repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
APMonitor/arduino
5_Moving_Horizon_Estimation/2nd_order_nonlinear/Python_GEKKO/tclab_mhe_2nd_order_semi-empirical.py
1
7987
import numpy as np import time import matplotlib.pyplot as plt import random # get gekko package with: # pip install gekko from gekko import GEKKO # get tclab package with: # pip install tclab from tclab import TCLab # Connect to Arduino a = TCLab() # Final time tf = 10 # min # number of data points (1 pt every 3 seconds) n = tf * 20 + 1 # Configure heater levels # Percent Heater (0-100%) Q1s = np.zeros(n) Q2s = np.zeros(n) # Heater random steps every 50 sec # Alternate steps by Q1 and Q2 Q1s[3:] = 100.0 Q1s[50:] = 0.0 Q1s[100:] = 80.0 Q2s[25:] = 60.0 Q2s[75:] = 100.0 Q2s[125:] = 25.0 # rapid, random changes every 5 cycles between 50 and 100 for i in range(130,180): if i%10==0: Q1s[i:i+10] = random.random() * 100.0 if (i+5)%10==0: Q2s[i:i+10] = random.random() * 100.0 # Record initial temperatures (degC) T1m = a.T1 * np.ones(n) T2m = a.T2 * np.ones(n) # Store MHE values for plots Tmhe1 = T1m[0] * np.ones(n) Tmhe2 = T2m[0] * np.ones(n) Umhe = 10.0 * np.ones(n) taumhe = 5.0 * np.ones(n) amhe1 = 0.01 * np.ones(n) amhe2 = 0.0075 * np.ones(n) ######################################################### # Initialize Model as Estimator ######################################################### # Use remote=False for local solve (Windows, Linux, ARM) # remote=True for remote solve (All platforms) m = GEKKO(name='tclab-mhe',remote=False) # 60 second time horizon, 20 steps m.time = np.linspace(0,60,21) # Parameters to Estimate U = m.FV(value=10,name='u') U.STATUS = 0 # don't estimate initially U.FSTATUS = 0 # no measurements U.DMAX = 1 U.LOWER = 5 U.UPPER = 15 tau = m.FV(value=20,name='tau') tau.STATUS = 0 # don't estimate initially tau.FSTATUS = 0 # no measurements tau.DMAX = 1 tau.LOWER = 15 tau.UPPER = 25 alpha1 = m.FV(value=0.01,name='a1') # W / % heater alpha1.STATUS = 0 # don't estimate initially alpha1.FSTATUS = 0 # no measurements alpha1.DMAX = 0.001 alpha1.LOWER = 0.003 alpha1.UPPER = 0.03 alpha2 = m.FV(value=0.0075,name='a2') # W / % heater alpha2.STATUS = 0 # don't estimate initially alpha2.FSTATUS = 0 # no measurements alpha2.DMAX = 0.001 alpha2.LOWER = 0.002 alpha2.UPPER = 0.02 # Measured inputs Q1 = m.MV(value=0,name='q1') Q1.STATUS = 0 # don't estimate Q1.FSTATUS = 1 # receive measurement Q2 = m.MV(value=0,name='q2') Q2.STATUS = 0 # don't estimate Q2.FSTATUS = 1 # receive measurement # State variables TH1 = m.SV(value=T1m[0],name='th1') TH2 = m.SV(value=T2m[0],name='th2') # Measurements for model alignment TC1 = m.CV(value=T1m[0],name='tc1') TC1.STATUS = 1 # minimize error between simulation and measurement TC1.FSTATUS = 1 # receive measurement TC1.MEAS_GAP = 0.1 # measurement deadband gap TC1.LOWER = 0 TC1.UPPER = 200 TC2 = m.CV(value=T2m[0],name='tc2') TC2.STATUS = 1 # minimize error between simulation and measurement TC2.FSTATUS = 1 # receive measurement TC2.MEAS_GAP = 0.1 # measurement deadband gap TC2.LOWER = 0 TC2.UPPER = 200 Ta = m.Param(value=23.0+273.15) # K mass = m.Param(value=4.0/1000.0) # kg Cp = m.Param(value=0.5*1000.0) # J/kg-K A = m.Param(value=10.0/100.0**2) # Area not between heaters in m^2 As = m.Param(value=2.0/100.0**2) # Area between heaters in m^2 eps = m.Param(value=0.9) # Emissivity sigma = m.Const(5.67e-8) # Stefan-Boltzmann # Heater temperatures T1 = m.Intermediate(TH1+273.15) T2 = m.Intermediate(TH2+273.15) # Heat transfer between two heaters Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative # Semi-fundamental correlations (energy balances) m.Equation(TH1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \ + eps * sigma * A * (Ta**4 - T1**4) \ + Q_C12 + Q_R12 \ + alpha1*Q1)) m.Equation(TH2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \ + eps * sigma * A * (Ta**4 - T2**4) \ - Q_C12 - Q_R12 \ + alpha2*Q2)) # Empirical correlations (lag equations to emulate conduction) m.Equation(tau * TC1.dt() == -TC1 + TH1) m.Equation(tau * TC2.dt() == -TC2 + TH2) # Global Options m.options.IMODE = 5 # MHE m.options.EV_TYPE = 2 # Objective type m.options.NODES = 3 # Collocation nodes m.options.SOLVER = 3 # IPOPT m.options.COLDSTART = 1 # COLDSTART on first cycle ################################################################## # Create plot plt.figure(figsize=(10,7)) plt.ion() plt.show() # Main Loop start_time = time.time() prev_time = start_time tm = np.zeros(n) try: for i in range(1,n): # Sleep time sleep_max = 3.0 sleep = sleep_max - (time.time() - prev_time) if sleep>=0.01: time.sleep(sleep-0.01) else: time.sleep(0.01) # Record time and change in time t = time.time() dt = t - prev_time prev_time = t tm[i] = t - start_time # Read temperatures in Celsius T1m[i] = a.T1 T2m[i] = a.T2 # Insert measurements TC1.MEAS = T1m[i] TC2.MEAS = T2m[i] Q1.MEAS = Q1s[i-1] Q2.MEAS = Q2s[i-1] # Start estimating U after 10 cycles (20 sec) if i==10: U.STATUS = 1 tau.STATUS = 1 alpha1.STATUS = 1 alpha2.STATUS = 1 # Predict Parameters and Temperatures with MHE m.solve() if m.options.APPSTATUS == 1: # Retrieve new values Tmhe1[i] = TC1.MODEL Tmhe2[i] = TC2.MODEL Umhe[i] = U.NEWVAL taumhe[i] = tau.NEWVAL amhe1[i] = alpha1.NEWVAL amhe2[i] = alpha2.NEWVAL else: # Solution failed, copy prior solution Tmhe1[i] = Tmhe1[i-1] Tmhe2[i] = Tmhe1[i-1] Umhe[i] = Umhe[i-1] taumhe[i] = taumhe[i-1] amhe1[i] = amhe1[i-1] amhe2[i] = amhe2[i-1] # Write new heater values (0-100) a.Q1(Q1s[i]) a.Q2(Q2s[i]) # Plot plt.clf() ax=plt.subplot(3,1,1) ax.grid() plt.plot(tm[0:i],T1m[0:i],'ro',label=r'$T_1$ measured') plt.plot(tm[0:i],Tmhe1[0:i],'k-',label=r'$T_1$ MHE') plt.plot(tm[0:i],T2m[0:i],'bx',label=r'$T_2$ measured') plt.plot(tm[0:i],Tmhe2[0:i],'k--',label=r'$T_2$ MHE') plt.ylabel('Temperature (degC)') plt.legend(loc=2) ax=plt.subplot(3,1,2) ax.grid() plt.plot(tm[0:i],Umhe[0:i],'k-',label='Heat Transfer Coeff') plt.plot(tm[0:i],taumhe[0:i],'g:',label='Time Constant') plt.plot(tm[0:i],amhe1[0:i]*1000,'r--',label=r'$\alpha_1$x1000') plt.plot(tm[0:i],amhe2[0:i]*1000,'b--',label=r'$\alpha_2$x1000') plt.ylabel('Parameters') plt.legend(loc='best') ax=plt.subplot(3,1,3) ax.grid() plt.plot(tm[0:i],Q1s[0:i],'r-',label=r'$Q_1$') plt.plot(tm[0:i],Q2s[0:i],'b:',label=r'$Q_2$') plt.ylabel('Heaters') plt.xlabel('Time (sec)') plt.legend(loc='best') plt.draw() plt.pause(0.05) # Turn off heaters a.Q1(0) a.Q2(0) # Save figure plt.savefig('tclab_mhe.png') # Allow user to end loop with Ctrl-C except KeyboardInterrupt: # Disconnect from Arduino a.Q1(0) a.Q2(0) print('Shutting down') a.close() plt.savefig('tclab_mhe.png') # Make sure serial connection still closes when there's an error except: # Disconnect from Arduino a.Q1(0) a.Q2(0) print('Error: Shutting down') a.close() plt.savefig('tclab_mhe.png') raise
apache-2.0
glewis17/cvxpy
doc/sphinxext/docscrape_sphinx.py
154
7759
import re, inspect, textwrap, pydoc import sphinx from docscrape import NumpyDocString, FunctionDoc, ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config={}): self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' '*indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param,param_type,desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc,8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: out += ['.. autosummary::', ' :toctree:', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "="*maxlen_0 + " " + "="*maxlen_1 + " " + "="*10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default','')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it if sphinx.__version__ >= "0.6": out += ['.. only:: latex',''] else: out += ['.. latexonly::',''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Other Parameters', 'Raises', 'Warns'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Attributes', 'Methods'): out += self._str_member_list(param_list) out = self._str_indent(out,indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config={}): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
gpl-3.0
Aryan-Barbarian/bigbang
bigbang/git_repo.py
2
5894
from git import * import git import pandas as pd import numpy as np from time import mktime from datetime import datetime from entity_resolution import entity_resolve import networkx as nx from config.config import CONFIG ALL_ATTRIBUTES = CONFIG.all_attributes #["HEXSHA", "Committer Name", "Committer Email", "Commit Message", "Time", "Parent Commit", "Touched File"] def cache_fixer(r): # Adds info from row to graph r["Touched File"] = [x.strip() for x in r["Touched File"][1:-1].split(",")] r["Time"] = pd.to_datetime(r["Time"], unit = "s"); return r """ Class that stores an instance of a git repository given the address to that repo relative to this file. It returns the data in multiple useful forms. """ class GitRepo(object): """ A pandas DataFrame object indexed by time that stores the raw form of the repo's commit data as a table where each row is a commit and each col represents an attribute of that commit (time, message, commiter name, committer email, commit hexsha) """ def __init__(self, name, url=None, attribs = ALL_ATTRIBUTES, cache=None): self._commit_data = None; self.url = url; self.repo = None self.name = name; if cache is None: self.repo = Repo(url) self.populate_data(ALL_ATTRIBUTES) else: cache = cache.apply(cache_fixer, axis=1) cache.set_index(cache["Time"]) self._commit_data = cache; missing = list(); cols = self.commit_data.columns for attr in attribs: if attr not in cols and unicode(attr) not in cols: missing.append(attr); if len(missing) > 0: print("There were " + str(len(missing)) + " missing attributes: ") print(missing); if ("Committer Name" in attribs and "Committer Email" in attribs): self._commit_data["Person-ID"] = None; self._commit_data = self._commit_data.apply(lambda row: entity_resolve(row, "Committer Email", "Committer Name"), axis=1) def gen_data(self, repo, raw): if not repo.active_branch.is_valid(): print("Found an empty repo: " + str(self.name)) return; first = repo.commit() commit = first firstHexSha = first.hexsha; generator = git.Commit.iter_items(repo, firstHexSha); if "Touched File" in raw: print("WARNING: Currently going through file diffs. This will take a very long time (1 minute per 3000 commits.) We suggest using a small repository.") for commit in generator: try: if "Touched File" in raw: diff_list = list(); for diff in commit.diff(commit.parents[0]): if diff.b_blob: diff_list.append(diff.b_blob.path); else: diff_list.append(diff.a_blob.path); raw["Touched File"].append(diff_list) if "Committer Name" in raw: raw["Committer Name"].append(commit.committer.name) if "Committer Email" in raw: raw["Committer Email"].append(commit.committer.email) if "Commit Message" in raw: raw["Commit Message"].append(commit.message) if "Time" in raw or True: # TODO: For now, we always ask for the time raw["Time"].append(pd.to_datetime(commit.committed_date, unit = "s")); if "Parent Commit" in raw: raw["Parent Commit"].append([par.hexsha for par in commit.parents]) if "HEXSHA" in raw: raw["HEXSHA"].append(commit.hexsha) except LookupError: print("failed to add a commit because of an encoding error") def populate_data(self, attribs = ALL_ATTRIBUTES): raw = dict() for attrib in attribs: raw[attrib] = list(); repo = self.repo self.gen_data(repo, raw); print(type(raw["Time"])) # TODO: NEEDS TIME time_index = pd.DatetimeIndex(raw["Time"], periods = 24, freq = "H") self._commit_data = pd.DataFrame(raw, index = time_index); def by_committer(self): return self.commit_data.groupby('Committer Name').size().order() def commits_per_day(self): ans = self.commit_data.groupby(self.commit_data.index).size() ans = ans.resample("D", how=np.sum) return ans; def commits_per_week(self): ans = self.commits_per_day(); ans = ans.resample("W", how=np.sum) return ans; def commits_per_day_full(self): ans = self.commit_data.groupby([self.commit_data.index, "Committer Name" ]).size() return ans; @property def commit_data(self): return self._commit_data; def commits_for_committer(self, committer_name): full_info = self.commit_data time_index = pd.DatetimeIndex(self.commit_data["Time"], periods = 24, freq = "H"); df = full_info.loc[full_info["Committer Name"] == committer_name] df = df.groupby([df.index]).size() df = df.resample("D", how = np.sum, axis = 0) return df def merge_with_repo(self, other): # TODO: What if commits have the same time? self._commit_data = self.commit_data.append(other.commit_data); class MultiGitRepo(GitRepo): """ Repos must have a "Repo Name" column """ def __init__(self, repos, attribs=ALL_ATTRIBUTES): self._commit_data = repos[0].commit_data.copy(deep=True); for i in range(1, len(repos)): self.merge_with_repo(repos[i]);
gpl-2.0
vivekmishra1991/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
krez13/scikit-learn
sklearn/ensemble/tests/test_forest.py
26
41675
""" Testing for the forest module (sklearn.ensemble.forest). """ # Authors: Gilles Louppe, # Brian Holt, # Andreas Mueller, # Arnaud Joly # License: BSD 3 clause import pickle from collections import defaultdict from itertools import combinations from itertools import product import numpy as np from scipy.misc import comb from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_less, assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import skip_if_32bit from sklearn import datasets from sklearn.decomposition import TruncatedSVD from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import RandomTreesEmbedding from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.utils.fixes import bincount from sklearn.utils.validation import check_random_state from sklearn.tree.tree import SPARSE_SPLITTERS # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() rng = check_random_state(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also make a hastie_10_2 dataset hastie_X, hastie_y = datasets.make_hastie_10_2(n_samples=20, random_state=1) hastie_X = hastie_X.astype(np.float32) FOREST_CLASSIFIERS = { "ExtraTreesClassifier": ExtraTreesClassifier, "RandomForestClassifier": RandomForestClassifier, } FOREST_REGRESSORS = { "ExtraTreesRegressor": ExtraTreesRegressor, "RandomForestRegressor": RandomForestRegressor, } FOREST_TRANSFORMERS = { "RandomTreesEmbedding": RandomTreesEmbedding, } FOREST_ESTIMATORS = dict() FOREST_ESTIMATORS.update(FOREST_CLASSIFIERS) FOREST_ESTIMATORS.update(FOREST_REGRESSORS) FOREST_ESTIMATORS.update(FOREST_TRANSFORMERS) def check_classification_toy(name): """Check classification on a toy dataset.""" ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) clf = ForestClassifier(n_estimators=10, max_features=1, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf)) # also test apply leaf_indices = clf.apply(X) assert_equal(leaf_indices.shape, (len(X), clf.n_estimators)) def test_classification_toy(): for name in FOREST_CLASSIFIERS: yield check_classification_toy, name def check_iris_criterion(name, criterion): # Check consistency on dataset iris. ForestClassifier = FOREST_CLASSIFIERS[name] clf = ForestClassifier(n_estimators=10, criterion=criterion, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9, "Failed with criterion %s and score = %f" % (criterion, score)) clf = ForestClassifier(n_estimators=10, criterion=criterion, max_features=2, random_state=1) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.5, "Failed with criterion %s and score = %f" % (criterion, score)) def test_iris(): for name, criterion in product(FOREST_CLASSIFIERS, ("gini", "entropy")): yield check_iris_criterion, name, criterion def check_boston_criterion(name, criterion): # Check consistency on dataset boston house prices. ForestRegressor = FOREST_REGRESSORS[name] clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=None, criterion %s " "and score = %f" % (criterion, score)) clf = ForestRegressor(n_estimators=5, criterion=criterion, max_features=6, random_state=1) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert_greater(score, 0.95, "Failed with max_features=6, criterion %s " "and score = %f" % (criterion, score)) def test_boston(): for name, criterion in product(FOREST_REGRESSORS, ("mse", )): yield check_boston_criterion, name, criterion def check_regressor_attributes(name): # Regression models should not have a classes_ attribute. r = FOREST_REGRESSORS[name](random_state=0) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) r.fit([[1, 2, 3], [4, 5, 6]], [1, 2]) assert_false(hasattr(r, "classes_")) assert_false(hasattr(r, "n_classes_")) def test_regressor_attributes(): for name in FOREST_REGRESSORS: yield check_regressor_attributes, name def check_probability(name): # Predict probabilities. ForestClassifier = FOREST_CLASSIFIERS[name] with np.errstate(divide="ignore"): clf = ForestClassifier(n_estimators=10, random_state=1, max_features=1, max_depth=1) clf.fit(iris.data, iris.target) assert_array_almost_equal(np.sum(clf.predict_proba(iris.data), axis=1), np.ones(iris.data.shape[0])) assert_array_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data))) def test_probability(): for name in FOREST_CLASSIFIERS: yield check_probability, name def check_importances(name, criterion, X, y): ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=20, criterion=criterion, random_state=0) est.fit(X, y) importances = est.feature_importances_ n_important = np.sum(importances > 0.1) assert_equal(importances.shape[0], 10) assert_equal(n_important, 3) # XXX: Remove this test in 0.19 after transform support to estimators # is removed. X_new = assert_warns( DeprecationWarning, est.transform, X, threshold="mean") assert_less(0 < X_new.shape[1], X.shape[1]) # Check with parallel importances = est.feature_importances_ est.set_params(n_jobs=2) importances_parrallel = est.feature_importances_ assert_array_almost_equal(importances, importances_parrallel) # Check with sample weights sample_weight = check_random_state(0).randint(1, 10, len(X)) est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=sample_weight) importances = est.feature_importances_ assert_true(np.all(importances >= 0.0)) for scale in [0.5, 10, 100]: est = ForestEstimator(n_estimators=20, random_state=0, criterion=criterion) est.fit(X, y, sample_weight=scale * sample_weight) importances_bis = est.feature_importances_ assert_less(np.abs(importances - importances_bis).mean(), 0.001) @skip_if_32bit def test_importances(): X, y = datasets.make_classification(n_samples=500, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=0) for name, criterion in product(FOREST_CLASSIFIERS, ["gini", "entropy"]): yield check_importances, name, criterion, X, y for name, criterion in product(FOREST_REGRESSORS, ["mse", "friedman_mse"]): yield check_importances, name, criterion, X, y def test_importances_asymptotic(): # Check whether variable importances of totally randomized trees # converge towards their theoretical values (See Louppe et al, # Understanding variable importances in forests of randomized trees, 2013). def binomial(k, n): return 0 if k < 0 or k > n else comb(int(n), int(k), exact=True) def entropy(samples): n_samples = len(samples) entropy = 0. for count in bincount(samples): p = 1. * count / n_samples if p > 0: entropy -= p * np.log2(p) return entropy def mdi_importance(X_m, X, y): n_samples, n_features = X.shape features = list(range(n_features)) features.pop(X_m) values = [np.unique(X[:, i]) for i in range(n_features)] imp = 0. for k in range(n_features): # Weight of each B of size k coef = 1. / (binomial(k, n_features) * (n_features - k)) # For all B of size k for B in combinations(features, k): # For all values B=b for b in product(*[values[B[j]] for j in range(k)]): mask_b = np.ones(n_samples, dtype=np.bool) for j in range(k): mask_b &= X[:, B[j]] == b[j] X_, y_ = X[mask_b, :], y[mask_b] n_samples_b = len(X_) if n_samples_b > 0: children = [] for xi in values[X_m]: mask_xi = X_[:, X_m] == xi children.append(y_[mask_xi]) imp += (coef * (1. * n_samples_b / n_samples) # P(B=b) * (entropy(y_) - sum([entropy(c) * len(c) / n_samples_b for c in children]))) return imp data = np.array([[0, 0, 1, 0, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 2], [1, 0, 1, 1, 0, 1, 1, 3], [0, 1, 1, 1, 0, 1, 0, 4], [1, 1, 0, 1, 0, 1, 1, 5], [1, 1, 0, 1, 1, 1, 1, 6], [1, 0, 1, 0, 0, 1, 0, 7], [1, 1, 1, 1, 1, 1, 1, 8], [1, 1, 1, 1, 0, 1, 1, 9], [1, 1, 1, 0, 1, 1, 1, 0]]) X, y = np.array(data[:, :7], dtype=np.bool), data[:, 7] n_features = X.shape[1] # Compute true importances true_importances = np.zeros(n_features) for i in range(n_features): true_importances[i] = mdi_importance(i, X, y) # Estimate importances with totally randomized trees clf = ExtraTreesClassifier(n_estimators=500, max_features=1, criterion="entropy", random_state=0).fit(X, y) importances = sum(tree.tree_.compute_feature_importances(normalize=False) for tree in clf.estimators_) / clf.n_estimators # Check correctness assert_almost_equal(entropy(y), sum(importances)) assert_less(np.abs(true_importances - importances).mean(), 0.01) def check_unfitted_feature_importances(name): assert_raises(ValueError, getattr, FOREST_ESTIMATORS[name](random_state=0), "feature_importances_") def test_unfitted_feature_importances(): for name in FOREST_ESTIMATORS: yield check_unfitted_feature_importances, name def check_oob_score(name, X, y, n_estimators=20): # Check that oob prediction is a good estimation of the generalization # error. # Proper behavior est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=n_estimators, bootstrap=True) n_samples = X.shape[0] est.fit(X[:n_samples // 2, :], y[:n_samples // 2]) test_score = est.score(X[n_samples // 2:, :], y[n_samples // 2:]) if name in FOREST_CLASSIFIERS: assert_less(abs(test_score - est.oob_score_), 0.1) else: assert_greater(test_score, est.oob_score_) assert_greater(est.oob_score_, .8) # Check warning if not enough estimators with np.errstate(divide="ignore", invalid="ignore"): est = FOREST_ESTIMATORS[name](oob_score=True, random_state=0, n_estimators=1, bootstrap=True) assert_warns(UserWarning, est.fit, X, y) def test_oob_score(): for name in FOREST_CLASSIFIERS: yield check_oob_score, name, iris.data, iris.target # csc matrix yield check_oob_score, name, csc_matrix(iris.data), iris.target # non-contiguous targets in classification yield check_oob_score, name, iris.data, iris.target * 2 + 1 for name in FOREST_REGRESSORS: yield check_oob_score, name, boston.data, boston.target, 50 # csc matrix yield check_oob_score, name, csc_matrix(boston.data), boston.target, 50 def check_oob_score_raise_error(name): ForestEstimator = FOREST_ESTIMATORS[name] if name in FOREST_TRANSFORMERS: for oob_score in [True, False]: assert_raises(TypeError, ForestEstimator, oob_score=oob_score) assert_raises(NotImplementedError, ForestEstimator()._set_oob_score, X, y) else: # Unfitted / no bootstrap / no oob_score for oob_score, bootstrap in [(True, False), (False, True), (False, False)]: est = ForestEstimator(oob_score=oob_score, bootstrap=bootstrap, random_state=0) assert_false(hasattr(est, "oob_score_")) # No bootstrap assert_raises(ValueError, ForestEstimator(oob_score=True, bootstrap=False).fit, X, y) def test_oob_score_raise_error(): for name in FOREST_ESTIMATORS: yield check_oob_score_raise_error, name def check_gridsearch(name): forest = FOREST_CLASSIFIERS[name]() clf = GridSearchCV(forest, {'n_estimators': (1, 2), 'max_depth': (1, 2)}) clf.fit(iris.data, iris.target) def test_gridsearch(): # Check that base trees can be grid-searched. for name in FOREST_CLASSIFIERS: yield check_gridsearch, name def check_parallel(name, X, y): """Check parallel computations in classification""" ForestEstimator = FOREST_ESTIMATORS[name] forest = ForestEstimator(n_estimators=10, n_jobs=3, random_state=0) forest.fit(X, y) assert_equal(len(forest), 10) forest.set_params(n_jobs=1) y1 = forest.predict(X) forest.set_params(n_jobs=2) y2 = forest.predict(X) assert_array_almost_equal(y1, y2, 3) def test_parallel(): for name in FOREST_CLASSIFIERS: yield check_parallel, name, iris.data, iris.target for name in FOREST_REGRESSORS: yield check_parallel, name, boston.data, boston.target def check_pickle(name, X, y): # Check pickability. ForestEstimator = FOREST_ESTIMATORS[name] obj = ForestEstimator(random_state=0) obj.fit(X, y) score = obj.score(X, y) pickle_object = pickle.dumps(obj) obj2 = pickle.loads(pickle_object) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(X, y) assert_equal(score, score2) def test_pickle(): for name in FOREST_CLASSIFIERS: yield check_pickle, name, iris.data[::2], iris.target[::2] for name in FOREST_REGRESSORS: yield check_pickle, name, boston.data[::2], boston.target[::2] def check_multioutput(name): # Check estimators on multi-output problems. X_train = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-2, 1], [-1, 1], [-1, 2], [2, -1], [1, -1], [1, -2]] y_train = [[-1, 0], [-1, 0], [-1, 0], [1, 1], [1, 1], [1, 1], [-1, 2], [-1, 2], [-1, 2], [1, 3], [1, 3], [1, 3]] X_test = [[-1, -1], [1, 1], [-1, 1], [1, -1]] y_test = [[-1, 0], [1, 1], [-1, 2], [1, 3]] est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) y_pred = est.fit(X_train, y_train).predict(X_test) assert_array_almost_equal(y_pred, y_test) if name in FOREST_CLASSIFIERS: with np.errstate(divide="ignore"): proba = est.predict_proba(X_test) assert_equal(len(proba), 2) assert_equal(proba[0].shape, (4, 2)) assert_equal(proba[1].shape, (4, 4)) log_proba = est.predict_log_proba(X_test) assert_equal(len(log_proba), 2) assert_equal(log_proba[0].shape, (4, 2)) assert_equal(log_proba[1].shape, (4, 4)) def test_multioutput(): for name in FOREST_CLASSIFIERS: yield check_multioutput, name for name in FOREST_REGRESSORS: yield check_multioutput, name def check_classes_shape(name): # Test that n_classes_ and classes_ have proper shape. ForestClassifier = FOREST_CLASSIFIERS[name] # Classification, single output clf = ForestClassifier(random_state=0).fit(X, y) assert_equal(clf.n_classes_, 2) assert_array_equal(clf.classes_, [-1, 1]) # Classification, multi-output _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(random_state=0).fit(X, _y) assert_array_equal(clf.n_classes_, [2, 2]) assert_array_equal(clf.classes_, [[-1, 1], [-2, 2]]) def test_classes_shape(): for name in FOREST_CLASSIFIERS: yield check_classes_shape, name def test_random_trees_dense_type(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning a dense array. # Create the RTE with sparse=False hasher = RandomTreesEmbedding(n_estimators=10, sparse_output=False) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # Assert that type is ndarray, not scipy.sparse.csr.csr_matrix assert_equal(type(X_transformed), np.ndarray) def test_random_trees_dense_equal(): # Test that the `sparse_output` parameter of RandomTreesEmbedding # works by returning the same array for both argument values. # Create the RTEs hasher_dense = RandomTreesEmbedding(n_estimators=10, sparse_output=False, random_state=0) hasher_sparse = RandomTreesEmbedding(n_estimators=10, sparse_output=True, random_state=0) X, y = datasets.make_circles(factor=0.5) X_transformed_dense = hasher_dense.fit_transform(X) X_transformed_sparse = hasher_sparse.fit_transform(X) # Assert that dense and sparse hashers have same array. assert_array_equal(X_transformed_sparse.toarray(), X_transformed_dense) def test_random_hasher(): # test random forest hashing on circles dataset # make sure that it is linearly separable. # even after projected to two SVD dimensions # Note: Not all random_states produce perfect results. hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X, y = datasets.make_circles(factor=0.5) X_transformed = hasher.fit_transform(X) # test fit and transform: hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) assert_array_equal(hasher.fit(X).transform(X).toarray(), X_transformed.toarray()) # one leaf active per data point per forest assert_equal(X_transformed.shape[0], X.shape[0]) assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators) svd = TruncatedSVD(n_components=2) X_reduced = svd.fit_transform(X_transformed) linear_clf = LinearSVC() linear_clf.fit(X_reduced, y) assert_equal(linear_clf.score(X_reduced, y), 1.) def test_random_hasher_sparse_data(): X, y = datasets.make_multilabel_classification(random_state=0) hasher = RandomTreesEmbedding(n_estimators=30, random_state=1) X_transformed = hasher.fit_transform(X) X_transformed_sparse = hasher.fit_transform(csc_matrix(X)) assert_array_equal(X_transformed_sparse.toarray(), X_transformed.toarray()) def test_parallel_train(): rng = check_random_state(12321) n_samples, n_features = 80, 30 X_train = rng.randn(n_samples, n_features) y_train = rng.randint(0, 2, n_samples) clfs = [ RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=12345).fit(X_train, y_train) for n_jobs in [1, 2, 3, 8, 16, 32] ] X_test = rng.randn(n_samples, n_features) probas = [clf.predict_proba(X_test) for clf in clfs] for proba1, proba2 in zip(probas, probas[1:]): assert_array_almost_equal(proba1, proba2) def test_distribution(): rng = check_random_state(12321) # Single variable with 4 values X = rng.randint(0, 4, size=(1000, 1)) y = rng.rand(1000) n_trees = 500 clf = ExtraTreesRegressor(n_estimators=n_trees, random_state=42).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = sorted([(1. * count / n_trees, tree) for tree, count in uniques.items()]) # On a single variable problem where X_0 has 4 equiprobable values, there # are 5 ways to build a random tree. The more compact (0,1/0,0/--0,2/--) of # them has probability 1/3 while the 4 others have probability 1/6. assert_equal(len(uniques), 5) assert_greater(0.20, uniques[0][0]) # Rough approximation of 1/6. assert_greater(0.20, uniques[1][0]) assert_greater(0.20, uniques[2][0]) assert_greater(0.20, uniques[3][0]) assert_greater(uniques[4][0], 0.3) assert_equal(uniques[4][1], "0,1/0,0/--0,2/--") # Two variables, one with 2 values, one with 3 values X = np.empty((1000, 2)) X[:, 0] = np.random.randint(0, 2, 1000) X[:, 1] = np.random.randint(0, 3, 1000) y = rng.rand(1000) clf = ExtraTreesRegressor(n_estimators=100, max_features=1, random_state=1).fit(X, y) uniques = defaultdict(int) for tree in clf.estimators_: tree = "".join(("%d,%d/" % (f, int(t)) if f >= 0 else "-") for f, t in zip(tree.tree_.feature, tree.tree_.threshold)) uniques[tree] += 1 uniques = [(count, tree) for tree, count in uniques.items()] assert_equal(len(uniques), 8) def check_max_leaf_nodes_max_depth(name): X, y = hastie_X, hastie_y # Test precedence of max_leaf_nodes over max_depth. ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(max_depth=1, max_leaf_nodes=4, n_estimators=1, random_state=0).fit(X, y) assert_greater(est.estimators_[0].tree_.max_depth, 1) est = ForestEstimator(max_depth=1, n_estimators=1, random_state=0).fit(X, y) assert_equal(est.estimators_[0].tree_.max_depth, 1) def test_max_leaf_nodes_max_depth(): for name in FOREST_ESTIMATORS: yield check_max_leaf_nodes_max_depth, name def check_min_samples_split(name): X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_split=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=0).