColumn('mean_v', mean_udf(df['v']).over(w)).show() # doctest: +SKIP +---+----+------+ | id| v|mean_v| +---+----+------+ | 1| 1.0| 1.0| | 1| 2.0| 1.5| | 2| 3.0| 3.0| | 2| 5.0| 4.0| | 2|10.0| 7.5| +---+----+------+ .. note:: For performance reasons, the input series to window functions are not copied. Therefore, mutating the input series is not allowed and will cause incorrect results. For the same reason, users should also not rely on the index of the input series. .. seealso:: :meth:`pyspark.sql.GroupedData.agg` and :class:`pyspark.sql.Window` .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> @pandas_udf('double', PandasUDFType.SCALAR) # doctest: +SKIP ... def random(v): ... import numpy as np ... import pandas as pd ... return pd.Series(np.random.randn(len(v)) >>> random = random.asNondeterministic() # doctest: +SKIP .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. .. note:: The data type of returned `pandas.Series` from the user-defined functions should be matched with defined returnType (see :meth:`types.to_arrow_type` and :meth:`types.from_arrow_type`). When there is mismatch between them, Spark might do conversion on returned data. The conversion is not guaranteed to be correct and results should be checked for accuracy by users. """ # The following table shows most of Pandas data and SQL type conversions in Pandas UDFs that # are not yet visible to the user. Some of behaviors are buggy and might be changed in the near # future. The table might have to be eventually documented externally. # Please see SPARK-25798's PR to see the codes in order to generate the table below. # # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # |SQL Type \ Pandas Value(Type)|None(object(NoneType))|True(bool)|1(int8)|1(int16)| 1(int32)| 1(int64)|1(uint8)|1(uint16)|1(uint32)|1(uint64)|1.0(float16)|1.0(float32)|1.0(float64)|1970-01-01 00:00:00(datetime64[ns])|1970-01-01 00:00:00-05:00(datetime64[ns, US/Eastern])|a(object(string))| 1(object(Decimal))|[1 2 3](object(array[int32]))|1.0(float128)|(1+0j)(complex64)|(1+0j)(complex128)|A(category)|1 days 00:00:00(timedelta64[ns])| # noqa # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # | boolean| None| True| True| True| True| True| True| True| True| True| False| False| False| False| False| X| X| X| False| False| False| X| False| # noqa # | tinyint| None| 1| 1| 1| 1| 1| X| X| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| 0| X| # noqa # | smallint| None| 1| 1| 1| 1| 1| 1| X| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| X| X| # noqa # | int| None| 1| 1| 1| 1| 1| 1| 1| X| X| 1| 1| 1| X| X| X| X| X| X| X| X| X| X| # noqa # | bigint| None| 1| 1| 1| 1| 1| 1| 1| 1| X| 1| 1| 1| 0| 18000000000000| X| X| X| X| X| X| X| X| # noqa # | float| None| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| X| X| X|1.401298464324817...| X| X| X| X| X| X| # noqa # | double| None| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| 1.0| X| X| X| X| X| X| X| X| X| X| # noqa # | date| None| X| X| X|datetime.date(197...| X| X| X| X| X| X| X| X| datetime.date(197...| X| X| X| X| X| X| X| X| X| # noqa # | timestamp| None| X| X| X| X|datetime.datetime...| X| X| X| X| X| X| X| datetime.datetime...| datetime.datetime...| X| X| X| X| X| X| X| X| # noqa # | string| None| u''|u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u'\x01'| u''| u''| u''| X| X| u'a'| X| X| u''| u''| u''| X| X| # noqa # | decimal(10,0)| None| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| Decimal('1')| X| X| X| X| X| X| # noqa # | array<int>| None| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| [1, 2, 3]| X| X| X| X| X| # noqa # | map<string,int>| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # | struct<_1:int>| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # | binary| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| # noqa # +-----------------------------+----------------------+----------+-------+--------+--------------------+--------------------+--------+---------+---------+---------+------------+------------+------------+-----------------------------------+-----------------------------------------------------+-----------------+--------------------+-----------------------------+-------------+-----------------+------------------+-----------+--------------------------------+ # noqa # # Note: DDL formatted string is used for 'SQL Type' for simplicity. This string can be # used in `returnType`. # Note: The values inside of the table are generated by `repr`. # Note: Python 2 is used to generate this table since it is used to check the backward # compatibility often in practice. # Note: Pandas 0.19.2 and PyArrow 0.9.0 are used. # Note: Timezone is Singapore timezone. # Note: 'X' means it throws an exception during the conversion. # Note: 'binary' type is only supported with PyArrow 0.10.0+ (SPARK-23555). # decorator @pandas_udf(returnType, functionType) is_decorator = f is None or isinstance(f, (str, DataType)) if is_decorator: # If DataType has been passed as a positional argument # for decorator use it as a returnType return_type = f or returnType if functionType is not None: # @pandas_udf(dataType, functionType=functionType) # @pandas_udf(returnType=dataType, functionType=functionType) eval_type = functionType elif returnType is not None and isinstance(returnType, int): # @pandas_udf(dataType, functionType) eval_type = returnType else: # @pandas_udf(dataType) or @pandas_udf(returnType=dataType) eval_type = PythonEvalType.SQL_SCALAR_PANDAS_UDF else: return_type = returnType if functionType is not None: eval_type = functionType else: eval_type = PythonEvalType.SQL_SCALAR_PANDAS_UDF if return_type is None: raise ValueError("Invalid returnType: returnType can not be None") if eval_type not in [PythonEvalType.SQL_SCALAR_PANDAS_UDF, PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF, PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF]: raise ValueError("Invalid functionType: " "functionType must be one the values from PandasUDFType") if is_decorator: return functools.partial(_create_udf, returnType=return_type, evalType=eval_type) else: return _create_udf(f=f, returnType=return_type, evalType=eval_type) blacklist = ['map', 'since', 'ignore_unicode_prefix'] __all__ = [k for k, v in globals().items() if not k.startswith('_') and k[0].islower() and callable(v) and k not in blacklist] __all__ += ["PandasUDFType"] __all__.sort() def _test(): import doctest from pyspark.sql import Row, SparkSession import pyspark.sql.functions globs = pyspark.sql.functions.__dict__.copy() spark = SparkSession.builder\ .master("local[4]")\ .appName("sql.functions tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark globs['df'] = spark.createDataFrame([Row(name='Alice', age=2), Row(name='Bob', age=5)]) (failure_count, test_count) = doctest.testmod( pyspark.sql.functions, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
martin-hunt/foobar
docs/conf.py
1
8160
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import inspect from sphinx import apidoc __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) output_dir = os.path.join(__location__, "../docs/_rst") module_dir = os.path.join(__location__, "../foobar") cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) apidoc.main(cmd_line.split(" ")) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.pngmath'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'foobar' copyright = u'2014, Martin Hunt' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from foobar import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'foobar-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'foobar Documentation', u'Martin Hunt', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://sphinx.pocoo.org', None), 'python': ('http://docs.python.org/' + python_version, None), 'matplotlib': ('http://matplotlib.sourceforge.net', None), 'numpy': ('http://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('http://docs.scipy.org/doc/scipy/reference/', None), }
mit
pbrod/numpy
numpy/core/fromnumeric.py
2
122368
"""Module containing non-deprecated functions borrowed from Numeric. """ import functools import types import warnings import numpy as np from . import multiarray as mu from . import overrides from . import umath as um from . import numerictypes as nt from .multiarray import asarray, array, asanyarray, concatenate from . import _methods _dt_ = nt.sctype2char # functions that are methods __all__ = [ 'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax', 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip', 'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean', 'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put', 'ravel', 'repeat', 'reshape', 'resize', 'round_', 'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze', 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var', ] _gentype = types.GeneratorType # save away Python sum _sum_ = sum array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy') # functions that are now methods def _wrapit(obj, method, *args, **kwds): try: wrap = obj.__array_wrap__ except AttributeError: wrap = None result = getattr(asarray(obj), method)(*args, **kwds) if wrap: if not isinstance(result, mu.ndarray): result = asarray(result) result = wrap(result) return result def _wrapfunc(obj, method, *args, **kwds): bound = getattr(obj, method, None) if bound is None: return _wrapit(obj, method, *args, **kwds) try: return bound(*args, **kwds) except TypeError: # A TypeError occurs if the object does have such a method in its # class, but its signature is not identical to that of NumPy's. This # situation has occurred in the case of a downstream library like # 'pandas'. # # Call _wrapit from within the except clause to ensure a potential # exception has a traceback chain. return _wrapit(obj, method, *args, **kwds) def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs): passkwargs = {k: v for k, v in kwargs.items() if v is not np._NoValue} if type(obj) is not mu.ndarray: try: reduction = getattr(obj, method) except AttributeError: pass else: # This branch is needed for reductions like any which don't # support a dtype. if dtype is not None: return reduction(axis=axis, dtype=dtype, out=out, **passkwargs) else: return reduction(axis=axis, out=out, **passkwargs) return ufunc.reduce(obj, axis, dtype, out, **passkwargs) def _take_dispatcher(a, indices, axis=None, out=None, mode=None): return (a, out) @array_function_dispatch(_take_dispatcher) def take(a, indices, axis=None, out=None, mode='raise'): """ Take elements from an array along an axis. When axis is not None, this function does the same thing as "fancy" indexing (indexing arrays using arrays); however, it can be easier to use if you need elements along a given axis. A call such as ``np.take(arr, indices, axis=3)`` is equivalent to ``arr[:,:,:,indices,...]``. Explained without fancy indexing, this is equivalent to the following use of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: Ni, Nk = a.shape[:axis], a.shape[axis+1:] Nj = indices.shape for ii in ndindex(Ni): for jj in ndindex(Nj): for kk in ndindex(Nk): out[ii + jj + kk] = a[ii + (indices[jj],) + kk] Parameters ---------- a : array_like (Ni..., M, Nk...) The source array. indices : array_like (Nj...) The indices of the values to extract. .. versionadded:: 1.8.0 Also allow scalars for indices. axis : int, optional The axis over which to select values. By default, the flattened input array is used. out : ndarray, optional (Ni..., Nj..., Nk...) If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. Note that `out` is always buffered if `mode='raise'`; use other modes for better performance. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Returns ------- out : ndarray (Ni..., Nj..., Nk...) The returned array has the same type as `a`. See Also -------- compress : Take elements using a boolean mask ndarray.take : equivalent method take_along_axis : Take elements by matching the array and the index arrays Notes ----- By eliminating the inner loop in the description above, and using `s_` to build simple slice objects, `take` can be expressed in terms of applying fancy indexing to each 1-d slice:: Ni, Nk = a.shape[:axis], a.shape[axis+1:] for ii in ndindex(Ni): for kk in ndindex(Nj): out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices] For this reason, it is equivalent to (but faster than) the following use of `apply_along_axis`:: out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a) Examples -------- >>> a = [4, 3, 5, 7, 6, 8] >>> indices = [0, 1, 4] >>> np.take(a, indices) array([4, 3, 6]) In this example if `a` is an ndarray, "fancy" indexing can be used. >>> a = np.array(a) >>> a[indices] array([4, 3, 6]) If `indices` is not one dimensional, the output also has these dimensions. >>> np.take(a, [[0, 1], [2, 3]]) array([[4, 3], [5, 7]]) """ return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode) def _reshape_dispatcher(a, newshape, order=None): return (a,) # not deprecated --- copy if necessary, view otherwise @array_function_dispatch(_reshape_dispatcher) def reshape(a, newshape, order='C'): """ Gives a new shape to an array without changing its data. Parameters ---------- a : array_like Array to be reshaped. newshape : int or tuple of ints The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions. order : {'C', 'F', 'A'}, optional Read the elements of `a` using this index order, and place the elements into the reshaped array using this index order. 'C' means to read / write the elements using C-like index order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to read / write the elements using Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of indexing. 'A' means to read / write the elements in Fortran-like index order if `a` is Fortran *contiguous* in memory, C-like order otherwise. Returns ------- reshaped_array : ndarray This will be a new view object if possible; otherwise, it will be a copy. Note there is no guarantee of the *memory layout* (C- or Fortran- contiguous) of the returned array. See Also -------- ndarray.reshape : Equivalent method. Notes ----- It is not always possible to change the shape of an array without copying the data. If you want an error to be raised when the data is copied, you should assign the new shape to the shape attribute of the array:: >>> a = np.zeros((10, 2)) # A transpose makes the array non-contiguous >>> b = a.T # Taking a view makes it possible to modify the shape without modifying # the initial object. >>> c = b.view() >>> c.shape = (20) Traceback (most recent call last): ... AttributeError: Incompatible shape for in-place modification. Use `.reshape()` to make a copy with the desired shape. The `order` keyword gives the index ordering both for *fetching* the values from `a`, and then *placing* the values into the output array. For example, let's say you have an array: >>> a = np.arange(6).reshape((3, 2)) >>> a array([[0, 1], [2, 3], [4, 5]]) You can think of reshaping as first raveling the array (using the given index order), then inserting the elements from the raveled array into the new array using the same kind of index ordering as was used for the raveling. >>> np.reshape(a, (2, 3)) # C-like index ordering array([[0, 1, 2], [3, 4, 5]]) >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape array([[0, 1, 2], [3, 4, 5]]) >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering array([[0, 4, 3], [2, 1, 5]]) >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F') array([[0, 4, 3], [2, 1, 5]]) Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> np.reshape(a, 6) array([1, 2, 3, 4, 5, 6]) >>> np.reshape(a, 6, order='F') array([1, 4, 2, 5, 3, 6]) >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]]) """ return _wrapfunc(a, 'reshape', newshape, order=order) def _choose_dispatcher(a, choices, out=None, mode=None): yield a yield from choices yield out @array_function_dispatch(_choose_dispatcher) def choose(a, choices, out=None, mode='raise'): """ Construct an array from an index array and a list of arrays to choose from. First of all, if confused or uncertain, definitely look at the Examples - in its full generality, this function is less simple than it might seem from the following code description (below ndi = `numpy.lib.index_tricks`): ``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``. But this omits some subtleties. Here is a fully general summary: Given an "index" array (`a`) of integers and a sequence of ``n`` arrays (`choices`), `a` and each choice array are first broadcast, as necessary, to arrays of a common shape; calling these *Ba* and *Bchoices[i], i = 0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape`` for each ``i``. Then, a new array with shape ``Ba.shape`` is created as follows: * if ``mode='raise'`` (the default), then, first of all, each element of ``a`` (and thus ``Ba``) must be in the range ``[0, n-1]``; now, suppose that ``i`` (in that range) is the value at the ``(j0, j1, ..., jm)`` position in ``Ba`` - then the value at the same position in the new array is the value in ``Bchoices[i]`` at that same position; * if ``mode='wrap'``, values in `a` (and thus `Ba`) may be any (signed) integer; modular arithmetic is used to map integers outside the range `[0, n-1]` back into that range; and then the new array is constructed as above; * if ``mode='clip'``, values in `a` (and thus ``Ba``) may be any (signed) integer; negative integers are mapped to 0; values greater than ``n-1`` are mapped to ``n-1``; and then the new array is constructed as above. Parameters ---------- a : int array This array must contain integers in ``[0, n-1]``, where ``n`` is the number of choices, unless ``mode=wrap`` or ``mode=clip``, in which cases any integers are permissible. choices : sequence of arrays Choice arrays. `a` and all of the choices must be broadcastable to the same shape. If `choices` is itself an array (not recommended), then its outermost dimension (i.e., the one corresponding to ``choices.shape[0]``) is taken as defining the "sequence". out : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Note that `out` is always buffered if ``mode='raise'``; use other modes for better performance. mode : {'raise' (default), 'wrap', 'clip'}, optional Specifies how indices outside ``[0, n-1]`` will be treated: * 'raise' : an exception is raised * 'wrap' : value becomes value mod ``n`` * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1 Returns ------- merged_array : array The merged result. Raises ------ ValueError: shape mismatch If `a` and each choice array are not all broadcastable to the same shape. See Also -------- ndarray.choose : equivalent method numpy.take_along_axis : Preferable if `choices` is an array Notes ----- To reduce the chance of misinterpretation, even though the following "abuse" is nominally supported, `choices` should neither be, nor be thought of as, a single array, i.e., the outermost sequence-like container should be either a list or a tuple. Examples -------- >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], ... [20, 21, 22, 23], [30, 31, 32, 33]] >>> np.choose([2, 3, 1, 0], choices ... # the first element of the result will be the first element of the ... # third (2+1) "array" in choices, namely, 20; the second element ... # will be the second element of the fourth (3+1) choice array, i.e., ... # 31, etc. ... ) array([20, 31, 12, 3]) >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1) array([20, 31, 12, 3]) >>> # because there are 4 choice arrays >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4) array([20, 1, 12, 3]) >>> # i.e., 0 A couple examples illustrating how choose broadcasts: >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]] >>> choices = [-10, 10] >>> np.choose(a, choices) array([[ 10, -10, 10], [-10, 10, -10], [ 10, -10, 10]]) >>> # With thanks to Anne Archibald >>> a = np.array([0, 1]).reshape((2,1,1)) >>> c1 = np.array([1, 2, 3]).reshape((1,3,1)) >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5)) >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 array([[[ 1, 1, 1, 1, 1], [ 2, 2, 2, 2, 2], [ 3, 3, 3, 3, 3]], [[-1, -2, -3, -4, -5], [-1, -2, -3, -4, -5], [-1, -2, -3, -4, -5]]]) """ return _wrapfunc(a, 'choose', choices, out=out, mode=mode) def _repeat_dispatcher(a, repeats, axis=None): return (a,) @array_function_dispatch(_repeat_dispatcher) def repeat(a, repeats, axis=None): """ Repeat elements of an array. Parameters ---------- a : array_like Input array. repeats : int or array of ints The number of repetitions for each element. `repeats` is broadcasted to fit the shape of the given axis. axis : int, optional The axis along which to repeat values. By default, use the flattened input array, and return a flat output array. Returns ------- repeated_array : ndarray Output array which has the same shape as `a`, except along the given axis. See Also -------- tile : Tile an array. unique : Find the unique elements of an array. Examples -------- >>> np.repeat(3, 4) array([3, 3, 3, 3]) >>> x = np.array([[1,2],[3,4]]) >>> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) >>> np.repeat(x, 3, axis=1) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> np.repeat(x, [1, 2], axis=0) array([[1, 2], [3, 4], [3, 4]]) """ return _wrapfunc(a, 'repeat', repeats, axis=axis) def _put_dispatcher(a, ind, v, mode=None): return (a, ind, v) @array_function_dispatch(_put_dispatcher) def put(a, ind, v, mode='raise'): """ Replaces specified elements of an array with given values. The indexing works on the flattened target array. `put` is roughly equivalent to: :: a.flat[ind] = v Parameters ---------- a : ndarray Target array. ind : array_like Target indices, interpreted as integers. v : array_like Values to place in `a` at target indices. If `v` is shorter than `ind` it will be repeated as necessary. mode : {'raise', 'wrap', 'clip'}, optional Specifies how out-of-bounds indices will behave. * 'raise' -- raise an error (default) * 'wrap' -- wrap around * 'clip' -- clip to the range 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. In 'raise' mode, if an exception occurs the target array may still be modified. See Also -------- putmask, place put_along_axis : Put elements by matching the array and the index arrays Examples -------- >>> a = np.arange(5) >>> np.put(a, [0, 2], [-44, -55]) >>> a array([-44, 1, -55, 3, 4]) >>> a = np.arange(5) >>> np.put(a, 22, -5, mode='clip') >>> a array([ 0, 1, 2, 3, -5]) """ try: put = a.put except AttributeError as e: raise TypeError("argument 1 must be numpy.ndarray, " "not {name}".format(name=type(a).__name__)) from e return put(ind, v, mode=mode) def _swapaxes_dispatcher(a, axis1, axis2): return (a,) @array_function_dispatch(_swapaxes_dispatcher) def swapaxes(a, axis1, axis2): """ Interchange two axes of an array. Parameters ---------- a : array_like Input array. axis1 : int First axis. axis2 : int Second axis. Returns ------- a_swapped : ndarray For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is returned; otherwise a new array is created. For earlier NumPy versions a view of `a` is returned only if the order of the axes is changed, otherwise the input array is returned. Examples -------- >>> x = np.array([[1,2,3]]) >>> np.swapaxes(x,0,1) array([[1], [2], [3]]) >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> np.swapaxes(x,0,2) array([[[0, 4], [2, 6]], [[1, 5], [3, 7]]]) """ return _wrapfunc(a, 'swapaxes', axis1, axis2) def _transpose_dispatcher(a, axes=None): return (a,) @array_function_dispatch(_transpose_dispatcher) def transpose(a, axes=None): """ Reverse or permute the axes of an array; returns the modified array. For an array a with two axes, transpose(a) gives the matrix transpose. Refer to `numpy.ndarray.transpose` for full documentation. Parameters ---------- a : array_like Input array. axes : tuple or list of ints, optional If specified, it must be a tuple or list which contains a permutation of [0,1,..,N-1] where N is the number of axes of a. The i'th axis of the returned array will correspond to the axis numbered ``axes[i]`` of the input. If not specified, defaults to ``range(a.ndim)[::-1]``, which reverses the order of the axes. Returns ------- p : ndarray `a` with its axes permuted. A view is returned whenever possible. See Also -------- ndarray.transpose : Equivalent method moveaxis argsort Notes ----- Use `transpose(a, argsort(axes))` to invert the transposition of tensors when using the `axes` keyword argument. Transposing a 1-D array returns an unchanged view of the original array. Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([[0, 1], [2, 3]]) >>> np.transpose(x) array([[0, 2], [1, 3]]) >>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3) >>> x = np.ones((2, 3, 4, 5)) >>> np.transpose(x).shape (5, 4, 3, 2) """ return _wrapfunc(a, 'transpose', axes) def _partition_dispatcher(a, kth, axis=None, kind=None, order=None): return (a,) @array_function_dispatch(_partition_dispatcher) def partition(a, kth, axis=-1, kind='introselect', order=None): """ Return a partitioned copy of an array. Creates a copy of the array with its elements rearranged in such a way that the value of the element in k-th position is in the position it would be in a sorted array. All elements smaller than the k-th element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Array to be sorted. kth : int or sequence of ints Element index to partition by. The k-th value of the element will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of k-th it will partition all elements indexed by k-th of them into their sorted position at once. axis : int or None, optional Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : {'introselect'}, optional Selection algorithm. Default is 'introselect'. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string. Not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- partitioned_array : ndarray Array of the same type and shape as `a`. See Also -------- ndarray.partition : Method to sort an array in-place. argpartition : Indirect partition. sort : Full sorting Notes ----- The various selection algorithms are characterized by their average speed, worst case performance, work space size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The available algorithms have the following properties: ================= ======= ============= ============ ======= kind speed worst case work space stable ================= ======= ============= ============ ======= 'introselect' 1 O(n) 0 no ================= ======= ============= ============ ======= All the partition algorithms make temporary copies of the data when partitioning along any but the last axis. Consequently, partitioning along the last axis is faster and uses less space than partitioning along any other axis. The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the order is determined by the real parts except when they are equal, in which case the order is determined by the imaginary parts. Examples -------- >>> a = np.array([3, 4, 2, 1]) >>> np.partition(a, 3) array([2, 1, 3, 4]) >>> np.partition(a, (1, 3)) array([1, 2, 3, 4]) """ if axis is None: # flatten returns (1, N) for np.matrix, so always use the last axis a = asanyarray(a).flatten() axis = -1 else: a = asanyarray(a).copy(order="K") a.partition(kth, axis=axis, kind=kind, order=order) return a def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None): return (a,) @array_function_dispatch(_argpartition_dispatcher) def argpartition(a, kth, axis=-1, kind='introselect', order=None): """ Perform an indirect partition along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in partitioned order. .. versionadded:: 1.8.0 Parameters ---------- a : array_like Array to sort. kth : int or sequence of ints Element index to partition by. The k-th element will be in its final sorted position and all smaller elements will be moved before it and all larger elements behind it. The order all elements in the partitions is undefined. If provided with a sequence of k-th it will partition all of them into their sorted position at once. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : {'introselect'}, optional Selection algorithm. Default is 'introselect' order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- index_array : ndarray, int Array of indices that partition `a` along the specified axis. If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`. More generally, ``np.take_along_axis(a, index_array, axis=a)`` always yields the partitioned `a`, irrespective of dimensionality. See Also -------- partition : Describes partition algorithms used. ndarray.partition : Inplace partition. argsort : Full indirect sort. take_along_axis : Apply ``index_array`` from argpartition to an array as if by calling partition. Notes ----- See `partition` for notes on the different selection algorithms. Examples -------- One dimensional array: >>> x = np.array([3, 4, 2, 1]) >>> x[np.argpartition(x, 3)] array([2, 1, 3, 4]) >>> x[np.argpartition(x, (1, 3))] array([1, 2, 3, 4]) >>> x = [3, 4, 2, 1] >>> np.array(x)[np.argpartition(x, 3)] array([2, 1, 3, 4]) Multi-dimensional array: >>> x = np.array([[3, 4, 2], [1, 3, 1]]) >>> index_array = np.argpartition(x, kth=1, axis=-1) >>> np.take_along_axis(x, index_array, axis=-1) # same as np.partition(x, kth=1) array([[2, 3, 4], [1, 1, 3]]) """ return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order) def _sort_dispatcher(a, axis=None, kind=None, order=None): return (a,) @array_function_dispatch(_sort_dispatcher) def sort(a, axis=-1, kind=None, order=None): """ Return a sorted copy of an array. Parameters ---------- a : array_like Array to be sorted. axis : int or None, optional Axis along which to sort. If None, the array is flattened before sorting. The default is -1, which sorts along the last axis. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. The default is 'quicksort'. Note that both 'stable' and 'mergesort' use timsort or radix sort under the covers and, in general, the actual implementation will vary with data type. The 'mergesort' option is retained for backwards compatibility. .. versionchanged:: 1.15.0. The 'stable' option was added. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- ndarray.sort : Method to sort an array in-place. argsort : Indirect sort. lexsort : Indirect stable sort on multiple keys. searchsorted : Find elements in a sorted array. partition : Partial sort. Notes ----- The various sorting algorithms are characterized by their average speed, worst case performance, work space size, and whether they are stable. A stable sort keeps items with the same key in the same relative order. The four algorithms implemented in NumPy have the following properties: =========== ======= ============= ============ ======== kind speed worst case work space stable =========== ======= ============= ============ ======== 'quicksort' 1 O(n^2) 0 no 'heapsort' 3 O(n*log(n)) 0 no 'mergesort' 2 O(n*log(n)) ~n/2 yes 'timsort' 2 O(n*log(n)) ~n/2 yes =========== ======= ============= ============ ======== .. note:: The datatype determines which of 'mergesort' or 'timsort' is actually used, even if 'mergesort' is specified. User selection at a finer scale is not currently available. All the sort algorithms make temporary copies of the data when sorting along any but the last axis. Consequently, sorting along the last axis is faster and uses less space than sorting along any other axis. The sort order for complex numbers is lexicographic. If both the real and imaginary parts are non-nan then the order is determined by the real parts except when they are equal, in which case the order is determined by the imaginary parts. Previous to numpy 1.4.0 sorting real and complex arrays containing nan values led to undefined behaviour. In numpy versions >= 1.4.0 nan values are sorted to the end. The extended sort order is: * Real: [R, nan] * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj] where R is a non-nan real value. Complex values with the same nan placements are sorted according to the non-nan part if it exists. Non-nan values are sorted as before. .. versionadded:: 1.12.0 quicksort has been changed to `introsort <https://en.wikipedia.org/wiki/Introsort>`_. When sorting does not make enough progress it switches to `heapsort <https://en.wikipedia.org/wiki/Heapsort>`_. This implementation makes quicksort O(n*log(n)) in the worst case. 'stable' automatically chooses the best stable sorting algorithm for the data type being sorted. It, along with 'mergesort' is currently mapped to `timsort <https://en.wikipedia.org/wiki/Timsort>`_ or `radix sort <https://en.wikipedia.org/wiki/Radix_sort>`_ depending on the data type. API forward compatibility currently limits the ability to select the implementation and it is hardwired for the different data types. .. versionadded:: 1.17.0 Timsort is added for better performance on already or nearly sorted data. On random data timsort is almost identical to mergesort. It is now used for stable sort while quicksort is still the default sort if none is chosen. For timsort details, refer to `CPython listsort.txt <https://github.com/python/cpython/blob/3.7/Objects/listsort.txt>`_. 'mergesort' and 'stable' are mapped to radix sort for integer data types. Radix sort is an O(n) sort instead of O(n log n). .. versionchanged:: 1.18.0 NaT now sorts to the end of arrays for consistency with NaN. Examples -------- >>> a = np.array([[1,4],[3,1]]) >>> np.sort(a) # sort along the last axis array([[1, 4], [1, 3]]) >>> np.sort(a, axis=None) # sort the flattened array array([1, 1, 3, 4]) >>> np.sort(a, axis=0) # sort along the first axis array([[1, 1], [3, 4]]) Use the `order` keyword to specify a field to use when sorting a structured array: >>> dtype = [('name', 'S10'), ('height', float), ('age', int)] >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38), ... ('Galahad', 1.7, 38)] >>> a = np.array(values, dtype=dtype) # create a structured array >>> np.sort(a, order='height') # doctest: +SKIP array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.8999999999999999, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) Sort by age, then height if ages are equal: >>> np.sort(a, order=['age', 'height']) # doctest: +SKIP array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38), ('Arthur', 1.8, 41)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) """ if axis is None: # flatten returns (1, N) for np.matrix, so always use the last axis a = asanyarray(a).flatten() axis = -1 else: a = asanyarray(a).copy(order="K") a.sort(axis=axis, kind=kind, order=order) return a def _argsort_dispatcher(a, axis=None, kind=None, order=None): return (a,) @array_function_dispatch(_argsort_dispatcher) def argsort(a, axis=-1, kind=None, order=None): """ Returns the indices that would sort an array. Perform an indirect sort along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in sorted order. Parameters ---------- a : array_like Array to sort. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. The default is 'quicksort'. Note that both 'stable' and 'mergesort' use timsort under the covers and, in general, the actual implementation will vary with data type. The 'mergesort' option is retained for backwards compatibility. .. versionchanged:: 1.15.0. The 'stable' option was added. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified `axis`. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. More generally, ``np.take_along_axis(a, index_array, axis=axis)`` always yields the sorted `a`, irrespective of dimensionality. See Also -------- sort : Describes sorting algorithms used. lexsort : Indirect stable sort with multiple keys. ndarray.sort : Inplace sort. argpartition : Indirect partial sort. take_along_axis : Apply ``index_array`` from argsort to an array as if by calling sort. Notes ----- See `sort` for notes on the different sorting algorithms. As of NumPy 1.4.0 `argsort` works with real/complex arrays containing nan values. The enhanced sort order is documented in `sort`. Examples -------- One dimensional array: >>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) Two-dimensional array: >>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]]) >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]]) >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]]) Indices of the sorted elements of a N-dimensional array: >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) Sorting with keys: >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> x array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> np.argsort(x, order=('x','y')) array([1, 0]) >>> np.argsort(x, order=('y','x')) array([0, 1]) """ return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order) def _argmax_dispatcher(a, axis=None, out=None): return (a, out) @array_function_dispatch(_argmax_dispatcher) def argmax(a, axis=None, out=None): """ Returns the indices of the maximum values along an axis. Parameters ---------- a : array_like Input array. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of ints Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. See Also -------- ndarray.argmax, argmin amax : The maximum value along a given axis. unravel_index : Convert a flat index into an index tuple. take_along_axis : Apply ``np.expand_dims(index_array, axis)`` from argmax to an array as if by calling max. Notes ----- In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10, 11, 12], [13, 14, 15]]) >>> np.argmax(a) 5 >>> np.argmax(a, axis=0) array([1, 1, 1]) >>> np.argmax(a, axis=1) array([2, 2]) Indexes of the maximal elements of a N-dimensional array: >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape) >>> ind (1, 2) >>> a[ind] 15 >>> b = np.arange(6) >>> b[1] = 5 >>> b array([0, 5, 2, 3, 4, 5]) >>> np.argmax(b) # Only the first occurrence is returned. 1 >>> x = np.array([[4,2,3], [1,0,3]]) >>> index_array = np.argmax(x, axis=-1) >>> # Same as np.max(x, axis=-1, keepdims=True) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) array([[4], [3]]) >>> # Same as np.max(x, axis=-1) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1) array([4, 3]) """ return _wrapfunc(a, 'argmax', axis=axis, out=out) def _argmin_dispatcher(a, axis=None, out=None): return (a, out) @array_function_dispatch(_argmin_dispatcher) def argmin(a, axis=None, out=None): """ Returns the indices of the minimum values along an axis. Parameters ---------- a : array_like Input array. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : array, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of ints Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. See Also -------- ndarray.argmin, argmax amin : The minimum value along a given axis. unravel_index : Convert a flat index into an index tuple. take_along_axis : Apply ``np.expand_dims(index_array, axis)`` from argmin to an array as if by calling min. Notes ----- In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10, 11, 12], [13, 14, 15]]) >>> np.argmin(a) 0 >>> np.argmin(a, axis=0) array([0, 0, 0]) >>> np.argmin(a, axis=1) array([0, 0]) Indices of the minimum elements of a N-dimensional array: >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) >>> ind (0, 0) >>> a[ind] 10 >>> b = np.arange(6) + 10 >>> b[4] = 10 >>> b array([10, 11, 12, 13, 10, 15]) >>> np.argmin(b) # Only the first occurrence is returned. 0 >>> x = np.array([[4,2,3], [1,0,3]]) >>> index_array = np.argmin(x, axis=-1) >>> # Same as np.min(x, axis=-1, keepdims=True) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) array([[2], [0]]) >>> # Same as np.max(x, axis=-1) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1) array([2, 0]) """ return _wrapfunc(a, 'argmin', axis=axis, out=out) def _searchsorted_dispatcher(a, v, side=None, sorter=None): return (a, v, sorter) @array_function_dispatch(_searchsorted_dispatcher) def searchsorted(a, v, side='left', sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `a` such that, if the corresponding elements in `v` were inserted before the indices, the order of `a` would be preserved. Assuming that `a` is sorted: ====== ============================ `side` returned index `i` satisfies ====== ============================ left ``a[i-1] < v <= a[i]`` right ``a[i-1] <= v < a[i]`` ====== ============================ Parameters ---------- a : 1-D array_like Input array. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. v : array_like Values to insert into `a`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `a`). sorter : 1-D array_like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. .. versionadded:: 1.7.0 Returns ------- indices : array of ints Array of insertion points with the same shape as `v`. See Also -------- sort : Return a sorted copy of an array. histogram : Produce histogram from 1-D data. Notes ----- Binary search is used to find the required insertion points. As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing `nan` values. The enhanced sort order is documented in `sort`. This function uses the same algorithm as the builtin python `bisect.bisect_left` (``side='left'``) and `bisect.bisect_right` (``side='right'``) functions, which is also vectorized in the `v` argument. Examples -------- >>> np.searchsorted([1,2,3,4,5], 3) 2 >>> np.searchsorted([1,2,3,4,5], 3, side='right') 3 >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3]) array([0, 5, 1, 2]) """ return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter) def _resize_dispatcher(a, new_shape): return (a,) @array_function_dispatch(_resize_dispatcher) def resize(a, new_shape): """ Return a new array with the specified shape. If the new array is larger than the original array, then the new array is filled with repeated copies of `a`. Note that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of `a`. Parameters ---------- a : array_like Array to be resized. new_shape : int or tuple of int Shape of resized array. Returns ------- reshaped_array : ndarray The new array is formed from the data in the old array, repeated if necessary to fill out the required number of elements. The data are repeated iterating over the array in C-order. See Also -------- np.reshape : Reshape an array without changing the total size. np.pad : Enlarge and pad an array. np.repeat : Repeat elements of an array. ndarray.resize : resize an array in-place. Notes ----- When the total size of the array does not change `~numpy.reshape` should be used. In most other cases either indexing (to reduce the size) or padding (to increase the size) may be a more appropriate solution. Warning: This functionality does **not** consider axes separately, i.e. it does not apply interpolation/extrapolation. It fills the return array with the required number of elements, iterating over `a` in C-order, disregarding axes (and cycling back from the start if the new shape is larger). This functionality is therefore not suitable to resize images, or data where each axis represents a separate and distinct entity. Examples -------- >>> a=np.array([[0,1],[2,3]]) >>> np.resize(a,(2,3)) array([[0, 1, 2], [3, 0, 1]]) >>> np.resize(a,(1,4)) array([[0, 1, 2, 3]]) >>> np.resize(a,(2,4)) array([[0, 1, 2, 3], [0, 1, 2, 3]]) """ if isinstance(new_shape, (int, nt.integer)): new_shape = (new_shape,) a = ravel(a) new_size = 1 for dim_length in new_shape: new_size *= dim_length if dim_length < 0: raise ValueError('all elements of `new_shape` must be non-negative') if a.size == 0 or new_size == 0: # First case must zero fill. The second would have repeats == 0. return np.zeros_like(a, shape=new_shape) repeats = -(-new_size // a.size) # ceil division a = concatenate((a,) * repeats)[:new_size] return reshape(a, new_shape) def _squeeze_dispatcher(a, axis=None): return (a,) @array_function_dispatch(_squeeze_dispatcher) def squeeze(a, axis=None): """ Remove axes of length one from `a`. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0 Selects a subset of the entries of length one in the shape. If an axis is selected with shape entry greater than one, an error is raised. Returns ------- squeezed : ndarray The input array, but with all or a subset of the dimensions of length 1 removed. This is always `a` itself or a view into `a`. Note that if all axes are squeezed, the result is a 0d array and not a scalar. Raises ------ ValueError If `axis` is not None, and an axis being squeezed is not of length 1 See Also -------- expand_dims : The inverse operation, adding entries of length one reshape : Insert, remove, and combine dimensions, and resize existing ones Examples -------- >>> x = np.array([[[0], [1], [2]]]) >>> x.shape (1, 3, 1) >>> np.squeeze(x).shape (3,) >>> np.squeeze(x, axis=0).shape (3, 1) >>> np.squeeze(x, axis=1).shape Traceback (most recent call last): ... ValueError: cannot select an axis to squeeze out which has size not equal to one >>> np.squeeze(x, axis=2).shape (1, 3) >>> x = np.array([[1234]]) >>> x.shape (1, 1) >>> np.squeeze(x) array(1234) # 0d array >>> np.squeeze(x).shape () >>> np.squeeze(x)[()] 1234 """ try: squeeze = a.squeeze except AttributeError: return _wrapit(a, 'squeeze', axis=axis) if axis is None: return squeeze() else: return squeeze(axis=axis) def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None): return (a,) @array_function_dispatch(_diagonal_dispatcher) def diagonal(a, offset=0, axis1=0, axis2=1): """ Return specified diagonals. If `a` is 2-D, returns the diagonal of `a` with the given offset, i.e., the collection of elements of the form ``a[i, i+offset]``. If `a` has more than two dimensions, then the axes specified by `axis1` and `axis2` are used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing `axis1` and `axis2` and appending an index to the right equal to the size of the resulting diagonals. In versions of NumPy prior to 1.7, this function always returned a new, independent array containing a copy of the values in the diagonal. In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal, but depending on this fact is deprecated. Writing to the resulting array continues to work as it used to, but a FutureWarning is issued. Starting in NumPy 1.9 it returns a read-only view on the original array. Attempting to write to the resulting array will produce an error. In some future release, it will return a read/write view and writing to the returned array will alter your original array. The returned array will have the same type as the input array. If you don't write to the array returned by this function, then you can just ignore all of the above. If you depend on the current behavior, then we suggest copying the returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead of just ``np.diagonal(a)``. This will work with both past and future versions of NumPy. Parameters ---------- a : array_like Array from which the diagonals are taken. offset : int, optional Offset of the diagonal from the main diagonal. Can be positive or negative. Defaults to main diagonal (0). axis1 : int, optional Axis to be used as the first axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to first axis (0). axis2 : int, optional Axis to be used as the second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults to second axis (1). Returns ------- array_of_diagonals : ndarray If `a` is 2-D, then a 1-D array containing the diagonal and of the same type as `a` is returned unless `a` is a `matrix`, in which case a 1-D array rather than a (2-D) `matrix` is returned in order to maintain backward compatibility. If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2` are removed, and a new axis inserted at the end corresponding to the diagonal. Raises ------ ValueError If the dimension of `a` is less than 2. See Also -------- diag : MATLAB work-a-like for 1-D and 2-D arrays. diagflat : Create diagonal arrays. trace : Sum along diagonals. Examples -------- >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) >>> a.diagonal() array([0, 3]) >>> a.diagonal(1) array([1]) A 3-D example: >>> a = np.arange(8).reshape(2,2,2); a array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> a.diagonal(0, # Main diagonals of two arrays created by skipping ... 0, # across the outer(left)-most axis last and ... 1) # the "middle" (row) axis first. array([[0, 6], [1, 7]]) The sub-arrays whose main diagonals we just obtained; note that each corresponds to fixing the right-most (column) axis, and that the diagonals are "packed" in rows. >>> a[:,:,0] # main diagonal is [0 6] array([[0, 2], [4, 6]]) >>> a[:,:,1] # main diagonal is [1 7] array([[1, 3], [5, 7]]) The anti-diagonal can be obtained by reversing the order of elements using either `numpy.flipud` or `numpy.fliplr`. >>> a = np.arange(9).reshape(3, 3) >>> a array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.fliplr(a).diagonal() # Horizontal flip array([2, 4, 6]) >>> np.flipud(a).diagonal() # Vertical flip array([6, 4, 2]) Note that the order in which the diagonal is retrieved varies depending on the flip function. """ if isinstance(a, np.matrix): # Make diagonal of matrix 1-D to preserve backward compatibility. return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) else: return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2) def _trace_dispatcher( a, offset=None, axis1=None, axis2=None, dtype=None, out=None): return (a, out) @array_function_dispatch(_trace_dispatcher) def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None): """ Return the sum along diagonals of the array. If `a` is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i. If `a` has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of `a` with `axis1` and `axis2` removed. Parameters ---------- a : array_like Input array, from which the diagonals are taken. offset : int, optional Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0. axis1, axis2 : int, optional Axes to be used as the first and second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults are the first two axes of `a`. dtype : dtype, optional Determines the data-type of the returned array and of the accumulator where the elements are summed. If dtype has the value None and `a` is of integer type of precision less than the default integer precision, then the default integer precision is used. Otherwise, the precision is the same as that of `a`. out : ndarray, optional Array into which the output is placed. Its type is preserved and it must be of the right shape to hold the output. Returns ------- sum_along_diagonals : ndarray If `a` is 2-D, the sum along the diagonal is returned. If `a` has larger dimensions, then an array of sums along diagonals is returned. See Also -------- diag, diagonal, diagflat Examples -------- >>> np.trace(np.eye(3)) 3.0 >>> a = np.arange(8).reshape((2,2,2)) >>> np.trace(a) array([6, 8]) >>> a = np.arange(24).reshape((2,2,2,3)) >>> np.trace(a).shape (2, 3) """ if isinstance(a, np.matrix): # Get trace of matrix via an array to preserve backward compatibility. return asarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out) else: return asanyarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out) def _ravel_dispatcher(a, order=None): return (a,) @array_function_dispatch(_ravel_dispatcher) def ravel(a, order='C'): """Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array will be returned for a masked array input) Parameters ---------- a : array_like Input array. The elements in `a` are read in the order specified by `order`, and packed as a 1-D array. order : {'C','F', 'A', 'K'}, optional The elements of `a` are read using this index order. 'C' means to index the elements in row-major, C-style order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to index the elements in column-major, Fortran-style order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of axis indexing. 'A' means to read the elements in Fortran-like index order if `a` is Fortran *contiguous* in memory, C-like order otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used. Returns ------- y : array_like y is an array of the same subtype as `a`, with shape ``(a.size,)``. Note that matrices are special cased for backward compatibility, if `a` is a matrix, then y is a 1-D ndarray. See Also -------- ndarray.flat : 1-D iterator over an array. ndarray.flatten : 1-D array copy of the elements of an array in row-major order. ndarray.reshape : Change the shape of an array without changing its data. Notes ----- In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-style index ordering. When a view is desired in as many cases as possible, ``arr.reshape(-1)`` may be preferable. Examples -------- It is equivalent to ``reshape(-1, order=order)``. >>> x = np.array([[1, 2, 3], [4, 5, 6]]) >>> np.ravel(x) array([1, 2, 3, 4, 5, 6]) >>> x.reshape(-1) array([1, 2, 3, 4, 5, 6]) >>> np.ravel(x, order='F') array([1, 4, 2, 5, 3, 6]) When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering: >>> np.ravel(x.T) array([1, 4, 2, 5, 3, 6]) >>> np.ravel(x.T, order='A') array([1, 2, 3, 4, 5, 6]) When ``order`` is 'K', it will preserve orderings that are neither 'C' nor 'F', but won't reverse axes: >>> a = np.arange(3)[::-1]; a array([2, 1, 0]) >>> a.ravel(order='C') array([2, 1, 0]) >>> a.ravel(order='K') array([2, 1, 0]) >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a array([[[ 0, 2, 4], [ 1, 3, 5]], [[ 6, 8, 10], [ 7, 9, 11]]]) >>> a.ravel(order='C') array([ 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11]) >>> a.ravel(order='K') array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) """ if isinstance(a, np.matrix): return asarray(a).ravel(order=order) else: return asanyarray(a).ravel(order=order) def _nonzero_dispatcher(a): return (a,) @array_function_dispatch(_nonzero_dispatcher) def nonzero(a): """ Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of `a`, containing the indices of the non-zero elements in that dimension. The values in `a` are always tested and returned in row-major, C-style order. To group the indices by element, rather than dimension, use `argwhere`, which returns a row for each non-zero element. .. note:: When called on a zero-d array or scalar, ``nonzero(a)`` is treated as ``nonzero(atleast_1d(a))``. .. deprecated:: 1.17.0 Use `atleast_1d` explicitly if this behavior is deliberate. Parameters ---------- a : array_like Input array. Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- flatnonzero : Return indices that are non-zero in the flattened version of the input array. ndarray.nonzero : Equivalent ndarray method. count_nonzero : Counts the number of non-zero elements in the input array. Notes ----- While the nonzero values can be obtained with ``a[nonzero(a)]``, it is recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which will correctly handle 0-d arrays. Examples -------- >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) >>> x array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) >>> np.nonzero(x) (array([0, 1, 2, 2]), array([0, 1, 0, 1])) >>> x[np.nonzero(x)] array([3, 4, 5, 6]) >>> np.transpose(np.nonzero(x)) array([[0, 0], [1, 1], [2, 0], [2, 1]]) A common use for ``nonzero`` is to find the indices of an array, where a condition is True. Given an array `a`, the condition `a` > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the `a` where the condition is true. >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> a > 3 array([[False, False, False], [ True, True, True], [ True, True, True]]) >>> np.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) Using this result to index `a` is equivalent to using the mask directly: >>> a[np.nonzero(a > 3)] array([4, 5, 6, 7, 8, 9]) >>> a[a > 3] # prefer this spelling array([4, 5, 6, 7, 8, 9]) ``nonzero`` can also be called as a method of the array. >>> (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2])) """ return _wrapfunc(a, 'nonzero') def _shape_dispatcher(a): return (a,) @array_function_dispatch(_shape_dispatcher) def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- len ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')]) >>> np.shape(a) (2,) >>> a.shape (2,) """ try: result = a.shape except AttributeError: result = asarray(a).shape return result def _compress_dispatcher(condition, a, axis=None, out=None): return (condition, a, out) @array_function_dispatch(_compress_dispatcher) def compress(condition, a, axis=None, out=None): """ Return selected slices of an array along given axis. When working along a given axis, a slice along that axis is returned in `output` for each index where `condition` evaluates to True. When working on a 1-D array, `compress` is equivalent to `extract`. Parameters ---------- condition : 1-D array of bools Array that selects which entries to return. If len(condition) is less than the size of `a` along the given axis, then output is truncated to the length of the condition array. a : array_like Array from which to extract a part. axis : int, optional Axis along which to take slices. If None (default), work on the flattened array. out : ndarray, optional Output array. Its type is preserved and it must be of the right shape to hold the output. Returns ------- compressed_array : ndarray A copy of `a` without the slices along axis for which `condition` is false. See Also -------- take, choose, diag, diagonal, select ndarray.compress : Equivalent method in ndarray extract : Equivalent method when working on 1-D arrays :ref:`ufuncs-output-type` Examples -------- >>> a = np.array([[1, 2], [3, 4], [5, 6]]) >>> a array([[1, 2], [3, 4], [5, 6]]) >>> np.compress([0, 1], a, axis=0) array([[3, 4]]) >>> np.compress([False, True, True], a, axis=0) array([[3, 4], [5, 6]]) >>> np.compress([False, True], a, axis=1) array([[2], [4], [6]]) Working on the flattened array does not return slices along an axis but selects elements. >>> np.compress([False, True], a) array([2]) """ return _wrapfunc(a, 'compress', condition, axis=axis, out=out) def _clip_dispatcher(a, a_min, a_max, out=None, **kwargs): return (a, a_min, a_max) @array_function_dispatch(_clip_dispatcher) def clip(a, a_min, a_max, out=None, **kwargs): """ Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Equivalent to but faster than ``np.minimum(a_max, np.maximum(a, a_min))``. No check is performed to ensure ``a_min < a_max``. Parameters ---------- a : array_like Array containing elements to clip. a_min, a_max : array_like or None Minimum and maximum value. If ``None``, clipping is not performed on the corresponding edge. Only one of `a_min` and `a_max` may be ``None``. Both are broadcast against `a`. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. .. versionadded:: 1.17.0 Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. See Also -------- :ref:`ufuncs-output-type` Notes ----- When `a_min` is greater than `a_max`, `clip` returns an array in which all values are equal to `a_max`, as shown in the second example. Examples -------- >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, 1, 8) array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8]) >>> np.clip(a, 8, 1) array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) >>> np.clip(a, 3, 6, out=a) array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6]) >>> a = np.arange(10) >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8) array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8]) """ return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs) def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, initial=None, where=None): return (a, out) @array_function_dispatch(_sum_dispatcher) def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue): """ Sum of array elements over a given axis. Parameters ---------- a : array_like Elements to sum. axis : None or int or tuple of ints, optional Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis. .. versionadded:: 1.7.0 If axis is a tuple of ints, a sum is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array and of the accumulator in which the elements are summed. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `sum` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional Starting value for the sum. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.15.0 where : array_like of bool, optional Elements to include in the sum. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.17.0 Returns ------- sum_along_axis : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if `axis` is None, a scalar is returned. If an output array is specified, a reference to `out` is returned. See Also -------- ndarray.sum : Equivalent method. add.reduce : Equivalent functionality of `add`. cumsum : Cumulative sum of array elements. trapz : Integration of array values using the composite trapezoidal rule. mean, average Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. The sum of an empty array is the neutral element 0: >>> np.sum([]) 0.0 For floating point numbers the numerical precision of sum (and ``np.add.reduce``) is in general limited by directly adding each number individually to the result causing rounding errors in every step. However, often numpy will use a numerically better approach (partial pairwise summation) leading to improved precision in many use-cases. This improved precision is always provided when no ``axis`` is given. When ``axis`` is given, it will depend on which axis is summed. Technically, to provide the best speed possible, the improved precision is only used when the summation is along the fast axis in memory. Note that the exact precision may vary depending on other parameters. In contrast to NumPy, Python's ``math.fsum`` function uses a slower but more precise approach to summation. Especially when summing a large number of lower precision floating point numbers, such as ``float32``, numerical errors can become significant. In such cases it can be advisable to use `dtype="float64"` to use a higher precision for the output. Examples -------- >>> np.sum([0.5, 1.5]) 2.0 >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32) 1 >>> np.sum([[0, 1], [0, 5]]) 6 >>> np.sum([[0, 1], [0, 5]], axis=0) array([0, 6]) >>> np.sum([[0, 1], [0, 5]], axis=1) array([1, 5]) >>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1) array([1., 5.]) If the accumulator is too small, overflow occurs: >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) -128 You can also start the sum with a value other than zero: >>> np.sum([10], initial=5) 15 """ if isinstance(a, _gentype): # 2018-02-25, 1.15.0 warnings.warn( "Calling np.sum(generator) is deprecated, and in the future will give a different result. " "Use np.sum(np.fromiter(generator)) or the python sum builtin instead.", DeprecationWarning, stacklevel=3) res = _sum_(a) if out is not None: out[...] = res return out return res return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims, initial=initial, where=where) def _any_dispatcher(a, axis=None, out=None, keepdims=None, *, where=np._NoValue): return (a, where, out) @array_function_dispatch(_any_dispatcher) def any(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue): """ Test whether any array element along a given axis evaluates to True. Returns single boolean unless `axis` is not ``None`` Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical OR reduction is performed. The default (``axis=None``) is to perform a logical OR over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.7.0 If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved (e.g., if it is of type float, then it will remain so, returning 1.0 for True and 0.0 for False, regardless of the type of `a`). See :ref:`ufuncs-output-type` for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `any` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. where : array_like of bool, optional Elements to include in checking for any `True` values. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.20.0 Returns ------- any : bool or ndarray A new boolean or `ndarray` is returned unless `out` is specified, in which case a reference to `out` is returned. See Also -------- ndarray.any : equivalent method all : Test whether all elements along a given axis evaluate to True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to `True` because these are not equal to zero. Examples -------- >>> np.any([[True, False], [True, True]]) True >>> np.any([[True, False], [False, False]], axis=0) array([ True, False]) >>> np.any([-1, 0, 5]) True >>> np.any(np.nan) True >>> np.any([[True, False], [False, False]], where=[[False], [True]]) False >>> o=np.array(False) >>> z=np.any([-1, 4, 5], out=o) >>> z, o (array(True), array(True)) >>> # Check now that z is a reference to o >>> z is o True >>> id(z), id(o) # identity of z and o # doctest: +SKIP (191614240, 191614240) """ return _wrapreduction(a, np.logical_or, 'any', axis, None, out, keepdims=keepdims, where=where) def _all_dispatcher(a, axis=None, out=None, keepdims=None, *, where=None): return (a, where, out) @array_function_dispatch(_all_dispatcher) def all(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue): """ Test whether all array elements along a given axis evaluate to True. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical AND reduction is performed. The default (``axis=None``) is to perform a logical AND over all the dimensions of the input array. `axis` may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.7.0 If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved (e.g., if ``dtype(out)`` is float, the result will consist of 0.0's and 1.0's). See :ref:`ufuncs-output-type` for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `all` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. where : array_like of bool, optional Elements to include in checking for all `True` values. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.20.0 Returns ------- all : ndarray, bool A new boolean or array is returned unless `out` is specified, in which case a reference to `out` is returned. See Also -------- ndarray.all : equivalent method any : Test whether any element along a given axis evaluates to True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to `True` because these are not equal to zero. Examples -------- >>> np.all([[True,False],[True,True]]) False >>> np.all([[True,False],[True,True]], axis=0) array([ True, False]) >>> np.all([-1, 4, 5]) True >>> np.all([1.0, np.nan]) True >>> np.all([[True, True], [False, True]], where=[[True], [False]]) True >>> o=np.array(False) >>> z=np.all([-1, 4, 5], out=o) >>> id(z), id(o), z (28293632, 28293632, array(True)) # may vary """ return _wrapreduction(a, np.logical_and, 'all', axis, None, out, keepdims=keepdims, where=where) def _cumsum_dispatcher(a, axis=None, dtype=None, out=None): return (a, out) @array_function_dispatch(_cumsum_dispatcher) def cumsum(a, axis=None, dtype=None, out=None): """ Return the cumulative sum of the elements along a given axis. Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. See :ref:`ufuncs-output-type` for more details. Returns ------- cumsum_along_axis : ndarray. A new array holding the result is returned unless `out` is specified, in which case a reference to `out` is returned. The result has the same size as `a`, and the same shape as `a` if `axis` is not None or `a` is a 1-d array. See Also -------- sum : Sum array elements. trapz : Integration of array values using the composite trapezoidal rule. diff : Calculate the n-th discrete difference along given axis. Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21]) >>> np.cumsum(a, dtype=float) # specifies type of output value(s) array([ 1., 3., 6., 10., 15., 21.]) >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns array([[1, 2, 3], [5, 7, 9]]) >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows array([[ 1, 3, 6], [ 4, 9, 15]]) """ return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out) def _ptp_dispatcher(a, axis=None, out=None, keepdims=None): return (a, out) @array_function_dispatch(_ptp_dispatcher) def ptp(a, axis=None, out=None, keepdims=np._NoValue): """ Range of values (maximum - minimum) along an axis. The name of the function comes from the acronym for 'peak to peak'. .. warning:: `ptp` preserves the data type of the array. This means the return value for an input of signed integers with n bits (e.g. `np.int8`, `np.int16`, etc) is also a signed integer with n bits. In that case, peak-to-peak values greater than ``2**(n-1)-1`` will be returned as negative values. An example with a work-around is shown below. Parameters ---------- a : array_like Input values. axis : None or int or tuple of ints, optional Axis along which to find the peaks. By default, flatten the array. `axis` may be negative, in which case it counts from the last to the first axis. .. versionadded:: 1.15.0 If this is a tuple of ints, a reduction is performed on multiple axes, instead of a single axis or all the axes as before. out : array_like Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type of the output values will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `ptp` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- ptp : ndarray A new array holding the result, unless `out` was specified, in which case a reference to `out` is returned. Examples -------- >>> x = np.array([[4, 9, 2, 10], ... [6, 9, 7, 12]]) >>> np.ptp(x, axis=1) array([8, 6]) >>> np.ptp(x, axis=0) array([2, 0, 5, 2]) >>> np.ptp(x) 10 This example shows that a negative value can be returned when the input is an array of signed integers. >>> y = np.array([[1, 127], ... [0, 127], ... [-1, 127], ... [-2, 127]], dtype=np.int8) >>> np.ptp(y, axis=1) array([ 126, 127, -128, -127], dtype=int8) A work-around is to use the `view()` method to view the result as unsigned integers with the same bit width: >>> np.ptp(y, axis=1).view(np.uint8) array([126, 127, 128, 129], dtype=uint8) """ kwargs = {} if keepdims is not np._NoValue: kwargs['keepdims'] = keepdims if type(a) is not mu.ndarray: try: ptp = a.ptp except AttributeError: pass else: return ptp(axis=axis, out=out, **kwargs) return _methods._ptp(a, axis=axis, out=out, **kwargs) def _amax_dispatcher(a, axis=None, out=None, keepdims=None, initial=None, where=None): return (a, out) @array_function_dispatch(_amax_dispatcher) def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue): """ Return the maximum of an array or maximum along an axis. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional Axis or axes along which to operate. By default, flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the maximum is selected over multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See :ref:`ufuncs-output-type` for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `amax` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional The minimum value of an output element. Must be present to allow computation on empty slice. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.15.0 where : array_like of bool, optional Elements to compare for the maximum. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.17.0 Returns ------- amax : ndarray or scalar Maximum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- amin : The minimum value of an array along a given axis, propagating any NaNs. nanmax : The maximum value of an array along a given axis, ignoring any NaNs. maximum : Element-wise maximum of two arrays, propagating any NaNs. fmax : Element-wise maximum of two arrays, ignoring any NaNs. argmax : Return the indices of the maximum values. nanmin, minimum, fmin Notes ----- NaN values are propagated, that is if at least one item is NaN, the corresponding max value will be NaN as well. To ignore NaN values (MATLAB behavior), please use nanmax. Don't use `amax` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than ``amax(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0, 1], [2, 3]]) >>> np.amax(a) # Maximum of the flattened array 3 >>> np.amax(a, axis=0) # Maxima along the first axis array([2, 3]) >>> np.amax(a, axis=1) # Maxima along the second axis array([1, 3]) >>> np.amax(a, where=[False, True], initial=-1, axis=0) array([-1, 3]) >>> b = np.arange(5, dtype=float) >>> b[2] = np.NaN >>> np.amax(b) nan >>> np.amax(b, where=~np.isnan(b), initial=-1) 4.0 >>> np.nanmax(b) 4.0 You can use an initial value to compute the maximum of an empty slice, or to initialize it to a different value: >>> np.max([[-50], [10]], axis=-1, initial=0) array([ 0, 10]) Notice that the initial value is used as one of the elements for which the maximum is determined, unlike for the default argument Python's max function, which is only used for empty iterables. >>> np.max([5], initial=6) 6 >>> max([5], default=6) 5 """ return _wrapreduction(a, np.maximum, 'max', axis, None, out, keepdims=keepdims, initial=initial, where=where) def _amin_dispatcher(a, axis=None, out=None, keepdims=None, initial=None, where=None): return (a, out) @array_function_dispatch(_amin_dispatcher) def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue): """ Return the minimum of an array or minimum along an axis. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional Axis or axes along which to operate. By default, flattened input is used. .. versionadded:: 1.7.0 If this is a tuple of ints, the minimum is selected over multiple axes, instead of a single axis or all the axes as before. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See :ref:`ufuncs-output-type` for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `amin` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional The maximum value of an output element. Must be present to allow computation on empty slice. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.15.0 where : array_like of bool, optional Elements to compare for the minimum. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.17.0 Returns ------- amin : ndarray or scalar Minimum of `a`. If `axis` is None, the result is a scalar value. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- amax : The maximum value of an array along a given axis, propagating any NaNs. nanmin : The minimum value of an array along a given axis, ignoring any NaNs. minimum : Element-wise minimum of two arrays, propagating any NaNs. fmin : Element-wise minimum of two arrays, ignoring any NaNs. argmin : Return the indices of the minimum values. nanmax, maximum, fmax Notes ----- NaN values are propagated, that is if at least one item is NaN, the corresponding min value will be NaN as well. To ignore NaN values (MATLAB behavior), please use nanmin. Don't use `amin` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than ``amin(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0, 1], [2, 3]]) >>> np.amin(a) # Minimum of the flattened array 0 >>> np.amin(a, axis=0) # Minima along the first axis array([0, 1]) >>> np.amin(a, axis=1) # Minima along the second axis array([0, 2]) >>> np.amin(a, where=[False, True], initial=10, axis=0) array([10, 1]) >>> b = np.arange(5, dtype=float) >>> b[2] = np.NaN >>> np.amin(b) nan >>> np.amin(b, where=~np.isnan(b), initial=10) 0.0 >>> np.nanmin(b) 0.0 >>> np.min([[-50], [10]], axis=-1, initial=0) array([-50, 0]) Notice that the initial value is used as one of the elements for which the minimum is determined, unlike for the default argument Python's max function, which is only used for empty iterables. Notice that this isn't the same as Python's ``default`` argument. >>> np.min([6], initial=5) 5 >>> min([6], default=5) 6 """ return _wrapreduction(a, np.minimum, 'min', axis, None, out, keepdims=keepdims, initial=initial, where=where) def _alen_dispathcer(a): return (a,) @array_function_dispatch(_alen_dispathcer) def alen(a): """ Return the length of the first dimension of the input array. .. deprecated:: 1.18 `numpy.alen` is deprecated, use `len` instead. Parameters ---------- a : array_like Input array. Returns ------- alen : int Length of the first dimension of `a`. See Also -------- shape, size Examples -------- >>> a = np.zeros((7,4,5)) >>> a.shape[0] 7 >>> np.alen(a) 7 """ # NumPy 1.18.0, 2019-08-02 warnings.warn( "`np.alen` is deprecated, use `len` instead", DeprecationWarning, stacklevel=2) try: return len(a) except TypeError: return len(array(a, ndmin=1)) def _prod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, initial=None, where=None): return (a, out) @array_function_dispatch(_prod_dispatcher) def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue): """ Return the product of array elements over a given axis. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional Axis or axes along which a product is performed. The default, axis=None, will calculate the product of all the elements in the input array. If axis is negative it counts from the last to the first axis. .. versionadded:: 1.7.0 If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array, as well as of the accumulator in which the elements are multiplied. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `prod` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional The starting value for this product. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.15.0 where : array_like of bool, optional Elements to include in the product. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.17.0 Returns ------- product_along_axis : ndarray, see `dtype` parameter above. An array shaped as `a` but with the specified axis removed. Returns a reference to `out` if specified. See Also -------- ndarray.prod : equivalent method :ref:`ufuncs-output-type` Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. That means that, on a 32-bit platform: >>> x = np.array([536870910, 536870910, 536870910, 536870910]) >>> np.prod(x) 16 # may vary The product of an empty array is the neutral element 1: >>> np.prod([]) 1.0 Examples -------- By default, calculate the product of all elements: >>> np.prod([1.,2.]) 2.0 Even when the input array is two-dimensional: >>> np.prod([[1.,2.],[3.,4.]]) 24.0 But we can also specify the axis over which to multiply: >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Or select specific elements to include: >>> np.prod([1., np.nan, 3.], where=[True, False, True]) 3.0 If the type of `x` is unsigned, then the output type is the unsigned platform integer: >>> x = np.array([1, 2, 3], dtype=np.uint8) >>> np.prod(x).dtype == np.uint True If `x` is of a signed integer type, then the output type is the default platform integer: >>> x = np.array([1, 2, 3], dtype=np.int8) >>> np.prod(x).dtype == int True You can also start the product with a value other than one: >>> np.prod([1, 2], initial=5) 10 """ return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out, keepdims=keepdims, initial=initial, where=where) def _cumprod_dispatcher(a, axis=None, dtype=None, out=None): return (a, out) @array_function_dispatch(_cumprod_dispatcher) def cumprod(a, axis=None, dtype=None, out=None): """ Return the cumulative product of elements along a given axis. Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative product is computed. By default the input is flattened. dtype : dtype, optional Type of the returned array, as well as of the accumulator in which the elements are multiplied. If *dtype* is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used instead. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type of the resulting values will be cast if necessary. Returns ------- cumprod : ndarray A new array holding the result is returned unless `out` is specified, in which case a reference to out is returned. See Also -------- :ref:`ufuncs-output-type` Notes ----- Arithmetic is modular when using integer types, and no error is raised on overflow. Examples -------- >>> a = np.array([1,2,3]) >>> np.cumprod(a) # intermediate results 1, 1*2 ... # total product 1*2*3 = 6 array([1, 2, 6]) >>> a = np.array([[1, 2, 3], [4, 5, 6]]) >>> np.cumprod(a, dtype=float) # specify type of output array([ 1., 2., 6., 24., 120., 720.]) The cumulative product for each column (i.e., over the rows) of `a`: >>> np.cumprod(a, axis=0) array([[ 1, 2, 3], [ 4, 10, 18]]) The cumulative product for each row (i.e. over the columns) of `a`: >>> np.cumprod(a,axis=1) array([[ 1, 2, 6], [ 4, 20, 120]]) """ return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out) def _ndim_dispatcher(a): return (a,) @array_function_dispatch(_ndim_dispatcher) def ndim(a): """ Return the number of dimensions of an array. Parameters ---------- a : array_like Input array. If it is not already an ndarray, a conversion is attempted. Returns ------- number_of_dimensions : int The number of dimensions in `a`. Scalars are zero-dimensional. See Also -------- ndarray.ndim : equivalent method shape : dimensions of array ndarray.shape : dimensions of array Examples -------- >>> np.ndim([[1,2,3],[4,5,6]]) 2 >>> np.ndim(np.array([[1,2,3],[4,5,6]])) 2 >>> np.ndim(1) 0 """ try: return a.ndim except AttributeError: return asarray(a).ndim def _size_dispatcher(a, axis=None): return (a,) @array_function_dispatch(_size_dispatcher) def size(a, axis=None): """ Return the number of elements along a given axis. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which the elements are counted. By default, give the total number of elements. Returns ------- element_count : int Number of elements along the specified axis. See Also -------- shape : dimensions of array ndarray.shape : dimensions of array ndarray.size : number of elements in array Examples -------- >>> a = np.array([[1,2,3],[4,5,6]]) >>> np.size(a) 6 >>> np.size(a,1) 3 >>> np.size(a,0) 2 """ if axis is None: try: return a.size except AttributeError: return asarray(a).size else: try: return a.shape[axis] except AttributeError: return asarray(a).shape[axis] def _around_dispatcher(a, decimals=None, out=None): return (a, out) @array_function_dispatch(_around_dispatcher) def around(a, decimals=0, out=None): """ Evenly round to the given number of decimals. Parameters ---------- a : array_like Input data. decimals : int, optional Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. See :ref:`ufuncs-output-type` for more details. Returns ------- rounded_array : ndarray An array of the same type as `a`, containing the rounded values. Unless `out` was specified, a new array is created. A reference to the result is returned. The real and imaginary parts of complex numbers are rounded separately. The result of rounding a float is a float. See Also -------- ndarray.round : equivalent method ceil, fix, floor, rint, trunc Notes ----- For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. ``np.around`` uses a fast but sometimes inexact algorithm to round floating-point datatypes. For positive `decimals` it is equivalent to ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has error due to the inexact representation of decimal fractions in the IEEE floating point standard [1]_ and errors introduced when scaling by powers of ten. For instance, note the extra "1" in the following: >>> np.round(56294995342131.5, 3) 56294995342131.51 If your goal is to print such values with a fixed number of decimals, it is preferable to use numpy's float printing routines to limit the number of printed decimals: >>> np.format_float_positional(56294995342131.5, precision=3) '56294995342131.5' The float printing routines use an accurate but much more computationally demanding algorithm to compute the number of digits after the decimal point. Alternatively, Python's builtin `round` function uses a more accurate but slower algorithm for 64-bit floating point values: >>> round(56294995342131.5, 3) 56294995342131.5 >>> np.round(16.055, 2), round(16.055, 2) # equals 16.0549999999999997 (16.06, 16.05) References ---------- .. [1] "Lecture Notes on the Status of IEEE 754", William Kahan, https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF .. [2] "How Futile are Mindless Assessments of Roundoff in Floating-Point Computation?", William Kahan, https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf Examples -------- >>> np.around([0.37, 1.64]) array([0., 2.]) >>> np.around([0.37, 1.64], decimals=1) array([0.4, 1.6]) >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value array([0., 2., 2., 4., 4.]) >>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned array([ 1, 2, 3, 11]) >>> np.around([1,2,3,11], decimals=-1) array([ 0, 0, 0, 10]) """ return _wrapfunc(a, 'round', decimals=decimals, out=out) def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, *, where=None): return (a, where, out) @array_function_dispatch(_mean_dispatcher) def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *, where=np._NoValue): """ Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. `float64` intermediate and return values are used for integer inputs. Parameters ---------- a : array_like Array containing numbers whose mean is desired. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is `float64`; for floating point inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is ``None``; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See :ref:`ufuncs-output-type` for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `mean` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. where : array_like of bool, optional Elements to include in the mean. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.20.0 Returns ------- m : ndarray, see dtype parameter above If `out=None`, returns a new array containing the mean values, otherwise a reference to the output array is returned. See Also -------- average : Weighted average std, var, nanmean, nanstd, nanvar Notes ----- The arithmetic mean is the sum of the elements along the axis divided by the number of elements. Note that for floating-point input, the mean is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for `float32` (see example below). Specifying a higher-precision accumulator using the `dtype` keyword can alleviate this issue. By default, `float16` results are computed using `float32` intermediates for extra precision. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) 2.5 >>> np.mean(a, axis=0) array([2., 3.]) >>> np.mean(a, axis=1) array([1.5, 3.5]) In single precision, `mean` can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.mean(a) 0.54999924 Computing the mean in float64 is more accurate: >>> np.mean(a, dtype=np.float64) 0.55000000074505806 # may vary Specifying a where argument: >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]]) >>> np.mean(a) 12.0 >>> np.mean(a, where=[[True], [False], [False]]) 9.0 """ kwargs = {} if keepdims is not np._NoValue: kwargs['keepdims'] = keepdims if where is not np._NoValue: kwargs['where'] = where if type(a) is not mu.ndarray: try: mean = a.mean except AttributeError: pass else: return mean(axis=axis, dtype=dtype, out=out, **kwargs) return _methods._mean(a, axis=axis, dtype=dtype, out=out, **kwargs) def _std_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, keepdims=None, *, where=None): return (a, where, out) @array_function_dispatch(_std_dispatcher) def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *, where=np._NoValue): """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `std` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. where : array_like of bool, optional Elements to include in the standard deviation. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.20.0 Returns ------- standard_deviation : ndarray, see dtype parameter above. If `out` is None, return a new array containing the standard deviation, otherwise return a reference to the output array. See Also -------- var, mean, nanmean, nanstd, nanvar :ref:`ufuncs-output-type` Notes ----- The standard deviation is the square root of the average of the squared deviations from the mean, i.e., ``std = sqrt(mean(x))``, where ``x = abs(a - a.mean())**2``. The average squared deviation is typically calculated as ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is specified, the divisor ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1`` provides an unbiased estimator of the variance of the infinite population. ``ddof=0`` provides a maximum likelihood estimate of the variance for normally distributed variables. The standard deviation computed in this function is the square root of the estimated variance, so even with ``ddof=1``, it will not be an unbiased estimate of the standard deviation per se. Note that, for complex numbers, `std` takes the absolute value before squaring, so that the result is always real and nonnegative. For floating-point input, the *std* is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for float32 (see example below). Specifying a higher-accuracy accumulator using the `dtype` keyword can alleviate this issue. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 # may vary >>> np.std(a, axis=0) array([1., 1.]) >>> np.std(a, axis=1) array([0.5, 0.5]) In single precision, std() can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.std(a) 0.45000005 Computing the standard deviation in float64 is more accurate: >>> np.std(a, dtype=np.float64) 0.44999999925494177 # may vary Specifying a where argument: >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) >>> np.std(a) 2.614064523559687 # may vary >>> np.std(a, where=[[True], [True], [False]]) 2.0 """ kwargs = {} if keepdims is not np._NoValue: kwargs['keepdims'] = keepdims if where is not np._NoValue: kwargs['where'] = where if type(a) is not mu.ndarray: try: std = a.std except AttributeError: pass else: return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) def _var_dispatcher(a, axis=None, dtype=None, out=None, ddof=None, keepdims=None, *, where=None): return (a, where, out) @array_function_dispatch(_var_dispatcher) def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *, where=np._NoValue): """ Compute the variance along the specified axis. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Array containing numbers whose variance is desired. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the variance. For arrays of integer type the default is `float64`; for arrays of float types it is the same as the array type. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output, but the type is cast if necessary. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `var` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. where : array_like of bool, optional Elements to include in the variance. See `~numpy.ufunc.reduce` for details. .. versionadded:: 1.20.0 Returns ------- variance : ndarray, see dtype parameter above If ``out=None``, returns a new array containing the variance; otherwise, a reference to the output array is returned. See Also -------- std, mean, nanmean, nanstd, nanvar :ref:`ufuncs-output-type` Notes ----- The variance is the average of the squared deviations from the mean, i.e., ``var = mean(x)``, where ``x = abs(a - a.mean())**2``. The mean is typically calculated as ``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is specified, the divisor ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1`` provides an unbiased estimator of the variance of a hypothetical infinite population. ``ddof=0`` provides a maximum likelihood estimate of the variance for normally distributed variables. Note that for complex numbers, the absolute value is taken before squaring, so that the result is always real and nonnegative. For floating-point input, the variance is computed using the same precision the input has. Depending on the input data, this can cause the results to be inaccurate, especially for `float32` (see example below). Specifying a higher-accuracy accumulator using the ``dtype`` keyword can alleviate this issue. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.var(a) 1.25 >>> np.var(a, axis=0) array([1., 1.]) >>> np.var(a, axis=1) array([0.25, 0.25]) In single precision, var() can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.var(a) 0.20250003 Computing the variance in float64 is more accurate: >>> np.var(a, dtype=np.float64) 0.20249999932944759 # may vary >>> ((1-0.55)**2 + (0.1-0.55)**2)/2 0.2025 Specifying a where argument: >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]]) >>> np.var(a) 6.833333333333333 # may vary >>> np.var(a, where=[[True], [True], [False]]) 4.0 """ kwargs = {} if keepdims is not np._NoValue: kwargs['keepdims'] = keepdims if where is not np._NoValue: kwargs['where'] = where if type(a) is not mu.ndarray: try: var = a.var except AttributeError: pass else: return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs) # Aliases of other functions. These have their own definitions only so that # they can have unique docstrings. @array_function_dispatch(_around_dispatcher) def round_(a, decimals=0, out=None): """ Round an array to the given number of decimals. See Also -------- around : equivalent function; see for details. """ return around(a, decimals=decimals, out=out) @array_function_dispatch(_prod_dispatcher, verify=False) def product(*args, **kwargs): """ Return the product of array elements over a given axis. See Also -------- prod : equivalent function; see for details. """ return prod(*args, **kwargs) @array_function_dispatch(_cumprod_dispatcher, verify=False) def cumproduct(*args, **kwargs): """ Return the cumulative product over the given axis. See Also -------- cumprod : equivalent function; see for details. """ return cumprod(*args, **kwargs) @array_function_dispatch(_any_dispatcher, verify=False) def sometrue(*args, **kwargs): """ Check whether some values are true. Refer to `any` for full documentation. See Also -------- any : equivalent function; see for details. """ return any(*args, **kwargs) @array_function_dispatch(_all_dispatcher, verify=False) def alltrue(*args, **kwargs): """ Check if all elements of input array are true. See Also -------- numpy.all : Equivalent function; see for details. """ return all(*args, **kwargs)
bsd-3-clause
BinRoot/TensorFlow-Book
ch04_classification/logistic_2d.py
1
1737
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt learning_rate = 0.1 training_epochs = 2000 def sigmoid(x): return 1. / (1. + np.exp(-x)) x1_label1 = np.random.normal(3, 1, 1000) x2_label1 = np.random.normal(2, 1, 1000) x1_label2 = np.random.normal(7, 1, 1000) x2_label2 = np.random.normal(6, 1, 1000) x1s = np.append(x1_label1, x1_label2) x2s = np.append(x2_label1, x2_label2) ys = np.asarray([0.] * len(x1_label1) + [1.] * len(x1_label2)) X1 = tf.placeholder(tf.float32, shape=(None,), name="x1") X2 = tf.placeholder(tf.float32, shape=(None,), name="x2") Y = tf.placeholder(tf.float32, shape=(None,), name="y") w = tf.Variable([0., 0., 0.], name="w", trainable=True) y_model = tf.sigmoid(-(w[2] * X2 + w[1] * X1 + w[0])) cost = tf.reduce_mean(-tf.log(y_model) * Y -tf.log(1 - y_model) * (1 - Y)) train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) prev_err = 0 for epoch in range(training_epochs): err, _ = sess.run([cost, train_op], {X1: x1s, X2: x2s, Y: ys}) print(epoch, err) if abs(prev_err - err) < 0.0001: break prev_err = err w_val = sess.run(w) x1_boundary, x2_boundary = [], [] for x1_test in np.linspace(0, 10, 100): for x2_test in np.linspace(0, 10, 100): z = sigmoid(-x2_test*w_val[2] - x1_test*w_val[1] - w_val[0]) if abs(z - 0.5) < 0.01: x1_boundary.append(x1_test) x2_boundary.append(x2_test) plt.scatter(x1_boundary, x2_boundary, c='b', marker='o', s=20) plt.scatter(x1_label1, x2_label1, c='r', marker='x', s=20) plt.scatter(x1_label2, x2_label2, c='g', marker='1', s=20) plt.show()
mit
saiwing-yeung/scikit-learn
examples/decomposition/plot_pca_vs_fa_model_selection.py
70
4523
""" =============================================================== Model selection with Probabilistic PCA and Factor Analysis (FA) =============================================================== Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the likelihood of new data can be used for model selection and covariance estimation. Here we compare PCA and FA with cross-validation on low rank data corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature). In a second step we compare the model likelihood to the likelihoods obtained from shrinkage covariance estimators. One can observe that with homoscedastic noise both FA and PCA succeed in recovering the size of the low rank subspace. The likelihood with PCA is higher than FA in this case. However PCA fails and overestimates the rank when heteroscedastic noise is present. Under appropriate circumstances the low rank models are more likely than shrinkage models. The automatic estimation from Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604 by Thomas P. Minka is also compared. """ # Authors: Alexandre Gramfort # Denis A. Engemann # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.decomposition import PCA, FactorAnalysis from sklearn.covariance import ShrunkCovariance, LedoitWolf from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV print(__doc__) ############################################################################### # Create the data n_samples, n_features, rank = 1000, 50, 10 sigma = 1. rng = np.random.RandomState(42) U, _, _ = linalg.svd(rng.randn(n_features, n_features)) X = np.dot(rng.randn(n_samples, rank), U[:, :rank].T) # Adding homoscedastic noise X_homo = X + sigma * rng.randn(n_samples, n_features) # Adding heteroscedastic noise sigmas = sigma * rng.rand(n_features) + sigma / 2. X_hetero = X + rng.randn(n_samples, n_features) * sigmas ############################################################################### # Fit the models n_components = np.arange(0, n_features, 5) # options for n_components def compute_scores(X): pca = PCA(svd_solver='full') fa = FactorAnalysis() pca_scores, fa_scores = [], [] for n in n_components: pca.n_components = n fa.n_components = n pca_scores.append(np.mean(cross_val_score(pca, X))) fa_scores.append(np.mean(cross_val_score(fa, X))) return pca_scores, fa_scores def shrunk_cov_score(X): shrinkages = np.logspace(-2, 0, 30) cv = GridSearchCV(ShrunkCovariance(), {'shrinkage': shrinkages}) return np.mean(cross_val_score(cv.fit(X).best_estimator_, X)) def lw_score(X): return np.mean(cross_val_score(LedoitWolf(), X)) for X, title in [(X_homo, 'Homoscedastic Noise'), (X_hetero, 'Heteroscedastic Noise')]: pca_scores, fa_scores = compute_scores(X) n_components_pca = n_components[np.argmax(pca_scores)] n_components_fa = n_components[np.argmax(fa_scores)] pca = PCA(svd_solver='full', n_components='mle') pca.fit(X) n_components_pca_mle = pca.n_components_ print("best n_components by PCA CV = %d" % n_components_pca) print("best n_components by FactorAnalysis CV = %d" % n_components_fa) print("best n_components by PCA MLE = %d" % n_components_pca_mle) plt.figure() plt.plot(n_components, pca_scores, 'b', label='PCA scores') plt.plot(n_components, fa_scores, 'r', label='FA scores') plt.axvline(rank, color='g', label='TRUTH: %d' % rank, linestyle='-') plt.axvline(n_components_pca, color='b', label='PCA CV: %d' % n_components_pca, linestyle='--') plt.axvline(n_components_fa, color='r', label='FactorAnalysis CV: %d' % n_components_fa, linestyle='--') plt.axvline(n_components_pca_mle, color='k', label='PCA MLE: %d' % n_components_pca_mle, linestyle='--') # compare with other covariance estimators plt.axhline(shrunk_cov_score(X), color='violet', label='Shrunk Covariance MLE', linestyle='-.') plt.axhline(lw_score(X), color='orange', label='LedoitWolf MLE' % n_components_pca_mle, linestyle='-.') plt.xlabel('nb of components') plt.ylabel('CV scores') plt.legend(loc='lower right') plt.title(title) plt.show()
bsd-3-clause
BigDataforYou/movie_recommendation_workshop_1
big_data_4_you_demo_1/venv/lib/python2.7/site-packages/pandas/io/tests/parser/skiprows.py
1
2376
# -*- coding: utf-8 -*- """ Tests that skipped rows are properly handled during parsing for all of the parsers defined in parsers.py """ from datetime import datetime import numpy as np import pandas.util.testing as tm from pandas import DataFrame from pandas.compat import StringIO, range, lrange class SkipRowsTests(object): def test_skiprows_bug(self): # see gh-505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # see gh-4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # see gh-9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected)
mit
kaichogami/scikit-learn
sklearn/tests/test_learning_curve.py
59
10869
# Author: Alexander Fabisch <[email protected]> # # License: BSD 3 clause import sys from sklearn.externals.six.moves import cStringIO as StringIO import numpy as np import warnings from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import make_classification with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn.learning_curve import learning_curve, validation_curve from sklearn.cross_validation import KFold from sklearn.linear_model import PassiveAggressiveClassifier class MockImprovingEstimator(BaseEstimator): """Dummy classifier to test the learning curve""" def __init__(self, n_max_train_sizes): self.n_max_train_sizes = n_max_train_sizes self.train_sizes = 0 self.X_subset = None def fit(self, X_subset, y_subset=None): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, Y=None): # training score becomes worse (2 -> 1), test error better (0 -> 1) if self._is_training_data(X): return 2. - float(self.train_sizes) / self.n_max_train_sizes else: return float(self.train_sizes) / self.n_max_train_sizes def _is_training_data(self, X): return X is self.X_subset class MockIncrementalImprovingEstimator(MockImprovingEstimator): """Dummy classifier that provides partial_fit""" def __init__(self, n_max_train_sizes): super(MockIncrementalImprovingEstimator, self).__init__(n_max_train_sizes) self.x = None def _is_training_data(self, X): return self.x in X def partial_fit(self, X, y=None, **params): self.train_sizes += X.shape[0] self.x = X[0] class MockEstimatorWithParameter(BaseEstimator): """Dummy classifier to test the validation curve""" def __init__(self, param=0.5): self.X_subset = None self.param = param def fit(self, X_subset, y_subset): self.X_subset = X_subset self.train_sizes = X_subset.shape[0] return self def predict(self, X): raise NotImplementedError def score(self, X=None, y=None): return self.param if self._is_training_data(X) else 1 - self.param def _is_training_data(self, X): return X is self.X_subset def test_learning_curve(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) with warnings.catch_warnings(record=True) as w: train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_equal(train_scores.shape, (10, 3)) assert_equal(test_scores.shape, (10, 3)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_verbose(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) old_stdout = sys.stdout sys.stdout = StringIO() try: train_sizes, train_scores, test_scores = \ learning_curve(estimator, X, y, cv=3, verbose=1) finally: out = sys.stdout.getvalue() sys.stdout.close() sys.stdout = old_stdout assert("[learning_curve]" in out) def test_learning_curve_incremental_learning_not_possible(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) # The mockup does not have partial_fit() estimator = MockImprovingEstimator(1) assert_raises(ValueError, learning_curve, estimator, X, y, exploit_incremental_learning=True) def test_learning_curve_incremental_learning(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_incremental_learning_unsupervised(): X, _ = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockIncrementalImprovingEstimator(20) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y=None, cv=3, exploit_incremental_learning=True, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_learning_curve_batch_and_incremental_learning_are_equal(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) train_sizes = np.linspace(0.2, 1.0, 5) estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False) train_sizes_inc, train_scores_inc, test_scores_inc = \ learning_curve( estimator, X, y, train_sizes=train_sizes, cv=3, exploit_incremental_learning=True) train_sizes_batch, train_scores_batch, test_scores_batch = \ learning_curve( estimator, X, y, cv=3, train_sizes=train_sizes, exploit_incremental_learning=False) assert_array_equal(train_sizes_inc, train_sizes_batch) assert_array_almost_equal(train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)) assert_array_almost_equal(test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)) def test_learning_curve_n_sample_range_out_of_bounds(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.0, 1.0]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0.1, 1.1]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[0, 20]) assert_raises(ValueError, learning_curve, estimator, X, y, cv=3, train_sizes=[1, 21]) def test_learning_curve_remove_duplicate_sample_sizes(): X, y = make_classification(n_samples=3, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(2) train_sizes, _, _ = assert_warns( RuntimeWarning, learning_curve, estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)) assert_array_equal(train_sizes, [1, 2]) def test_learning_curve_with_boolean_indices(): X, y = make_classification(n_samples=30, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) estimator = MockImprovingEstimator(20) cv = KFold(n=30, n_folds=3) train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)) assert_array_equal(train_sizes, np.linspace(2, 20, 10)) assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10)) assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10)) def test_validation_curve(): X, y = make_classification(n_samples=2, n_features=1, n_informative=1, n_redundant=0, n_classes=2, n_clusters_per_class=1, random_state=0) param_range = np.linspace(0, 1, 10) with warnings.catch_warnings(record=True) as w: train_scores, test_scores = validation_curve( MockEstimatorWithParameter(), X, y, param_name="param", param_range=param_range, cv=2 ) if len(w) > 0: raise RuntimeError("Unexpected warning: %r" % w[0].message) assert_array_almost_equal(train_scores.mean(axis=1), param_range) assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
bsd-3-clause
Fireblend/scikit-learn
examples/decomposition/plot_ica_blind_source_separation.py
349
2228
""" ===================================== Blind source separation using FastICA ===================================== An example of estimating sources from noisy data. :ref:`ICA` is used to estimate sources given noisy measurements. Imagine 3 instruments playing simultaneously and 3 microphones recording the mixed signals. ICA is used to recover the sources ie. what is played by each instrument. Importantly, PCA fails at recovering our `instruments` since the related signals reflect non-Gaussian processes. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.decomposition import FastICA, PCA ############################################################################### # Generate sample data np.random.seed(0) n_samples = 2000 time = np.linspace(0, 8, n_samples) s1 = np.sin(2 * time) # Signal 1 : sinusoidal signal s2 = np.sign(np.sin(3 * time)) # Signal 2 : square signal s3 = signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal S = np.c_[s1, s2, s3] S += 0.2 * np.random.normal(size=S.shape) # Add noise S /= S.std(axis=0) # Standardize data # Mix data A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations # Compute ICA ica = FastICA(n_components=3) S_ = ica.fit_transform(X) # Reconstruct signals A_ = ica.mixing_ # Get estimated mixing matrix # We can `prove` that the ICA model applies by reverting the unmixing. assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_) # For comparison, compute PCA pca = PCA(n_components=3) H = pca.fit_transform(X) # Reconstruct signals based on orthogonal components ############################################################################### # Plot results plt.figure() models = [X, S, S_, H] names = ['Observations (mixed signal)', 'True Sources', 'ICA recovered signals', 'PCA recovered signals'] colors = ['red', 'steelblue', 'orange'] for ii, (model, name) in enumerate(zip(models, names), 1): plt.subplot(4, 1, ii) plt.title(name) for sig, color in zip(model.T, colors): plt.plot(sig, color=color) plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46) plt.show()
bsd-3-clause
RPGOne/scikit-learn
sklearn/metrics/tests/test_regression.py
18
6065
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
quantopian/zipline
zipline/examples/buy_and_hold.py
1
1568
#!/usr/bin/env python # # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from zipline.api import order, symbol from zipline.finance import commission, slippage stocks = ['AAPL', 'MSFT'] def initialize(context): context.has_ordered = False context.stocks = stocks # Explicitly set the commission/slippage to the "old" value until we can # rebuild example data. # github.com/quantopian/zipline/blob/master/tests/resources/ # rebuild_example_data#L105 context.set_commission(commission.PerShare(cost=.0075, min_trade_cost=1.0)) context.set_slippage(slippage.VolumeShareSlippage()) def handle_data(context, data): if not context.has_ordered: for stock in context.stocks: order(symbol(stock), 100) context.has_ordered = True def _test_args(): """Extra arguments to use when zipline's automated tests run this example. """ import pandas as pd return { 'start': pd.Timestamp('2008', tz='utc'), 'end': pd.Timestamp('2013', tz='utc'), }
apache-2.0
shiquanwang/pylearn2
pylearn2/gui/tangent_plot.py
5
1687
""" Code for plotting curves with tangent lines. """ __author__ = "Ian Goodfellow" try: from matplotlib import pyplot except Exception: pyplot = None def tangent_plot(x, y, s): """ Plots a curve with tangent lines. Parameters ---------- x : list List of x coordinates. Assumed to be sorted into ascending order, so that the tangent lines occupy 80 percent of the horizontal space between each pair of points. y : list List of y coordinates s : list List of slopes """ assert isinstance(x, list) assert isinstance(y, list) assert isinstance(s, list) n = len(x) assert len(y) == n assert len(s) == n if pyplot is None: raise RuntimeError("Could not import pyplot, can't run this code.") pyplot.plot(x, y, color='b') if n == 0: pyplot.show() return pyplot.hold(True) # Add dummy entries so that the for loop can use the same code on every # entry if n == 1: x = [x[0] - 1] + x[0] + [x[0] + 1.] else: x = [x[0] - (x[1] - x[0])] + x + [x[-2] + (x[-1] - x[-2])] y = [0.] + y + [0] s = [0.] + s + [0] for i in xrange(1, n + 1): ld = 0.4 * (x[i] - x[i - 1]) lx = x[i] - ld ly = y[i] - ld * s[i] rd = 0.4 * (x[i + 1] - x[i]) rx = x[i] + rd ry = y[i] + rd * s[i] pyplot.plot([lx, rx], [ly, ry], color='g') pyplot.show() if __name__ == "__main__": # Demo by plotting a quadratic function import numpy as np x = np.arange(-5., 5., .1) y = 0.5 * (x ** 2) x = list(x) y = list(y) tangent_plot(x, y, x)
bsd-3-clause
metaml/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colors.py
69
31676
""" A module for converting numbers or color arguments to *RGB* or *RGBA* *RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the range 0-1. This module includes functions and classes for color specification conversions, and for mapping numbers to colors in a 1-D array of colors called a colormap. Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of :class:`Normalize` or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of :class:`Colormap`. Two are provided here: :class:`LinearSegmentedColormap`, which is used to generate all the built-in colormap instances, but is also useful for making custom colormaps, and :class:`ListedColormap`, which is used for generating a custom colormap from a list of color specifications. The module also provides a single instance, *colorConverter*, of the :class:`ColorConverter` class providing methods for converting single color specifications or sequences of them to *RGB* or *RGBA*. Commands which take color arguments can use several formats to specify the colors. For the basic builtin colors, you can use a single letter - b : blue - g : green - r : red - c : cyan - m : magenta - y : yellow - k : black - w : white Gray shades can be given as a string encoding a float in the 0-1 range, e.g.:: color = '0.75' For a greater range of colors, you have two options. You can specify the color using an html hex string, as in:: color = '#eeefff' or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B* are in the range [0,1]. Finally, legal html names for colors, like 'red', 'burlywood' and 'chartreuse' are supported. """ import re import numpy as np from numpy import ma import matplotlib.cbook as cbook parts = np.__version__.split('.') NP_MAJOR, NP_MINOR = map(int, parts[:2]) # true if clip supports the out kwarg NP_CLIP_OUT = NP_MAJOR>=1 and NP_MINOR>=2 cnames = { 'aliceblue' : '#F0F8FF', 'antiquewhite' : '#FAEBD7', 'aqua' : '#00FFFF', 'aquamarine' : '#7FFFD4', 'azure' : '#F0FFFF', 'beige' : '#F5F5DC', 'bisque' : '#FFE4C4', 'black' : '#000000', 'blanchedalmond' : '#FFEBCD', 'blue' : '#0000FF', 'blueviolet' : '#8A2BE2', 'brown' : '#A52A2A', 'burlywood' : '#DEB887', 'cadetblue' : '#5F9EA0', 'chartreuse' : '#7FFF00', 'chocolate' : '#D2691E', 'coral' : '#FF7F50', 'cornflowerblue' : '#6495ED', 'cornsilk' : '#FFF8DC', 'crimson' : '#DC143C', 'cyan' : '#00FFFF', 'darkblue' : '#00008B', 'darkcyan' : '#008B8B', 'darkgoldenrod' : '#B8860B', 'darkgray' : '#A9A9A9', 'darkgreen' : '#006400', 'darkkhaki' : '#BDB76B', 'darkmagenta' : '#8B008B', 'darkolivegreen' : '#556B2F', 'darkorange' : '#FF8C00', 'darkorchid' : '#9932CC', 'darkred' : '#8B0000', 'darksalmon' : '#E9967A', 'darkseagreen' : '#8FBC8F', 'darkslateblue' : '#483D8B', 'darkslategray' : '#2F4F4F', 'darkturquoise' : '#00CED1', 'darkviolet' : '#9400D3', 'deeppink' : '#FF1493', 'deepskyblue' : '#00BFFF', 'dimgray' : '#696969', 'dodgerblue' : '#1E90FF', 'firebrick' : '#B22222', 'floralwhite' : '#FFFAF0', 'forestgreen' : '#228B22', 'fuchsia' : '#FF00FF', 'gainsboro' : '#DCDCDC', 'ghostwhite' : '#F8F8FF', 'gold' : '#FFD700', 'goldenrod' : '#DAA520', 'gray' : '#808080', 'green' : '#008000', 'greenyellow' : '#ADFF2F', 'honeydew' : '#F0FFF0', 'hotpink' : '#FF69B4', 'indianred' : '#CD5C5C', 'indigo' : '#4B0082', 'ivory' : '#FFFFF0', 'khaki' : '#F0E68C', 'lavender' : '#E6E6FA', 'lavenderblush' : '#FFF0F5', 'lawngreen' : '#7CFC00', 'lemonchiffon' : '#FFFACD', 'lightblue' : '#ADD8E6', 'lightcoral' : '#F08080', 'lightcyan' : '#E0FFFF', 'lightgoldenrodyellow' : '#FAFAD2', 'lightgreen' : '#90EE90', 'lightgrey' : '#D3D3D3', 'lightpink' : '#FFB6C1', 'lightsalmon' : '#FFA07A', 'lightseagreen' : '#20B2AA', 'lightskyblue' : '#87CEFA', 'lightslategray' : '#778899', 'lightsteelblue' : '#B0C4DE', 'lightyellow' : '#FFFFE0', 'lime' : '#00FF00', 'limegreen' : '#32CD32', 'linen' : '#FAF0E6', 'magenta' : '#FF00FF', 'maroon' : '#800000', 'mediumaquamarine' : '#66CDAA', 'mediumblue' : '#0000CD', 'mediumorchid' : '#BA55D3', 'mediumpurple' : '#9370DB', 'mediumseagreen' : '#3CB371', 'mediumslateblue' : '#7B68EE', 'mediumspringgreen' : '#00FA9A', 'mediumturquoise' : '#48D1CC', 'mediumvioletred' : '#C71585', 'midnightblue' : '#191970', 'mintcream' : '#F5FFFA', 'mistyrose' : '#FFE4E1', 'moccasin' : '#FFE4B5', 'navajowhite' : '#FFDEAD', 'navy' : '#000080', 'oldlace' : '#FDF5E6', 'olive' : '#808000', 'olivedrab' : '#6B8E23', 'orange' : '#FFA500', 'orangered' : '#FF4500', 'orchid' : '#DA70D6', 'palegoldenrod' : '#EEE8AA', 'palegreen' : '#98FB98', 'palevioletred' : '#AFEEEE', 'papayawhip' : '#FFEFD5', 'peachpuff' : '#FFDAB9', 'peru' : '#CD853F', 'pink' : '#FFC0CB', 'plum' : '#DDA0DD', 'powderblue' : '#B0E0E6', 'purple' : '#800080', 'red' : '#FF0000', 'rosybrown' : '#BC8F8F', 'royalblue' : '#4169E1', 'saddlebrown' : '#8B4513', 'salmon' : '#FA8072', 'sandybrown' : '#FAA460', 'seagreen' : '#2E8B57', 'seashell' : '#FFF5EE', 'sienna' : '#A0522D', 'silver' : '#C0C0C0', 'skyblue' : '#87CEEB', 'slateblue' : '#6A5ACD', 'slategray' : '#708090', 'snow' : '#FFFAFA', 'springgreen' : '#00FF7F', 'steelblue' : '#4682B4', 'tan' : '#D2B48C', 'teal' : '#008080', 'thistle' : '#D8BFD8', 'tomato' : '#FF6347', 'turquoise' : '#40E0D0', 'violet' : '#EE82EE', 'wheat' : '#F5DEB3', 'white' : '#FFFFFF', 'whitesmoke' : '#F5F5F5', 'yellow' : '#FFFF00', 'yellowgreen' : '#9ACD32', } # add british equivs for k, v in cnames.items(): if k.find('gray')>=0: k = k.replace('gray', 'grey') cnames[k] = v def is_color_like(c): 'Return *True* if *c* can be converted to *RGB*' try: colorConverter.to_rgb(c) return True except ValueError: return False def rgb2hex(rgb): 'Given a len 3 rgb tuple of 0-1 floats, return the hex string' return '#%02x%02x%02x' % tuple([round(val*255) for val in rgb]) hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z") def hex2color(s): """ Take a hex string *s* and return the corresponding rgb 3-tuple Example: #efefef -> (0.93725, 0.93725, 0.93725) """ if not isinstance(s, basestring): raise TypeError('hex2color requires a string argument') if hexColorPattern.match(s) is None: raise ValueError('invalid hex color string "%s"' % s) return tuple([int(n, 16)/255.0 for n in (s[1:3], s[3:5], s[5:7])]) class ColorConverter: """ Provides methods for converting color specifications to *RGB* or *RGBA* Caching is used for more efficient conversion upon repeated calls with the same argument. Ordinarily only the single instance instantiated in this module, *colorConverter*, is needed. """ colors = { 'b' : (0.0, 0.0, 1.0), 'g' : (0.0, 0.5, 0.0), 'r' : (1.0, 0.0, 0.0), 'c' : (0.0, 0.75, 0.75), 'm' : (0.75, 0, 0.75), 'y' : (0.75, 0.75, 0), 'k' : (0.0, 0.0, 0.0), 'w' : (1.0, 1.0, 1.0), } cache = {} def to_rgb(self, arg): """ Returns an *RGB* tuple of three floats from 0-1. *arg* can be an *RGB* or *RGBA* sequence or a string in any of several forms: 1) a letter from the set 'rgbcmykw' 2) a hex color string, like '#00FFFF' 3) a standard name, like 'aqua' 4) a float, like '0.4', indicating gray on a 0-1 scale if *arg* is *RGBA*, the *A* will simply be discarded. """ try: return self.cache[arg] except KeyError: pass except TypeError: # could be unhashable rgb seq arg = tuple(arg) try: return self.cache[arg] except KeyError: pass except TypeError: raise ValueError( 'to_rgb: arg "%s" is unhashable even inside a tuple' % (str(arg),)) try: if cbook.is_string_like(arg): color = self.colors.get(arg, None) if color is None: str1 = cnames.get(arg, arg) if str1.startswith('#'): color = hex2color(str1) else: fl = float(arg) if fl < 0 or fl > 1: raise ValueError( 'gray (string) must be in range 0-1') color = tuple([fl]*3) elif cbook.iterable(arg): if len(arg) > 4 or len(arg) < 3: raise ValueError( 'sequence length is %d; must be 3 or 4'%len(arg)) color = tuple(arg[:3]) if [x for x in color if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbg sequence outside 0-1 range') else: raise ValueError('cannot convert argument to rgb sequence') self.cache[arg] = color except (KeyError, ValueError, TypeError), exc: raise ValueError('to_rgb: Invalid rgb arg "%s"\n%s' % (str(arg), exc)) # Error messages could be improved by handling TypeError # separately; but this should be rare and not too hard # for the user to figure out as-is. return color def to_rgba(self, arg, alpha=None): """ Returns an *RGBA* tuple of four floats from 0-1. For acceptable values of *arg*, see :meth:`to_rgb`. If *arg* is an *RGBA* sequence and *alpha* is not *None*, *alpha* will replace the original *A*. """ try: if not cbook.is_string_like(arg) and cbook.iterable(arg): if len(arg) == 4: if [x for x in arg if (float(x) < 0) or (x > 1)]: # This will raise TypeError if x is not a number. raise ValueError('number in rbga sequence outside 0-1 range') if alpha is None: return tuple(arg) if alpha < 0.0 or alpha > 1.0: raise ValueError("alpha must be in range 0-1") return arg[0], arg[1], arg[2], arg[3] * alpha r,g,b = arg[:3] if [x for x in (r,g,b) if (float(x) < 0) or (x > 1)]: raise ValueError('number in rbg sequence outside 0-1 range') else: r,g,b = self.to_rgb(arg) if alpha is None: alpha = 1.0 return r,g,b,alpha except (TypeError, ValueError), exc: raise ValueError('to_rgba: Invalid rgba arg "%s"\n%s' % (str(arg), exc)) def to_rgba_array(self, c, alpha=None): """ Returns a numpy array of *RGBA* tuples. Accepts a single mpl color spec or a sequence of specs. Special case to handle "no color": if *c* is "none" (case-insensitive), then an empty array will be returned. Same for an empty list. """ try: if c.lower() == 'none': return np.zeros((0,4), dtype=np.float_) except AttributeError: pass if len(c) == 0: return np.zeros((0,4), dtype=np.float_) try: result = np.array([self.to_rgba(c, alpha)], dtype=np.float_) except ValueError: if isinstance(c, np.ndarray): if c.ndim != 2 and c.dtype.kind not in 'SU': raise ValueError("Color array must be two-dimensional") result = np.zeros((len(c), 4)) for i, cc in enumerate(c): result[i] = self.to_rgba(cc, alpha) # change in place return np.asarray(result, np.float_) colorConverter = ColorConverter() def makeMappingArray(N, data): """Create an *N* -element 1-d lookup table *data* represented by a list of x,y0,y1 mapping correspondences. Each element in this list represents how a value between 0 and 1 (inclusive) represented by x is mapped to a corresponding value between 0 and 1 (inclusive). The two values of y are to allow for discontinuous mapping functions (say as might be found in a sawtooth) where y0 represents the value of y for values of x <= to that given, and y1 is the value to be used for x > than that given). The list must start with x=0, end with x=1, and all values of x must be in increasing order. Values between the given mapping points are determined by simple linear interpolation. The function returns an array "result" where ``result[x*(N-1)]`` gives the closest value for values of x between 0 and 1. """ try: adata = np.array(data) except: raise TypeError("data must be convertable to an array") shape = adata.shape if len(shape) != 2 and shape[1] != 3: raise ValueError("data must be nx3 format") x = adata[:,0] y0 = adata[:,1] y1 = adata[:,2] if x[0] != 0. or x[-1] != 1.0: raise ValueError( "data mapping points must start with x=0. and end with x=1") if np.sometrue(np.sort(x)-x): raise ValueError( "data mapping points must have x in increasing order") # begin generation of lookup table x = x * (N-1) lut = np.zeros((N,), np.float) xind = np.arange(float(N)) ind = np.searchsorted(x, xind)[1:-1] lut[1:-1] = ( ((xind[1:-1] - x[ind-1]) / (x[ind] - x[ind-1])) * (y0[ind] - y1[ind-1]) + y1[ind-1]) lut[0] = y1[0] lut[-1] = y0[-1] # ensure that the lut is confined to values between 0 and 1 by clipping it np.clip(lut, 0.0, 1.0) #lut = where(lut > 1., 1., lut) #lut = where(lut < 0., 0., lut) return lut class Colormap: """Base class for all scalar to rgb mappings Important methods: * :meth:`set_bad` * :meth:`set_under` * :meth:`set_over` """ def __init__(self, name, N=256): """ Public class attributes: :attr:`N` : number of rgb quantization levels :attr:`name` : name of colormap """ self.name = name self.N = N self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. self._rgba_under = None self._rgba_over = None self._i_under = N self._i_over = N+1 self._i_bad = N+2 self._isinit = False def __call__(self, X, alpha=1.0, bytes=False): """ *X* is either a scalar or an array (of any dimension). If scalar, a tuple of rgba values is returned, otherwise an array with the new shape = oldshape+(4,). If the X-values are integers, then they are used as indices into the array. If they are floating point, then they must be in the interval (0.0, 1.0). Alpha must be a scalar. If bytes is False, the rgba values will be floats on a 0-1 scale; if True, they will be uint8, 0-255. """ if not self._isinit: self._init() alpha = min(alpha, 1.0) # alpha must be between 0 and 1 alpha = max(alpha, 0.0) self._lut[:-3, -1] = alpha mask_bad = None if not cbook.iterable(X): vtype = 'scalar' xa = np.array([X]) else: vtype = 'array' xma = ma.asarray(X) xa = xma.filled(0) mask_bad = ma.getmask(xma) if xa.dtype.char in np.typecodes['Float']: np.putmask(xa, xa==1.0, 0.9999999) #Treat 1.0 as slightly less than 1. # The following clip is fast, and prevents possible # conversion of large positive values to negative integers. if NP_CLIP_OUT: np.clip(xa * self.N, -1, self.N, out=xa) else: xa = np.clip(xa * self.N, -1, self.N) xa = xa.astype(int) # Set the over-range indices before the under-range; # otherwise the under-range values get converted to over-range. np.putmask(xa, xa>self.N-1, self._i_over) np.putmask(xa, xa<0, self._i_under) if mask_bad is not None and mask_bad.shape == xa.shape: np.putmask(xa, mask_bad, self._i_bad) if bytes: lut = (self._lut * 255).astype(np.uint8) else: lut = self._lut rgba = np.empty(shape=xa.shape+(4,), dtype=lut.dtype) lut.take(xa, axis=0, mode='clip', out=rgba) # twice as fast as lut[xa]; # using the clip or wrap mode and providing an # output array speeds it up a little more. if vtype == 'scalar': rgba = tuple(rgba[0,:]) return rgba def set_bad(self, color = 'k', alpha = 1.0): '''Set color to be used for masked values. ''' self._rgba_bad = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_under(self, color = 'k', alpha = 1.0): '''Set color to be used for low out-of-range values. Requires norm.clip = False ''' self._rgba_under = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def set_over(self, color = 'k', alpha = 1.0): '''Set color to be used for high out-of-range values. Requires norm.clip = False ''' self._rgba_over = colorConverter.to_rgba(color, alpha) if self._isinit: self._set_extremes() def _set_extremes(self): if self._rgba_under: self._lut[self._i_under] = self._rgba_under else: self._lut[self._i_under] = self._lut[0] if self._rgba_over: self._lut[self._i_over] = self._rgba_over else: self._lut[self._i_over] = self._lut[self.N-1] self._lut[self._i_bad] = self._rgba_bad def _init(): '''Generate the lookup table, self._lut''' raise NotImplementedError("Abstract class only") def is_gray(self): if not self._isinit: self._init() return (np.alltrue(self._lut[:,0] == self._lut[:,1]) and np.alltrue(self._lut[:,0] == self._lut[:,2])) class LinearSegmentedColormap(Colormap): """Colormap objects based on lookup tables using linear segments. The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided into any number of segments. """ def __init__(self, name, segmentdata, N=256): """Create color map from linear mapping segments segmentdata argument is a dictionary with a red, green and blue entries. Each entry should be a list of *x*, *y0*, *y1* tuples, forming rows in a table. Example: suppose you want red to increase from 0 to 1 over the bottom half, green to do the same over the middle half, and blue over the top half. Then you would use:: cdict = {'red': [(0.0, 0.0, 0.0), (0.5, 1.0, 1.0), (1.0, 1.0, 1.0)], 'green': [(0.0, 0.0, 0.0), (0.25, 0.0, 0.0), (0.75, 1.0, 1.0), (1.0, 1.0, 1.0)], 'blue': [(0.0, 0.0, 0.0), (0.5, 0.0, 0.0), (1.0, 1.0, 1.0)]} Each row in the table for a given color is a sequence of *x*, *y0*, *y1* tuples. In each sequence, *x* must increase monotonically from 0 to 1. For any input value *z* falling between *x[i]* and *x[i+1]*, the output value of a given color will be linearly interpolated between *y1[i]* and *y0[i+1]*:: row i: x y0 y1 / / row i+1: x y0 y1 Hence y0 in the first row and y1 in the last row are never used. .. seealso:: :func:`makeMappingArray` """ self.monochrome = False # True only if all colors in map are identical; # needed for contouring. Colormap.__init__(self, name, N) self._segmentdata = segmentdata def _init(self): self._lut = np.ones((self.N + 3, 4), np.float) self._lut[:-3, 0] = makeMappingArray(self.N, self._segmentdata['red']) self._lut[:-3, 1] = makeMappingArray(self.N, self._segmentdata['green']) self._lut[:-3, 2] = makeMappingArray(self.N, self._segmentdata['blue']) self._isinit = True self._set_extremes() class ListedColormap(Colormap): """Colormap object generated from a list of colors. This may be most useful when indexing directly into a colormap, but it can also be used to generate special colormaps for ordinary mapping. """ def __init__(self, colors, name = 'from_list', N = None): """ Make a colormap from a list of colors. *colors* a list of matplotlib color specifications, or an equivalent Nx3 floating point array (*N* rgb values) *name* a string to identify the colormap *N* the number of entries in the map. The default is *None*, in which case there is one colormap entry for each element in the list of colors. If:: N < len(colors) the list will be truncated at *N*. If:: N > len(colors) the list will be extended by repetition. """ self.colors = colors self.monochrome = False # True only if all colors in map are identical; # needed for contouring. if N is None: N = len(self.colors) else: if cbook.is_string_like(self.colors): self.colors = [self.colors] * N self.monochrome = True elif cbook.iterable(self.colors): self.colors = list(self.colors) # in case it was a tuple if len(self.colors) == 1: self.monochrome = True if len(self.colors) < N: self.colors = list(self.colors) * N del(self.colors[N:]) else: try: gray = float(self.colors) except TypeError: pass else: self.colors = [gray] * N self.monochrome = True Colormap.__init__(self, name, N) def _init(self): rgb = np.array([colorConverter.to_rgb(c) for c in self.colors], np.float) self._lut = np.zeros((self.N + 3, 4), np.float) self._lut[:-3, :-1] = rgb self._lut[:-3, -1] = 1 self._isinit = True self._set_extremes() class Normalize: """ Normalize a given value to the 0-1 range """ def __init__(self, vmin=None, vmax=None, clip=False): """ If *vmin* or *vmax* is not given, they are taken from the input's minimum and maximum value respectively. If *clip* is *True* and the given value falls outside the range, the returned value will be 0 or 1, whichever is closer. Returns 0 if:: vmin==vmax Works with scalars or arrays, including masked arrays. If *clip* is *True*, masked values are set to 1; otherwise they remain masked. Clipping silently defeats the purpose of setting the over, under, and masked colors in the colormap, so it is likely to lead to surprises; therefore the default is *clip* = *False*. """ self.vmin = vmin self.vmax = vmax self.clip = clip def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (val-vmin) * (1.0/(vmax-vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin + val * (vmax - vmin) else: return vmin + value * (vmax - vmin) def autoscale(self, A): ''' Set *vmin*, *vmax* to min, max of *A*. ''' self.vmin = ma.minimum(A) self.vmax = ma.maximum(A) def autoscale_None(self, A): ' autoscale only None-valued vmin or vmax' if self.vmin is None: self.vmin = ma.minimum(A) if self.vmax is None: self.vmax = ma.maximum(A) def scaled(self): 'return true if vmin and vmax set' return (self.vmin is not None and self.vmax is not None) class LogNorm(Normalize): """ Normalize a given value to the 0-1 range on a log scale """ def __call__(self, value, clip=None): if clip is None: clip = self.clip if cbook.iterable(value): vtype = 'array' val = ma.asarray(value).astype(np.float) else: vtype = 'scalar' val = ma.array([value]).astype(np.float) self.autoscale_None(val) vmin, vmax = self.vmin, self.vmax if vmin > vmax: raise ValueError("minvalue must be less than or equal to maxvalue") elif vmin<=0: raise ValueError("values must all be positive") elif vmin==vmax: return 0.0 * val else: if clip: mask = ma.getmask(val) val = ma.array(np.clip(val.filled(vmax), vmin, vmax), mask=mask) result = (ma.log(val)-np.log(vmin))/(np.log(vmax)-np.log(vmin)) if vtype == 'scalar': result = result[0] return result def inverse(self, value): if not self.scaled(): raise ValueError("Not invertible until scaled") vmin, vmax = self.vmin, self.vmax if cbook.iterable(value): val = ma.asarray(value) return vmin * ma.power((vmax/vmin), val) else: return vmin * pow((vmax/vmin), value) class BoundaryNorm(Normalize): ''' Generate a colormap index based on discrete intervals. Unlike :class:`Normalize` or :class:`LogNorm`, :class:`BoundaryNorm` maps values to integers instead of to the interval 0-1. Mapping to the 0-1 interval could have been done via piece-wise linear interpolation, but using integers seems simpler, and reduces the number of conversions back and forth between integer and floating point. ''' def __init__(self, boundaries, ncolors, clip=False): ''' *boundaries* a monotonically increasing sequence *ncolors* number of colors in the colormap to be used If:: b[i] <= v < b[i+1] then v is mapped to color j; as i varies from 0 to len(boundaries)-2, j goes from 0 to ncolors-1. Out-of-range values are mapped to -1 if low and ncolors if high; these are converted to valid indices by :meth:`Colormap.__call__` . ''' self.clip = clip self.vmin = boundaries[0] self.vmax = boundaries[-1] self.boundaries = np.asarray(boundaries) self.N = len(self.boundaries) self.Ncmap = ncolors if self.N-1 == self.Ncmap: self._interp = False else: self._interp = True def __call__(self, x, clip=None): if clip is None: clip = self.clip x = ma.asarray(x) mask = ma.getmaskarray(x) xx = x.filled(self.vmax+1) if clip: np.clip(xx, self.vmin, self.vmax) iret = np.zeros(x.shape, dtype=np.int16) for i, b in enumerate(self.boundaries): iret[xx>=b] = i if self._interp: iret = (iret * (float(self.Ncmap-1)/(self.N-2))).astype(np.int16) iret[xx<self.vmin] = -1 iret[xx>=self.vmax] = self.Ncmap ret = ma.array(iret, mask=mask) if ret.shape == () and not mask: ret = int(ret) # assume python scalar return ret def inverse(self, value): return ValueError("BoundaryNorm is not invertible") class NoNorm(Normalize): ''' Dummy replacement for Normalize, for the case where we want to use indices directly in a :class:`~matplotlib.cm.ScalarMappable` . ''' def __call__(self, value, clip=None): return value def inverse(self, value): return value # compatibility with earlier class names that violated convention: normalize = Normalize no_norm = NoNorm
agpl-3.0
percyfal/snakemakelib
snakemakelib/report/picard.py
1
25057
# Copyright (c) 2014 Per Unneberg import os import sys import re import csv import texttable as tt import collections from snakemakelib.report.utils import Template import matplotlib matplotlib.use('Agg') from pylab import * import matplotlib.pyplot as plt import numpy as np # http://stackoverflow.com/questions/2170900/get-first-list-index-containing-sub-string-in-python def index_containing_substring(the_list, substring): for i, s in enumerate(the_list): if substring in s: return i return -1 def _raw(x): return (x, None) def _convert_input(x): if re.match("^[0-9]+$", x): return int(x) elif re.match("^[0-9,.]+$", x): return float(x.replace(",", ".")) else: return str(x) def _read_picard_metrics(f): with open(f) as fh: data = fh.readlines() # Find histogram line i_hist = index_containing_substring(data, "## HISTOGRAM") if i_hist == -1: i = len(data) else: i = i_hist metrics = [[_convert_input(y) for y in x.rstrip("\n").split("\t")] for x in data[0:i] if not re.match("^[ #\n]", x)] if i_hist == -1: return (metrics, None) hist = [[_convert_input(y) for y in x.rstrip("\n").split("\t")] for x in data[i_hist:len(data)] if not re.match("^[ #\n]", x)] return (metrics, hist) def _indent_texttable_for_rst(ttab, indent=4, add_spacing=True): """Texttable needs to be indented for rst. :param ttab: texttable object :param indent: indentation (should be 4 *spaces* for rst documents) :param add_spacing_row: add additional empty row below class directives :returns: reformatted texttable object as string """ output = ttab.draw() new_output = [] for row in output.split("\n"): new_output.append(" " * indent + row) if re.search('.. class::', row): new_row = [" " if x != "|" else x for x in row] new_output.append(" " * indent + "".join(new_row)) return "\n".join(new_output) def _make_unique(l): cnt = collections.Counter(l) luniq = [] d = {} for c in l: if not c in d.keys(): d[c] = 0 else: d[c] += 1 luniq.append("{c}.{sfx}".format(c=c, sfx=d[c]) if d[c]>0 else c) return luniq def make_rst_table(data, header=None, indent=True): """Make rst table with :py:mod:`Texttable`. Args: data (list): data frame to be printed header (list): column header names indent (bool): indent table for rst Returns: rst-formatted table """ if data is None: return "" else: tab_tt = tt.Texttable() tab_tt.set_precision(2) if not header is None: data[0] = header w = [len(c) + 2 for c in data[0]] for r in data: for i in range(0, len(r)): w[i] = max(w[i], len(r[i]) + 2) tab_tt.add_rows(data) tab_tt.set_cols_width(w) tab_tt.set_cols_align("r" * len(data[0])) if indent: return _indent_texttable_for_rst(tab_tt) else: return tab_tt.draw() class DataFrame(object): """Light weight data frame object A data frame is represented as an OrderedDict. Args: *args: if provided, must be a list of lists that upon initialization is converted to an OrderedDict. The first list is treated as a header. """ _format = collections.OrderedDict() _tp = Template() def __init__(self, *args, **fmt): if (len(args[0]) == 1): self._colnames = args[0] self._data = [collections.OrderedDict([(args[0][0], row[0])]) for row in args[1:]] else: reader = csv.DictReader([",".join([str(y) for y in x]) for x in args]) self._colnames = reader.fieldnames self._data = [collections.OrderedDict([(k, row[k]) for k in self._colnames]) for row in reader] if fmt: self._format = collections.OrderedDict(fmt) def __str__(self): return "{cls} object with {rows} rows, {columns} columns".format(cls=self.__class__, rows=self.dim[0], columns=self.dim[1]) def __iter__(self): self.index = 0 return self def __next__(self): if len(self._data) > self.index: self.index += 1 return self._data[self.index - 1] else: raise StopIteration def __getitem__(self, columns): a = [columns] + [[row[c] for c in columns] for row in self._data] return self.__class__(*a) def __setitem__(self, key, val): # if val is a list must be equal in length to no. rows if isinstance(val, list): for (row,v) in zip(self._data, val): row.update([(key, v)]) else: _ = [row.update([(key, val)]) for row in self._data] if not key in self.colnames: self.colnames.append(key) def x(self, column=None, indices=None, ctype=None): column = self.colnames[0] if not column else column x = [row[column] for row in self._data] if indices: x = [self._data[i][column] for i in indices] if ctype: x = [ctype(y) for y in x] return x # Copy definition of x y=x @property def colnames(self): return self._colnames @property def data(self): return self._data @property def dim(self): return (len(self._data), len(self._data[0])) def as_list(self): return [self._colnames] + [[self._format[c][1](row[c]) for c in self._colnames] for row in self._data] def _format_field(self, value, spec, ctype): if value == '?': spec = 's' ctype = str elif value == "": spec = 's' ctype = str value = ctype(value) return self._tp.format_field(value, spec) def set_format(self, **fmt): self._format = collections.OrderedDict(fmt) def rst(self, raw=False): ttab = make_rst_table(self.summary.split("\n")) return _indent_texttable_for_rst(ttab) def summary(self, fmt = None, ctype = None, sep="\t", raw=False): columns = self.colnames fmt = {k:v[0] for (k,v) in list(self._format.items()) if k in columns} if fmt is None else {k:v for (k,v) in zip(columns, fmt)} ctype = {k:v[1] for (k,v) in list(self._format.items()) if k in columns} if ctype is None else {k:v for (k,v) in zip(columns, ctype)} if not fmt: raise ValueError("No format defined for {cls}; please use derived subclass".format(cls=__class__)) if raw: return "\n".join([sep.join([x for x in columns])] + [sep.join([r[c] for c in columns]) for r in self]) return "\n".join([sep.join([x for x in columns])] + [sep.join([self._format_field(r[c], fmt[c], ctype[c]) for c in columns]) for r in self]) class PicardMetrics(object): """Generic class to store metrics section from Picard Metrics reports. See also class PicardHistMetrics for reports that provide metrics and histogram information. Args: *args: if provided, must be a list of lists that upon initialization is converted to an OrderedDict. The first list is treated as a header. filename (str): file from which to collect metrics identifier (str): unique identifier for object, e.g. sample or unit name Returns: An instance of class PicardMetrics """ _format = collections.OrderedDict() _tp = Template() def __init__(self, *args, filename=None, identifier=None): self._id = identifier if filename is None and not args: raise ValueError("please supply either filename or args to instantiate class") self._set_vars(identifier, filename) if not self.filename is None and not args: (args, _) = _read_picard_metrics(self.filename) self._metrics = DataFrame(*args, **self._format) def _set_vars(self, identifier, filename): self._id = identifier if not identifier is None else filename self._filename = str(filename) def __str__(self): return "{cls} object with a metrics field with {rows} rows, {columns} columns".format(cls=self.__class__, rows=self.metrics.dim[0], columns=self.metrics.dim[1]) def __getitem__(self, columns): a = [columns] + [[row[c] for c in columns] for row in self._metrics._data] m = self.__class__(*a, identifier=self.id, filename=self.filename) fmt = collections.OrderedDict([(c, self.metrics._format[c]) for c in columns]) m.set_format(**fmt) return m @property def metrics(self): return self._metrics @property def id(self): return self._id @property def filename(self): return self._filename def x(self, column=None, indices=None): return self.metrics.x(column, indices, ctype=self._format[column][1]) y=x def summary(self, fmt = None, ctype = None, sep="\t", raw=False): return self.metrics.summary(fmt, ctype, sep, raw) def as_list(self): return self.metrics.as_list() def set_format(self, **fmt): self._format = collections.OrderedDict(fmt) self._metrics.set_format(**fmt) def add_column(self, col, val, **fmt): """Add column to metrics""" self.metrics[col] = val self._metrics._format.update(fmt) self._format.update(fmt) class PicardHistMetrics(PicardMetrics): """Generic class to store metrics section from Picard Histogram Metrics reports. In addition to metrics data the class also stores histogram values. Args: name (str): unique identifier for object, e.g. sample or unit name filename (str): file from which to collect metrics hist (list): list of lists, where the first entry holds the names of the values *args (list): if provided, must be a list of lists that upon initialization is converted to an OrderedDict. The first list is treated as a header. Returns: An instance of class PicardHistMetrics """ def __init__(self, *args, identifier=None, filename=None, hist=None): # NB: __init__ should call super, but with current # implementation would require reading the metrics file twice! if filename is None and hist is None: raise ValueError("please provide argument hist when not reading from file") if filename is None and not args: raise ValueError("please supply either filename or args to instantiate class") self._set_vars(identifier, filename) if not self.filename is None and not args: (args, hist) = _read_picard_metrics(self.filename) self._metrics = DataFrame(*args, **self._format) if hist: fmt = collections.OrderedDict([(x, type(y)) for x,y in zip(hist[0], hist[1])]) self._hist = DataFrame(*hist, **fmt) def __getitem__(self, columns): a = [columns] + [[row[c] for c in columns] for row in self.metrics._data] h = [self.hist.colnames] + [[row[c] for c in self.hist.colnames] for row in self.hist._data] return self.__class__(*a, identifier=self.id, filename=self.filename, hist=h) @property def hist(self): return self._hist class AlignMetrics(PicardMetrics): _format = collections.OrderedDict([('CATEGORY', ('s', str)), ('TOTAL_READS', ('3.2h', int)), ('PF_READS', ('3.2h', int)), ('PCT_PF_READS', ('3.2%', float)), ('PF_NOISE_READS', ('3.2h', int)), ('PF_READS_ALIGNED', ('3.2h', int)), ('PCT_PF_READS_ALIGNED', ('3.2%', float)), ('PF_ALIGNED_BASES', ('3.2h', int)), ('PF_HQ_ALIGNED_READS', ('3.2h', int)), ('PF_HQ_ALIGNED_BASES', ('3.2h', int)), ('PF_HQ_ALIGNED_Q20_BASES', ('3.2h', int)), ('PF_HQ_MEDIAN_MISMATCHES', ('', int)), ('PF_MISMATCH_RATE', ('3.2f', float)), ('PF_HQ_ERROR_RATE', ('3.2f', float)), ('PF_INDEL_RATE', ('3.2f', float)), ('MEAN_READ_LENGTH', ('3.2f', float)), ('READS_ALIGNED_IN_PAIRS', ('3.2h', int)), ('PCT_READS_ALIGNED_IN_PAIRS', ('3.2%', float)), ('BAD_CYCLES', ('3.2h', int)), ('STRAND_BALANCE', ('3.2f', float)), ('PCT_CHIMERAS', ('3.2%', float)), ('PCT_ADAPTER', ('3.2%', float)), ('SAMPLE', ('s', str)), ('LIBRARY', ('s', str)), ('READ_GROUP', ('s', str))]) def __init__(self, *args, identifier=None, filename=None): super(AlignMetrics, self).__init__(*args, identifier=identifier, filename=filename) def category(self, category="PAIR"): """Retrieve subset object with only one alignment category""" a = [self.metrics.colnames] + [[row[c] for c in self.metrics.colnames] for row in self._metrics if row['CATEGORY'] == category] return AlignMetrics(*a, filename=self.filename, identifier=self.id) class InsertMetrics(PicardHistMetrics): _format = collections.OrderedDict([('MEDIAN_INSERT_SIZE', ('', int)), ('MEDIAN_ABSOLUTE_DEVIATION', ('', int)), ('MIN_INSERT_SIZE', ('', int)), ('MAX_INSERT_SIZE', ('', int)), ('MEAN_INSERT_SIZE', ('3.3f', float)), ('STANDARD_DEVIATION', ('3.3f', float)), ('READ_PAIRS', ('3.2h', int)), ('PAIR_ORIENTATION', ('s', str)), ('WIDTH_OF_10_PERCENT', ('', int)), ('WIDTH_OF_20_PERCENT', ('', int)), ('WIDTH_OF_30_PERCENT', ('', int)), ('WIDTH_OF_40_PERCENT', ('', int)), ('WIDTH_OF_50_PERCENT', ('', int)), ('WIDTH_OF_60_PERCENT', ('', int)), ('WIDTH_OF_70_PERCENT', ('', int)), ('WIDTH_OF_80_PERCENT', ('', int)), ('WIDTH_OF_90_PERCENT', ('', int)), ('WIDTH_OF_99_PERCENT', ('', int)), ('SAMPLE', ('s', str)), ('LIBRARY', ('s', str)), ('READ_GROUP', ('s', str))]) def __init__(self, *args, identifier=None, filename=None, hist=None): super(InsertMetrics, self).__init__(*args, identifier=identifier, filename=filename, hist=hist) class HsMetrics(PicardMetrics): _format = collections.OrderedDict([('BAIT_SET', ('s', str)), ('GENOME_SIZE', ('3.2h', int)), ('BAIT_TERRITORY', ('3.2h', int)), ('TARGET_TERRITORY', ('3.2h', int)), ('BAIT_DESIGN_EFFICIENCY', ('3.2f', float)), ('TOTAL_READS', ('3.2h', int)), ('PF_READS', ('3.2h', int)), ('PF_UNIQUE_READS', ('3.2h', int)), ('PCT_PF_READS', ('3.2%', float)), ('PCT_PF_UQ_READS', ('3.2%', float)), ('PF_UQ_READS_ALIGNED', ('3.2h', int)), ('PCT_PF_UQ_READS_ALIGNED', ('3.2%', float)), ('PF_UQ_BASES_ALIGNED', ('3.2h', int)), ('ON_BAIT_BASES', ('3.2h', int)), ('NEAR_BAIT_BASES', ('3.2h', int)), ('OFF_BAIT_BASES', ('3.2h', int)), ('ON_TARGET_BASES', ('3.2h', int)), ('PCT_SELECTED_BASES', ('3.2%', float)), ('PCT_OFF_BAIT', ('3.2%', float)), ('ON_BAIT_VS_SELECTED', ('3.2f', float)), ('MEAN_BAIT_COVERAGE', ('3.2f', float)), ('MEAN_TARGET_COVERAGE', ('3.2f', float)), ('PCT_USABLE_BASES_ON_BAIT', ('3.2%', float)), ('PCT_USABLE_BASES_ON_TARGET', ('3.2%', float)), ('FOLD_ENRICHMENT', ('3.2f', float)), ('ZERO_CVG_TARGETS_PCT', ('3.2%', float)), ('FOLD_80_BASE_PENALTY', ('3.2f', float)), ('PCT_TARGET_BASES_2X', ('3.2%', float)), ('PCT_TARGET_BASES_10X', ('3.2%', float)), ('PCT_TARGET_BASES_20X', ('3.2%', float)), ('PCT_TARGET_BASES_30X', ('3.2%', float)), ('PCT_TARGET_BASES_40X', ('3.2%', float)), ('PCT_TARGET_BASES_50X', ('3.2%', float)), ('PCT_TARGET_BASES_100X', ('3.2%', float)), ('HS_LIBRARY_SIZE', ('3.2h', int)), ('HS_PENALTY_10X', ('3.2f', float)), ('HS_PENALTY_20X', ('3.2f', float)), ('HS_PENALTY_30X', ('3.2f', float)), ('HS_PENALTY_40X', ('3.2f', float)), ('HS_PENALTY_50X', ('3.2f', float)), ('HS_PENALTY_100X', ('3.2f', float)), ('AT_DROPOUT', ('3.2f', float)), ('GC_DROPOUT', ('3.2f', float)), ('SAMPLE', ('s', str)), ('LIBRARY', ('s', str)), ('READ_GROUP', ('s', str))]) def __init__(self, *args, identifier=None, filename=None): super(HsMetrics, self).__init__(*args, identifier=identifier, filename=filename) class DuplicationMetrics(PicardHistMetrics): _format = collections.OrderedDict([('LIBRARY', ('s', str)), ('UNPAIRED_READS_EXAMINED', ('3.2h', int)), ('READ_PAIRS_EXAMINED', ('3.2h', int)), ('UNMAPPED_READS', ('3.2h', int)), ('UNPAIRED_READ_DUPLICATES', ('3.2h', int)), ('READ_PAIR_DUPLICATES', ('3.2h', int)), ('READ_PAIR_OPTICAL_DUPLICATES', ('3.2f', float)), ('PERCENT_DUPLICATION', ('3.2%', float)), ('ESTIMATED_LIBRARY_SIZE', ('3.2h', int))]) def __init__(self, *args, identifier=None, filename=None, hist=None): super(DuplicationMetrics, self).__init__(*args, identifier=identifier, filename=filename, hist=hist) self._prune_empty_rows() def _prune_empty_rows(self): """Prune empty rows in metrics. This could happen if there is no read group information and all metrics are stored in 'Unknown library' """ if (self.metrics.dim[0] != 2): return self.metrics._data = [self._metrics.data[1]] def combine_metrics(metrics, mergename = "PicardMetrics_merge", uniquify=False): """Convert list of metrics objects to PicardMetrics object Args: metrics (list of tuples): list of metrics objects mergename (str): id to give to merged objet uniquify (bool): convert columns to unique names, appending .# where # is the count of the duplicated column Returns: new PicardMetrics object with format specifications set for summary operations """ nrows = set([nr for sublist in [[m.metrics.dim[0] for m in mtup] for mtup in metrics] for nr in sublist]) if len(set(nrows)) > 1: raise ValueError("not all metrics of equal length; most probably you need to subset an AlignMetrics class to one category") ncols = set([nr for sublist in [[m.metrics.dim[1] for m in mtup] for mtup in metrics] for nr in sublist]) if len(set(ncols)) > len(metrics[0]): raise ValueError("not all metrics tuples have same set of columns; refusing to merge") colnames = [c for sublist in [m.metrics.colnames for m in metrics[0]] for c in sublist] args = [_make_unique(colnames)] if uniquify else [colnames] for mtup in metrics: rowargs = [] fmtlist = [] for m in mtup: rowargs += [m.metrics.data[0][k] for k in m.metrics.colnames] fmtlist += [(k,v) for k,v in m._format.items()] args.append(rowargs) pm = PicardMetrics(*args, identifier=mergename) fmt = collections.OrderedDict(fmtlist) if uniquify: for c in args[0]: m = re.match("(.*)\.[0-9]+$", c) if m: fmt[c] = fmt[m.group(1)] pm.set_format(**fmt) return (pm) def qc_plots(inputfiles, config, output): """Generate qc plots for picard QC summary report""" samples = config['samples'] # Collect pm metrics and plot mlist =(list( zip( [AlignMetrics(filename=x).category() for x in inputfiles if x.endswith(config['alnmetrics'])], [InsertMetrics(filename=x) for x in inputfiles if x.endswith(config['insmetrics'])], [DuplicationMetrics(filename=x) for x in inputfiles if x.endswith(config['dupmetrics'])], [HsMetrics(filename=x) for x in inputfiles if x.endswith(config['hsmetrics'])] ) )) pm = combine_metrics(mlist) pm.add_column('PCT_ON_TARGET', [str(100 * float(x)/float(y)) for (x,y) in zip(pm.x('ON_TARGET_BASES'), pm.y('PF_UQ_BASES_ALIGNED'))], **{'PCT_ON_TARGET' : ('3.2f', float)}) pm.metrics['SAMPLE'] = samples # Sequence statistics plot plt.clf() sdup = [int(50 + 500 * x) for x in pm.x('PERCENT_DUPLICATION')] plt.scatter(pm.x('PCT_PF_READS_ALIGNED'), pm.y('TOTAL_READS'), s=sdup, alpha=0.5) plt.xlabel(r'Percent aligned', fontsize=14) plt.yscale('log', **{'basey':10}) plt.xticks(arange(0,1.1,0.1), range(0,110,10)) plt.ylabel(r'Read count', fontsize=14) plt.title("Sequence summary.\nPoint sizes correspond to duplication levels.", fontsize=14) plt.tight_layout() plt.savefig(output.seqstats) plt.close() # Alignment metrics plt.clf() n = len(samples) plt.xlim(0, n+2) plt.xticks(range(1,n+1), [x for x in samples], rotation=90) plt.ylim(0,1) plt.yticks(arange(0,1.1,0.1), range(0,110,10)) plt.plot(range(1,n+1), pm.x('PCT_PF_READS_ALIGNED'), "o") plt.xlabel(r'Sample', fontsize=14) plt.ylabel(r'Percent aligned', fontsize=14) plt.tight_layout() plt.savefig(output.alnmet) plt.close() # Duplication metrics plt.clf() plt.xlim(0, n+2) plt.xticks(range(1,n+1), [x for x in samples], rotation=90) plt.ylim(0,1) plt.yticks(arange(0,1.1,0.1), range(0,110,10)) plt.plot(range(1,n+1), pm.x('PERCENT_DUPLICATION'), "o") plt.xlabel(r'Sample', fontsize=14) plt.ylabel(r'Percent duplication', fontsize=14) plt.tight_layout() plt.savefig(output.dupmet) plt.close() # Insert metrics plt.clf() plt.xlim(0, n+2) plt.xticks(range(1,n+1), [x for x in samples], rotation=90) plt.plot(range(1,n+1), pm.x('MEAN_INSERT_SIZE'), "o") plt.xlabel(r'Sample', fontsize=14) plt.ylabel(r'Mean insert size', fontsize=14) plt.tight_layout() plt.savefig(output.insmet) plt.close() # Target metrics plt.clf() plt.xlim(0, n+2) plt.xticks(range(1,n+1), [x for x in samples], rotation=90) plt.plot(range(1,n+1), pm.x('PCT_ON_TARGET'), "o") plt.xlabel(r'Sample', fontsize=14) plt.ylabel(r'Percent on target', fontsize=14) plt.tight_layout() plt.savefig(output.targetmet) plt.close() # Target metrics plt.clf() plt.plot(pm.x('PERCENT_DUPLICATION'), pm.y('PCT_ON_TARGET'), "o") plt.xlabel(r'Percent duplication', fontsize=14) plt.ylabel(r'Percent on target', fontsize=14) plt.tight_layout() plt.savefig(output.target2dup) plt.close() # Hs metrics columns = config['columns'] hticks = config['hticks'] hsmetrics = pm[columns] # Hs boxplot metrics plt.clf() plt.ylim(0,1) plt.yticks(arange(0,1.1,0.1), range(0,110,10)) plt.boxplot(np.array(hsmetrics.as_list()[1:])) plt.xticks(range(1,len(hticks)+1), [x for x in hticks]) plt.savefig(output.hsmet) plt.close() nsubplots = int(math.ceil(n/9)) k = 0 for i_subplot in range(0, nsubplots): plt.clf() f, axarr = plt.subplots(3, 3, sharex='col', sharey='row') for i in range(0, 3): for j in range(0, 3): if k < n: x = range(1, len(hticks) + 1) axarr[i,j].plot(x, hsmetrics.as_list()[1:][k], "o") axarr[i,j].set_xticks(x) axarr[i,j].set_title(samples[k]) axarr[i,j].set_xlim(0, (len(hticks) + 1)) axarr[i,j].set_ylim(-0.05, 1.05) axarr[i,j].set_yticks(arange(0,1.1,0.1)) axarr[i,j].set_yticklabels(range(0,110,10)) axarr[i,j].set_xticklabels([h for h in hticks], rotation=45) else: axarr[i,j].axis('off') k += 1 plt.savefig(output.hsmetsub[i_subplot]) plt.close() # Write csv summary file pmsum = pm[config['summarycolumns']] with open(output.summarytable, "w") as fh: fh.write(pmsum.metrics.summary(sep=",")) # Finally write entire merged metrics data frame with open(output.metricstable, "w") as fh: fh.write(pm.metrics.summary(raw=True, sep=","))
mit