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_split=1.1).fit, X, y) est = ForestEstimator(min_samples_split=10, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_split=0.5, n_estimators=1, random_state=0) est.fit(X, y) node_idx = est.estimators_[0].tree_.children_left != -1 node_samples = est.estimators_[0].tree_.n_node_samples[node_idx] assert_greater(np.min(node_samples), len(X) * 0.5 - 1, "Failed with {0}".format(name)) def test_min_samples_split(): for name in FOREST_ESTIMATORS: yield check_min_samples_split, name def check_min_samples_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain more than leaf_count training examples ForestEstimator = FOREST_ESTIMATORS[name] # test boundary value assert_raises(ValueError, ForestEstimator(min_samples_leaf=-1).fit, X, y) assert_raises(ValueError, ForestEstimator(min_samples_leaf=0).fit, X, y) est = ForestEstimator(min_samples_leaf=5, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), 4, "Failed with {0}".format(name)) est = ForestEstimator(min_samples_leaf=0.25, n_estimators=1, random_state=0) est.fit(X, y) out = est.estimators_[0].tree_.apply(X) node_counts = np.bincount(out) # drop inner nodes leaf_count = node_counts[node_counts != 0] assert_greater(np.min(leaf_count), len(X) * 0.25 - 1, "Failed with {0}".format(name)) def test_min_samples_leaf(): for name in FOREST_ESTIMATORS: yield check_min_samples_leaf, name def check_min_weight_fraction_leaf(name): X, y = hastie_X, hastie_y # Test if leaves contain at least min_weight_fraction_leaf of the # training set ForestEstimator = FOREST_ESTIMATORS[name] rng = np.random.RandomState(0) weights = rng.rand(X.shape[0]) total_weight = np.sum(weights) # test both DepthFirstTreeBuilder and BestFirstTreeBuilder # by setting max_leaf_nodes for frac in np.linspace(0, 0.5, 6): est = ForestEstimator(min_weight_fraction_leaf=frac, n_estimators=1, random_state=0) if "RandomForest" in name: est.bootstrap = False est.fit(X, y, sample_weight=weights) out = est.estimators_[0].tree_.apply(X) node_weights = bincount(out, weights=weights) # drop inner nodes leaf_weights = node_weights[node_weights != 0] assert_greater_equal( np.min(leaf_weights), total_weight * est.min_weight_fraction_leaf, "Failed with {0} " "min_weight_fraction_leaf={1}".format( name, est.min_weight_fraction_leaf)) def test_min_weight_fraction_leaf(): for name in FOREST_ESTIMATORS: yield check_min_weight_fraction_leaf, name def check_sparse_input(name, X, X_sparse, y): ForestEstimator = FOREST_ESTIMATORS[name] dense = ForestEstimator(random_state=0, max_depth=2).fit(X, y) sparse = ForestEstimator(random_state=0, max_depth=2).fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) if name in FOREST_CLASSIFIERS: assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) if name in FOREST_TRANSFORMERS: assert_array_almost_equal(sparse.transform(X).toarray(), dense.transform(X).toarray()) assert_array_almost_equal(sparse.fit_transform(X).toarray(), dense.fit_transform(X).toarray()) def test_sparse_input(): X, y = datasets.make_multilabel_classification(random_state=0, n_samples=50) for name, sparse_matrix in product(FOREST_ESTIMATORS, (csr_matrix, csc_matrix, coo_matrix)): yield check_sparse_input, name, X, sparse_matrix(X), y def check_memory_layout(name, dtype): # Check that it works no matter the memory layout est = FOREST_ESTIMATORS[name](random_state=0, bootstrap=False) # Nothing X = np.asarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # C-order X = np.asarray(iris.data, order="C", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # F-order X = np.asarray(iris.data, order="F", dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Contiguous X = np.ascontiguousarray(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) if est.base_estimator.splitter in SPARSE_SPLITTERS: # csr matrix X = csr_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # csc_matrix X = csc_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # coo_matrix X = coo_matrix(iris.data, dtype=dtype) y = iris.target assert_array_equal(est.fit(X, y).predict(X), y) # Strided X = np.asarray(iris.data[::3], dtype=dtype) y = iris.target[::3] assert_array_equal(est.fit(X, y).predict(X), y) def test_memory_layout(): for name, dtype in product(FOREST_CLASSIFIERS, [np.float64, np.float32]): yield check_memory_layout, name, dtype for name, dtype in product(FOREST_REGRESSORS, [np.float64, np.float32]): yield check_memory_layout, name, dtype @ignore_warnings def check_1d_input(name, X, X_2d, y): ForestEstimator = FOREST_ESTIMATORS[name] assert_raises(ValueError, ForestEstimator(n_estimators=1, random_state=0).fit, X, y) est = ForestEstimator(random_state=0) est.fit(X_2d, y) if name in FOREST_CLASSIFIERS or name in FOREST_REGRESSORS: assert_raises(ValueError, est.predict, X) @ignore_warnings def test_1d_input(): X = iris.data[:, 0] X_2d = iris.data[:, 0].reshape((-1, 1)) y = iris.target for name in FOREST_ESTIMATORS: yield check_1d_input, name, X, X_2d, y def check_class_weights(name): # Check class_weights resemble sample_weights behavior. ForestClassifier = FOREST_CLASSIFIERS[name] # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target) clf2 = ForestClassifier(class_weight='balanced', random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Make a multi-output problem with three copies of Iris iris_multi = np.vstack((iris.target, iris.target, iris.target)).T # Create user-defined weights that should balance over the outputs clf3 = ForestClassifier(class_weight=[{0: 2., 1: 2., 2: 1.}, {0: 2., 1: 1., 2: 2.}, {0: 1., 1: 2., 2: 2.}], random_state=0) clf3.fit(iris.data, iris_multi) assert_almost_equal(clf2.feature_importances_, clf3.feature_importances_) # Check against multi-output "balanced" which should also have no effect clf4 = ForestClassifier(class_weight='balanced', random_state=0) clf4.fit(iris.data, iris_multi) assert_almost_equal(clf3.feature_importances_, clf4.feature_importances_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) # Check that sample_weight and class_weight are multiplicative clf1 = ForestClassifier(random_state=0) clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = ForestClassifier(class_weight=class_weight, random_state=0) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.feature_importances_, clf2.feature_importances_) def test_class_weights(): for name in FOREST_CLASSIFIERS: yield check_class_weights, name def check_class_weight_balanced_and_bootstrap_multi_output(name): # Test class_weight works for multi-output""" ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T clf = ForestClassifier(class_weight='balanced', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}, {-2: 1., 2: 1.}], random_state=0) clf.fit(X, _y) # smoke test for subsample and balanced subsample clf = ForestClassifier(class_weight='balanced_subsample', random_state=0) clf.fit(X, _y) clf = ForestClassifier(class_weight='subsample', random_state=0) ignore_warnings(clf.fit)(X, _y) def test_class_weight_balanced_and_bootstrap_multi_output(): for name in FOREST_CLASSIFIERS: yield check_class_weight_balanced_and_bootstrap_multi_output, name def check_class_weight_errors(name): # Test if class_weight raises errors and warnings when expected. ForestClassifier = FOREST_CLASSIFIERS[name] _y = np.vstack((y, np.array(y) * 2)).T # Invalid preset string clf = ForestClassifier(class_weight='the larch', random_state=0) assert_raises(ValueError, clf.fit, X, y) assert_raises(ValueError, clf.fit, X, _y) # Warning warm_start with preset clf = ForestClassifier(class_weight='auto', warm_start=True, random_state=0) assert_warns(UserWarning, clf.fit, X, y) assert_warns(UserWarning, clf.fit, X, _y) # Not a list or preset for multi-output clf = ForestClassifier(class_weight=1, random_state=0) assert_raises(ValueError, clf.fit, X, _y) # Incorrect length list for multi-output clf = ForestClassifier(class_weight=[{-1: 0.5, 1: 1.}], random_state=0) assert_raises(ValueError, clf.fit, X, _y) def test_class_weight_errors(): for name in FOREST_CLASSIFIERS: yield check_class_weight_errors, name def check_warm_start(name, random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = ForestEstimator(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = ForestEstimator(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) assert_array_equal(clf_ws.apply(X), clf_no_ws.apply(X), err_msg="Failed with {0}".format(name)) def test_warm_start(): for name in FOREST_ESTIMATORS: yield check_warm_start, name def check_warm_start_clear(name): # Test if fit clears state and grows a new forest when warm_start==False. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True, random_state=2) clf_2.fit(X, y) # inits state clf_2.set_params(warm_start=False, random_state=1) clf_2.fit(X, y) # clears old state and equals clf assert_array_almost_equal(clf_2.apply(X), clf.apply(X)) def test_warm_start_clear(): for name in FOREST_ESTIMATORS: yield check_warm_start_clear, name def check_warm_start_smaller_n_estimators(name): # Test if warm start second fit with smaller n_estimators raises error. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=1, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_smaller_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_smaller_n_estimators, name def check_warm_start_equal_n_estimators(name): # Test if warm start with equal n_estimators does nothing and returns the # same forest and raises a warning. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] clf = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=True, random_state=1) clf_2.fit(X, y) # Now clf_2 equals clf. clf_2.set_params(random_state=2) assert_warns(UserWarning, clf_2.fit, X, y) # If we had fit the trees again we would have got a different forest as we # changed the random state. assert_array_equal(clf.apply(X), clf_2.apply(X)) def test_warm_start_equal_n_estimators(): for name in FOREST_ESTIMATORS: yield check_warm_start_equal_n_estimators, name def check_warm_start_oob(name): # Test that the warm start computes oob score when asked. X, y = hastie_X, hastie_y ForestEstimator = FOREST_ESTIMATORS[name] # Use 15 estimators to avoid 'some inputs do not have OOB scores' warning. clf = ForestEstimator(n_estimators=15, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=True) clf.fit(X, y) clf_2 = ForestEstimator(n_estimators=5, max_depth=3, warm_start=False, random_state=1, bootstrap=True, oob_score=False) clf_2.fit(X, y) clf_2.set_params(warm_start=True, oob_score=True, n_estimators=15) clf_2.fit(X, y) assert_true(hasattr(clf_2, 'oob_score_')) assert_equal(clf.oob_score_, clf_2.oob_score_) # Test that oob_score is computed even if we don't need to train # additional trees. clf_3 = ForestEstimator(n_estimators=15, max_depth=3, warm_start=True, random_state=1, bootstrap=True, oob_score=False) clf_3.fit(X, y) assert_true(not(hasattr(clf_3, 'oob_score_'))) clf_3.set_params(oob_score=True) ignore_warnings(clf_3.fit)(X, y) assert_equal(clf.oob_score_, clf_3.oob_score_) def test_warm_start_oob(): for name in FOREST_CLASSIFIERS: yield check_warm_start_oob, name for name in FOREST_REGRESSORS: yield check_warm_start_oob, name def test_dtype_convert(n_classes=15): classifier = RandomForestClassifier(random_state=0, bootstrap=False) X = np.eye(n_classes) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]] result = classifier.fit(X, y).predict(X) assert_array_equal(classifier.classes_, y) assert_array_equal(result, y) def check_decision_path(name): X, y = hastie_X, hastie_y n_samples = X.shape[0] ForestEstimator = FOREST_ESTIMATORS[name] est = ForestEstimator(n_estimators=5, max_depth=1, warm_start=False, random_state=1) est.fit(X, y) indicator, n_nodes_ptr = est.decision_path(X) assert_equal(indicator.shape[1], n_nodes_ptr[-1]) assert_equal(indicator.shape[0], n_samples) assert_array_equal(np.diff(n_nodes_ptr), [e.tree_.node_count for e in est.estimators_]) # Assert that leaves index are correct leaves = est.apply(X) for est_id in range(leaves.shape[1]): leave_indicator = [indicator[i, n_nodes_ptr[est_id] + j] for i, j in enumerate(leaves[:, est_id])] assert_array_almost_equal(leave_indicator, np.ones(shape=n_samples)) def test_decision_path(): for name in FOREST_CLASSIFIERS: yield check_decision_path, name for name in FOREST_REGRESSORS: yield check_decision_path, name
bsd-3-clause
jhaux/tensorflow
tensorflow/examples/learn/mnist.py
45
3999
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This showcases how simple it is to build image classification networks. It follows description from this TensorFlow tutorial: https://www.tensorflow.org/versions/master/tutorials/mnist/pros/index.html#deep-mnist-for-experts """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import metrics import tensorflow as tf layers = tf.contrib.layers learn = tf.contrib.learn def max_pool_2x2(tensor_in): return tf.nn.max_pool( tensor_in, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def conv_model(feature, target, mode): """2-layer convolution model.""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope('conv_layer1'): h_conv1 = layers.convolution2d( feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool1 = max_pool_2x2(h_conv1) # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope('conv_layer2'): h_conv2 = layers.convolution2d( h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool2 = max_pool_2x2(h_conv2) # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.fully_connected( h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(h_fc1, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) # Create a tensor for training op. train_op = layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='SGD', learning_rate=0.001) return tf.argmax(logits, 1), loss, train_op def main(unused_args): ### Download and load MNIST dataset. mnist = learn.datasets.load_dataset('mnist') ### Linear classifier. feature_columns = learn.infer_real_valued_columns_from_input( mnist.train.images) classifier = learn.LinearClassifier( feature_columns=feature_columns, n_classes=10) classifier.fit(mnist.train.images, mnist.train.labels.astype(np.int32), batch_size=100, steps=1000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) ### Convolutional network classifier = learn.Estimator(model_fn=conv_model) classifier.fit(mnist.train.images, mnist.train.labels, batch_size=100, steps=20000) score = metrics.accuracy_score(mnist.test.labels, list(classifier.predict(mnist.test.images))) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
yanlend/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
joshloyal/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
24
2080
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal(size=n_samples) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples // 2], y[:n_samples // 2] X_test, y_test = X[n_samples // 2:], y[n_samples // 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2, label='Elastic net coefficients') plt.plot(lasso.coef_, color='gold', linewidth=2, label='Lasso coefficients') plt.plot(coef, '--', color='navy', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
dfdx/masque
others/faceless-python-old/faceless/lucaskanade.py
1
7321
from PIL import Image from scipy.ndimage.interpolation import affine_transform from numpy import * from matplotlib import pylab as plt from matplotlib import gridspec # nabla_Ix = array([[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]]) # nabla_Iy = array([[1, 1, 3, 3], [1, 1, 3, 3], [1, 1, 3, 3]]) # im_grad = (nabla_Ix, nabla_Iy) # w, h = (4, 3) N_p = 6 def imgrad(im): """[nabla(I_x), nabla(I_y)]""" if len(im.shape) != 2: raise Exception("Can work only with grayscale images") grad = [g.astype(int32) for g in gradient(im.astype(int32))] grad.reverse() return grad def flatten_params(A, b): M = hstack([A, b.reshape((b.size, 1))]) return M.flatten() def structure_params(p): p = p.reshape(2, 3) return p[:, 0:2], p[:, -1] def interp_im(im, y, x): x = asarray(x) y = asarray(y) x0 = floor(x).astype(int) x1 = x0 + 1 y0 = floor(y).astype(int) y1 = y0 + 1 x0 = clip(x0, 0, im.shape[1]-1); x1 = clip(x1, 0, im.shape[1]-1); y0 = clip(y0, 0, im.shape[0]-1); y1 = clip(y1, 0, im.shape[0]-1); Ia = im[ y0, x0 ] Ib = im[ y1, x0 ] Ic = im[ y0, x1 ] Id = im[ y1, x1 ] wa = (x1-x) * (y1-y) wb = (x1-x) * (y-y0) wc = (x-x0) * (y1-y) wd = (x-x0) * (y-y0) return wa*Ia + wb*Ib + wc*Ic + wd*Id # TODO: Visualize! def quadtobox(im, dst, M): # Dimensions of destination image - integers, assume rectangle minv = amin(dst.T, axis=0) maxv = amax(dst.T, axis=0) # xg, yg = meshgrid(range(maxv[0] + 1), range(maxv[1] + 1)) xg, yg = meshgrid(range(minv[0], maxv[0]), range(minv[1], maxv[1])) xy = vstack([xg.T.flatten(), yg.T.flatten()]) xy = vstack([xy, ones((1, xy.shape[1]))]) # Transform into source uv = dot(M, xy) # Remove homogeneous uv = uv[0:2,:].T # Sample xi = uv[:, 0].reshape((maxv[0] - minv[0], maxv[1] - minv[1])).T yi = uv[:, 1].reshape((maxv[0] - minv[0], maxv[1] - minv[1])).T wimg = interp_im(im, yi, xi) return wimg def warp_a(im, p, dst): p = asarray(p).reshape(2, 3) M = vstack([p, [0, 0, 1]]) M[0, 0] += 1 M[1, 1] += 1 wimg = quadtobox(im, dst, M) return wimg def jacobian(nx, ny): jac_x = kron(array([range(0, nx)]), ones((ny, 1))) jac_y = kron(array([range(0, ny)]).T, ones((1, nx))) jac_zero = zeros((ny, nx)) jac_one = ones((ny, nx)) row_1 = hstack([jac_x, jac_zero, jac_y, jac_zero, jac_one, jac_zero]) row_2 = hstack([jac_zero, jac_x, jac_zero, jac_y, jac_zero, jac_one]) dW_dp = vstack([row_1, row_2]) return dW_dp def sd_images(dW_dp, im_grad, N_p, h, w): nabla_Ix, nabla_Iy = im_grad # TODO: swap axes VI_dW_dp = zeros((h, w * N_p)) for p in range(0, N_p): Tx = nabla_Ix * dW_dp[0:h, p * w : p * w + w] Ty = nabla_Iy * dW_dp[h:, p * w : p * w + w] VI_dW_dp[:, p * w : p * w + w] = Tx + Ty return VI_dW_dp def