maxiee/MyCodes
KalmanAndBesianFiltersInPython/MyKalman/sensor.py
1
1504
import matplotlib.pyplot as plt import matplotlib.pylab as pylab import numpy.random as random import math class OneDSensor(object): def __init__(self, x0=0, # 初始位置 velocity=1, measurement_variance=0.0, process_variance=0.0): self.x = x0 self.velocity = velocity self.noise = math.sqrt(measurement_variance) self.pnoise = math.sqrt(process_variance) self.constant_vel = velocity def sense_position(self): # random.rand() 0-1均匀分布 # random.randn() 均值为0的正态分布 pnoise = abs(random.rand() * self.pnoise) if self.velocity > self.constant_vel: pnoise = -pnoise self.velocity += pnoise self.x = self.x + self.velocity return self.x + random.randn() * self.noise if __name__ == "__main__": count = 100 dog = OneDSensor(measurement_variance=4.0) xs = [] dog2 = OneDSensor(measurement_variance=100.0) xs2 = [] dog3 = OneDSensor(process_variance=0.5) xs3 = [] xs_real = [i for i in range(count)] for i in range(count): x = dog.sense_position() xs.append(x) x2 = dog2.sense_position() xs2.append(x2) x3 = dog3.sense_position() xs3.append(x3) plt.plot(xs_real, label='real', lw=2) plt.plot(xs, label='Sensor') plt.plot(xs2, label='Sensor2') plt.plot(xs3, label='Sensor3') plt.legend(loc='best') plt.show()
gpl-3.0
s3h10r/avaon
django-avaon/acore/views/visualize.py
1
6406
""" statistics - heatmaps of impacts """ from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response, get_object_or_404 from django.template import loader,Context,RequestContext from django.conf import settings import logging logger = logging.getLogger(__name__) # --- if no x-server is available, comment this out #import matplotlib #matplotlib.use("Cairo") # cairo-backend, so we can create figures without x-server (PDF & PNG ...) # Cairo backend requires that pycairo is installed. # --- end no x-server def _calc_stats_heatmap(id=None): """ create a datstructure which gives us info about the density of impacts per weekday & hour returns data[weekday][hour] = nr. of impacts """ """ TODO: write a test for me """ import datetime as dt from acore.models import Impact, Thing if id: imps = Impact.objects.filter(thing = id) else: imps = Impact.objects.all() # --- init empty data[weekday][hour] # data = [[0] *24]*7 # data[weekday][hour] # BUG! try: data[0][1] && print data (reference?) data = [] for i in range(7): data.append([0]*24) # --- delta = dt.timedelta(seconds=60*60) for im in imps: #print im.t_from, "+", im.duration, "==", im.duration.seconds, 's' #print " "*4, im.t_from.weekday() travel_t = im.t_from dur = 0 while True: wd = travel_t.weekday() h = travel_t.hour data[wd][h] += 1 dur += delta.seconds travel_t += delta if ((im.t_to - travel_t) < delta) and (im.t_to.hour != travel_t.hour): break return data def _plot_heatmap(fig,ax,data,y_label="y_label",x_label="x_label",title="title"): """ """ import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt ax.set_title(title,fontstyle='italic') ax.set_ylabel(y_label) ax.set_xlabel(x_label) ticks_x=24 ticks_y=7 # we must turn our data into a numpy-array for using pcolor data = np.array(data) ax.pcolor(data, cmap=plt.cm.Blues) pc = ax.pcolor(data, cmap=plt.cm.Blues) fig.colorbar(pc, shrink=0.5) # Shift ticks to be at 0.5, 1.5, etc # http://stackoverflow.com/questions/24190858/matplotlib-move-ticklabels-between-ticks ax.yaxis.set(ticks=np.arange(0.5,ticks_y + 0.5),ticklabels=range(0,ticks_y)) ax.xaxis.set(ticks=np.arange(0.5,ticks_x + 0.5),ticklabels=range(0,ticks_x)) ax.set_xlim(0.0,ticks_x) ax.set_ylim(0.0,ticks_y) ax.xaxis.labelpad = 10 fig.gca().set_aspect('equal') fig.tight_layout()# not as good as savefig(bbox_inches="tight")? def heatmap(request,id=None): """ plot a "impact density heatmap" in format data[weekday][hour] for all available impacts or for Thing.id = id """ """ TODO: time-range param """ import numpy as np import random from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure data = _calc_stats_heatmap(id) fig=Figure(figsize=(10,8), dpi=100) ax=fig.add_subplot(111) if not id: _plot_heatmap(fig,ax,data,y_label="weekday", x_label="time", title="impact density #heatmap\n") else: from acore.models import Impact, Thing thing = Thing.objects.get(id=id) _plot_heatmap(fig,ax,data,y_label="weekday", x_label="time", title="'%s' - impact density #heatmap\n" % thing.name) # cool, Django's HttpResponse object supports file-like API :) # so we dunnot need StringIO response = HttpResponse(content_type="image/png") # bbox_inches 'tight' removes lot of unwanted whitespace around our plot fig.savefig(response, format="png",bbox_inches='tight') return response def demo_heatmap(request): """ returns matplotlib plot as selftest """ """ http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor http://stackoverflow.com/questions/15988413/python-pylab-pcolor-options-for-publication-quality-plots http://stackoverflow.com/questions/24190858/matplotlib-move-ticklabels-between-ticks http://matplotlib.org/faq/usage_faq.html#matplotlib-pylab-and-pyplot-how-are-they-related """ import django import numpy as np import random from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt fig=Figure(figsize=(10,8), dpi=100) ax=fig.add_subplot(111) ax.set_title("demo heatmap e.g. 'impact density'",fontstyle='italic') ax.set_ylabel("weekday") ax.set_xlabel("time in h") ticks_x=24 ticks_y=7 data = [] for i in range(ticks_y): y = [ random.randint(0,10) for i in range(ticks_x) ] data.append(y) data = np.array(data) pc = ax.pcolor(data, cmap=plt.cm.Blues) # http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps ax.yaxis.set_ticks(np.arange(0.5,ticks_y + 0.5),range(0,ticks_y)) ax.xaxis.set_ticks(np.arange(0.5,ticks_x + 0.5),range(0,ticks_x)) # http://stackoverflow.com/questions/12608788/changing-the-tick-frequency-on-x-or-y-axis-in-matplotlib import matplotlib.ticker as ticker #ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) loc = ticker.MultipleLocator(base=1) # this locator puts ticks at regular intervals ax.xaxis.set_major_locator(loc) ax.xaxis.set_minor_locator(ticker.NullLocator()) ax.set_xlim(0.0,ticks_x) ax.set_ylim(0.0,ticks_y) #ax.xaxis.labelpad = 20 fig.colorbar(pc, shrink=0.5) #plt.gca().invert_yaxis() fig.gca().set_aspect('equal') # tight_layout() & bbox_inches 'tight' removes lot of unwanted # whitespace around our plot fig.tight_layout()# not as good as savefig(bbox_inches="tight")? # cool, Django's HttpResponse object supports file-like API :) # so we dunnot need StringIO response=django.http.HttpResponse(content_type='image/png') fig.savefig(response, format="png",bbox_inches='tight') return response if __name__ == '__main__': print _calc_stats_heatmap()
gpl-2.0
Vimos/scikit-learn
benchmarks/bench_covertype.py
57
7378
""" =========================== Covertype dataset benchmark =========================== Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- liblinear 15.9744s 0.0705s 0.2305 GaussianNB 3.0666s 0.3884s 0.4841 SGD 1.0558s 0.1152s 0.2300 CART 79.4296s 0.0523s 0.0469 RandomForest 1190.1620s 0.5881s 0.0243 ExtraTrees 640.3194s 0.6495s 0.0198 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype """ from __future__ import division, print_function # Author: Peter Prettenhofer <[email protected]> # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_covtype, get_data_home from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier, LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import zero_one_loss from sklearn.externals.joblib import Memory from sklearn.utils import check_array # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'covertype_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='C', random_state=13): """Load the data, then cache and memmap the train/test split""" ###################################################################### # Load dataset print("Loading dataset...") data = fetch_covtype(download_if_missing=True, shuffle=True, random_state=random_state) X = check_array(data['data'], dtype=dtype, order=order) y = (data['target'] != 1).astype(np.int) # Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 522911 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] # Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std return X_train, X_test, y_train, y_test ESTIMATORS = { 'GBRT': GradientBoostingClassifier(n_estimators=250), 'ExtraTrees': ExtraTreesClassifier(n_estimators=20), 'RandomForest': RandomForestClassifier(n_estimators=20), 'CART': DecisionTreeClassifier(min_samples_split=5), 'SGD': SGDClassifier(alpha=0.001, n_iter=2), 'GaussianNB': GaussianNB(), 'liblinear': LinearSVC(loss="l2", penalty="l2", C=1000, dual=False, tol=1e-3), 'SAG': LogisticRegression(solver='sag', max_iter=2, C=1000) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['liblinear', 'GaussianNB', 'SGD', 'CART'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=13, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data( order=args["order"], random_state=args["random_seed"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == 0), int(X_train.nbytes / 1e6))) print("%s %d (pos=%d, neg=%d, size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == 0), int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) for name in sorted(args["classifiers"], key=error.get): print("%s %s %s %s" % (name.ljust(12), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % error[name]).center(10))) print()
bsd-3-clause
michaelbramwell/sms-tools
lectures/03-Fourier-properties/plots-code/fft-zero-phase.py
24
1140
import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, fftshift import sys sys.path.append('../../../software/models/') import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512 M = 401 hN = N/2 hM = (M+1)/2 start = .8*fs xw = x[start-hM:start+hM-1] * np.hamming(M) plt.figure(1, figsize=(9.5, 6.5)) plt.subplot(411) plt.plot(np.arange(-hM, hM-1), xw, lw=1.5) plt.axis([-hN, hN-1, min(xw), max(xw)]) plt.title('x (oboe-A4.wav), M = 401') fftbuffer = np.zeros(N) fftbuffer[:hM] = xw[hM-1:] fftbuffer[N-hM+1:] = xw[:hM-1] plt.subplot(412) plt.plot(np.arange(0, N), fftbuffer, lw=1.5) plt.axis([0, N, min(xw), max(xw)]) plt.title('fftbuffer: N = 512') X = fftshift(fft(fftbuffer)) mX = 20 * np.log10(abs(X)/N) pX = np.unwrap(np.angle(X)) plt.subplot(413) plt.plot(np.arange(-hN, hN), mX, 'r', lw=1.5) plt.axis([-hN,hN-1,-100,max(mX)]) plt.title('mX') plt.subplot(414) plt.plot(np.arange(-hN, hN), pX, 'c', lw=1.5) plt.axis([-hN,hN-1,min(pX),max(pX)]) plt.title('pX') plt.tight_layout() plt.savefig('fft-zero-phase.png') plt.show()
agpl-3.0
kwyoung11/ciml
labs/lab2-KNN/HighD.py
4
1526
from math import * import random from numpy import * import matplotlib.pyplot as plt waitForEnter=False def generateUniformExample(numDim): return [random.random() for d in range(numDim)] def generateUniformDataset(numDim, numEx): return [generateUniformExample(numDim) for n in range(numEx)] def computeExampleDistance(x1, x2): dist = 0.0 for d in range(len(x1)): dist += (x1[d] - x2[d]) * (x1[d] - x2[d]) return sqrt(dist) def computeDistances(data): N = len(data) D = len(data[0]) dist = [] for n in range(N): for m in range(n): dist.append( computeExampleDistance(data[n],data[m]) / sqrt(D)) return dist N = 200 # number of examples Dims = [2, 8, 32, 128, 512] # dimensionalities to try Cols = ['#FF0000', '#880000', '#000000', '#000088', '#0000FF'] Bins = arange(0, 1, 0.02) plt.xlabel('distance / sqrt(dimensionality)') plt.ylabel('# of pairs of points at that distance') plt.title('dimensionality versus uniform point distances') for i,d in enumerate(Dims): distances = computeDistances(generateUniformDataset(d, N)) print "D=%d, average distance=%g" % (d, mean(distances) * sqrt(d)) plt.hist(distances, Bins, histtype='step', color=Cols[i]) if waitForEnter: plt.legend(['%d dims' % d for d in Dims]) plt.show(False) x = raw_input('Press enter to continue...') plt.legend(['%d dims' % d for d in Dims]) plt.savefig('fig.pdf') plt.show()
gpl-2.0
quheng/scikit-learn
sklearn/tests/test_dummy.py
186
17778
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.base import clone from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.stats import _weighted_percentile from sklearn.dummy import DummyClassifier, DummyRegressor @ignore_warnings def _check_predict_proba(clf, X, y): proba = clf.predict_proba(X) # We know that we can have division by zero log_proba = clf.predict_log_proba(X) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) n_outputs = y.shape[1] n_samples = len(X) if n_outputs == 1: proba = [proba] log_proba = [log_proba] for k in range(n_outputs): assert_equal(proba[k].shape[0], n_samples) assert_equal(proba[k].shape[1], len(np.unique(y[:, k]))) assert_array_equal(proba[k].sum(axis=1), np.ones(len(X))) # We know that we can have division by zero assert_array_equal(np.log(proba[k]), log_proba[k]) def _check_behavior_2d(clf): # 1d case X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([1, 2, 1, 1]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) # 2d case y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_behavior_2d_for_constant(clf): # 2d case only X = np.array([[0], [0], [0], [0]]) # ignored y = np.array([[1, 0, 5, 4, 3], [2, 0, 1, 2, 5], [1, 0, 4, 5, 2], [1, 3, 3, 2, 0]]) est = clone(clf) est.fit(X, y) y_pred = est.predict(X) assert_equal(y.shape, y_pred.shape) def _check_equality_regressor(statistic, y_learn, y_pred_learn, y_test, y_pred_test): assert_array_equal(np.tile(statistic, (y_learn.shape[0], 1)), y_pred_learn) assert_array_equal(np.tile(statistic, (y_test.shape[0], 1)), y_pred_test) def test_most_frequent_and_prior_strategy(): X = [[0], [0], [0], [0]] # ignored y = [1, 2, 1, 1] for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) if strategy == "prior": assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1))) else: assert_array_equal(clf.predict_proba([X[0]]), clf.class_prior_.reshape((1, -1)) > 0.5) def test_most_frequent_and_prior_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[1, 0], [2, 0], [1, 0], [1, 3]]) n_samples = len(X) for strategy in ("prior", "most_frequent"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_stratified_strategy(): X = [[0]] * 5 # ignored y = [1, 2, 1, 1, 2] clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) def test_stratified_strategy_multioutput(): X = [[0]] * 5 # ignored y = np.array([[2, 1], [2, 2], [1, 1], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[2], 2. / 5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_uniform_strategy(): X = [[0]] * 4 # ignored y = [1, 2, 1, 1] clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) p = np.bincount(y_pred) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) def test_uniform_strategy_multioutput(): X = [[0]] * 4 # ignored y = np.array([[2, 1], [2, 2], [1, 2], [1, 1]]) clf = DummyClassifier(strategy="uniform", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 0.5, decimal=1) assert_almost_equal(p[2], 0.5, decimal=1) _check_predict_proba(clf, X, y) _check_behavior_2d(clf) def test_string_labels(): X = [[0]] * 5 y = ["paris", "paris", "tokyo", "amsterdam", "berlin"] clf = DummyClassifier(strategy="most_frequent") clf.fit(X, y) assert_array_equal(clf.predict(X), ["paris"] * 5) def test_classifier_exceptions(): clf = DummyClassifier(strategy="unknown") assert_raises(ValueError, clf.fit, [], []) assert_raises(ValueError, clf.predict, []) assert_raises(ValueError, clf.predict_proba, []) def test_mean_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 4 # ignored y = random_state.randn(4) reg = DummyRegressor() reg.fit(X, y) assert_array_equal(reg.predict(X), [np.mean(y)] * len(X)) def test_mean_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) mean = np.mean(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor() est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor(mean, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_regressor_exceptions(): reg = DummyRegressor() assert_raises(ValueError, reg.predict, []) def test_median_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="median") reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) def test_median_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="median") est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="quantile", quantile=0.5) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.median(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.min(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=1) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.max(y)] * len(X)) reg = DummyRegressor(strategy="quantile", quantile=0.3) reg.fit(X, y) assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) def test_quantile_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) median = np.median(y_learn, axis=0).reshape((1, -1)) quantile_values = np.percentile(y_learn, axis=0, q=80).reshape((1, -1)) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.5) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( median, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) # Correctness oracle est = DummyRegressor(strategy="quantile", quantile=0.8) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( quantile_values, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d(est) def test_quantile_invalid(): X = [[0]] * 5 # ignored y = [0] * 5 # ignored est = DummyRegressor(strategy="quantile") assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=None) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=[0]) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=-0.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile=1.1) assert_raises(ValueError, est.fit, X, y) est = DummyRegressor(strategy="quantile", quantile='abc') assert_raises(TypeError, est.fit, X, y) def test_quantile_strategy_empty_train(): est = DummyRegressor(strategy="quantile", quantile=0.4) assert_raises(ValueError, est.fit, [], []) def test_constant_strategy_regressor(): random_state = np.random.RandomState(seed=1) X = [[0]] * 5 # ignored y = random_state.randn(5) reg = DummyRegressor(strategy="constant", constant=[43]) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) reg = DummyRegressor(strategy="constant", constant=43) reg.fit(X, y) assert_array_equal(reg.predict(X), [43] * len(X)) def test_constant_strategy_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X_learn = random_state.randn(10, 10) y_learn = random_state.randn(10, 5) # test with 2d array constants = random_state.randn(5) X_test = random_state.randn(20, 10) y_test = random_state.randn(20, 5) # Correctness oracle est = DummyRegressor(strategy="constant", constant=constants) est.fit(X_learn, y_learn) y_pred_learn = est.predict(X_learn) y_pred_test = est.predict(X_test) _check_equality_regressor( constants, y_learn, y_pred_learn, y_test, y_pred_test) _check_behavior_2d_for_constant(est) def test_y_mean_attribute_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] # when strategy = 'mean' est = DummyRegressor(strategy='mean') est.fit(X, y) assert_equal(est.constant_, np.mean(y)) def test_unknown_strategey_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='gona') assert_raises(ValueError, est.fit, X, y) def test_constants_not_specified_regressor(): X = [[0]] * 5 y = [1, 2, 4, 6, 8] est = DummyRegressor(strategy='constant') assert_raises(TypeError, est.fit, X, y) def test_constant_size_multioutput_regressor(): random_state = np.random.RandomState(seed=1) X = random_state.randn(10, 10) y = random_state.randn(10, 5) est = DummyRegressor(strategy='constant', constant=[1, 2, 3, 4]) assert_raises(ValueError, est.fit, X, y) def test_constant_strategy(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0, constant=1) clf.fit(X, y) assert_array_equal(clf.predict(X), np.ones(len(X))) _check_predict_proba(clf, X, y) X = [[0], [0], [0], [0]] # ignored y = ['two', 'one', 'two', 'two'] clf = DummyClassifier(strategy="constant", random_state=0, constant='one') clf.fit(X, y) assert_array_equal(clf.predict(X), np.array(['one'] * 4)) _check_predict_proba(clf, X, y) def test_constant_strategy_multioutput(): X = [[0], [0], [0], [0]] # ignored y = np.array([[2, 3], [1, 3], [2, 3], [2, 0]]) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) assert_array_equal(clf.predict(X), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) _check_predict_proba(clf, X, y) def test_constant_strategy_exceptions(): X = [[0], [0], [0], [0]] # ignored y = [2, 1, 2, 2] clf = DummyClassifier(strategy="constant", random_state=0) assert_raises(ValueError, clf.fit, X, y) clf = DummyClassifier(strategy="constant", random_state=0, constant=[2, 0]) assert_raises(ValueError, clf.fit, X, y) def test_classification_sample_weight(): X = [[0], [0], [1]] y = [0, 1, 0] sample_weight = [0.1, 1., 0.1] clf = DummyClassifier().fit(X, y, sample_weight) assert_array_almost_equal(clf.class_prior_, [0.2 / 1.2, 1. / 1.2]) def test_constant_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[0, 1], [4, 0], [1, 1], [1, 4], [1, 1]])) n_samples = len(X) clf = DummyClassifier(strategy="constant", random_state=0, constant=[1, 0]) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))])) def test_uniform_strategy_sparse_target_warning(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[2, 1], [2, 2], [1, 4], [4, 2], [1, 1]])) clf = DummyClassifier(strategy="uniform", random_state=0) assert_warns_message(UserWarning, "the uniform strategy would not save memory", clf.fit, X, y) X = [[0]] * 500 y_pred = clf.predict(X) for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 1 / 3, decimal=1) assert_almost_equal(p[2], 1 / 3, decimal=1) assert_almost_equal(p[4], 1 / 3, decimal=1) def test_stratified_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[4, 1], [0, 0], [1, 1], [1, 4], [1, 1]])) clf = DummyClassifier(strategy="stratified", random_state=0) clf.fit(X, y) X = [[0]] * 500 y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) y_pred = y_pred.toarray() for k in range(y.shape[1]): p = np.bincount(y_pred[:, k]) / float(len(X)) assert_almost_equal(p[1], 3. / 5, decimal=1) assert_almost_equal(p[0], 1. / 5, decimal=1) assert_almost_equal(p[4], 1. / 5, decimal=1) def test_most_frequent_and_prior_strategy_sparse_target(): X = [[0]] * 5 # ignored y = sp.csc_matrix(np.array([[1, 0], [1, 3], [4, 0], [0, 1], [1, 0]])) n_samples = len(X) y_expected = np.hstack([np.ones((n_samples, 1)), np.zeros((n_samples, 1))]) for strategy in ("most_frequent", "prior"): clf = DummyClassifier(strategy=strategy, random_state=0) clf.fit(X, y) y_pred = clf.predict(X) assert_true(sp.issparse(y_pred)) assert_array_equal(y_pred.toarray(), y_expected) def test_dummy_regressor_sample_weight(n_samples=10): random_state = np.random.RandomState(seed=1) X = [[0]] * n_samples y = random_state.rand(n_samples) sample_weight = random_state.rand(n_samples) est = DummyRegressor(strategy="mean").fit(X, y, sample_weight) assert_equal(est.constant_, np.average(y, weights=sample_weight)) est = DummyRegressor(strategy="median").fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.)) est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y, sample_weight) assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
bsd-3-clause
kyleabeauchamp/HMCNotes
code/correctness/old/test_john_hmc.py
1
1318
import lb_loader import pandas as pd import simtk.openmm.app as app import numpy as np import simtk.openmm as mm from simtk import unit as u from openmmtools import hmc_integrators, testsystems sysname = "ljbox" system, positions, groups, temperature, timestep = lb_loader.load(sysname) integrator = hmc_integrators.GHMCIntegratorOneStep(temperature, timestep=8*u.femtoseconds) context = lb_loader.build(system, integrator, positions, temperature) integrator.step(50000) positions = context.getState(getPositions=True).getPositions() collision_rate = 1.0 / u.picoseconds n_steps = 25 Neff_cutoff = 2000. grid = [] for itype in ["GHMCIntegratorOneStep"]: for timestep_factor in [1.0, 2.0, 4.0]: d = dict(itype=itype, timestep=timestep / timestep_factor) grid.append(d) for settings in grid: itype = settings.pop("itype") timestep = settings["timestep"] integrator = hmc_integrators.GHMCIntegratorOneStep(temperature, timestep=timestep) context = lb_loader.build(system, integrator, positions, temperature) filename = "./data/%s_%s_%.3f_%d.csv" % (sysname, itype, timestep / u.femtoseconds, collision_rate * u.picoseconds) print(filename) data, start, g, Neff = lb_loader.converge(context, n_steps=n_steps, Neff_cutoff=Neff_cutoff) data.to_csv(filename)
gpl-2.0
koobonil/Boss2D
Boss2D/addon/tensorflow-1.2.1_for_boss/tensorflow/python/estimator/inputs/queues/feeding_functions.py
46
15782
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for enqueuing data from arrays and pandas `DataFrame`s.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import types as tp import numpy as np import six from tensorflow.python.estimator.inputs.queues import feeding_queue_runner as fqr from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.summary import summary from tensorflow.python.training import queue_runner try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def _get_integer_indices_for_next_batch( batch_indices_start, batch_size, epoch_end, array_length, current_epoch, total_epochs): """Returns the integer indices for next batch. If total epochs is not None and current epoch is the final epoch, the end index of the next batch should not exceed the `epoch_end` (i.e., the final batch might not have size `batch_size` to avoid overshooting the last epoch). Args: batch_indices_start: Integer, the index to start next batch. batch_size: Integer, size of batches to return. epoch_end: Integer, the end index of the epoch. The epoch could start from a random position, so `epoch_end` provides the end index for that. array_length: Integer, the length of the array. current_epoch: Integer, the epoch number has been emitted. total_epochs: Integer or `None`, the total number of epochs to emit. If `None` will run forever. Returns: A tuple of a list with integer indices for next batch and `current_epoch` value after the next batch. Raises: OutOfRangeError if `current_epoch` is not less than `total_epochs`. """ if total_epochs is not None and current_epoch >= total_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % current_epoch) batch_indices_end = batch_indices_start + batch_size batch_indices = [j % array_length for j in range(batch_indices_start, batch_indices_end)] epoch_end_indices = [i for i, x in enumerate(batch_indices) if x == epoch_end] current_epoch += len(epoch_end_indices) if total_epochs is None or current_epoch < total_epochs: return (batch_indices, current_epoch) # Now we might have emitted more data for expected epochs. Need to trim. final_epoch_end_inclusive = epoch_end_indices[ -(current_epoch - total_epochs + 1)] batch_indices = batch_indices[:final_epoch_end_inclusive + 1] return (batch_indices, total_epochs) class _ArrayFeedFn(object): """Creates feed dictionaries from numpy arrays.""" def __init__(self, placeholders, array, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != 2: raise ValueError("_array_feed_fn expects 2 placeholders; got {}.".format( len(placeholders))) self._placeholders = placeholders self._array = array self._max = len(array) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max return { self._placeholders[0]: integer_indexes, self._placeholders[1]: self._array[integer_indexes] } class _OrderedDictNumpyFeedFn(object): """Creates feed dictionaries from `OrderedDict`s of numpy arrays.""" def __init__(self, placeholders, ordered_dict_of_arrays, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(ordered_dict_of_arrays) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(ordered_dict_of_arrays), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._ordered_dict_of_arrays = ordered_dict_of_arrays self._max = len(next(iter(ordered_dict_of_arrays.values()))) for _, v in ordered_dict_of_arrays.items(): if len(v) != self._max: raise ValueError("Array lengths must match.") self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max feed_dict = {self._index_placeholder: integer_indexes} cols = [ column[integer_indexes] for column in self._ordered_dict_of_arrays.values() ] feed_dict.update(dict(zip(self._col_placeholders, cols))) return feed_dict class _PandasFeedFn(object): """Creates feed dictionaries from pandas `DataFrames`.""" def __init__(self, placeholders, dataframe, batch_size, random_start=False, seed=None, num_epochs=None): if len(placeholders) != len(dataframe.columns) + 1: raise ValueError("Expected {} placeholders; got {}.".format( len(dataframe.columns), len(placeholders))) self._index_placeholder = placeholders[0] self._col_placeholders = placeholders[1:] self._dataframe = dataframe self._max = len(dataframe) self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) self._trav = random.randrange(self._max) if random_start else 0 self._epoch_end = (self._trav - 1) % self._max def __call__(self): integer_indexes, self._epoch = _get_integer_indices_for_next_batch( batch_indices_start=self._trav, batch_size=self._batch_size, epoch_end=self._epoch_end, array_length=self._max, current_epoch=self._epoch, total_epochs=self._num_epochs) self._trav = (integer_indexes[-1] + 1) % self._max result = self._dataframe.iloc[integer_indexes] cols = [result[col].values for col in result.columns] feed_dict = dict(zip(self._col_placeholders, cols)) feed_dict[self._index_placeholder] = result.index.values return feed_dict class _GeneratorFeedFn(object): """Creates feed dictionaries from `Generator` of `dicts` of numpy arrays.""" def __init__(self, placeholders, generator, batch_size, random_start=False, seed=None, num_epochs=None): first_sample = next(generator()) if len(placeholders) != len(first_sample): raise ValueError("Expected {} placeholders; got {}.".format( len(first_sample), len(placeholders))) self._keys = sorted(list(first_sample.keys())) self._col_placeholders = placeholders self._generator_function = generator self._iterator = generator() self._batch_size = batch_size self._num_epochs = num_epochs self._epoch = 0 random.seed(seed) def __call__(self): if self._num_epochs and self._epoch >= self._num_epochs: raise errors.OutOfRangeError(None, None, "Already emitted %s epochs." % self._epoch) list_dict = {} list_dict_size = 0 while list_dict_size < self._batch_size: try: data_row = next(self._iterator) except StopIteration: self._epoch += 1 self._iterator = self._generator_function() data_row = next(self._iterator) for index, key in enumerate(self._keys): if key not in data_row.keys(): raise KeyError("key mismatch between dicts emitted by GenFun" "Expected {} keys; got {}".format( self._keys, data_row.keys())) list_dict.setdefault(self._col_placeholders[index], list()).append(data_row[key]) list_dict_size += 1 feed_dict = {key: np.asarray(item) for key, item in list(list_dict.items())} return feed_dict def _enqueue_data(data, capacity, shuffle=False, min_after_dequeue=None, num_threads=1, seed=None, name="enqueue_input", enqueue_size=1, num_epochs=None): """Creates a queue filled from a numpy array or pandas `DataFrame`. Returns a queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. In the case of a pandas `DataFrame`, the first enqueued `Tensor` corresponds to the index of the `DataFrame`. For (`OrderedDict` of) numpy arrays, the first enqueued `Tensor` contains the row number. Args: data: a numpy `ndarray`, `OrderedDict` of numpy arrays, or a generator yielding `dict`s of numpy arrays or pandas `DataFrame` that will be read into the queue. capacity: the capacity of the queue. shuffle: whether or not to shuffle the rows of the array. min_after_dequeue: minimum number of elements that can remain in the queue after a dequeue operation. Only used when `shuffle` is true. If not set, defaults to `capacity` / 4. num_threads: number of threads used for reading and enqueueing. seed: used to seed shuffling and reader starting points. name: a scope name identifying the data. enqueue_size: the number of rows to enqueue per step. num_epochs: limit enqueuing to a specified number of epochs, if provided. Returns: A queue filled with the rows of the given (`OrderedDict` of) array or `DataFrame`. Raises: TypeError: `data` is not a Pandas `DataFrame`, an `OrderedDict` of numpy arrays, a numpy `ndarray`, or a generator producing these. """ with ops.name_scope(name): if isinstance(data, np.ndarray): types = [dtypes.int64, dtypes.as_dtype(data.dtype)] queue_shapes = [(), data.shape[1:]] get_feed_fn = _ArrayFeedFn elif isinstance(data, collections.OrderedDict): types = [dtypes.int64] + [ dtypes.as_dtype(col.dtype) for col in data.values() ] queue_shapes = [()] + [col.shape[1:] for col in data.values()] get_feed_fn = _OrderedDictNumpyFeedFn elif isinstance(data, tp.FunctionType): x_first_el = six.next(data()) x_first_keys = sorted(x_first_el.keys()) x_first_values = [x_first_el[key] for key in x_first_keys] types = [dtypes.as_dtype(col.dtype) for col in x_first_values] queue_shapes = [col.shape for col in x_first_values] get_feed_fn = _GeneratorFeedFn elif HAS_PANDAS and isinstance(data, pd.DataFrame): types = [ dtypes.as_dtype(dt) for dt in [data.index.dtype] + list(data.dtypes) ] queue_shapes = [() for _ in types] get_feed_fn = _PandasFeedFn else: raise TypeError( "data must be either a numpy array or pandas DataFrame if pandas is " "installed; got {}".format(type(data).__name__)) # TODO(jamieas): TensorBoard warnings for all warnings below once available. if num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with num_epochs and num_threads > 1. " "num_epochs is applied per thread, so this will produce more " "epochs than you probably intend. " "If you want to limit epochs, use one thread.") if shuffle and num_threads > 1 and num_epochs is not None: logging.warning( "enqueue_data was called with shuffle=True, num_threads > 1, and " "num_epochs. This will create multiple threads, all reading the " "array/dataframe in order adding to the same shuffling queue; the " "results will likely not be sufficiently shuffled.") if not shuffle and num_threads > 1: logging.warning( "enqueue_data was called with shuffle=False and num_threads > 1. " "This will create multiple threads, all reading the " "array/dataframe in order. If you want examples read in order, use" " one thread; if you want multiple threads, enable shuffling.") if shuffle: min_after_dequeue = int(capacity / 4 if min_after_dequeue is None else min_after_dequeue) queue = data_flow_ops.RandomShuffleQueue( capacity, min_after_dequeue, dtypes=types, shapes=queue_shapes, seed=seed) else: min_after_dequeue = 0 # just for the summary text queue = data_flow_ops.FIFOQueue( capacity, dtypes=types, shapes=queue_shapes) enqueue_ops = [] feed_fns = [] for i in range(num_threads): # Note the placeholders have no shapes, so they will accept any # enqueue_size. enqueue_many below will break them up. placeholders = [array_ops.placeholder(t) for t in types] enqueue_ops.append(queue.enqueue_many(placeholders)) seed_i = None if seed is None else (i + 1) * seed feed_fns.append( get_feed_fn( placeholders, data, enqueue_size, random_start=shuffle, seed=seed_i, num_epochs=num_epochs)) runner = fqr._FeedingQueueRunner( # pylint: disable=protected-access queue=queue, enqueue_ops=enqueue_ops, feed_fns=feed_fns) queue_runner.add_queue_runner(runner) full = (math_ops.cast( math_ops.maximum(0, queue.size() - min_after_dequeue), dtypes.float32) * (1. / (capacity - min_after_dequeue))) # Note that name contains a '/' at the end so we intentionally do not place # a '/' after %s below. summary_name = ("queue/%sfraction_over_%d_of_%d_full" % (queue.name, min_after_dequeue, capacity - min_after_dequeue)) summary.scalar(summary_name, full) return queue
mit
apbard/scipy
scipy/signal/spectral.py
1
66503
"""Tools for spectral analysis. """ from __future__ import division, print_function, absolute_import import numpy as np from scipy import fftpack from . import signaltools from .windows import get_window from ._spectral import _lombscargle from ._arraytools import const_ext, even_ext, odd_ext, zero_ext import warnings from scipy._lib.six import string_types __all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence', 'spectrogram', 'stft', 'istft', 'check_COLA'] def lombscargle(x, y, freqs, precenter=False, normalize=False): """ lombscargle(x, y, freqs) Computes the Lomb-Scargle periodogram. The Lomb-Scargle periodogram was developed by Lomb [1]_ and further extended by Scargle [2]_ to find, and test the significance of weak periodic signals with uneven temporal sampling. When *normalize* is False (default) the computed periodogram is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic signal with amplitude A for sufficiently large N. When *normalize* is True the computed periodogram is is normalized by the residuals of the data around a constant reference model (at zero). Input arrays should be one-dimensional and will be cast to float64. Parameters ---------- x : array_like Sample times. y : array_like Measurement values. freqs : array_like Angular frequencies for output periodogram. precenter : bool, optional Pre-center amplitudes by subtracting the mean. normalize : bool, optional Compute normalized periodogram. Returns ------- pgram : array_like Lomb-Scargle periodogram. Raises ------ ValueError If the input arrays `x` and `y` do not have the same shape. Notes ----- This subroutine calculates the periodogram using a slightly modified algorithm due to Townsend [3]_ which allows the periodogram to be calculated using only a single pass through the input arrays for each frequency. The algorithm running time scales roughly as O(x * freqs) or O(N^2) for a large number of samples and frequencies. References ---------- .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976 .. [2] J.D. Scargle "Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data", The Astrophysical Journal, vol 263, pp. 835-853, 1982 .. [3] R.H.D. Townsend, "Fast calculation of the Lomb-Scargle periodogram using graphics processing units.", The Astrophysical Journal Supplement Series, vol 191, pp. 247-253, 2010 Examples -------- >>> import scipy.signal >>> import matplotlib.pyplot as plt First define some input parameters for the signal: >>> A = 2. >>> w = 1. >>> phi = 0.5 * np.pi >>> nin = 1000 >>> nout = 100000 >>> frac_points = 0.9 # Fraction of points to select Randomly select a fraction of an array with timesteps: >>> r = np.random.rand(nin) >>> x = np.linspace(0.01, 10*np.pi, nin) >>> x = x[r >= frac_points] Plot a sine wave for the selected times: >>> y = A * np.sin(w*x+phi) Define the array of frequencies for which to compute the periodogram: >>> f = np.linspace(0.01, 10, nout) Calculate Lomb-Scargle periodogram: >>> import scipy.signal as signal >>> pgram = signal.lombscargle(x, y, f, normalize=True) Now make a plot of the input data: >>> plt.subplot(2, 1, 1) >>> plt.plot(x, y, 'b+') Then plot the normalized periodogram: >>> plt.subplot(2, 1, 2) >>> plt.plot(f, pgram) >>> plt.show() """ x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) freqs = np.asarray(freqs, dtype=np.float64) assert x.ndim == 1 assert y.ndim == 1 assert freqs.ndim == 1 if precenter: pgram = _lombscargle(x, y - y.mean(), freqs) else: pgram = _lombscargle(x, y, freqs) if normalize: pgram *= 2 / np.dot(y, y) return pgram def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimate power spectral density using a periodogram. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to 'boxcar'. nfft : int, optional Length of the FFT used. If `None` the length of `x` will be used. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of `x`. Notes ----- .. versionadded:: 0.12.0 See Also -------- welch: Estimate power spectral density using Welch's method lombscargle: Lomb-Scargle periodogram for unevenly sampled data Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.periodogram(x, fs) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([1e-7, 1e2]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0018156616014838548 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.ylim([1e-4, 1e1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ x = np.asarray(x) if x.size == 0: return np.empty(x.shape), np.empty(x.shape) if window is None: window = 'boxcar' if nfft is None: nperseg = x.shape[axis] elif nfft == x.shape[axis]: nperseg = nfft elif nfft > x.shape[axis]: nperseg = x.shape[axis] elif nfft < x.shape[axis]: s = [np.s_[:]]*len(x.shape) s[axis] = np.s_[:nfft] x = x[s] nperseg = nfft nfft = None return welch(x, fs, window, nperseg, 0, nfft, detrend, return_onesided, scaling, axis) def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate power spectral density using Welch's method. Welch's method [1]_ computes an estimate of the power spectral density by dividing the data into overlapping segments, computing a modified periodogram for each segment and averaging the periodograms. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Pxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Pxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the periodogram is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxx : ndarray Power spectral density or power spectrum of x. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. If `noverlap` is 0, this method is equivalent to Bartlett's method [2]_. .. versionadded:: 0.12.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika, vol. 37, pp. 1-16, 1950. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> np.random.seed(1234) Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by 0.001 V**2/Hz of white noise sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2*np.sqrt(2) >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> x = amp*np.sin(2*np.pi*freq*time) >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape) Compute and plot the power spectral density. >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024) >>> plt.semilogy(f, Pxx_den) >>> plt.ylim([0.5e-3, 1]) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('PSD [V**2/Hz]') >>> plt.show() If we average the last half of the spectral density, to exclude the peak, we can recover the noise power on the signal. >>> np.mean(Pxx_den[256:]) 0.0009924865443739191 Now compute and plot the power spectrum. >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum') >>> plt.figure() >>> plt.semilogy(f, np.sqrt(Pxx_spec)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Linear spectrum [V RMS]') >>> plt.show() The peak height in the power spectrum is an estimate of the RMS amplitude. >>> np.sqrt(Pxx_spec.max()) 2.0077340678640727 """ freqs, Pxx = csd(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis) return freqs, Pxx.real def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): r""" Estimate the cross power spectral density, Pxy, using Welch's method. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the CSD is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Pxy : ndarray Cross spectral density or cross power spectrum of x,y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. [Equivalent to csd(x,x)] coherence: Magnitude squared coherence by Welch's method. Notes -------- By convention, Pxy is computed with the conjugate FFT of X multiplied by the FFT of Y. If the input series differ in length, the shorter series will be zero-padded to match. An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the magnitude of the cross spectral density. >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024) >>> plt.semilogy(f, np.abs(Pxy)) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('CSD [V**2/Hz]') >>> plt.show() """ freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') # Average over windows. if len(Pxy.shape) >= 2 and Pxy.size > 0: if Pxy.shape[-1] > 1: Pxy = Pxy.mean(axis=-1) else: Pxy = np.reshape(Pxy, Pxy.shape[:-1]) return freqs, Pxy def spectrogram(x, fs=1.0, window=('tukey',.25), nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1, mode='psd'): """ Compute a spectrogram with consecutive Fourier transforms. Spectrograms can be used as a way of visualizing the change of a nonstationary signal's frequency content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Tukey window with shape parameter of 0.25. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 8``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the power spectral density ('density') where `Sxx` has units of V**2/Hz and computing the power spectrum ('spectrum') where `Sxx` has units of V**2, if `x` is measured in V and `fs` is measured in Hz. Defaults to 'density'. axis : int, optional Axis along which the spectrogram is computed; the default is over the last axis (i.e. ``axis=-1``). mode : str, optional Defines what kind of return values are expected. Options are ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is equivalent to the output of `stft` with no padding or boundary extension. 'magnitude' returns the absolute magnitude of the STFT. 'angle' and 'phase' return the complex angle of the STFT, with and without unwrapping, respectively. Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Sxx : ndarray Spectrogram of x. By default, the last axis of Sxx corresponds to the segment times. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes ----- An appropriate amount of overlap will depend on the choice of window and on your requirements. In contrast to welch's method, where the entire data stream is averaged over, one may wish to use a smaller overlap (or perhaps none at all) when computing a spectrogram, to maintain some statistical independence between individual segments. It is for this reason that the default window is a Tukey window with 1/8th of a window's length overlap at each end. .. versionadded:: 0.16.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the spectrogram. >>> f, t, Sxx = signal.spectrogram(x, fs) >>> plt.pcolormesh(t, f, Sxx) >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase'] if mode not in modelist: raise ValueError('unknown value for mode {}, must be one of {}' .format(mode, modelist)) # need to set default for nperseg before setting default for noverlap below window, nperseg = _triage_segments(window, nperseg, input_length=x.shape[axis]) # Less overlap than welch, so samples are more statisically independent if noverlap is None: noverlap = nperseg // 8 if mode == 'psd': freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='psd') else: freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling, axis, mode='stft') if mode == 'magnitude': Sxx = np.abs(Sxx) elif mode in ['angle', 'phase']: Sxx = np.angle(Sxx) if mode == 'phase': # Sxx has one additional dimension for time strides if axis < 0: axis -= 1 Sxx = np.unwrap(Sxx, axis=axis) # mode =='complex' is same as `stft`, doesn't need modification return freqs, time, Sxx def check_COLA(window, nperseg, noverlap, tol=1e-10): r""" Check whether the Constant OverLap Add (COLA) constraint is met Parameters ---------- window : str or tuple or array_like Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. nperseg : int Length of each segment. noverlap : int Number of points to overlap between segments. tol : float, optional The allowed variance of a bin's weighted sum from the median bin sum. Returns ------- verdict : bool `True` if chosen combination satisfies COLA within `tol`, `False` otherwise See Also -------- stft: Short Time Fourier Transform istft: Inverse Short Time Fourier Transform Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Some examples of windows that satisfy COLA: - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ... - Bartlett window at overlap of 1/2, 3/4, 5/6, ... - Hann window at 1/2, 2/3, 3/4, ... - Any Blackman family window at 2/3 overlap - Any window with ``noverlap = nperseg-1`` A very comprehensive list of other windows may be found in [2]_, wherein the COLA condition is satisfied when the "Amplitude Flatness" is unity. .. versionadded:: 0.19.0 References ---------- .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K Publishing, 2011,ISBN 978-0-9745607-3-1. .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows", 2002, http://hdl.handle.net/11858/00-001M-0000-0013-557A-5 Examples -------- >>> from scipy import signal Confirm COLA condition for rectangular window of 75% (3/4) overlap: >>> signal.check_COLA(signal.boxcar(100), 100, 75) True COLA is not true for 25% (1/4) overlap, though: >>> signal.check_COLA(signal.boxcar(100), 100, 25) False "Symmetrical" Hann window (for filter design) is not COLA: >>> signal.check_COLA(signal.hann(120, sym=True), 120, 60) False "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for overlap of 1/2, 2/3, 3/4, etc.: >>> signal.check_COLA(signal.hann(120, sym=False), 120, 60) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 80) True >>> signal.check_COLA(signal.hann(120, sym=False), 120, 90) True """ nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') noverlap = int(noverlap) if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of nperseg') step = nperseg - noverlap binsums = np.sum((win[ii*step:(ii+1)*step] for ii in range(nperseg//step)), axis=0) if nperseg % step != 0: binsums[:nperseg % step] += win[-(nperseg % step):] deviation = binsums - np.median(binsums) return np.max(np.abs(deviation)) < tol def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None, detrend=False, return_onesided=True, boundary='zeros', padded=True, axis=-1): r""" Compute the Short Time Fourier Transform (STFT). STFTs can be used as a way of quantifying the change of a nonstationary signal's frequency and phase content over time. Parameters ---------- x : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to 256. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below). nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to `False`. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. Defaults to `True`. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to 'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `True`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`, as is the default. axis : int, optional Axis along which the STFT is computed; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. t : ndarray Array of segment times. Zxx : ndarray STFT of `x`. By default, the last axis of `Zxx` corresponds to the segment times. See Also -------- istft: Inverse Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met welch: Power spectral density by Welch's method. spectrogram: Spectrogram by Welch's method. csd: Cross spectral density by Welch's method. lombscargle: Lomb-Scargle periodogram for unevenly sampled data Notes ----- In order to enable inversion of an STFT via the inverse STFT in `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA), and the input signal must have complete windowing coverage (i.e. ``(x.shape[axis] - nperseg) % (nperseg-noverlap) == 0``). The `padded` argument may be used to accomplish this. The COLA constraint ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave whose frequency is slowly modulated around 3kHz, corrupted by white noise of exponentially decreasing magnitude sampled at 10 kHz. >>> fs = 10e3 >>> N = 1e5 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.01 * fs / 2 >>> time = np.arange(N) / float(fs) >>> mod = 500*np.cos(2*np.pi*0.25*time) >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> noise *= np.exp(-time/5) >>> x = carrier + noise Compute and plot the STFT's magnitude. >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000) >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.show() """ freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap, nfft, detrend, return_onesided, scaling='spectrum', axis=axis, mode='stft', boundary=boundary, padded=padded) return freqs, time, Zxx def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2): r""" Perform the inverse Short Time Fourier transform (iSTFT). Parameters ---------- Zxx : array_like STFT of the signal to be reconstructed. If a purely real array is passed, it will be cast to a complex data type. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. Must match the window used to generate the STFT for faithful inversion. nperseg : int, optional Number of data points corresponding to each STFT segment. This parameter must be specified if the number of data points per segment is odd, or if the STFT was padded via ``nfft > nperseg``. If `None`, the value depends on the shape of `Zxx` and `input_onesided`. If `input_onesided` is True, ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise, ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`. noverlap : int, optional Number of points to overlap between segments. If `None`, half of the segment length. Defaults to `None`. When specified, the COLA constraint must be met (see Notes below), and should match the parameter used to generate the STFT. Defaults to `None`. nfft : int, optional Number of FFT points corresponding to each STFT segment. This parameter must be specified if the STFT was padded via ``nfft > nperseg``. If `None`, the default values are the same as for `nperseg`, detailed above, with one exception: if `input_onesided` is True and ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on that value. This case allows the proper inversion of an odd-length unpadded STFT using ``nfft=None``. Defaults to `None`. input_onesided : bool, optional If `True`, interpret the input array as one-sided FFTs, such as is returned by `stft` with ``return_onesided=True`` and `numpy.fft.rfft`. If `False`, interpret the input as a a two-sided FFT. Defaults to `True`. boundary : bool, optional Specifies whether the input signal was extended at its boundaries by supplying a non-`None` ``boundary`` argument to `stft`. Defaults to `True`. time_axis : int, optional Where the time segments of the STFT is located; the default is the last axis (i.e. ``axis=-1``). freq_axis : int, optional Where the frequency axis of the STFT is located; the default is the penultimate axis (i.e. ``axis=-2``). Returns ------- t : ndarray Array of output data times. x : ndarray iSTFT of `Zxx`. See Also -------- stft: Short Time Fourier Transform check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met Notes ----- In order to enable inversion of an STFT via the inverse STFT with `istft`, the signal windowing must obey the constraint of "Constant OverLap Add" (COLA). This ensures that every point in the input data is equally weighted, thereby avoiding aliasing and allowing full reconstruction. Whether a choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can be tested with `check_COLA`, by using ``nperseg = Zxx.shape[freq_axis]``. An STFT which has been modified (via masking or otherwise) is not guaranteed to correspond to a exactly realizible signal. This function implements the iSTFT via the least-squares esimation algorithm detailed in [2]_, which produces a signal that minimizes the mean squared error between the STFT of the returned signal and the modified STFT. .. versionadded:: 0.19.0 References ---------- .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck "Discrete-Time Signal Processing", Prentice Hall, 1999. .. [2] Daniel W. Griffin, Jae S. Limdt "Signal Estimation from Modified Short Fourier Transform", IEEE 1984, 10.1109/TASSP.1984.1164317 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024 Hz. >>> fs = 1024 >>> N = 10*fs >>> nperseg = 512 >>> amp = 2 * np.sqrt(2) >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / float(fs) >>> carrier = amp * np.sin(2*np.pi*50*time) >>> noise = np.random.normal(scale=np.sqrt(noise_power), ... size=time.shape) >>> x = carrier + noise Compute the STFT, and plot its magnitude >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg) >>> plt.figure() >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp) >>> plt.ylim([f[1], f[-1]]) >>> plt.title('STFT Magnitude') >>> plt.ylabel('Frequency [Hz]') >>> plt.xlabel('Time [sec]') >>> plt.yscale('log') >>> plt.show() Zero the components that are 10% or less of the carrier magnitude, then convert back to a time series via inverse STFT >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0) >>> _, xrec = signal.istft(Zxx, fs) Compare the cleaned signal with the original and true carrier signals. >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([2, 2.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() Note that the cleaned signal does not start as abruptly as the original, since some of the coefficients of the transient were also removed: >>> plt.figure() >>> plt.plot(time, x, time, xrec, time, carrier) >>> plt.xlim([0, 0.1]) >>> plt.xlabel('Time [sec]') >>> plt.ylabel('Signal') >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier']) >>> plt.show() """ # Make sure input is an ndarray of appropriate complex dtype Zxx = np.asarray(Zxx) + 0j freq_axis = int(freq_axis) time_axis = int(time_axis) if Zxx.ndim < 2: raise ValueError('Input stft must be at least 2d!') if freq_axis == time_axis: raise ValueError('Must specify differing time and frequency axes!') nseg = Zxx.shape[time_axis] if input_onesided: # Assume even segment length n_default = 2*(Zxx.shape[freq_axis] - 1) else: n_default = Zxx.shape[freq_axis] # Check windowing parameters if nperseg is None: nperseg = n_default else: nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') if nfft is None: if (input_onesided) and (nperseg == n_default + 1): # Odd nperseg, no FFT padding nfft = nperseg else: nfft = n_default elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap if not check_COLA(window, nperseg, noverlap): raise ValueError('Window, STFT shape and noverlap do not satisfy the ' 'COLA constraint.') # Rearrange axes if neccessary if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2: # Turn negative indices to positive for the call to transpose if freq_axis < 0: freq_axis = Zxx.ndim + freq_axis if time_axis < 0: time_axis = Zxx.ndim + time_axis zouter = list(range(Zxx.ndim)) for ax in sorted([time_axis, freq_axis], reverse=True): zouter.pop(ax) Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis]) # Get window as array if isinstance(window, string_types) or type(window) is tuple: win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if win.shape[0] != nperseg: raise ValueError('window must have length of {0}'.format(nperseg)) if input_onesided: ifunc = np.fft.irfft else: ifunc = fftpack.ifft xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :] # Initialize output and normalization arrays outputlength = nperseg + (nseg-1)*nstep x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype) norm = np.zeros(outputlength, dtype=xsubs.dtype) if np.result_type(win, xsubs) != xsubs.dtype: win = win.astype(xsubs.dtype) xsubs *= win.sum() # This takes care of the 'spectrum' scaling # Construct the output from the ifft segments # This loop could perhaps be vectorized/strided somehow... for ii in range(nseg): # Window the ifft x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win norm[..., ii*nstep:ii*nstep+nperseg] += win**2 # Divide out normalization where non-tiny x /= np.where(norm > 1e-10, norm, 1.0) # Remove extension points if boundary: x = x[..., nperseg//2:-(nperseg//2)] if input_onesided: x = x.real # Put axes back if x.ndim > 1: if time_axis != Zxx.ndim-1: if freq_axis < time_axis: time_axis -= 1 x = np.rollaxis(x, -1, time_axis) time = np.arange(x.shape[0])/float(fs) return time, x def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', axis=-1): r""" Estimate the magnitude squared coherence estimate, Cxy, of discrete-time signals X and Y using Welch's method. ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power spectral density estimates of X and Y, and `Pxy` is the cross spectral density estimate of X and Y. Parameters ---------- x : array_like Time series of measurement values y : array_like Time series of measurement values fs : float, optional Sampling frequency of the `x` and `y` time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap: int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. axis : int, optional Axis along which the coherence is computed for both inputs; the default is over the last axis (i.e. ``axis=-1``). Returns ------- f : ndarray Array of sample frequencies. Cxy : ndarray Magnitude squared coherence of x and y. See Also -------- periodogram: Simple, optionally modified periodogram lombscargle: Lomb-Scargle periodogram for unevenly sampled data welch: Power spectral density by Welch's method. csd: Cross spectral density by Welch's method. Notes -------- An appropriate amount of overlap will depend on the choice of window and on your requirements. For the default Hann window an overlap of 50% is a reasonable trade off between accurately estimating the signal power, while not over counting any of the data. Narrower windows may require a larger overlap. .. versionadded:: 0.16.0 References ---------- .. [1] P. Welch, "The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms", IEEE Trans. Audio Electroacoust. vol. 15, pp. 70-73, 1967. .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of Signals" Prentice Hall, 2005 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Generate two test signals with some common features. >>> fs = 10e3 >>> N = 1e5 >>> amp = 20 >>> freq = 1234.0 >>> noise_power = 0.001 * fs / 2 >>> time = np.arange(N) / fs >>> b, a = signal.butter(2, 0.25, 'low') >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) >>> y = signal.lfilter(b, a, x) >>> x += amp*np.sin(2*np.pi*freq*time) >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape) Compute and plot the coherence. >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024) >>> plt.semilogy(f, Cxy) >>> plt.xlabel('frequency [Hz]') >>> plt.ylabel('Coherence') >>> plt.show() """ freqs, Pxx = welch(x, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pyy = welch(y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) _, Pxy = csd(x, y, fs, window, nperseg, noverlap, nfft, detrend, axis=axis) Cxy = np.abs(Pxy)**2 / Pxx / Pyy return freqs, Cxy def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None, detrend='constant', return_onesided=True, scaling='spectrum', axis=-1, mode='psd', boundary=None, padded=False): """ Calculate various forms of windowed FFTs for PSD, CSD, etc. This is a helper function that implements the commonality between the stft, psd, csd, and spectrogram functions. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Parameters --------- x : array_like Array or sequence containing the data to be analyzed. y : array_like Array or sequence containing the data to be analyzed. If this is the same object in memory as `x` (i.e. ``_spectral_helper(x, x, ...)``), the extra computations are spared. fs : float, optional Sampling frequency of the time series. Defaults to 1.0. window : str or tuple or array_like, optional Desired window to use. If `window` is a string or tuple, it is passed to `get_window` to generate the window values, which are DFT-even by default. See `get_window` for a list of windows and required parameters. If `window` is array_like it will be used directly as the window and its length must be nperseg. Defaults to a Hann window. nperseg : int, optional Length of each segment. Defaults to None, but if window is str or tuple, is set to 256, and if window is array_like, is set to the length of the window. noverlap : int, optional Number of points to overlap between segments. If `None`, ``noverlap = nperseg // 2``. Defaults to `None`. nfft : int, optional Length of the FFT used, if a zero padded FFT is desired. If `None`, the FFT length is `nperseg`. Defaults to `None`. detrend : str or function or `False`, optional Specifies how to detrend each segment. If `detrend` is a string, it is passed as the `type` argument to the `detrend` function. If it is a function, it takes a segment and returns a detrended segment. If `detrend` is `False`, no detrending is done. Defaults to 'constant'. return_onesided : bool, optional If `True`, return a one-sided spectrum for real data. If `False` return a two-sided spectrum. Note that for complex data, a two-sided spectrum is always returned. scaling : { 'density', 'spectrum' }, optional Selects between computing the cross spectral density ('density') where `Pxy` has units of V**2/Hz and computing the cross spectrum ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are measured in V and `fs` is measured in Hz. Defaults to 'density' axis : int, optional Axis along which the FFTs are computed; the default is over the last axis (i.e. ``axis=-1``). mode: str {'psd', 'stft'}, optional Defines what kind of return values are expected. Defaults to 'psd'. boundary : str or None, optional Specifies whether the input signal is extended at both ends, and how to generate the new values, in order to center the first windowed segment on the first input point. This has the benefit of enabling reconstruction of the first input point when the employed window function starts at zero. Valid options are ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to `None`. padded : bool, optional Specifies whether the input signal is zero-padded at the end to make the signal fit exactly into an integer number of window segments, so that all of the signal is included in the output. Defaults to `False`. Padding occurs after boundary extension, if `boundary` is not `None`, and `padded` is `True`. Returns ------- freqs : ndarray Array of sample frequencies. t : ndarray Array of times corresponding to each data segment result : ndarray Array of output data, contents dependant on *mode* kwarg. References ---------- .. [1] Stack Overflow, "Rolling window for 1D arrays in Numpy?", http://stackoverflow.com/a/6811241 .. [2] Stack Overflow, "Using strides for an efficient moving average filter", http://stackoverflow.com/a/4947453 Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ if mode not in ['psd', 'stft']: raise ValueError("Unknown value for mode %s, must be one of: " "{'psd', 'stft'}" % mode) boundary_funcs = {'even': even_ext, 'odd': odd_ext, 'constant': const_ext, 'zeros': zero_ext, None: None} if boundary not in boundary_funcs: raise ValueError("Unknown boundary option '{0}', must be one of: {1}" .format(boundary, list(boundary_funcs.keys()))) # If x and y are the same object we can save ourselves some computation. same_data = y is x if not same_data and mode != 'psd': raise ValueError("x and y must be equal if mode is 'stft'") axis = int(axis) # Ensure we have np.arrays, get outdtype x = np.asarray(x) if not same_data: y = np.asarray(y) outdtype = np.result_type(x, y, np.complex64) else: outdtype = np.result_type(x, np.complex64) if not same_data: # Check if we can broadcast the outer axes together xouter = list(x.shape) youter = list(y.shape) xouter.pop(axis) youter.pop(axis) try: outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape except ValueError: raise ValueError('x and y cannot be broadcast together.') if same_data: if x.size == 0: return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape) else: if x.size == 0 or y.size == 0: outshape = outershape + (min([x.shape[axis], y.shape[axis]]),) emptyout = np.rollaxis(np.empty(outshape), -1, axis) return emptyout, emptyout, emptyout if x.ndim > 1: if axis != -1: x = np.rollaxis(x, axis, len(x.shape)) if not same_data and y.ndim > 1: y = np.rollaxis(y, axis, len(y.shape)) # Check if x and y are the same length, zero-pad if neccesary if not same_data: if x.shape[-1] != y.shape[-1]: if x.shape[-1] < y.shape[-1]: pad_shape = list(x.shape) pad_shape[-1] = y.shape[-1] - x.shape[-1] x = np.concatenate((x, np.zeros(pad_shape)), -1) else: pad_shape = list(y.shape) pad_shape[-1] = x.shape[-1] - y.shape[-1] y = np.concatenate((y, np.zeros(pad_shape)), -1) if nperseg is not None: # if specified by user nperseg = int(nperseg) if nperseg < 1: raise ValueError('nperseg must be a positive integer') # parse window; if array like, then set nperseg = win.shape win, nperseg = _triage_segments(window, nperseg,input_length=x.shape[-1]) if nfft is None: nfft = nperseg elif nfft < nperseg: raise ValueError('nfft must be greater than or equal to nperseg.') else: nfft = int(nfft) if noverlap is None: noverlap = nperseg//2 else: noverlap = int(noverlap) if noverlap >= nperseg: raise ValueError('noverlap must be less than nperseg.') nstep = nperseg - noverlap # Padding occurs after boundary extension, so that the extended signal ends # in zeros, instead of introducing an impulse at the end. # I.e. if x = [..., 3, 2] # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0] # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3] if boundary is not None: ext_func = boundary_funcs[boundary] x = ext_func(x, nperseg//2, axis=-1) if not same_data: y = ext_func(y, nperseg//2, axis=-1) if padded: # Pad to integer number of windowed segments # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg zeros_shape = list(x.shape[:-1]) + [nadd] x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1) if not same_data: zeros_shape = list(y.shape[:-1]) + [nadd] y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1) # Handle detrending and window functions if not detrend: def detrend_func(d): return d elif not hasattr(detrend, '__call__'): def detrend_func(d): return signaltools.detrend(d, type=detrend, axis=-1) elif axis != -1: # Wrap this function so that it receives a shape that it could # reasonably expect to receive. def detrend_func(d): d = np.rollaxis(d, -1, axis) d = detrend(d) return np.rollaxis(d, axis, len(d.shape)) else: detrend_func = detrend if np.result_type(win,np.complex64) != outdtype: win = win.astype(outdtype) if scaling == 'density': scale = 1.0 / (fs * (win*win).sum()) elif scaling == 'spectrum': scale = 1.0 / win.sum()**2 else: raise ValueError('Unknown scaling: %r' % scaling) if mode == 'stft': scale = np.sqrt(scale) if return_onesided: if np.iscomplexobj(x): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'onesided' if not same_data: if np.iscomplexobj(y): sides = 'twosided' warnings.warn('Input data is complex, switching to ' 'return_onesided=False') else: sides = 'twosided' if sides == 'twosided': freqs = fftpack.fftfreq(nfft, 1/fs) elif sides == 'onesided': freqs = np.fft.rfftfreq(nfft, 1/fs) # Perform the windowed FFTs result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides) if not same_data: # All the same operations on the y data result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft, sides) result = np.conjugate(result) * result_y elif mode == 'psd': result = np.conjugate(result) * result result *= scale if sides == 'onesided' and mode == 'psd': if nfft % 2: result[..., 1:] *= 2 else: # Last point is unpaired Nyquist freq point, don't double result[..., 1:-1] *= 2 time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1, nperseg - noverlap)/float(fs) if boundary is not None: time -= (nperseg/2) / fs result = result.astype(outdtype) # All imaginary parts are zero anyways if same_data and mode != 'stft': result = result.real # Output is going to have new last axis for time/window index, so a # negative axis index shifts down one if axis < 0: axis -= 1 # Roll frequency axis back to axis where the data came from result = np.rollaxis(result, -1, axis) return freqs, time, result def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides): """ Calculate windowed FFT, for internal use by scipy.signal._spectral_helper This is a helper function that does the main FFT calculation for `_spectral helper`. All input valdiation is performed there, and the data axis is assumed to be the last axis of x. It is not designed to be called externally. The windows are not averaged over; the result from each window is returned. Returns ------- result : ndarray Array of FFT data References ---------- .. [1] Stack Overflow, "Repeat NumPy array without replicating data?", http://stackoverflow.com/a/5568169 Notes ----- Adapted from matplotlib.mlab .. versionadded:: 0.16.0 """ # Created strided array of data segments if nperseg == 1 and noverlap == 0: result = x[..., np.newaxis] else: step = nperseg - noverlap shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg) strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1]) result = np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides) # Detrend each data segment individually result = detrend_func(result) # Apply window by multiplication result = win * result # Perform the fft. Acts on last axis by default. Zero-pads automatically if sides == 'twosided': func = fftpack.fft else: result = result.real func = np.fft.rfft result = func(result, n=nfft) return result def _triage_segments(window, nperseg,input_length): """ Parses window and nperseg arguments for spectrogram and _spectral_helper. This is a helper function, not meant to be called externally. Parameters --------- window : string, tuple, or ndarray If window is specified by a string or tuple and nperseg is not specified, nperseg is set to the default of 256 and returns a window of that length. If instead the window is array_like and nperseg is not specified, then nperseg is set to the length of the window. A ValueError is raised if the user supplies both an array_like window and a value for nperseg but nperseg does not equal the length of the window. nperseg : int Length of each segment input_length: int Length of input signal, i.e. x.shape[-1]. Used to test for errors. Returns ------- win : ndarray window. If function was called with string or tuple than this will hold the actual array used as a window. nperseg : int Length of each segment. If window is str or tuple, nperseg is set to 256. If window is array_like, nperseg is set to the length of the 6 window. """ #parse window; if array like, then set nperseg = win.shape if isinstance(window, string_types) or isinstance(window, tuple): # if nperseg not specified if nperseg is None: nperseg = 256 # then change to default if nperseg > input_length: warnings.warn('nperseg = {0:d} is greater than input length ' ' = {1:d}, using nperseg = {1:d}' .format(nperseg, input_length)) nperseg = input_length win = get_window(window, nperseg) else: win = np.asarray(window) if len(win.shape) != 1: raise ValueError('window must be 1-D') if input_length < win.shape[-1]: raise ValueError('window is longer than input signal') if nperseg is None: nperseg = win.shape[0] elif nperseg is not None: if nperseg != win.shape[0]: raise ValueError("value specified for nperseg is different from" " length of window") return win, nperseg
bsd-3-clause
RecipeML/Recipe
recipe/preprocessors/fag.py
1
1645
# -*- coding: utf-8 -*- """ Copyright 2016 Walter José and Alex de Sá This file is part of the RECIPE Algorithm. The RECIPE is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RECIPE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. See http://www.gnu.org/licenses/. """ from sklearn.cluster import FeatureAgglomeration def fag(args): """Uses scikit-learn's FeatureAgglomeration agglomerate features. Parameters ---------- affinity : string Metric used to compute the linkage. Can be “euclidean”, “l1”, “l2”, “manhattan”, “cosine”, or ‘precomputed’. If linkage is “ward”, only “euclidean” is accepted. linkage : {“ward”, “complete”, “average”} Which linkage criterion to use. The linkage criterion determines which distance to use between sets of features. The algorithm will merge the pairs of cluster that minimize this criterion. compute_full_tree : bool or ‘auto’ Stop early the construction of the tree at n_clusters n_clusters : int The number of clusters to find. """ affi = args[1] link = args[2] cft = False if(args[3].find("True")!=-1): cft = True n_clust = int(args[4]) return FeatureAgglomeration(n_clusters=n_clust, affinity=affi, connectivity=None,compute_full_tree=cft, linkage=link)
gpl-3.0
treycausey/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
9
2843
""" Testing for mean shift clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=500, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=0) def test_estimate_bandwidth(): """Test estimate_bandwidth""" bandwidth = estimate_bandwidth(X, n_samples=300) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): """ Test MeanShift algorithm """ bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_meanshift_predict(): """Test MeanShift.predict""" ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_unfitted(): """Non-regression: before fit, there should be not fitted attributes.""" ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): """ Test the bin seeding technique which can be used in the mean shift algorithm """ # Data is just 6 points in the plane X = np.array([[1., 1.], [1.5, 1.5], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found test_bins = get_bin_seeds(X, 0.01, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(test_result) == 6)
bsd-3-clause
anhaidgroup/py_stringsimjoin
py_stringsimjoin/utils/generic_helper.py
1
4541
import multiprocessing import operator import os from six.moves import xrange import pandas as pd COMP_OP_MAP = {'>=': operator.ge, '>': operator.gt, '<=': operator.le, '<': operator.lt, '=': operator.eq, '!=': operator.ne} def get_output_row_from_tables(l_row, r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices=None, r_out_attrs_indices=None): output_row = [] # add ltable id attr output_row.append(l_row[l_key_attr_index]) # add rtable id attr output_row.append(r_row[r_key_attr_index]) # add ltable output attributes if l_out_attrs_indices: for l_attr_index in l_out_attrs_indices: output_row.append(l_row[l_attr_index]) # add rtable output attributes if r_out_attrs_indices: for r_attr_index in r_out_attrs_indices: output_row.append(r_row[r_attr_index]) return output_row def get_output_header_from_tables(l_key_attr, r_key_attr, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix): output_header = [] output_header.append(l_out_prefix + l_key_attr) output_header.append(r_out_prefix + r_key_attr) if l_out_attrs: for l_attr in l_out_attrs: output_header.append(l_out_prefix + l_attr) if r_out_attrs: for r_attr in r_out_attrs: output_header.append(r_out_prefix + r_attr) return output_header def convert_dataframe_to_list(table, join_attr_index, remove_null=True): table_list = [] for row in table.itertuples(index=False): if remove_null and pd.isnull(row[join_attr_index]): continue table_list.append(tuple(row)) return table_list def convert_dataframe_to_array(dataframe, proj_attrs, join_attr, remove_nan=True): if remove_nan: projected_dataframe = dataframe[proj_attrs].dropna(0, subset=[join_attr]) else: projected_dataframe = dataframe[proj_attrs] return projected_dataframe.values def build_dict_from_table(table, key_attr_index, join_attr_index, remove_null=True): table_dict = {} for row in table.itertuples(index=False): if remove_null and pd.isnull(row[join_attr_index]): continue table_dict[row[key_attr_index]] = tuple(row) return table_dict def find_output_attribute_indices(original_columns, output_attributes): output_attribute_indices = [] if output_attributes is not None: for attr in output_attributes: output_attribute_indices.append(original_columns.index(attr)) return output_attribute_indices def split_table(table, num_splits): splits = [] split_size = 1.0/num_splits*len(table) for i in xrange(num_splits): splits.append(table[int(round(i*split_size)): int(round((i+1)*split_size))]) return splits def remove_non_ascii(s): return ''.join(i for i in s if ord(i) < 128) def get_num_processes_to_launch(n_jobs): # determine number of processes to launch parallely num_procs = n_jobs if n_jobs < 0: num_cpus = multiprocessing.cpu_count() num_procs = num_cpus + 1 + n_jobs return max(num_procs, 1) def get_install_path(): current_dir = os.path.dirname(os.path.realpath(__file__)) return os.path.dirname(current_dir) def remove_redundant_attrs(out_attrs, key_attr): # this method removes key_attr from out_attrs, if present. # further it removes redundant attributes in out_attrs, # but preserves the order of attributes. if out_attrs is None: return out_attrs uniq_attrs = [] seen_attrs = {} for attr in out_attrs: if attr == key_attr or seen_attrs.get(attr) is not None: continue uniq_attrs.append(attr) seen_attrs[attr] = True return uniq_attrs def get_attrs_to_project(out_attrs, key_attr, join_attr): # this method assumes key_attr has already been removed from # out_attrs, if present. proj_attrs = [key_attr, join_attr] if out_attrs is not None: for attr in out_attrs: if attr != join_attr: proj_attrs.append(attr) return proj_attrs
bsd-3-clause
yarikoptic/pystatsmodels
statsmodels/tsa/tests/test_stattools.py
3
7864
from statsmodels.tsa.stattools import (adfuller, acf, pacf_ols, pacf_yw, pacf, grangercausalitytests, coint, acovf) from statsmodels.tsa.base.datetools import dates_from_range import numpy as np from numpy.testing import assert_almost_equal, assert_equal, assert_raises from numpy import genfromtxt#, concatenate from statsmodels.datasets import macrodata, sunspots from pandas import Series, Index import os DECIMAL_8 = 8 DECIMAL_6 = 6 DECIMAL_5 = 5 DECIMAL_4 = 4 DECIMAL_3 = 3 DECIMAL_2 = 2 DECIMAL_1 = 1 class CheckADF(object): """ Test Augmented Dickey-Fuller Test values taken from Stata. """ levels = ['1%', '5%', '10%'] data = macrodata.load() x = data.data['realgdp'] y = data.data['infl'] def test_teststat(self): assert_almost_equal(self.res1[0], self.teststat, DECIMAL_5) def test_pvalue(self): assert_almost_equal(self.res1[1], self.pvalue, DECIMAL_5) def test_critvalues(self): critvalues = [self.res1[4][lev] for lev in self.levels] assert_almost_equal(critvalues, self.critvalues, DECIMAL_2) class TestADFConstant(CheckADF): """ Dickey-Fuller test for unit root """ def __init__(self): self.res1 = adfuller(self.x, regression="c", autolag=None, maxlag=4) self.teststat = .97505319 self.pvalue = .99399563 self.critvalues = [-3.476, -2.883, -2.573] class TestADFConstantTrend(CheckADF): """ """ def __init__(self): self.res1 = adfuller(self.x, regression="ct", autolag=None, maxlag=4) self.teststat = -1.8566374 self.pvalue = .67682968 self.critvalues = [-4.007, -3.437, -3.137] #class TestADFConstantTrendSquared(CheckADF): # """ # """ # pass #TODO: get test values from R? class TestADFNoConstant(CheckADF): """ """ def __init__(self): self.res1 = adfuller(self.x, regression="nc", autolag=None, maxlag=4) self.teststat = 3.5227498 self.pvalue = .99999 # Stata does not return a p-value for noconstant. # Tau^max in MacKinnon (1994) is missing, so it is # assumed that its right-tail is well-behaved self.critvalues = [-2.587, -1.950, -1.617] # No Unit Root class TestADFConstant2(CheckADF): def __init__(self): self.res1 = adfuller(self.y, regression="c", autolag=None, maxlag=1) self.teststat = -4.3346988 self.pvalue = .00038661 self.critvalues = [-3.476, -2.883, -2.573] class TestADFConstantTrend2(CheckADF): def __init__(self): self.res1 = adfuller(self.y, regression="ct", autolag=None, maxlag=1) self.teststat = -4.425093 self.pvalue = .00199633 self.critvalues = [-4.006, -3.437, -3.137] class TestADFNoConstant2(CheckADF): def __init__(self): self.res1 = adfuller(self.y, regression="nc", autolag=None, maxlag=1) self.teststat = -2.4511596 self.pvalue = 0.013747 # Stata does not return a p-value for noconstant # this value is just taken from our results self.critvalues = [-2.587,-1.950,-1.617] class CheckCorrGram(object): """ Set up for ACF, PACF tests. """ data = macrodata.load() x = data.data['realgdp'] filename = os.path.dirname(os.path.abspath(__file__))+\ "/results/results_corrgram.csv" results = genfromtxt(open(filename, "rb"), delimiter=",", names=True,dtype=float) #not needed: add 1. for lag zero #self.results['acvar'] = np.concatenate(([1.], self.results['acvar'])) class TestACF(CheckCorrGram): """ Test Autocorrelation Function """ def __init__(self): self.acf = self.results['acvar'] #self.acf = np.concatenate(([1.], self.acf)) self.qstat = self.results['Q1'] self.res1 = acf(self.x, nlags=40, qstat=True, alpha=.05) self.confint_res = self.results[['acvar_lb','acvar_ub']].view((float, 2)) def test_acf(self): assert_almost_equal(self.res1[0][1:41], self.acf, DECIMAL_8) def test_confint(self): centered = self.res1[1] - self.res1[1].mean(1)[:,None] assert_almost_equal(centered[1:41], self.confint_res, DECIMAL_8) def test_qstat(self): assert_almost_equal(self.res1[2][:40], self.qstat, DECIMAL_3) # 3 decimal places because of stata rounding # def pvalue(self): # pass #NOTE: shouldn't need testing if Q stat is correct class TestACF_FFT(CheckCorrGram): """ Test Autocorrelation Function using FFT """ def __init__(self): self.acf = self.results['acvarfft'] self.qstat = self.results['Q1'] self.res1 = acf(self.x, nlags=40, qstat=True, fft=True) def test_acf(self): assert_almost_equal(self.res1[0][1:], self.acf, DECIMAL_8) def test_qstat(self): #todo why is res1/qstat 1 short assert_almost_equal(self.res1[1], self.qstat, DECIMAL_3) class TestPACF(CheckCorrGram): def __init__(self): self.pacfols = self.results['PACOLS'] self.pacfyw = self.results['PACYW'] def test_ols(self): pacfols, confint = pacf(self.x, nlags=40, alpha=.05, method="ols") assert_almost_equal(pacfols[1:], self.pacfols, DECIMAL_6) centered = confint - confint.mean(1)[:,None] # from edited Stata ado file res = [[-.1375625, .1375625]] * 40 assert_almost_equal(centered[1:41], res, DECIMAL_6) def test_yw(self): pacfyw = pacf_yw(self.x, nlags=40, method="mle") assert_almost_equal(pacfyw[1:], self.pacfyw, DECIMAL_8) def test_ld(self): pacfyw = pacf_yw(self.x, nlags=40, method="mle") pacfld = pacf(self.x, nlags=40, method="ldb") assert_almost_equal(pacfyw, pacfld, DECIMAL_8) pacfyw = pacf(self.x, nlags=40, method="yw") pacfld = pacf(self.x, nlags=40, method="ldu") assert_almost_equal(pacfyw, pacfld, DECIMAL_8) class CheckCoint(object): """ Test Cointegration Test Results for 2-variable system Test values taken from Stata """ levels = ['1%', '5%', '10%'] data = macrodata.load() y1 = data.data['realcons'] y2 = data.data['realgdp'] def test_tstat(self): assert_almost_equal(self.coint_t,self.teststat, DECIMAL_4) class TestCoint_t(CheckCoint): """ Get AR(1) parameter on residuals """ def __init__(self): self.coint_t = coint(self.y1, self.y2, regression ="c")[0] self.teststat = -1.8208817 def test_grangercausality(): # some example data mdata = macrodata.load().data mdata = mdata[['realgdp','realcons']] data = mdata.view((float,2)) data = np.diff(np.log(data), axis=0) #R: lmtest:grangertest r_result = [0.243097, 0.7844328, 195, 2] #f_test gr = grangercausalitytests(data[:,1::-1], 2, verbose=False) assert_almost_equal(r_result, gr[2][0]['ssr_ftest'], decimal=7) assert_almost_equal(gr[2][0]['params_ftest'], gr[2][0]['ssr_ftest'], decimal=7) def test_pandasacovf(): s = Series(range(1, 11)) assert_almost_equal(acovf(s), acovf(s.values)) def test_acovf2d(): dta = sunspots.load_pandas().data dta.index = Index(dates_from_range('1700', '2008')) del dta["YEAR"] res = acovf(dta) assert_equal(res, acovf(dta.values)) X = np.random.random((10,2)) assert_raises(ValueError, acovf, X) if __name__=="__main__": import nose # nose.runmodule(argv=[__file__, '-vvs','-x','-pdb'], exit=False) import numpy as np np.testing.run_module_suite()
bsd-3-clause
JrtPec/opengrid
opengrid/library/plotting.py
2
6242
# -*- coding: utf-8 -*- """ Created on Wed Nov 26 18:03:24 2014 @author: KDB """ import numpy as np import pandas as pd import datetime as dt import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.dates import date2num, num2date, HourLocator, DayLocator, AutoDateLocator, DateFormatter from matplotlib.colors import LogNorm def carpet(timeseries, **kwargs): """ Draw a carpet plot of a pandas timeseries. The carpet plot reads like a letter. Every day one line is added to the bottom of the figure, minute for minute moving from left (morning) to right (evening). The color denotes the level of consumption and is scaled logarithmically. If vmin and vmax are not provided as inputs, the minimum and maximum of the colorbar represent the minimum and maximum of the (resampled) timeseries. Parameters ---------- timeseries : pandas.Series vmin, vmax : If not None, either or both of these values determine the range of the z axis. If None, the range is given by the minimum and/or maximum of the (resampled) timeseries. zlabel, title : If not None, these determine the labels of z axis and/or title. If None, the name of the timeseries is used if defined. cmap : matplotlib.cm instance, default coolwarm """ # define optional input parameters cmap = kwargs.pop('cmap', cm.coolwarm) norm = kwargs.pop('norm', LogNorm()) interpolation = kwargs.pop('interpolation', 'nearest') cblabel = kwargs.pop('zlabel', timeseries.name if timeseries.name else '') title = kwargs.pop('title', 'carpet plot: ' + timeseries.name if timeseries.name else '') # data preparation if timeseries.dropna().empty: print('skipped {} - no data'.format(title)) return ts = timeseries.resample('min', how='mean', label='left', closed='left') vmin = max(0.1, kwargs.pop('vmin', ts[ts > 0].min())) vmax = max(vmin, kwargs.pop('vmax', ts.quantile(.999))) # convert to dataframe with date as index and time as columns by # first replacing the index by a MultiIndex # tz_convert('UTC'): workaround for https://github.com/matplotlib/matplotlib/issues/3896 mpldatetimes = date2num(ts.index.tz_convert('UTC').astype(dt.datetime)) ts.index = pd.MultiIndex.from_arrays( [np.floor(mpldatetimes), 2 + mpldatetimes % 1]) # '2 +': matplotlib bug workaround. # and then unstacking the second index level to columns df = ts.unstack() # data plotting fig, ax = plt.subplots() # define the extent of the axes (remark the +- 0.5 for the y axis in order to obtain aligned date ticks) extent = [df.columns[0], df.columns[-1], df.index[-1] + 0.5, df.index[0] - 0.5] im = plt.imshow(df, vmin=vmin, vmax=vmax, extent=extent, cmap=cmap, aspect='auto', norm=norm, interpolation=interpolation, **kwargs) # figure formatting # x axis ax.xaxis_date() ax.xaxis.set_major_locator(HourLocator(interval=2)) ax.xaxis.set_major_formatter(DateFormatter('%H:%M')) ax.xaxis.grid(True) plt.xlabel('UTC Time') # y axis ax.yaxis_date() dmin, dmax = ax.yaxis.get_data_interval() number_of_days = (num2date(dmax) - num2date(dmin)).days # AutoDateLocator is not suited in case few data is available if abs(number_of_days) <= 35: ax.yaxis.set_major_locator(DayLocator()) else: ax.yaxis.set_major_locator(AutoDateLocator()) ax.yaxis.set_major_formatter(DateFormatter("%a, %d %b %Y")) # plot colorbar cbticks = np.logspace(np.log10(vmin), np.log10(vmax), 11, endpoint=True) cb = plt.colorbar(format='%.0f', ticks=cbticks) cb.set_label(cblabel) # plot title plt.title(title) return im def fanchart(timeseries, **kwargs): """ Draw a fan chart of the daily consumption profile. The fan chart shows the different quantiles of the daily consumption, with the blue line representing the median, and the black line the average. By default, the consumption of the whole day is taken, but one can select the hours of interest, e.g. night time standby consumption. Parameters ---------- timeseries : pandas.Series start_hour, end_hour : int or float, optional Start and end hours of period of interest, default values are 0, 24 As of now, ensure that start_hour < end_hour ylabel, title : str If not None, these determine the labels of y axis and/or title. If None, the name of the timeseries is used if defined. """ start_hour = 2. + kwargs.pop('start_hour', 0.) / 24. end_hour = 2. + kwargs.pop('end_hour', 24.) / 24. ylabel = kwargs.pop('ylabel', timeseries.name if timeseries.name else '') title = kwargs.pop('title', 'carpet plot: ' + timeseries.name if timeseries.name else '') # data preparation if timeseries.dropna().empty: print('skipped {} - no data'.format(title)) return ts = timeseries.resample('min', how='mean', label='left', closed='left') # convert to dataframe with date as index and time as columns by # first replacing the index by a MultiIndex # tz_convert('UTC'): workaround for https://github.com/matplotlib/matplotlib/issues/3896 mpldatetimes = date2num(ts.index.tz_convert('UTC').astype(dt.datetime)) ts.index = pd.MultiIndex.from_arrays( [np.floor(mpldatetimes), 2 + mpldatetimes % 1]) # '2 +': matplotlib bug workaround. # and then unstacking the second index level to columns df = ts.unstack() df = df.T.truncate(start_hour, end_hour) num = 20 num_max = 4 df_quant = df.quantile(np.linspace(0., 1., 2 * num + 1)) # data plotting fig, ax = plt.subplots() im = plt.plot(df.columns, df_quant.iloc[num], 'b', label='median') for i in range(1, num): plt.fill_between(df.columns, df_quant.iloc[num - i], df_quant.iloc[min(num + i, 2 * num - num_max)], color='b', alpha=0.05) plt.plot(df.columns, df.mean(), 'k--', label='mean') plt.legend() # x axis ax.xaxis_date() plt.xlim(df.columns[0], df.columns[-1]) plt.ylabel(ylabel) # plot title plt.title(title) plt.grid(True) return im
apache-2.0
TNT-Samuel/Coding-Projects
DNS Server/Source - Copy/Lib/site-packages/dask/bag/tests/test_bag.py
2
40727
# coding=utf-8 from __future__ import absolute_import, division, print_function import pytest import math import os import random import sys from collections import Iterator from itertools import repeat import partd from toolz import merge, join, filter, identity, valmap, groupby, pluck import dask import dask.bag as db from dask.bag.core import (Bag, lazify, lazify_task, map, collect, reduceby, reify, partition, inline_singleton_lists, optimize, from_delayed) from dask.bag.utils import assert_eq from dask.compatibility import BZ2File, GzipFile, PY2 from dask.delayed import Delayed from dask.utils import filetexts, tmpfile, tmpdir from dask.utils_test import inc, add dsk = {('x', 0): (range, 5), ('x', 1): (range, 5), ('x', 2): (range, 5)} L = list(range(5)) * 3 b = Bag(dsk, 'x', 3) def iseven(x): return x % 2 == 0 def isodd(x): return x % 2 == 1 def test_Bag(): assert b.name == 'x' assert b.npartitions == 3 def test_keys(): assert b.__dask_keys__() == sorted(dsk.keys()) def test_bag_map(): b = db.from_sequence(range(100), npartitions=10) b2 = db.from_sequence(range(100, 200), npartitions=10) x = b.compute() x2 = b2.compute() def myadd(a=1, b=2, c=3): return a + b + c assert db.map(myadd, b).compute() == list(map(myadd, x)) assert db.map(myadd, a=b).compute() == list(map(myadd, x)) assert db.map(myadd, b, b2).compute() == list(map(myadd, x, x2)) assert db.map(myadd, b, 10).compute() == [myadd(i, 10) for i in x] assert db.map(myadd, 10, b=b).compute() == [myadd(10, b=i) for i in x] sol = [myadd(i, b=j, c=100) for (i, j) in zip(x, x2)] assert db.map(myadd, b, b=b2, c=100).compute() == sol sol = [myadd(i, c=100) for (i, j) in zip(x, x2)] assert db.map(myadd, b, c=100).compute() == sol x_sum = sum(x) sol = [myadd(x_sum, b=i, c=100) for i in x2] assert db.map(myadd, b.sum(), b=b2, c=100).compute() == sol sol = [myadd(i, b=x_sum, c=100) for i in x2] assert db.map(myadd, b2, b.sum(), c=100).compute() == sol sol = [myadd(a=100, b=x_sum, c=i) for i in x2] assert db.map(myadd, a=100, b=b.sum(), c=b2).compute() == sol a = dask.delayed(10) assert db.map(myadd, b, a).compute() == [myadd(i, 10) for i in x] assert db.map(myadd, b, b=a).compute() == [myadd(i, b=10) for i in x] # Mispatched npartitions fewer_parts = db.from_sequence(range(100), npartitions=5) with pytest.raises(ValueError): db.map(myadd, b, fewer_parts) # No bags with pytest.raises(ValueError): db.map(myadd, b.sum(), 1, 2) # Unequal partitioning unequal = db.from_sequence(range(110), npartitions=10) with pytest.raises(ValueError): db.map(myadd, b, unequal, c=b2).compute() with pytest.raises(ValueError): db.map(myadd, b, b=unequal, c=b2).compute() def test_map_method(): b = db.from_sequence(range(100), npartitions=10) b2 = db.from_sequence(range(100, 200), npartitions=10) x = b.compute() x2 = b2.compute() def myadd(a, b=2, c=3): return a + b + c assert b.map(myadd).compute() == list(map(myadd, x)) assert b.map(myadd, b2).compute() == list(map(myadd, x, x2)) assert b.map(myadd, 10).compute() == [myadd(i, 10) for i in x] assert b.map(myadd, b=10).compute() == [myadd(i, b=10) for i in x] assert (b.map(myadd, b2, c=10).compute() == [myadd(i, j, 10) for (i, j) in zip(x, x2)]) x_sum = sum(x) assert (b.map(myadd, b.sum(), c=10).compute() == [myadd(i, x_sum, 10) for i in x]) # check that map works with multiarg functions. Can be removed after # deprecated behavior is removed assert b.map(add, b2).compute() == list(map(add, x, x2)) # check that map works with vararg functions. Can be removed after # deprecated behavior is removed def vararg_inc(*args): return inc(*args) assert_eq(b.map(vararg_inc), list(map(inc, x))) def test_starmap(): data = [(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)] b = db.from_sequence(data, npartitions=2) def myadd(a, b, c=0): return a + b + c assert b.starmap(myadd).compute() == [myadd(*a) for a in data] assert b.starmap(myadd, c=10).compute() == [myadd(*a, c=10) for a in data] max_second = b.pluck(1).max() assert (b.starmap(myadd, c=max_second).compute() == [myadd(*a, c=max_second.compute()) for a in data]) c = dask.delayed(10) assert b.starmap(myadd, c=c).compute() == [myadd(*a, c=10) for a in data] def test_filter(): c = b.filter(iseven) expected = merge(dsk, dict(((c.name, i), (reify, (filter, iseven, (b.name, i)))) for i in range(b.npartitions))) assert c.dask == expected assert c.name == b.filter(iseven).name def test_remove(): f = lambda x: x % 2 == 0 c = b.remove(f) assert list(c) == [1, 3] * 3 assert c.name == b.remove(f).name def test_iter(): assert sorted(list(b)) == sorted(L) assert sorted(list(b.map(inc))) == sorted(list(range(1, 6)) * 3) @pytest.mark.parametrize('func', [str, repr]) def test_repr(func): assert str(b.npartitions) in func(b) assert b.name[:5] in func(b) def test_pluck(): d = {('x', 0): [(1, 10), (2, 20)], ('x', 1): [(3, 30), (4, 40)]} b = Bag(d, 'x', 2) assert set(b.pluck(0)) == set([1, 2, 3, 4]) assert set(b.pluck(1)) == set([10, 20, 30, 40]) assert set(b.pluck([1, 0])) == set([(10, 1), (20, 2), (30, 3), (40, 4)]) assert b.pluck([1, 0]).name == b.pluck([1, 0]).name def test_pluck_with_default(): b = db.from_sequence(['Hello', '', 'World']) pytest.raises(IndexError, lambda: list(b.pluck(0))) assert list(b.pluck(0, None)) == ['H', None, 'W'] assert b.pluck(0, None).name == b.pluck(0, None).name assert b.pluck(0).name != b.pluck(0, None).name def test_unzip(): b = db.from_sequence(range(100)).map(lambda x: (x, x + 1, x + 2)) one, two, three = b.unzip(3) assert list(one) == list(range(100)) assert list(three) == [i + 2 for i in range(100)] assert one.name == b.unzip(3)[0].name assert one.name != two.name def test_fold(): c = b.fold(add) assert c.compute() == sum(L) assert c.key == b.fold(add).key c2 = b.fold(add, initial=10) assert c2.key != c.key assert c2.compute() == sum(L) + 10 * b.npartitions assert c2.key == b.fold(add, initial=10).key c = db.from_sequence(range(5), npartitions=3) def binop(acc, x): acc = acc.copy() acc.add(x) return acc d = c.fold(binop, set.union, initial=set()) assert d.compute() == set(c) assert d.key == c.fold(binop, set.union, initial=set()).key d = db.from_sequence('hello') assert set(d.fold(lambda a, b: ''.join([a, b]), initial='').compute()) == set('hello') e = db.from_sequence([[1], [2], [3]], npartitions=2) assert set(e.fold(add, initial=[]).compute(scheduler='sync')) == set([1, 2, 3]) def test_distinct(): assert sorted(b.distinct()) == [0, 1, 2, 3, 4] assert b.distinct().name == b.distinct().name assert 'distinct' in b.distinct().name assert b.distinct().count().compute() == 5 bag = db.from_sequence([0] * 50, npartitions=50) assert bag.filter(None).distinct().compute() == [] def test_frequencies(): c = b.frequencies() assert dict(c) == {0: 3, 1: 3, 2: 3, 3: 3, 4: 3} c2 = b.frequencies(split_every=2) assert dict(c2) == {0: 3, 1: 3, 2: 3, 3: 3, 4: 3} assert c.name == b.frequencies().name assert c.name != c2.name assert c2.name == b.frequencies(split_every=2).name # test bag with empty partitions b2 = db.from_sequence(range(20), partition_size=2) b2 = b2.filter(lambda x: x < 10) d = b2.frequencies() assert dict(d) == dict(zip(range(10), [1] * 10)) bag = db.from_sequence([0, 0, 0, 0], npartitions=4) bag2 = bag.filter(None).frequencies(split_every=2) assert_eq(bag2, []) def test_topk(): assert list(b.topk(4)) == [4, 4, 4, 3] c = b.topk(4, key=lambda x: -x) assert list(c) == [0, 0, 0, 1] c2 = b.topk(4, key=lambda x: -x, split_every=2) assert list(c2) == [0, 0, 0, 1] assert c.name != c2.name assert b.topk(4).name == b.topk(4).name @pytest.mark.parametrize('npartitions', [1, 2]) def test_topk_with_non_callable_key(npartitions): b = db.from_sequence([(1, 10), (2, 9), (3, 8)], npartitions=npartitions) assert list(b.topk(2, key=1)) == [(1, 10), (2, 9)] assert list(b.topk(2, key=0)) == [(3, 8), (2, 9)] assert b.topk(2, key=1).name == b.topk(2, key=1).name def test_topk_with_multiarg_lambda(): b = db.from_sequence([(1, 10), (2, 9), (3, 8)], npartitions=2) assert list(b.topk(2, key=lambda a, b: b)) == [(1, 10), (2, 9)] def test_lambdas(): assert list(b.map(lambda x: x + 1)) == list(b.map(inc)) def test_reductions(): assert int(b.count()) == 15 assert int(b.sum()) == 30 assert int(b.max()) == 4 assert int(b.min()) == 0 assert b.any().compute() is True assert b.all().compute() is False assert b.all().key == b.all().key assert b.all().key != b.any().key def test_reduction_names(): assert b.sum().name.startswith('sum') assert b.reduction(sum, sum).name.startswith('sum') assert any(isinstance(k, str) and k.startswith('max') for k in b.reduction(sum, max).dask) assert b.reduction(sum, sum, name='foo').name.startswith('foo') def test_tree_reductions(): b = db.from_sequence(range(12)) c = b.reduction(sum, sum, split_every=2) d = b.reduction(sum, sum, split_every=6) e = b.reduction(sum, sum, split_every=5) assert c.compute() == d.compute() == e.compute() assert len(c.dask) > len(d.dask) c = b.sum(split_every=2) d = b.sum(split_every=5) assert c.compute() == d.compute() assert len(c.dask) > len(d.dask) assert c.key != d.key assert c.key == b.sum(split_every=2).key assert c.key != b.sum().key @pytest.mark.parametrize('npartitions', [1, 3, 4]) def test_aggregation(npartitions): L = list(range(15)) b = db.range(15, npartitions=npartitions) assert_eq(b.mean(), sum(L) / len(L)) assert_eq(b.sum(), sum(L)) assert_eq(b.count(), len(L)) @pytest.mark.parametrize('npartitions', [1, 10]) def test_non_splittable_reductions(npartitions): np = pytest.importorskip('numpy') data = list(range(100)) c = db.from_sequence(data, npartitions=npartitions) assert_eq(c.mean(), np.mean(data)) assert_eq(c.std(), np.std(data)) def test_std(): assert_eq(b.std(), math.sqrt(2.0)) assert float(b.std()) == math.sqrt(2.0) def test_var(): assert_eq(b.var(), 2.0) assert float(b.var()) == 2.0 @pytest.mark.parametrize('transform', [ identity, dask.delayed, lambda x: db.from_sequence(x, npartitions=1) ]) def test_join(transform): other = transform([1, 2, 3]) c = b.join(other, on_self=isodd, on_other=iseven) assert_eq(c, list(join(iseven, [1, 2, 3], isodd, list(b)))) assert_eq(b.join(other, isodd), list(join(isodd, [1, 2, 3], isodd, list(b)))) assert c.name == b.join(other, on_self=isodd, on_other=iseven).name def test_foldby(): c = b.foldby(iseven, add, 0, add, 0) assert (reduceby, iseven, add, (b.name, 0), 0) in list(c.dask.values()) assert set(c) == set(reduceby(iseven, lambda acc, x: acc + x, L, 0).items()) assert c.name == b.foldby(iseven, add, 0, add, 0).name c = b.foldby(iseven, lambda acc, x: acc + x) assert set(c) == set(reduceby(iseven, lambda acc, x: acc + x, L, 0).items()) def test_foldby_tree_reduction(): dsk = list() for n in [1, 7, 32]: b = db.from_sequence(range(100), npartitions=n) c = b.foldby(iseven, add) dsk += [c] for m in [False, None, 2, 3]: d = b.foldby(iseven, add, split_every=m) e = b.foldby(iseven, add, 0, split_every=m) f = b.foldby(iseven, add, 0, add, split_every=m) g = b.foldby(iseven, add, 0, add, 0, split_every=m) dsk += [d,e,f,g] results = dask.compute(dsk) first = results[0] assert all([r == first for r in results]) def test_map_partitions(): assert list(b.map_partitions(len)) == [5, 5, 5] assert b.map_partitions(len).name == b.map_partitions(len).name assert b.map_partitions(lambda a: len(a) + 1).name != b.map_partitions(len).name def test_map_partitions_args_kwargs(): x = [random.randint(-100, 100) for i in range(100)] y = [random.randint(-100, 100) for i in range(100)] dx = db.from_sequence(x, npartitions=10) dy = db.from_sequence(y, npartitions=10) def maximum(x, y=0): y = repeat(y) if isinstance(y, int) else y return [max(a, b) for (a, b) in zip(x, y)] sol = maximum(x, y=10) assert db.map_partitions(maximum, dx, y=10).compute() == sol assert dx.map_partitions(maximum, y=10).compute() == sol assert dx.map_partitions(maximum, 10).compute() == sol sol = maximum(x, y) assert db.map_partitions(maximum, dx, dy).compute() == sol assert dx.map_partitions(maximum, y=dy).compute() == sol assert dx.map_partitions(maximum, dy).compute() == sol dy_mean = dy.mean().apply(int) sol = maximum(x, int(sum(y) / len(y))) assert dx.map_partitions(maximum, y=dy_mean).compute() == sol assert dx.map_partitions(maximum, dy_mean).compute() == sol dy_mean = dask.delayed(dy_mean) assert dx.map_partitions(maximum, y=dy_mean).compute() == sol assert dx.map_partitions(maximum, dy_mean).compute() == sol def test_random_sample_size(): """ Number of randomly sampled elements are in the expected range. """ a = db.from_sequence(range(1000), npartitions=5) # we expect a size of approx. 100, but leave large margins to avoid # random failures assert 10 < len(list(a.random_sample(0.1, 42))) < 300 def test_random_sample_prob_range(): """ Specifying probabilities outside the range [0, 1] raises ValueError. """ a = db.from_sequence(range(50), npartitions=5) with pytest.raises(ValueError): a.random_sample(-1) with pytest.raises(ValueError): a.random_sample(1.1) def test_random_sample_repeated_computation(): """ Repeated computation of a defined random sampling operation generates identical results. """ a = db.from_sequence(range(50), npartitions=5) b = a.random_sample(0.2) assert list(b) == list(b) # computation happens here def test_random_sample_different_definitions(): """ Repeatedly defining a random sampling operation yields different results upon computation if no random seed is specified. """ a = db.from_sequence(range(50), npartitions=5) assert list(a.random_sample(0.5)) != list(a.random_sample(0.5)) assert a.random_sample(0.5).name != a.random_sample(0.5).name def test_random_sample_random_state(): """ Sampling with fixed random seed generates identical results. """ a = db.from_sequence(range(50), npartitions=5) b = a.random_sample(0.5, 1234) c = a.random_sample(0.5, 1234) assert list(b) == list(c) def test_lazify_task(): task = (sum, (reify, (map, inc, [1, 2, 3]))) assert lazify_task(task) == (sum, (map, inc, [1, 2, 3])) task = (reify, (map, inc, [1, 2, 3])) assert lazify_task(task) == task a = (reify, (map, inc, (reify, (filter, iseven, 'y')))) b = (reify, (map, inc, (filter, iseven, 'y'))) assert lazify_task(a) == b f = lambda x: x def test_lazify(): a = {'x': (reify, (map, inc, (reify, (filter, iseven, 'y')))), 'a': (f, 'x'), 'b': (f, 'x')} b = {'x': (reify, (map, inc, (filter, iseven, 'y'))), 'a': (f, 'x'), 'b': (f, 'x')} assert lazify(a) == b def test_inline_singleton_lists(): inp = {'b': (list, 'a'), 'c': (f, 'b', 1)} out = {'c': (f, (list, 'a'), 1)} assert inline_singleton_lists(inp) == out out = {'c': (f, 'a', 1)} assert optimize(inp, ['c'], rename_fused_keys=False) == out inp = {'b': (list, 'a'), 'c': (f, 'b', 1), 'd': (f, 'b', 2)} assert inline_singleton_lists(inp) == inp inp = {'b': (4, 5)} # doesn't inline constants assert inline_singleton_lists(inp) == inp def test_take(): assert list(b.take(2)) == [0, 1] assert b.take(2) == (0, 1) assert isinstance(b.take(2, compute=False), Bag) def test_take_npartitions(): assert list(b.take(6, npartitions=2)) == [0, 1, 2, 3, 4, 0] assert b.take(6, npartitions=-1) == (0, 1, 2, 3, 4, 0) assert b.take(3, npartitions=-1) == (0, 1, 2) with pytest.raises(ValueError): b.take(1, npartitions=5) def test_take_npartitions_warn(): # Use single-threaded scheduler so warnings are properly captured in the # same process with dask.config.set(scheduler='sync'): with pytest.warns(UserWarning): b.take(100) with pytest.warns(UserWarning): b.take(7) with pytest.warns(None) as rec: b.take(7, npartitions=2) assert len(rec) == 0 with pytest.warns(None) as rec: b.take(7, warn=False) assert len(rec) == 0 def test_map_is_lazy(): from dask.bag.core import map assert isinstance(map(lambda x: x, [1, 2, 3]), Iterator) def test_can_use_dict_to_make_concrete(): assert isinstance(dict(b.frequencies()), dict) @pytest.mark.slow @pytest.mark.network @pytest.mark.skip(reason="Hangs") def test_from_url(): a = db.from_url(['http://google.com', 'http://github.com']) assert a.npartitions == 2 b = db.from_url('http://raw.githubusercontent.com/dask/dask/master/README.rst') assert b.npartitions == 1 assert b'Dask\n' in b.take(10) def test_read_text(): with filetexts({'a1.log': 'A\nB', 'a2.log': 'C\nD'}) as fns: assert (set(line.strip() for line in db.read_text(fns)) == set('ABCD')) assert (set(line.strip() for line in db.read_text('a*.log')) == set('ABCD')) pytest.raises(ValueError, lambda: db.read_text('non-existent-*-path')) def test_read_text_large(): with tmpfile() as fn: with open(fn, 'wb') as f: f.write(('Hello, world!' + os.linesep).encode() * 100) b = db.read_text(fn, blocksize=100) c = db.read_text(fn) assert len(b.dask) > 5 assert list(map(str, b.str.strip())) == list(map(str, c.str.strip())) d = db.read_text([fn], blocksize=100) assert list(b) == list(d) def test_read_text_encoding(): with tmpfile() as fn: with open(fn, 'wb') as f: f.write((u'你好!' + os.linesep).encode('gb18030') * 100) b = db.read_text(fn, blocksize=100, encoding='gb18030') c = db.read_text(fn, encoding='gb18030') assert len(b.dask) > 5 assert (list(b.str.strip().map(lambda x: x.encode('utf-8'))) == list(c.str.strip().map(lambda x: x.encode('utf-8')))) d = db.read_text([fn], blocksize=100, encoding='gb18030') assert list(b) == list(d) def test_read_text_large_gzip(): with tmpfile('gz') as fn: f = GzipFile(fn, 'wb') f.write(b'Hello, world!\n' * 100) f.close() with pytest.raises(ValueError): db.read_text(fn, blocksize=50, linedelimiter='\n') c = db.read_text(fn) assert c.npartitions == 1 @pytest.mark.slow @pytest.mark.network def test_from_s3(): # note we don't test connection modes with aws_access_key and # aws_secret_key because these are not on travis-ci pytest.importorskip('s3fs') five_tips = (u'total_bill,tip,sex,smoker,day,time,size\n', u'16.99,1.01,Female,No,Sun,Dinner,2\n', u'10.34,1.66,Male,No,Sun,Dinner,3\n', u'21.01,3.5,Male,No,Sun,Dinner,3\n', u'23.68,3.31,Male,No,Sun,Dinner,2\n') # test compressed data e = db.read_text('s3://tip-data/t*.gz', storage_options=dict(anon=True)) assert e.take(5) == five_tips # test multiple keys in bucket c = db.read_text(['s3://tip-data/tips.gz', 's3://tip-data/tips.json', 's3://tip-data/tips.csv'], storage_options=dict(anon=True)) assert c.npartitions == 3 def test_from_sequence(): b = db.from_sequence([1, 2, 3, 4, 5], npartitions=3) assert len(b.dask) == 3 assert set(b) == set([1, 2, 3, 4, 5]) def test_from_long_sequence(): L = list(range(1001)) b = db.from_sequence(L) assert set(b) == set(L) def test_product(): b2 = b.product(b) assert b2.npartitions == b.npartitions**2 assert set(b2) == set([(i, j) for i in L for j in L]) x = db.from_sequence([1, 2, 3, 4]) y = db.from_sequence([10, 20, 30]) z = x.product(y) assert set(z) == set([(i, j) for i in [1, 2, 3, 4] for j in [10, 20, 30]]) assert z.name != b2.name assert z.name == x.product(y).name def test_partition_collect(): with partd.Pickle() as p: partition(identity, range(6), 3, p) assert set(p.get(0)) == set([0, 3]) assert set(p.get(1)) == set([1, 4]) assert set(p.get(2)) == set([2, 5]) assert sorted(collect(identity, 0, p, '')) == [(0, [0]), (3, [3])] def test_groupby(): c = b.groupby(identity) result = dict(c) assert result == {0: [0, 0 ,0], 1: [1, 1, 1], 2: [2, 2, 2], 3: [3, 3, 3], 4: [4, 4, 4]} assert c.npartitions == b.npartitions assert c.name == b.groupby(identity).name assert c.name != b.groupby(lambda x: x + 1).name def test_groupby_with_indexer(): b = db.from_sequence([[1, 2, 3], [1, 4, 9], [2, 3, 4]]) result = dict(b.groupby(0)) assert valmap(sorted, result) == {1: [[1, 2, 3], [1, 4, 9]], 2: [[2, 3, 4]]} def test_groupby_with_npartitions_changed(): result = b.groupby(lambda x: x, npartitions=1) result2 = dict(result) assert result2 == {0: [0, 0 ,0], 1: [1, 1, 1], 2: [2, 2, 2], 3: [3, 3, 3], 4: [4, 4, 4]} assert result.npartitions == 1 def test_concat(): a = db.from_sequence([1, 2, 3]) b = db.from_sequence([4, 5, 6]) c = db.concat([a, b]) assert list(c) == [1, 2, 3, 4, 5, 6] assert c.name == db.concat([a, b]).name def test_flatten(): b = db.from_sequence([[1], [2, 3]]) assert list(b.flatten()) == [1, 2, 3] assert b.flatten().name == b.flatten().name def test_concat_after_map(): a = db.from_sequence([1, 2]) b = db.from_sequence([4, 5]) result = db.concat([a.map(inc), b]) assert list(result) == [2, 3, 4, 5] def test_args(): c = b.map(lambda x: x + 1) d = Bag(*c._args) assert list(c) == list(d) assert c.npartitions == d.npartitions def test_to_dataframe(): dd = pytest.importorskip('dask.dataframe') pd = pytest.importorskip('pandas') def check_parts(df, sol): assert all((p.dtypes == sol.dtypes).all() for p in dask.compute(*df.to_delayed())) dsk = {('test', 0): [(1, 2)], ('test', 1): [], ('test', 2): [(10, 20), (100, 200)]} b = Bag(dsk, 'test', 3) sol = pd.DataFrame(b.compute(), columns=['a', 'b']) # Elements are tuples df = b.to_dataframe() dd.utils.assert_eq(df, sol.rename(columns={'a': 0, 'b': 1}), check_index=False) df = b.to_dataframe(columns=['a', 'b']) dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) df = b.to_dataframe(meta=[('a', 'i8'), ('b', 'i8')]) dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) # Elements are dictionaries b = b.map(lambda x: dict(zip(['a', 'b'], x))) df = b.to_dataframe() dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) assert df._name == b.to_dataframe()._name # With metadata specified for meta in [sol, [('a', 'i8'), ('b', 'i8')]]: df = b.to_dataframe(meta=meta) dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) # Error to specify both columns and meta with pytest.raises(ValueError): b.to_dataframe(columns=['a', 'b'], meta=sol) # Inference fails if empty first partition b2 = b.filter(lambda x: x['a'] > 200) with pytest.raises(ValueError): b2.to_dataframe() # Single column b = b.pluck('a') sol = sol[['a']] df = b.to_dataframe(meta=sol) dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) # Works with iterators and tuples sol = pd.DataFrame({'a': range(100)}) b = db.from_sequence(range(100), npartitions=5) for f in [iter, tuple]: df = b.map_partitions(f).to_dataframe(meta=sol) dd.utils.assert_eq(df, sol, check_index=False) check_parts(df, sol) ext_open = [('gz', GzipFile), ('', open)] if not PY2: ext_open.append(('bz2', BZ2File)) @pytest.mark.parametrize('ext,myopen', ext_open) def test_to_textfiles(ext, myopen): b = db.from_sequence(['abc', '123', 'xyz'], npartitions=2) with tmpdir() as dir: c = b.to_textfiles(os.path.join(dir, '*.' + ext), compute=False) dask.compute(*c, scheduler='sync') assert os.path.exists(os.path.join(dir, '1.' + ext)) f = myopen(os.path.join(dir, '1.' + ext), 'rb') text = f.read() if hasattr(text, 'decode'): text = text.decode() assert 'xyz' in text f.close() def test_to_textfiles_name_function_preserves_order(): seq = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p'] b = db.from_sequence(seq, npartitions=16) with tmpdir() as dn: b.to_textfiles(dn) out = db.read_text(os.path.join(dn, "*"), encoding='ascii').map(str).map(str.strip).compute() assert seq == out @pytest.mark.skipif(sys.version_info[:2] == (3,3), reason="Python3.3 uses pytest2.7.2, w/o warns method") def test_to_textfiles_name_function_warn(): seq = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p'] a = db.from_sequence(seq, npartitions=16) with tmpdir() as dn: with pytest.warns(None): a.to_textfiles(dn, name_function=str) def test_to_textfiles_encoding(): b = db.from_sequence([u'汽车', u'苹果', u'天气'], npartitions=2) for ext, myopen in [('gz', GzipFile), ('bz2', BZ2File), ('', open)]: if ext == 'bz2' and PY2: continue with tmpdir() as dir: c = b.to_textfiles(os.path.join(dir, '*.' + ext), encoding='gb18030', compute=False) dask.compute(*c) assert os.path.exists(os.path.join(dir, '1.' + ext)) f = myopen(os.path.join(dir, '1.' + ext), 'rb') text = f.read() if hasattr(text, 'decode'): text = text.decode('gb18030') assert u'天气' in text f.close() def test_to_textfiles_inputs(): B = db.from_sequence(['abc', '123', 'xyz'], npartitions=2) with tmpfile() as a: with tmpfile() as b: B.to_textfiles([a, b]) assert os.path.exists(a) assert os.path.exists(b) with tmpdir() as dirname: B.to_textfiles(dirname) assert os.path.exists(dirname) assert os.path.exists(os.path.join(dirname, '0.part')) with pytest.raises(TypeError): B.to_textfiles(5) def test_to_textfiles_endlines(): b = db.from_sequence(['a', 'b', 'c'], npartitions=1) with tmpfile() as fn: for last_endline in False, True: b.to_textfiles([fn], last_endline=last_endline) with open(fn, 'r') as f: result = f.readlines() assert result == ['a\n', 'b\n', 'c\n' if last_endline else 'c'] def test_string_namespace(): b = db.from_sequence(['Alice Smith', 'Bob Jones', 'Charlie Smith'], npartitions=2) assert 'split' in dir(b.str) assert 'match' in dir(b.str) assert list(b.str.lower()) == ['alice smith', 'bob jones', 'charlie smith'] assert list(b.str.split(' ')) == [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] assert list(b.str.match('*Smith')) == ['Alice Smith', 'Charlie Smith'] pytest.raises(AttributeError, lambda: b.str.sfohsofhf) assert b.str.match('*Smith').name == b.str.match('*Smith').name assert b.str.match('*Smith').name != b.str.match('*John').name def test_string_namespace_with_unicode(): b = db.from_sequence([u'Alice Smith', u'Bob Jones', 'Charlie Smith'], npartitions=2) assert list(b.str.lower()) == ['alice smith', 'bob jones', 'charlie smith'] def test_str_empty_split(): b = db.from_sequence([u'Alice Smith', u'Bob Jones', 'Charlie Smith'], npartitions=2) assert list(b.str.split()) == [['Alice', 'Smith'], ['Bob', 'Jones'], ['Charlie', 'Smith']] def test_map_with_iterator_function(): b = db.from_sequence([[1, 2, 3], [4, 5, 6]], npartitions=2) def f(L): for x in L: yield x + 1 c = b.map(f) assert list(c) == [[2, 3, 4], [5, 6, 7]] def test_ensure_compute_output_is_concrete(): b = db.from_sequence([1, 2, 3]) result = b.map(lambda x: x + 1).compute() assert not isinstance(result, Iterator) class BagOfDicts(db.Bag): def get(self, key, default=None): return self.map(lambda d: d.get(key, default)) def set(self, key, value): def setter(d): d[key] = value return d return self.map(setter) def test_bag_class_extend(): dictbag = BagOfDicts(*db.from_sequence([{'a': {'b': 'c'}}])._args) assert dictbag.get('a').get('b').compute()[0] == 'c' assert dictbag.get('a').set('d', 'EXTENSIBILITY!!!').compute()[0] == \ {'b': 'c', 'd': 'EXTENSIBILITY!!!'} assert isinstance(dictbag.get('a').get('b'), BagOfDicts) def test_gh715(): bin_data = u'\u20ac'.encode('utf-8') with tmpfile() as fn: with open(fn, 'wb') as f: f.write(bin_data) a = db.read_text(fn) assert a.compute()[0] == bin_data.decode('utf-8') def test_bag_compute_forward_kwargs(): x = db.from_sequence([1, 2, 3]).map(lambda a: a + 1) x.compute(bogus_keyword=10) def test_to_delayed(): b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=3) a, b, c = b.map(inc).to_delayed() assert all(isinstance(x, Delayed) for x in [a, b, c]) assert b.compute() == [4, 5] b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=3) t = b.sum().to_delayed() assert isinstance(t, Delayed) assert t.compute() == 21 def test_to_delayed_optimize_graph(): b = db.from_sequence([1, 2, 3, 4, 5, 6], npartitions=1) b2 = b.map(inc).map(inc).map(inc) [d] = b2.to_delayed() text = str(dict(d.dask)) assert text.count('reify') == 1 [d2] = b2.to_delayed(optimize_graph=False) assert dict(d2.dask) == dict(b2.dask) assert d.compute() == d2.compute() x = b2.sum() d = x.to_delayed() text = str(dict(d.dask)) assert text.count('reify') == 0 d2 = x.to_delayed(optimize_graph=False) assert dict(d2.dask) == dict(x.dask) assert d.compute() == d2.compute() [d] = b2.to_textfiles('foo.txt', compute=False) text = str(dict(d.dask)) assert text.count('reify') <= 0 def test_from_delayed(): from dask.delayed import delayed a, b, c = delayed([1, 2, 3]), delayed([4, 5, 6]), delayed([7, 8, 9]) bb = from_delayed([a, b, c]) assert bb.name == from_delayed([a, b, c]).name assert isinstance(bb, Bag) assert list(bb) == [1, 2, 3, 4, 5, 6, 7, 8, 9] asum_value = delayed(lambda X: sum(X))(a) asum_item = db.Item.from_delayed(asum_value) assert asum_value.compute() == asum_item.compute() == 6 def test_from_delayed_iterator(): from dask.delayed import delayed def lazy_records(n): return ({'operations': [1, 2]} for _ in range(n)) delayed_records = delayed(lazy_records, pure=False) bag = db.from_delayed([delayed_records(5) for _ in range(5)]) assert db.compute( bag.count(), bag.pluck('operations').count(), bag.pluck('operations').flatten().count(), scheduler='sync', ) == (25, 25, 50) def test_range(): for npartitions in [1, 7, 10, 28]: b = db.range(100, npartitions=npartitions) assert len(b.dask) == npartitions assert b.npartitions == npartitions assert list(b) == list(range(100)) @pytest.mark.parametrize("npartitions", [1, 7, 10, 28]) def test_zip(npartitions, hi=1000): evens = db.from_sequence(range(0, hi, 2), npartitions=npartitions) odds = db.from_sequence(range(1, hi, 2), npartitions=npartitions) pairs = db.zip(evens, odds) assert pairs.npartitions == npartitions assert list(pairs) == list(zip(range(0, hi, 2), range(1, hi, 2))) @pytest.mark.parametrize('nin', [1, 2, 7, 11, 23]) @pytest.mark.parametrize('nout', [1, 2, 5, 12, 23]) def test_repartition(nin, nout): b = db.from_sequence(range(100), npartitions=nin) c = b.repartition(npartitions=nout) assert c.npartitions == nout assert_eq(b, c) results = dask.get(c.dask, c.__dask_keys__()) assert all(results) def test_repartition_names(): b = db.from_sequence(range(100), npartitions=5) c = b.repartition(2) assert b.name != c.name d = b.repartition(20) assert b.name != c.name assert c.name != d.name c = b.repartition(5) assert b is c @pytest.mark.skipif('not db.core._implement_accumulate') def test_accumulate(): parts = [[1, 2, 3], [4, 5], [], [6, 7]] dsk = dict((('test', i), p) for (i, p) in enumerate(parts)) b = db.Bag(dsk, 'test', len(parts)) r = b.accumulate(add) assert r.name == b.accumulate(add).name assert r.name != b.accumulate(add, -1).name assert r.compute() == [1, 3, 6, 10, 15, 21, 28] assert b.accumulate(add, -1).compute() == [-1, 0, 2, 5, 9, 14, 20, 27] assert b.accumulate(add).map(inc).compute() == [2, 4, 7, 11, 16, 22, 29] b = db.from_sequence([1, 2, 3], npartitions=1) assert b.accumulate(add).compute() == [1, 3, 6] def test_groupby_tasks(): b = db.from_sequence(range(160), npartitions=4) out = b.groupby(lambda x: x % 10, max_branch=4, shuffle='tasks') partitions = dask.get(out.dask, out.__dask_keys__()) for a in partitions: for b in partitions: if a is not b: assert not set(pluck(0, a)) & set(pluck(0, b)) b = db.from_sequence(range(1000), npartitions=100) out = b.groupby(lambda x: x % 123, shuffle='tasks') assert len(out.dask) < 100**2 partitions = dask.get(out.dask, out.__dask_keys__()) for a in partitions: for b in partitions: if a is not b: assert not set(pluck(0, a)) & set(pluck(0, b)) b = db.from_sequence(range(10000), npartitions=345) out = b.groupby(lambda x: x % 2834, max_branch=24, shuffle='tasks') partitions = dask.get(out.dask, out.__dask_keys__()) for a in partitions: for b in partitions: if a is not b: assert not set(pluck(0, a)) & set(pluck(0, b)) def test_groupby_tasks_names(): b = db.from_sequence(range(160), npartitions=4) func = lambda x: x % 10 func2 = lambda x: x % 20 assert (set(b.groupby(func, max_branch=4, shuffle='tasks').dask) == set(b.groupby(func, max_branch=4, shuffle='tasks').dask)) assert (set(b.groupby(func, max_branch=4, shuffle='tasks').dask) != set(b.groupby(func, max_branch=2, shuffle='tasks').dask)) assert (set(b.groupby(func, max_branch=4, shuffle='tasks').dask) != set(b.groupby(func2, max_branch=4, shuffle='tasks').dask)) @pytest.mark.parametrize('size,npartitions,groups', [(1000, 20, 100), (12345, 234, 1042)]) def test_groupby_tasks_2(size, npartitions, groups): func = lambda x: x % groups b = db.range(size, npartitions=npartitions).groupby(func, shuffle='tasks') result = b.compute(scheduler='sync') assert dict(result) == groupby(func, range(size)) def test_groupby_tasks_3(): func = lambda x: x % 10 b = db.range(20, npartitions=5).groupby(func, shuffle='tasks', max_branch=2) result = b.compute(scheduler='sync') assert dict(result) == groupby(func, range(20)) # assert b.npartitions == 5 def test_to_textfiles_empty_partitions(): with tmpdir() as d: b = db.range(5, npartitions=5).filter(lambda x: x == 1).map(str) b.to_textfiles(os.path.join(d, '*.txt')) assert len(os.listdir(d)) == 5 def test_reduction_empty(): b = db.from_sequence(range(10), npartitions=100) assert_eq(b.filter(lambda x: x % 2 == 0).max(), 8) assert_eq(b.filter(lambda x: x % 2 == 0).min(), 0) @pytest.mark.parametrize('npartitions', [1, 2, 4]) def test_reduction_empty_aggregate(npartitions): b = db.from_sequence([0, 0, 0, 1], npartitions=npartitions).filter(None) assert_eq(b.min(split_every=2), 1) vals = db.compute(b.min(split_every=2), b.max(split_every=2), scheduler='sync') assert vals == (1, 1) with pytest.raises(ValueError): b = db.from_sequence([0, 0, 0, 0], npartitions=npartitions) b.filter(None).min(split_every=2).compute(scheduler='sync') class StrictReal(int): def __eq__(self, other): assert isinstance(other, StrictReal) return self.real == other.real def __ne__(self, other): assert isinstance(other, StrictReal) return self.real != other.real def test_reduction_with_non_comparable_objects(): b = db.from_sequence([StrictReal(x) for x in range(10)], partition_size=2) assert_eq(b.fold(max, max), StrictReal(9)) def test_reduction_with_sparse_matrices(): sp = pytest.importorskip('scipy.sparse') b = db.from_sequence([sp.csr_matrix([0]) for x in range(4)], partition_size=2) def sp_reduce(a, b): return sp.vstack([a, b]) assert b.fold(sp_reduce, sp_reduce).compute(scheduler='sync').shape == (4, 1) def test_empty(): list(db.from_sequence([])) == [] def test_bag_picklable(): from pickle import loads, dumps b = db.from_sequence(range(100)) b2 = loads(dumps(b)) assert b.compute() == b2.compute() s = b.sum() s2 = loads(dumps(s)) assert s.compute() == s2.compute() def test_msgpack_unicode(): b = db.from_sequence([{"a": 1}]).groupby("a") result = b.compute(scheduler='sync') assert dict(result) == {1: [{'a': 1}]} def test_bag_with_single_callable(): f = lambda: None b = db.from_sequence([f]) assert_eq(b, [f]) def test_optimize_fuse_keys(): x = db.range(10, npartitions=2) y = x.map(inc) z = y.map(inc) dsk = z.__dask_optimize__(z.dask, z.__dask_keys__()) assert not set(y.dask) & set(dsk) dsk = z.__dask_optimize__(z.dask, z.__dask_keys__(), fuse_keys=y.__dask_keys__()) assert all(k in dsk for k in y.__dask_keys__()) def test_reductions_are_lazy(): current = [None] def part(): for i in range(10): current[0] = i yield i def func(part): assert current[0] == 0 return sum(part) b = Bag({('foo', 0): part()}, 'foo', 1) res = b.reduction(func, sum) assert_eq(res, sum(range(10))) def test_repeated_groupby(): b = db.range(10, npartitions=4) c = b.groupby(lambda x: x % 3) assert valmap(len, dict(c)) == valmap(len, dict(c)) def test_temporary_directory(tmpdir): b = db.range(10, npartitions=4) with dask.config.set(temporary_directory=str(tmpdir)): b2 = b.groupby(lambda x: x % 2) b2.compute() assert any(fn.endswith('.partd') for fn in os.listdir(str(tmpdir))) def test_empty_bag(): b = db.from_sequence([]) assert_eq(b.map(inc).all(), True) assert_eq(b.map(inc).any(), False) assert_eq(b.map(inc).sum(), False) assert_eq(b.map(inc).count(), False) def test_bag_paths(): b = db.from_sequence(['abc', '123', 'xyz'], npartitions=2) assert b.to_textfiles('foo*') == ['foo0', 'foo1'] os.remove('foo0') os.remove('foo1')
gpl-3.0
walterreade/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
mattgiguere/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
258
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
petebachant/daqmx
examples/experiment_run.py
1
3389
# -*- coding: utf-8 -*- """ Created on Tue May 21 21:06:37 2013 @author: Pete This program commands a National Instruments counter output device to send a pulse after a target position (read from the ACS controller) is reached. """ import daqmx import acsc import time import numpy as np import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt def main(): taskhandle = daqmx.TaskHandle() daqmx.CreateTask("", taskhandle) phys_chan = "cDAQ9188-16D66BBMod3/ctr2" globalchan = "VecPulse" #Timing parameters rate = 200 # Pulse rate in Hz initialdelay = 0 lowtime = 1/rate/2 hightime = 1/rate/2 # daqmx.CreateCOPulseChanTime(taskhandle, phys_chan, "", daqmx.Val_Seconds, # daqmx.Val_Low, initialdelay, lowtime, hightime, # False) daqmx.AddGlobalChansToTask(taskhandle, globalchan) daqmx.CfgImplicitTiming(taskhandle, daqmx.Val_FiniteSamps, 1) # Set up communication with motion controller simulator = False # Parameters for plotting plotting = False plot_dynamic = False if simulator == True: hcomm = acsc.OpenCommDirect() else: hcomm = acsc.OpenCommEthernetTCP("10.0.0.100", 701) axis = 5 buffno = 7 target = 0 timeout = 10 # Initialize arrays for storing time and position t = np.array(0) x = np.array(0) if plotting == True and plot_dynamic == True: plt.ioff() fig = plt.figure() ax = fig.add_subplot(111) # plt.xlim(0, timeout) # plt.ylim(0, target) line, = ax.plot([], []) fig.show() if hcomm == acsc.INVALID: print "Cannot connect to controller. Error:", acsc.GetLastError() else: # acsc.Enable(hcomm, axis) rpos = acsc.GetRPosition(hcomm, axis) x = rpos t0 = time.time() if simulator == True: acsc.ToPoint(hcomm, 0, axis, target+50000) else: acsc.RunBuffer(hcomm, buffno, None, None) while True: rpos = acsc.GetRPosition(hcomm, axis) if rpos >= target: break x = np.append(x, rpos) t = np.append(t, time.time() - t0) if plotting == True and plot_dynamic == True: line.set_xdata(t) line.set_ydata(x) ax.relim() ax.autoscale_view() fig.canvas.draw() print "Axis is", acsc.GetAxisState(hcomm, axis)+'...' if time.time() - t0 > timeout: print "Motion timeout" print "Final axis position:", rpos break time.sleep(0.001) print "Target reached. Sending trigger pulse to", globalchan + "..." daqmx.StartTask(taskhandle, fatalerror=False) daqmx.WaitUntilTaskDone(taskhandle, timeout=10, fatalerror=False) daqmx.ClearTask(taskhandle, fatalerror=False) acsc.CloseComm(hcomm) print "Triggered at", np.max(x) if plotting == True: if plot_dynamic == False: plt.plot(t, x) plt.show() return t, x if __name__ == "__main__": t, x = main()
gpl-2.0
tacodog1/tdameritrade
tdapi.py
1
27387
from __future__ import unicode_literals import datetime import base64 import http.client import urllib.request, urllib.parse, urllib.error import getpass import binascii import time import array import string import math, types from struct import pack, unpack from xml.etree import ElementTree import logging import pandas class StockQuote(): symbol = None description = None bid = None ask = None bidAskSize = None last = None lastTradeSize = None lastTradeDate = None openPrice = None highPrice = None lowPrice = None closePrice = None volume = None yearHigh = None yearLow = None realTime = None exchange = None assetType = None change = None changePercent = None def __init__(self, elementTree): i = elementTree self.symbol = i.findall('symbol')[0].text self.description = i.findall('description')[0].text self.bid = float(i.findall('bid')[0].text) self.ask = float(i.findall('ask')[0].text) self.bidAskSize = i.findall('bid-ask-size')[0].text self.last = float(i.findall('last')[0].text) self.lastTradeSize = i.findall('last-trade-size')[0].text self.lastTradeDate = i.findall('last-trade-date')[0].text self.openPrice = float(i.findall('open')[0].text) self.highPrice = float(i.findall('high')[0].text) self.lowPrice = float(i.findall('low')[0].text) self.closePrice = float(i.findall('close')[0].text) self.volume = float(i.findall('volume')[0].text) self.yearHigh = float(i.findall('year-high')[0].text) self.yearLow = float(i.findall('year-low')[0].text) self.realTime = i.findall('real-time')[0].text self.exchange = i.findall('exchange')[0].text self.assetType = i.findall('asset-type')[0].text self.change = float(i.findall('change')[0].text) self.changePercent = i.findall('change-percent')[0].text def __str__(self): s = '' for key in dir(self): if key[0] != '_': s += '%s: %s\n' % (key, getattr(self, key)) return s class OptionChainElement(): quoteDateTime = None # Option Date Length - Short - 2 # Option Date - String - Variable optionDate = None # Expiration Type Length - Short - 2 # Expiration Type - String - Variable (R for Regular, L for LEAP) expirationType = None # Strike Price - Double - 8 strike = None # Standard Option Flag - Byte - 1 (1 = true, 0 = false) standardOptionFlag = None # Put/Call Indicator - Char - 2 (P or C in unicode) pcIndicator = None # Option Symbol Length - Short - 2 # Option Symbol - String - Variable optionSymbol = None # Option Description Length - Short - 2 # Option Description - String - Variable optionDescription = None # Bid - Double - 8 bid = None # Ask - Double - 8 ask = None # Bid/Ask Size Length - Short - 2 # Bid/Ask Size - String - Variable baSize = None # Last - Double - 8 last = None # Last Trade Size Length - Short - 2 # Last Trade Size - String - Variable lastTradeSize = None # Last Trade Date Length - short - 2 # Last Trade Date - String - Variable lastTradeDate = None # Volume - Long - 8 volume = None # Open Interest - Integer - 4 openInterest = None # RT Quote Flag - Byte - 1 (1=true, 0=false) rtQuoteFlag = None # Underlying Symbol length - Short 2 # Underlying Symbol - String - Variable underlyingSymbol = None # Delta - Double- 8 # Gamma - Double - 8 # Theta - Double - 8 # Vega - Double - 8 # Rho - Double - 8 delta = None gamma = None theta = None vega = None rho = None # Implied Volatility - Double - 8 impliedVolatility = None # Time Value Index - Double - 8 timeValueIndex = None # Multiplier - Double - 8 multiplier = None # Change - Double - 8 change = None # Change Percentage - Double - 8 changePercentage = None # ITM Flag - Byte - 1 (1 = true, 0 = false) itmFlag = None # NTM Flag - Byte - 1 (1 = true, 0 = false) ntmFlag = None # Theoretical value - Double - 8 theoreticalValue = None # Deliverable Note Length - Short - 2 # Deliverable Note - String - Variable deliverableNote = None # CIL Dollar Amount - Double - 8 cilDollarAmoubt = None # OP Cash Dollar Amount - Double - 8 opCashDollarAmount = None # Index Option Flag - Byte - 1 (1 = true, 0 = false) indexOptionFlag = None # Number of Deliverables - Integer - 4 deliverables = [] # (symbol, shares) # REPEATING block for each Deliverable # Deliverable Symbol Length - Short - 2 # Deliverable Symbol - String - Variable # Deliverable Shares - Integer - 4 # END def setQuoteDateTime(self, quoteTime): #self.quoteDateTime = datetime.datetime.now() self.quoteDateTime = quoteTime def __str__(self): s = self.optionDescription.decode() if self.last != None: s = '%s Last: $%.2f' % (s, self.last) else: s = '%s Last: N/A' % s if not (self.delta is None or self.gamma is None or self.theta is None or \ self.vega is None or self.rho is None): s = "%s (d: %f g: %f t: %f v: %f r: %f)" % \ (s, self.delta, self.gamma, self.theta, self.vega, self.rho) # date # expirationType # strike # standardOptionFlag # pcIndicator # optionSymbol # optionDescription # bid # ask # baSize # last # lastTradeSize # lastTradeDate # volume # openInterest # rtQuoteFlag # underlyingSymbol # delta # gamma # theta # vega # rho # impliedVolatility # timeValueIndex # multiplier # change # changePercentage # itmFlag # ntmFlag # theoreticalValue # deliverableNote # cilDollarAmoubt # opCashDollarAmount # indexOptionFlag # deliverables = [] # (symbol, shares) # REPEATING block for each Deliverable # Deliverable Symbol Length - Short - 2 # Deliverable Symbol - String - Variable # Deliverable Shares - Integer - 4 return s # Python3 __repr__ = __str__ class HistoricalPriceBar(): close = None high = None low = None open = None volume = None timestamp = None def __init__(self): pass def __str__(self): return '%f,%f,%f,%f,%f,%s' % (self.close, self.high, self.low, self.open, self.volume, self.timestamp) class TDAmeritradeAPI(): _sourceID = None # Note - Source ID must be provided by TD Ameritrade _version = '0.1' _active = False _sessionID = '' def __init__(self, sourceID): self._sourceID = sourceID def isActive(self, confirm=False): if self._active == True: # Confirm with server by calling KeepAlive if confirm: if self.keepAlive() == False: self.login() # TODO: add more robust checking here to make sure we're really logged in return True else: return False def keepAlive(self): conn = http.client.HTTPSConnection('apis.tdameritrade.com') conn.request('POST', '/apps/100/KeepAlive?source=%s' % self._sourceID) response = conn.getresponse() #print response.status, response.reason #print 'Getting response data...' data = response.read() #print 'Data:',data conn.close() if data.strip() == 'LoggedOn': return True elif data.strip() == 'InvalidSession': return False else: #print 'Unrecognized response: %s' % data pass def login(self, login, password): logging.debug('[tdapi] Entered login()') params = urllib.parse.urlencode({'source': self._sourceID, 'version': self._version}) headers = {'Content-Type': 'application/x-www-form-urlencoded'} body = urllib.parse.urlencode({'userid': login, 'password': password, 'source': self._sourceID, 'version': self._version}) conn = http.client.HTTPSConnection('apis.tdameritrade.com') #conn.set_debuglevel(100) conn.request('POST', '/apps/100/LogIn?'+params, body, headers) response = conn.getresponse() if response.status == 200: self._active = True else: self._active = False return False # The data response is an XML fragment. Log it. data = response.read() logging.debug('Login response:\n--------%s\n--------' % data) conn.close() # Make sure the login succeeded. First look for <result>OK</result> element = ElementTree.XML(data) try: result = element.findall('result')[0].text if result == 'FAIL': self._active = False return False elif result == 'OK': self._active = True else: logging.error('Unrecognized login result: %s' % result) return False # Now get the session ID self._sessionID = element.findall('xml-log-in')[0].findall('session-id')[0].text except: logging.error('Failed to parse login response.') return False def logout(self): conn = http.client.HTTPSConnection('apis.tdameritrade.com') conn.request('POST', '/apps/100/LogOut?source=%s' % self._sourceID) response = conn.getresponse() data = response.read() conn.close() self._active = False def getSessionID(self): return self._sessionID def getStreamerInfo(self, accountID=None): arguments = {'source': self._sourceID} if accountID != None: arguments['accountid'] = accountID params = urllib.parse.urlencode(arguments) conn = http.client.HTTPSConnection('apis.tdameritrade.com') #conn.set_debuglevel(100) conn.request('GET', '/apps/100/StreamerInfo?'+params) response = conn.getresponse() #print response.status, response.reason data = response.read() conn.close() #print 'Read %d bytes' % len(data) # We will need to create an ElementTree to process this XML response # TODO: handle exceptions element = ElementTree.XML(data) # Process XML response streamerInfo = {} try: children = element.findall('streamer-info')[0].getchildren() for c in children: streamerInfo[c.tag] = c.text except e: #print 'Error: failed to parse streamer-info response: %s', e return False #print 'Received streamer-info properties: %s' % streamerInfo return streamerInfo def getSnapshotQuote(self, tickers, assetType, detailed=False): logging.info('[tdapi.getSnapshotQuote] Enter') if len(tickers) > 300: logging.error('TODO: divide in batches of 300') if assetType not in ['stock','option','index','mutualfund']: logging.error('getSnapshotQuote: Unrecognized asset type %s' % assetType) return [] arguments = {'source': self._sourceID, 'symbol': str.join(',', tickers)} params = urllib.parse.urlencode(arguments) #print 'Arguments: ', arguments conn = http.client.HTTPSConnection('apis.tdameritrade.com') #conn.set_debuglevel(100) conn.request('GET', ('/apps/100/Quote;jsessionid=%s?' % self.getSessionID()) +params) response = conn.getresponse() data = response.read() conn.close() logging.info('[tdapi.getSnapshotQuote] Read %d bytes' % len(data)) quotes = {} # Perform basic processing regardless of quote type element = ElementTree.XML(data) try: result = element.findall('result')[0].text if result == 'FAIL': self._active = False return False elif result == 'OK': self._active = True else: logging.error('[tdapi.getSnapshotQuote] Unrecognized result: %s' % result) return {} # Now get the session ID #self._sessionID = element.findall('xml-log-in')[0].findall('session-id')[0].text except: logging.error('[tdapi.getSnapshotQuote] Failed to parse snapshot quote response.') return False if assetType == 'stock': try: quoteElements = element.findall('quote-list')[0].findall('quote') for i in quoteElements: symbol = i.findall('symbol')[0].text if detailed: q = StockQuote(i) # Create a quote object from etree quotes[symbol] = q else: last = float(i.findall('last')[0].text) quotes[symbol] = last except: logging.error('Failed to parse snapshot quote response') return {} else: logging.error('[tdapi.getSnapshotQuote] Asset type not supported: %s' % assetType) return quotes def getBinaryOptionChain(self, ticker): arguments = {'source': self._sourceID, 'symbol': ticker, 'range': 'ALL', 'quotes': 'true' } params = urllib.parse.urlencode(arguments) #print 'Arguments: ', arguments conn = http.client.HTTPSConnection('apis.tdameritrade.com') #conn.set_debuglevel(100) conn.request('GET', ('/apps/200/BinaryOptionChain;jsessionid=%s?' % self.getSessionID()) +params) response = conn.getresponse() data = response.read() conn.close() cursor = 0 error = unpack('b', data[cursor:cursor+1])[0] cursor += 1 # If there is an error, there will be an error length and corresponding error text if error != 0: errorLength = unpack('>h', data[cursor:cursor+2])[0] cursor += 2 if errorLength > 0: errorText = data[cursor:cursor+errorLength] cursor += errorLength raise ValueError('[getBinaryOptionChain] Error: %s' % errorText) symbolLength = unpack('>h', data[cursor:cursor+2])[0] cursor += 2 symbol = data[cursor:cursor+symbolLength].decode('utf-8') cursor += symbolLength symbolDescriptionLength = unpack('>h', data[cursor:cursor+2])[0] cursor += 2 symbolDescription = data[cursor:cursor+symbolDescriptionLength].decode('utf-8') cursor += symbolDescriptionLength bid = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 ask = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 baSizeLength = unpack('>h', data[cursor:cursor+2])[0] cursor += 2 baSize = data[cursor:cursor+baSizeLength] cursor += baSizeLength last = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 open = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 high = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 low = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 close = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 volume = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 change = unpack('>d', data[cursor:cursor+8])[0] cursor += 8 rtFlag = chr(unpack('>H', data[cursor:cursor+2])[0]) cursor += 2 qtLength = unpack('>H', data[cursor:cursor+2])[0] cursor += 2 quoteTime = data[cursor:cursor+qtLength] cursor += qtLength rowCount = unpack('>i', data[cursor:cursor+4])[0] cursor += 4 optionChain = [] for i in range(rowCount): if cursor > len(data): print('Error! Read too much data') break o = OptionChainElement() optionChain.append(o) # Option Date Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Option Date - String - Variable o.optionDate = data[cursor:cursor+l]; cursor += l # Expiration Type Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Expiration Type - String - Variable (R for Regular, L for LEAP) o.expirationType = data[cursor:cursor+l]; cursor += l # Strike Price - Double - 8 o.strike = unpack('>d', data[cursor:cursor+8])[0]; cursor += 8 # Standard Option Flag - Byte - 1 (1 = true, 0 = false) o.standardOptionFlag = unpack('b', data[cursor:cursor+1])[0]; cursor += 1 # Put/Call Indicator - Char - 2 (P or C in unicode) o.pcIndicator = chr(unpack('>H', data[cursor:cursor+2])[0]); cursor += 2 # Option Symbol Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Option Symbol - String - Variable o.optionSymbol = data[cursor:cursor+l]; cursor += l # Option Description Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Option Description - String - Variable o.optionDescription = data[cursor:cursor+l]; cursor += l # Bid - Double - 8 o.bid = unpack('>d', data[cursor:cursor+8])[0]; cursor += 8 # Ask - Double - 8 o.ask = unpack('>d', data[cursor:cursor+8])[0]; cursor += 8 # Bid/Ask Size Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Bid/Ask Size - String - Variable o.baSize = data[cursor:cursor+l]; cursor += l # Last - Double - 8 o.last = unpack('>d', data[cursor:cursor+8])[0]; cursor += 8 # Last Trade Size Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Last Trade Size - String - Variable o.lastTradeSize = data[cursor:cursor+l]; cursor += l # Last Trade Date Length - short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Last Trade Date - String - Variable o.lastTradeDate = data[cursor:cursor+l]; cursor += l # Volume - Long - 8 o.volume = unpack('>Q',data[cursor:cursor+8])[0]; cursor += 8 # Open Interest - Integer - 4 o.openInterest = unpack('>i', data[cursor:cursor+4])[0]; cursor += 4 # RT Quote Flag - Byte - 1 (1=true, 0=false) o.rtQuoteFlag = unpack('b', data[cursor:cursor+1])[0]; cursor += 1 o.setQuoteDateTime(quoteTime) # Underlying Symbol length - Short 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Underlying Symbol - String - Variable o.underlyingSymbol = data[cursor:cursor+l].decode('utf-8'); cursor += l # Delta - Double- 8 # Gamma - Double - 8 # Theta - Double - 8 # Vega - Double - 8 # Rho - Double - 8 # Implied Volatility - Double - 8 # Time Value Index - Double - 8 # Multiplier - Double - 8 # Change - Double - 8 # Change Percentage - Double - 8 (o.delta, o.gamma, o.theta, o.vega, o.rho, o.impliedVolatility, o.tvIndex, o.multiplier, o.change, o.changePercentage) = \ unpack('>10d', data[cursor:cursor+80]); cursor += 80 # ITM Flag - Byte - 1 (1 = true, 0 = false) # NTM Flag - Byte - 1 (1 = true, 0 = false) (o.itmFlag, o.ntmFlag) = unpack('2b', data[cursor:cursor+2]); cursor += 2 # Theoretical value - Double - 8 o.theoreticalValue = unpack('>d', data[cursor:cursor+8])[0]; cursor += 8 # Deliverable Note Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Deliverable Note - String - Variable o.deliverableNote = data[cursor:cursor+l]; cursor += l # CIL Dollar Amount - Double - 8 # OP Cash Dollar Amount - Double - 8 (o.cilDollarAmount, o.opCashDollarAmount) = \ unpack('>2d', data[cursor:cursor+16]); cursor += 16 # Index Option Flag - Byte - 1 (1 = true, 0 = false) o.indexOptionFlag = unpack('b', data[cursor:cursor+1])[0]; cursor += 1 # Number of Deliverables - Integer - 4 numDeliverables = unpack('>i', data[cursor:cursor+4])[0]; cursor += 4 for j in range(numDeliverables): # REPEATING block for each Deliverable # Deliverable Symbol Length - Short - 2 l = unpack('>h', data[cursor:cursor+2])[0]; cursor += 2 # Deliverable Symbol - String - Variable s = data[cursor:cursor+l]; cursor += l # Deliverable Shares - Integer - 4 o.deliverables.append((s, unpack('>i', data[cursor:cursor+4])[0])); cursor += 4 # END # Change all "nan" to None to make sure the oce is serializable for k in list(o.__dict__.keys()): if (type(o.__dict__[k]) == float) and math.isnan(o.__dict__[k]): logging.info('[tdapi.getBinaryOptionChain] Converting o[%s]=nan to None' % (k)) o.__dict__[k] = None return optionChain def getPriceHistory(self, ticker, intervalType='DAILY', intervalDuration='1', periodType='MONTH', period='1', startdate=None, enddate=None, extended=None): validPeriodTypes = [ 'DAY', 'MONTH', 'YEAR', 'YTD' ] validIntervalTypes = { 'DAY': ['MINUTE'], 'MONTH': ['DAILY', 'WEEKLY'], 'YEAR': ['DAILY', 'WEEKLY', 'MONTHLY'], 'YTD': ['DAILY', 'WEEKLY'] } arguments = {'source': self._sourceID, 'requestidentifiertype': 'SYMBOL', 'requestvalue': ticker, 'intervaltype': intervalType, 'intervalduration': intervalDuration, 'period': period, 'periodtype':periodType, 'startdate':startdate, 'enddate':enddate } # TODO: build params conditionally based on whether we're doing period-style request # TODO: support start and end dates validArgs = {} for k in list(arguments.keys()): if arguments[k] != None: validArgs[k] = arguments[k] params = urllib.parse.urlencode(validArgs) logging.getLogger("requests").setLevel(logging.WARNING) conn = http.client.HTTPSConnection('apis.tdameritrade.com') conn.set_debuglevel(0) conn.request('GET', '/apps/100/PriceHistory?'+params) response = conn.getresponse() if response.status != 200: #import pdb; pdb.set_trace() raise ValueError(response.reason) data = response.read() conn.close() # The first 15 bytes are the header # DATA TYPE DESCRIPTION # 00 00 00 01 4 bytes Symbol Count =1 # 00 04 2 bytes Symbol Length = 4 # 41 4D 54 44 4 bytes Symbol = AMTD # 00 1 byte Error code = 0 (OK) # 00 00 00 02 4 bytes Bar Count = 2 cursor = 0 symbolCount = unpack('>i', data[0:4])[0] if symbolCount > 1: fp = open('tdapi_debug_dump','wb') fp.write(data) fp.close() raise ValueError('Error - see tdapi_debug_dump') symbolLength = unpack('>h', data[4:6])[0] cursor = 6 symbol = data[cursor:cursor+symbolLength] cursor += symbolLength error = unpack('b', data[cursor:cursor+1])[0] cursor += 1 # If there is an error, there will be an error length and corresponding error text if error != 0: errorLength = unpack('>h', data[cursor:cursor+2])[0] # TODO: verify that this is correct below -- advance cursor for error length cursor += 2 if errorLength > 0: errorText = data[cursor:cursor+errorLength] cursor += errorLength raise ValueError('[getPriceHistory] Error: %s' % errorText) barCount = unpack('>i', data[cursor:cursor+4])[0] cursor += 4 # TODO: Add more rigorous checks on header data # Now we need to extract the bars bars = [] for i in range(barCount): # Make sure we still have enough data for a bar and a terminator (note only one terminator at the end) if cursor + 28 > len(data): raise ValueError('Trying to read %d bytes from %d total!' % (cursor+58, len(data))) C = unpack('>f', data[cursor:cursor+4])[0] cursor += 4 H = unpack('>f', data[cursor:cursor+4])[0] cursor += 4 L = unpack('>f', data[cursor:cursor+4])[0] cursor += 4 O = unpack('>f', data[cursor:cursor+4])[0] cursor += 4 V = unpack('>f', data[cursor:cursor+4])[0] * 100.0 cursor += 4 #T = time.gmtime(float(unpack('>Q',data[cursor:cursor+8])[0]) / 1000.0) # Returned in ms since the epoch T = datetime.datetime.utcfromtimestamp(float(unpack('>Q',data[cursor:cursor+8])[0]) / 1000.0) # Returned in ms since the epoch cursor += 8 bars.append((O,H,L,C,V,T)) # Finally we should see a terminator of FF if data[cursor:cursor+2] != b'\xff\xff': fp = open('tdapi_debug_dump','wb') fp.write(data) fp.close() raise ValueError('Did not find terminator at hexdata[%d]! See tdapi_debug_dump' % cursor) df = pandas.DataFrame(data=bars, columns=['open','high','low','close','volume','timestamp']) return df
mit
seckcoder/lang-learn
python/sklearn/examples/linear_model/plot_sgd_comparison.py
7
1641
""" ================================== Comparing various online solvers ================================== An example showing how different online solvers perform on the hand-written digits dataset. """ # Author: Rob Zinkov <rob at zinkov dot com> # License: Simplified BSD import numpy as np import pylab as pl from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.linear_model import SGDClassifier, Perceptron from sklearn.linear_model import PassiveAggressiveClassifier heldout = [0.95, 0.90, 0.75, 0.50, 0.01] rounds = 20 digits = datasets.load_digits() classifiers = [ ("SGD", SGDClassifier()), ("Perceptron", Perceptron()), ("Passive-Aggressive I", PassiveAggressiveClassifier(loss='hinge', C=1.0)), ("Passive-Aggressive II", PassiveAggressiveClassifier(loss='squared_hinge', C=1.0)), ] xx = 1 - np.array(heldout) for name, clf in classifiers: yy = [] for i in heldout: yy_ = [] for r in range(rounds): X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=i) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) yy_.append(1 - np.mean(y_pred == y_test)) yy.append(np.mean(yy_)) pl.plot(xx, yy, label=name) pl.legend(loc="upper right") pl.xlabel("Proportion train") pl.ylabel("Test Error Rate") pl.show()
unlicense
vitordouzi/sigtrec_eval
sigtrec_eval.py
1
6354
import sys, os, subprocess, math, multiprocessing, random import numpy as np from numpy import nan import pandas as pd from scipy.stats.mstats import ttest_rel from scipy.stats import ttest_ind, wilcoxon from imblearn.over_sampling import RandomOverSampler, SMOTE from collections import namedtuple Result = namedtuple('Result', ['qrelFileName', 'datasetid', 'resultsFiles', 'nameApproach']) def getFileName(qrelFile): return os.path.basename(qrelFile) class SIGTREC_Eval(): def __init__(self, cv=0, seed=42, round_=4, trec_eval=os.path.join(".", os.path.dirname(__file__), "trec_eval")): self.nameApp = {} self.cv = cv self.seed = seed self.trec_eval = trec_eval self.round = round_ random.seed(seed) def _build_F1(self, qrelFileName, to_compare, m, top): command = ' '.join([self.trec_eval, qrelFileName, to_compare, '-q ', '-M %d' % top, '-m %s.%d']) content_P = str(subprocess.Popen(command % ('P', top), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0])[2:-1].split('\\n') content_R = str(subprocess.Popen(command % ('recall', top), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0])[2:-1].split('\\n') content_F1 = [] for i in range(len(content_P)): part_P = content_P[i].split('\\t') part_R = content_R[i].split('\\t') if len(part_P) != len(part_R) or len(part_P) < 3: continue if part_P[1] != part_R[1]: print(part_P[1], part_R[1]) else: Pre = float(part_P[2]) Rec = float(part_R[2]) if Pre == 0. or Rec == 0.: content_F1.append( 'F1_%d\\t%s\\t0.' % ( top, part_P[1] ) ) else: line = 'F1_%d\\t%s\\t%.4f' % ( top, part_P[1], (2.*Pre*Rec)/(Pre+Rec) ) content_F1.append( line ) return content_F1 def build_df(self, results, measures, top): raw = [] qtd = len(measures)*sum([ len(input_result.resultsFiles) for input_result in results]) i=0 for input_result in results: self.nameApp[input_result.datasetid] = [] for m in measures: for (idx, to_compare) in enumerate(input_result.resultsFiles): self.nameApp[input_result.datasetid].append(getFileName(to_compare)) print("\r%.2f%%" % (100.*i/qtd),end='') i+=1 if m.startswith("F1"): content = self._build_F1(input_result.qrelFileName, to_compare, m, top=top) else: ############################################################################################## Tamanho 10 FIXADO ############################################################################################## command = ' '.join([self.trec_eval, input_result.qrelFileName, to_compare, '-q -M %d' % top, '-m', m]) content = str(subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True).communicate()[0])[2:-1].split('\\n') raw.extend([ (input_result.datasetid, idx, getFileName(to_compare), *( w.strip() for w in line.split('\\t') )) for line in content ][:-1]) print("\r100.00%%") df_raw = pd.DataFrame(list(filter(lambda x: not x[4]=='all', raw)), columns=['qrel', 'idx_approach', 'approach', 'measure', 'docid', 'result']) df_finale = pd.pivot_table(df_raw, index=['qrel', 'docid'], columns=['idx_approach','measure'], values='result', aggfunc='first') df_finale.reset_index() df_finale[np.array(df_finale.columns)] = df_finale[np.array(df_finale.columns)].astype(np.float64) df_finale.replace('None', 0.0, inplace=True) df_finale.replace(nan, 0.0, inplace=True) #df_finale = df_finale[~df_finale['docid'].isin(['all'])] df_finale['fold'] = [0]*len(df_finale) if self.cv > 0: for (qrel, qrel_group) in df_finale.groupby('qrel'): folds=(list(range(self.cv))*math.ceil(len(qrel_group)/self.cv))[:len(qrel_group)] random.shuffle(folds) df_finale.loc[qrel, 'fold'] = folds #with pd.option_context('display.max_rows', None, 'display.max_columns', 10000000000): # print(df_finale) return df_finale def get_test(self, test, pbase, pcomp, multi_test=False): if np.array_equal(pbase.values, pcomp.values): pvalue = 1. else: if test == 'student': (tvalue, pvalue) = ttest_rel(pbase, pcomp) elif test == 'wilcoxon': (tvalue, pvalue) = wilcoxon(pbase, pcomp) elif test == 'welcht': (tvalue, pvalue) = ttest_ind(pbase, pcomp, equal_var=False) if pvalue < 0.05: pbase_mean = pbase.mean() pcomp_mean = pcomp.mean() if pvalue < 0.01: if pbase_mean > pcomp_mean: result_test = '▼ ' else: result_test = '▲ ' else: if pbase_mean > pcomp_mean: result_test = 'ᐁ ' else: result_test = 'ᐃ ' else: if not multi_test: result_test = ' ' else: result_test = '⏺ ' return result_test def build_printable(self, table, significance_tests): printable = {} for qrel, qrel_group in table.groupby('qrel'): raw = [] base = qrel_group.loc[:,0] for idx_app in [idx for idx in qrel_group.columns.levels[0] if type(idx) == int]: instance = [ self.nameApp[qrel][idx_app] ] for m in qrel_group[idx_app].columns: array_results = qrel_group[idx_app][m] #print(qrel_group.groupby('fold').mean()[idx_app][m]) mean_measure_folds = qrel_group.groupby('fold').mean()[idx_app][m].mean() test_result="" for test in significance_tests: if idx_app > 0: test_result+=(self.get_test(test, base[m], array_results, len(significance_tests)>1)) else: test_result+=('bl ') instance.append('%f %s' % (round(mean_measure_folds,self.round), test_result) ) raw.append(instance) printable[qrel] = pd.DataFrame(raw, columns=['app', *(table.columns.levels[1].get_values())[:-1]]) return printable def get_sampler(self, sampler_name): if sampler_name == "ros" or sampler_name == 'RandomOverSampler': return RandomOverSampler(random_state=self.seed) if sampler_name == "SMOTE" or sampler_name == "smote": return SMOTE(random_state=self.seed) def build_over_sample(self, df, sampler): raw = [] for fold, fold_group in df.groupby('fold'): y = pd.factorize(fold_group.index.get_level_values('qrel'))[0] X_sampled, y_res = sampler.fit_sample(fold_group, y) raw.extend(X_sampled) df_sampled = pd.DataFrame(raw, columns=df.columns) df_sampled['qrel'] = [sampler.__class__.__name__]*len(df_sampled) self.nameApp[sampler.__class__.__name__] = self.nameApp[list(self.nameApp.keys())[0]] return df_sampled
mit
zp312/gmmreg
Python/_plotting.py
14
2435
#!/usr/bin/env python #coding=utf-8 ##==================================================== ## $Author$ ## $Date$ ## $Revision$ ##==================================================== from pylab import * from configobj import ConfigObj import matplotlib.pyplot as plt def display2Dpointset(A): fig = plt.figure() ax = fig.add_subplot(111) #ax.grid(True) ax.plot(A[:,0],A[:,1],'yo',markersize=8,mew=1) labels = plt.getp(plt.gca(), 'xticklabels') plt.setp(labels, color='k', fontweight='bold') labels = plt.getp(plt.gca(), 'yticklabels') plt.setp(labels, color='k', fontweight='bold') for i,x in enumerate(A): ax.annotate('%d'%(i+1), xy = x, xytext = x + 0) ax.set_axis_off() #fig.show() def display2Dpointsets(A, B, ax = None): """ display a pair of 2D point sets """ if not ax: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(A[:,0],A[:,1],'yo',markersize=8,mew=1) ax.plot(B[:,0],B[:,1],'b+',markersize=8,mew=1) #pylab.setp(pylab.gca(), 'xlim', [-0.15,0.6]) labels = plt.getp(plt.gca(), 'xticklabels') plt.setp(labels, color='k', fontweight='bold') labels = plt.getp(plt.gca(), 'yticklabels') plt.setp(labels, color='k', fontweight='bold') def display3Dpointsets(A,B,ax): #ax.plot3d(A[:,0],A[:,1],A[:,2],'yo',markersize=10,mew=1) #ax.plot3d(B[:,0],B[:,1],B[:,2],'b+',markersize=10,mew=1) ax.scatter(A[:,0],A[:,1],A[:,2], c = 'y', marker = 'o') ax.scatter(B[:,0],B[:,1],B[:,2], c = 'b', marker = '+') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') from mpl_toolkits.mplot3d import Axes3D def displayABC(A,B,C): fig = plt.figure() dim = A.shape[1] if dim==2: ax = plt.subplot(121) display2Dpointsets(A, B, ax) ax = plt.subplot(122) display2Dpointsets(C, B, ax) if dim==3: plot1 = plt.subplot(1,2,1) ax = Axes3D(fig, rect = plot1.get_position()) display3Dpointsets(A,B,ax) plot2 = plt.subplot(1,2,2) ax = Axes3D(fig, rect = plot2.get_position()) display3Dpointsets(C,B,ax) plt.show() def display_pts(f_config): config = ConfigObj(f_config) file_section = config['FILES'] mf = file_section['model'] sf = file_section['scene'] tf = file_section['transformed_model'] m = np.loadtxt(mf) s = np.loadtxt(sf) t = np.loadtxt(tf) displayABC(m,s,t)
gpl-3.0
nborggren/zipline
tests/test_munge.py
34
1794
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import pandas as pd import numpy as np from numpy.testing import assert_almost_equal from unittest import TestCase from zipline.utils.munge import bfill, ffill class MungeTests(TestCase): def test_bfill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.bfill().values test = bfill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.bfill().values test = bfill(df.values) assert_almost_equal(correct, test) def test_ffill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.ffill().values test = ffill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.ffill().values test = ffill(df.values) assert_almost_equal(correct, test)
apache-2.0
jakobworldpeace/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
gavrieltal/opencog
opencog/embodiment/Monitor/emotion_space_browser.py
17
8987
import numpy as np import zmq import json import matplotlib as mpl from matplotlib.figure import Figure from mpl_toolkits.mplot3d import Axes3D from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar # configure the matplotlib settings #mpl.rcParams['legend.fontsize'] = 10 from PyQt4 import QtGui, QtCore from common import * class ZmqMultiFiltersSubscriberThread(QThread): data_update_signal = pyqtSignal(dict) def __init__(self, widget, publish_endpoint, filter_list, zmq_context = glb.zmq_context, parent = None): """ widget should contains the slot method as below: @pyqtSlot(dict) def handle_data_update(self, json_dict): # Some code here to process the data in json format publish_endpoint tells the subscriber where the message source is """ # Initialize the thread QThread.__init__(self) # Connect the signal with the handler residing in widget self.widget = widget self.data_update_signal.connect(self.widget.handle_data_update) # Initialize the ZeroMQ socket self.socket = zmq_context.socket(zmq.SUB) self.filter_list = filter_list for filter_name in self.filter_list: self.socket.setsockopt(zmq.SUBSCRIBE, filter_name) self.socket.connect(publish_endpoint) def run(self): """ Receive the message with matching filter_key from publish_endpoint via ZeroMQ, discard the filter_key message and emit the signal to corresponding handler with the actual data wrapped in python dictionary """ while True: message = self.socket.recv() # if the message contains only filter key, discard it if message in self.filter_list: self.latest_msg_filter = message continue # Unpack the message into python dictionary json_dict = json.loads(message) # Apply a filter name to this data dictionary, in order to distinguish it json_dict['filter_key'] = self.latest_msg_filter # Emit the signal which would evoke the corresponding handler self.data_update_signal.emit(json_dict) class EmotionSpace(FigureCanvas): def __init__(self, publish_endpoint, parent=None, width=5, height=4, dpi=100): # Initialize a cache for incoming data. self.max_data_len = 25 ## Feeling dictionary stores dominant feelings with different timestamps. ## Format: { timestamp -> dominant_feeling_name } self.feeling_dict = {} ## Modulator dictionary caches modulators value at different time points. ## Format: ## { modulator_name -> { timestamp -> modulator_value } } self.modulator_dict = {} # The modulator dicitonary should be initialized in the format before # appending data. self.has_modulator_dict_initialized = False # The legend list used to show legend in the chart self.legend_list = [] # Chosen 3 modulators to be the axes of 3-dimensional space. self.modulator_axes = [] self.axes_group_box = QtGui.QGroupBox("Modulator Axes:") # Initialize variables related to graphics. self.fig = Figure(figsize=(width, height), dpi=dpi) self.axes = Axes3D(self.fig) self.axes.hold(False) FigureCanvas.__init__(self, self.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding ) FigureCanvas.updateGeometry(self) # Create and start ZeroMQ subscriber threads self.zmq_sub_thread = ZmqMultiFiltersSubscriberThread(self, publish_endpoint, [ "PsiFeelingUpdaterAgent", "PsiModulatorUpdaterAgent" ] ) self.zmq_sub_thread.start() # Initialize modulator dictionary and legend list def initialize_modulator_dict(self, json_dict): timestamp = json_dict['timestamp'] del json_dict['timestamp'] for k, v in json_dict.iteritems(): self.modulator_dict[k] = {} self.modulator_dict[k][timestamp] = v self.modulator_axes.append(k) self.has_modulator_dict_initialized = True #self.initialize_axes_group() def initialize_axes_group(self): vLayout = QtGui.QVBoxLayout() for axes in self.emotion_space.get_axes_list(): vLayout.addWidget(QtGui.QCheckBox(axes)) self.axes_group.setLayout(vLayout) axesGroupSizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Maximum, True) self.axes_group.setSizePolicy(axesGroupSizePolicy) self.layout().insert(self.axes_group, 0) def update_data(self, json_dict): ''' Update the data of feeling and modulators. As the parameter might be either feeling data or modulator data, we return the state of the updating result, in which, 0 indicates feeling dictionary has been updated, 1 indicates modulator dictionary has been updated. ''' if json_dict['filter_key'] == "PsiFeelingUpdaterAgent": # Just leave feelings alone del json_dict['filter_key'] timestamp = json_dict['timestamp'] del json_dict['timestamp'] # Get the feeling name with max value dominant_feeling = max(json_dict, key = lambda k : json_dict.get(k)) # Cache the pair in the feeling dictionary self.feeling_dict[timestamp] = dominant_feeling # return state 0 return 0 elif json_dict['filter_key'] == "PsiModulatorUpdaterAgent": # Remove filter key pair del json_dict['filter_key'] if not self.has_modulator_dict_initialized: self.initialize_modulator_dict(json_dict) return timestamp = json_dict['timestamp'] del json_dict['timestamp'] for k, v in json_dict.iteritems(): self.modulator_dict[k][timestamp] = v # return state 1 return 1 else: pass @pyqtSlot(dict) def handle_data_update(self, json_dict): """ Process the data in json format """ update_state = self.update_data(json_dict) # Only update the graphic when the widget is visible and # modulator data has been updated. if self.isVisible() and update_state == 1: self.do_draw() def do_draw(self): self.axes.clear() X = [] Y = [] Z = [] m = self.modulator_axes print '==========' for k, v in self.feeling_dict.iteritems(): X.append(self.modulator_dict[m[0]][k]) Y.append(self.modulator_dict[m[1]][k]) Z.append(self.modulator_dict[m[2]][k]) print str(self.modulator_dict[m[0]][k]) + ':' \ + str(self.modulator_dict[m[1]][k]) + ':' \ + str(self.modulator_dict[m[2]][k]) print '==========' self.axes.grid(True) self.axes.plot(X, Y, Z, '-o') self.draw() def get_axes_list(self): return self.modulator_axes class EmotionSpaceExplorer(QtGui.QWidget): def __init__(self, parent=None): super(EmotionSpaceExplorer, self).__init__(parent) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding, True) sizePolicy.setHeightForWidth(self.sizePolicy().hasHeightForWidth()) self.setSizePolicy(sizePolicy) self.emotion_space = EmotionSpace("tcp://192.168.1.250:18002", self) self.navigation_toolbar = NavigationToolbar(self.emotion_space, self) mainLayout = QtGui.QVBoxLayout(self) mainLayout.addWidget(self.emotion_space) mainLayout.addWidget(self.navigation_toolbar) self.setLayout(mainLayout)
agpl-3.0
shaunstanislaus/ibis
ibis/tasks.py
7
7836
# Copyright 2014 Cloudera Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback from cPickle import loads as pickle_load from ibis.cloudpickle import dumps as pickle_dump from ibis.wire import PackedMessageReader, PackedMessageWriter import ibis.wire as wire try: import ibis.comms as comms except ImportError: pass class IbisTaskMessage(object): """ Prototype wire protocol for task descriptions uint32_t semaphore_id uint32_t shmem_name_len char* shmem_name uint64_t shmem_offset uint64_t shmem_size """ def __init__(self, semaphore_id, shmem_name, shmem_offset, shmem_size): self.semaphore_id = semaphore_id self.shmem_name = shmem_name self.shmem_offset = shmem_offset self.shmem_size = shmem_size @classmethod def decode(self, message): """ Convert from the bytestring wire protocol Parameters ---------- message : bytes Returns ------- message : IbisTaskMessage """ buf = PackedMessageReader(message) sem_id = buf.uint32() shmem_name = buf.string() shmem_offset = buf.uint64() shmem_size = buf.uint64() return IbisTaskMessage(sem_id, shmem_name, shmem_offset, shmem_size) def encode(self): """ Format this message as a bytestring according to the current version of the wire protocol. Returns ------- encoded : bytes """ buf = PackedMessageWriter() buf.uint32(self.semaphore_id) buf.string(self.shmem_name) buf.uint64(self.shmem_offset) buf.uint64(self.shmem_size) return buf.get_result() class Task(object): """ Prototype Run task in a thread, capture tracebacks or other problems. """ def __init__(self, shmem): self.shmem = shmem self.complete = False def mark_success(self): wire.write_uint8(self.shmem, 1) def mark_failure(self): wire.write_uint8(self.shmem, 0) def execute(self): pass def run(self): raise NotImplementedError def done(self): pass _task_registry = {} def register_task(kind, task_class, override=False): """ Register a new task implementation with the execution system """ if kind in _task_registry and not override: raise KeyError('Task of type %s is already defined and ' 'override is False') _task_registry[kind] = task_class class IbisTaskExecutor(object): """ Runs the requested task and handles locking, exception reporting, and so forth. """ def __init__(self, task_msg): self.task_msg = task_msg self.lock = comms.IPCLock(self.task_msg.semaphore_id) self.shmem = comms.SharedMmap(self.task_msg.shmem_name, self.task_msg.shmem_size, offset=self.task_msg.shmem_offset) def _cycle_ipc_lock(self): # TODO: I put this here as a failsafe in case the task needs to bail # out for a known reason and we want to immediately release control to # the master process self.lock.acquire() self.lock.release() def execute(self): # TODO: Timeout concerns self.lock.acquire() # TODO: this can break in various ways on bad input task_type = wire.read_string(self.shmem) try: klass = _task_registry[task_type] task = klass(self.shmem) task.run() except: self.shmem.seek(0) # XXX: Failure indicator wire.write_uint8(self.shmem, 0) tb = traceback.format_exc() # HACK: Traceback string must be truncated so it will fit in the # shared memory (along with the uint32 length prefix) if len(tb) + 5 > len(self.shmem): tb = tb[:len(self.shmem) - 5] wire.write_string(self.shmem, tb) finally: self.lock.release() # --------------------------------------------------------------------- # Ping pong task for testing class PingPongTask(Task): def run(self): self.shmem.seek(0) self.mark_success() wire.write_string(self.shmem, 'pong') register_task('ping', PingPongTask) # --------------------------------------------------------------------- # Aggregation execution tasks class AggregationTask(Task): def _write_response(self, agg_inst): self.shmem.seek(0) self.mark_success() serialized_inst = pickle_dump(agg_inst) wire.write_string(self.shmem, serialized_inst) class AggregationUpdateTask(AggregationTask): """ Task header layout - serialized agg class - prior state flag 1/0 - (optional) serialized prior state - serialized table fragment """ def __init__(self, shmem): AggregationTask.__init__(self, shmem) self._read_header() def _read_header(self): reader = wire.PackedMessageReader(self.shmem) # Unpack header self.agg_class_pickled = reader.string() has_prior_state = reader.uint8() != 0 if has_prior_state: self.prior_state = pickle_load(reader.string()) else: self.prior_state = None def run(self): if self.prior_state is not None: agg_inst = self.prior_state else: klass = pickle_load(self.agg_class_pickled) agg_inst = klass() args = self._deserialize_args() agg_inst.update(*args) self._write_response(agg_inst) def _deserialize_args(self): # TODO: we need some mechanism to indicate how the data should be # deserialized before passing to the aggregator. For now, will assume # "pandas-friendly" NumPy-format # Deserialize data fragment table_reader = comms.IbisTableReader(self.shmem) args = [] for i in range(table_reader.ncolumns): col = table_reader.get_column(i) arg = col.to_numpy_for_pandas() args.append(arg) return args class AggregationMergeTask(AggregationTask): def __init__(self, shmem): AggregationTask.__init__(self, shmem) reader = wire.PackedMessageReader(shmem) # TODO: may wish to merge more than 2 at a time? # Unpack header self.left_inst = pickle_load(reader.string()) self.right_inst = pickle_load(reader.string()) def run(self): # Objects to merge stored in length-prefixed strings in shared memory merged = self.left_inst.merge(self.right_inst) self._write_response(merged) class AggregationFinalizeTask(AggregationTask): def __init__(self, shmem): AggregationTask.__init__(self, shmem) reader = wire.PackedMessageReader(shmem) self.state = pickle_load(reader.string()) def run(self): # Single length-prefixed string to finalize result = self.state.finalize() self._write_response(result) register_task('agg-update', AggregationUpdateTask) register_task('agg-merge', AggregationMergeTask) register_task('agg-finalize', AggregationFinalizeTask)
apache-2.0
ahmadghizzawi/aub-ml
assignment2/linear-regression.py
1
5573
import numpy as np from numpy import sign as sign import matplotlib.pyplot as plt class Utils: @staticmethod def generate_set(N): """Generates an n by 3 uniformly distributed dataset""" # Generate random uniformally distributes points training_set = np.random.uniform(-1, 1, size=(N, 2)) # Insert x0 values into the begining of the array. x0 = np.ones((N, 1)) training_set = np.insert(training_set, [0], x0, axis=1) # Set training_set and labels as instance attributes return training_set @staticmethod def display_figures(num_of_runs, ein_total, eout_total): print('Average Ein(g): ' + str(ein_total/num_of_runs)) print('Average Eout(g): ' + str(eout_total/num_of_runs)) @staticmethod def plot(training_set, labels, target_weights, best_hypothesis): # change the axis to fit our dataset plt.axis([-1, 1, -1, 1]) # breakdown the dataset into two separate arrays, each array representing their label by f(x) training_set_above_line = [] training_set_below_line = [] for i in range(len(labels)): if labels[i] == 1: training_set_above_line.append(training_set[i]) else: training_set_below_line.append(training_set[i]) training_set_above_line = np.array(training_set_above_line) training_set_below_line = np.array(training_set_below_line) # plot the sets if training_set_above_line.size > 0: training_set_x1_1 = training_set_above_line[:, 1] training_set_x2_1 = training_set_above_line[:, 2] plt.scatter(training_set_x1_1, training_set_x2_1, c='b') if training_set_below_line.size > 0: training_set_x1_neg_1 = training_set_below_line[:, 1] training_set_x2_neg_1 = training_set_below_line[:, 2] plt.scatter(training_set_x1_neg_1, training_set_x2_neg_1, c='r') # generate 50 evenly spaced numbers from -1 to 1. line = np.linspace(-1, 1) # plot the f(x) in blue m, b = -target_weights[1] / target_weights[2], -target_weights[0] / target_weights[2] plt.plot(line, m * line + b, 'b-', label='f(x)') # plot the g(x) in dashed red m1, b1 = -best_hypothesis[1] / best_hypothesis[2], -best_hypothesis[0] / best_hypothesis[2] plt.plot(line, m1 * line + b1, 'r--', label='h(x)') plt.show() @staticmethod def generate_target_weights(): # create random line as target function f(x) point1 = [1, np.random.uniform(-1, 1), np.random.uniform(-1, 1)] point2 = [1, np.random.uniform(-1, 1), np.random.uniform(-1, 1)] x1A = point1[1] x2A = point1[2] x1B = point2[1] x2B = point2[2] # create the target function weights based on the random points target_weights = np.array([x1B * x2A - x1A * x2B, x2B - x1A, x1A - x1B]) return target_weights @staticmethod def evaluate_difference(target_labels, hypothesis_labels): # evaluate the difference between f and g on in or out-of-sample data. sample_size = len(target_labels) i = 0 total_misclassified = 0 while i < sample_size: target_classification = target_labels[i] hypothesis_classification = hypothesis_labels[i] if target_classification != hypothesis_classification: total_misclassified += 1 i += 1 return total_misclassified / sample_size class LinearRegression: def __init__(self): self.target_weights = Utils.generate_target_weights() @staticmethod def apply(w, x): # apply h(x) return sign(np.dot(w, x)) @staticmethod def learn(X, Y): # learn from misclassifications pseudo_inverse = np.linalg.pinv(X) return np.dot(pseudo_inverse, Y) @staticmethod def get_labels(w, X): labels = [] [labels.append(LinearRegression.apply(w, x)) for x in X] return np.array([labels]).T def run(self, number_of_runs): ein_total = 0 eout_total = 0 best_model = None best_eout = None i = 0 while i < number_of_runs: # Generate data set and labels X = Utils.generate_set(100) Y = LinearRegression.get_labels(w=self.target_weights, X=X) # Generate hypothesis weights and labels hypothesis_weight = LinearRegression.learn(X, Y).T.flatten() hypothesis_labels = LinearRegression.get_labels(hypothesis_weight, X) # Calculate Ein total ein_total += Utils.evaluate_difference(Y, hypothesis_labels) # Generate 1000 out_of_sample points X_out = Utils.generate_set(1000) Y_out = LinearRegression.get_labels(w=self.target_weights, X=X_out) # Label out_of_sample data set with hypothesis hypothesis_labels_out = LinearRegression.get_labels(hypothesis_weight, X_out) # Calculate Eout total eout = Utils.evaluate_difference(Y_out, hypothesis_labels_out) eout_total += eout if best_eout is None or eout < best_eout: best_eout = eout best_model = hypothesis_weight i += 1 Utils.display_figures(number_of_runs, ein_total, eout_total) Utils.plot(X, Y, self.target_weights, best_model) model = LinearRegression() model.run(1000)
unlicense
jcasner/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/dviread.py
69
29920
""" An experimental module for reading dvi files output by TeX. Several limitations make this not (currently) useful as a general-purpose dvi preprocessor. Interface:: dvi = Dvi(filename, 72) for page in dvi: # iterate over pages w, h, d = page.width, page.height, page.descent for x,y,font,glyph,width in page.text: fontname = font.texname pointsize = font.size ... for x,y,height,width in page.boxes: ... """ import errno import matplotlib import matplotlib.cbook as mpl_cbook import numpy as np import struct import subprocess _dvistate = mpl_cbook.Bunch(pre=0, outer=1, inpage=2, post_post=3, finale=4) class Dvi(object): """ A dvi ("device-independent") file, as produced by TeX. The current implementation only reads the first page and does not even attempt to verify the postamble. """ def __init__(self, filename, dpi): """ Initialize the object. This takes the filename as input and opens the file; actually reading the file happens when iterating through the pages of the file. """ matplotlib.verbose.report('Dvi: ' + filename, 'debug') self.file = open(filename, 'rb') self.dpi = dpi self.fonts = {} self.state = _dvistate.pre def __iter__(self): """ Iterate through the pages of the file. Returns (text, pages) pairs, where: text is a list of (x, y, fontnum, glyphnum, width) tuples boxes is a list of (x, y, height, width) tuples The coordinates are transformed into a standard Cartesian coordinate system at the dpi value given when initializing. The coordinates are floating point numbers, but otherwise precision is not lost and coordinate values are not clipped to integers. """ while True: have_page = self._read() if have_page: yield self._output() else: break def close(self): """ Close the underlying file if it is open. """ if not self.file.closed: self.file.close() def _output(self): """ Output the text and boxes belonging to the most recent page. page = dvi._output() """ minx, miny, maxx, maxy = np.inf, np.inf, -np.inf, -np.inf maxy_pure = -np.inf for elt in self.text + self.boxes: if len(elt) == 4: # box x,y,h,w = elt e = 0 # zero depth else: # glyph x,y,font,g,w = elt h = _mul2012(font._scale, font._tfm.height[g]) e = _mul2012(font._scale, font._tfm.depth[g]) minx = min(minx, x) miny = min(miny, y - h) maxx = max(maxx, x + w) maxy = max(maxy, y + e) maxy_pure = max(maxy_pure, y) if self.dpi is None: # special case for ease of debugging: output raw dvi coordinates return mpl_cbook.Bunch(text=self.text, boxes=self.boxes, width=maxx-minx, height=maxy_pure-miny, descent=maxy-maxy_pure) d = self.dpi / (72.27 * 2**16) # from TeX's "scaled points" to dpi units text = [ ((x-minx)*d, (maxy-y)*d, f, g, w*d) for (x,y,f,g,w) in self.text ] boxes = [ ((x-minx)*d, (maxy-y)*d, h*d, w*d) for (x,y,h,w) in self.boxes ] return mpl_cbook.Bunch(text=text, boxes=boxes, width=(maxx-minx)*d, height=(maxy_pure-miny)*d, descent=(maxy-maxy_pure)*d) def _read(self): """ Read one page from the file. Return True if successful, False if there were no more pages. """ while True: byte = ord(self.file.read(1)) self._dispatch(byte) # if self.state == _dvistate.inpage: # matplotlib.verbose.report( # 'Dvi._read: after %d at %f,%f' % # (byte, self.h, self.v), # 'debug-annoying') if byte == 140: # end of page return True if self.state == _dvistate.post_post: # end of file self.close() return False def _arg(self, nbytes, signed=False): """ Read and return an integer argument "nbytes" long. Signedness is determined by the "signed" keyword. """ str = self.file.read(nbytes) value = ord(str[0]) if signed and value >= 0x80: value = value - 0x100 for i in range(1, nbytes): value = 0x100*value + ord(str[i]) return value def _dispatch(self, byte): """ Based on the opcode "byte", read the correct kinds of arguments from the dvi file and call the method implementing that opcode with those arguments. """ if 0 <= byte <= 127: self._set_char(byte) elif byte == 128: self._set_char(self._arg(1)) elif byte == 129: self._set_char(self._arg(2)) elif byte == 130: self._set_char(self._arg(3)) elif byte == 131: self._set_char(self._arg(4, True)) elif byte == 132: self._set_rule(self._arg(4, True), self._arg(4, True)) elif byte == 133: self._put_char(self._arg(1)) elif byte == 134: self._put_char(self._arg(2)) elif byte == 135: self._put_char(self._arg(3)) elif byte == 136: self._put_char(self._arg(4, True)) elif byte == 137: self._put_rule(self._arg(4, True), self._arg(4, True)) elif byte == 138: self._nop() elif byte == 139: self._bop(*[self._arg(4, True) for i in range(11)]) elif byte == 140: self._eop() elif byte == 141: self._push() elif byte == 142: self._pop() elif byte == 143: self._right(self._arg(1, True)) elif byte == 144: self._right(self._arg(2, True)) elif byte == 145: self._right(self._arg(3, True)) elif byte == 146: self._right(self._arg(4, True)) elif byte == 147: self._right_w(None) elif byte == 148: self._right_w(self._arg(1, True)) elif byte == 149: self._right_w(self._arg(2, True)) elif byte == 150: self._right_w(self._arg(3, True)) elif byte == 151: self._right_w(self._arg(4, True)) elif byte == 152: self._right_x(None) elif byte == 153: self._right_x(self._arg(1, True)) elif byte == 154: self._right_x(self._arg(2, True)) elif byte == 155: self._right_x(self._arg(3, True)) elif byte == 156: self._right_x(self._arg(4, True)) elif byte == 157: self._down(self._arg(1, True)) elif byte == 158: self._down(self._arg(2, True)) elif byte == 159: self._down(self._arg(3, True)) elif byte == 160: self._down(self._arg(4, True)) elif byte == 161: self._down_y(None) elif byte == 162: self._down_y(self._arg(1, True)) elif byte == 163: self._down_y(self._arg(2, True)) elif byte == 164: self._down_y(self._arg(3, True)) elif byte == 165: self._down_y(self._arg(4, True)) elif byte == 166: self._down_z(None) elif byte == 167: self._down_z(self._arg(1, True)) elif byte == 168: self._down_z(self._arg(2, True)) elif byte == 169: self._down_z(self._arg(3, True)) elif byte == 170: self._down_z(self._arg(4, True)) elif 171 <= byte <= 234: self._fnt_num(byte-171) elif byte == 235: self._fnt_num(self._arg(1)) elif byte == 236: self._fnt_num(self._arg(2)) elif byte == 237: self._fnt_num(self._arg(3)) elif byte == 238: self._fnt_num(self._arg(4, True)) elif 239 <= byte <= 242: len = self._arg(byte-238) special = self.file.read(len) self._xxx(special) elif 243 <= byte <= 246: k = self._arg(byte-242, byte==246) c, s, d, a, l = [ self._arg(x) for x in (4, 4, 4, 1, 1) ] n = self.file.read(a+l) self._fnt_def(k, c, s, d, a, l, n) elif byte == 247: i, num, den, mag, k = [ self._arg(x) for x in (1, 4, 4, 4, 1) ] x = self.file.read(k) self._pre(i, num, den, mag, x) elif byte == 248: self._post() elif byte == 249: self._post_post() else: raise ValueError, "unknown command: byte %d"%byte def _pre(self, i, num, den, mag, comment): if self.state != _dvistate.pre: raise ValueError, "pre command in middle of dvi file" if i != 2: raise ValueError, "Unknown dvi format %d"%i if num != 25400000 or den != 7227 * 2**16: raise ValueError, "nonstandard units in dvi file" # meaning: TeX always uses those exact values, so it # should be enough for us to support those # (There are 72.27 pt to an inch so 7227 pt = # 7227 * 2**16 sp to 100 in. The numerator is multiplied # by 10^5 to get units of 10**-7 meters.) if mag != 1000: raise ValueError, "nonstandard magnification in dvi file" # meaning: LaTeX seems to frown on setting \mag, so # I think we can assume this is constant self.state = _dvistate.outer def _set_char(self, char): if self.state != _dvistate.inpage: raise ValueError, "misplaced set_char in dvi file" self._put_char(char) self.h += self.fonts[self.f]._width_of(char) def _set_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced set_rule in dvi file" self._put_rule(a, b) self.h += b def _put_char(self, char): if self.state != _dvistate.inpage: raise ValueError, "misplaced put_char in dvi file" font = self.fonts[self.f] if font._vf is None: self.text.append((self.h, self.v, font, char, font._width_of(char))) # matplotlib.verbose.report( # 'Dvi._put_char: %d,%d %d' %(self.h, self.v, char), # 'debug-annoying') else: scale = font._scale for x, y, f, g, w in font._vf[char].text: newf = DviFont(scale=_mul2012(scale, f._scale), tfm=f._tfm, texname=f.texname, vf=f._vf) self.text.append((self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), newf, g, newf._width_of(g))) self.boxes.extend([(self.h + _mul2012(x, scale), self.v + _mul2012(y, scale), _mul2012(a, scale), _mul2012(b, scale)) for x, y, a, b in font._vf[char].boxes]) def _put_rule(self, a, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced put_rule in dvi file" if a > 0 and b > 0: self.boxes.append((self.h, self.v, a, b)) # matplotlib.verbose.report( # 'Dvi._put_rule: %d,%d %d,%d' % (self.h, self.v, a, b), # 'debug-annoying') def _nop(self): pass def _bop(self, c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, p): if self.state != _dvistate.outer: raise ValueError, \ "misplaced bop in dvi file (state %d)" % self.state self.state = _dvistate.inpage self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack = [] self.text = [] # list of (x,y,fontnum,glyphnum) self.boxes = [] # list of (x,y,width,height) def _eop(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced eop in dvi file" self.state = _dvistate.outer del self.h, self.v, self.w, self.x, self.y, self.z, self.stack def _push(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced push in dvi file" self.stack.append((self.h, self.v, self.w, self.x, self.y, self.z)) def _pop(self): if self.state != _dvistate.inpage: raise ValueError, "misplaced pop in dvi file" self.h, self.v, self.w, self.x, self.y, self.z = self.stack.pop() def _right(self, b): if self.state != _dvistate.inpage: raise ValueError, "misplaced right in dvi file" self.h += b def _right_w(self, new_w): if self.state != _dvistate.inpage: raise ValueError, "misplaced w in dvi file" if new_w is not None: self.w = new_w self.h += self.w def _right_x(self, new_x): if self.state != _dvistate.inpage: raise ValueError, "misplaced x in dvi file" if new_x is not None: self.x = new_x self.h += self.x def _down(self, a): if self.state != _dvistate.inpage: raise ValueError, "misplaced down in dvi file" self.v += a def _down_y(self, new_y): if self.state != _dvistate.inpage: raise ValueError, "misplaced y in dvi file" if new_y is not None: self.y = new_y self.v += self.y def _down_z(self, new_z): if self.state != _dvistate.inpage: raise ValueError, "misplaced z in dvi file" if new_z is not None: self.z = new_z self.v += self.z def _fnt_num(self, k): if self.state != _dvistate.inpage: raise ValueError, "misplaced fnt_num in dvi file" self.f = k def _xxx(self, special): matplotlib.verbose.report( 'Dvi._xxx: encountered special: %s' % ''.join([(32 <= ord(ch) < 127) and ch or '<%02x>' % ord(ch) for ch in special]), 'debug') def _fnt_def(self, k, c, s, d, a, l, n): tfm = _tfmfile(n[-l:]) if c != 0 and tfm.checksum != 0 and c != tfm.checksum: raise ValueError, 'tfm checksum mismatch: %s'%n # It seems that the assumption behind the following check is incorrect: #if d != tfm.design_size: # raise ValueError, 'tfm design size mismatch: %d in dvi, %d in %s'%\ # (d, tfm.design_size, n) vf = _vffile(n[-l:]) self.fonts[k] = DviFont(scale=s, tfm=tfm, texname=n, vf=vf) def _post(self): if self.state != _dvistate.outer: raise ValueError, "misplaced post in dvi file" self.state = _dvistate.post_post # TODO: actually read the postamble and finale? # currently post_post just triggers closing the file def _post_post(self): raise NotImplementedError class DviFont(object): """ Object that holds a font's texname and size, supports comparison, and knows the widths of glyphs in the same units as the AFM file. There are also internal attributes (for use by dviread.py) that are _not_ used for comparison. The size is in Adobe points (converted from TeX points). """ __slots__ = ('texname', 'size', 'widths', '_scale', '_vf', '_tfm') def __init__(self, scale, tfm, texname, vf): self._scale, self._tfm, self.texname, self._vf = \ scale, tfm, texname, vf self.size = scale * (72.0 / (72.27 * 2**16)) try: nchars = max(tfm.width.iterkeys()) except ValueError: nchars = 0 self.widths = [ (1000*tfm.width.get(char, 0)) >> 20 for char in range(nchars) ] def __eq__(self, other): return self.__class__ == other.__class__ and \ self.texname == other.texname and self.size == other.size def __ne__(self, other): return not self.__eq__(other) def _width_of(self, char): """ Width of char in dvi units. For internal use by dviread.py. """ width = self._tfm.width.get(char, None) if width is not None: return _mul2012(width, self._scale) matplotlib.verbose.report( 'No width for char %d in font %s' % (char, self.texname), 'debug') return 0 class Vf(Dvi): """ A virtual font (\*.vf file) containing subroutines for dvi files. Usage:: vf = Vf(filename) glyph = vf[code] glyph.text, glyph.boxes, glyph.width """ def __init__(self, filename): Dvi.__init__(self, filename, 0) self._first_font = None self._chars = {} self._packet_ends = None self._read() self.close() def __getitem__(self, code): return self._chars[code] def _dispatch(self, byte): # If we are in a packet, execute the dvi instructions if self.state == _dvistate.inpage: byte_at = self.file.tell()-1 if byte_at == self._packet_ends: self._finalize_packet() # fall through elif byte_at > self._packet_ends: raise ValueError, "Packet length mismatch in vf file" else: if byte in (139, 140) or byte >= 243: raise ValueError, "Inappropriate opcode %d in vf file" % byte Dvi._dispatch(self, byte) return # We are outside a packet if byte < 242: # a short packet (length given by byte) cc, tfm = self._arg(1), self._arg(3) self._init_packet(byte, cc, tfm) elif byte == 242: # a long packet pl, cc, tfm = [ self._arg(x) for x in (4, 4, 4) ] self._init_packet(pl, cc, tfm) elif 243 <= byte <= 246: Dvi._dispatch(self, byte) elif byte == 247: # preamble i, k = self._arg(1), self._arg(1) x = self.file.read(k) cs, ds = self._arg(4), self._arg(4) self._pre(i, x, cs, ds) elif byte == 248: # postamble (just some number of 248s) self.state = _dvistate.post_post else: raise ValueError, "unknown vf opcode %d" % byte def _init_packet(self, pl, cc, tfm): if self.state != _dvistate.outer: raise ValueError, "Misplaced packet in vf file" self.state = _dvistate.inpage self._packet_ends = self.file.tell() + pl self._packet_char = cc self._packet_width = tfm self.h, self.v, self.w, self.x, self.y, self.z = 0, 0, 0, 0, 0, 0 self.stack, self.text, self.boxes = [], [], [] self.f = self._first_font def _finalize_packet(self): self._chars[self._packet_char] = mpl_cbook.Bunch( text=self.text, boxes=self.boxes, width = self._packet_width) self.state = _dvistate.outer def _pre(self, i, x, cs, ds): if self.state != _dvistate.pre: raise ValueError, "pre command in middle of vf file" if i != 202: raise ValueError, "Unknown vf format %d" % i if len(x): matplotlib.verbose.report('vf file comment: ' + x, 'debug') self.state = _dvistate.outer # cs = checksum, ds = design size def _fnt_def(self, k, *args): Dvi._fnt_def(self, k, *args) if self._first_font is None: self._first_font = k def _fix2comp(num): """ Convert from two's complement to negative. """ assert 0 <= num < 2**32 if num & 2**31: return num - 2**32 else: return num def _mul2012(num1, num2): """ Multiply two numbers in 20.12 fixed point format. """ # Separated into a function because >> has surprising precedence return (num1*num2) >> 20 class Tfm(object): """ A TeX Font Metric file. This implementation covers only the bare minimum needed by the Dvi class. Attributes: checksum: for verifying against dvi file design_size: design size of the font (in what units?) width[i]: width of character \#i, needs to be scaled by the factor specified in the dvi file (this is a dict because indexing may not start from 0) height[i], depth[i]: height and depth of character \#i """ __slots__ = ('checksum', 'design_size', 'width', 'height', 'depth') def __init__(self, filename): matplotlib.verbose.report('opening tfm file ' + filename, 'debug') file = open(filename, 'rb') try: header1 = file.read(24) lh, bc, ec, nw, nh, nd = \ struct.unpack('!6H', header1[2:14]) matplotlib.verbose.report( 'lh=%d, bc=%d, ec=%d, nw=%d, nh=%d, nd=%d' % ( lh, bc, ec, nw, nh, nd), 'debug') header2 = file.read(4*lh) self.checksum, self.design_size = \ struct.unpack('!2I', header2[:8]) # there is also encoding information etc. char_info = file.read(4*(ec-bc+1)) widths = file.read(4*nw) heights = file.read(4*nh) depths = file.read(4*nd) finally: file.close() self.width, self.height, self.depth = {}, {}, {} widths, heights, depths = \ [ struct.unpack('!%dI' % (len(x)/4), x) for x in (widths, heights, depths) ] for i in range(ec-bc): self.width[bc+i] = _fix2comp(widths[ord(char_info[4*i])]) self.height[bc+i] = _fix2comp(heights[ord(char_info[4*i+1]) >> 4]) self.depth[bc+i] = _fix2comp(depths[ord(char_info[4*i+1]) & 0xf]) class PsfontsMap(object): """ A psfonts.map formatted file, mapping TeX fonts to PS fonts. Usage: map = PsfontsMap('.../psfonts.map'); map['cmr10'] For historical reasons, TeX knows many Type-1 fonts by different names than the outside world. (For one thing, the names have to fit in eight characters.) Also, TeX's native fonts are not Type-1 but Metafont, which is nontrivial to convert to PostScript except as a bitmap. While high-quality conversions to Type-1 format exist and are shipped with modern TeX distributions, we need to know which Type-1 fonts are the counterparts of which native fonts. For these reasons a mapping is needed from internal font names to font file names. A texmf tree typically includes mapping files called e.g. psfonts.map, pdftex.map, dvipdfm.map. psfonts.map is used by dvips, pdftex.map by pdfTeX, and dvipdfm.map by dvipdfm. psfonts.map might avoid embedding the 35 PostScript fonts, while the pdf-related files perhaps only avoid the "Base 14" pdf fonts. But the user may have configured these files differently. """ __slots__ = ('_font',) def __init__(self, filename): self._font = {} file = open(filename, 'rt') try: self._parse(file) finally: file.close() def __getitem__(self, texname): result = self._font[texname] fn, enc = result.filename, result.encoding if fn is not None and not fn.startswith('/'): result.filename = find_tex_file(fn) if enc is not None and not enc.startswith('/'): result.encoding = find_tex_file(result.encoding) return result def _parse(self, file): """Parse each line into words.""" for line in file: line = line.strip() if line == '' or line.startswith('%'): continue words, pos = [], 0 while pos < len(line): if line[pos] == '"': # double quoted word pos += 1 end = line.index('"', pos) words.append(line[pos:end]) pos = end + 1 else: # ordinary word end = line.find(' ', pos+1) if end == -1: end = len(line) words.append(line[pos:end]) pos = end while pos < len(line) and line[pos] == ' ': pos += 1 self._register(words) def _register(self, words): """Register a font described by "words". The format is, AFAIK: texname fontname [effects and filenames] Effects are PostScript snippets like ".177 SlantFont", filenames begin with one or two less-than signs. A filename ending in enc is an encoding file, other filenames are font files. This can be overridden with a left bracket: <[foobar indicates an encoding file named foobar. There is some difference between <foo.pfb and <<bar.pfb in subsetting, but I have no example of << in my TeX installation. """ texname, psname = words[:2] effects, encoding, filename = [], None, None for word in words[2:]: if not word.startswith('<'): effects.append(word) else: word = word.lstrip('<') if word.startswith('['): assert encoding is None encoding = word[1:] elif word.endswith('.enc'): assert encoding is None encoding = word else: assert filename is None filename = word self._font[texname] = mpl_cbook.Bunch( texname=texname, psname=psname, effects=effects, encoding=encoding, filename=filename) class Encoding(object): """ Parses a \*.enc file referenced from a psfonts.map style file. The format this class understands is a very limited subset of PostScript. Usage (subject to change):: for name in Encoding(filename): whatever(name) """ __slots__ = ('encoding',) def __init__(self, filename): file = open(filename, 'rt') try: matplotlib.verbose.report('Parsing TeX encoding ' + filename, 'debug-annoying') self.encoding = self._parse(file) matplotlib.verbose.report('Result: ' + `self.encoding`, 'debug-annoying') finally: file.close() def __iter__(self): for name in self.encoding: yield name def _parse(self, file): result = [] state = 0 for line in file: comment_start = line.find('%') if comment_start > -1: line = line[:comment_start] line = line.strip() if state == 0: # Expecting something like /FooEncoding [ if '[' in line: state = 1 line = line[line.index('[')+1:].strip() if state == 1: if ']' in line: # ] def line = line[:line.index(']')] state = 2 words = line.split() for w in words: if w.startswith('/'): # Allow for /abc/def/ghi subwords = w.split('/') result.extend(subwords[1:]) else: raise ValueError, "Broken name in encoding file: " + w return result def find_tex_file(filename, format=None): """ Call kpsewhich to find a file in the texmf tree. If format is not None, it is used as the value for the --format option. See the kpathsea documentation for more information. Apparently most existing TeX distributions on Unix-like systems use kpathsea. I hear MikTeX (a popular distribution on Windows) doesn't use kpathsea, so what do we do? (TODO) """ cmd = ['kpsewhich'] if format is not None: cmd += ['--format=' + format] cmd += [filename] matplotlib.verbose.report('find_tex_file(%s): %s' \ % (filename,cmd), 'debug') pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE) result = pipe.communicate()[0].rstrip() matplotlib.verbose.report('find_tex_file result: %s' % result, 'debug') return result def _read_nointr(pipe, bufsize=-1): while True: try: return pipe.read(bufsize) except OSError, e: if e.errno == errno.EINTR: continue else: raise # With multiple text objects per figure (e.g. tick labels) we may end # up reading the same tfm and vf files many times, so we implement a # simple cache. TODO: is this worth making persistent? _tfmcache = {} _vfcache = {} def _fontfile(texname, class_, suffix, cache): try: return cache[texname] except KeyError: pass filename = find_tex_file(texname + suffix) if filename: result = class_(filename) else: result = None cache[texname] = result return result def _tfmfile(texname): return _fontfile(texname, Tfm, '.tfm', _tfmcache) def _vffile(texname): return _fontfile(texname, Vf, '.vf', _vfcache) if __name__ == '__main__': import sys matplotlib.verbose.set_level('debug-annoying') fname = sys.argv[1] try: dpi = float(sys.argv[2]) except IndexError: dpi = None dvi = Dvi(fname, dpi) fontmap = PsfontsMap(find_tex_file('pdftex.map')) for page in dvi: print '=== new page ===' fPrev = None for x,y,f,c,w in page.text: if f != fPrev: print 'font', f.texname, 'scaled', f._scale/pow(2.0,20) fPrev = f print x,y,c, 32 <= c < 128 and chr(c) or '.', w for x,y,w,h in page.boxes: print x,y,'BOX',w,h
agpl-3.0
avannaldas/QuickView
QuickView/DataFrameVisualizer.py
1
5101
''' Title: QuickView Purpose: Provides a Glance at the dataset with one line of code! GitHub: http://github.com/avannaldas/QuickView Author: Abhijit Annaldas (Twitter @avannaldas) ''' import pandas as _pd import matplotlib.pyplot as _plt from matplotlib.pyplot import cm '''Number of rows in the dataframe''' row_count = -1 '''Number of columns in the dataframe''' column_count = -1 ''' List of numeric column names''' numeric_column_names = [] '''List of text column names''' text_column_names = [] '''List of categorical column names''' categorical_column_names = [] '''Dict of Column names and distinct categrical values''' categorical_column_values = dict() ''' Dict of Column names and number of distinct categrical values''' categorical_column_values_count = dict() '''Pandas dataframe object containing rows with at least one null/na values''' rows_with_nulls = _pd.DataFrame() '''Dict of Column names and number of null/na values''' columnwise_null_values_count = dict() '''Pandas dataframe object with min, max, mean and std of all numeric columns''' min_max_mean_std = _pd.DataFrame() '''Indicates whether the visualization is complete, values for all the member variables are updated after visualize() method is complete''' loaded = False # def visualize(df, print_summaries=True, cat_pthreshold=5, cat_cthreshold=-1): row_count = df.shape[0] column_count = df.shape[1] rows_with_nulls = df[_pd.isnull(df).any(axis=1)] numeric_types = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64', 'int', 'float', 'long', 'complex'] numeric_column_names = list(df.select_dtypes(include=numeric_types).columns) __text_column_names = list(df.select_dtypes(exclude=numeric_types).columns) for c in __text_column_names: if (((df[c].nunique()/row_count) * 100) < cat_pthreshold) or (df[c].nunique() < cat_cthreshold): categorical_column_names.append(c) categorical_column_values[c] = df[c].unique() categorical_column_values_count[c] = df[c].nunique() else: text_column_names.append(c) for c in list(df.columns): if df[c].isnull().sum() > 0: columnwise_null_values_count[c] = df[c].isnull().sum() minSumm = df.min(axis=0, skipna=True, numeric_only=True) maxSumm = df.max(axis=0, skipna=True, numeric_only=True) meanSumm = df.mean(axis=0, skipna=True, numeric_only=True) stdSumm = df.std(axis=0, skipna=True, numeric_only=True) min_max_mean_std = _pd.DataFrame(dict(min=minSumm, max=maxSumm, mean=meanSumm, std=stdSumm), index=stdSumm.index) loaded = True if print_summaries == True: print() print('Here is a summary of the Dataset, aka Quick View :P ...') print() print('Rows count: ' + str(row_count)) print('Columns count: ' + str(column_count)) print() print('Number of rows having null value(s): ' + str(rows_with_nulls.shape[0])) print() print('Numeric Columns: ' + (', '.join(numeric_column_names))) print() print('Categorical Columns: ' + (', '.join(categorical_column_names))) print() print('Text Columns: ' + (', '.join(text_column_names))) print() print('Columns with null values...') for k, v in columnwise_null_values_count.items(): print(k + ' : ' + str(v)) print() print('Distinct values in categorical columns...') for col, vals in categorical_column_values.items(): print('{Column Name}: ' + col + ' {Values}: ' + ((', ').join(str(v) for v in vals))) print() print('Min, Max, Mean and std...') print(min_max_mean_std) print() # START PLOTTING # Column-wise plot null count _plt.bar(range(len(columnwise_null_values_count)), columnwise_null_values_count.values(), align='center') _plt.xticks(range(len(columnwise_null_values_count)), columnwise_null_values_count.keys(), rotation='vertical') _plt.xlabel('Column names') _plt.ylabel('# of Null values') _plt.title('Column-wise null value counts') _plt.tight_layout() _plt.show() print() # Column-wise plot unique categorical values count _plt.bar(range(len(categorical_column_values_count)), categorical_column_values_count.values(), align='center') _plt.xticks(range(len(categorical_column_values_count)), categorical_column_values_count.keys(), rotation='vertical') _plt.xlabel('Categorical Column names') _plt.ylabel('# of Unique Categorical values') _plt.title('Categorical Columns and their unique categorical value counts') _plt.tight_layout() _plt.show() print() # Correlation Matrix... corr = df.corr() fig, ax = _plt.subplots(figsize=(8, 8)) cb = ax.matshow(corr, interpolation='nearest', cmap=cm.Blues) fig.colorbar(cb) _plt.xticks(range(len(corr.columns)), corr.columns, rotation='vertical') _plt.yticks(range(len(corr.columns)), corr.columns) _plt.xlabel('Correlation Matrix') _plt.tight_layout() _plt.show() print()