sd_update(VI_dW_dp, error_im, N_p, w): sd_delta_p = zeros((N_p, 1)) for p in range(N_p): h1 = VI_dW_dp[:, p*w : p*w + w] sd_delta_p[p] = sum(h1 * error_im) return sd_delta_p def hessian(VI_dW_dp, N_p, w): H = zeros((N_p, N_p)) for i in range(N_p): h1 = VI_dW_dp[:, i*w : i*w + w] for j in range(N_p): h2 = VI_dW_dp[:, j*w : j*w + w] H[i, j] = sum(h1 * h2) return H def update_step(p, delta_p): p = p.reshape(2, 3) delta_p = delta_p.reshape((2, 3)) # print '[0] p =', p # print '[1] delta_p = ', delta_p delta_M = vstack([delta_p, array([0, 0, 1])]) delta_M[0, 0] = delta_M[0, 0] + 1 delta_M[1, 1] = delta_M[1, 1] + 1 # print '[2] delta_M =', delta_M delta_M = linalg.inv(delta_M) # print '[3] inv(delta_M) =', delta_M warp_M = vstack([p, array([0, 0, 1])]) warp_M[0, 0] += 1 warp_M[1, 1] += 1 comp_M = dot(warp_M, delta_M) # print '[4] comp_M =', comp_M p = comp_M[0:2, :] p[0, 0] -= 1 p[1, 1] -= 1 return p.flatten() def inv_comp(im, tmpl, n_iter=10, p_init=zeros((6,))): """Applies inverse compositional approach to aligning im to tmpl. Estimates vector of parameters p = [p_1, p_2, p_3, p_4, p_5, p_6]""" im = im.astype(int64) tmpl = tmpl.astype(int64) h, w = tmpl.shape # tmpl_pts = array([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).T tmpl_pts = ij2xy(array([[90, 260], [90, 530], [400, 530], [400, 260]])).T nabla_T = imgrad(tmpl) dW_dp = jacobian(w, h) VT_dW_dp = sd_images(dW_dp, nabla_T, N_p, h, w) # show_sd_images(VT_dW_dp, w) # import time; time.sleep(5) H = hessian(VT_dW_dp, N_p, w) H_inv = linalg.inv(H) warp_p = p_init.copy() fit_err = [] for i in range(n_iter): print 'iteration %s' % i IWxp = warp_a(im, warp_p, tmpl_pts) plot_imgs([im, IWxp], ratios=[2, 1]) plt.show() error_im = IWxp - tmpl fit_err.append(sqrt(mean(error_im * error_im))) print "MSE: ", fit_err[-1] sd_delta_p = sd_update(VT_dW_dp, error_im, N_p, w) delta_p = dot(H_inv, sd_delta_p) warp_p = update_step(warp_p, delta_p) return warp_p ######### REPL Helpers ############ def show(im, gray=True): plt.figure() if gray: plt.gray() plt.imshow(im) plt.show() def show_pil(im, gray=None): Image.fromarray(uint8(im)).show() def show_sd_images(sd_imgs, w): for i in xrange(6): show_pil(sd_imgs[:, i*w : (i + 1)*w]) def add_rect(i, j, h, w): plt.gca().add_patch(plt.Rectangle((j, i), w, h, fill=False)) def plot_imgs(imgs, ratios=[1, 1]): plt.gray() gs = gridspec.GridSpec(1, len(imgs), width_ratios=ratios) for i in range(len(imgs)): plt.subplot(gs[i]) plt.imshow(imgs[i]) return gs ######## Test Scenarios ########### face_dst = array([[90, 260], [90, 530], [400, 530], [400, 260]]) def test_warp_a(): im = array(Image.open('face.bmp').convert('L')) dst = face_dst p = array([0, 0, 0, 0, 0, 0]) def test_inv_comp(p_real=[0, .1, .1, 0, 0, 0], n_iter=10): im = asarray(Image.open('face.bmp').convert('L')) imh, imw = im.shape dst = array([[90, 260], [90, 530], [400, 530], [400, 260]]) i0, j0 = dst.min(axis=0) i1, j1 = dst.max(axis=0) # tmpl = im[i0:i1, j0:j1] tmpl = warp_a(im, p_real, ij2xy(dst).T) return inv_comp(im, tmpl, n_iter) def test_rect(): im = array(Image.open('face.bmp').convert('L')) pts = array([[90, 260], [90, 530], [400, 530], [400, 260]]) i0, j0 = pts.min(axis=0) i1, j1 = pts.max(axis=0) plt.figure() plt.subplot(1, 2, 1) plt.gray() plt.imshow(im) add_rect(i0, j0, i1 - i0, j1 - j0) plt.subplot(1, 2, 2) box = im[i0:i1, j0:j1] plt.imshow(box) plt.show() def test_rect2(): im = array(Image.open('face.bmp').convert('L')) pts = array([[90, 260], [90, 530], [400, 530], [400, 260]]) i0, j0 = pts.min(axis=0) i1, j1 = pts.max(axis=0) box = im[i0:i1, j0:j1] gs = plot_imgs([im, box], ratios=[2, 1]) # plt.subplot(gs[0]) # add_rect(i0, j0, i1 - i0, j1 - j0) plt.show() return
mit
bryangraham/ipt
ipt/att.py
1
39159
# Load library dependencies import numpy as np import numpy.linalg import scipy as sp import scipy.optimize import scipy.stats import pandas as pd # Import logit() command in ipt module since att() calls it from .logit import logit # Define att() function #-----------------------------------------------------------------------------# def att(D, Y, r_W, t_W, study_tilt=True, rlgrz=1, s_wgt=None, nocons=False, c_id=None, silent=False): """ AUTHOR: Bryan S. Graham, UC - Berkeley, [email protected] DATE: Python 2.7 code on 26 May 2016, updated for Python 3.6 on 15 July 2018 This function estimates the average treatment effect on the treated (ATT) using the "auxiliary-to-study tilting" (AST) method described by Graham, Pinto and Egel (2016, Journal of Business and Economic Statistics). The notation below mirrors that in the paper where possible. The Supplemental Web Appendix of the paper describes the estimation algorithm implemented here in detail. A copy of the paper and all supplemental appendices can be found online at http://bryangraham.github.io/econometrics/ INPUTS ------ D : N x 1 pandas.Series with ith element equal to 1 if ith unit in the merged sample is from the study population and zero if from the auxiliary population (i.e., D is the "treatment" indicator) Y : N x 1 pandas.Series of observed outcomes r_W : r(W), N x 1+L pandas.DataFrame of functions of always observed covariates -- these are the propensity score basis functions t_W : t(W), N x 1+M pandas.DataFrame of functions of always observed covariates -- these are the balancing functions study_tilt: If True compute the study sample tilt. This should be set to False if all the elements in t(W) are also contained in h(W). In that case the study_tilt coincides with its empirical measure.This measure is returned in the pi_s vector when study_tilt = False. rlgrz : Regularization parameter. Should positive and less than or equal to one. Smaller values correspond to less regularizations, but may cause underflow problems when overlap is poor. The default value will be adequate for most applications. s_wgt : N x 1 pandas.Series of sampling weights variable (optional) nocons : If True, then do NOT add constant to h_W and t_W matrix (only set to True if user passes in dataframes with constants included) c_id : N X 1 pandas.Series of unique `cluster' id values (assumed to be integer valued) (optional) NOTE: Default is to assume independent observations and report heteroscedastic robust standard errors NOTE: Data are assumed to be pre-sorted by groups. silent : if silent = True display less optimization information and use lower tolerance levels (optional) OUTPUTS ------- gamma_ast : AST estimate of gamma (the ATT) vcov_gamma_ast : estimated large sample variance of gamma pscore_tests : list of [study_test, auxiliary_test] where study_test : ChiSq test statistic of H0 : lambda_s = 0; list with [statistic, dof, p-val] NOTE: returns [None, None, None] if study_tilt = False auxiliary_test : ChiSq test statistic of H0 : lambda_a = 0; list with [statistic, dof, p-val] tilts : numpy array with pi_eff, pi_s & pi_a as columns, sorted according to the input data, and where pi_eff : Semiparametrically efficient estimate of F_s(W) pi_s : Study sample tilt pi_a : Auxiliary sample tilt exitflag : 1 = success, 2 = can't compute MLE of p-score, 3 = can't compute study/treated tilt, 4 = can't compute auxiliary/control tilt FUNCTIONS CALLED : logit() (...logit_logl(), logit_score(), logit_hess()...) ---------------- ast_crit(), ast_foc(), ast_soc() (...ast_phi()...) """ def ast_phi(lmbda, t_W, p_W_index, NQ, rlgrz): """ This function evaluates the regularized phi(v) function for the logit propensity score case (as well as its first and second derivatives) as described in the Supplemental Web Appendix of Graham, Pinto and Egel (2016, JBES). INPUTS ------ lmbda : vector of tilting parameters t_W : vector of balancing moments p_W_index : index of estimated logit propensity score NQ : sample size times the marginal probability of missingness rlgrz : Regularization parameter. See discussion in main header. OUTPUTS ------- phi, phi1, phi2 : N x 1 vectors with elements phi(p_W_index + lmbda't_W) and its first and second derivatives w.r.t to v = p_W_index + lmbda't_W """ # Adjust the NQ cut-off value used for quadratic extrapolation according # to the user-defined rlgrz parameter NQ = NQ*rlgrz # Coefficients on quadratic extrapolation of phi(v) used to regularize # the problem c = -(NQ - 1) b = NQ + (NQ - 1)*np.log(1/(NQ - 1)) a = -(NQ - 1)*(1 + np.log(1/(NQ - 1)) + 0.5*(np.log(1/(NQ - 1)))**2) v_star = np.log(1/(NQ - 1)) # Evaluation of phi(v) and derivatives v = p_W_index + t_W @ lmbda phi = (v>v_star) * (v - np.exp(-v)) + (v<=v_star) * (a + b*v + 0.5*c*v**2) phi1 = (v>v_star) * (1 + np.exp(-v)) + (v<=v_star) * (b + c*v) phi2 = (v>v_star) * ( - np.exp(-v)) + (v<=v_star) * c return [phi, phi1, phi2] def ast_crit(lmbda, D, p_W, p_W_index, t_W, NQ, rlgrz, s_wgt): """ This function constructs the AST criterion function as described in Graham, Pinto and Egel (2016, JBES). INPUTS ------ lmbda : vector of tilting parameters D : N x 1 treatment indicator vector p_W : N x 1 MLEs of the propensity score p_W_index : index of estimated logit propensity score t_W : vector of balancing moments NQ : sample size times the marginal probability of missingness rlgrz : Regularization parameter. See discussion in main header. s_wgt : N x 1 vector of known sampling weights (optional) OUTPUTS ------- crit : AST criterion function at passed parameter values Functions called : ast_phi() """ lmbda = np.reshape(lmbda,(-1,1)) # make lmda 2-dimensional object [phi, phi1, phi2] = ast_phi(lmbda, t_W, p_W_index, NQ, rlgrz) # compute phi and 1st/2nd derivatives crit = -np.sum(s_wgt * (D * phi - (t_W @ lmbda)) * (p_W / NQ)) # AST criterion (scalar) return crit def ast_foc(lmbda, D, p_W, p_W_index, t_W, NQ, rlgrz, s_wgt): """ Returns first derivative vector of AST criterion function with respect to lmbda. See the header for ast_crit() for description of parameters. """ lmbda = np.reshape(lmbda,(-1,1)) # make lmda 2-dimensional object [phi, phi1, phi2] = ast_phi(lmbda, t_W, p_W_index, NQ, rlgrz) # compute phi and 1st/2nd derivatives foc = -(t_W.T @ (s_wgt * (D * phi1 - 1) * (p_W / NQ))) # AST gradient (1+M x 1 vector) foc = np.ravel(foc) # make foc 1-dimensional numpy array return foc def ast_soc(lmbda, D, p_W, p_W_index, t_W, NQ, rlgrz, s_wgt): """ Returns hessian matrix of AST criterion function with respect to lmbda. See the header for ast_crit() for description of parameters. """ lmbda = np.reshape(lmbda,(-1,1)) # make lmda 2-dimensional object [phi, phi1, phi2] = ast_phi(lmbda, t_W, p_W_index, NQ, rlgrz) # compute phi and 1st/2nd derivatives soc = -(((s_wgt * D * phi2 * (p_W / NQ)) * t_W).T @ t_W) # AST hessian (note use of numpy broadcasting rules) # (1 + M) x (1 + M) "matrix" (numpy array) return [soc] def ast_study_callback(lmbda): print("Value of ast_crit = " + "%.6f" % ast_crit(lmbda, Ds, p_W, p_W_index, t_Ws, NQ, rlgrz, sw) + \ ", 2-norm of ast_foc = "+ "%.6f" % numpy.linalg.norm(ast_foc(lmbda, Ds, p_W, p_W_index, t_Ws, \ NQ, rlgrz, sw))) def ast_auxiliary_callback(lmbda): print("Value of ast_crit = " + "%.6f" % ast_crit(lmbda, 1-Ds, p_W, -p_W_index, t_Ws, NQ, rlgrz, sw) + \ ", 2-norm of ast_foc = "+ "%.6f" % numpy.linalg.norm(ast_foc(lmbda, 1-Ds, p_W, -p_W_index, t_Ws, \ NQ, rlgrz, sw))) # ----------------------------------------------------------------------------------- # # - STEP 1 : ORGANIZE DATA - # # ----------------------------------------------------------------------------------- # # Extract variable names from pandas data objects dep_var = Y.name # Get dependent variable names r_W_names = list(r_W.columns) # Get r_W variable names t_W_names = list(t_W.columns) # Get t_W variable names # Create pointers to pandas objects transformed into appropriately sized numpy arrays Ds = D.values.reshape((-1,1)) # Turn pandas.Series into N x 1 numpy array Ys = Y.values.reshape((-1,1)) # Turn pandas.Series into N x 1 numpy array r_Ws = r_W.values # Turn pandas.DataFrame into N x 1 + L numpy array t_Ws = t_W.values # Turn pandas.DataFrame into N x 1 + M numpy array # Extract basic information and set-up AST problem N = len(D) # Number of units in sample Ns = np.sum(D) # Number of study units in the sample (treated units) Na = N-Ns # Number of auxiliary units in the sample (control units) M = np.shape(t_Ws)[1] L = np.shape(r_Ws)[1] if nocons: M = M - 1 # Dimension of t_W (excluding constant) L = L - 1 # Dimension of r_W (excluding constant) DY = Ds * Ys # D*Y, N x 1 vector of observed outcomes for treated/study units mDX = (1-Ds) * Ys # (1-D)*X, N x 1 vector of observed outcomes for non-treated/auxiliary units # Add a constant to the regressor matrix (if needed) if not nocons: r_Ws = np.concatenate((np.ones((N,1)), r_Ws), axis=1) r_W_names = ['constant'] + r_W_names t_Ws = np.concatenate((np.ones((N,1)), t_Ws), axis=1) t_W_names = ['constant'] + t_W_names # Normalize weights to have mean one (if needed) if s_wgt is None: sw = 1 else: s_wgt_var = s_wgt.name # Get sample weight variable name sw = np.asarray(s_wgt/s_wgt.mean()).reshape((-1,1)) # Normalized sampling weights with mean one # ----------------------------------------------------------------------------------- # # - STEP 2 : ESTIMATE PROPENSITY SCORE PARAMETER BY LOGIT ML - # # ----------------------------------------------------------------------------------- # try: if not silent: print("") print("--------------------------------------------------------------") print("- Computing propensity score by MLE -") print("--------------------------------------------------------------") # CMLE of p-score coefficients [delta_ml, vcov_delta_ml, hess_logl, score_i, p_W, _] = \ logit(D, r_W, s_wgt=s_wgt, nocons=nocons, \ c_id=c_id, silent=silent, full=False) delta_ml = np.reshape(delta_ml,(-1,1)) # Put delta_ml into 2-dimensional form p_W_index = r_Ws @ delta_ml # Fitted p-score index NQ = np.sum(sw * p_W) # Sum of fitted p-scores pi_eff = (sw * p_W) / NQ # Efficient estimate of F(W) except: print("FATAL ERROR: exitflag = 2, unable to compute propensity score by maximum likelihood.") # Set all returnables to "None" and then exit function gamma_ast = None vcov_gamma_ast = None pscore_tests = None tilts = None exitflag = 2 return [gamma_ast, vcov_gamma_ast, pscore_tests, tilts, exitflag] # ----------------------------------------------------------------------------------- # # - STEP 3 : SOLVE FOR AST TILTING PARAMETERS - # # ----------------------------------------------------------------------------------- # Set optimization parameters if silent: # Use Newton-CG solver with vector of zeros as starting values, # low tolerance levels, and smaller number of allowed iterations. # Hide iteration output. options_set = {'xtol': 1e-8, 'maxiter': 1000, 'disp': False} else: # Use Newton-CG solver with vector of zeros as starting values, # high tolerance levels, and larger number of allowed iterations. # Show iteration output. options_set = {'xtol': 1e-12, 'maxiter': 10000, 'disp': True} lambda_sv = np.zeros(1+M) # use vector of zeros as starting values #------------------------------# #- STUDY TILT -# #------------------------------# # NOTE: Only compute the study_tilt if directed to do so (this is the default). The study_tilt # doesn't need to be computed if all the elements of t(W) are also included in h(W). It # is the users responsibility to check this condition. if study_tilt: # -------------------------------------------------- # # - CASE 1: Non-trivial study sample tilt required - # # -------------------------------------------------- # # Compute lamba_s_hat (study or treated sample tilting parameters) try: if not silent: print("") print("--------------------------------------------------------------") print("- Computing study/treated sample tilt -") print("--------------------------------------------------------------") # Derivative check at starting values grad_norm = sp.optimize.check_grad(ast_crit, ast_foc, lambda_sv, Ds, p_W, \ p_W_index, t_Ws, NQ, rlgrz, \ sw, epsilon = 1e-12) print('Study sample tilt derivative check (2-norm): ' + "%.8f" % grad_norm) # Solve for tilting parameters lambda_s_res = sp.optimize.minimize(ast_crit, lambda_sv, args=(Ds, p_W, p_W_index, \ t_Ws, NQ, rlgrz, sw), \ method='Newton-CG', jac=ast_foc, hess=ast_soc, \ callback = ast_study_callback, options=options_set) else: # Solve for tilting parameters lambda_s_res = sp.optimize.minimize(ast_crit, lambda_sv, args=(Ds, p_W, p_W_index, \ t_Ws, NQ, rlgrz, sw), \ method='Newton-CG', jac=ast_foc, hess=ast_soc, \ options=options_set) except: print("FATAL ERROR: exitflag = 3, Unable to compute the study/treated vector of tilting parameters.") # Set all returnables to "None" and then exit function gamma_ast = None vcov_gamma_ast = None pscore_tests = None tilts = None exitflag = 3 return [gamma_ast, vcov_gamma_ast, pscore_tests, tilts, exitflag] # Collect study tilt estimation results needed below lambda_s_hat = np.reshape(lambda_s_res.x,(-1,1)) # study/treated sample tilting # parameter estimates p_W_s = (1+np.exp(-(p_W_index) - (t_Ws @ lambda_s_hat)))**-1 # study/treated sample tilted p-score pi_s = Ds * pi_eff / p_W_s # study/treated sample tilt else: # ------------------------------------------ # # - CASE 2: Study sample tilt NOT required - # # ------------------------------------------ # if not silent: print("") print("----------------------------------------------------------------------") print("- Tilt of study sample not requested by user (study_tilt = False). -") print("- Validity of this requires all elements of t(W) to be elements of -") print("- h(W) as well. User is advised to verify this condition. -") print("----------------------------------------------------------------------") print("") # Collect study tilt objects needed below lambda_s_hat = np.reshape(lambda_sv ,(-1,1)) # study/treated sample tilting parameters set equal to zero p_W_s = p_W # study/treated sample tilted p-score equals actual score pi_s = Ds * pi_eff / p_W_s # set pi_s to "empirical measure" of study sub-sample # (w/o sampling weights this puts mass 1/Ns on each study unit) #------------------------------# #- AUXILIARY TILT -# #------------------------------# # Compute lamba_a_hat (auxiliary or control sample tilting parameters) try: if not silent: print("") print("--------------------------------------------------------------") print("- Computing auxiliary/control sample tilt -") print("--------------------------------------------------------------") # Derivative check at starting values grad_norm = sp.optimize.check_grad(ast_crit, ast_foc, lambda_sv, 1-Ds, p_W, \ -p_W_index, t_Ws, NQ, rlgrz, \ sw, epsilon = 1e-12) print('Auxiliary sample tilt derivative check (2-norm): ' + "%.8f" % grad_norm) # Solve for tilting parameters lambda_a_res = sp.optimize.minimize(ast_crit, lambda_sv, args=(1-Ds, p_W, -p_W_index, \ t_Ws, NQ, rlgrz, sw), \ method='Newton-CG', jac=ast_foc, hess=ast_soc, \ callback = ast_auxiliary_callback, options=options_set) else: # Solve for tilting parameters lambda_a_res = sp.optimize.minimize(ast_crit, lambda_sv, args=(1-Ds, p_W, -p_W_index, \ t_Ws, NQ, rlgrz, sw), \ method='Newton-CG', jac=ast_foc, hess=ast_soc, \ options=options_set) except: print("FATAL ERROR: exitflag = 4, Unable to compute the auxiliary/control vector of tilting parameters.") # Set returnables to "None" and then exit function gamma_ast = None vcov_gamma_ast = None pscore_tests = None tilts = None exitflag = 4 return [gamma_ast, vcov_gamma_ast, pscore_tests, tilts, exitflag] # Collect auxiliary tilt estimation results needed below lambda_a_hat = -np.reshape(lambda_a_res.x,(-1,1)) # auxiliary/control sample tilting # parameter estimates p_W_a = (1+np.exp(-(p_W_index) - (t_Ws @ lambda_a_hat)))**-1 # auxiliary sample tilted p-score pi_a = (1-Ds) * (pi_eff / (1-p_W_a)) # auxiliary sample tilt # ----------------------------------------------------------------------------------- # # - STEP 4 : SOLVE FOR AST ESTIMATE OF GAMMA (i.e., ATT) - # # ----------------------------------------------------------------------------------- # # AST estimate of gamma -- the ATT % gamma_ast = np.sum(sw * p_W * ((Ds / p_W_s) * DY - (1-Ds) / (1-p_W_a) * mDX))/NQ; # ----------------------------------------------------------------------------------- # # - STEP 5 : FORM LARGE SAMPLE VARIANCE-COVARIANCE ESTIMATES - # # ----------------------------------------------------------------------------------- # # Form moment vector corresponding to full three step procedure m1 = (sw * (Ds - p_W) * r_Ws).T # 1+L x N matrix of m_1 moments (logit scores) m2 = (sw * ((1 - Ds) / (1 - p_W_a) - 1) * p_W * t_Ws).T # 1+M x N matrix of m_2 moments m3 = (sw * (Ds / p_W_s - 1) * p_W * t_Ws).T # 1+M x N matrix of m_3 moments m4 = (sw * p_W * ((Ds / p_W_s) * DY - ((1-Ds) / (1-p_W_a)) * (mDX+gamma_ast))).T # 1 x N matrix of m_4 moments m = np.concatenate((m1, m2, m3, m4), axis=0) # 1 + L + 2(1 + M) + 1 x N matrix of all moments # Calculate covariance matrix of moment vector. Take into account any # within-group dependence/clustering as needed if c_id is None: # Case 1: No cluster dependence to account for when constructing covariance matrix C = N # Number of clusters equals number of observations fsc = N/(N - (1+L+2*(1+M)+1)) # Finite-sample correction factor V_m = fsc*(m @ m.T)/N else: # Case 2: Need to correct for cluster dependence when constructing covariance matrix # Get number and unique list of clusters c_list = np.unique(c_id) C = len(c_list) # Calculate cluster-robust variance-covariance matrix of m # Sum moment vector within clusters sum_m = np.empty((C,1+L+2*(1+M)+1)) # initiate vector of cluster-summed moments for c in range(0,C): # sum of moments for units in c-th cluster b_cluster = np.nonzero((c_id == c_list[c]))[0] # Observations in c-th cluster sum_m[c,:] = np.sum(m[np.ix_(range(0,1+L+2*(1+M)+1), b_cluster)], axis = 1) # Sum over "columns" within c-th cluster # Compute variance-covariance matrix of moment vector fsc = (N/(N - (1+L+2*(1+M)+1)))*(C/(C-1)) # Finite-sample correction factor V_m = fsc*(sum_m.T @ sum_m)/C # Variance-covariance of the summed moments # Form Jacobian matrix for entire parameter: theta = (rho, delta, lambda, gamma) e_V = np.exp(np.dot(r_Ws, delta_ml)) e_Va = np.exp(np.dot(r_Ws, delta_ml) + np.dot(t_Ws, lambda_a_hat)) e_Vs = np.exp(np.dot(r_Ws, delta_ml) + np.dot(t_Ws, lambda_s_hat)) M1_delta = np.dot((sw * (- e_V / (1 + e_V)**2) * r_Ws).T, r_Ws)/N # 1 + L x 1 + L M2_delta = np.dot((sw * ((1 - Ds) / (1 - p_W_a) - 1) * (e_V / (1 + e_V)**2) * t_Ws).T, r_Ws)/N # 1 + M x 1 + L M3_delta = np.dot((sw * (Ds / p_W_s - 1) * (e_V / (1 + e_V)**2) * t_Ws).T, r_Ws)/N # 1 + M x 1 + L M4_delta = np.dot((sw * (e_V / (1 + e_V)**2) * \ ((Ds / p_W_s) * DY - ((1 - Ds) / (1 - p_W_a)) * (mDX + gamma_ast))).T, r_Ws)/N # 1 x 1 + L M2_lambda_a = np.dot(( sw * ((1 - Ds) / (1 - p_W_a)**2) * p_W * (e_Va / (1 + e_Va)**2) * t_Ws).T, t_Ws)/N # 1 + M x 1 + M M4_lambda_a = np.dot((-sw * ((1 - Ds) / (1 - p_W_a)**2) * p_W * (mDX+gamma_ast) * (e_Va / (1 + e_Va)**2)).T, t_Ws)/N # 1 x 1 + M M3_lambda_s = np.dot((-sw * (Ds / p_W_s**2) * p_W * (e_Vs / (1 + e_Vs)**2) * t_Ws).T, t_Ws)/N # 1 + M x 1 + M M4_lambda_s = np.dot((-sw * (Ds / p_W_s**2) * p_W * DY * (e_Vs / (1 + e_Vs)**2)).T, t_Ws)/N # 1 x 1 + M M4_gamma = -(NQ/N).reshape(1,1) # 1 x 1 M1 = np.hstack((M1_delta, np.zeros((1+L,1+M)), np.zeros((1+L,1+M)), np.zeros((1+L,1)))) M2 = np.hstack((M2_delta, M2_lambda_a, np.zeros((1+M,1+M)), np.zeros((1+M,1)))) M3 = np.hstack((M3_delta, np.zeros((1+M,1+M)), M3_lambda_s, np.zeros((1+M,1)))) M4 = np.hstack((M4_delta, M4_lambda_a, M4_lambda_s, M4_gamma)) # Concatenate Jacobian and compute inverse M_hat = (N/C)*np.vstack((M1, M2, M3, M4)) iM_hat = np.linalg.inv(M_hat) # Compute sandwich variance estimates vcov_theta_ast = (iM_hat @ V_m @ iM_hat.T)/C vcov_gamma_ast = vcov_theta_ast[-1,-1] exitflag = 1 # AST estimate of the ATT successfully computed! # ----------------------------------------------------------------------------------- # # - STEP 6 : COMPUTE TEST STATISTICS BASED ON TILTING PARAMETER - # # ----------------------------------------------------------------------------------- # # Compute propensity score specification test based on study tilt (if applicable) if study_tilt: iV_lambda_s = np.linalg.inv(vcov_theta_ast[1+L:1+L+1+M,1+L:1+L+1+M]) ps_test_st = np.dot(np.dot(lambda_s_hat.T, iV_lambda_s), lambda_s_hat) dof_st = len(lambda_s_hat) pval_st = 1 - sp.stats.chi2.cdf(ps_test_st[0,0], dof_st) study_test = [ps_test_st[0,0], dof_st, pval_st] else: study_test = [None, None, None] # Compute propensity score specification test based on auxiliary tilt (always done) iV_lambda_a = np.linalg.inv(vcov_theta_ast[1+L+1+M:1+L+1+M+1+M,1+L+1+M:1+L+1+M+1+M]) ps_test_at = np.dot(np.dot(lambda_a_hat.T, iV_lambda_a), lambda_a_hat) dof_at = len(lambda_a_hat) pval_at = 1 - sp.stats.chi2.cdf(ps_test_at[0,0], dof_at) auxiliary_test = [ps_test_at[0,0], dof_at, pval_at] # ----------------------------------------------------------------------------------- # # - STEP 7 : DISPLAY RESULTS - # # ----------------------------------------------------------------------------------- # if not silent: print("") print("-------------------------------------------------------------------------------------------") print("- Auxiliary-to-Study (AST) estimates of the ATT -") print("-------------------------------------------------------------------------------------------") print("ATT: " + "%10.6f" % gamma_ast) print(" (" + "%10.6f" % np.sqrt(vcov_gamma_ast) + ")") print("") print("-------------------------------------------------------------------------------------------") if c_id is None: print("NOTE: Outcome variable = " + dep_var) print(" Heteroscedastic-robust standard errors reported") print(" N1 = " "%0.0f" % Ns + ", N0 = " + "%0.0f" % Na) else: print("NOTE: Outcome variable = " + dep_var) print(" Cluster-robust standard errors reported") print(" Cluster-variable = " + c_id.name) print(" Number of clusters = " + "%0.0f" % C) print(" N1 = " "%0.0f" % Ns + ", N0 = " + "%0.0f" % Na) if s_wgt is not None: print("NOTE: (Sampling) Weighted AST estimates computed.") print(" Weight-variable = " + s_wgt_var) print("") print("-------------------------------------------------------------------------------------------") print("- Maximum likelihood estimates of the p-score -") print("-------------------------------------------------------------------------------------------") print("") print("Independent variable Coef. ( Std. Err.) ") print("-------------------------------------------------------------------------------------------") c = 0 for names in r_W_names: print(names.ljust(25) + "%10.6f" % delta_ml[c] + \ " (" + "%10.6f" % np.sqrt(vcov_theta_ast[c,c]) + ")") c += 1 print("") print("-------------------------------------------------------------------------------------------") print("- Tilting parameter estimates -") print("-------------------------------------------------------------------------------------------") if study_tilt: print("") print("TREATED (study) sample tilt") print("-------------------------------------------------------------------------------------------") print("") print("Independent variable Coef. ( Std. Err.) ") print("-------------------------------------------------------------------------------------------") c = 0 for names in t_W_names: print(names.ljust(25) + "%10.6f" % lambda_s_hat[c] + \ " (" + "%10.6f" % np.sqrt(vcov_theta_ast[1+L+c,1+L+c]) + ")") c += 1 print("") print("Specification test for p-score (H_0 : lambda_s = 0)") print("-------------------------------------------------------------------------------------------") print("chi-square("+str(dof_st)+") = " + "%10.6f" % ps_test_st + " p-value: " + "% .6f" % pval_st) print("") print("Summary statistics study/treated re-weighting") print("-------------------------------------------------------------------------------------------") j = np.where(D)[0] # find indices of treated units N_s_eff = 1/np.sum(pi_s[j]**2) # Kish's formula for effective sample size print("Kish's effective study/treated sample size = " "%0.0f" % N_s_eff) print("") print("Percentiles of N_s * pi_s distribution") quantiles = [1, 5, 10, 25, 50, 75, 90, 95, 99] qnt_pi_s = np.percentile(Ns*pi_s[j],quantiles) c = 0 for q in quantiles: print("%2.0f" % quantiles[c] + " percentile = " "%2.4f" % qnt_pi_s[c]) c += 1 else: print("") print("--------------------------------------------------------") print("- NOTE: Study tilt not computed (study_tilt = False). -") print("- Components of t(W) assumed to be also in h(W). -") print("--------------------------------------------------------") print("") print("") print("CONTROL (auxiliary) sample tilt") print("-------------------------------------------------------------------------------------------") print("") print("Independent variable Coef. ( Std. Err.) ") print("-------------------------------------------------------------------------------------------") c = 0 for names in t_W_names: print(names.ljust(25) + "%10.6f" % lambda_a_hat[c] + \ " (" + "%10.6f" % np.sqrt(vcov_theta_ast[1+L+1+M+c,1+L+1+M+c]) + ")") c += 1 print("") print("Specification test for p-score (H_0 : lambda_a = 0)") print("-------------------------------------------------------------------------------------------") print("chi-square("+str(dof_at)+") = " + "%10.6f" % ps_test_at + " p-value: " + "% .6f" % pval_at) print("") print("Summary statistics auxiliary/control re-weighting") print("-------------------------------------------------------------------------------------------") j = np.where(1-D)[0] # find indices of control units N_a_eff = 1/np.sum(pi_a[j]**2) # Kish's formula for effective sample size print("Kish's effective auxiliary/control sample size = " "%0.0f" % N_a_eff) print("") print("Percentiles of N_a * pi_a distribution") quantiles = [1, 5, 10, 25, 50, 75, 90, 95, 99] qnt_pi_a = np.percentile(Na*pi_a[j],quantiles) c = 0 for q in quantiles: print("%2.0f" % quantiles[c] + " percentile = " "%2.4f" % qnt_pi_a[c]) c += 1 # ------------------------------------------- # # Construct "exact balancing" table - # # ------------------------------------------- # Na_wgt = np.sum(sw * (1-Ds) , axis = 0) Ns_wgt = np.sum(sw * Ds , axis = 0) # Compute means of t_W across various distribution function estimates # Mean of t(W) across controls mu_t_D0 = np.sum(sw * (1-Ds) * t_Ws, axis = 0)/Na_wgt mu_t_D0_std = np.sqrt(np.sum(sw * (1-Ds) * (t_Ws - mu_t_D0)**2, axis = 0)/Na_wgt) # Mean of t(W) across treated mu_t_D1 = np.sum(sw * Ds * t_Ws, axis = 0)/Ns_wgt mu_t_D1_std = np.sqrt(np.sum(sw * Ds * (t_Ws - mu_t_D1)**2, axis = 0)/Ns_wgt) # Normalized mean differences across treatment and controls # (cf., Imbens, 2015, Journal of Human Resources) NormDif_t = (mu_t_D1 - mu_t_D0)/np.sqrt((mu_t_D1_std**2 + mu_t_D0_std**2)/2) # Semiparametrically efficient estimate of mean of t(W) across treated mu_t_eff = np.sum(pi_eff * t_Ws, axis = 0) mu_t_eff_std = np.sqrt(np.sum(pi_eff * (t_Ws - mu_t_eff)**2, axis = 0)) # Mean of t(W) across controls after re-weighting mu_t_a = np.sum(pi_a * t_Ws, axis = 0) mu_t_a_std = np.sqrt(np.sum(pi_a * (t_Ws - mu_t_a)**2, axis = 0)) # Mean of t(W) across treated after re-weighting mu_t_s = np.sum(pi_s * t_Ws, axis = 0) mu_t_s_std = np.sqrt(np.sum(pi_s * (t_Ws - mu_t_s)**2, axis = 0)) # Pre-balance table print("") print("Means & standard deviations of t_W (pre-balance) ") print("-------------------------------------------------------------------------------------------") print(" Treated (D = 1) Control (D = 0) Norm. Diff. ") print("-------------------------------------------------------------------------------------------") c = 0 for names in t_W_names: print(names.ljust(25) + "%8.4f" % mu_t_D1[c] + " (" + "%8.4f" % mu_t_D1_std[c] + ") " \ + "%8.4f" % mu_t_D0[c] + " (" + "%8.4f" % mu_t_D0_std[c] + ") " \ + "%8.4f" % NormDif_t[c]) c += 1 # Post-balance table print("") print("Means and standard deviations of t_W (post-balance) ") print("-------------------------------------------------------------------------------------------") print(" Treated (D = 1) Control (D = 0) Efficient (D = 1)") print("-------------------------------------------------------------------------------------------") c = 0 for names in t_W_names: print(names.ljust(25) + "%8.4f" % mu_t_s[c] + " (" + "%8.4f" % mu_t_s_std[c] + ") " \ + "%8.4f" % mu_t_a[c] + " (" + "%8.4f" % mu_t_a_std[c] + ") " \ + "%8.4f" % mu_t_eff[c] + " (" + "%8.4f" % mu_t_eff_std[c] + ") ") c += 1 # Collect/format remaining returnables and exit function pscore_tests = [study_test, auxiliary_test] # Collect p-score test results tilts = np.concatenate((pi_eff, pi_s, pi_a), axis=1) # Collect three sample tilts return [gamma_ast, vcov_gamma_ast, pscore_tests, tilts, exitflag]
mit