mit
hsiaoyi0504/scikit-learn
sklearn/utils/tests/test_murmurhash.py
261
2836
# Author: Olivier Grisel <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.externals.six import b, u from sklearn.utils.murmurhash import murmurhash3_32 from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from nose.tools import assert_equal, assert_true def test_mmhash3_int(): assert_equal(murmurhash3_32(3), 847579505) assert_equal(murmurhash3_32(3, seed=0), 847579505) assert_equal(murmurhash3_32(3, seed=42), -1823081949) assert_equal(murmurhash3_32(3, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=False), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=False), -1823081949) assert_equal(murmurhash3_32(3, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=0, positive=True), 847579505) assert_equal(murmurhash3_32(3, seed=42, positive=True), 2471885347) def test_mmhash3_int_array(): rng = np.random.RandomState(42) keys = rng.randint(-5342534, 345345, size=3 * 2 * 1).astype(np.int32) keys = keys.reshape((3, 2, 1)) for seed in [0, 42]: expected = np.array([murmurhash3_32(int(k), seed) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed), expected) for seed in [0, 42]: expected = np.array([murmurhash3_32(k, seed, positive=True) for k in keys.flat]) expected = expected.reshape(keys.shape) assert_array_equal(murmurhash3_32(keys, seed, positive=True), expected) def test_mmhash3_bytes(): assert_equal(murmurhash3_32(b('foo'), 0), -156908512) assert_equal(murmurhash3_32(b('foo'), 42), -1322301282) assert_equal(murmurhash3_32(b('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(b('foo'), 42, positive=True), 2972666014) def test_mmhash3_unicode(): assert_equal(murmurhash3_32(u('foo'), 0), -156908512) assert_equal(murmurhash3_32(u('foo'), 42), -1322301282) assert_equal(murmurhash3_32(u('foo'), 0, positive=True), 4138058784) assert_equal(murmurhash3_32(u('foo'), 42, positive=True), 2972666014) def test_no_collision_on_byte_range(): previous_hashes = set() for i in range(100): h = murmurhash3_32(' ' * i, 0) assert_true(h not in previous_hashes, "Found collision on growing empty string") def test_uniform_distribution(): n_bins, n_samples = 10, 100000 bins = np.zeros(n_bins, dtype=np.float) for i in range(n_samples): bins[murmurhash3_32(i, positive=True) % n_bins] += 1 means = bins / n_samples expected = np.ones(n_bins) / n_bins assert_array_almost_equal(means / expected, np.ones(n_bins), 2)
bsd-3-clause
shusenl/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
smrjan/seldon-server
docker/examples/iris/vw/vw_pipeline.py
2
1126
import sys, getopt, argparse import seldon.pipeline.basic_transforms as bt import seldon.pipeline.auto_transforms as pauto import seldon.pipeline.util as sutl from sklearn.pipeline import Pipeline import seldon.vw as vw import sys def run_pipeline(events,models): tNameId = bt.Feature_id_transform(min_size=0,exclude_missing=True,zero_based=True,input_feature="name",output_feature="nameId") tAuto = pauto.Auto_transform(max_values_numeric_categorical=2,exclude=["nameId","name"]) vwc = vw.VWClassifier(target="nameId",target_readable="name") transformers = [("tName",tNameId),("tAuto",tAuto),("vw",vwc)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe_from_files(events) df2 = p.fit(df) pw.save_pipeline(p,models) if __name__ == '__main__': parser = argparse.ArgumentParser(prog='xgb_pipeline') parser.add_argument('--events', help='events folder', required=True) parser.add_argument('--models', help='output models folder', required=True) args = parser.parse_args() opts = vars(args) run_pipeline([args.events],args.models)
apache-2.0
polyanskiy/refractiveindex.info-scripts
scripts/Rakic 1998 - Cr (BB model).py
1
2587
# -*- coding: utf-8 -*- # Author: Mikhail Polyanskiy # Last modified: 2017-04-02 # Original data: Rakić et al. 1998, https://doi.org/10.1364/AO.37.005271 import numpy as np import matplotlib.pyplot as plt from scipy.special import wofz as w π = np.pi # Brendel-Bormann (BB) model parameters ωp = 10.75 #eV f0 = 0.154 Γ0 = 0.048 #eV f1 = 0.338 Γ1 = 4.256 #eV ω1 = 0.281 #eV σ1 = 0.115 #eV f2 = 0.261 Γ2 = 3.957 #eV ω2 = 0.584 #eV σ2 = 0.252 #eV f3 = 0.817 Γ3 = 2.218 #eV ω3 = 1.919 #eV σ3 = 0.225 #eV f4 = 0.105 Γ4 = 6.983 #eV ω4 = 6.997 #eV σ4 = 4.903 #eV Ωp = f0**.5 * ωp #eV def BB(ω): #ω: eV ε = 1-Ωp**2/(ω*(ω+1j*Γ0)) α = (ω**2+1j*ω*Γ1)**.5 za = (α-ω1)/(2**.5*σ1) zb = (α+ω1)/(2**.5*σ1) ε += 1j*π**.5*f1*ωp**2 / (2**1.5*α*σ1) * (w(za)+w(zb)) #χ1 α = (ω**2+1j*ω*Γ2)**.5 za = (α-ω2)/(2**.5*σ2) zb = (α+ω2)/(2**.5*σ2) ε += 1j*π**.5*f2*ωp**2 / (2**1.5*α*σ2) * (w(za)+w(zb)) #χ2 α = (ω**2+1j*ω*Γ3)**.5 za = (α-ω3)/(2**.5*σ3) zb = (α+ω3)/(2**.5*σ3) ε += 1j*π**.5*f3*ωp**2 / (2**1.5*α*σ3) * (w(za)+w(zb)) #χ3 α = (ω**2+1j*ω*Γ4)**.5 za = (α-ω4)/(2**.5*σ4) zb = (α+ω4)/(2**.5*σ4) ε += 1j*π**.5*f4*ωp**2 / (2**1.5*α*σ4) * (w(za)+w(zb)) #χ4 return ε ev_min=0.02 ev_max=5 npoints=200 eV = np.logspace(np.log10(ev_min), np.log10(ev_max), npoints) μm = 4.13566733e-1*2.99792458/eV ε = BB(eV) n = (ε**.5).real k = (ε**.5).imag #============================ DATA OUTPUT ================================= file = open('out.txt', 'w') for i in range(npoints-1, -1, -1): file.write('\n {:.4e} {:.4e} {:.4e}'.format(μm[i],n[i],k[i])) file.close() #=============================== PLOT ===================================== plt.rc('font', family='Arial', size='14') plt.figure(1) plt.plot(eV, -ε.real, label="-ε1") plt.plot(eV, ε.imag, label="ε2") plt.xlabel('Photon energy (eV)') plt.ylabel('ε') plt.xscale('log') plt.yscale('log') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot n,k vs eV plt.figure(2) plt.plot(eV, n, label="n") plt.plot(eV, k, label="k") plt.xlabel('Photon energy (eV)') plt.ylabel('n, k') plt.yscale('log') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0) #plot n,k vs μm plt.figure(3) plt.plot(μm, n, label="n") plt.plot(μm, k, label="k") plt.xlabel('Wavelength (μm)') plt.ylabel('n, k') plt.xscale('log') plt.yscale('log') plt.legend(bbox_to_anchor=(0,1.02,1,0),loc=3,ncol=2,borderaxespad=0)
gpl-3.0
NelisVerhoef/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
fourwood/OutflowCone
example/cone_example.py
1
7656
#!/usr/bin/env python3 # Should be all Python3 compatible, and I'd suggest keeping it that way. # However, it should *also* be all Python2.7 compatible, as well. from __future__ import print_function, division import numpy as np import OutflowCone as oc # How many clouds to generate in the cone model? # 1e4 gives a *really, really* rough result, but probably okay for seeing things. # 1e5 is pretty fine, but still sees slight variation with different random seeds. # 1e6 is pretty smooth. Takes a bit longer, though, of course. n_points = 1e5 inc = 45 PA = 90 theta = 60 r_in = 0.5 r_out = 6.0 # Makes sure the bottom of the cone is at the midplane: zero_z = True # Makes the bottom of the cone flat, rather than a sector of a spherical surface: flatten = True vel_vec = np.array([30., 0, 225.]) # Rotation curve paramters C, p = (0.5, 1.35) accel = vel_vec[0] # The code implicitly assumes the line-of-sight is directed along -z. A.K.A. anything # moving _into_ the LOS is moving in the +z direction. So this next variable is just # a reminder, and you probably shouldn't try to change this without going into # the model code. #LOS = np.array([0, 0, -1]) ## LOS grid # ~plate scale in kpc/pix step = 0.1 # Xs, aka RA x_min, x_max = (-1, 1) # This will represent the lower bin edges, essentially. sky_xs = np.arange(0, x_max-x_min, step) nxs = len(sky_xs) sky_xs -= step * (nxs//2) # Ys, aka dec y_min, y_max = (-1, 1) # This will represent the lower bin edges, essentially. sky_ys = np.arange(0, y_max-y_min, step) nys = len(sky_ys) sky_ys -= step * (nys//2) cone = oc.Cone(inc=inc, PA=PA, theta=theta, r_in=r_in, r_out=r_out) # 'flatten' means make it so the cone is flat on the bottom at a disk height of r_in; # otherwise it'll be a spherical surface of radius r_in. If zero_z is true, the minimum # z-height of the cone will be 0, otherwise it'll be some non-zero value based on r_in. cone.GenerateClouds(n_points, flatten=flatten, zero_z=zero_z) # Make a rotation curve for each point. sph_vels = np.repeat(np.asarray([vel_vec]), cone._n_clouds, axis=0) R_max0 = r_in * np.sin(np.radians(theta)) R_maxs = R_max0 + cone._local_zs * np.tan(np.radians(theta)) Rs = np.sqrt(cone._local_xs**2+cone._local_ys**2) R0s = R_max0 * Rs / R_maxs rot_vels = oc.RotCurve(vel_vec[2], R0s, C=C, p=p) rot_vels *= R0s / cone._local_rs #Ang. mom. cons. sph_vels[:,2] = rot_vels R_0 = 1. # kpc normalization for acceleration sph_vels[:,0] += 1.0 * accel * (cone._local_rs / R_0) # This function will convert the spherical-coordinate velocities # into Cartesian, accounting for inclination. cone.SetLocalVels(sph_vels) ## LOS is ~hard-coded, so these are equivalent. #proj_vels = -cone._vzs proj_vels = cone.LOS_vs # Now we're gonna bin up velocities in the LOS grid and do some convolutions. max_vels = np.zeros((nys, nxs)) fwhms = np.zeros_like(max_vels) radii = np.sqrt(cone._xs**2 + cone._ys**2 + cone._zs**2) weights = 1/radii**2 # 1/r^2 weighting approximates photoionization inst_res = 17.0 turb_sigma = 90.0 total_broadening = np.sqrt(inst_res**2 + turb_sigma**2) for j, y in enumerate(sky_ys): for i, x in enumerate(sky_xs): masked_vels = cone.GetLOSCloudVels((x, y), step) mask = ~masked_vels.mask # foo is a masked array, we want what *isn't* masked, really. bin_vels = masked_vels[mask] bin_weights = weights[mask] bin_radii = radii[mask] if len(bin_vels) > 0: v_min, v_max = (-500., 500.) # Enough to encompass everything... bin_size = 5. # but probably shouldn't be hard-coded. hist_bins = np.linspace(v_min, v_max, (v_max-v_min)/bin_size+1) n, edges = np.histogram(bin_vels, bins=hist_bins, weights=bin_weights) # Convolve the velocity profile with turb/inst broadening gauss_bins = np.linspace(10*v_min, 10*v_max, (10*v_max-10*v_min)/bin_size+1) gauss = np.exp(-gauss_bins**2/(2*total_broadening**2)) / \ (total_broadening*np.sqrt(2*np.pi)) * bin_size convol = np.convolve(n, gauss, mode='same') ## Estimate the FWHM. #g_max_idx = np.where(convol == np.max(convol))[0][0] #g_max = convol[g_max_idx] #g_hmax = g_max / 2. #left_hmax_idx = np.abs(convol[:g_max_idx]-g_hmax).argmin() #right_hmax_idx = np.abs(convol[g_max_idx:]-g_hmax).argmin() + g_max_idx #fwhm_est = gauss_bins[right_hmax_idx] - gauss_bins[left_hmax_idx] #fwhms[j,i] = fwhm_est max_vels[j,i] = np.average(gauss_bins, weights=convol) else: max_vels[j,i] = np.nan ## Print some stats: #print("Outflow velocity stats:") #print("Minimum:\t\t{:0.1f}".format(np.min(sph_vels[:,0]))) #print("Maximum:\t\t{:0.1f}".format(np.max(sph_vels[:,0]))) #print("Median:\t\t\t{:0.1f}".format(np.median(sph_vels[:,0]))) #print("Average:\t\t{:0.1f}".format(np.average(sph_vels[:,0]))) #print("1/r^2 weighted-average:\t{:0.1f}".format(np.average(sph_vels[:,0], # weights=1/radii**2))) ############### ## Plotting! ## ############### import pylab as plt import matplotlib as mpl import matplotlib.ticker as ticker cmap = plt.cm.RdBu_r cmap_vals = cmap(np.arange(256)) scale = 0.75 new_cmap_vals = np.array([[scale*val[0], scale*val[1], scale*val[2], scale*val[3]] for val in cmap_vals]) new_cmap = mpl.colors.LinearSegmentedColormap.from_list("new_cmap", new_cmap_vals) params = {'figure.subplot.left': 0.10, 'figure.subplot.right': 0.93, 'figure.subplot.bottom': 0.12, 'figure.subplot.top': 0.97, 'text.usetex': True, 'font.size': 10} plt.rcParams.update(params) figsize = (3.35, 2.75) fig, ax = plt.subplots(figsize=figsize) ## LOS grid #for y in sky_ys: # for x in sky_xs: # plt.plot([x, x], [y_min, y_max], # 'k-', linewidth=0.1, zorder=0.1) # plt.plot([x_min, x_max], [y, y], # 'k-', linewidth=0.1, zorder=0.1) v_min, v_max = (-150, 150) # Main image n_levels = 41 levels = np.linspace(v_min, v_max, n_levels) extents = (sky_xs[0], sky_xs[-1]+step, sky_ys[0], sky_ys[-1]+step) img = ax.contourf(max_vels, cmap=cmap, vmin=v_min, vmax=v_max, origin='lower', zorder=0, levels=levels, extend='both', extent=extents) # Contour overlay c_levels = 11 c_levels = np.linspace(v_min, v_max, c_levels) contours = ax.contour(max_vels, cmap=new_cmap, vmin=v_min, vmax=v_max, origin='lower', levels=c_levels, extend='both', extent=extents) # Crosshairs ax.plot([x_min, x_max], [0, 0], 'k:', scalex=False, scaley=False) ax.plot([0, 0], [y_min, y_max], 'k:', scalex=False, scaley=False) # Colorbar ticks = np.arange(v_min, v_max+1, 50) ticks = c_levels bar = plt.colorbar(img, ticks=ticks, pad=0.025) bar.set_label(r'Velocity (km s$^{-1}$)', labelpad=3.0) plt.xlabel('Distance (kpc)', labelpad=0.) plt.ylabel('Distance (kpc)', labelpad=-5.) x_maj_ticks = ticker.MaxNLocator(2) x_min_ticks = ticker.AutoMinorLocator(10) y_maj_ticks = ticker.MaxNLocator(2) y_min_ticks = ticker.AutoMinorLocator(10) ax.xaxis.set_major_locator(x_maj_ticks) ax.xaxis.set_minor_locator(x_min_ticks) ax.yaxis.set_major_locator(y_maj_ticks) ax.yaxis.set_minor_locator(y_min_ticks) ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) plt.savefig("cone_example.eps") plt.close() #plt.show()
mit
LennonLab/simplex
tools/DiversityTools/macroecotools/macroecotools.py
12
16643
"""Module for conducting standard macroecological plots and analyses""" from __future__ import division import numpy as np import matplotlib.pyplot as plt import colorsys from numpy import log10 import pandas import numpy import math def AIC(k, L): """Computes the Akaike Information Criterion. Keyword arguments: L -- log likelihood value of given distribution. k -- number of fitted parameters. """ AIC = 2 * k - 2 * L return AIC def AICc(k, L, n): """Computes the corrected Akaike Information Criterion. Keyword arguments: L -- log likelihood value of given distribution. k -- number of fitted parameters. n -- number of observations. """ AICc = 2 * k - 2 * L + 2 * k * (k + 1) / (n - k - 1) return AICc def aic_weight(AICc_list, n, cutoff = 4): """Computes Akaike weight for one model relative to others Based on information from Burnham and Anderson (2002). Keyword arguments: n -- number of observations. cutoff -- minimum number of observations required to generate a weight. AICc_list -- list of AICc values for each model """ if n < cutoff: AICc_weights = None else: AICc_min = min(AICc_list) # Minimum AICc value for the entire list relative_likelihoods = [] for AICc in AICc_list: delta_AICc = AICc - AICc_min relative_likelihood = np.exp(-(delta_AICc)/2) relative_likelihoods.append(relative_likelihood) relative_likelihoods = np.array(relative_likelihoods) AICc_weights = relative_likelihoods / sum(relative_likelihoods) return(AICc_weights) def get_pred_iterative(cdf_obs, dist, *pars): """Function to get predicted abundances (reverse-sorted) for distributions with no analytical ppf.""" cdf_obs = np.sort(cdf_obs) abundance = list(np.empty([len(cdf_obs)])) j = 0 cdf_cum = 0 i = 1 while j < len(cdf_obs): cdf_cum += dist.pmf(i, *pars) while cdf_cum >= cdf_obs[j]: abundance[j] = i j += 1 if j == len(cdf_obs): abundance.reverse() return np.array(abundance) i += 1 def get_rad_from_cdf(dist, S, *args): """Return a predicted rank-abundance distribution from a theoretical CDF Keyword arguments: dist -- a distribution class S -- the number of species for which the RAD should be predicted. Should match the number of species in the community if comparing to empirical data. args -- arguments for dist Finds the predicted rank-abundance distribution that results from a theoretical cumulative distribution function, by rounding the value of the cdf evaluated at 1 / S * (Rank - 0.5) to the nearest integer """ emp_cdf = [(S - i + 0.5) / S for i in range(1, S + 1)] try: rad = int(np.round(dist.ppf(emp_cdf, *args))) except: rad = get_pred_iterative(emp_cdf, dist, *args) return np.array(rad) def get_emp_cdf(dat): """Compute the empirical cdf given a list or an array""" dat = np.array(dat) emp_cdf = [] for point in dat: point_cdf = len(dat[dat <= point]) / len(dat) emp_cdf.append(point_cdf) return np.array(emp_cdf) def hist_pmf(xs, pmf, bins): """Create a histogram based on a probability mass function Creates a histogram by combining the pmf values inside a series of bins Args: xs: Array-like list of x values that the pmf values come from pmf: Array-like list of pmf values associate with the values of x bins: Array-like list of bin edges Returns: hist: Array of values of the histogram bin_edges: Array of value of the bin edges """ xs = np.array(xs) pmf = np.array(pmf) bins = np.array(bins) hist = [] for lower_edge_index in range(len(bins) - 1): if lower_edge_index + 1 == len(bins): hist.append(sum(pmf[(xs >= bins[lower_edge_index]) & (xs <= bins[lower_edge_index + 1])])) else: hist.append(sum(pmf[(xs >= bins[lower_edge_index]) & (xs < bins[lower_edge_index + 1])])) hist = np.array(hist) return (hist, bins) def plot_rad(Ns): """Plot a rank-abundance distribution based on a vector of abundances""" Ns.sort(reverse=True) rank = range(1, len(Ns) + 1) plt.plot(rank, Ns, 'bo-') plt.xlabel('Rank') plt.ylabel('Abundance') def get_rad_data(Ns): """Provide ranks and relative abundances for a vector of abundances""" Ns = np.array(Ns) Ns_sorted = -1 * np.sort(-1 * Ns) relab_sorted = Ns_sorted / sum(Ns_sorted) rank = range(1, len(Ns) + 1) return (rank, relab_sorted) def preston_sad(abund_vector, b=None, normalized = 'no'): """Plot histogram of species abundances on a log2 scale""" if b == None: q = np.exp2(list(range(0, 25))) b = q [(q <= max(abund_vector)*2)] if normalized == 'no': hist_ab = np.histogram(abund_vector, bins = b) if normalized == 'yes': hist_ab_norm = np.histogram(abund_vector, bins = b) hist_ab_norm1 = hist_ab_norm[0]/(b[0:len(hist_ab_norm[0])]) hist_ab_norm2 = hist_ab_norm[1][0:len(hist_ab_norm[0])] hist_ab = (hist_ab_norm1, hist_ab_norm2) return hist_ab def plot_SARs(list_of_A_and_S): """Plot multiple SARs on a single plot. Input: a list of lists, each sublist contains one vector for S and one vector for A. Output: a graph with SARs plotted on log-log scale, with colors spanning the spectrum. """ N = len(list_of_A_and_S) HSV_tuples = [(x * 1.0 / N, 0.5, 0.5) for x in range(N)] RGB_tuples = map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples) for i in range(len(list_of_A_and_S)): sublist = list_of_A_and_S[i] plt.loglog(sublist[0], sublist[1], color = RGB_tuples[i]) plt.hold(False) plt.xlabel('Area') plt.ylabel('Richness') def points_on_circle(center, radius, n = 100): """Generate n equally spaced points on a circle, given its center and radius.""" x0, y0 = center points = [(math.cos(2 * math.pi / n * x) * radius + x0, math.sin(2 * math.pi / n * x) * radius + y0) for x in xrange(0, n + 1)] return points def count_pts_within_radius(x, y, radius, logscale=0): """Count the number of points within a fixed radius in 2D space""" #TODO: see if we can improve performance using KDTree.query_ball_point #http://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query_ball_point.html #instead of doing the subset based on the circle unique_points = set([(x[i], y[i]) for i in range(len(x))]) count_data = [] logx, logy, logr = log10(x), log10(y), log10(radius) for a, b in unique_points: if logscale == 1: loga, logb = log10(a), log10(b) num_neighbors = len(x[((logx - loga) ** 2 + (logy - logb) ** 2) <= logr ** 2]) else: num_neighbors = len(x[((x - a) ** 2 + (y - b) ** 2) <= radius ** 2]) count_data.append((a, b, num_neighbors)) return count_data def plot_color_by_pt_dens(x, y, radius, loglog=0, plot_obj=None): """Plot bivariate relationships with large n using color for point density Inputs: x & y -- variables to be plotted radius -- the linear distance within which to count points as neighbors loglog -- a flag to indicate the use of a loglog plot (loglog = 1) The color of each point in the plot is determined by the logarithm (base 10) of the number of points that occur with a given radius of the focal point, with hotter colors indicating more points. The number of neighboring points is determined in linear space regardless of whether a loglog plot is presented. """ plot_data = count_pts_within_radius(x, y, radius, loglog) sorted_plot_data = np.array(sorted(plot_data, key=lambda point: point[2])) if plot_obj == None: plot_obj = plt.axes() if loglog == 1: plot_obj.set_xscale('log') plot_obj.set_yscale('log') plot_obj.scatter(sorted_plot_data[:, 0], sorted_plot_data[:, 1], c = np.sqrt(sorted_plot_data[:, 2]), edgecolors='none') plot_obj.set_xlim(min(x) * 0.5, max(x) * 2) plot_obj.set_ylim(min(y) * 0.5, max(y) * 2) else: plot_obj.scatter(sorted_plot_data[:, 0], sorted_plot_data[:, 1], c = log10(sorted_plot_data[:, 2]), edgecolors='none') return plot_obj def e_var(abundance_data): """Calculate Smith and Wilson's (1996; Oikos 76:70-82) evenness index (Evar) Input: abundance_data = list of abundance fo all species in a community """ S = len(abundance_data) ln_nj_over_S=[] for i in range(0, S): v1 = (np.log(abundance_data[i]))/S ln_nj_over_S.append(v1) ln_ni_minus_above=[] for i in range(0, S): v2 = ((np.log(abundance_data[i])) - sum(ln_nj_over_S)) ** 2 ln_ni_minus_above.append(v2) return(1 - ((2 / np.pi) * np.arctan(sum(ln_ni_minus_above) / S))) def obs_pred_rsquare(obs, pred): """Determines the prop of variability in a data set accounted for by a model In other words, this determines the proportion of variation explained by the 1:1 line in an observed-predicted plot. """ return 1 - sum((obs - pred) ** 2) / sum((obs - np.mean(obs)) ** 2) def obs_pred_mse(obs, pred): """Calculate the mean squared error of the prediction given observation.""" return sum((obs - pred) ** 2) / len(obs) def comp_ed (spdata1,abdata1,spdata2,abdata2): """Calculate the compositional Euclidean Distance between two sites Ref: Thibault KM, White EP, Ernest SKM. 2004. Temporal dynamics in the structure and composition of a desert rodent community. Ecology. 85:2649-2655. """ abdata1 = (abdata1 * 1.0) / sum(abdata1) abdata2 = (abdata2 * 1.0) / sum(abdata2) intersect12 = set(spdata1).intersection(spdata2) setdiff12 = np.setdiff1d(spdata1,spdata2) setdiff21 = np.setdiff1d(spdata2,spdata1) relab1 = np.concatenate(((abdata1[np.setmember1d(spdata1,list(intersect12)) == 1]), abdata1[np.setmember1d(spdata1,setdiff12)], np.zeros(len(setdiff21)))) relab2 = np.concatenate((abdata2[np.setmember1d(spdata2,list(intersect12)) == 1], np.zeros(len(setdiff12)), abdata2[np.setmember1d(spdata2,setdiff21)])) return np.sqrt(sum((relab1 - relab2) ** 2)) def calc_comp_eds(ifile, fout): """Calculate Euclidean distances in species composition across sites. Determines the Euclidean distances among all possible pairs of sites and saves the results to a file Inputs: ifile -- ifile = np.genfromtxt(input_filename, dtype = "S15,S15,i8", names = ['site','species','ab'], delimiter = ",") fout -- fout = csv.writer(open(output_filename,'ab')) """ #TODO - Remove reliance on on names of columns in input # Possibly move to 3 1-D arrays for input rather than the 2-D with 3 columns # Return result rather than writing to file usites = np.sort(list(set(ifile["site"]))) for i in range (0, len(usites)-1): spdata1 = ifile["species"][ifile["site"] == usites[i]] abdata1 = ifile["ab"][ifile["site"] == usites[i]] for a in range (i+1,len(usites)): spdata2 = ifile["species"][ifile["site"] == usites[a]] abdata2 = ifile["ab"][ifile["site"] == usites[a]] ed = comp_ed (spdata1,abdata1,spdata2,abdata2) results = np.column_stack((usites[i], usites[a], ed)) fout.writerows(results) def combined_spID(*species_identifiers): """Return a single column unique species identifier Creates a unique species identifier based on one or more columns of a data frame that represent the unique species ID. Args: species_identifiers: A tuple containing one or pieces of a unique species identifier or lists of these pieces. Returns: A single unique species identifier or a list of single identifiers """ # Make standard input data types capable of element wise summation input_type = type(species_identifiers[0]) assert input_type in [list, tuple, str, pandas.core.series.Series, numpy.ndarray] if input_type is not str: species_identifiers = [pandas.Series(identifier) for identifier in species_identifiers] single_identifier = species_identifiers[0] if len(species_identifiers) > 1: for identifier in species_identifiers[1:]: single_identifier += identifier if input_type == numpy.ndarray: single_identifier = numpy.array(single_identifier) else: single_identifier = input_type(single_identifier) return single_identifier def richness_in_group(composition_data, group_cols, spid_cols): """Determine the number of species in a grouping (e.g., at each site) Counts the number of species grouped at one or more levels. For example, the number of species occuring at each of a series of sites or in each of a series of years. If a combination of grouping variables is not present in the data, then no values will be returned for that combination. In other words, if these missing combinations should be treated as zeros, this will need to be handled elsewhere. Args: composition_data: A Pandas data frame with one or more columns with information on species identity and one or more columns with information on the groups, e.g., years or sites. group_cols: A list of strings of the names othe columns in composition_data that hold the grouping fields. spid_cols: A list of strings of the names of the columns in composition_data that hold the data on species ID. This could be a single column with a unique ID or two columns containing the latin binomial. Returns: A data frame with the grouping fields and the species richness """ spid_series = [composition_data[spid_col] for spid_col in spid_cols] single_spid = combined_spID(*spid_series) composition_data['_spid'] = single_spid richness = composition_data.groupby(group_cols)._spid.nunique() richness = richness.reset_index() richness.columns = group_cols + ['richness'] del composition_data['_spid'] return richness def abundance_in_group(composition_data, group_cols, abund_col=None): """Determine the number of individuals in a grouping (e.g., at each site) Counts the number of individuals grouped at one or more levels. For example, the number of species occuring at each of a series of sites or in each of a series of genus-species combinations. If a combination of grouping variables is not present in the data, then no values will be returned for that combination. In other words, if these missing combinations should be treated as zeros, this will need to be handled elsewhere. Args: composition_data: A Pandas data frame with one or more columns with information on species identity and one or more columns with information on the groups, e.g., years or sites, and a column containing the abundance value. group_cols: A list of strings of the names othe columns in composition_data that hold the grouping fields. abund_col: A column containing abundance data. If this column is not provided then it is assumed that the abundances are to be obtained by counting the number of rows in the group (e.g., there is one sample per individual in many ecological datasets) Returns: A data frame with the grouping fields and the species richness """ if abund_col: abundance = composition_data[group_cols + abund_col].groupby(group_cols).sum() else: abundance = composition_data[group_cols].groupby(group_cols).size() abundance = pandas.DataFrame(abundance) abundance.columns = ['abundance'] abundance = abundance.reset_index() return abundance
mit
chugunovyar/factoryForBuild
env/lib/python2.7/site-packages/numpy/lib/npyio.py
23
73862
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter, index as opindex import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode, is_pathlib_path ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(file, *args, **kwargs): """ Create a ZipFile. Allows for Zip64, and the `file` argument can accept file, str, or pathlib.Path objects. `args` and `kwargs` are passed to the zipfile.ZipFile constructor. """ if is_pathlib_path(file): file = str(file) import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(file, *args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object, string, or pathlib.Path The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. lib.format.open_memmap : Create or load a memory-mapped ``.npy`` file. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True elif is_pathlib_path(file): fid = file.open("rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of NumPy arrays is loaded # in. Pickle does not pass on the encoding information to # NumPy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) # If the file size is less than N, we need to make sure not # to seek past the beginning of the file fid.seek(-min(N, len(magic)), 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file, str, or pathlib.Path File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string or Path, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True elif is_pathlib_path(file): if not file.name.endswith('.npy'): file = file.parent / (file.name + '.npy') fid = file.open("wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string or a Path, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the NumPy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' elif is_pathlib_path(file): if not file.name.endswith('.npz'): file = file.parent / (file.name + '.npz') namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. # Since target file might be big enough to exceed capacity of a global # temporary directory, create temp file side-by-side with the target file. file_dir, file_prefix = os.path.split(file) if _is_string_like(file) else (None, 'tmp') fd, tmpfile = tempfile.mkstemp(prefix=file_prefix, dir=file_dir, suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) except IOError as exc: raise IOError("Failed to write to %s: %s" % (tmpfile, exc)) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file, str, or pathlib.Path File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : int or sequence, optional Which columns to read, with 0 being the first. For example, usecols = (1,4,5) will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. .. versionadded:: 1.11.0 Also when a single column has to be read it is possible to use an integer instead of a tuple. E.g ``usecols = 3`` reads the fourth column the same way as `usecols = (3,)`` would. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: # Allow usecols to be a single int or a sequence of ints try: usecols_as_list = list(usecols) except TypeError: usecols_as_list = [usecols] for col_idx in usecols_as_list: try: opindex(col_idx) except TypeError as e: e.args = ( "usecols must be an int or a sequence of ints but " "it contains at least one element of type %s" % type(col_idx), ) raise # Fall back to existing code usecols = usecols_as_list fown = False try: if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname, stacklevel=2) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4ej %.4e %+.4ej %.4e %+.4ej'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if is_pathlib_path(fname): fname = str(fname) if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, pathlib.Path, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] NumPy User Guide, section `I/O with NumPy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if is_pathlib_path(fname): fname = str(fname) if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname, stacklevel=2) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning, stacklevel=2) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
gpl-3.0
larrybradley/astropy
astropy/table/__init__.py
8
3387
# Licensed under a 3-clause BSD style license - see LICENSE.rst from astropy import config as _config from .column import Column, MaskedColumn, StringTruncateWarning, ColumnInfo __all__ = ['BST', 'Column', 'ColumnGroups', 'ColumnInfo', 'Conf', 'JSViewer', 'MaskedColumn', 'NdarrayMixin', 'QTable', 'Row', 'SCEngine', 'SerializedColumn', 'SortedArray', 'StringTruncateWarning', 'Table', 'TableAttribute', 'TableColumns', 'TableFormatter', 'TableGroups', 'TableMergeError', 'TableReplaceWarning', 'conf', 'connect', 'hstack', 'join', 'registry', 'represent_mixins_as_columns', 'setdiff', 'unique', 'vstack', 'dstack', 'conf', 'join_skycoord', 'join_distance', 'PprintIncludeExclude'] class Conf(_config.ConfigNamespace): # noqa """ Configuration parameters for `astropy.table`. """ auto_colname = _config.ConfigItem( 'col{0}', 'The template that determines the name of a column if it cannot be ' 'determined. Uses new-style (format method) string formatting.', aliases=['astropy.table.column.auto_colname']) default_notebook_table_class = _config.ConfigItem( 'table-striped table-bordered table-condensed', 'The table class to be used in Jupyter notebooks when displaying ' 'tables (and not overridden). See <https://getbootstrap.com/css/#tables ' 'for a list of useful bootstrap classes.') replace_warnings = _config.ConfigItem( [], 'List of conditions for issuing a warning when replacing a table ' "column using setitem, e.g. t['a'] = value. Allowed options are " "'always', 'slice', 'refcount', 'attributes'.", 'list') replace_inplace = _config.ConfigItem( False, 'Always use in-place update of a table column when using setitem, ' "e.g. t['a'] = value. This overrides the default behavior of " "replacing the column entirely with the new value when possible. " "This configuration option will be deprecated and then removed in " "subsequent major releases.") conf = Conf() # noqa from . import connect # noqa: E402 from .groups import TableGroups, ColumnGroups # noqa: E402 from .table import (Table, QTable, TableColumns, Row, TableFormatter, NdarrayMixin, TableReplaceWarning, TableAttribute, PprintIncludeExclude) # noqa: E402 from .operations import (join, setdiff, hstack, dstack, vstack, unique, # noqa: E402 TableMergeError, join_skycoord, join_distance) # noqa: E402 from .bst import BST # noqa: E402 from .sorted_array import SortedArray # noqa: E402 from .soco import SCEngine # noqa: E402 from .serialize import SerializedColumn, represent_mixins_as_columns # noqa: E402 # Finally import the formats for the read and write method but delay building # the documentation until all are loaded. (#5275) from astropy.io import registry # noqa: E402 with registry.delay_doc_updates(Table): # Import routines that connect readers/writers to astropy.table from .jsviewer import JSViewer import astropy.io.ascii.connect import astropy.io.fits.connect import astropy.io.misc.connect import astropy.io.votable.connect import astropy.io.misc.asdf.connect import astropy.io.misc.pandas.connect # noqa: F401
bsd-3-clause
fqhuy/minimind
prototypes/test_image_upsampling.py
1
1261
import numpy as np import scipy as sp from scipy.stats import multivariate_normal from matplotlib import pyplot as plt def k(x, a = -0.75): if abs(x) <= 1: return (a + 2.) * abs(x)**3 - (a + 3.) * abs(x) ** 2. + 1 elif 1 < abs(x) <= 2: return a * abs(x) ** 3. - 5. * a * abs(x) **2. + 8. * a * abs(x) - 4. * a else: return 0.0 # x, y = np.mgrid[-1:1:.01, -1:1:.01] # pos = np.empty(x.shape + (2,)) # pos[:, :, 0] = x; pos[:, :, 1] = y # rv = multivariate_normal([0.0, 0.0], [[2.0, 0.3], [0.3, 2.0]]) # plt.contourf(x, y, rv.pdf(pos)) A = np.random.rand(5, 5) B = A.copy() # A = np.kron(A, np.ones((2, 2), dtype=float)) alpha = 5 C = np.zeros((A.shape[0] * alpha, A.shape[1] * alpha), dtype=float) for i in range(A.shape[0]): for j in range(A.shape[1]): C[i * alpha, j * alpha] = A[i, j] # K = np.array([k(xx) for xx in [-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2]]) K = np.array([k(xx) for xx in np.linspace(-2, 2, 11)]) for r in range(C.shape[0]): C[r, :] = np.convolve(C[r], K, 'same') for c in range(A.shape[1]): C[:, c] = np.convolve(C[:, c].flatten(), K, 'same') plt.subplot(121) plt.imshow(C, interpolation='bicubic') plt.subplot(122) plt.imshow(C, interpolation='nearest') plt.show()
mit
ywcui1990/htmresearch
projects/capybara/datasets/SyntheticData/generate_synthetic_data.py
9
5156
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2016, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Generate synthetic sequences using a pool of sequence motifs """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from sklearn import decomposition import os plt.figure() # Generate a set of sequence motifs def generateSequenceMotifs(numMotif, motifLength, seed=None): if seed is not None: np.random.seed(seed) sequenceMotifs = np.random.randn(motifLength, motifLength) pca = decomposition.PCA(n_components=numMotif) pca.fit(sequenceMotifs) sequenceMotifs = pca.components_ for i in range(numMotif): sequenceMotifs[i, :] = sequenceMotifs[i, :]-min(sequenceMotifs[i, :]) sequenceMotifs[i, :] = sequenceMotifs[i, :]/max(sequenceMotifs[i, :]) return sequenceMotifs def generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs): motifLength = sequenceMotifs.shape[1] sequence = np.zeros((sequenceLength + 20,)) motifState = np.zeros((sequenceLength + 20,)) randomLengthList = np.linspace(1, 10, 10).astype('int') t = 0 while t < sequenceLength: randomLength = np.random.choice(randomLengthList) sequence[t:t + randomLength] = np.random.rand(randomLength) motifState[t:t + randomLength] = -1 t += randomLength motifIdx = np.random.choice(useMotif[currentClass]) sequence[t:t + motifLength] = sequenceMotifs[motifIdx] motifState[t:t + motifLength] = motifIdx t += motifLength sequence = sequence[:sequenceLength] motifState = motifState[:sequenceLength] return sequence, motifState def generateSequences(numSeq, numClass, sequenceLength, useMotif, sequenceMotifs): trainData = np.zeros((numSeq, sequenceLength+1)) numSeqPerClass = numSeq/numClass classList = [] for classIdx in range(numClass): classList += [classIdx] * numSeqPerClass for seq in range(numSeq): currentClass = classList[seq] sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) trainData[seq, 0] = currentClass trainData[seq, 1:] = sequence return trainData numMotif = 5 motifLength = 5 sequenceMotifs = generateSequenceMotifs(numMotif, 5, seed=42) numTrain = 100 numTest = 100 numClass = 2 motifPerClass = 2 np.random.seed(2) useMotif = {} motifList = set(range(numMotif)) for classIdx in range(numClass): useMotifForClass = [] for _ in range(motifPerClass): useMotifForClass.append(np.random.choice(list(motifList))) motifList.remove(useMotifForClass[-1]) useMotif[classIdx] = useMotifForClass sequenceLength = 100 currentClass = 0 sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) MotifColor = {} colorList = ['r','g','b','c','m','y'] i = 0 for c in useMotif.keys(): for v in useMotif[c]: MotifColor[v] = colorList[i] i += 1 fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(20, 3 * 4)) for plti in xrange(4): currentClass = [0 if plti < 2 else 1][0] sequence, motifState = generateSequence(sequenceLength, useMotif, currentClass, sequenceMotifs) ax[plti].plot(sequence, 'k-') startPatch = False for t in range(len(motifState)): if motifState[t] >= 0 and startPatch is False: startPatchAt = t startPatch = True currentMotif = motifState[t] if startPatch and (motifState[t] < 0): endPatchAt = t-1 ax[plti].add_patch( patches.Rectangle( (startPatchAt, 0), endPatchAt-startPatchAt, 1, alpha=0.5, color=MotifColor[currentMotif] ) ) startPatch = False ax[plti].set_xlim([0, 100]) ax[plti].set_ylabel('class {}'.format(currentClass)) outputDir = 'Test1' if not os.path.exists(outputDir): os.makedirs(outputDir) trainData = generateSequences( numTrain, numClass, sequenceLength, useMotif, sequenceMotifs) testData = generateSequences( numTest, numClass, sequenceLength, useMotif, sequenceMotifs) np.savetxt('Test1/Test1_TRAIN', trainData, delimiter=',', fmt='%.10f') np.savetxt('Test1/Test1_TEST', testData, delimiter=',', fmt='%.10f') plt.savefig('Test1/Test1.png')
agpl-3.0
spxtr/contrib
mungegithub/issue-labeler/simple_app.py
20
4662
#!/usr/bin/env python # Copyright 2016 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import simplejson import logging from logging.handlers import RotatingFileHandler import numpy as np from flask import Flask, request from sklearn.feature_extraction import FeatureHasher from sklearn.externals import joblib from sklearn.linear_model import SGDClassifier from nltk.tokenize import RegexpTokenizer from nltk.stem.porter import PorterStemmer app = Flask(__name__) #Parameters team_fn= "./models/trained_teams_model.pkl" component_fn= "./models/trained_components_model.pkl" logFile = "/tmp/issue-labeler.log" logSize = 1024*1024*100 numFeatures = 262144 myLoss = 'hinge' myAlpha = .1 myPenalty = 'l2' myHasher = FeatureHasher(input_type="string", n_features= numFeatures, non_negative=True) myStemmer = PorterStemmer() tokenizer = RegexpTokenizer(r'\w+') try: if not stopwords: stop_fn = "./stopwords.txt" with open(stop_fn, 'r') as f: stopwords = set([word.strip() for word in f]) except: #don't remove any stopwords stopwords = [] @app.errorhandler(500) def internal_error(exception): return str(exception), 500 @app.route("/", methods = ["POST"]) def get_labels(): """ The request should contain 2 form-urlencoded parameters 1) title : title of the issue 2) body: body of the issue It returns a team/<label> and a component/<label> """ title = request.form.get('title', "") body = request.form.get('body', "") tokens = tokenize_stem_stop(" ".join([title, body])) team_mod = joblib.load(team_fn) comp_mod = joblib.load(component_fn) vec = myHasher.transform([tokens]) tlabel = team_mod.predict(vec)[0] clabel = comp_mod.predict(vec)[0] return ",".join([tlabel, clabel]) def tokenize_stem_stop(inputString): inputString = inputString.encode('utf-8') curTitleBody = tokenizer.tokenize(inputString.decode('utf-8').lower()) return map(myStemmer.stem, filter(lambda x: x not in stopwords, curTitleBody)) @app.route("/update_models", methods = ["PUT"]) def update_model(): """ data should contain three fields titles: list of titles bodies: list of bodies labels: list of list of labels """ data = request.json titles = data.get('titles') bodies = data.get('bodies') labels = data.get('labels') tTokens = [] cTokens = [] team_labels = [] component_labels = [] for (title, body, label_list) in zip(titles, bodies, labels): tLabel = filter(lambda x: x.startswith('team'), label_list) cLabel = filter(lambda x: x.startswith('component'), label_list) tokens = tokenize_stem_stop(" ".join([title, body])) if tLabel: team_labels += tLabel tTokens += [tokens] if cLabel: component_labels += cLabel cTokens += [tokens] tVec = myHasher.transform(tTokens) cVec = myHasher.transform(cTokens) if team_labels: if os.path.isfile(team_fn): team_model = joblib.load(team_fn) team_model.partial_fit(tVec, np.array(team_labels)) else: #no team model stored so build a new one team_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) team_model.fit(tVec, np.array(team_labels)) if component_labels: if os.path.isfile(component_fn): component_model = joblib.load(component_fn) component_model.partial_fit(cVec, np.array(component_labels)) else: #no comp model stored so build a new one component_model = SGDClassifier(loss=myLoss, penalty=myPenalty, alpha=myAlpha) component_model.fit(cVec, np.array(component_labels)) joblib.dump(team_model, team_fn) joblib.dump(component_model, component_fn) return "" def configure_logger(): FORMAT = '%(asctime)-20s %(levelname)-10s %(message)s' file_handler = RotatingFileHandler(logFile, maxBytes=logSize, backupCount=3) formatter = logging.Formatter(FORMAT) file_handler.setFormatter(formatter) app.logger.addHandler(file_handler) if __name__ == "__main__": configure_logger() app.run(host="0.0.0.0")
apache-2.0
jlorieau/mollib
analysis/datasets/ramachandran.py
1
8178
"""Analysis of the Ramachandran datasets. """ import tarfile import json from itertools import izip_longest as zip_longest import numpy as np import matplotlib import matplotlib.pyplot as plt from scipy import ndimage # Plot parameters figsize = (7, 1.5) # size of each subplot in inches title_fontsize = 9 # size of the font for subplottitles title_font = 'Arial' axes_fontsize = 9 # font size of the axes axes_font = 'Arial' label_fontsize = 8 # font size of the tick labels annotation_fontsize = 7 matplotlib.rc('text', usetex=False) matplotlib.rc('font', family='sans-serif') matplotlib.rc('axes', linewidth=0.5) for i in ('xtick', 'ytick'): matplotlib.rcParams[i + '.major.size'] = 2.0 matplotlib.rcParams[i + '.major.width'] = 0.75 matplotlib.rcParams[i + '.minor.size'] = 1.0 matplotlib.rcParams[i + '.minor.width'] = 0.5 # import the dataset filename = '../../mollib/data/ramachandranstatistics/measurements.tar' tfile = tarfile.open(name=filename, mode='r') measurement_dict = {} with tfile: # Extract the files for member in tfile.getmembers(): f= tfile.extractfile(member) try: identifier = member.name.strip('.json') string = f.read().decode() return_dict = json.loads(string) measurement_dict[identifier] = return_dict except KeyError: continue finally: f.close() # Import the phi/psi angles results = {} for identifier, return_dict in measurement_dict.items(): for classification, phi_psi_list in return_dict.items(): l = results.setdefault(classification, list()) phi_psi_list = [(i,j) for i,j in phi_psi_list if isinstance(i, float) and isinstance(j, float)] l.extend(phi_psi_list) # Create and Overall dataset phi_list = [] psi_list = [] for classification, phi_psi in results.items(): phi, psi = zip(*phi_psi) phi_list += phi psi_list += psi results['Overall'] = zip(phi_list, psi_list) # Prepare the plots # Define the plots. These are organized by keys in results and the # corresponding color map. # The first item is the dataset name, the second item is the color map, and the # third item is the position of the text label for the number of items used to # calculate the density map labels = (('Overall', plt.cm.plasma, (0.95, 0.01)), ('alpha-helix', plt.cm.Greens_r, (0.95, 0.01)), ('alpha-helix__N-term', plt.cm.Greens_r, (0.95, 0.01)), ('alpha-helix__C-term', plt.cm.Greens_r, (0.95, 0.01)), ('310-helix', plt.cm.Greens_r, (0.95, 0.01)), ('pi-helix', plt.cm.Greens_r, (0.95, 0.01)), ('sheet', plt.cm.Blues_r, (0.95, 0.01)), ('sheet__N-term', plt.cm.Blues_r, (0.95, 0.01)), ('sheet__C-term', plt.cm.Blues_r, (0.95, 0.01)), ('type I turn', plt.cm.Reds_r, (0.95, 0.01)), ('type II turn', plt.cm.Reds_r, (0.95, 0.01)), ("type I' turn", plt.cm.Reds_r, (0.95, 0.01)), ("type II' turn", plt.cm.Reds_r, (0.95, 0.89)), ('Gly', plt.cm.Greys_r, (0.95, 0.70)), ('No classification', plt.cm.Greys_r, (0.95, 0.01)), ) def grouper(n, iterable, fillvalue=None): "grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) subfigure_groups = list(grouper(4, labels)) # Make rows of plots for row, subfigure_labels in enumerate(subfigure_groups, 1): f, axarr = plt.subplots(nrows=1, ncols=len(subfigure_labels), sharey=True, figsize=figsize) # Set the shared y-axis label axarr[0].set_ylabel(r'$\psi$ (deg)', fontsize=axes_fontsize, fontname=axes_font) for count, values in enumerate(subfigure_labels): # Skip empty plots if values is None: axarr[count].axis('off') # axarr[count].set_visible(False) continue label, cmap, annot_xy = values # Prepare the data and create 2d histograms phi_psi = results[label] x, y = zip(*phi_psi) x = np.array(x) y = np.array(y) N = len(x) hist2d, x, y = np.histogram2d(y, x, bins=36, range=np.array( [(-180., 190.), (-180., 190.)])) hist2d = -1. * np.log(hist2d + 0.1) minimum = np.min(hist2d) hist2d -= minimum levels = np.arange(0.0, 5.1, 1.0) # Set the title and x-axis label title = (label.replace('__', ' ') .replace('alpha', "$\\alpha$") .replace('pi', "$\\pi$") .replace("\\'", "'") .replace('No', 'no')) axarr[count].set_title(title, size=title_fontsize, fontname=title_font) # Set the x-axis label axarr[count].set_xlabel(r'$\phi$ (deg)', fontsize=axes_fontsize, fontname=axes_font) # Set the axis tick spacing axarr[count].xaxis.set_ticks(np.arange(-180, 181, 90)) axarr[count].set_xlim(-180, 180) axarr[count].yaxis.set_ticks(np.arange(-180, 181, 90)) axarr[count].set_ylim(-180, 180) # Set the axis tick label size axarr[count].tick_params(labelsize=label_fontsize) # Set the axis tick label font labels = axarr[count].get_xticklabels() + axarr[count].get_yticklabels() for label in labels: label.set_fontname(axes_font) # Annotate the number of measurements on the plot if annot_xy is not None: axarr[count].text(annot_xy[0], annot_xy[1], "N={:,.0f}".format(N), verticalalignment='bottom', horizontalalignment='right', transform=axarr[count].transAxes, fontsize=annotation_fontsize) # Create the 2d contour plot axarr[count].contourf(x[:-1], y[:-1], hist2d, levels, cmap=cmap) # Save the figures plt.savefig('ramachandran/ramachandran_countour_{}.png'.format(row), format='PNG', dpi=1200, bbox_inches='tight', pad_inches=0.05) plt.savefig('ramachandran/ramachandran_countour_{}_lowres.png'.format(row), format='PNG', dpi=220, bbox_inches='tight', pad_inches=0.02) plt.savefig('ramachandran/ramachandran_countour_{}.svg'.format(row), format='SVG', bbox_inches='tight', pad_inches=0.05) # Prepare an overall contour plot with lines phi_psi = results['Overall'] x, y = zip(*phi_psi) x = np.array(x) y = np.array(y) N = len(x) # Convert to a histogram hist2d, x, y = np.histogram2d(y, x, bins=36, range=np.array( [(-180., 185.), (-180., 185.)])) hist2d = -1. * np.log(hist2d + 0.1) minimum = np.min(hist2d) hist2d -= minimum # Optionally smooth the data # hist2d = ndimage.gaussian_filter(hist2d, sigma=0.25, order=0) # Contour levels at 98% (4.0) and 99.8% levels = np.array([4.1, 6.1]) f, axarr = plt.subplots(nrows=1, ncols=1, sharey=True, figsize=(4,4)) # Set the x-axis and y-axis labels axarr.set_xlabel(r'$\phi$ (deg)', fontsize=axes_fontsize, fontname=axes_font) axarr.set_ylabel(r'$\psi$ (deg)', fontsize=axes_fontsize, fontname=axes_font) # Set the axis tick spacing axarr.xaxis.set_ticks(np.arange(-180, 181, 90)) axarr.set_xlim(-180, 180) axarr.yaxis.set_ticks(np.arange(-180, 181, 90)) axarr.set_ylim(-180, 180) # Set the axis tick label size axarr.tick_params(labelsize=label_fontsize) # Outer ticks axarr.get_yaxis().set_tick_params(direction='out') axarr.get_xaxis().set_tick_params(direction='out') # Create the 2d contour plot axarr.contour(x[:-1], y[:-1], hist2d, levels, cmap=plt.cm.Blues_r) plt.savefig('ramachandran/ramachandran_line_countour_overall_lowres.png', format='PNG', dpi=220, bbox_inches='tight', pad_inches=0.02) plt.savefig('ramachandran/ramachandran_line_countour_overall.svg', format='SVG', bbox_inches='tight', pad_inches=0.05)
gpl-3.0
aflaxman/mpld3
examples/linked_brush.py
21
1136
""" Linked Brushing Example ======================= This example uses the standard Iris dataset and plots it with a linked brushing tool for dynamically exploring the data. The paintbrush button at the bottom left can be used to enable and disable the behavior. """ import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn.datasets import load_iris import mpld3 from mpld3 import plugins, utils data = load_iris() X = data.data y = data.target # dither the data for clearer plotting X += 0.1 * np.random.random(X.shape) fig, ax = plt.subplots(4, 4, sharex="col", sharey="row", figsize=(8, 8)) fig.subplots_adjust(left=0.05, right=0.95, bottom=0.05, top=0.95, hspace=0.1, wspace=0.1) for i in range(4): for j in range(4): points = ax[3 - i, j].scatter(X[:, j], X[:, i], c=y, s=40, alpha=0.6) # remove tick labels for axi in ax.flat: for axis in [axi.xaxis, axi.yaxis]: axis.set_major_formatter(plt.NullFormatter()) # Here we connect the linked brush plugin plugins.connect(fig, plugins.LinkedBrush(points)) mpld3.show()
bsd-3-clause
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/sklearn/datasets/samples_generator.py
20
56502
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Intialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is non zero (see notes). random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://www-ist.massey.ac.nz/smarsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
mit
kashif/scikit-learn
doc/tutorial/text_analytics/skeletons/exercise_01_language_train_model.py
25
2004
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf # TASK: Fit the pipeline on the training set # TASK: Predict the outcome on the testing set in a variable named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
trenton3983/Doing_Math_with_Python
chapter6/solutions/sierpinski.py
2
1545
''' sierpinski.py Draw Sierpinski Triangle ''' import random import matplotlib.pyplot as plt def transformation_1(p): x = p[0] y = p[1] x1 = 0.5*x y1 = 0.5*y return x1, y1 def transformation_2(p): x = p[0] y = p[1] x1 = 0.5*x + 0.5 y1 = 0.5*y + 0.5 return x1, y1 def transformation_3(p): x = p[0] y = p[1] x1 = 0.5*x + 1 y1 = 0.5*y return x1, y1 def get_index(probability): r = random.random() c_probability = 0 sum_probability = [] for p in probability: c_probability += p sum_probability.append(c_probability) for item, sp in enumerate(sum_probability): if r <= sp: return item return len(probability)-1 def transform(p): # list of transformation functions transformations = [transformation_1, transformation_2, transformation_3] probability = [1/3, 1/3, 1/3] # pick a random transformation function and call it tindex = get_index(probability) t = transformations[tindex] x, y = t(p) return x, y def draw_sierpinski(n): # We start with (0, 0) x = [0] y = [0] x1, y1 = 0, 0 for i in range(n): x1, y1 = transform((x1, y1)) x.append(x1) y.append(y1) return x, y if __name__ == '__main__': n = int(input('Enter the desired number of points' 'in the Sierpinski Triangle: ')) x, y = draw_sierpinski(n) # Plot the points plt.plot(x, y, 'o') plt.title('Sierpinski with {0} points'.format(n)) plt.show()
mit
0asa/scikit-learn
sklearn/utils/validation.py
2
17489
"""Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import warnings import numbers import numpy as np import scipy.sparse as sp from ..externals import six from ..base import BaseEstimator from inspect import getargspec class DataConversionWarning(UserWarning): "A warning on implicit data conversions happening in the code" pass warnings.simplefilter("always", DataConversionWarning) class NonBLASDotWarning(UserWarning): "A warning on implicit dispatch to numpy.dot" class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. """ # Silenced by default to reduce verbosity. Turn on at runtime for # performance profiling. warnings.simplefilter('ignore', NonBLASDotWarning) def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" _assert_all_finite(X.data if sp.issparse(X) else X) def as_float_array(X, copy=True, force_all_finite=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sp.issparse(X)): return check_array(X, ['csr', 'csc', 'coo'], dtype=np.float64, copy=copy, force_all_finite=force_all_finite, ensure_2d=False) elif sp.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def _is_arraylike(x): """Returns whether the input is array-like""" return (hasattr(x, '__len__') or hasattr(x, 'shape') or hasattr(x, '__array__')) def _num_samples(x): """Return number of samples in array-like x.""" if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %r" % x) return x.shape[0] if hasattr(x, 'shape') else len(x) def check_consistent_length(*arrays): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. Parameters ---------- arrays : list or tuple of input objects. Objects that will be checked for consistent length. """ uniques = np.unique([_num_samples(X) for X in arrays if X is not None]) if len(uniques) > 1: raise ValueError("Found arrays with inconsistent numbers of samples: %s" % str(uniques)) def indexable(*iterables): """Make arrays indexable for cross-validation. Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays. Parameters ---------- iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability. """ result = [] for X in iterables: if sp.issparse(X): result.append(X.tocsr()) elif hasattr(X, "__getitem__") or hasattr(X, "iloc"): result.append(X) elif X is None: result.append(X) else: result.append(np.array(X)) check_consistent_length(*result) return result def _ensure_sparse_format(spmatrix, accept_sparse, dtype, order, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse is None: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') sparse_type = spmatrix.format if dtype is None: dtype = spmatrix.dtype if sparse_type in accept_sparse: # correct type if dtype == spmatrix.dtype: # correct dtype if copy: spmatrix = spmatrix.copy() else: # convert dtype spmatrix = spmatrix.astype(dtype) else: # create new spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype) if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: _assert_all_finite(spmatrix.data) if hasattr(spmatrix, "data"): spmatrix.data = np.array(spmatrix.data, copy=False, order=order) return spmatrix def check_array(array, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] if sp.issparse(array): array = _ensure_sparse_format(array, accept_sparse, dtype, order, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) array = np.array(array, dtype=dtype, order=order, copy=copy) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: _assert_all_finite(array) return array def check_X_y(X, y, accept_sparse=None, dtype=None, order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, multi_output=False): """Input validation for standard estimators. Checks X and y for consistent length, enforces X 2d and y 1d. Standard input checks are only applied to y. For multi-label y, set multi_ouput=True to allow 2d and sparse y. Parameters ---------- X : nd-array, list or sparse matrix Input data. y : nd-array, list or sparse matrix Labels. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. multi_output : boolean (default=False) Whether to allow 2-d y (array or sparse matrix). If false, y will be validated as a vector. Returns ------- X_converted : object The converted and validated X. """ X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd) if multi_output: y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False) else: y = column_or_1d(y, warn=True) _assert_all_finite(y) check_consistent_length(X, y) return X, y def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like Returns ------- y : array """ shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) raise ValueError("bad input shape {0}".format(shape)) def warn_if_not_float(X, estimator='This algorithm'): """Warning utility function to check that data type is floating point. Returns True if a warning was raised (i.e. the input is not float) and False otherwise, for easier input validation. """ if not isinstance(estimator, six.string_types): estimator = estimator.__class__.__name__ if X.dtype.kind != 'f': warnings.warn("%s assumes floating point values as input, " "got %s" % (estimator, X.dtype)) return True return False def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def has_fit_parameter(estimator, parameter): """Checks whether the estimator's fit method supports the given parameter. Example ------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), "sample_weight") True """ return parameter in getargspec(estimator.fit)[0] def check_symmetric(array, tol=1E-10, raise_warning=True, raise_exception=False): """Make sure that array is 2D, square and symmetric. If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric. Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric. Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated. """ if (array.ndim != 2) or (array.shape[0] != array.shape[1]): raise ValueError("array must be 2-dimensional and square. " "shape = {0}".format(array.shape)) if sp.issparse(array): diff = array - array.T # only csr, csc, and coo have `data` attribute if diff.format not in ['csr', 'csc', 'coo']: diff = diff.tocsr() symmetric = np.all(abs(diff.data) < tol) else: symmetric = np.allclose(array, array.T, atol=tol) if not symmetric: if raise_exception: raise ValueError("Array must be symmetric") if raise_warning: warnings.warn("Array is not symmetric, and will be converted " "to symmetric by average with its transpose.") if sp.issparse(array): conversion = 'to' + array.format array = getattr(0.5 * (array + array.T), conversion)() else: array = 0.5 * (array + array.T) return array def check_is_fitted(estimator, attributes, msg=None, all_or_any=all): """Perform is_fitted validation for estimator. Checks if the estimator is fitted by verifying the presence of "all_or_any" of the passed attributes and raises a NotFittedError with the given message. Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed. attributes : attribute name(s) given as string or a list/tuple of strings Eg. : ["coef_", "estimator_", ...], "coef_" msg : string The default error message is, "This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this method." For custom messages if "%(name)s" is present in the message string, it is substituted for the estimator name. Eg. : "Estimator, %(name)s, must be fitted before sparsifying". all_or_any : callable, {all, any}, default all Specify whether all or any of the given attributes must exist. """ if msg is None: msg = ("This %(name)s instance is not fitted yet. Call 'fit' with " "appropriate arguments before using this method.") if not hasattr(estimator, 'fit'): raise ValueError("%s is not an estimator instance." % (estimator)) if not isinstance(attributes, (list, tuple)): attributes = [attributes] if not all_or_any([hasattr(estimator, attr) for attr in attributes]): raise NotFittedError(msg % {'name' : type(estimator).__name__})
bsd-3-clause
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/matplotlib/tests/test_arrow_patches.py
7
1799
from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import matplotlib.pyplot as plt from matplotlib.testing.decorators import image_comparison import matplotlib def draw_arrow(ax, t, r): ax.annotate('', xy=(0.5, 0.5 + r), xytext=(0.5, 0.5), size=30, arrowprops=dict(arrowstyle=t, fc="b", ec='k')) @image_comparison(baseline_images=['fancyarrow_test_image']) def test_fancyarrow(): # Added 0 to test division by zero error described in issue 3930 r = [0.4, 0.3, 0.2, 0.1, 0] t = ["fancy", "simple", matplotlib.patches.ArrowStyle.Fancy()] fig, axes = plt.subplots(len(t), len(r), squeeze=False, subplot_kw=dict(aspect=True), figsize=(8, 4.5)) for i_r, r1 in enumerate(r): for i_t, t1 in enumerate(t): ax = axes[i_t, i_r] draw_arrow(ax, t1, r1) ax.tick_params(labelleft=False, labelbottom=False) @image_comparison(baseline_images=['boxarrow_test_image'], extensions=['png']) def test_boxarrow(): styles = matplotlib.patches.BoxStyle.get_styles() n = len(styles) spacing = 1.2 figheight = (n * spacing + .5) fig1 = plt.figure(1, figsize=(4 / 1.5, figheight / 1.5)) fontsize = 0.3 * 72 for i, stylename in enumerate(sorted(styles.keys())): fig1.text(0.5, ((n - i) * spacing - 0.5)/figheight, stylename, ha="center", size=fontsize, transform=fig1.transFigure, bbox=dict(boxstyle=stylename, fc="w", ec="k")) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
isse-augsburg/ssharp
Models/Small Models/DegradedMode/createGraphFigure.py
2
3466
#!/usr/local/bin/python3 # The MIT License (MIT) # # Copyright (c) 2014-2017, Institute for Software & Systems Engineering # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Run under Windows using Python 3.6 # c:\Python36\Scripts\pip.exe install numpy # c:\Python36\Scripts\pip.exe install matplotlib # c:\Python36\python.exe createGraphFigure.py import csv import numpy import matplotlib.pyplot as pyplot from matplotlib.ticker import FuncFormatter fileToRead = 'graph.csv' csvDelimiter = ',' floatDelimiter = '.' csvRawDataFile = open(fileToRead,'r') csvRawData = csv.reader(csvRawDataFile, delimiter=csvDelimiter) csvRows = list(csvRawData) # read fromValues fromValues = [] for entry in (csvRows[1])[1:]: newValue = float(entry.replace(floatDelimiter, '.')) fromValues.append(newValue) # see http://matplotlib.org/api/matplotlib_configuration_api.html#matplotlib.rc titleFont = {'fontname':'Garamond','fontsize':16} labelFont = {'fontname':'Garamond','fontsize':14} #standardFont = {'family':'serif','serif':['Garamond'],'sans-serif':['Garamond']} standardFont = {'family':'serif','serif':['Garamond']} standardFigure = {'figsize': (10,5)} #pyplot.rcParams['figure.figsize'] = 10,5 pyplot.rc('font',**standardFont) pyplot.rc('figure',**standardFigure) def createCustomFormatter(scaleY): # https://matplotlib.org/2.0.0/examples/pylab_examples/custom_ticker1.html # http://matplotlib.org/api/ticker_api.html#tick-formatting # http://matplotlib.org/api/ticker_api.html#matplotlib.ticker.FormatStrFormatter # factor = 10.0 ** scaleY print(factor) def formatMoreBeautiful(value, tickPos): return '$ %.2f \\times\ 10^{-%s}$' % (value*factor, str(scaleY)) return FuncFormatter(formatMoreBeautiful) def printRow(rowToRead,yLabelName,fileName,scaleY): # read resultValues resultValues = [] row = csvRows[rowToRead] rowName = row[0] rowData = row[1:] print(len(rowData)) for entry in rowData: newValue = float(entry.replace(floatDelimiter, '.')) resultValues.append(newValue) pyplot.cla() pyplot.clf() fig, ax = pyplot.subplots() if scaleY != 1: ax.yaxis.set_major_formatter(createCustomFormatter(scaleY)) pyplot.plot(fromValues,resultValues, 'o-') pyplot.title('',**titleFont) pyplot.xlabel('Pr(F1)',**labelFont) pyplot.xticks([0.0, 1.0]) pyplot.ylabel(yLabelName,**labelFont) pyplot.savefig(fileName, format="svg") #pyplot.show() printRow(2,"Pr(Hazard)","graph.svg",1)
mit
Fougere87/unsec
test_art.py
1
2473
import os import glob from unsec import Email from unsec import Tools from unsec import Collection from unsec import Clustering from sklearn import cluster import matplotlib.pyplot as plt import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D from sklearn import decomposition # Tools.vectorize("data/bioinfo_2014-01") # coll = Collection.Email_Collection("data/bioinfo_2014-01/*") articles = glob.glob("dataset_test/*txt") collec = [] art_list = [] for art in articles : art_file = open(art, "r") art_list.append(art) collec.append(art_file.readlines()) # for e in Tools.words_in_collection(coll.all_cleaned_bodies) : # print(e) # input("plop") # print(len(Tools.words_in_collection(coll.all_cleaned_body))) # print(Tools.term_freq(coll[0])) # print(Tools.invert_doc_freq(coll.all_cleaned_subjects)) # matrix_sub = Tools.vectorize_tf_idf(coll.all_cleaned_subjects) # create data matrix # matrix_bod = Tools.vectorize_tf_idf(coll.all_cleaned_bodies) coll2 =[] for e in collec : print(str(e)) coll2.append(Tools.clean(str(e))) matrix_art = Tools.vectorize_tf_idf(coll2) # matrixTest = [[4,2,3], [5,3,2], [12,42,54], [4,1,2], [91,87,7], [41,21,31], [51,13,67], [12,2,4], [4,1,2], [31,31,14]] k_means = cluster.KMeans(n_clusters=2) #create k-mean objet with n clusters as param print("K-mean fitting...") k_means.fit(matrix_art) print(k_means.labels_) print("list des documents : ",Clustering.get_clustered_docs(k_means.labels_, art_list)) mat_dist_sub = k_means.fit_transform(matrix_art) print(mat_dist_sub) print(k_means.score(matrix_art)) # k_means.fit(matrix_bod) # print(k_means.labels_) pca = decomposition.PCA(n_components=3) reduced_mat_bod = pca.fit(matrix_art).transform(matrix_art) print(pca.components_) Tools.matrix_to_csv(matrix_art, Tools.words_in_collection(coll2), "tfidf_art.csv") # Tools.vectorize_to_csv(coll, "data.csv") # clusters = Clustering.get_clustered_docs(k_means.labels_,coll.all_cleaned_subjects) # [print(e) for e in clusters] # clusters_files = Clustering.get_clustered_docs(k_means.labels_,coll.files_list) # [print(e) for e in clusters_files] fig = plt.figure() ax = fig.add_subplot(111, projection='3d') x_data = [e[0] for e in reduced_mat_bod] y_data = [e[1] for e in reduced_mat_bod] z_data = [e[2] for e in reduced_mat_bod] ax.scatter(x_data, y_data, z_data, depthshade=True) plt.show() # Clustering.kmeans(matrix, 3) # print(Tools.vectorize_tf_idf(coll)[1]) #print(e.clean_body())
unlicense
mjabri/holoviews
holoviews/plotting/mpl/annotation.py
1
4406
import matplotlib from matplotlib import patches as patches from ...core.util import match_spec from .element import ElementPlot class AnnotationPlot(ElementPlot): """ AnnotationPlot handles the display of all annotation elements. """ def __init__(self, annotation, **params): self._annotation = annotation super(AnnotationPlot, self).__init__(annotation, **params) self.handles['annotations'] = [] def initialize_plot(self, ranges=None): annotation = self.hmap.last key = self.keys[-1] ranges = self.compute_ranges(self.hmap, key, ranges) ranges = match_spec(annotation, ranges) axis = self.handles['axis'] opts = self.style[self.cyclic_index] handles = self.draw_annotation(axis, annotation.data, opts) self.handles['annotations'] = handles return self._finalize_axis(key, ranges=ranges) def update_handles(self, axis, annotation, key, ranges=None): # Clear all existing annotations for element in self.handles['annotations']: element.remove() self.handles['annotations']=[] opts = self.style[self.cyclic_index] self.handles['annotations'] = self.draw_annotation(axis, annotation.data, opts) class VLinePlot(AnnotationPlot): "Draw a vertical line on the axis" style_opts = ['alpha', 'color', 'linewidth', 'linestyle', 'visible'] def __init__(self, annotation, **params): super(VLinePlot, self).__init__(annotation, **params) def draw_annotation(self, axis, position, opts): return [axis.axvline(position, **opts)] class HLinePlot(AnnotationPlot): "Draw a horizontal line on the axis" style_opts = ['alpha', 'color', 'linewidth', 'linestyle', 'visible'] def __init__(self, annotation, **params): super(HLinePlot, self).__init__(annotation, **params) def draw_annotation(self, axis, position, opts): "Draw a horizontal line on the axis" return [axis.axhline(position, **opts)] class TextPlot(AnnotationPlot): "Draw the Text annotation object" style_opts = ['alpha', 'color', 'family', 'weight', 'rotation', 'fontsize', 'visible'] def __init__(self, annotation, **params): super(TextPlot, self).__init__(annotation, **params) def draw_annotation(self, axis, data, opts): (x,y, text, fontsize, horizontalalignment, verticalalignment, rotation) = data opts['fontsize'] = fontsize return [axis.text(x,y, text, horizontalalignment = horizontalalignment, verticalalignment = verticalalignment, rotation=rotation, **opts)] class ArrowPlot(AnnotationPlot): "Draw an arrow using the information supplied to the Arrow annotation" _arrow_style_opts = ['alpha', 'color', 'lw', 'linewidth', 'visible'] _text_style_opts = TextPlot.style_opts style_opts = sorted(set(_arrow_style_opts + _text_style_opts)) def __init__(self, annotation, **params): super(ArrowPlot, self).__init__(annotation, **params) def draw_annotation(self, axis, data, opts): direction, text, xy, points, arrowstyle = data arrowprops = dict({'arrowstyle':arrowstyle}, **{k: opts[k] for k in self._arrow_style_opts if k in opts}) textopts = {k: opts[k] for k in self._text_style_opts if k in opts} if direction in ['v', '^']: xytext = (0, points if direction=='v' else -points) elif direction in ['>', '<']: xytext = (points if direction=='<' else -points, 0) return [axis.annotate(text, xy=xy, textcoords='offset points', xytext=xytext, ha="center", va="center", arrowprops=arrowprops, **textopts)] class SplinePlot(AnnotationPlot): "Draw the supplied Spline annotation (see Spline docstring)" style_opts = ['alpha', 'edgecolor', 'linewidth', 'linestyle', 'visible'] def __init__(self, annotation, **params): super(SplinePlot, self).__init__(annotation, **params) def draw_annotation(self, axis, data, opts): verts, codes = data patch = patches.PathPatch(matplotlib.path.Path(verts, codes), facecolor='none', **opts) axis.add_patch(patch) return [patch]
bsd-3-clause
thientu/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
georglind/babusca
tests/test2.py
1
5725
from __future__ import division, print_function import numpy as np import sys sys.path.append('/Users/kim/Science/Software/bosehubbard/bosehubbard') # import bosehubbard # import scattering as scat # import utilities as util # import scipy.linalg as linalg # import scipy.sparse as sparse import smatrix import matplotlib.pyplot as plt # $$$$$$\ # $$ __$$\ # $$$$$$\ \__/ $$ | # $$ __$$\ $$$$$$ | # $$ / $$ |$$ ____/ # $$ | $$ |$$ | # \$$$$$$$ |$$$$$$$$\ # \____$$ |\________| # $$\ $$ | # \$$$$$$ | # \______/ def g2_coherent_s(s, chlsi, chlso, E, qs=None): """ g2 for a coherent state (or partially coherent) Parameters ---------- s : Setup Scattering setup chlsi : list List of incoming channel indices chlso : list List of outgoing channel indices E : float Energy of the two-particle state """ qs, D2, S2, _ = smatrix.two_particle(s, chlsi=chlsi, chlso=chlso, E=E, dE=0, qs=qs) # Single particle scattering Ee = np.array([.5 * E]) _, S10 = smatrix.one_particle(s, chlsi[0], chlso[0], Ee) _, S11 = smatrix.one_particle(s, chlsi[1], chlso[1], Ee) dFS2 = np.abs(S10[0]) ** 2 * np.abs(S11[0]) ** 2 # Fourier transform FS2 = np.fft.fft(S2) * (qs[1] - qs[0]) # times times = np.fft.fftfreq(len(qs), d=qs[1] - qs[0]) # add delta function contribution FS2 += np.exp(2 * np.pi * 1j * E / 2 * times) * np.sum(D2) return np.abs(FS2[0]) ** 2, dFS2 def g2(s, chlsi, chlso, E, dE): """ Calculate the intensity-intensity correlation function as a function of total energy, E, and energy discrepancy, dE. Parameters ---------- s : Setup Scattering setup object. chlsi : list Input state channel indices. chlso : list Output state channel indices. E : float Total energy of input photonic state. dE : float Energy difference between the two photons in the input state. """ qs, D2, S2, S2in = smatrix.two_particle(s, chlsi=chlsi, chlso=chlso, E=E, dE=dE) Ee = np.array([.5 * (E - dE), .5 * (E + dE)]) _, S10 = smatrix.one_particle(s, chlsi[0], chlso[0], Ee) _, S11 = smatrix.one_particle(s, chlsi[1], chlso[1], Ee) # denominator dFS2 = np.sum(np.abs(S10) ** 2 * np.abs(S11) ** 2) # Fourier transform FS2 = np.fft.fft(S2) * (qs[1] - qs[0]) # frequencies freqs = np.fft.fftfreq(len(qs), d=qs[1] - qs[0]) # add delta function contribution FS2 += np.exp(np.pi * 1j * E * freqs) * D2[0] + np.exp(np.pi * 1j * E * freqs) * D2[1] return FS2, dFS2 def FT(E, dE, qs, D2, S2): FS2 = np.fft.fft(S2) * (qs[1] - qs[0]) times = np.fft.fftfreq(len(qs), d=qs[1] - qs[0]) DFS2 = np.exp(np.pi * 1j * (E - dE) * times) * D2[0] DFS2 += np.exp(np.pi * 1j * (E + dE) * times) * D2[1] return times, FS2, DFS2 # $$\ $$\ $$\ # $$$\ $$$ | \__| # $$$$\ $$$$ | $$$$$$\ $$\ $$$$$$$\ # $$\$$\$$ $$ | \____$$\ $$ |$$ __$$\ # $$ \$$$ $$ | $$$$$$$ |$$ |$$ | $$ | # $$ |\$ /$$ |$$ __$$ |$$ |$$ | $$ | # $$ | \_/ $$ |\$$$$$$$ |$$ |$$ | $$ | # \__| \__| \_______|\__|\__| \__| if __name__ == "__main__": # N = 6 # m = bosehubbard.Model( # omegas=[0]*N, # links=[[i, (i+1) % N, 1] for i in xrange(N)], # U=2) # # The Model U = 10 model = Model( omegas=[0] * 2, links=[[0, 1, 1]], U=2 * U) couplings = [] couplings.append(Coupling(channel=0, site=0, strength=.2)) couplings.append(Coupling(channel=1, site=1, strength=.2)) # The couplings couplings = [] couplings.append(Coupling(channel=0, site=0, strength=.2)) couplings.append(Coupling(channel=1, site=1, strength=.2)) # The scattering setup se = Setup(model, couplings) # Let us calculate the t1matrix Es = Tmatrix.energies(0, 0) _, S100 = Smatrix.one_particle(se, 0, 0, Es) _, S101 = Smatrix.one_particle(se, 0, 1, Es) # Es = Tmatrix.energies(0, 0, WE=16, N=2048) E = 0 dE = 0 chlsi = [0, 0] chlso = [1, 1] qs = Tmatrix.energies(0, 0, 2048, 16) qs, D2, S2, S2in = Smatrix.two_particle(se, chlsi=chlsi, chlso=chlso, E=E, dE=dE, qs=qs) cplsi = [se.channel_coupling(c) for c in chlsi] cplso = [se.channel_coupling(c) for c in chlso] # # Fourier transform ts, FS2, DFS2 = FT(E, dE, qs, D2, S2) FS2 += DFS2 FS2 /= (S101[512]) ** 2 dt = ts[1] - ts[0] # # All the plots # # S1_{1,1} fig, ax = plt.subplots(nrows=2, ncols=2) ax1 = plt.subplot(2, 2, 1) ax1.plot(Es, np.abs(S100) ** 2) ax1.set_ylabel(r'$S_{{{0},{1}}}^{{(1)}}$'.format(se.sites[0], se.sites[0])) # # S1_{0,1} ax2 = plt.subplot(2, 2, 2) ax2.plot(Es, np.abs(S101) ** 2) ax2.set_ylabel(r'$S_{{{0},{1}}}^{{(1)}}$'.format(se.sites[1], se.sites[0])) # # S2 ax3 = plt.subplot(2, 2, 3) ax3.plot(Es, np.abs(S2), label=r"$S^{(2)}$") ax3.plot(Es, np.abs(S2in), label=r"$S^{(2)}_{in}$") ax3.plot(Es, np.abs(S2 - S2in), label=r"$S^{(2)}_{ni}$") ax3.set_ylabel(r'$S^{{(2)}}_{{{0},{1};{2},{3}}}$'.format(*([c.site for c in cplso + cplsi]))) plt.legend() # # Fourier(S2) ax4 = plt.subplot(2, 2, 4) ax4.bar(ts - dt / 2, np.abs(FS2) ** 2, dt) ax4.set_ylabel(r'$|\mathcal{{F}} S^{{(2)}}_{{{0},{1};{2},{3}}}|^2$'.format(*([c.site for c in cplso + cplsi]))) # ax4.set_xlim([-4, 4])s plt.suptitle(r'$\Gamma_{{{0}}} = {1}$, $\Gamma_{{{2}}} = {3}$'.format(se.sites[0], se.gs[0], se.sites[1], se.gs[1])) fig.set_tight_layout(True) plt.show()
mit
epeios-q37/epeios
tools/xdhq/examples/PYH/MatPlotLib/main.py
1
11970
import os, sys os.chdir(os.path.dirname(os.path.realpath(__file__))) sys.path.append("../../atlastk") import atlastk import matplotlib.pyplot as plt from io import StringIO from mpl_toolkits.mplot3d import axes3d import numpy as np from cycler import cycler import matplotlib as mpl import matplotlib.tri as tri import matplotlib.cm as cm from mpl_toolkits.mplot3d import Axes3D from matplotlib import collections, colors, transforms # plt.xkcd() # XKCD-like ploting. BODY = """ <iframe style="border: none;" src="FaaSDesc.php?text=R3JhcGhpY3MgZHJhd24gd2l0aCBbKm1hdHBsb3RsaWIqXShodHRwczovL21hdHBsb3RsaWIub3JnLykgY2FuIGJlIHVzZWQgd2l0aCB0aGUgKkF0bGFzKiAqVG9vbGtpdCou"></iframe> <fieldset id="Plots"></fieldset> <fieldset id="Buttons"></fieldset> <fieldset> <span>Due to a limitation of <a href="https://en.wikipedia.org/wiki/Matplotlib" target="_blank" style="font-style: oblique;">matplotlib</a>, opening </span> <br/> <span>more then one session with this application</span> <br/> <span>may probably lead to a crash.</span> </fieldset> """ HEAD = """ <title>MatPlotLib with the Atlas Toolkit</title> <style> fieldset {margin: auto; text-align: center;} #Buttons {display: none;} </style> <style id="Ready"> .hide {display: none;} #Buttons {display: block;} </style> """ AMOUNT = 10 def getSVG(plt): figfile = StringIO() plt.savefig(figfile, format='svg') svg = figfile.getvalue(); plt.close() return svg def run(example): return eval(f"example{example}()") def example1(): labels = ['G1', 'G2', 'G3', 'G4', 'G5'] men_means = [20, 34, 30, 35, 27] women_means = [25, 32, 34, 20, 25] x = np.arange(len(labels)) # the label locations width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(x - width/2, men_means, width, label='Men') rects2 = ax.bar(x + width/2, women_means, width, label='Women') # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Scores') ax.set_title('Scores by group and gender') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() def autolabel(rects): """Attach a text label above each bar in *rects*, displaying its height.""" for rect in rects: height = rect.get_height() ax.annotate('{}'.format(height), xy=(rect.get_x() + rect.get_width() / 2, height), xytext=(0, 3), # 3 points vertical offset textcoords="offset points", ha='center', va='bottom') autolabel(rects1) autolabel(rects2) fig.tight_layout() return getSVG(plt) def example2(): fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # Grab some test data. X, Y, Z = axes3d.get_test_data(0.05) # Plot a basic wireframe. ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10) return getSVG(plt) def example3(): # prepare some coordinates x, y, z = np.indices((8, 8, 8)) # draw cuboids in the top left and bottom right corners, and a link between them cube1 = (x < 3) & (y < 3) & (z < 3) cube2 = (x >= 5) & (y >= 5) & (z >= 5) link = abs(x - y) + abs(y - z) + abs(z - x) <= 2 # combine the objects into a single boolean array voxels = cube1 | cube2 | link # set the colors of each object colors = np.empty(voxels.shape, dtype=object) colors[link] = 'red' colors[cube1] = 'blue' colors[cube2] = 'green' # and plot everything fig = plt.figure() ax = fig.gca(projection='3d') ax.voxels(voxels, facecolors=colors, edgecolor='k') return getSVG(plt) def example4(): fig = plt.figure() ax = fig.gca(projection='3d') X, Y = np.mgrid[0:6*np.pi:0.25, 0:4*np.pi:0.25] Z = np.sqrt(np.abs(np.cos(X) + np.cos(Y))) ax.plot_surface(X + 1e5, Y + 1e5, Z, cmap='autumn', cstride=2, rstride=2) ax.set_xlabel("X label") ax.set_ylabel("Y label") ax.set_zlabel("Z label") ax.set_zlim(0, 2) return getSVG(plt) def example5(): category_names = ['Strongly disagree', 'Disagree', 'Neither agree nor disagree', 'Agree', 'Strongly agree'] results = { 'Question 1': [10, 15, 17, 32, 26], 'Question 2': [26, 22, 29, 10, 13], 'Question 3': [35, 37, 7, 2, 19], 'Question 4': [32, 11, 9, 15, 33], 'Question 5': [21, 29, 5, 5, 40], 'Question 6': [8, 19, 5, 30, 38] } def survey(results, category_names): """ Parameters ---------- results : dict A mapping from question labels to a list of answers per category. It is assumed all lists contain the same number of entries and that it matches the length of *category_names*. category_names : list of str The category labels. """ labels = list(results.keys()) data = np.array(list(results.values())) data_cum = data.cumsum(axis=1) category_colors = plt.get_cmap('RdYlGn')( np.linspace(0.15, 0.85, data.shape[1])) fig, ax = plt.subplots(figsize=(9.2, 5)) ax.invert_yaxis() ax.xaxis.set_visible(False) ax.set_xlim(0, np.sum(data, axis=1).max()) for i, (colname, color) in enumerate(zip(category_names, category_colors)): widths = data[:, i] starts = data_cum[:, i] - widths ax.barh(labels, widths, left=starts, height=0.5, label=colname, color=color) xcenters = starts + widths / 2 r, g, b, _ = color text_color = 'white' if r * g * b < 0.5 else 'darkgrey' for y, (x, c) in enumerate(zip(xcenters, widths)): ax.text(x, y, str(int(c)), ha='center', va='center', color=text_color) ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1), loc='lower left', fontsize='small') return fig, ax survey(results, category_names) return getSVG(plt) def example6(): # Define a list of markevery cases and color cases to plot cases = [None, 8, (30, 8), [16, 24, 30], [0, -1], slice(100, 200, 3), 0.1, 0.3, 1.5, (0.0, 0.1), (0.45, 0.1)] colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', '#1a55FF'] # Configure rcParams axes.prop_cycle to simultaneously cycle cases and colors. mpl.rcParams['axes.prop_cycle'] = cycler(markevery=cases, color=colors) # Create data points and offsets x = np.linspace(0, 2 * np.pi) offsets = np.linspace(0, 2 * np.pi, 11, endpoint=False) yy = np.transpose([np.sin(x + phi) for phi in offsets]) # Set the plot curve with markers and a title fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.6, 0.75]) for i in range(len(cases)): ax.plot(yy[:, i], marker='o', label=str(cases[i])) ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.) plt.title('Support for axes.prop_cycle cycler with markevery') return getSVG(plt) def example7(): #----------------------------------------------------------------------------- # Analytical test function #----------------------------------------------------------------------------- def function_z(x, y): r1 = np.sqrt((0.5 - x)**2 + (0.5 - y)**2) theta1 = np.arctan2(0.5 - x, 0.5 - y) r2 = np.sqrt((-x - 0.2)**2 + (-y - 0.2)**2) theta2 = np.arctan2(-x - 0.2, -y - 0.2) z = -(2 * (np.exp((r1 / 10)**2) - 1) * 30. * np.cos(7. * theta1) + (np.exp((r2 / 10)**2) - 1) * 30. * np.cos(11. * theta2) + 0.7 * (x**2 + y**2)) return (np.max(z) - z) / (np.max(z) - np.min(z)) #----------------------------------------------------------------------------- # Creating a Triangulation #----------------------------------------------------------------------------- # First create the x and y coordinates of the points. n_angles = 20 n_radii = 10 min_radius = 0.15 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += np.pi / n_angles x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() z = function_z(x, y) # Now create the Triangulation. # (Creating a Triangulation without specifying the triangles results in the # Delaunay triangulation of the points.) triang = tri.Triangulation(x, y) # Mask off unwanted triangles. triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1)) < min_radius) #----------------------------------------------------------------------------- # Refine data #----------------------------------------------------------------------------- refiner = tri.UniformTriRefiner(triang) tri_refi, z_test_refi = refiner.refine_field(z, subdiv=3) #----------------------------------------------------------------------------- # Plot the triangulation and the high-res iso-contours #----------------------------------------------------------------------------- fig, ax = plt.subplots() ax.set_aspect('equal') ax.triplot(triang, lw=0.5, color='white') levels = np.arange(0., 1., 0.025) cmap = cm.get_cmap(name='terrain', lut=None) ax.tricontourf(tri_refi, z_test_refi, levels=levels, cmap=cmap) ax.tricontour(tri_refi, z_test_refi, levels=levels, colors=['0.25', '0.5', '0.5', '0.5', '0.5'], linewidths=[1.0, 0.5, 0.5, 0.5, 0.5]) ax.set_title("High-resolution tricontouring") return getSVG(plt) def example8(): fig, axs = plt.subplots(2, 2) cm = ['RdBu_r', 'viridis'] for col in range(2): for row in range(2): ax = axs[row, col] pcm = ax.pcolormesh(np.random.random((20, 20)) * (col + 1), cmap=cm[col]) fig.colorbar(pcm, ax=ax) return getSVG(plt) def example9(): # Fixing random state for reproducibility np.random.seed(19680801) n = 100000 x = np.random.standard_normal(n) y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n) xmin = x.min() xmax = x.max() ymin = y.min() ymax = y.max() fig, axs = plt.subplots(ncols=2, sharey=True, figsize=(7, 4)) fig.subplots_adjust(hspace=0.5, left=0.07, right=0.93) ax = axs[0] hb = ax.hexbin(x, y, gridsize=50, cmap='inferno') ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax)) ax.set_title("Hexagon binning") cb = fig.colorbar(hb, ax=ax) cb.set_label('counts') ax = axs[1] hb = ax.hexbin(x, y, gridsize=50, bins='log', cmap='inferno') ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax)) ax.set_title("With a log color scale") cb = fig.colorbar(hb, ax=ax) cb.set_label('log10(N)') return getSVG(plt) def example10(): X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis) return getSVG(plt) def ac_connect(dom): dom.inner("", BODY) dom.disable_element("Ready") for example in range(1,AMOUNT+1): dom.end("Plots", f'<fieldset class="hide" id="example{example}">Please wait ({example}/{AMOUNT})…</fieldset>') dom.inner(f"example{example}", f"<legend>Example {example}</legend>{run(example)}") dom.flush() dom.scroll_to(f'example{example}') dom.end("Buttons",f'<button id="{example}" data-xdh-onevent="Display">{example}</button>') dom.enable_element("Ready") dom.remove_class(f"example1", "hide") def ac_display(dom,id): dom.add_classes(_hiding) dom.remove_class(f"example{id}","hide") _hiding = {} for i in range(1, AMOUNT+1): _hiding[f"example{i}"] = "hide" atlastk.launch({"": ac_connect, "Display": ac_display},None,HEAD)
agpl-3.0
dnjohnstone/hyperspy
hyperspy/_signals/signal2d.py
1
35008
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import numpy as np import scipy as sp import numpy.ma as ma import dask.array as da import logging import warnings from scipy import ndimage try: # For scikit-image >= 0.17.0 from skimage.registration._phase_cross_correlation import _upsampled_dft except ModuleNotFoundError: from skimage.feature.register_translation import _upsampled_dft from hyperspy.defaults_parser import preferences from hyperspy.external.progressbar import progressbar from hyperspy.misc.math_tools import symmetrize, antisymmetrize, optimal_fft_size from hyperspy.signal import BaseSignal from hyperspy._signals.lazy import LazySignal from hyperspy._signals.common_signal2d import CommonSignal2D from hyperspy.signal_tools import PeaksFinder2D from hyperspy.docstrings.plot import ( BASE_PLOT_DOCSTRING, PLOT2D_DOCSTRING, KWARGS_DOCSTRING) from hyperspy.docstrings.signal import SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG from hyperspy.ui_registry import DISPLAY_DT, TOOLKIT_DT from hyperspy.utils.peakfinders2D import ( find_local_max, find_peaks_max, find_peaks_minmax, find_peaks_zaefferer, find_peaks_stat, find_peaks_log, find_peaks_dog, find_peaks_xc) _logger = logging.getLogger(__name__) def shift_image(im, shift=0, interpolation_order=1, fill_value=np.nan): if np.any(shift): fractional, integral = np.modf(shift) if fractional.any(): order = interpolation_order else: # Disable interpolation order = 0 return ndimage.shift(im, shift, cval=fill_value, order=order) else: return im def triu_indices_minus_diag(n): """Returns the indices for the upper-triangle of an (n, n) array excluding its diagonal Parameters ---------- n : int The length of the square array """ ti = np.triu_indices(n) isnotdiag = ti[0] != ti[1] return ti[0][isnotdiag], ti[1][isnotdiag] def hanning2d(M, N): """ A 2D hanning window created by outer product. """ return np.outer(np.hanning(M), np.hanning(N)) def sobel_filter(im): sx = ndimage.sobel(im, axis=0, mode='constant') sy = ndimage.sobel(im, axis=1, mode='constant') sob = np.hypot(sx, sy) return sob def fft_correlation(in1, in2, normalize=False, real_only=False): """Correlation of two N-dimensional arrays using FFT. Adapted from scipy's fftconvolve. Parameters ---------- in1, in2 : array Input arrays to convolve. normalize: bool, default False If True performs phase correlation. real_only : bool, default False If True, and in1 and in2 are real-valued inputs, uses rfft instead of fft for approx. 2x speed-up. """ s1 = np.array(in1.shape) s2 = np.array(in2.shape) size = s1 + s2 - 1 # Calculate optimal FFT size complex_result = (in1.dtype.kind == 'c' or in2.dtype.kind == 'c') fsize = [optimal_fft_size(a, not complex_result) for a in size] # For real-valued inputs, rfftn is ~2x faster than fftn if not complex_result and real_only: fft_f, ifft_f = np.fft.rfftn, np.fft.irfftn else: fft_f, ifft_f = np.fft.fftn, np.fft.ifftn fprod = fft_f(in1, fsize) fprod *= fft_f(in2, fsize).conjugate() if normalize is True: fprod = np.nan_to_num(fprod / np.absolute(fprod)) ret = ifft_f(fprod).real.copy() return ret, fprod def estimate_image_shift(ref, image, roi=None, sobel=True, medfilter=True, hanning=True, plot=False, dtype='float', normalize_corr=False, sub_pixel_factor=1, return_maxval=True): """Estimate the shift in a image using phase correlation This method can only estimate the shift by comparing bidimensional features that should not change the position in the given axis. To decrease the memory usage, the time of computation and the accuracy of the results it is convenient to select a region of interest by setting the roi keyword. Parameters ---------- ref : 2D numpy.ndarray Reference image image : 2D numpy.ndarray Image to register roi : tuple of ints (top, bottom, left, right) Define the region of interest sobel : bool apply a sobel filter for edge enhancement medfilter : bool apply a median filter for noise reduction hanning : bool Apply a 2d hanning filter plot : bool or matplotlib.Figure If True, plots the images after applying the filters and the phase correlation. If a figure instance, the images will be plotted to the given figure. reference : 'current' or 'cascade' If 'current' (default) the image at the current coordinates is taken as reference. If 'cascade' each image is aligned with the previous one. dtype : str or dtype Typecode or data-type in which the calculations must be performed. normalize_corr : bool If True use phase correlation instead of standard correlation sub_pixel_factor : float Estimate shifts with a sub-pixel accuracy of 1/sub_pixel_factor parts of a pixel. Default is 1, i.e. no sub-pixel accuracy. Returns ------- shifts: np.array containing the estimate shifts max_value : float The maximum value of the correlation Notes ----- The statistical analysis approach to the translation estimation when using reference='stat' roughly follows [*]_ . If you use it please cite their article. References ---------- .. [*] Bernhard Schaffer, Werner Grogger and Gerald Kothleitner. “Automated Spatial Drift Correction for EFTEM Image Series.” Ultramicroscopy 102, no. 1 (December 2004): 27–36. """ ref, image = da.compute(ref, image) # Make a copy of the images to avoid modifying them ref = ref.copy().astype(dtype) image = image.copy().astype(dtype) if roi is not None: top, bottom, left, right = roi else: top, bottom, left, right = [None, ] * 4 # Select region of interest ref = ref[top:bottom, left:right] image = image[top:bottom, left:right] # Apply filters for im in (ref, image): if hanning is True: im *= hanning2d(*im.shape) if medfilter is True: # This is faster than sp.signal.med_filt, # which was the previous implementation. # The size is fixed at 3 to be consistent # with the previous implementation. im[:] = sp.ndimage.median_filter(im, size=3) if sobel is True: im[:] = sobel_filter(im) # If sub-pixel alignment not being done, use faster real-valued fft real_only = (sub_pixel_factor == 1) phase_correlation, image_product = fft_correlation( ref, image, normalize=normalize_corr, real_only=real_only) # Estimate the shift by getting the coordinates of the maximum argmax = np.unravel_index(np.argmax(phase_correlation), phase_correlation.shape) threshold = (phase_correlation.shape[0] / 2 - 1, phase_correlation.shape[1] / 2 - 1) shift0 = argmax[0] if argmax[0] < threshold[0] else \ argmax[0] - phase_correlation.shape[0] shift1 = argmax[1] if argmax[1] < threshold[1] else \ argmax[1] - phase_correlation.shape[1] max_val = phase_correlation.real.max() shifts = np.array((shift0, shift1)) # The following code is more or less copied from # skimage.feature.register_feature, to gain access to the maximum value: if sub_pixel_factor != 1: # Initial shift estimate in upsampled grid shifts = np.round(shifts * sub_pixel_factor) / sub_pixel_factor upsampled_region_size = np.ceil(sub_pixel_factor * 1.5) # Center of output array at dftshift + 1 dftshift = np.fix(upsampled_region_size / 2.0) sub_pixel_factor = np.array(sub_pixel_factor, dtype=np.float64) normalization = (image_product.size * sub_pixel_factor ** 2) # Matrix multiply DFT around the current shift estimate sample_region_offset = dftshift - shifts * sub_pixel_factor correlation = _upsampled_dft(image_product.conj(), upsampled_region_size, sub_pixel_factor, sample_region_offset).conj() correlation /= normalization # Locate maximum and map back to original pixel grid maxima = np.array(np.unravel_index( np.argmax(np.abs(correlation)), correlation.shape), dtype=np.float64) maxima -= dftshift shifts = shifts + maxima / sub_pixel_factor max_val = correlation.real.max() # Plot on demand if plot is True or isinstance(plot, plt.Figure): if isinstance(plot, plt.Figure): fig = plot axarr = plot.axes if len(axarr) < 3: for i in range(3): fig.add_subplot(1, 3, i + 1) axarr = fig.axes else: fig, axarr = plt.subplots(1, 3) full_plot = len(axarr[0].images) == 0 if full_plot: axarr[0].set_title('Reference') axarr[1].set_title('Image') axarr[2].set_title('Phase correlation') axarr[0].imshow(ref) axarr[1].imshow(image) d = (np.array(phase_correlation.shape) - 1) // 2 extent = [-d[1], d[1], -d[0], d[0]] axarr[2].imshow(np.fft.fftshift(phase_correlation), extent=extent) plt.show() else: axarr[0].images[0].set_data(ref) axarr[1].images[0].set_data(image) axarr[2].images[0].set_data(np.fft.fftshift(phase_correlation)) # TODO: Renormalize images fig.canvas.draw_idle() # Liberate the memory. It is specially necessary if it is a # memory map del ref del image if return_maxval: return -shifts, max_val else: return -shifts class Signal2D(BaseSignal, CommonSignal2D): """ """ _signal_dimension = 2 _lazy = False def __init__(self, *args, **kw): super().__init__(*args, **kw) if self.axes_manager.signal_dimension != 2: self.axes_manager.set_signal_dimension(2) def plot(self, colorbar=True, scalebar=True, scalebar_color="white", axes_ticks=None, axes_off=False, saturated_pixels=None, vmin=None, vmax=None, gamma=1.0, no_nans=False, centre_colormap="auto", min_aspect=0.1, **kwargs ): """%s %s %s """ super(Signal2D, self).plot( colorbar=colorbar, scalebar=scalebar, scalebar_color=scalebar_color, axes_ticks=axes_ticks, axes_off=axes_off, saturated_pixels=saturated_pixels, vmin=vmin, vmax=vmax, gamma=gamma, no_nans=no_nans, centre_colormap=centre_colormap, min_aspect=min_aspect, **kwargs ) plot.__doc__ %= (BASE_PLOT_DOCSTRING, PLOT2D_DOCSTRING, KWARGS_DOCSTRING) def create_model(self, dictionary=None): """Create a model for the current signal Parameters ---------- dictionary : {None, dict}, optional A dictionary to be used to recreate a model. Usually generated using :meth:`hyperspy.model.as_dictionary` Returns ------- A Model class """ from hyperspy.models.model2d import Model2D return Model2D(self, dictionary=dictionary) def estimate_shift2D(self, reference='current', correlation_threshold=None, chunk_size=30, roi=None, normalize_corr=False, sobel=True, medfilter=True, hanning=True, plot=False, dtype='float', show_progressbar=None, sub_pixel_factor=1): """Estimate the shifts in an image using phase correlation. This method can only estimate the shift by comparing bi-dimensional features that should not change position between frames. To decrease the memory usage, the time of computation and the accuracy of the results it is convenient to select a region of interest by setting the ``roi`` argument. Parameters ---------- reference : {'current', 'cascade' ,'stat'} If 'current' (default) the image at the current coordinates is taken as reference. If 'cascade' each image is aligned with the previous one. If 'stat' the translation of every image with all the rest is estimated and by performing statistical analysis on the result the translation is estimated. correlation_threshold : {None, 'auto', float} This parameter is only relevant when reference='stat'. If float, the shift estimations with a maximum correlation value lower than the given value are not used to compute the estimated shifts. If 'auto' the threshold is calculated automatically as the minimum maximum correlation value of the automatically selected reference image. chunk_size : {None, int} If int and reference='stat' the number of images used as reference are limited to the given value. roi : tuple of ints or floats (left, right, top, bottom) Define the region of interest. If int(float) the position is given axis index(value). Note that ROIs can be used in place of a tuple. normalize_corr : bool, default False If True, use phase correlation to align the images, otherwise use cross correlation. sobel : bool, default True Apply a Sobel filter for edge enhancement medfilter : bool, default True Apply a median filter for noise reduction hanning : bool, default True Apply a 2D hanning filter plot : bool or 'reuse' If True plots the images after applying the filters and the phase correlation. If 'reuse', it will also plot the images, but it will only use one figure, and continuously update the images in that figure as it progresses through the stack. dtype : str or dtype Typecode or data-type in which the calculations must be performed. %s sub_pixel_factor : float Estimate shifts with a sub-pixel accuracy of 1/sub_pixel_factor parts of a pixel. Default is 1, i.e. no sub-pixel accuracy. Returns ------- shifts : list of array List of estimated shifts Notes ----- The statistical analysis approach to the translation estimation when using ``reference='stat'`` roughly follows [Schaffer2004]_. If you use it please cite their article. References ---------- .. [Schaffer2004] Schaffer, Bernhard, Werner Grogger, and Gerald Kothleitner. “Automated Spatial Drift Correction for EFTEM Image Series.” Ultramicroscopy 102, no. 1 (December 2004): 27–36. See Also -------- * :py:meth:`~._signals.signal2d.Signal2D.align2D` """ if show_progressbar is None: show_progressbar = preferences.General.show_progressbar self._check_signal_dimension_equals_two() if roi is not None: # Get the indices of the roi yaxis = self.axes_manager.signal_axes[1] xaxis = self.axes_manager.signal_axes[0] roi = tuple([xaxis._get_index(i) for i in roi[2:]] + [yaxis._get_index(i) for i in roi[:2]]) ref = None if reference == 'cascade' else \ self.__call__().copy() shifts = [] nrows = None images_number = self.axes_manager._max_index + 1 if plot == 'reuse': # Reuse figure for plots plot = plt.figure() if reference == 'stat': nrows = images_number if chunk_size is None else \ min(images_number, chunk_size) pcarray = ma.zeros((nrows, self.axes_manager._max_index + 1, ), dtype=np.dtype([('max_value', np.float), ('shift', np.int32, (2,))])) nshift, max_value = estimate_image_shift( self(), self(), roi=roi, sobel=sobel, medfilter=medfilter, hanning=hanning, normalize_corr=normalize_corr, plot=plot, dtype=dtype, sub_pixel_factor=sub_pixel_factor) np.fill_diagonal(pcarray['max_value'], max_value) pbar_max = nrows * images_number else: pbar_max = images_number # Main iteration loop. Fills the rows of pcarray when reference # is stat with progressbar(total=pbar_max, disable=not show_progressbar, leave=True) as pbar: for i1, im in enumerate(self._iterate_signal()): if reference in ['current', 'cascade']: if ref is None: ref = im.copy() shift = np.array([0, 0]) nshift, max_val = estimate_image_shift( ref, im, roi=roi, sobel=sobel, medfilter=medfilter, hanning=hanning, plot=plot, normalize_corr=normalize_corr, dtype=dtype, sub_pixel_factor=sub_pixel_factor) if reference == 'cascade': shift += nshift ref = im.copy() else: shift = nshift shifts.append(shift.copy()) pbar.update(1) elif reference == 'stat': if i1 == nrows: break # Iterate to fill the columns of pcarray for i2, im2 in enumerate( self._iterate_signal()): if i2 > i1: nshift, max_value = estimate_image_shift( im, im2, roi=roi, sobel=sobel, medfilter=medfilter, hanning=hanning, normalize_corr=normalize_corr, plot=plot, dtype=dtype, sub_pixel_factor=sub_pixel_factor) pcarray[i1, i2] = max_value, nshift del im2 pbar.update(1) del im if reference == 'stat': # Select the reference image as the one that has the # higher max_value in the row sqpcarr = pcarray[:, :nrows] sqpcarr['max_value'][:] = symmetrize(sqpcarr['max_value']) sqpcarr['shift'][:] = antisymmetrize(sqpcarr['shift']) ref_index = np.argmax(pcarray['max_value'].min(1)) self.ref_index = ref_index shifts = (pcarray['shift'] + pcarray['shift'][ref_index, :nrows][:, np.newaxis]) if correlation_threshold is not None: if correlation_threshold == 'auto': correlation_threshold = \ (pcarray['max_value'].min(0)).max() _logger.info("Correlation threshold = %1.2f", correlation_threshold) shifts[pcarray['max_value'] < correlation_threshold] = ma.masked shifts.mask[ref_index, :] = False shifts = shifts.mean(0) else: shifts = np.array(shifts) del ref return shifts estimate_shift2D.__doc__ %= SHOW_PROGRESSBAR_ARG def align2D( self, crop=True, fill_value=np.nan, shifts=None, expand=False, interpolation_order=1, show_progressbar=None, parallel=None, max_workers=None, **kwargs, ): """Align the images in-place using :py:func:`scipy.ndimage.shift`. The images can be aligned using either user-provided shifts or by first estimating the shifts. See :py:meth:`~._signals.signal2d.Signal2D.estimate_shift2D` for more details on estimating image shifts. Parameters ---------- crop : bool If True, the data will be cropped not to include regions with missing data fill_value : int, float, nan The areas with missing data are filled with the given value. Default is nan. shifts : None or list of tuples If None the shifts are estimated using :py:meth:`~._signals.signal2D.estimate_shift2D`. expand : bool If True, the data will be expanded to fit all data after alignment. Overrides `crop`. interpolation_order: int, default 1. The order of the spline interpolation. Default is 1, linear interpolation. %s %s %s **kwargs : Keyword arguments passed to :py:meth:`~._signals.signal2d.Signal2D.estimate_shift2D` Returns ------- shifts : np.array The estimated shifts are returned only if ``shifts`` is None See Also -------- * :py:meth:`~._signals.signal2d.Signal2D.estimate_shift2D` """ self._check_signal_dimension_equals_two() return_shifts = False if shifts is None: shifts = self.estimate_shift2D(**kwargs) return_shifts = True if not np.any(shifts): warnings.warn( "The estimated shifts are all zero, suggesting " "the images are already aligned", UserWarning, ) return shifts elif not np.any(shifts): warnings.warn( "The provided shifts are all zero, no alignment done", UserWarning, ) return None if expand: # Expand to fit all valid data left, right = ( int(np.floor(shifts[:, 1].min())) if shifts[:, 1].min() < 0 else 0, int(np.ceil(shifts[:, 1].max())) if shifts[:, 1].max() > 0 else 0, ) top, bottom = ( int(np.floor(shifts[:, 0].min())) if shifts[:, 0].min() < 0 else 0, int(np.ceil(shifts[:, 0].max())) if shifts[:, 0].max() > 0 else 0, ) xaxis = self.axes_manager.signal_axes[0] yaxis = self.axes_manager.signal_axes[1] padding = [] for i in range(self.data.ndim): if i == xaxis.index_in_array: padding.append((right, -left)) elif i == yaxis.index_in_array: padding.append((bottom, -top)) else: padding.append((0, 0)) self.data = np.pad( self.data, padding, mode="constant", constant_values=(fill_value,) ) if left < 0: xaxis.offset += left * xaxis.scale if np.any((left < 0, right > 0)): xaxis.size += right - left if top < 0: yaxis.offset += top * yaxis.scale if np.any((top < 0, bottom > 0)): yaxis.size += bottom - top # Translate, with sub-pixel precision if necesary, # note that we operate in-place here self._map_iterate( shift_image, iterating_kwargs=(("shift", -shifts),), show_progressbar=show_progressbar, parallel=parallel, max_workers=max_workers, ragged=False, inplace=True, fill_value=fill_value, interpolation_order=interpolation_order, ) if crop and not expand: max_shift = np.max(shifts, axis=0) - np.min(shifts, axis=0) if np.any(max_shift >= np.array(self.axes_manager.signal_shape)): raise ValueError("Shift outside range of signal axes. Cannot crop signal.") # Crop the image to the valid size shifts = -shifts bottom, top = ( int(np.floor(shifts[:, 0].min())) if shifts[:, 0].min() < 0 else None, int(np.ceil(shifts[:, 0].max())) if shifts[:, 0].max() > 0 else 0, ) right, left = ( int(np.floor(shifts[:, 1].min())) if shifts[:, 1].min() < 0 else None, int(np.ceil(shifts[:, 1].max())) if shifts[:, 1].max() > 0 else 0, ) self.crop_image(top, bottom, left, right) shifts = -shifts self.events.data_changed.trigger(obj=self) if return_shifts: return shifts align2D.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG) def crop_image(self, top=None, bottom=None, left=None, right=None, convert_units=False): """Crops an image in place. Parameters ---------- top, bottom, left, right : {int | float} If int the values are taken as indices. If float the values are converted to indices. convert_units : bool Default is False If True, convert the signal units using the 'convert_to_units' method of the `axes_manager`. If False, does nothing. See also -------- crop """ self._check_signal_dimension_equals_two() self.crop(self.axes_manager.signal_axes[1].index_in_axes_manager, top, bottom) self.crop(self.axes_manager.signal_axes[0].index_in_axes_manager, left, right) if convert_units: self.axes_manager.convert_units('signal') def add_ramp(self, ramp_x, ramp_y, offset=0): """Add a linear ramp to the signal. Parameters ---------- ramp_x: float Slope of the ramp in x-direction. ramp_y: float Slope of the ramp in y-direction. offset: float, optional Offset of the ramp at the signal fulcrum. Notes ----- The fulcrum of the linear ramp is at the origin and the slopes are given in units of the axis with the according scale taken into account. Both are available via the `axes_manager` of the signal. """ yy, xx = np.indices(self.axes_manager._signal_shape_in_array) if self._lazy: import dask.array as da ramp = offset * da.ones(self.data.shape, dtype=self.data.dtype, chunks=self.data.chunks) else: ramp = offset * np.ones(self.data.shape, dtype=self.data.dtype) ramp += ramp_x * xx ramp += ramp_y * yy self.data += ramp def find_peaks(self, method='local_max', interactive=True, current_index=False, show_progressbar=None, parallel=None, max_workers=None, display=True, toolkit=None, **kwargs): """Find peaks in a 2D signal. Function to locate the positive peaks in an image using various, user specified, methods. Returns a structured array containing the peak positions. Parameters ---------- method : str Select peak finding algorithm to implement. Available methods are: * 'local_max' - simple local maximum search using the :py:func:`skimage.feature.peak_local_max` function * 'max' - simple local maximum search using the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_max`. * 'minmax' - finds peaks by comparing maximum filter results with minimum filter, calculates centers of mass. See the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_minmax` function. * 'zaefferer' - based on gradient thresholding and refinement by local region of interest optimisation. See the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_zaefferer` function. * 'stat' - based on statistical refinement and difference with respect to mean intensity. See the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_stat` function. * 'laplacian_of_gaussian' - a blob finder using the laplacian of Gaussian matrices approach. See the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_log` function. * 'difference_of_gaussian' - a blob finder using the difference of Gaussian matrices approach. See the :py:func:`~hyperspy.utils.peakfinders2D.find_peaks_log` function. * 'template_matching' - A cross correlation peakfinder. This method requires providing a template with the ``template`` parameter, which is used as reference pattern to perform the template matching to the signal. It uses the :py:func:`skimage.feature.match_template` function and the peaks position are obtained by using `minmax` method on the template matching result. interactive : bool If True, the method parameter can be adjusted interactively. If False, the results will be returned. current_index : bool if True, the computation will be performed for the current index. %s %s %s %s %s **kwargs : dict Keywords parameters associated with above methods, see the documentation of each method for more details. Notes ----- As a convenience, the 'local_max' method accepts the 'distance' and 'threshold' argument, which will be map to the 'min_distance' and 'threshold_abs' of the :py:func:`skimage.feature.peak_local_max` function. Returns ------- peaks : :py:class:`~hyperspy.signal.BaseSignal` or numpy.ndarray if current_index=True Array of shape `_navigation_shape_in_array` in which each cell contains an array with dimensions (npeaks, 2) that contains the `x, y` pixel coordinates of peaks found in each image sorted first along `y` and then along `x`. """ method_dict = { 'local_max': find_local_max, 'max': find_peaks_max, 'minmax': find_peaks_minmax, 'zaefferer': find_peaks_zaefferer, 'stat': find_peaks_stat, 'laplacian_of_gaussian': find_peaks_log, 'difference_of_gaussian': find_peaks_dog, 'template_matching' : find_peaks_xc, } # As a convenience, we map 'distance' to 'min_distance' and # 'threshold' to 'threshold_abs' when using the 'local_max' method to # match with the arguments of skimage.feature.peak_local_max. if method == 'local_max': if 'distance' in kwargs.keys(): kwargs['min_distance'] = kwargs.pop('distance') if 'threshold' in kwargs.keys(): kwargs['threshold_abs'] = kwargs.pop('threshold') if method in method_dict.keys(): method_func = method_dict[method] else: raise NotImplementedError(f"The method `{method}` is not " "implemented. See documentation for " "available implementations.") if interactive: # Create a peaks signal with the same navigation shape as a # placeholder for the output axes_dict = self.axes_manager._get_axes_dicts( self.axes_manager.navigation_axes) peaks = BaseSignal(np.empty(self.axes_manager.navigation_shape), axes=axes_dict) pf2D = PeaksFinder2D(self, method=method, peaks=peaks, **kwargs) pf2D.gui(display=display, toolkit=toolkit) elif current_index: peaks = method_func(self.__call__(), **kwargs) else: peaks = self.map(method_func, show_progressbar=show_progressbar, parallel=parallel, inplace=False, ragged=True, max_workers=max_workers, **kwargs) return peaks find_peaks.__doc__ %= (SHOW_PROGRESSBAR_ARG, PARALLEL_ARG, MAX_WORKERS_ARG, DISPLAY_DT, TOOLKIT_DT) class LazySignal2D(LazySignal, Signal2D): _lazy = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs)
gpl-3.0
telefar/stockEye
coursera-compinvest1-master/coursera-compinvest1-master/homework/Homework4.py
1
3966
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. ''' import pandas as pd import numpy as np import math import copy import QSTK.qstkutil.qsdateutil as du import datetime as dt import QSTK.qstkutil.DataAccess as da import QSTK.qstkutil.tsutil as tsu import csv import QSTK.qstkstudy.EventProfiler as ep """ Accepts a list of symbols along with start and end date Returns the Event Matrix which is a pandas Datamatrix Event matrix has the following structure : |IBM |GOOG|XOM |MSFT| GS | JP | (d1)|nan |nan | 1 |nan |nan | 1 | (d2)|nan | 1 |nan |nan |nan |nan | (d3)| 1 |nan | 1 |nan | 1 |nan | (d4)|nan | 1 |nan | 1 |nan |nan | ................................... ................................... Also, d1 = start date nan = no information about any event. 1 = status bit(positively confirms the event occurence) """ def find_events(ls_symbols, d_data): ''' Finding the event dataframe ''' df_close = d_data['actual_close'] ts_market = df_close['SPY'] print "Finding Events" # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index writer = csv.writer(open('orders.csv', 'wb'), delimiter=',') for s_sym in ls_symbols: for i in range(1, len(ldt_timestamps)): # Calculating the returns for this timestamp f_symprice_today = df_close[s_sym].ix[ldt_timestamps[i]] f_symprice_yest = df_close[s_sym].ix[ldt_timestamps[i - 1]] f_marketprice_today = ts_market.ix[ldt_timestamps[i]] f_marketprice_yest = ts_market.ix[ldt_timestamps[i - 1]] f_symreturn_today = (f_symprice_today / f_symprice_yest) - 1 f_marketreturn_today = (f_marketprice_today / f_marketprice_yest) - 1 i_shares = 100 # Event is found if the symbol is down more then 3% while the # market is up more then 2% # if f_symreturn_today <= -0.03 and f_marketreturn_today >= 0.02: # df_events[s_sym].ix[ldt_timestamps[i]] = 1 f_cutoff = 10.0 if f_symprice_today < f_cutoff and f_symprice_yest >= f_cutoff: df_events[s_sym].ix[ldt_timestamps[i]] = 1 row_to_enter = [str(ldt_timestamps[i].year), str(ldt_timestamps[i].month), \ str(ldt_timestamps[i].day), s_sym, 'Buy', i_shares] writer.writerow(row_to_enter) try: time_n = ldt_timestamps[i + 5] except: time_n = ldt_timestamps[-1] row_to_enter = [str(time_n.year), str(time_n.month), \ str(time_n.day), s_sym, 'Sell', i_shares] writer.writerow(row_to_enter) return df_events if __name__ == '__main__': dt_start = dt.datetime(2008, 1, 1) dt_end = dt.datetime(2009, 12, 31) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16)) dataobj = da.DataAccess('Yahoo') ls_symbols = dataobj.get_symbols_from_list('sp5002012') ls_symbols.append('SPY') ls_keys = ['open', 'high', 'low', 'close', 'volume', 'actual_close'] ldf_data = dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys) d_data = dict(zip(ls_keys, ldf_data)) for s_key in ls_keys: d_data[s_key] = d_data[s_key].fillna(method = 'ffill') d_data[s_key] = d_data[s_key].fillna(method = 'bfill') d_data[s_key] = d_data[s_key].fillna(1.0) df_events = find_events(ls_symbols, d_data) # print "Creating Study" # ep.eventprofiler(df_events, d_data, i_lookback=20, i_lookforward=20, # s_filename='MyEventStudy.pdf', b_market_neutral=True, b_errorbars=True, # s_market_sym='SPY')
bsd-3-clause
gpfreitas/bokeh
bokeh/_legacy_charts/builder/scatter_builder.py
43
7792
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Scatter class which lets you build your Scatter charts just passing the arguments to the Chart class and calling the proper functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import numpy as np try: import pandas as pd except: pd = None from collections import OrderedDict from ..utils import chunk, cycle_colors, make_scatter from .._builder import create_and_build, Builder from .._data_adapter import DataAdapter from ...models import ColumnDataSource, Range1d from ...properties import String #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def Scatter(values, **kws): """ Create a scatter chart using :class:`ScatterBuilder <bokeh.charts.builder.scatter_builder.ScatterBuilder>` to render the geometry from values. Args: values (iterable): iterable 2d representing the data series values matrix. In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above from collections import OrderedDict from bokeh.charts import Scatter, output_file, show # (dict, OrderedDict, lists, arrays and DataFrames of (x, y) tuples are valid inputs) xyvalues = OrderedDict() xyvalues['python'] = [(1, 2), (3, 3), (4, 7), (5, 5), (8, 26)] xyvalues['pypy'] = [(1, 12), (2, 23), (4, 47), (5, 15), (8, 46)] xyvalues['jython'] = [(1, 22), (2, 43), (4, 10), (6, 25), (8, 26)] scatter = Scatter(xyvalues, title="Scatter", legend="top_left", ylabel='Languages') output_file('scatter.html') show(scatter) """ return create_and_build(ScatterBuilder, values, **kws) class ScatterBuilder(Builder): """This is the Scatter class and it is in charge of plotting Scatter charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, make the proper calculations and push the references into a source object. We additionally make calculations for the ranges. And finally add the needed glyphs (markers) taking the references from the source. """ # TODO: (bev) should be an enumeration marker = String("circle", help=""" The marker type to use (default: ``circle``). """) def _process_data(self): """Take the scatter.values data to calculate the chart properties accordingly. Then build a dict containing references to all the calculated points to be used by the marker glyph inside the ``_yield_renderers`` method. """ self._data = dict() # list to save all the attributes we are going to create self._attr = [] # list to save all the groups available in the incoming input self._groups.extend(self._values.keys()) # Grouping self.parse_data() @property def parse_data(self): """Parse data received from self._values and create correct x, y series values checking if input is a pandas DataFrameGroupBy object or one of the stardard supported types (that can be converted to a DataAdapter) """ if pd is not None and \ isinstance(self._values, pd.core.groupby.DataFrameGroupBy): return self._parse_groupped_data else: return self._parse_data def _parse_groupped_data(self): """Parse data in self._values in case it's a pandas DataFrameGroupBy and create the data 'x_...' and 'y_...' values for all data series """ for i, val in enumerate(self._values.keys()): xy = self._values[val] self._set_and_get("x_", val, xy[:, 0]) self._set_and_get("y_", val, xy[:, 1]) def _parse_data(self): """Parse data in self._values in case it's an iterable (not a pandas DataFrameGroupBy) and create the data 'x_...' and 'y_...' values for all data series """ for i, val in enumerate(self._values.keys()): x_, y_ = [], [] xy = self._values[val] for value in self._values.index: x_.append(xy[value][0]) y_.append(xy[value][1]) self.set_and_get("x_", val, x_) self.set_and_get("y_", val, y_) def _set_sources(self): """Push the Scatter data into the ColumnDataSource and calculate the proper ranges.""" self._source = ColumnDataSource(self._data) x_names, y_names = self._attr[::2], self._attr[1::2] endx = max(max(self._data[i]) for i in x_names) startx = min(min(self._data[i]) for i in x_names) self.x_range = Range1d( start=startx - 0.1 * (endx - startx), end=endx + 0.1 * (endx - startx) ) endy = max(max(self._data[i]) for i in y_names) starty = min(min(self._data[i]) for i in y_names) self.y_range = Range1d( start=starty - 0.1 * (endy - starty), end=endy + 0.1 * (endy - starty) ) def _yield_renderers(self): """Use the marker glyphs to display the points. Takes reference points from data loaded at the ColumnDataSource. """ duplets = list(chunk(self._attr, 2)) colors = cycle_colors(duplets, self.palette) for i, duplet in enumerate(duplets, start=1): renderer = make_scatter( self._source, duplet[0], duplet[1], self.marker, colors[i - 1] ) self._legends.append((self._groups[i-1], [renderer])) yield renderer def _adapt_values(self): """Prepare context before main show method is invoked. Customize show preliminary actions by handling DataFrameGroupBy values in order to create the series values and labels.""" # check if pandas is installed if pd: # if it is we try to take advantage of it's data structures # asumming we get an groupby object if isinstance(self._values, pd.core.groupby.DataFrameGroupBy): pdict = OrderedDict() for i in self._values.groups.keys(): self._labels = self._values.get_group(i).columns xname = self._values.get_group(i).columns[0] yname = self._values.get_group(i).columns[1] x = getattr(self._values.get_group(i), xname) y = getattr(self._values.get_group(i), yname) pdict[i] = np.array([x.values, y.values]).T self._values = DataAdapter(pdict) self._labels = self._values.keys() else: self._values = DataAdapter(self._values) self._labels = self._values.keys() else: self._values = DataAdapter(self._values) self._labels = self._values.keys()
bsd-3-clause
microsoft/EconML
econml/tests/test_shap.py
1
10941
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import numpy as np import unittest import shap from shap.plots import scatter, heatmap, bar, beeswarm, waterfall, force from econml.dml import * from econml.orf import * from econml.dr import * from econml.metalearners import * from sklearn.linear_model import LinearRegression, LogisticRegression, Lasso from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.preprocessing import PolynomialFeatures class TestShap(unittest.TestCase): def test_continuous_t(self): n = 100 d_x = 3 d_w = 2 X = np.random.normal(size=(n, d_x)) W = np.random.normal(size=(n, d_w)) for d_t in [2, 1]: for d_y in [3, 1]: Y = np.random.normal(size=(n, d_y)) Y = Y.flatten() if d_y == 1 else Y T = np.random.normal(size=(n, d_t)) T = T.flatten() if d_t == 1 else T for featurizer in [None, PolynomialFeatures(degree=2, include_bias=False)]: est_list = [LinearDML(model_y=LinearRegression(), model_t=LinearRegression(), featurizer=featurizer), CausalForestDML(model_y=LinearRegression(), model_t=LinearRegression())] if d_t == 1: est_list += [ NonParamDML(model_y=LinearRegression( ), model_t=LinearRegression(), model_final=RandomForestRegressor(), featurizer=featurizer), ] for est in est_list: with self.subTest(est=est, featurizer=featurizer, d_y=d_y, d_t=d_t): est.fit(Y, T, X, W) shap_values = est.shap_values(X[:10], feature_names=["a", "b", "c"], background_samples=None) for i, output in enumerate(est.cate_output_names()): for j, treat in enumerate(est.cate_treatment_names()): # test base values equals to mean of constant marginal effect if not isinstance(est, (CausalForestDML, DMLOrthoForest)): mean_cate = est.const_marginal_effect(X[:10]).mean(axis=0) mean_cate = np.array(mean_cate).reshape((d_y, d_t))[i, j] self.assertAlmostEqual( shap_values[output][treat].base_values[0], mean_cate, delta=1e-2) # test shape of shap values output is as expected self.assertEqual(len(shap_values[output]), d_t) self.assertEqual(len(shap_values), d_y) # test shape of attribute of explanation object is as expected self.assertEqual(shap_values[output][treat].values.shape[0], 10) self.assertEqual(shap_values[output][treat].data.shape[0], 10) self.assertEqual(shap_values[output][treat].base_values.shape, (10,)) # test length of feature names equals to shap values shape self.assertEqual( len(shap_values[output][treat].feature_names), shap_values[output][treat].values.shape[1]) def test_discrete_t(self): n = 100 d_x = 3 d_w = 2 X = np.random.normal(size=(n, d_x)) W = np.random.normal(size=(n, d_w)) for d_t in [3, 2]: for d_y in [3, 1]: Y = np.random.normal(size=(n, d_y)) Y = Y.flatten() if d_y == 1 else Y T = np.random.choice(range(d_t), size=(n,)) for featurizer in [None, PolynomialFeatures(degree=2, include_bias=False)]: est_list = [LinearDML(featurizer=featurizer, discrete_treatment=True), TLearner(models=RandomForestRegressor()), SLearner(overall_model=RandomForestRegressor()), XLearner(models=RandomForestRegressor()), DomainAdaptationLearner(models=RandomForestRegressor(), final_models=RandomForestRegressor()), CausalForestDML(model_y=LinearRegression(), model_t=LogisticRegression(), discrete_treatment=True) ] if d_t == 2: est_list += [ NonParamDML(model_y=LinearRegression( ), model_t=LogisticRegression(), model_final=RandomForestRegressor(), featurizer=featurizer, discrete_treatment=True)] if d_y == 1: est_list += [DRLearner(multitask_model_final=True, featurizer=featurizer), DRLearner(multitask_model_final=False, featurizer=featurizer), ForestDRLearner()] for est in est_list: with self.subTest(est=est, featurizer=featurizer, d_y=d_y, d_t=d_t): if isinstance(est, (TLearner, SLearner, XLearner, DomainAdaptationLearner)): est.fit(Y, T, X) else: est.fit(Y, T, X, W) shap_values = est.shap_values(X[:10], feature_names=["a", "b", "c"], background_samples=None) for i, output in enumerate(est.cate_output_names()): for j, treat in enumerate(est.cate_treatment_names()): # test base values equals to mean of constant marginal effect if not isinstance(est, (CausalForestDML, ForestDRLearner, DROrthoForest)): mean_cate = est.const_marginal_effect(X[:10]).mean(axis=0) mean_cate = np.array(mean_cate).reshape((d_y, d_t - 1))[i, j] self.assertAlmostEqual( shap_values[output][treat].base_values[0], mean_cate, delta=1e-2) # test shape of shap values output is as expected self.assertEqual(len(shap_values[output]), d_t - 1) self.assertEqual(len(shap_values), d_y) # test shape of attribute of explanation object is as expected self.assertEqual(shap_values[output][treat].values.shape[0], 10) self.assertEqual(shap_values[output][treat].data.shape[0], 10) self.assertEqual(shap_values[output][treat].base_values.shape, (10,)) # test length of feature names equals to shap values shape self.assertEqual( len(shap_values[output][treat].feature_names), shap_values[output][treat].values.shape[1]) def test_identical_output(self): # Treatment effect function def exp_te(x): return np.exp(2 * x[0]) n = 500 n_w = 10 support_size = 5 n_x = 2 # Outcome support support_Y = np.random.choice(range(n_w), size=support_size, replace=False) coefs_Y = np.random.uniform(0, 1, size=(support_size,)) def epsilon_sample(n): return np.random.uniform(-1, 1, size=(n,)) # Treatment support support_T = support_Y coefs_T = np.random.uniform(0, 1, size=support_size) def eta_sample(n): return np.random.uniform(-1, 1, size=n) # Generate controls, covariates, treatments and outcomes W = np.random.normal(0, 1, size=(n, n_w)) X = np.random.uniform(0, 1, size=(n, n_x)) # Heterogeneous treatment effects TE = np.array([np.exp(2 * x_i[0]) for x_i in X]).flatten() T = np.dot(W[:, support_T], coefs_T) + eta_sample(n) Y = (TE * T) + np.dot(W[:, support_Y], coefs_Y) + epsilon_sample(n) Y = np.tile(Y.reshape(-1, 1), (1, 2)) est = LinearDML(model_y=Lasso(), model_t=Lasso(), random_state=123, fit_cate_intercept=True, featurizer=PolynomialFeatures(degree=2, include_bias=False)) est.fit(Y, T, X=X, W=W) shap_values1 = est.shap_values(X[:10], feature_names=["A", "B"], treatment_names=["orange"], background_samples=None) est = LinearDML(model_y=Lasso(), model_t=Lasso(), random_state=123, fit_cate_intercept=True, featurizer=PolynomialFeatures(degree=2, include_bias=False)) est.fit(Y[:, 0], T, X=X, W=W) shap_values2 = est.shap_values(X[:10], feature_names=["A", "B"], treatment_names=["orange"], background_samples=None) np.testing.assert_allclose(shap_values1["Y0"]["orange"].data, shap_values2["Y0"]["orange"].data) np.testing.assert_allclose(shap_values1["Y0"]["orange"].values, shap_values2["Y0"]["orange"].values) # TODO There is a matrix dimension mismatch between multiple outcome and single outcome, should solve that # through shap package. np.testing.assert_allclose(shap_values1["Y0"]["orange"].main_effects, shap_values2["Y0"]["orange"].main_effects) np.testing.assert_allclose(shap_values1["Y0"]["orange"].base_values, shap_values2["Y0"]["orange"].base_values) # test shap could generate the plot from the shap_values heatmap(shap_values1["Y0"]["orange"], show=False) waterfall(shap_values1["Y0"]["orange"][6], show=False) scatter(shap_values1["Y0"]["orange"][:, "A"], show=False) bar(shap_values1["Y0"]["orange"], show=False) beeswarm(shap_values1["Y0"]["orange"], show=False)
mit
tarthy6/dozer-thesis
examples/old/concrete/uniax-post.py
5
1677
#!/usr/bin/python # -*- coding: utf-8 -*- # # demonstration of the woo.post2d module (see its documentation for details) # from woo import post2d import pylab # the matlab-like interface of matplotlib loadFile='/tmp/uniax-tension.woo.gz' if not os.path.exists(loadFile): raise RuntimeError("Run uniax.py first so that %s is created"%loadFile) O.load(loadFile) # flattener that project to the xz plane flattener=post2d.AxisFlatten(useRef=False,axis=1) # return scalar given a Body instance extractDmg=lambda b: b.state.normDmg # will call flattener.planar implicitly # the same as: extractVelocity=lambda b: flattener.planar(b,b.state['vel']) extractVelocity=lambda b: b.state.vel # create new figure pylab.figure() # plot raw damage post2d.plot(post2d.data(extractDmg,flattener)) pylab.suptitle('damage') # plot smooth damage into new figure pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3)) pylab.suptitle('smooth damage') # show color scale pylab.colorbar(map,orientation='horizontal') # shear stress pylab.figure() post2d.plot(post2d.data(lambda b: b.state.sigma,flattener)) pylab.suptitle('sigma') pylab.figure() post2d.plot(post2d.data(lambda b: b.state.tau,flattener,stDev=2e-3)) pylab.suptitle('smooth tau (in grid)') # raw velocity (vector field) plot pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener)) pylab.suptitle('velocity') # smooth velocity plot; data are sampled at regular grid pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3)) pylab.suptitle('smooth velocity') # save last (current) figure to file pylab.gcf().savefig('/tmp/foo.png') # show the figures pylab.show()
gpl-2.0
adexin/Python-Machine-Learning-Samples
Other_samples/Regularization/reg_utils.py
1
10602
import numpy as np import matplotlib.pyplot as plt import h5py import sklearn import sklearn.datasets import sklearn.linear_model import scipy.io def sigmoid(x): """ Compute the sigmoid of x Arguments: x -- A scalar or numpy array of any size. Return: s -- sigmoid(x) """ s = 1 / (1 + np.exp(-x)) return s def relu(x): """ Compute the relu of x Arguments: x -- A scalar or numpy array of any size. Return: s -- relu(x) """ s = np.maximum(0, x) return s def load_planar_dataset(seed): np.random.seed(seed) m = 400 # number of examples N = int(m / 2) # number of points per class D = 2 # dimensionality X = np.zeros((m, D)) # data matrix where each row is a single example Y = np.zeros((m, 1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(N * j, N * (j + 1)) t = np.linspace(j * 3.12, (j + 1) * 3.12, N) + np.random.randn(N) * 0.2 # theta r = a * np.sin(4 * t) + np.random.randn(N) * 0.2 # radius X[ix] = np.c_[r * np.sin(t), r * np.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def initialize_parameters(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) b1 -- bias vector of shape (layer_dims[l], 1) Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l]) bl -- bias vector of shape (1, layer_dims[l]) Tips: - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it! - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer. """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) / np.sqrt(layer_dims[l - 1]) parameters['b' + str(l)] = np.zeros((layer_dims[l], 1)) assert (parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l - 1]) assert (parameters['W' + str(l)].shape == layer_dims[l], 1) return parameters def forward_propagation(X, parameters): """ Implements the forward propagation (and computes the loss) presented in Figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3": W1 -- weight matrix of shape () b1 -- bias vector of shape () W2 -- weight matrix of shape () b2 -- bias vector of shape () W3 -- weight matrix of shape () b3 -- bias vector of shape () Returns: loss -- the loss function (vanilla logistic loss) """ # retrieve parameters W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"] W3 = parameters["W3"] b3 = parameters["b3"] # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID Z1 = np.dot(W1, X) + b1 A1 = relu(Z1) Z2 = np.dot(W2, A1) + b2 A2 = relu(Z2) Z3 = np.dot(W3, A2) + b3 A3 = sigmoid(Z3) cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) return A3, cache def backward_propagation(X, Y, cache): """ Implement the backward propagation presented in figure 2. Arguments: X -- input dataset, of shape (input size, number of examples) Y -- true "label" vector (containing 0 if cat, 1 if non-cat) cache -- cache output from forward_propagation() Returns: gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables """ m = X.shape[1] (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache dZ3 = A3 - Y dW3 = 1. / m * np.dot(dZ3, A2.T) db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True) dA2 = np.dot(W3.T, dZ3) dZ2 = np.multiply(dA2, np.int64(A2 > 0)) dW2 = 1. / m * np.dot(dZ2, A1.T) db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True) dA1 = np.dot(W2.T, dZ2) dZ1 = np.multiply(dA1, np.int64(A1 > 0)) dW1 = 1. / m * np.dot(dZ1, X.T) db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True) gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1} return gradients def update_parameters(parameters, grads, learning_rate): """ Update parameters using gradient descent Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(i)] = Wi parameters['b' + str(i)] = bi grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(i)] = dWi grads['db' + str(i)] = dbi learning_rate -- the learning rate, scalar. Returns: parameters -- python dictionary containing your updated parameters """ n = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for k in range(n): parameters["W" + str(k + 1)] = parameters["W" + str(k + 1)] - learning_rate * grads["dW" + str(k + 1)] parameters["b" + str(k + 1)] = parameters["b" + str(k + 1)] - learning_rate * grads["db" + str(k + 1)] return parameters def predict(X, y, parameters): """ This function is used to predict the results of a n-layer neural network. Arguments: X -- data set of examples you would like to label parameters -- parameters of the trained model Returns: p -- predictions for the given dataset X """ m = X.shape[1] p = np.zeros((1, m), dtype=np.int) # Forward propagation a3, caches = forward_propagation(X, parameters) # convert probas to 0/1 predictions for i in range(0, a3.shape[1]): if a3[0, i] > 0.5: p[0, i] = 1 else: p[0, i] = 0 # print results # print ("predictions: " + str(p[0,:])) # print ("true labels: " + str(y[0,:])) print("Accuracy: " + str(np.mean((p[0, :] == y[0, :])))) return p def compute_cost(a3, Y): """ Implement the cost function Arguments: a3 -- post-activation, output of forward propagation Y -- "true" labels vector, same shape as a3 Returns: cost - value of the cost function """ m = Y.shape[1] logprobs = np.multiply(-np.log(a3), Y) + np.multiply(-np.log(1 - a3), 1 - Y) cost = 1. / m * np.nansum(logprobs) return cost def load_dataset(): train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r") train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r") test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels classes = np.array(test_dataset["list_classes"][:]) # the list of classes train_set_y = train_set_y_orig.reshape((1, train_set_y_orig.shape[0])) test_set_y = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T test_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T train_set_x = train_set_x_orig / 255 test_set_x = test_set_x_orig / 255 return train_set_x, train_set_y, test_set_x, test_set_y, classes def predict_dec(parameters, X): """ Used for plotting decision boundary. Arguments: parameters -- python dictionary containing your parameters X -- input data of size (m, K) Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """ # Predict using forward propagation and a classification threshold of 0.5 a3, cache = forward_propagation(X, parameters) predictions = (a3 > 0.5) return predictions def load_planar_dataset(randomness, seed): np.random.seed(seed) m = 50 N = int(m / 2) # number of points per class D = 2 # dimensionality X = np.zeros((m, D)) # data matrix where each row is a single example Y = np.zeros((m, 1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 2 # maximum ray of the flower for j in range(2): ix = range(N * j, N * (j + 1)) if j == 0: t = np.linspace(j, 4 * 3.1415 * (j + 1), N) # + np.random.randn(N)*randomness # theta r = 0.3 * np.square(t) + np.random.randn(N) * randomness # radius if j == 1: t = np.linspace(j, 2 * 3.1415 * (j + 1), N) # + np.random.randn(N)*randomness # theta r = 0.2 * np.square(t) + np.random.randn(N) * randomness # radius X[ix] = np.c_[r * np.cos(t), r * np.sin(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) plt.show() def load_2D_dataset(): data = scipy.io.loadmat('datasets/data.mat') train_X = data['X'].T train_Y = data['y'].T test_X = data['Xval'].T test_Y = data['yval'].T plt.scatter(train_X[0, :], train_X[1, :], c=train_Y, s=40, cmap=plt.cm.Spectral) return train_X, train_Y, test_X, test_Y
mit
mehdidc/scikit-learn
sklearn/datasets/tests/test_base.py
39
5607
import os import shutil import tempfile import warnings import nose import numpy from sklearn.datasets import get_data_home from sklearn.datasets import clear_data_home from sklearn.datasets import load_files from sklearn.datasets import load_sample_images from sklearn.datasets import load_sample_image from sklearn.datasets import load_digits from sklearn.datasets import load_diabetes from sklearn.datasets import load_linnerud from sklearn.datasets import load_iris from sklearn.datasets import load_boston from sklearn.externals.six import b, u from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises DATA_HOME = tempfile.mkdtemp(prefix="scikit_learn_data_home_test_") LOAD_FILES_ROOT = tempfile.mkdtemp(prefix="scikit_learn_load_files_test_") TEST_CATEGORY_DIR1 = "" TEST_CATEGORY_DIR2 = "" def _remove_dir(path): if os.path.isdir(path): shutil.rmtree(path) def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" for path in [DATA_HOME, LOAD_FILES_ROOT]: _remove_dir(path) def setup_load_files(): global TEST_CATEGORY_DIR1 global TEST_CATEGORY_DIR2 TEST_CATEGORY_DIR1 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) TEST_CATEGORY_DIR2 = tempfile.mkdtemp(dir=LOAD_FILES_ROOT) sample_file = tempfile.NamedTemporaryFile(dir=TEST_CATEGORY_DIR1, delete=False) sample_file.write(b("Hello World!\n")) sample_file.close() def teardown_load_files(): _remove_dir(TEST_CATEGORY_DIR1) _remove_dir(TEST_CATEGORY_DIR2) def test_data_home(): # get_data_home will point to a pre-existing folder data_home = get_data_home(data_home=DATA_HOME) assert_equal(data_home, DATA_HOME) assert_true(os.path.exists(data_home)) # clear_data_home will delete both the content and the folder it-self clear_data_home(data_home=data_home) assert_false(os.path.exists(data_home)) # if the folder is missing it will be created again data_home = get_data_home(data_home=DATA_HOME) assert_true(os.path.exists(data_home)) def test_default_empty_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 0) assert_equal(len(res.target_names), 0) assert_equal(res.DESCR, None) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_default_load_files(): res = load_files(LOAD_FILES_ROOT) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.data, [b("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_w_categories_desc_and_encoding(): category = os.path.abspath(TEST_CATEGORY_DIR1).split('/').pop() res = load_files(LOAD_FILES_ROOT, description="test", categories=category, encoding="utf-8") assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 1) assert_equal(res.DESCR, "test") assert_equal(res.data, [u("Hello World!\n")]) @nose.tools.with_setup(setup_load_files, teardown_load_files) def test_load_files_wo_load_content(): res = load_files(LOAD_FILES_ROOT, load_content=False) assert_equal(len(res.filenames), 1) assert_equal(len(res.target_names), 2) assert_equal(res.DESCR, None) assert_equal(res.get('data'), None) def test_load_sample_images(): try: res = load_sample_images() assert_equal(len(res.images), 2) assert_equal(len(res.filenames), 2) assert_true(res.DESCR) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_digits(): digits = load_digits() assert_equal(digits.data.shape, (1797, 64)) assert_equal(numpy.unique(digits.target).size, 10) def test_load_digits_n_class_lt_10(): digits = load_digits(9) assert_equal(digits.data.shape, (1617, 64)) assert_equal(numpy.unique(digits.target).size, 9) def test_load_sample_image(): try: china = load_sample_image('china.jpg') assert_equal(china.dtype, 'uint8') assert_equal(china.shape, (427, 640, 3)) except ImportError: warnings.warn("Could not load sample images, PIL is not available.") def test_load_missing_sample_image_error(): have_PIL = True try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: have_PIL = False if have_PIL: assert_raises(AttributeError, load_sample_image, 'blop.jpg') else: warnings.warn("Could not load sample images, PIL is not available.") def test_load_diabetes(): res = load_diabetes() assert_equal(res.data.shape, (442, 10)) assert_true(res.target.size, 442) def test_load_linnerud(): res = load_linnerud() assert_equal(res.data.shape, (20, 3)) assert_equal(res.target.shape, (20, 3)) assert_equal(len(res.target_names), 3) assert_true(res.DESCR) def test_load_iris(): res = load_iris() assert_equal(res.data.shape, (150, 4)) assert_equal(res.target.size, 150) assert_equal(res.target_names.size, 3) assert_true(res.DESCR) def test_load_boston(): res = load_boston() assert_equal(res.data.shape, (506, 13)) assert_equal(res.target.size, 506) assert_equal(res.feature_names.size, 13) assert_true(res.DESCR)
bsd-3-clause
ufaks/addons-yelizariev
import_framework/import_base.py
16
14556
# -*- coding: utf-8 -*- import mapper try: from pandas import DataFrame except ImportError: pass import logging _logger = logging.getLogger(__name__) class create_childs(object): def __init__(self, childs): # extend childs to same set of fields # collect fields fields = set() for c in childs: for f in c: fields.add(f) # extend childs for c in childs: for f in fields: if f not in c: c[f] = mapper.const('') self.childs = childs def get_childs(self): return self.childs class import_base(object): def __init__(self, pool, cr, uid, instance_name, module_name, email_to_notify=False, import_dir = '/tmp/', # path to save *.csv files for debug or manual upload run_import = True, context=None): #Thread.__init__(self) self.import_options = {'quoting':'"', 'separator':',', 'headers':True} self.external_id_field = 'id' self.pool = pool self.cr = cr self.uid = uid self.instance_name = instance_name self.module_name = module_name self.context = context or {} self.email = email_to_notify self.table_list = [] #self.logger = logging.getLogger(module_name) self.cache = {} self.import_dir = import_dir self.run_import = run_import self.import_num = 1 self.initialize() def initialize(self): """ init before import usually for the login """ pass def finalize(self): """ init after import """ pass def init_run(self): """ call after intialize run in the thread, not in the main process TO use for long initialization operation """ pass def get_data(self, table): """ @return: a list of dictionaries each dictionnaries contains the list of pair external_field_name : value """ return [{}] def get_link(self, from_table, ids, to_table): """ @return: a dictionaries that contains the association between the id (from_table) and the list (to table) of id linked """ return {} def get_external_id(self, data): """ @return the external id the default implementation return self.external_id_field (that has 'id') by default if the name of id field is different, you can overwrite this method or change the value of self.external_id_field """ return data[self.external_id_field] def get_mapping(self): """ @return: { TABLE_NAME : { 'model' : 'openerp.model.name', #if true import the table if not just resolve dependencies, use for meta package, by default => True #Not required 'import' : True or False, #Not required 'dependencies' : [TABLE_1, TABLE_2], #Not required 'hook' : self.function_name, #get the val dict of the object, return the same val dict or False 'map' : { @see mapper 'openerp_field_name' : 'external_field_name', or val('external_field_name') 'openerp_field_id/id' : ref(TABLE_1, 'external_id_field'), #make the mapping between the external id and the xml on the right 'openerp_field2_id/id_parent' : ref(TABLE_1,'external_id_field') #indicate a self dependencies on openerp_field2_id 'state' : map_val('state_equivalent_field', mapping), # use get_state_map to make the mapping between the value of the field and the value of the state 'text_field' : concat('field_1', 'field_2', .., delimiter=':'), #concat the value of the list of field in one 'description_field' : ppconcat('field_1', 'field_2', .., delimiter='\n\t'), #same as above but with a prettier formatting 'field' : call(callable, arg1, arg2, ..), #call the function with all the value, the function should send the value : self.callable 'field' : callable 'field' : call(method, val('external_field') interface of method is self, val where val is the value of the field 'field' : const(value) #always set this field to value + any custom mapper that you will define } }, } """ return {} def default_hook(self, val): """ this hook will be apply on each table that don't have hook here we define the identity hook """ return val def hook_ignore_all(self, *args): # for debug return None def get_hook_ignore_empty(self, *args): def f(external_values): ignore = True for key in args: v = (external_values.get(key) or '').strip() if v: ignore = False break if ignore: return None else: return external_values return f def prepare_mapping(self, mapping): res = {} for m in mapping: res[m['name']] = m return res def run(self): self.mapped = set() self.mapping = self.prepare_mapping(self.get_mapping()) self.resolve_dependencies([k for k in self.mapping]) _logger.info('finalize...') self.finalize() _logger.info('finalize done') def _fix_size_limit(self): import sys import csv maxInt = sys.maxsize decrement = True while decrement: # decrease the maxInt value by factor 10 # as long as the OverflowError occurs. decrement = False try: csv.field_size_limit(maxInt) except OverflowError: maxInt = int(maxInt/10) decrement = True def do_import(self, import_list, context): self._fix_size_limit() # import import_obj = self.pool['base_import.import'] for imp in import_list: try: messages = import_obj.do(self.cr, self.uid, imp.get('id'), imp.get('fields'), self.import_options, context=context) _logger.info('import_result:\n%s'%messages) except Exception as e: import traceback import StringIO sh = StringIO.StringIO() traceback.print_exc(file=sh) error = sh.getvalue() error = "Error during import\n%s\n%s" % (imp, error) _logger.error(error) raise Exception(error) self.cr.commit() def resolve_dependencies(self, deps): import_list = [] for dname in deps: if dname in self.mapped: continue self.mapped.add(dname) mtable = self.mapping.get(dname) if not mtable: _logger.error('no mapping found for %s' % dname) continue self.resolve_dependencies(mtable.get('dependencies', [])) self.map_and_import(mtable) def map_and_import(self, mtable): _logger.info('read table %s' % mtable.get('name')) records = mtable.get('table')() for mmodel in mtable.get('models'): split = mmodel.get('split') if not split: _logger.info('map and import: import-%s' % self.import_num) self.map_and_import_batch(mmodel, records) else: i=0 while True: _logger.info('importing batch # %s (import-%s)' % (i,self.import_num)) rr = records[i*split:(i+1)*split] if len(rr): self.map_and_import_batch(mmodel, rr) i += 1 else: break finalize = mmodel.get('finalize') if finalize: _logger.info('finalize model...') finalize() _logger.info('finalize model done') def map_and_import_batch(self, mmodel, records): import_list = self.do_mapping(records, mmodel) context = mmodel.get('context') if context: context = context() self.do_import(import_list, context) def do_mapping(self, records, mmodel): hook = mmodel.get('hook', self.default_hook) res = [] mfields = self._preprocess_mapping(mmodel.get('fields')) _logger.info('mapping records to %s: %s' %( mmodel.get('model'), len(records))) for key, r in records.iterrows(): hooked = hook(dict(r)) if not isinstance(hooked, list): hooked = [hooked] for dict_sugar in hooked: if dict_sugar: fields, values_list = self._fields_mapp(dict_sugar, mfields) res.extend(values_list) if not res: _logger.info("no records to import") return [] res = DataFrame(res) data_binary = res.to_csv(sep=self.import_options.get('separator'), quotechar=self.import_options.get('quoting'), index=False, header = fields, encoding='utf-8' ) if self.import_dir: file_name = '%s/import-%03d-%s.csv' % ( self.import_dir, self.import_num, mmodel.get('model'), ) with open(file_name, 'w') as f: f.write(data_binary) self.import_num += 1 if not self.run_import: return [] id = self.pool['base_import.import'].create(self.cr, self.uid, {'res_model':mmodel.get('model'), 'file': data_binary, 'file_name': mmodel.get('model'), }) return [{'id':id, 'fields':fields}] def _preprocess_mapping(self, mapping): """ Preprocess the mapping : after the preprocces, everything is callable in the val of the dictionary use to allow syntaxical sugar like 'field': 'external_field' instead of 'field' : value('external_field') """ #m = dict(mapping) m = mapping for key, value in m.items(): if isinstance(value, basestring): m[key] = mapper.value(value) #set parent for instance of dbmapper elif isinstance(value, mapper.dbmapper): value.set_parent(self) elif isinstance(value, create_childs): # {'child_ids':[{'id':id1, 'name':name1}, {'id':id2, 'name':name2}]} # -> # {'child_ids/id':[id1, id2], 'child_ids/name': [name1, name2]} for c in value.get_childs(): self._preprocess_mapping(c) for ckey, cvalue in c.items(): new_key = '%s/%s' % (key, ckey) if new_key not in m: m[new_key] = [] m[new_key].append(cvalue) del m[key] # delete 'child_ids' return m def _fields_mapp(self,dict_sugar, openerp_dict): """ {'name': name0, 'child_ids/id':[id1, id2], 'child_ids/name': [name1, name2]} -> fields = ['name', 'child_ids/id', 'child_ids/name'] res = [ [name0, '',''], # i=-1 ['', id1, name1] # i=0 ['', id2, name2] # i=1 ] """ res = [] i = -1 while True: fields=[] data_lst = [] for key,val in openerp_dict.items(): if key not in fields: fields.append(key) if isinstance(val, list) and len(val)>i and i>=0: value = val[i](dict_sugar) elif not isinstance(val, list) and i==-1: value = val(dict_sugar) else: value = '' data_lst.append(value) if any(data_lst): add = True if i>=0: print '_fields_mapp', zip(fields, data_lst) add = False # ignore empty lines for pos, val in enumerate(data_lst): if fields[pos].endswith('/id'): continue if val: add = True break if add: res.append(data_lst) i += 1 else: break return fields, res def xml_id_exist(self, table, external_id): """ Check if the external id exist in the openerp database in order to check if the id exist the table where it come from should be provide @return the xml_id generated if the external_id exist in the database or false """ if not external_id: return False xml_id = self._generate_xml_id(external_id, table) id = self.pool.get('ir.model.data').search(self.cr, self.uid, [('name', '=', xml_id), ('module', '=', self.module_name)]) return id and xml_id or False def _generate_xml_id(self, name, table): """ @param name: name of the object, has to be unique in for a given table @param table : table where the record we want generate come from @return: a unique xml id for record, the xml_id will be the same given the same table and same name To be used to avoid duplication of data that don't have ids """ sugar_instance = self.instance_name name = name.replace('.', '_').replace(',', '_') return sugar_instance + "_" + table + "_" + name
lgpl-3.0
harmsm/pytc-gui
pytc_gui/main_window.py
1
9560
__description__ = \ """ pytc GUI using PyQt5. """ __author__ = "Hiranmyai Duvvuri" __date__ = "2017-01-06" from . import dialogs, widgets from .fit_container import FitContainer from pytc.global_fit import GlobalFit from PyQt5.QtCore import pyqtSignal from PyQt5 import QtWidgets as QW from matplotlib.backends.backend_pdf import PdfPages import sys, pkg_resources, pickle import os class MainWindow(QW.QMainWindow): """ Main fitting window. """ def __init__(self,app): super().__init__() self._app = app self._fit = FitContainer() self._fitter_list = {} self._version = pkg_resources.require("pytc-gui")[0].version self._accept_exit_program = False self.layout() def layout(self): """ Create the menu bar. """ menu = self.menuBar() menu.setNativeMenuBar(False) file_menu = menu.addMenu("File") fitting_commands = menu.addMenu("Fitting") help_menu = menu.addMenu("Help") # ------------- Help Menu ---------------------- prog_info = QW.QAction("About", self) prog_info.triggered.connect(self.about_dialog) help_menu.addAction(prog_info) doc_info = QW.QAction("Documentation", self) doc_info.triggered.connect(self.docs_dialog) help_menu.addAction(doc_info) # ------------- Fitting Menu ------------------- do_fit = QW.QAction("Do fit", self) do_fit.setShortcut("Ctrl+F") do_fit.triggered.connect(self.do_fit_callback) fitting_commands.addAction(do_fit) fitting_commands.addSeparator() aic_test = QW.QAction("AIC Test", self) aic_test.triggered.connect(self.aic_dialog) fitting_commands.addAction(aic_test) fitting_commands.addSeparator() fitting_options = QW.QAction("Fit Options", self) fitting_options.triggered.connect(self.fit_options_dialog) fitting_commands.addAction(fitting_options) # ------------------ File Menu --------------------------- add_exp = QW.QAction("Add Experiment", self) add_exp.setShortcut("Ctrl+Shift+N") add_exp.triggered.connect(self.add_exp_dialog) file_menu.addAction(add_exp) export_results = QW.QAction("Export Results", self) export_results.setShortcut("Ctrl+S") export_results.triggered.connect(self.export_results_dialog) file_menu.addAction(export_results) file_menu.addSeparator() #save_fitter = QW.QAction("Save Fitter", self) #save_fitter.setShortcut("Ctrl+Shift+S") #save_fitter.triggered.connect(self.save_fitter_dialog) #file_menu.addAction(save_fitter) #open_fitter = QW.QAction("Open Fitter", self) #open_fitter.setShortcut("Ctrl+O") #open_fitter.triggered.connect(self.open_fitter_dialog) #file_menu.addAction(open_fitter) file_menu.addSeparator() new_session = QW.QAction("New Session", self) new_session.setShortcut("Ctrl+N") new_session.triggered.connect(self.new_session_callback) file_menu.addAction(new_session) close_window = QW.QAction("Exit", self) close_window.setShortcut("Ctrl+W") close_window.triggered.connect(self.close_program_callback) file_menu.addAction(close_window) # add shortcut actions to main window, for qt5 bug self.addAction(add_exp) self.addAction(do_fit) self.addAction(export_results) self.addAction(new_session) self.addAction(close_window) #self.addAction(save_fitter) #self.addAction(open_fitter) # Set up central widget self._main_widgets = widgets.MainWidgets(self,self._fit) self.setCentralWidget(self._main_widgets) self.resize(1000, 600) self.move(QW.QApplication.desktop().screen().rect().center()-self.rect().center()) self.setWindowTitle('pytc') self.show() def docs_dialog(self): """ Open a transient documentation dialog. """ self._tmp = dialogs.Documentation() self._tmp.show() def about_dialog(self): """ Open a transient about dialog. """ self._tmp = dialogs.About() self._tmp.show() def add_exp_dialog(self): """ Open a transient dialog for adding a new experiment. """ self._tmp = dialogs.AddExperiment(self._fit) self._tmp.show() def aic_dialog(self): """ Load persistent dialog box for doing AIC calculation. """ try: self._aic_dialog.show() except AttributeError: self._aic_dialog = dialogs.AICTest(self,self._fit) self._aic_dialog.show() self._aic_dialog.raise_() def fit_options_dialog(self): """ Load persistent dialog for setting fit options. """ # Try to show the window -- if it's not created already, make it try: self._fit_options_dialog.show() except AttributeError: self._fit_options_dialog = dialogs.FitOptions(self, self._fit) self._fit_options_dialog.show() self._fit_options_dialog.raise_() def save_fitter_dialog(self): """ Open a transient dialog for saving a fit object. """ file_name, _ = QW.QFileDialog.getSaveFileName(self, "Save Global Fit", "", "Pickle Files (*.pkl);;") pickle.dump([self._fit,self._version], open(file_name, "wb")) def open_fitter_dialog(self): """ Open a transient dialog for opening a saved fit object. """ file_name, _ = QW.QFileDialog.getOpenFileName(self, "Save Global Fit", "", "Pickle Files (*.pkl);;") opened_fitter, version = pickle.load(open(file_name, "rb")) if self._version == version: self._fit = opened_fitter self._fit.emit_changed() else: err = "Could not load fit. Current version is {}, but file version is {}.".format(self._version,version) error_message = QW.QMessageBox.warning(self,err, QW.QMessageBox.Ok) def export_results_dialog(self): """ Bring up transient dialog for exporting results. """ out_dir, _ = QW.QFileDialog.getSaveFileName(self, "Export Experiment Output", "", "*") try: os.mkdir(out_dir) data_file = open(os.path.join(out_dir,"fit_param.csv"), "w") data_file.write(self._fit.fitter.fit_as_csv) data_file.close() plot_save = PdfPages(os.path.join(out_dir,"main_plot.pdf")) fig, ax = self._fit.fitter.plot() plot_save.savefig(fig) plot_save.close() plot_save = PdfPages(os.path.join(out_dir,"corner_plot.pdf")) fig = self._fit.fitter.corner_plot() plot_save.savefig(fig) plot_save.close() log_save = open(os.path.join(out_dir,"session.log"),"w") spew = self._main_widgets.message_box.toPlainText() log_save.write(spew) log_save.close() except Exception as ex: template = "An exception of type {0} occurred. Arguments:\n{1!r}" err = template.format(type(ex).__name__,ex.args) error_message = QW.QMessageBox.warning(self,err, QW.QMessageBox.Ok) def do_fit_callback(self): """ Do the fit. """ self._main_widgets.do_fit_callback() def new_session_callback(self): """ Start a competely new session. """ warning = "Are you sure you want to start a new session?" warning_message = QW.QMessageBox.warning(self, "warning!",warning, QW.QMessageBox.Yes | QW.QMessageBox.No) if warning_message == QW.QMessageBox.Yes: self._fit.clear() self._fit.fitter_list = {} self._main_widgets.delete() self.__init__(self._app) def close_program_callback(self): """ Close the program out. """ ret = QW.QMessageBox.Ok if not self._accept_exit_program: if len(self._fit.experiments) > 0: m = QW.QMessageBox() m.setText("Are you sure you want to exit?") m.setIcon(QW.QMessageBox.Warning) m.setStandardButtons(QW.QMessageBox.Ok | QW.QMessageBox.Cancel) m.setDefaultButton(QW.QMessageBox.Cancel) ret = m.exec_() if ret == QW.QMessageBox.Ok: self._accept_exit_program = True self._main_widgets.clear() self._app.instance().closeAllWindows() else: self._accept_exit_program = False def closeEvent(self,event): """ Override closeEvent so all windows close and clean up. """ self.close_program_callback() if self._accept_exit_program: event.accept() else: event.ignore() def main(): """ Main function, staring GUI. """ version = pkg_resources.require("pytc-gui")[0].version try: app = QW.QApplication(sys.argv) app.setApplicationName("pytc") app.setApplicationVersion(version) pytc_run = MainWindow(app) sys.exit(app.exec_()) except KeyboardInterrupt: sys.exit() if __name__ == '__main__': main()
unlicense
ishank08/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
marcass/tank_lora
python/archive/queue_listen.py
1
4136
from multiprocessing import Queue as Q from multiprocessing import Process as P import time import sys import numpy as np import paho.mqtt.publish as publish import serial import smtplib import requests import matplotlib.pyplot as plt import datetime import sqlite3 import creds import tanks s_port = '/dev/LORA' #initialise global port port = None #thingspeak water_APIKey = creds.water_APIKey #channel api key batt_APIKey = creds.batt_APIKey thingURL = "https://api.thingspeak.com/update" #mqtt broker = creds.mosq_auth['broker'] auth = creds.mosq_auth #db def setup_db(): # Create table conn, c = tanks.get_db() c.execute('''CREATE TABLE IF NOT EXISTS measurements (timestamp TIMESTAMP, tank_id INTEGER, water_volume REAL, voltage REAL)''') conn.commit() # Save (commit) the changes def add_measurement(tank_id,water_volume,voltage): # Insert a row of data conn, c = tanks.get_db() c.execute("INSERT INTO measurements VALUES (?,?,?,?)", (datetime.datetime.utcnow(),tank_id,water_volume,voltage) ) conn.commit() # Save (commit) the changes def readlineCR(port): rv = '' while True: ch = port.read() rv += ch if ch=='\n':# or ch=='': if 'PY' in rv: #arduino formats message as PY;<nodeID>;<waterlevle;batteryvoltage;>\r\n print rv rec_split = rv.split(';') #make array like [PYTHON, nodeID, payloadance] print rec_split q.put(rec_split[1:4]) #put data in queue for processing at rate rv = '' #format mqtt message def pub_msg(): while True: while (q.empty() == False): data = q.get() in_node = data[0] if tanks.tanks_by_nodeID.has_key(in_node): tank = tanks.tanks_by_nodeID[in_node] else: break print data #check to see if it's a relay (and insert null water value if it is) dist = data[1] batt = data[2] try: dist = int(dist) #check to see if in acceptable value range if (dist < tank.invalid_min) or (dist > tank.max_payload): vol = None else: vol = tank.volume(dist) except: vol = None try: batt = float(batt) if batt > 5.5: batt = None except: batt = None #add to db add_measurement(in_node,vol,batt) #publish to thingspeak #r = requests.post(thingURL, data = {'api_key':water_APIKey, 'field' +tank.nodeID: vol}) publish.single(tank.waterTop, vol , auth=auth, hostname=broker, retain=True) print('Published ' +str(vol) +' for nodeID ' + str(tank.nodeID) + ' to ' +tank.waterTop) #publish to thingspeak #time.sleep(15) #r = requests.post(thingURL, data = {'api_key':batt_APIKey, 'field' +tank.nodeID: batt}) publish.single(tank.batTop, batt , auth=auth, hostname=broker, retain=True) print('Published ' +str(batt) +' for nodeID ' + str(tank.nodeID) + ' to ' +tank.batTop) #time.sleep(15) #Serial port function opening fucntion count = 0 def port_check(in_port): global port try: port = serial.Serial(in_port, baudrate=9600, timeout=3.0) print s_port+' found' count = 0 return port except: port = None return port #handle exceptions for absent port (and keep retrying for a while) while (port_check(s_port) is None) and (count < 100): count = count + 1 print s_port+' not found '+str(count)+' times' time.sleep(10) if count == 100: print 'Exited because serial port not found' sys.exit() #instatiate queue q = Q() #setup database setup_db() fetch_process = P(target=readlineCR, args=(port,)) broadcast_process = P(target=pub_msg, args=()) broadcast_process.start() fetch_process.start()
gpl-3.0
Clyde-fare/scikit-learn
sklearn/cluster/spectral.py
233
18153
# -*- coding: utf-8 -*- """Algorithms for spectral clustering""" # Author: Gael Varoquaux [email protected] # Brian Cheung # Wei LI <[email protected]> # License: BSD 3 clause import warnings import numpy as np from ..base import BaseEstimator, ClusterMixin from ..utils import check_random_state, as_float_array from ..utils.validation import check_array from ..utils.extmath import norm from ..metrics.pairwise import pairwise_kernels from ..neighbors import kneighbors_graph from ..manifold import spectral_embedding from .k_means_ import k_means def discretize(vectors, copy=True, max_svd_restarts=30, n_iter_max=20, random_state=None): """Search for a partition matrix (clustering) which is closest to the eigenvector embedding. Parameters ---------- vectors : array-like, shape: (n_samples, n_clusters) The embedding space of the samples. copy : boolean, optional, default: True Whether to copy vectors, or perform in-place normalization. max_svd_restarts : int, optional, default: 30 Maximum number of attempts to restart SVD if convergence fails n_iter_max : int, optional, default: 30 Maximum number of iterations to attempt in rotation and partition matrix search if machine precision convergence is not reached random_state: int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the of the rotation matrix Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ----- The eigenvector embedding is used to iteratively search for the closest discrete partition. First, the eigenvector embedding is normalized to the space of partition matrices. An optimal discrete partition matrix closest to this normalized embedding multiplied by an initial rotation is calculated. Fixing this discrete partition matrix, an optimal rotation matrix is calculated. These two calculations are performed until convergence. The discrete partition matrix is returned as the clustering solution. Used in spectral clustering, this method tends to be faster and more robust to random initialization than k-means. """ from scipy.sparse import csc_matrix from scipy.linalg import LinAlgError random_state = check_random_state(random_state) vectors = as_float_array(vectors, copy=copy) eps = np.finfo(float).eps n_samples, n_components = vectors.shape # Normalize the eigenvectors to an equal length of a vector of ones. # Reorient the eigenvectors to point in the negative direction with respect # to the first element. This may have to do with constraining the # eigenvectors to lie in a specific quadrant to make the discretization # search easier. norm_ones = np.sqrt(n_samples) for i in range(vectors.shape[1]): vectors[:, i] = (vectors[:, i] / norm(vectors[:, i])) \ * norm_ones if vectors[0, i] != 0: vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i]) # Normalize the rows of the eigenvectors. Samples should lie on the unit # hypersphere centered at the origin. This transforms the samples in the # embedding space to the space of partition matrices. vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis] svd_restarts = 0 has_converged = False # If there is an exception we try to randomize and rerun SVD again # do this max_svd_restarts times. while (svd_restarts < max_svd_restarts) and not has_converged: # Initialize first column of rotation matrix with a row of the # eigenvectors rotation = np.zeros((n_components, n_components)) rotation[:, 0] = vectors[random_state.randint(n_samples), :].T # To initialize the rest of the rotation matrix, find the rows # of the eigenvectors that are as orthogonal to each other as # possible c = np.zeros(n_samples) for j in range(1, n_components): # Accumulate c to ensure row is as orthogonal as possible to # previous picks as well as current one c += np.abs(np.dot(vectors, rotation[:, j - 1])) rotation[:, j] = vectors[c.argmin(), :].T last_objective_value = 0.0 n_iter = 0 while not has_converged: n_iter += 1 t_discrete = np.dot(vectors, rotation) labels = t_discrete.argmax(axis=1) vectors_discrete = csc_matrix( (np.ones(len(labels)), (np.arange(0, n_samples), labels)), shape=(n_samples, n_components)) t_svd = vectors_discrete.T * vectors try: U, S, Vh = np.linalg.svd(t_svd) svd_restarts += 1 except LinAlgError: print("SVD did not converge, randomizing and trying again") break ncut_value = 2.0 * (n_samples - S.sum()) if ((abs(ncut_value - last_objective_value) < eps) or (n_iter > n_iter_max)): has_converged = True else: # otherwise calculate rotation and continue last_objective_value = ncut_value rotation = np.dot(Vh.T, U.T) if not has_converged: raise LinAlgError('SVD did not converge') return labels def spectral_clustering(affinity, n_clusters=8, n_components=None, eigen_solver=None, random_state=None, n_init=10, eigen_tol=0.0, assign_labels='kmeans'): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- affinity : array-like or sparse matrix, shape: (n_samples, n_samples) The affinity matrix describing the relationship of the samples to embed. **Must be symmetric**. Possible examples: - adjacency matrix of a graph, - heat kernel of the pairwise distance matrix of the samples, - symmetric k-nearest neighbours connectivity matrix of the samples. n_clusters : integer, optional Number of clusters to extract. n_components : integer, optional, default is n_clusters Number of eigen vectors to use for the spectral embedding eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. See the 'Multiclass spectral clustering' paper referenced below for more details on the discretization approach. Returns ------- labels : array of integers, shape: n_samples The labels of the clusters. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf Notes ------ The graph should contain only one connect component, elsewhere the results make little sense. This algorithm solves the normalized cut for k=2: it is a normalized spectral clustering. """ if assign_labels not in ('kmeans', 'discretize'): raise ValueError("The 'assign_labels' parameter should be " "'kmeans' or 'discretize', but '%s' was given" % assign_labels) random_state = check_random_state(random_state) n_components = n_clusters if n_components is None else n_components maps = spectral_embedding(affinity, n_components=n_components, eigen_solver=eigen_solver, random_state=random_state, eigen_tol=eigen_tol, drop_first=False) if assign_labels == 'kmeans': _, labels, _ = k_means(maps, n_clusters, random_state=random_state, n_init=n_init) else: labels = discretize(maps, random_state=random_state) return labels class SpectralClustering(BaseEstimator, ClusterMixin): """Apply clustering to a projection to the normalized laplacian. In practice Spectral Clustering is very useful when the structure of the individual clusters is highly non-convex or more generally when a measure of the center and spread of the cluster is not a suitable description of the complete cluster. For instance when clusters are nested circles on the 2D plan. If affinity is the adjacency matrix of a graph, this method can be used to find normalized graph cuts. When calling ``fit``, an affinity matrix is constructed using either kernel function such the Gaussian (aka RBF) kernel of the euclidean distanced ``d(X, X)``:: np.exp(-gamma * d(X,X) ** 2) or a k-nearest neighbors connectivity matrix. Alternatively, using ``precomputed``, a user-provided affinity matrix can be used. Read more in the :ref:`User Guide <spectral_clustering>`. Parameters ----------- n_clusters : integer, optional The dimension of the projection subspace. affinity : string, array-like or callable, default 'rbf' If a string, this may be one of 'nearest_neighbors', 'precomputed', 'rbf' or one of the kernels supported by `sklearn.metrics.pairwise_kernels`. Only kernels that produce similarity scores (non-negative values that increase with similarity) should be used. This property is not checked by the clustering algorithm. gamma : float Scaling factor of RBF, polynomial, exponential chi^2 and sigmoid affinity kernel. Ignored for ``affinity='nearest_neighbors'``. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. n_neighbors : integer Number of neighbors to use when constructing the affinity matrix using the nearest neighbors method. Ignored for ``affinity='rbf'``. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'} The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities random_state : int seed, RandomState instance, or None (default) A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by the K-Means initialization. n_init : int, optional, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. eigen_tol : float, optional, default: 0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. assign_labels : {'kmeans', 'discretize'}, default: 'kmeans' The strategy to use to assign labels in the embedding space. There are two ways to assign labels after the laplacian embedding. k-means can be applied and is a popular choice. But it can also be sensitive to initialization. Discretization is another approach which is less sensitive to random initialization. kernel_params : dictionary of string to any, optional Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. Attributes ---------- affinity_matrix_ : array-like, shape (n_samples, n_samples) Affinity matrix used for clustering. Available only if after calling ``fit``. labels_ : Labels of each point Notes ----- If you have an affinity matrix, such as a distance matrix, for which 0 means identical elements, and high values means very dissimilar elements, it can be transformed in a similarity matrix that is well suited for the algorithm by applying the Gaussian (RBF, heat) kernel:: np.exp(- X ** 2 / (2. * delta ** 2)) Another alternative is to take a symmetric version of the k nearest neighbors connectivity matrix of the points. If the pyamg package is installed, it is used: this greatly speeds up computation. References ---------- - Normalized cuts and image segmentation, 2000 Jianbo Shi, Jitendra Malik http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324 - A Tutorial on Spectral Clustering, 2007 Ulrike von Luxburg http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323 - Multiclass spectral clustering, 2003 Stella X. Yu, Jianbo Shi http://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf """ def __init__(self, n_clusters=8, eigen_solver=None, random_state=None, n_init=10, gamma=1., affinity='rbf', n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans', degree=3, coef0=1, kernel_params=None): self.n_clusters = n_clusters self.eigen_solver = eigen_solver self.random_state = random_state self.n_init = n_init self.gamma = gamma self.affinity = affinity self.n_neighbors = n_neighbors self.eigen_tol = eigen_tol self.assign_labels = assign_labels self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def fit(self, X, y=None): """Creates an affinity matrix for X using the selected affinity, then applies spectral clustering to this affinity matrix. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) OR, if affinity==`precomputed`, a precomputed affinity matrix of shape (n_samples, n_samples) """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) if X.shape[0] == X.shape[1] and self.affinity != "precomputed": warnings.warn("The spectral clustering API has changed. ``fit``" "now constructs an affinity matrix from data. To use" " a custom affinity matrix, " "set ``affinity=precomputed``.") if self.affinity == 'nearest_neighbors': connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors, include_self=True) self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T) elif self.affinity == 'precomputed': self.affinity_matrix_ = X else: params = self.kernel_params if params is None: params = {} if not callable(self.affinity): params['gamma'] = self.gamma params['degree'] = self.degree params['coef0'] = self.coef0 self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity, filter_params=True, **params) random_state = check_random_state(self.random_state) self.labels_ = spectral_clustering(self.affinity_matrix_, n_clusters=self.n_clusters, eigen_solver=self.eigen_solver, random_state=random_state, n_init=self.n_init, eigen_tol=self.eigen_tol, assign_labels=self.assign_labels) return self @property def _pairwise(self): return self.affinity == "precomputed"
bsd-3-clause
anntzer/scikit-learn
sklearn/datasets/_species_distributions.py
11
8726
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- For an example of using this dataset, see :ref:`examples/applications/plot_species_distribution_modeling.py <sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from io import BytesIO from os import makedirs, remove from os.path import exists import logging import numpy as np import joblib from . import get_data_home from ._base import _fetch_remote from ._base import RemoteFileMetadata from ..utils import Bunch from ..utils.validation import _deprecate_positional_args from ._base import _pkl_filepath # The original data can be found at: # https://biodiversityinformatics.amnh.org/open_source/maxent/samples.zip SAMPLES = RemoteFileMetadata( filename='samples.zip', url='https://ndownloader.figshare.com/files/5976075', checksum=('abb07ad284ac50d9e6d20f1c4211e0fd' '3c098f7f85955e89d321ee8efe37ac28')) # The original data can be found at: # https://biodiversityinformatics.amnh.org/open_source/maxent/coverages.zip COVERAGES = RemoteFileMetadata( filename='coverages.zip', url='https://ndownloader.figshare.com/files/5976078', checksum=('4d862674d72e79d6cee77e63b98651ec' '7926043ba7d39dcb31329cf3f6073807')) DATA_ARCHIVE_NAME = "species_coverage.pkz" logger = logging.getLogger(__name__) def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for _ in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = int(header[b'NODATA_value']) if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) @_deprecate_positional_args def fetch_species_distributions(*, data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : str, default=None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : bool, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1624,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (620,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://rob.schapire.net/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. - For an example of using this dataset with scikit-learn, see :ref:`examples/applications/plot_species_distribution_modeling.py <sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py>`. """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 archive_path = _pkl_filepath(data_home, DATA_ARCHIVE_NAME) if not exists(archive_path): if not download_if_missing: raise IOError("Data not found and `download_if_missing` is False") logger.info('Downloading species data from %s to %s' % ( SAMPLES.url, data_home)) samples_path = _fetch_remote(SAMPLES, dirname=data_home) with np.load(samples_path) as X: # samples.zip is a valid npz for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) remove(samples_path) logger.info('Downloading coverage data from %s to %s' % ( COVERAGES.url, data_home)) coverages_path = _fetch_remote(COVERAGES, dirname=data_home) with np.load(coverages_path) as X: # coverages.zip is a valid npz coverages = [] for f in X.files: fhandle = BytesIO(X[f]) logger.debug(' - converting {}'.format(f)) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) remove(coverages_path) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, archive_path, compress=9) else: bunch = joblib.load(archive_path) return bunch
bsd-3-clause
devanshdalal/scikit-learn
examples/svm/plot_svm_margin.py
88
2540
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM Margins Example ========================================================= The plots below illustrate the effect the parameter `C` has on the separation line. A large value of `C` basically tells our model that we do not have that much faith in our data's distribution, and will only consider points close to line of separation. A small value of `C` includes more/all the observations, allowing the margins to be calculated using all the data in the area. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # figure number fignum = 1 # fit the model for name, penalty in (('unreg', 1), ('reg', 0.05)): clf = svm.SVC(kernel='linear', C=penalty) clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors (margin away from hyperplane in direction # perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in # 2-d. margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2)) yy_down = yy - np.sqrt(1 + a ** 2) * margin yy_up = yy + np.sqrt(1 + a ** 2) * margin # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10, edgecolors='k') plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired, edgecolors='k') plt.axis('tight') x_min = -4.8 x_max = 4.2 y_min = -6 y_max = 6 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.predict(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z, cmap=plt.cm.Paired) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
nvoron23/scikit-learn
sklearn/decomposition/tests/test_nmf.py
47
8566
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from scipy.sparse import csc_matrix from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import ignore_warnings from sklearn.base import clone random_state = np.random.mtrand.RandomState(0) def test_initialize_nn_output(): # Test that initialization does not return negative values data = np.abs(random_state.randn(10, 10)) for init in ('random', 'nndsvd', 'nndsvda', 'nndsvdar'): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert_false((W < 0).any() or (H < 0).any()) @ignore_warnings def test_parameter_checking(): A = np.ones((2, 2)) name = 'spam' msg = "Invalid solver parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nmf.NMF(solver=name).fit, A) msg = "Invalid init parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nmf.NMF(init=name).fit, A) msg = "Invalid sparseness parameter: got 'spam' instead of one of" assert_raise_message(ValueError, msg, nmf.NMF(sparseness=name).fit, A) msg = "Negative values in data passed to" assert_raise_message(ValueError, msg, nmf.NMF().fit, -A) assert_raise_message(ValueError, msg, nmf._initialize_nmf, -A, 2, 'nndsvd') clf = nmf.NMF(2, tol=0.1).fit(A) assert_raise_message(ValueError, msg, clf.transform, -A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init='nndsvd') error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init='nndsvd') Wa, Ha = nmf._initialize_nmf(data, 10, init='nndsvda') War, Har = nmf._initialize_nmf(data, 10, init='nndsvdar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @ignore_warnings def test_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for solver in ('pg', 'cd'): for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.NMF(n_components=2, solver=solver, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) @ignore_warnings def test_nmf_fit_close(): # Test that the fit is not too far away for solver in ('pg', 'cd'): pnmf = nmf.NMF(5, solver=solver, init='nndsvd', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): # Test that NLS solver doesn't return negative values A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): # Test that the NLS results should be close A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) @ignore_warnings def test_nmf_transform(): # Test that NMF.transform returns close values A = np.abs(random_state.randn(6, 5)) for solver in ('pg', 'cd'): m = nmf.NMF(solver=solver, n_components=4, init='nndsvd', random_state=0) ft = m.fit_transform(A) t = m.transform(A) assert_array_almost_equal(ft, t, decimal=2) @ignore_warnings def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. A = np.abs(random_state.randn(30, 10)) nmf.NMF(n_components=15, random_state=0, tol=1e-2).fit(A) @ignore_warnings def test_projgrad_nmf_sparseness(): # Test sparseness # Test that sparsity constraints actually increase sparseness in the # part where they are applied. tol = 1e-2 A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0, tol=tol).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0, tol=tol).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0, tol=tol).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) @ignore_warnings def test_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) for solver in ('pg', 'cd'): est1 = nmf.NMF(solver=solver, n_components=5, init='random', random_state=0, tol=1e-2) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_array_almost_equal(W1, W2) assert_array_almost_equal(H1, H2) @ignore_warnings def test_sparse_transform(): # Test that transform works on sparse data. Issue #2124 A = np.abs(random_state.randn(3, 2)) A[A > 1.0] = 0 A = csc_matrix(A) for solver in ('pg', 'cd'): model = nmf.NMF(solver=solver, random_state=0, tol=1e-4, n_components=2) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_array_almost_equal(A_fit_tr, A_tr, decimal=1) @ignore_warnings def test_non_negative_factorization_consistency(): # Test that the function is called in the same way, either directly # or through the NMF class A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 for solver in ('pg', 'cd'): W_nmf, H, _ = nmf.non_negative_factorization( A, solver=solver, random_state=1, tol=1e-2) W_nmf_2, _, _ = nmf.non_negative_factorization( A, H=H, update_H=False, solver=solver, random_state=1, tol=1e-2) model_class = nmf.NMF(solver=solver, random_state=1, tol=1e-2) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_array_almost_equal(W_nmf, W_cls, decimal=10) assert_array_almost_equal(W_nmf_2, W_cls_2, decimal=10) @ignore_warnings def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = nmf.non_negative_factorization msg = "Number of components must be positive; got (n_components='2')" assert_raise_message(ValueError, msg, nnmf, A, A, A, '2') msg = "Negative values in data passed to NMF (input H)" assert_raise_message(ValueError, msg, nnmf, A, A, -A, 2, 'custom') msg = "Negative values in data passed to NMF (input W)" assert_raise_message(ValueError, msg, nnmf, A, -A, A, 2, 'custom') msg = "Array passed to NMF (input H) is full of zeros" assert_raise_message(ValueError, msg, nnmf, A, A, 0 * A, 2, 'custom') def test_safe_compute_error(): A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) W, H = nmf._initialize_nmf(A, 5, init='random', random_state=0) error = nmf._safe_compute_error(A, W, H) error_sparse = nmf._safe_compute_error(A_sparse, W, H) assert_almost_equal(error, error_sparse)
bsd-3-clause
classicboyir/BuildingMachineLearningSystemsWithPython
ch04/blei_lda.py
21
2601
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from __future__ import print_function from wordcloud import create_cloud try: from gensim import corpora, models, matutils except: print("import gensim failed.") print() print("Please install it") raise import matplotlib.pyplot as plt import numpy as np from os import path NUM_TOPICS = 100 # Check that data exists if not path.exists('./data/ap/ap.dat'): print('Error: Expected data to be present at data/ap/') print('Please cd into ./data & run ./download_ap.sh') # Load the data corpus = corpora.BleiCorpus('./data/ap/ap.dat', './data/ap/vocab.txt') # Build the topic model model = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=None) # Iterate over all the topics in the model for ti in range(model.num_topics): words = model.show_topic(ti, 64) tf = sum(f for f, w in words) with open('topics.txt', 'w') as output: output.write('\n'.join('{}:{}'.format(w, int(1000. * f / tf)) for f, w in words)) output.write("\n\n\n") # We first identify the most discussed topic, i.e., the one with the # highest total weight topics = matutils.corpus2dense(model[corpus], num_terms=model.num_topics) weight = topics.sum(1) max_topic = weight.argmax() # Get the top 64 words for this topic # Without the argument, show_topic would return only 10 words words = model.show_topic(max_topic, 64) # This function will actually check for the presence of pytagcloud and is otherwise a no-op create_cloud('cloud_blei_lda.png', words) num_topics_used = [len(model[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist(num_topics_used, np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') fig.tight_layout() fig.savefig('Figure_04_01.png') # Now, repeat the same exercise using alpha=1.0 # You can edit the constant below to play around with this parameter ALPHA = 1.0 model1 = models.ldamodel.LdaModel( corpus, num_topics=NUM_TOPICS, id2word=corpus.id2word, alpha=ALPHA) num_topics_used1 = [len(model1[doc]) for doc in corpus] fig,ax = plt.subplots() ax.hist([num_topics_used, num_topics_used1], np.arange(42)) ax.set_ylabel('Nr of documents') ax.set_xlabel('Nr of topics') # The coordinates below were fit by trial and error to look good ax.text(9, 223, r'default alpha') ax.text(26, 156, 'alpha=1.0') fig.tight_layout() fig.savefig('Figure_04_02.png')
mit
andyfaff/scipy
doc/source/tutorial/examples/optimize_global_1.py
12
1752
import numpy as np import matplotlib.pyplot as plt from scipy import optimize def eggholder(x): return (-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47)))) -x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47))))) bounds = [(-512, 512), (-512, 512)] x = np.arange(-512, 513) y = np.arange(-512, 513) xgrid, ygrid = np.meshgrid(x, y) xy = np.stack([xgrid, ygrid]) results = dict() results['shgo'] = optimize.shgo(eggholder, bounds) results['DA'] = optimize.dual_annealing(eggholder, bounds) results['DE'] = optimize.differential_evolution(eggholder, bounds) results['BH'] = optimize.basinhopping(eggholder, bounds) results['shgo_sobol'] = optimize.shgo(eggholder, bounds, n=256, iters=5, sampling_method='sobol') fig = plt.figure(figsize=(4.5, 4.5)) ax = fig.add_subplot(111) im = ax.imshow(eggholder(xy), interpolation='bilinear', origin='lower', cmap='gray') ax.set_xlabel('x') ax.set_ylabel('y') def plot_point(res, marker='o', color=None): ax.plot(512+res.x[0], 512+res.x[1], marker=marker, color=color, ms=10) plot_point(results['BH'], color='y') # basinhopping - yellow plot_point(results['DE'], color='c') # differential_evolution - cyan plot_point(results['DA'], color='w') # dual_annealing. - white # SHGO produces multiple minima, plot them all (with a smaller marker size) plot_point(results['shgo'], color='r', marker='+') plot_point(results['shgo_sobol'], color='r', marker='x') for i in range(results['shgo_sobol'].xl.shape[0]): ax.plot(512 + results['shgo_sobol'].xl[i, 0], 512 + results['shgo_sobol'].xl[i, 1], 'ro', ms=2) ax.set_xlim([-4, 514*2]) ax.set_ylim([-4, 514*2]) fig.tight_layout() plt.show()
bsd-3-clause
neuroidss/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_fltkagg.py
69
20839
""" A backend for FLTK Copyright: Gregory Lielens, Free Field Technologies SA and John D. Hunter 2004 This code is released under the matplotlib license """ from __future__ import division import os, sys, math import fltk as Fltk from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib import rcParams, verbose from matplotlib.cbook import is_string_like from matplotlib.backend_bases import \ RendererBase, GraphicsContextBase, FigureManagerBase, FigureCanvasBase,\ NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import thread,time Fl_running=thread.allocate_lock() def Fltk_run_interactive(): global Fl_running if Fl_running.acquire(0): while True: Fltk.Fl.check() time.sleep(0.005) else: print "fl loop already running" # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord= { cursors.HAND: Fltk.FL_CURSOR_HAND, cursors.POINTER: Fltk.FL_CURSOR_ARROW, cursors.SELECT_REGION: Fltk.FL_CURSOR_CROSS, cursors.MOVE: Fltk.FL_CURSOR_MOVE } special_key={ Fltk.FL_Shift_R:'shift', Fltk.FL_Shift_L:'shift', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', Fltk.FL_Control_R:'control', Fltk.FL_Control_L:'control', 65515:'win', 65516:'win', } def error_msg_fltk(msg, parent=None): Fltk.fl_message(msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.canvas.draw() def ishow(): """ Show all the figures and enter the fltk mainloop in another thread This allows to keep hand in interractive python session Warning: does not work under windows This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() if show._needmain: thread.start_new_thread(Fltk_run_interactive,()) show._needmain = False def show(): """ Show all the figures and enter the fltk mainloop This should be the last line of your script """ for manager in Gcf.get_all_fig_managers(): manager.show() #mainloop, if an fltk program exist no need to call that #threaded (and interractive) version if show._needmain: Fltk.Fl.run() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Fltk.Fl_Double_Window(10,10,30,30) canvas = FigureCanvasFltkAgg(figure) window.end() window.show() window.make_current() figManager = FigureManagerFltkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FltkCanvas(Fltk.Fl_Widget): def __init__(self,x,y,w,h,l,source): Fltk.Fl_Widget.__init__(self, 0, 0, w, h, "canvas") self._source=source self._oldsize=(None,None) self._draw_overlay = False self._button = None self._key = None def draw(self): newsize=(self.w(),self.h()) if(self._oldsize !=newsize): self._oldsize =newsize self._source.resize(newsize) self._source.draw() t1,t2,w,h = self._source.figure.bbox.bounds Fltk.fl_draw_image(self._source.buffer_rgba(0,0),0,0,int(w),int(h),4,0) self.redraw() def blit(self,bbox=None): if bbox is None: t1,t2,w,h = self._source.figure.bbox.bounds else: t1o,t2o,wo,ho = self._source.figure.bbox.bounds t1,t2,w,h = bbox.bounds x,y=int(t1),int(t2) Fltk.fl_draw_image(self._source.buffer_rgba(x,y),x,y,int(w),int(h),4,int(wo)*4) #self.redraw() def handle(self, event): x=Fltk.Fl.event_x() y=Fltk.Fl.event_y() yf=self._source.figure.bbox.height() - y if event == Fltk.FL_FOCUS or event == Fltk.FL_UNFOCUS: return 1 elif event == Fltk.FL_KEYDOWN: ikey= Fltk.Fl.event_key() if(ikey<=255): self._key=chr(ikey) else: try: self._key=special_key[ikey] except: self._key=None FigureCanvasBase.key_press_event(self._source, self._key) return 1 elif event == Fltk.FL_KEYUP: FigureCanvasBase.key_release_event(self._source, self._key) self._key=None elif event == Fltk.FL_PUSH: self.window().make_current() if Fltk.Fl.event_button1(): self._button = 1 elif Fltk.Fl.event_button2(): self._button = 2 elif Fltk.Fl.event_button3(): self._button = 3 else: self._button = None if self._draw_overlay: self._oldx=x self._oldy=y if Fltk.Fl.event_clicks(): FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 else: FigureCanvasBase.button_press_event(self._source, x, yf, self._button) return 1 elif event == Fltk.FL_ENTER: self.take_focus() return 1 elif event == Fltk.FL_LEAVE: return 1 elif event == Fltk.FL_MOVE: FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_DRAG: self.window().make_current() if self._draw_overlay: self._dx=Fltk.Fl.event_x()-self._oldx self._dy=Fltk.Fl.event_y()-self._oldy Fltk.fl_overlay_rect(self._oldx,self._oldy,self._dx,self._dy) FigureCanvasBase.motion_notify_event(self._source, x, yf) return 1 elif event == Fltk.FL_RELEASE: self.window().make_current() if self._draw_overlay: Fltk.fl_overlay_clear() FigureCanvasBase.button_release_event(self._source, x, yf, self._button) self._button = None return 1 return 0 class FigureCanvasFltkAgg(FigureCanvasAgg): def __init__(self, figure): FigureCanvasAgg.__init__(self,figure) t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self.canvas=FltkCanvas(0, 0, w, h, "canvas",self) #self.draw() def resize(self,size): w, h = size # compute desired figure size in inches dpival = self.figure.dpi.get() winch = w/dpival hinch = h/dpival self.figure.set_size_inches(winch,hinch) def draw(self): FigureCanvasAgg.draw(self) self.canvas.redraw() def blit(self,bbox): self.canvas.blit(bbox) show = draw def widget(self): return self.canvas def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ def destroy_figure(ptr,figman): figman.window.hide() Gcf.destroy(figman._num) class FigureManagerFltkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The fltk.Toolbar window : The fltk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) #Fltk container window t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window = window self.window.size(w,h+30) self.window_title="Figure %d" % num self.window.label(self.window_title) self.window.size_range(350,200) self.window.callback(destroy_figure,self) self.canvas = canvas self._num = num if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2FltkAgg( canvas, self ) else: self.toolbar = None self.window.add_resizable(canvas.widget()) if self.toolbar: self.window.add(self.toolbar.widget()) self.toolbar.update() self.window.show() def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): _focus = windowing.FocusManager() self.canvas.draw() self.window.redraw() def set_window_title(self, title): self.window_title=title self.window.label(title) class AxisMenu: def __init__(self, toolbar): self.toolbar=toolbar self._naxes = toolbar.naxes self._mbutton = Fltk.Fl_Menu_Button(0,0,50,10,"Axes") self._mbutton.add("Select All",0,select_all,self,0) self._mbutton.add("Invert All",0,invert_all,self,Fltk.FL_MENU_DIVIDER) self._axis_txt=[] self._axis_var=[] for i in range(self._naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_txt.append("Axis %d" % (i+1)) self._mbutton.add(self._axis_txt[i],0,set_active,self,Fltk.FL_MENU_TOGGLE) for i in range(self._naxes, naxes): self._axis_var.append(self._mbutton.find_item(self._axis_txt[i])) self._axis_var[i].set() elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): self._mbutton.remove(i+2) if(naxes): self._axis_var=self._axis_var[:naxes-1] self._axis_txt=self._axis_txt[:naxes-1] else: self._axis_var=[] self._axis_txt=[] self._naxes = naxes set_active(0,self) def widget(self): return self._mbutton def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].value()] return a def set_active(ptr,amenu): amenu.toolbar.set_active(amenu.get_indices()) def invert_all(ptr,amenu): for a in amenu._axis_var: if not a.value(): a.set() set_active(ptr,amenu) def select_all(ptr,amenu): for a in amenu._axis_var: a.set() set_active(ptr,amenu) class FLTKButton: def __init__(self, text, file, command,argument,type="classic"): file = os.path.join(rcParams['datapath'], 'images', file) self.im = Fltk.Fl_PNM_Image(file) size=26 if type=="repeat": self.b = Fltk.Fl_Repeat_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="classic": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="light": self.b = Fltk.Fl_Light_Button(0,0,size+20,10) self.b.box(Fltk.FL_THIN_UP_BOX) elif type=="pushed": self.b = Fltk.Fl_Button(0,0,size,10) self.b.box(Fltk.FL_UP_BOX) self.b.down_box(Fltk.FL_DOWN_BOX) self.b.type(Fltk.FL_TOGGLE_BUTTON) self.tooltiptext=text+" " self.b.tooltip(self.tooltiptext) self.b.callback(command,argument) self.b.image(self.im) self.b.deimage(self.im) self.type=type def widget(self): return self.b class NavigationToolbar: """ Public attriubutes canvas - the FigureCanvas (FigureCanvasFltkAgg = customised fltk.Widget) """ def __init__(self, canvas, figman): #xmin, xmax = canvas.figure.bbox.intervalx().get_bounds() #height, width = 50, xmax-xmin self.canvas = canvas self.figman = figman Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bLeft = FLTKButton( text="Left", file="stock_left.ppm", command=pan,argument=(self,1,'x'),type="repeat") self.bRight = FLTKButton( text="Right", file="stock_right.ppm", command=pan,argument=(self,-1,'x'),type="repeat") self.bZoomInX = FLTKButton( text="ZoomInX",file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'x'),type="repeat") self.bZoomOutX = FLTKButton( text="ZoomOutX", file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'x'),type="repeat") self.bUp = FLTKButton( text="Up", file="stock_up.ppm", command=pan,argument=(self,1,'y'),type="repeat") self.bDown = FLTKButton( text="Down", file="stock_down.ppm", command=pan,argument=(self,-1,'y'),type="repeat") self.bZoomInY = FLTKButton( text="ZoomInY", file="stock_zoom-in.ppm", command=zoom,argument=(self,1,'y'),type="repeat") self.bZoomOutY = FLTKButton( text="ZoomOutY",file="stock_zoom-out.ppm", command=zoom, argument=(self,-1,'y'),type="repeat") self.bSave = FLTKButton( text="Save", file="stock_save_as.ppm", command=save_figure, argument=self) self._group.end() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) def pan(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.panx(direction) else: a.pany(direction) base.figman.show() def zoom(ptr, arg): base,direction,axe=arg for a in base._active: if(axe=='x'): a.zoomx(direction) else: a.zoomy(direction) base.figman.show() def save_figure(ptr,base): filetypes = base.canvas.get_supported_filetypes() default_filetype = base.canvas.get_default_filetype() sorted_filetypes = filetypes.items() sorted_filetypes.sort() selected_filter = 0 filters = [] for i, (ext, name) in enumerate(sorted_filetypes): filter = '%s (*.%s)' % (name, ext) filters.append(filter) if ext == default_filetype: selected_filter = i filters = '\t'.join(filters) file_chooser=base._fc file_chooser.filter(filters) file_chooser.filter_value(selected_filter) file_chooser.show() while file_chooser.visible() : Fltk.Fl.wait() fname=None if(file_chooser.count() and file_chooser.value(0) != None): fname="" (status,fname)=Fltk.fl_filename_absolute(fname, 1024, file_chooser.value(0)) if fname is None: # Cancel return #start from last directory lastDir = os.path.dirname(fname) file_chooser.directory(lastDir) format = sorted_filetypes[file_chooser.filter_value()][0] try: base.canvas.print_figure(fname, format=format) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_fltk(msg) class NavigationToolbar2FltkAgg(NavigationToolbar2): """ Public attriubutes canvas - the FigureCanvas figman - the Figure manager """ def __init__(self, canvas, figman): self.canvas = canvas self.figman = figman NavigationToolbar2.__init__(self, canvas) self.pan_selected=False self.zoom_selected=False def set_cursor(self, cursor): Fltk.fl_cursor(cursord[cursor],Fltk.FL_BLACK,Fltk.FL_WHITE) def dynamic_update(self): self.canvas.draw() def pan(self,*args): self.pan_selected=not self.pan_selected self.zoom_selected = False self.canvas.canvas._draw_overlay= False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.pan(self,args) def zoom(self,*args): self.zoom_selected=not self.zoom_selected self.canvas.canvas._draw_overlay=self.zoom_selected self.pan_selected = False if self.pan_selected: self.bPan.widget().value(1) else: self.bPan.widget().value(0) if self.zoom_selected: self.bZoom.widget().value(1) else: self.bZoom.widget().value(0) NavigationToolbar2.zoom(self,args) def configure_subplots(self,*args): window = Fltk.Fl_Double_Window(100,100,480,240) toolfig = Figure(figsize=(6,3)) canvas = FigureCanvasFltkAgg(toolfig) window.end() toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) window.show() canvas.show() def _init_toolbar(self): Fltk.Fl_File_Icon.load_system_icons() self._fc = Fltk.Fl_File_Chooser( ".", "*", Fltk.Fl_File_Chooser.CREATE, "Save Figure" ) self._fc.hide() t1,t2,w,h = self.canvas.figure.bbox.bounds w, h = int(w), int(h) self._group = Fltk.Fl_Pack(0,h+2,1000,26) self._group.type(Fltk.FL_HORIZONTAL) self._axes=self.canvas.figure.axes self.naxes = len(self._axes) self.omenu = AxisMenu( toolbar=self) self.bHome = FLTKButton( text="Home", file="home.ppm", command=self.home,argument=self) self.bBack = FLTKButton( text="Back", file="back.ppm", command=self.back,argument=self) self.bForward = FLTKButton( text="Forward", file="forward.ppm", command=self.forward,argument=self) self.bPan = FLTKButton( text="Pan/Zoom",file="move.ppm", command=self.pan,argument=self,type="pushed") self.bZoom = FLTKButton( text="Zoom to rectangle",file="zoom_to_rect.ppm", command=self.zoom,argument=self,type="pushed") self.bsubplot = FLTKButton( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots,argument=self,type="pushed") self.bSave = FLTKButton( text="Save", file="filesave.ppm", command=save_figure, argument=self) self._group.end() self.message = Fltk.Fl_Output(0,0,w,8) self._group.add_resizable(self.message) self.update() def widget(self): return self._group def close(self): Gcf.destroy(self.figman._num) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): self._axes = self.canvas.figure.axes naxes = len(self._axes) self.omenu.adjust(naxes) NavigationToolbar2.update(self) def set_message(self, s): self.message.value(s) FigureManager = FigureManagerFltkAgg
agpl-3.0
pprett/scikit-learn
sklearn/preprocessing/label.py
28
28237
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Joel Nothman <[email protected]> # Hamzeh Alsalhi <[email protected]> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import np_version from ..utils.fixes import sparse_min_max from ..utils.fixes import astype from ..utils.fixes import in1d from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] def _check_numpy_unicode_bug(labels): """Check that user is not subject to an old numpy bug Fixed in master before 1.7.0: https://github.com/numpy/numpy/pull/243 """ if np_version[:3] < (1, 7, 0) and labels.dtype.kind == 'U': raise RuntimeError("NumPy < 1.7.0 does not implement searchsorted" " on unicode data correctly. Please upgrade" " NumPy to use LabelEncoder with unicode inputs.") class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') y = column_or_1d(y, warn=True) classes = np.unique(y) _check_numpy_unicode_bug(classes) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError("y contains new labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'. sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : array of shape [n_samples,] or [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def fit_transform(self, y): """Fit label binarizer and transform multi-class labels to binary labels. The output of transform is sometimes referred to as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ return self.fit(y).transform(y) def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : array or sparse matrix of shape [n_samples,] or \ [n_samples, n_classes] Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if n_classes == 1: if sparse_output: return sp.csr_matrix((n_samples, 1), dtype=int) else: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = astype(Y, int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = astype(Y.data, int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: return np.repeat(classes[0], len(y)) else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> from sklearn.preprocessing import MultiLabelBinarizer >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] See also -------- sklearn.preprocessing.OneHotEncoder : encode categorical integer features using a one-hot aka one-of-K scheme. """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) # ensure yt.indices keeps its current dtype yt.indices = np.array(inverse[yt.indices], dtype=yt.indices.dtype, copy=False) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ check_is_fitted(self, 'classes_') class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ check_is_fitted(self, 'classes_') if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
jni/skan
skan/gui.py
1
11875
import os import json import asyncio from pathlib import Path import numpy as np import matplotlib matplotlib.use('TkAgg') from matplotlib.figure import Figure from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk) import matplotlib.pyplot as plt import tkinter as tk import tkinter.filedialog from tkinter import ttk import click from . import pre, pipe, draw, io, __version__ @asyncio.coroutine def _async(coroutine, *args): loop = asyncio.get_event_loop() return (yield from loop.run_in_executor(None, coroutine, *args)) STANDARD_MARGIN = (3, 3, 12, 12) class Launch(tk.Tk): def __init__(self, params_dict=None): super().__init__() self.title('Skeleton analysis tool') self.crop_radius = tk.IntVar(value=0, name='Crop radius') self.smooth_method = tk.StringVar(value='Gaussian', name='Smoothing method') self.smooth_method._choices = pre.SMOOTH_METHODS self.smooth_radius = tk.DoubleVar(value=0.1, name='Smoothing radius') self.threshold_radius = tk.DoubleVar(value=50e-9, name='Threshold radius') self.brightness_offset = tk.DoubleVar(value=0.075, name='Brightness offset') self.image_format = tk.StringVar(value='auto', name='Image format') self.scale_metadata_path = tk.StringVar(value='Scan/PixelHeight', name='Scale metadata path') self.preview_skeleton_plots = tk.BooleanVar(value=True, name='Live ' 'preview skeleton plot?') self.save_skeleton_plots = tk.BooleanVar(value=True, name='Save skeleton plot?') self.skeleton_plot_prefix = tk.StringVar(value='skeleton-plot-', name='Prefix for skeleton plots') self.output_filename = tk.StringVar(value='skeleton.xlsx', name='Output filename') self.parameters = [ self.crop_radius, self.smooth_method, self.smooth_radius, self.threshold_radius, self.brightness_offset, self.image_format, self.scale_metadata_path, self.preview_skeleton_plots, self.save_skeleton_plots, self.skeleton_plot_prefix, self.output_filename, ] self.input_files = [] self.output_folder = None if params_dict is None: params_dict = {} self.params_dict = params_dict.copy() self.parameter_config(params_dict) # allow resizing self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.create_main_frame() def parameter_config(self, params_dict): """Set parameter values from a config dictionary.""" if isinstance(params_dict, str): if params_dict.startswith('{'): # JSON string params_dict = json.loads(params_dict) else: # config file with open(params_dict) as params_fin: params_dict = json.load(params_fin) self.params_dict.update(params_dict) name2param = {p._name.lower(): p for p in self.parameters} for param, value in self.params_dict.items(): if param.lower() in name2param: name2param[param].set(value) params_dict.pop(param) for param, value in params_dict.copy().items(): if param.lower() == 'input files': self.input_files = value params_dict.pop(param) elif param.lower() == 'output folder': self.output_folder = Path(os.path.expanduser(value)) params_dict.pop(param) elif param.lower() == 'version': print(f'Parameter file version: {params_dict.pop(param)}') for param in params_dict: print(f'Parameter not recognised: {param}') def save_parameters(self, filename=None): out = {p._name.lower(): p.get() for p in self.parameters} out['input files'] = self.input_files out['output folder'] = str(self.output_folder) out['version'] = __version__ if filename is None: return json.dumps(out) attempt = 0 base, ext = os.path.splitext(filename) while os.path.exists(filename): filename = f'{base} ({attempt}){ext}' attempt += 1 with open(filename, mode='wt') as fout: json.dump(out, fout, indent=2) def create_main_frame(self): main = ttk.Frame(master=self, padding=STANDARD_MARGIN) main.grid(row=0, column=0, sticky='nsew') self.create_parameters_frame(main) self.create_buttons_frame(main) main.pack() def create_parameters_frame(self, parent): parameters = ttk.Frame(master=parent, padding=STANDARD_MARGIN) parameters.grid(sticky='nsew') heading = ttk.Label(parameters, text='Analysis parameters') heading.grid(column=0, row=0, sticky='n') for i, param in enumerate(self.parameters, start=1): param_label = ttk.Label(parameters, text=param._name) param_label.grid(row=i, column=0, sticky='nsew') if type(param) == tk.BooleanVar: param_entry = ttk.Checkbutton(parameters, variable=param) elif hasattr(param, '_choices'): param_entry = ttk.OptionMenu(parameters, param, param.get(), *param._choices.keys()) else: param_entry = ttk.Entry(parameters, textvariable=param) param_entry.grid(row=i, column=1, sticky='nsew') def create_buttons_frame(self, parent): buttons = ttk.Frame(master=parent, padding=STANDARD_MARGIN) buttons.grid(sticky='nsew') actions = [ ('Choose config', self.choose_config_file), ('Choose files', self.choose_input_files), ('Choose output folder', self.choose_output_folder), ('Run', lambda: asyncio.ensure_future(self.run())) ] for col, (action_name, action) in enumerate(actions): button = ttk.Button(buttons, text=action_name, command=action) button.grid(row=0, column=col) def choose_config_file(self): config_file = tk.filedialog.askopenfilename() self.parameter_config(config_file) def choose_input_files(self): self.input_files = tk.filedialog.askopenfilenames() if len(self.input_files) > 0 and self.output_folder is None: self.output_folder = Path(os.path.dirname(self.input_files[0])) def choose_output_folder(self): self.output_folder = Path( tk.filedialog.askdirectory(initialdir=self.output_folder)) def make_figure_window(self): self.figure_window = tk.Toplevel(self) self.figure_window.wm_title('Preview') screen_dpi = self.figure_window.winfo_fpixels('1i') screen_width = self.figure_window.winfo_screenwidth() # in pixels figure_width = screen_width / 2 / screen_dpi figure_height = 0.75 * figure_width self.figure = Figure(figsize=(figure_width, figure_height), dpi=screen_dpi) ax0 = self.figure.add_subplot(221) axes = [self.figure.add_subplot(220 + i, sharex=ax0, sharey=ax0) for i in range(2, 5)] self.axes = np.array([ax0] + axes) canvas = FigureCanvasTkAgg(self.figure, master=self.figure_window) canvas.show() canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=1) toolbar = NavigationToolbar2Tk(canvas, self.figure_window) toolbar.update() canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=1) async def run(self): print('Input files:') for file in self.input_files: print(' ', file) print('Parameters:') for param in self.parameters: p = param.get() print(' ', param, type(p), p) print('Output:', self.output_folder) save_skeleton = ('' if not self.save_skeleton_plots.get() else self.skeleton_plot_prefix.get()) images_iterator = pipe.process_images( self.input_files, self.image_format.get(), self.threshold_radius.get(), self.smooth_radius.get(), self.brightness_offset.get(), self.scale_metadata_path.get(), crop_radius=self.crop_radius.get(), smooth_method=self.smooth_method.get()) if self.preview_skeleton_plots.get(): self.make_figure_window() elif self.save_skeleton_plots.get(): self.figure = plt.figure() ax0 = self.figure.add_subplot(221) axes = [self.figure.add_subplot(220 + i, sharex=ax0, sharey=ax0) for i in range(2, 5)] self.axes = np.array([ax0] + axes) self.save_parameters(self.output_folder / 'skan-config.json') for i, result in enumerate(images_iterator): if i < len(self.input_files): filename, image, thresholded, skeleton, framedata = result if save_skeleton: for ax in self.axes: ax.clear() w, h = draw.pixel_perfect_figsize(image) self.figure.set_size_inches(4*w, 4*h) draw.pipeline_plot(image, thresholded, skeleton, framedata, figure=self.figure, axes=self.axes) output_basename = (save_skeleton + os.path.basename( os.path.splitext(filename)[0]) + '.png') output_filename = str(self.output_folder / output_basename) self.figure.savefig(output_filename) if self.preview_skeleton_plots.get(): self.figure.canvas.draw_idle() else: result_full, result_image = result result_filtered = result_full[(result_full['mean shape index']>0.125) & (result_full['mean shape index']<0.625) & (result_full['branch-type'] == 2) & (result_full['euclidean-distance']>0)] ridgeydata = result_filtered.groupby('filename')[['filename','branch-distance','scale','euclidean-distance','squiggle','mean shape index']].mean() io.write_excel(str(self.output_folder / self.output_filename.get()), branches=result_full, images=result_image, filtered=ridgeydata, parameters=json.loads(self.save_parameters())) def tk_update(loop, app): try: app.update() except tkinter.TclError: loop.stop() return loop.call_later(.01, tk_update, loop, app) @click.command() @click.option('-c', '--config', default='', help='JSON configuration file.') def launch(config): params = json.load(open(config)) if config else None app = Launch(params) loop = asyncio.get_event_loop() tk_update(loop, app) loop.run_forever()
bsd-3-clause