MarcusTherkildsen/HackThisSite
prog_missions/4/main.py
1
3379
# -*- coding: utf-8 -*- """ Created on Wed Oct 07 22:10:39 2015 @author: Marcus Therkildsen """ from __future__ import division import matplotlib.pyplot as plt import numpy as np def deg2rad(deg_in): return deg_in*np.pi/180 def xy(r,phi): return r*np.cos(phi), r*np.sin(phi) if __name__ == '__main__': # Load the xml file xml = np.genfromtxt('plotMe.xml', delimiter=',', dtype='str',autostrip = True) # Number of line elements num_lines = list(xml).count('<Line>') # Number of arc elements num_arcs = list(xml).count('<Arc>') # Prepare arrays lines = np.zeros([num_lines,4]) # (x_start,x_end,y_start,y_end) c_lines = np.empty(num_lines,dtype='str') arcs = np.zeros([num_arcs,5]) # (x_center,y_center, arc_start (in degrees), arc_extend (in degrees), radius) c_arcs = np.empty(num_arcs,dtype='str') # Go through xml document tj_lines = -1 tj_arcs = -1 for i in xrange(len(xml)): if '<Line>' in xml[i]: tj_lines+=1 # In case no color is defined, predefine it to be white color_ = 'w' for k in xrange(5): if 'YEnd' in xml[i+k+1]: y_end = float(xml[i+k+1][6:-7]) elif 'YStart' in xml[i+k+1]: y_start = float(xml[i+k+1][8:-9]) elif 'XEnd' in xml[i+k+1]: x_end = float(xml[i+k+1][6:-7]) elif 'XStart' in xml[i+k+1]: x_start = float(xml[i+k+1][8:-9]) elif 'Color' in xml[i+k+1]: color_ = xml[i+k+1][7:-8] lines[tj_lines,:] = [x_start, x_end, y_start, y_end] c_lines[tj_lines] = color_ if '<Arc>' in xml[i]: tj_arcs+=1 # In case no color is defined, predefine it to be white color_ = 'w' for k in xrange(6): if 'XCenter' in xml[i+k+1]: x_center = float(xml[i+k+1][9:-10]) elif 'YCenter' in xml[i+k+1]: y_center = float(xml[i+k+1][9:-10]) elif 'ArcStart' in xml[i+k+1]: arc_start = float(xml[i+k+1][10:-11]) elif 'ArcExtend' in xml[i+k+1]: arc_extend = float(xml[i+k+1][11:-12]) elif 'Radius' in xml[i+k+1]: radius = float(xml[i+k+1][8:-9]) elif 'Color' in xml[i+k+1]: color_ = xml[i+k+1][7:-8] arcs[tj_arcs,:] = [x_center,y_center,arc_start,arc_extend,radius] c_arcs[tj_arcs] = color_ """ Plot """ fig, ax =plt.subplots() # Color background black ax.set_axis_bgcolor('k') [ax.plot(lines[i,:2],lines[i,2:],color = c_lines[i]) for i in xrange(num_lines)] # Plot the arcs. Remember that the arc should begin at arc_start and end at arc_start + arc_extend for i in xrange(num_arcs): stuff = np.array(xy(arcs[i,4],np.arange(deg2rad(arcs[i,2]),deg2rad(arcs[i,2])+deg2rad(arcs[i,3]),0.1))).T x_ = stuff[:,0]+arcs[i,0] y_ = stuff[:,1]+arcs[i,1] ax.plot(x_,y_,color = c_arcs[i]) # Remove labels plt.setp( ax.get_xticklabels(), visible=False) plt.setp( ax.get_yticklabels(), visible=False) plt.savefig('done.png',dpi=400,bbox_inches='tight') plt.show()
mit
samzhang111/scikit-learn
sklearn/naive_bayes.py
11
28770
# -*- coding: utf-8 -*- """ The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These are supervised learning methods based on applying Bayes' theorem with strong (naive) feature independence assumptions. """ # Author: Vincent Michel <[email protected]> # Minor fixes by Fabian Pedregosa # Amit Aides <[email protected]> # Yehuda Finkelstein <[email protected]> # Lars Buitinck <[email protected]> # Jan Hendrik Metzen <[email protected]> # (parts based on earlier work by Mathieu Blondel) # # License: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from .base import BaseEstimator, ClassifierMixin from .preprocessing import binarize from .preprocessing import LabelBinarizer from .preprocessing import label_binarize from .utils import check_X_y, check_array from .utils.extmath import safe_sparse_dot, logsumexp from .utils.multiclass import _check_partial_fit_first_call from .utils.fixes import in1d from .utils.validation import check_is_fitted from .externals import six __all__ = ['BernoulliNB', 'GaussianNB', 'MultinomialNB'] class BaseNB(six.with_metaclass(ABCMeta, BaseEstimator, ClassifierMixin)): """Abstract base class for naive Bayes estimators""" @abstractmethod def _joint_log_likelihood(self, X): """Compute the unnormalized posterior log probability of X I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of shape [n_classes, n_samples]. Input is passed to _joint_log_likelihood as-is by predict, predict_proba and predict_log_proba. """ def predict(self, X): """ Perform classification on an array of test vectors X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Predicted target values for X """ jll = self._joint_log_likelihood(X) return self.classes_[np.argmax(jll, axis=1)] def predict_log_proba(self, X): """ Return log-probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the log-probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ jll = self._joint_log_likelihood(X) # normalize by P(x) = P(f_1, ..., f_n) log_prob_x = logsumexp(jll, axis=1) return jll - np.atleast_2d(log_prob_x).T def predict_proba(self, X): """ Return probability estimates for the test vector X. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array-like, shape = [n_samples, n_classes] Returns the probability of the samples for each class in the model. The columns correspond to the classes in sorted order, as they appear in the attribute `classes_`. """ return np.exp(self.predict_log_proba(X)) class GaussianNB(BaseNB): """ Gaussian Naive Bayes (GaussianNB) Can perform online updates to model parameters via `partial_fit` method. For details on algorithm used to update feature means and variance online, see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Read more in the :ref:`User Guide <gaussian_naive_bayes>`. Attributes ---------- class_prior_ : array, shape (n_classes,) probability of each class. class_count_ : array, shape (n_classes,) number of training samples observed in each class. theta_ : array, shape (n_classes, n_features) mean of each feature per class sigma_ : array, shape (n_classes, n_features) variance of each feature per class Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> Y = np.array([1, 1, 1, 2, 2, 2]) >>> from sklearn.naive_bayes import GaussianNB >>> clf = GaussianNB() >>> clf.fit(X, Y) GaussianNB() >>> print(clf.predict([[-0.8, -1]])) [1] >>> clf_pf = GaussianNB() >>> clf_pf.partial_fit(X, Y, np.unique(Y)) GaussianNB() >>> print(clf_pf.predict([[-0.8, -1]])) [1] """ def fit(self, X, y, sample_weight=None): """Fit Gaussian Naive Bayes according to X, y Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) return self._partial_fit(X, y, np.unique(y), _refit=True, sample_weight=sample_weight) @staticmethod def _update_mean_variance(n_past, mu, var, X, sample_weight=None): """Compute online update of Gaussian mean and variance. Given starting sample count, mean, and variance, a new set of points X, and optionally sample weights, return the updated mean and variance. (NB - each dimension (column) in X is treated as independent -- you get variance, not covariance). Can take scalar mean and variance, or vector mean and variance to simultaneously update a number of independent Gaussians. See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque: http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf Parameters ---------- n_past : int Number of samples represented in old mean and variance. If sample weights were given, this should contain the sum of sample weights represented in old mean and variance. mu : array-like, shape (number of Gaussians,) Means for Gaussians in original set. var : array-like, shape (number of Gaussians,) Variances for Gaussians in original set. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- total_mu : array-like, shape (number of Gaussians,) Updated mean for each Gaussian over the combined set. total_var : array-like, shape (number of Gaussians,) Updated variance for each Gaussian over the combined set. """ if X.shape[0] == 0: return mu, var # Compute (potentially weighted) mean and variance of new datapoints if sample_weight is not None: n_new = float(sample_weight.sum()) new_mu = np.average(X, axis=0, weights=sample_weight / n_new) new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight / n_new) else: n_new = X.shape[0] new_var = np.var(X, axis=0) new_mu = np.mean(X, axis=0) if n_past == 0: return new_mu, new_var n_total = float(n_past + n_new) # Combine mean of old and new data, taking into consideration # (weighted) number of observations total_mu = (n_new * new_mu + n_past * mu) / n_total # Combine variance of old and new data, taking into consideration # (weighted) number of observations. This is achieved by combining # the sum-of-squared-differences (ssd) old_ssd = n_past * var new_ssd = n_new * new_var total_ssd = (old_ssd + new_ssd + (n_past / float(n_new * n_total)) * (n_new * mu - n_new * new_mu) ** 2) total_var = total_ssd / n_total return total_mu, total_var def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance and numerical stability overhead, hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ return self._partial_fit(X, y, classes, _refit=False, sample_weight=sample_weight) def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None): """Actual implementation of Gaussian NB fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target values. classes : array-like, shape (n_classes,) List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. _refit: bool If true, act as though this were the first time we called _partial_fit (ie, throw away any past fitting and start over). sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y) # If the ratio of data variance between dimensions is too small, it # will cause numerical errors. To address this, we artificially # boost the variance by epsilon, a small fraction of the standard # deviation of the largest dimension. epsilon = 1e-9 * np.var(X, axis=0).max() if _refit: self.classes_ = None if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_features = X.shape[1] n_classes = len(self.classes_) self.theta_ = np.zeros((n_classes, n_features)) self.sigma_ = np.zeros((n_classes, n_features)) self.class_prior_ = np.zeros(n_classes) self.class_count_ = np.zeros(n_classes) else: if X.shape[1] != self.theta_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (X.shape[1], self.theta_.shape[1])) # Put epsilon back in each time self.sigma_[:, :] -= epsilon classes = self.classes_ unique_y = np.unique(y) unique_y_in_classes = in1d(unique_y, classes) if not np.all(unique_y_in_classes): raise ValueError("The target label(s) %s in y do not exist in the " "initial classes %s" % (y[~unique_y_in_classes], classes)) for y_i in unique_y: i = classes.searchsorted(y_i) X_i = X[y == y_i, :] if sample_weight is not None: sw_i = sample_weight[y == y_i] N_i = sw_i.sum() else: sw_i = None N_i = X_i.shape[0] new_theta, new_sigma = self._update_mean_variance( self.class_count_[i], self.theta_[i, :], self.sigma_[i, :], X_i, sw_i) self.theta_[i, :] = new_theta self.sigma_[i, :] = new_sigma self.class_count_[i] += N_i self.sigma_[:, :] += epsilon self.class_prior_[:] = self.class_count_ / np.sum(self.class_count_) return self def _joint_log_likelihood(self, X): check_is_fitted(self, "classes_") X = check_array(X) joint_log_likelihood = [] for i in range(np.size(self.classes_)): jointi = np.log(self.class_prior_[i]) n_ij = - 0.5 * np.sum(np.log(2. * np.pi * self.sigma_[i, :])) n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.sigma_[i, :]), 1) joint_log_likelihood.append(jointi + n_ij) joint_log_likelihood = np.array(joint_log_likelihood).T return joint_log_likelihood class BaseDiscreteNB(BaseNB): """Abstract base class for naive Bayes on discrete/categorical data Any estimator based on this class should provide: __init__ _joint_log_likelihood(X) as per BaseNB """ def _update_class_log_prior(self, class_prior=None): n_classes = len(self.classes_) if class_prior is not None: if len(class_prior) != n_classes: raise ValueError("Number of priors must match number of" " classes.") self.class_log_prior_ = np.log(class_prior) elif self.fit_prior: # empirical prior, with sample_weight taken into account self.class_log_prior_ = (np.log(self.class_count_) - np.log(self.class_count_.sum())) else: self.class_log_prior_ = np.zeros(n_classes) - np.log(n_classes) def partial_fit(self, X, y, classes=None, sample_weight=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different chunks of a dataset so as to implement out-of-core or online learning. This is especially useful when the whole dataset is too big to fit in memory at once. This method has some performance overhead hence it is better to call partial_fit on chunks of data that are as large as possible (as long as fitting in the memory budget) to hide the overhead. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. classes : array-like, shape = [n_classes] List of all the classes that can possibly appear in the y vector. Must be provided at the first call to partial_fit, can be omitted in subsequent calls. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X = check_array(X, accept_sparse='csr', dtype=np.float64) _, n_features = X.shape if _check_partial_fit_first_call(self, classes): # This is the first call to partial_fit: # initialize various cumulative counters n_effective_classes = len(classes) if len(classes) > 1 else 2 self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) elif n_features != self.coef_.shape[1]: msg = "Number of features %d does not match previous data %d." raise ValueError(msg % (n_features, self.coef_.shape[-1])) Y = label_binarize(y, classes=self.classes_) if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) n_samples, n_classes = Y.shape if X.shape[0] != Y.shape[0]: msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible." raise ValueError(msg % (X.shape[0], y.shape[0])) # label_binarize() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently Y = Y.astype(np.float64) if sample_weight is not None: sample_weight = np.atleast_2d(sample_weight) Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas self._count(X, Y) # XXX: OPTIM: we could introduce a public finalization method to # be called by the user explicitly just once after several consecutive # calls to partial_fit and prior any call to predict[_[log_]proba] # to avoid computing the smooth log probas at each call to partial fit self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self def fit(self, X, y, sample_weight=None): """Fit Naive Bayes classifier according to X, y Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : array-like, shape = [n_samples], optional Weights applied to individual samples (1. for unweighted). Returns ------- self : object Returns self. """ X, y = check_X_y(X, y, 'csr') _, n_features = X.shape labelbin = LabelBinarizer() Y = labelbin.fit_transform(y) self.classes_ = labelbin.classes_ if Y.shape[1] == 1: Y = np.concatenate((1 - Y, Y), axis=1) # LabelBinarizer().fit_transform() returns arrays with dtype=np.int64. # We convert it to np.float64 to support sample_weight consistently; # this means we also don't have to cast X to floating point Y = Y.astype(np.float64) if sample_weight is not None: sample_weight = np.atleast_2d(sample_weight) Y *= check_array(sample_weight).T class_prior = self.class_prior # Count raw events from data before updating the class log prior # and feature log probas n_effective_classes = Y.shape[1] self.class_count_ = np.zeros(n_effective_classes, dtype=np.float64) self.feature_count_ = np.zeros((n_effective_classes, n_features), dtype=np.float64) self._count(X, Y) self._update_feature_log_prob() self._update_class_log_prior(class_prior=class_prior) return self # XXX The following is a stopgap measure; we need to set the dimensions # of class_log_prior_ and feature_log_prob_ correctly. def _get_coef(self): return (self.feature_log_prob_[1:] if len(self.classes_) == 2 else self.feature_log_prob_) def _get_intercept(self): return (self.class_log_prior_[1:] if len(self.classes_) == 2 else self.class_log_prior_) coef_ = property(_get_coef) intercept_ = property(_get_intercept) class MultinomialNB(BaseDiscreteNB): """ Naive Bayes classifier for multinomial models The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. Read more in the :ref:`User Guide <multinomial_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size (n_classes,) Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape (n_classes, ) Smoothed empirical log probability for each class. intercept_ : property Mirrors ``class_log_prior_`` for interpreting MultinomialNB as a linear model. feature_log_prob_ : array, shape (n_classes, n_features) Empirical log probability of features given a class, ``P(x_i|y)``. coef_ : property Mirrors ``feature_log_prob_`` for interpreting MultinomialNB as a linear model. class_count_ : array, shape (n_classes,) Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape (n_classes, n_features) Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) [3] Notes ----- For the rationale behind the names `coef_` and `intercept_`, i.e. naive Bayes as a linear classifier, see J. Rennie et al. (2003), Tackling the poor assumptions of naive Bayes text classifiers, ICML. References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html """ def __init__(self, alpha=1.0, fit_prior=True, class_prior=None): self.alpha = alpha self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if np.any((X.data if issparse(X) else X) < 0): raise ValueError("Input X must be non-negative") self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = smoothed_fc.sum(axis=1) self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') return (safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_) class BernoulliNB(BaseDiscreteNB): """Naive Bayes classifier for multivariate Bernoulli models. Like MultinomialNB, this classifier is suitable for discrete data. The difference is that while MultinomialNB works with occurrence counts, BernoulliNB is designed for binary/boolean features. Read more in the :ref:`User Guide <bernoulli_naive_bayes>`. Parameters ---------- alpha : float, optional (default=1.0) Additive (Laplace/Lidstone) smoothing parameter (0 for no smoothing). binarize : float or None, optional Threshold for binarizing (mapping to booleans) of sample features. If None, input is presumed to already consist of binary vectors. fit_prior : boolean Whether to learn class prior probabilities or not. If false, a uniform prior will be used. class_prior : array-like, size=[n_classes,] Prior probabilities of the classes. If specified the priors are not adjusted according to the data. Attributes ---------- class_log_prior_ : array, shape = [n_classes] Log probability of each class (smoothed). feature_log_prob_ : array, shape = [n_classes, n_features] Empirical log probability of features given a class, P(x_i|y). class_count_ : array, shape = [n_classes] Number of samples encountered for each class during fitting. This value is weighted by the sample weight when provided. feature_count_ : array, shape = [n_classes, n_features] Number of samples encountered for each (class, feature) during fitting. This value is weighted by the sample weight when provided. Examples -------- >>> import numpy as np >>> X = np.random.randint(2, size=(6, 100)) >>> Y = np.array([1, 2, 3, 4, 4, 5]) >>> from sklearn.naive_bayes import BernoulliNB >>> clf = BernoulliNB() >>> clf.fit(X, Y) BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2:3])) [3] References ---------- C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265. http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html A. McCallum and K. Nigam (1998). A comparison of event models for naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48. V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS). """ def __init__(self, alpha=1.0, binarize=.0, fit_prior=True, class_prior=None): self.alpha = alpha self.binarize = binarize self.fit_prior = fit_prior self.class_prior = class_prior def _count(self, X, Y): """Count and smooth feature occurrences.""" if self.binarize is not None: X = binarize(X, threshold=self.binarize) self.feature_count_ += safe_sparse_dot(Y.T, X) self.class_count_ += Y.sum(axis=0) def _update_feature_log_prob(self): """Apply smoothing to raw counts and recompute log probabilities""" smoothed_fc = self.feature_count_ + self.alpha smoothed_cc = self.class_count_ + self.alpha * 2 self.feature_log_prob_ = (np.log(smoothed_fc) - np.log(smoothed_cc.reshape(-1, 1))) def _joint_log_likelihood(self, X): """Calculate the posterior log probability of the samples X""" check_is_fitted(self, "classes_") X = check_array(X, accept_sparse='csr') if self.binarize is not None: X = binarize(X, threshold=self.binarize) n_classes, n_features = self.feature_log_prob_.shape n_samples, n_features_X = X.shape if n_features_X != n_features: raise ValueError("Expected input with %d features, got %d instead" % (n_features, n_features_X)) neg_prob = np.log(1 - np.exp(self.feature_log_prob_)) # Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T) jll += self.class_log_prior_ + neg_prob.sum(axis=1) return jll
bsd-3-clause
waterponey/scikit-learn
benchmarks/bench_plot_parallel_pairwise.py
127
1270
# Author: Mathieu Blondel <[email protected]> # License: BSD 3 clause import time import matplotlib.pyplot as plt from sklearn.utils import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics.pairwise import pairwise_kernels def plot(func): random_state = check_random_state(0) one_core = [] multi_core = [] sample_sizes = range(1000, 6000, 1000) for n_samples in sample_sizes: X = random_state.rand(n_samples, 300) start = time.time() func(X, n_jobs=1) one_core.append(time.time() - start) start = time.time() func(X, n_jobs=-1) multi_core.append(time.time() - start) plt.figure('scikit-learn parallel %s benchmark results' % func.__name__) plt.plot(sample_sizes, one_core, label="one core") plt.plot(sample_sizes, multi_core, label="multi core") plt.xlabel('n_samples') plt.ylabel('Time (s)') plt.title('Parallel %s' % func.__name__) plt.legend() def euclidean_distances(X, n_jobs): return pairwise_distances(X, metric="euclidean", n_jobs=n_jobs) def rbf_kernels(X, n_jobs): return pairwise_kernels(X, metric="rbf", n_jobs=n_jobs, gamma=0.1) plot(euclidean_distances) plot(rbf_kernels) plt.show()
bsd-3-clause
bsipocz/pyspeckit
pyspeckit/cubes/mapplot.py
2
16597
""" MapPlot ------- Make plots of the cube and interactively connect them to spectrum plotting. This is really an interactive component of the package; nothing in here is meant for publication-quality plots, but more for user interactive analysis. That said, the plotter makes use of `APLpy <https://github.com/aplpy/aplpy>`_, so it is possible to make publication-quality plots. :author: Adam Ginsburg :date: 03/17/2011 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ import matplotlib import matplotlib.pyplot import matplotlib.figure import numpy as np import copy import itertools from pyspeckit.specwarnings import warn try: import astropy.wcs as pywcs import astropy.io.fits as pyfits pywcsOK = True except ImportError: try: import pyfits import pywcs pywcsOK = True except ImportError: pywcsOK = False import cubes try: import aplpy icanhasaplpy = True except: # aplpy fails with generic exceptions instead of ImportError icanhasaplpy = False try: import coords icanhascoords = True except ImportError: icanhascoords = False class MapPlotter(object): """ Class to plot a spectrum See `mapplot` for use documentation; this docstring is only for initialization. """ def __init__(self, Cube=None, figure=None, doplot=False, **kwargs): """ Create a map figure for future plotting """ # figure out where to put the plot if isinstance(figure,matplotlib.figure.Figure): self.figure = figure elif type(figure) is int: self.figure = matplotlib.pyplot.figure(figure) else: self.figure = None self.axis = None self.FITSFigure = None self._click_marks = [] self._circles = [] self._clickX = None self._clickY = None self.overplot_colorcycle = itertools.cycle(['b', 'g', 'r', 'c', 'm', 'y']) self.overplot_linestyle = '-' self.Cube = Cube if self.Cube is not None: self.header = cubes.flatten_header(self.Cube.header, delete=True) if pywcsOK: self.wcs = pywcs.WCS(self.header) if doplot: self.mapplot(**kwargs) def __call__(self, **kwargs): """ see mapplot """ return self.mapplot(**kwargs) def mapplot(self, convention='calabretta', colorbar=True, useaplpy=True, vmin=None, vmax=None, cmap=None, plotkwargs={}, **kwargs): """ Plot up a map based on an input data cube. The map to be plotted is selected using `makeplane`. The `estimator` keyword argument is passed to that function. The plotted map, once shown, is interactive. You can click on it with any of the three mouse buttons. Button 1 or keyboard '1': Plot the selected pixel's spectrum in another window. Mark the clicked pixel with an 'x' Button 2 or keyboard 'o': Overplot a second (or third, fourth, fifth...) spectrum in the external plot window Button 3: Disconnect the interactive viewer You can also click-and-drag with button 1 to average over a circular region. This same effect can be achieved by using the 'c' key to set the /c/enter of a circle and the 'r' key to set its /r/adius (i.e., hover over the center and press 'c', then hover some distance away and press 'r'). Parameters ---------- convention : 'calabretta' or 'griesen' The default projection to assume for Galactic data when plotting with aplpy. colorbar : bool Whether to show a colorbar plotkwargs : dict, optional A dictionary of keyword arguments to pass to aplpy.show_colorscale or matplotlib.pyplot.imshow useaplpy : bool Use aplpy if a FITS header is available vmin, vmax: float or None Override values for the vmin/vmax values. Will be automatically determined if left as None .. todo: Allow mapplot in subfigure """ if self.figure is None: self.figure = matplotlib.pyplot.figure() else: self._disconnect() self.figure.clf() # this is where the map is created; everything below this is just plotting self.makeplane(**kwargs) # have tot pop out estimator so that kwargs can be passed to imshow if 'estimator' in kwargs: kwargs.pop('estimator') # Below here is all plotting stuff if vmin is None: vmin = self.plane[self.plane==self.plane].min() if vmax is None: vmax = self.plane[self.plane==self.plane].max() if icanhasaplpy and useaplpy: self.fitsfile = pyfits.PrimaryHDU(data=self.plane,header=self.header) self.FITSFigure = aplpy.FITSFigure(self.fitsfile,figure=self.figure,convention=convention) self.FITSFigure.show_colorscale(vmin=vmin, vmax=vmax, cmap=cmap, **plotkwargs) self.axis = self.FITSFigure._ax1 if colorbar: try: self.FITSFigure.add_colorbar() except Exception as ex: print "ERROR: Could not create colorbar! Error was %s" % str(ex) self._origin = 0 # FITS convention # TODO: set _origin to 1 if using PIXEL units, not real wcs else: self.axis = self.figure.add_subplot(111) if hasattr(self,'colorbar') and self.colorbar is not None: if self.colorbar.ax in self.axis.figure.axes: self.axis.figure.delaxes(self.colorbar.ax) self.axis.imshow(self.plane, vmin=vmin, vmax=vmax, cmap=cmap, **plotkwargs) if colorbar: try: self.colorbar = matplotlib.pyplot.colorbar(self.axis.images[0]) except Exception as ex: print "ERROR: Could not create colorbar! Error was %s" % str(ex) self._origin = 0 # normal convention self.canvas = self.axis.figure.canvas self._connect() def _connect(self): """ Connect click, click up (release click), and key press to events """ self.clickid = self.canvas.callbacks.connect('button_press_event',self.click) self.clickupid = self.canvas.callbacks.connect('button_release_event',self.plot_spectrum) self.keyid = self.canvas.callbacks.connect('key_press_event',self.plot_spectrum) def _disconnect(self): """ Disconnect click, click up (release click), and key press from events """ if hasattr(self,'canvas'): self.canvas.mpl_disconnect(self.clickid) self.canvas.mpl_disconnect(self.clickupid) self.canvas.mpl_disconnect(self.keyid) def makeplane(self, estimator=np.mean): """ Create a "plane" view of the cube, either by slicing or projecting it or by showing a slice from the best-fit model parameter cube. Parameters ---------- estimator : [ function | 'max' | 'int' | FITS filename | integer | slice ] A non-pythonic, non-duck-typed variable. If it's a function, apply that function along the cube's spectral axis to obtain an estimate (e.g., mean, min, max, etc.). 'max' will do the same thing as passing np.max 'int' will attempt to integrate the image (which is why I didn't duck-type) (integrate means sum and multiply by dx) a .fits filename will be read using pyfits (so you can make your own cover figure) an integer will get the n'th slice in the parcube if it exists If it's a slice, slice the input data cube along the Z-axis with this slice """ # THIS IS A HACK!!! isinstance(a function, function) must be a thing... FUNCTION = type(np.max) # estimator is NOT duck-typed if type(estimator) is FUNCTION: self.plane = estimator(self.Cube.cube,axis=0) elif type(estimator) is str: if estimator == 'max': self.plane = self.Cube.cube.max(axis=0) elif estimator == 'int': dx = np.abs(self.Cube.xarr[1:] - self.Cube.xarr[:-1]) dx = np.concatenate([dx,[dx[-1]]]) self.plane = (self.Cube.cube * dx[:,np.newaxis,np.newaxis]).sum(axis=0) elif estimator[-5:] == ".fits": self.plane = pyfits.getdata(estimator) elif type(estimator) is slice: self.plane = self.Cube.cube[estimator,:,:] elif type(estimator) is int: if hasattr(self.Cube,'parcube'): self.plane = self.Cube.parcube[estimator,:,:] if self.plane is None: raise ValueError("Invalid estimator %s" % (str(estimator))) if np.sum(np.isfinite(self.plane)) == 0: raise ValueError("Map is all NaNs or infs. Check your estimator or your input cube.") def click(self,event): """ Record location of downclick """ if event.inaxes: self._clickX = np.round(event.xdata) - self._origin self._clickY = np.round(event.ydata) - self._origin def plot_spectrum(self, event, plot_fit=True): """ Connects map cube to Spectrum... """ self.event = event if event.inaxes: clickX = np.round(event.xdata) - self._origin clickY = np.round(event.ydata) - self._origin # grab toolbar info so that we don't do anything if a tool is selected tb = self.canvas.toolbar if tb.mode != '': return elif event.key is not None: if event.key == 'c': self._center = (clickX-1,clickY-1) self._remove_circle() self._add_click_mark(clickX,clickY,clear=True) elif event.key == 'r': x,y = self._center self._add_circle(x,y,clickX,clickY) self.circle(x,y,clickX-1,clickY-1) elif event.key == 'o': clickX,clickY = round(clickX),round(clickY) print "OverPlotting spectrum from point %i,%i" % (clickX-1,clickY-1) color=self.overplot_colorcycle.next() self._add_click_mark(clickX,clickY,clear=False, color=color) self.Cube.plot_spectrum(clickX-1,clickY-1,clear=False, color=color, linestyle=self.overplot_linestyle) elif event.key in ('1','2'): event.button = int(event.key) event.key = None self.plot_spectrum(event) elif (hasattr(event,'button') and event.button in (1,2) and not (self._clickX == clickX and self._clickY == clickY)): if event.button == 1: self._remove_circle() clear=True color = 'k' linestyle = 'steps-mid' else: color = self.overplot_colorcycle.next() linestyle = self.overplot_linestyle clear=False rad = ( (self._clickX-clickX)**2 + (self._clickY-clickY)**2 )**0.5 print "Plotting circle from point %i,%i to %i,%i (r=%f)" % (self._clickX-1,self._clickY-1,clickX-1,clickY-1,rad) self._add_circle(self._clickX,self._clickY,clickX,clickY) self.circle(self._clickX-1,self._clickY-1,clickX-1,clickY-1,clear=clear,linestyle=linestyle,color=color) elif hasattr(event,'button') and event.button is not None: if event.button==1: clickX,clickY = round(clickX),round(clickY) print "Plotting spectrum from point %i,%i" % (clickX-1,clickY-1) self._remove_circle() self._add_click_mark(clickX,clickY,clear=True) self.Cube.plot_spectrum(clickX-1,clickY-1,clear=True) if plot_fit: self.Cube.plot_fit(clickX-1, clickY-1, silent=True) elif event.button==2: clickX,clickY = round(clickX),round(clickY) print "OverPlotting spectrum from point %i,%i" % (clickX-1,clickY-1) color=self.overplot_colorcycle.next() self._add_click_mark(clickX,clickY,clear=False, color=color) self.Cube.plot_spectrum(clickX-1,clickY-1,clear=False, color=color, linestyle=self.overplot_linestyle) elif event.button==3: print "Disconnecting GAIA-like tool" self._disconnect() else: print "Call failed for some reason: " print "event: ",event else: pass # never really needed... warn("Click outside of axes") def _add_click_mark(self,x,y,clear=False,color='k'): """ Add an X at some position """ if clear: self._clear_click_marks() if self.FITSFigure is not None: label = 'xmark%i' % (len(self._click_marks)+1) x,y = self.FITSFigure.pixel2world(x,y) self.FITSFigure.show_markers(x,y,marker='x',c=color,layer=label) self._click_marks.append( label ) else: self._click_marks.append( self.axis.plot(x,y,'kx') ) self.refresh() def _clear_click_marks(self): """ Remove all marks added by previous clicks """ if self.FITSFigure is not None: for mark in self._click_marks: if mark in self.FITSFigure._layers: self.FITSFigure.remove_layer(mark) else: for mark in self._click_marks: self._click_marks.remove(mark) if mark in self.axis.lines: self.axis.lines.remove(mark) self.refresh() def _add_circle(self,x,y,x2,y2,**kwargs): """ """ if self.FITSFigure is not None: x,y = self.FITSFigure.pixel2world(x,y) x2,y2 = self.FITSFigure.pixel2world(x2,y2) r = (np.linalg.norm(np.array([x,y])-np.array([x2,y2]))) #self.FITSFigure.show_markers(x,y,s=r,marker='o',facecolor='none',edgecolor='black',layer='circle') layername = "circle%02i" % len(self._circles) self.FITSFigure.show_circles(x,y,r,edgecolor='black',facecolor='none',layer=layername,**kwargs) self._circles.append(layername) else: r = np.linalg.norm(np.array([x,y])-np.array([x2,y2])) circle = matplotlib.patches.Circle([x,y],radius=r,**kwargs) self._circles.append( circle ) self.axis.patches.append(circle) self.refresh() def _remove_circle(self): """ """ if self.FITSFigure is not None: for layername in self._circles: if layername in self.FITSFigure._layers: self.FITSFigure.remove_layer(layername) else: for circle in self._circles: if circle in self.axis.patches: self.axis.patches.remove(circle) self._circles.remove(circle) self.refresh() def refresh(self): if self.axis is not None: self.axis.figure.canvas.draw() def circle(self,x1,y1,x2,y2,**kwargs): """ Plot the spectrum of a circular aperture """ r = (np.linalg.norm(np.array([x1,y1])-np.array([x2,y2]))) self.Cube.plot_apspec([x1,y1,r],**kwargs) #self.Cube.data = cubes.extract_aperture( self.Cube.cube, [x1,y1,r] , coordsys=None ) #self.Cube.plotter() def copy(self, parent=None): """ Create a copy of the map plotter with blank (uninitialized) axis & figure [ parent ] A spectroscopic axis instance that is the parent of the specfit instance. This needs to be specified at some point, but defaults to None to prevent overwriting a previous plot. """ newmapplot = copy.copy(self) newmapplot.Cube = parent newmapplot.axis = None newmapplot.figure = None return newmapplot
mit
geodynamics/burnman
setup.py
2
1353
from __future__ import absolute_import import re versionstuff = dict( re.findall("(.+) = '(.+)'\n", open('burnman/version.py').read())) metadata = dict(name='burnman', version=versionstuff['version'], description='a thermoelastic and thermodynamic toolkit for Earth and planetary sciences', url='http://burnman.org', author='The BurnMan Team', author_email='[email protected]', license='GPL', long_description='BurnMan is a Python library for generating thermodynamic and thermoelastic models of planetary interiors.', packages=['burnman', 'burnman.minerals', 'burnman.eos'], package_data={'burnman': ['data/input_*/*']}, classifiers=[ 'License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4'], ) # Try to use setuptools in order to check dependencies. # if the system does not have setuptools, fall back on # distutils. try: from setuptools import setup metadata['install_requires'] = ['numpy', 'matplotlib', 'scipy', 'sympy'] except ImportError: from distutils.core import setup setup(**metadata)
gpl-2.0
NYU-CS6313-Projects/Charts-for-CompStat
data/crash_cleaner.py
1
3650
#!/user/bin/python # this python script cleans raw crash data and subsets the last n days of observations # if n=-1 all rows of the raw dataset are kept # WEEK and YEAR attributes are derived import pandas as pd import numpy as np import datetime as dt import re import os import logging dpath = './' def date_parser(ds): if type(ds) == str: return dt.datetime.date(dt.datetime.strptime(ds, "%m/%d/%Y")) else: return np.nan def time_parser(ts): if type(ts) == str: return dt.datetime.time(dt.datetime.strptime(ts, "%H:%M")) else: return np.nan #zip-s war by [email protected] def zip_cleaner(s): if type(s) != str: return np.nan elif re.match('^\d\d\d\d\d$', s): return s elif re.match('^\d\d\d\d\d-\d*$', s): return re.sub('-\d*$', '', s) else: return np.nan def test_zip_cleaner(): assert '12345' == zip_cleaner('12345') assert '12345' == zip_cleaner('12345-1234') assert np.isnan( zip_cleaner(np.nan) ) assert np.isnan( zip_cleaner('1234') ) assert np.isnan( zip_cleaner('0') ) assert np.isnan( zip_cleaner('UNKNOWN')) # reads the raw crash data def read_crash_csv(data): df = pd.read_csv(data, dtype={ 'DATE' : str, 'TIME' : str, 'BOROUGH': str, 'ZIP CODE': str, 'LATITUDE': np.floating, 'LONGITUDE': np.floating, 'LOCATION' : str, # derived type 'ON STREET NAME' : str, 'CROSS STREET NAME': str, 'OFF STREET NAME' : str, 'NUMBER OF PERSONS INJURED' : np.integer, 'NUMBER OF PERSONS KILLED' : np.integer, 'NUMBER OF PEDESTRIANS INJURED' : np.integer, 'NUMBER OF PEDESTRIANS KILLED' : np.integer, 'NUMBER OF CYCLIST INJURED' : np.integer, 'NUMBER OF CYCLIST KILLED' : np.integer, 'NUMBER OF MOTORIST INJURED' : np.integer, 'NUMBER OF MOTORIST KILLED' : np.integer, 'CONTRIBUTING FACTOR VEHICLE 1' : str, 'CONTRIBUTING FACTOR VEHICLE 2' : str, 'CONTRIBUTING FACTOR VEHICLE 3' : str, 'CONTRIBUTING FACTOR VEHICLE 4' : str, 'CONTRIBUTING FACTOR VEHICLE 5' : str, 'UNIQUE KEY' : np.integer, 'VEHICLE TYPE CODE 1' : str, 'VEHICLE TYPE CODE 2' : str, 'VEHICLE TYPE CODE 3' : str, 'VEHICLE TYPE CODE 4' : str, 'VEHICLE TYPE CODE 5' : str}) df['DATE'] = map(date_parser, df['DATE']) df['TIME'] = map(time_parser, df['TIME']) df['LOCATION'] = zip(df.LATITUDE,df.LONGITUDE) df['ZIP CODE'] = map(zip_cleaner,df['ZIP CODE']) df['WEEK'] = df['DATE'].apply(lambda x: pd.to_datetime(x).week) df['YEAR'] = df['DATE'].apply(lambda x: pd.to_datetime(x).year) df.columns = [field.replace(" ","_") for field in df.columns] return(df) # subsets the last n days of the crash data and logs a number of records in the dataset # no subseting if n=-1 def sample_crash_data(n,path,folder): df = read_crash_csv(os.path.join(path,'crashdata.csv')) logging.basicConfig(filename=os.path.join(path,'sample.log'),level=logging.DEBUG) df_new = df if n!=-1: start = dt.date.today() logging.info('As for %s raw data set contains %s records ...' % (dt.datetime.strftime(start,"%m/%d/%Y %H:%M:%S") ,df.shape[0])) end = dt.date.today()-dt.timedelta(days=n) df_new = df[(df.DATE >= end) & (df.DATE <= start)] df_new.to_csv(os.path.join(path,'%sdays_crashdata.csv' %(n)), index=False) logging.info('Raw data set for the last %s days contains %s records' % (n, df_new.shape[0])) else: df_new.to_csv(os.path.join(path,'%srows_crashdata.csv' %(df_new.shape[0])), index=False) # n = 150; n =-1 if __name__ == "__main__": sample_crash_data(150,dpath,'data') sample_crash_data(-1,dpath,'data')
mit
hsuantien/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
laurensstoop/HiSPARC-BONZ
egg/legacy/egg_saskia_v4.2.py
1
9204
# -*- coding: utf-8 -*- # ################################################################################################# # # # Program for analysing HiSPARC data # # # # This software is made under the GNU General Public License, version 3 (GPL-3.0) # # # ################################################################################################# """ =================================== Created on Thu Mar 24 13:17:57 2016 @author: Laurens Stoop =================================== """ ################################## HEADER ################################## """ Import of Packages """ import sapphire # The HiSparc Python Framework import tables # A HDF5 python module that allows to store data import datetime # A package to decode the timeformat of HiSparc data import matplotlib.pyplot as plt # Plotting functionality of MatPlotLib import numpy as np # This is NumPy import os.path # To check if files exist (so you don't do stuff again) import rootpy.plotting # Get the pythonesc version of ROOT from rootpy.plotting import root2matplotlib from matplotlib.colors import LogNorm """ Getting the data file and setting the variables """ # Time between which the data is downloaded (jjjj,mm,dd,[hh]) START = datetime.datetime(2015,01,01) END = datetime.datetime(2016,01,01) # Give the list of stations STATIONS = [501,503,1006,1101,3001,13002,14001,20003] # Do not show the figures plt.ioff() ################################## BODY ################################## """ Data acquisition """ # Open a data file (automatic close) with tables.open_file('egg_saskia.h5','a') as data_file: # Retrieve for every station the data and plot a pulsehisto for station in STATIONS: # Set the station name (this is the group name in the file) station_name = '/s%d' %station # Data is downloaded if station_name not in data_file: # Let them know what we do print "\nGetting event data from station %d " % station # Now retrieve the event data sapphire.esd.download_data( data_file, # File (as opened above) station_name, # Group name (/s..station..) station, # Station number START, # Start data date END, # End data date 'events', # Download events (or 'weather') True) # Show progress # Let them know what we do print "\nGetting wheater data from station %d " % station # Now retrieve the wheater data sapphire.esd.download_data( data_file, # File (as opened above) station_name, # Group name (/s..station..) station, # Station number START, # Start data date END, # End data date 'weather', # Download wheater True) # Show progress # If the datafile has the group we do not download them data else: print "All data present for station %d" % station ####### Pulseheight histograms ####### # If the plot exist we skip the plotting if os.path.isfile('pulseheigt_histogram_%d.pdf' % station): # Say if the plot is present print "Plot already present for station %d" % station # If there is no plot we make it else: # Get event data event_data = data_file.get_node( station_name, # From the group (/s..station..) 'events') # Get the node with events # Set the figure figure_pulse = plt.figure(station) # Get the pulseheight from all events data_pulseheight = event_data.col('pulseheights') # col takes all data from events # Creates bins so that the ugly shit is taken away bins = np.linspace(0, 4500, 201) # Plotting the pulseheigth for all events plt.hist( data_pulseheight, # Plot the Pulseheight bins, # Number of bins histtype='step', # Make the histogram a step function log=True) # With a logarithmic scale # Setting the plot labels and title plt.xlabel("Pulseheight [ADC]") plt.ylabel("Counts") plt.title("Pulseheight histogram (log scale) for station (%d)" %station) # Saving them Pica plt.savefig( 'pulseheigt_histogram_%d.pdf' % station, # Name of the file bbox_inches='tight') # Use less whitespace # Necessary to avoid multiplotting in one figure and to close memory leak plt.close(figure_pulse) ####### Pulseheight vs pulse integral histograms ####### # If the plot exist we skip the plotting if os.path.isfile('pmt_saturation_s%d.pdf' %station): # Say if the plot is present print "PMT saturation histogram already present for station %d" % station # If there is no plot we make it else: # Get event data event_data = data_file.get_node( station_name, # From the group (/s..station..) 'events') # Get the node with events # Get the pulseheight from all events data_pulseheights = event_data.col('pulseheights') # col takes all data from events (this improves the speed) # Get the integral from all events data_integrals = event_data.col('integrals') # col takes all data from events # Make a figure so it can be closed figure_combo, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex = 'col', sharey = 'row') # Setting the plot titles ax1.set_title('Detector 1') ax2.set_title('Detector 2') ax3.set_title('Detector 3') ax4.set_title('Detector 4') # Setting the plot labels ax1.set_ylabel('Pulseheight [ADC]') ax3.set_ylabel('Pulseheight [ADC]') ax3.set_xlabel('Pulse integral [ADC.ns]') ax4.set_xlabel('Pulse integral [ADC.ns]') # Now we plot the data of every detector for detector in range(0,4): # Select the detector data data_pulseheight_detector = data_pulseheights[:,detector] data_integral_detector = data_integrals[:,detector] # Combine the detector data data_combo = np.stack( (data_integral_detector, # The pulse integral on y axis data_pulseheight_detector), # The pulseheight on x axis axis=-1) # To get the direction correct # Initiate a 2D histogram (ROOT style) histogram_combo_detector = rootpy.plotting.Hist2D(100, 0, 150000, 100, 0, 4500) # Fill the Histogram histogram_combo_detector.fill_array(data_combo) # Plot the histogram with logarithmic colors in correct place if detector == 0: root2matplotlib.hist2d(histogram_combo_detector, norm=LogNorm(), axes=ax1) elif detector == 1: root2matplotlib.hist2d(histogram_combo_detector, norm=LogNorm(), axes=ax2) elif detector == 2: root2matplotlib.hist2d(histogram_combo_detector, norm=LogNorm(), axes=ax3) elif detector == 3: root2matplotlib.hist2d(histogram_combo_detector, norm=LogNorm(), axes=ax4) # Save the file figure_combo.savefig( 'pmt_saturation_s%d.pdf' %station) # Name of the file # Close the figure plt.close(figure_combo) # Now we go to the next detector detector +1 print "####### I'm Done Bitches! #######" ################################## FOOTER ################################## """ Clean up shit """
gpl-3.0
ryanraaum/african-mtdna
popdata_sources/lippold2014/process.py
1
1543
from oldowan.mtconvert import seq2sites, sites2seq, str2sites from oldowan.fasta import fasta from string import translate import pandas as pd import sys sys.path.append('../../scripts') from utils import * ## load metadata metadata = pd.read_csv('metadata.csv', index_col=0) region = range2region(metadata.ix[0, 'SeqRange']) ## load sample info sinfo = pd.read_csv('HGDP_info.csv', index_col=0) newindices = ['HGDP' + str(x).zfill(5) for x in sinfo.index] sinfo['hgdpid'] = newindices sinfo = sinfo.set_index('hgdpid') ff = fasta('hgdp_africa.fasta', 'r') data = ff.readentries() ff.close() hids = [] sites = [] for entry in data: words = entry['name'].split() hids.append(words[4]) sites.append(seq2sites(entry['sequence'])) # three sequences have an 'N' at around 309 that breaks validation # this will be treated as a heteroplasy of the T there and ignored skip = [64, 67, 73] # validate passed_validation = True for i in range(len(sites)): if i not in skip: seq1 = data[i]['sequence'].upper() if not seq1 == translate(sites2seq(sites[i], region), None, '-'): passed_validation = False print i, hids[i] counter = {} for k in metadata.index: counter[k] = 0 if passed_validation: with open('processed.csv', 'w') as f: for i in range(len(sites)): hid = hids[i] key = sinfo.ix[hid,'PopulationName'] prefix = metadata.ix[key,'NewPrefix'] counter[key] += 1 newid = prefix + str(counter[key]).zfill(3) mysites = ' '.join([str(x) for x in sites[i]]) f.write('%s,%s,%s\n' % (newid, hid, mysites))
cc0-1.0
mbayon/TFG-MachineLearning
venv/lib/python3.6/site-packages/scipy/signal/ltisys.py
7
116413
""" ltisys -- a collection of classes and functions for modeling linear time invariant systems. """ from __future__ import division, print_function, absolute_import # # Author: Travis Oliphant 2001 # # Feb 2010: Warren Weckesser # Rewrote lsim2 and added impulse2. # Apr 2011: Jeffrey Armstrong <[email protected]> # Added dlsim, dstep, dimpulse, cont2discrete # Aug 2013: Juan Luis Cano # Rewrote abcd_normalize. # Jan 2015: Irvin Probst irvin DOT probst AT ensta-bretagne DOT fr # Added pole placement # Mar 2015: Clancy Rowley # Rewrote lsim # May 2015: Felix Berkenkamp # Split lti class into subclasses # Merged discrete systems and added dlti import warnings # np.linalg.qr fails on some tests with LinAlgError: zgeqrf returns -7 # use scipy's qr until this is solved from scipy.linalg import qr as s_qr from scipy import integrate, interpolate, linalg from scipy.interpolate import interp1d from scipy._lib.six import xrange from .filter_design import (tf2zpk, zpk2tf, normalize, freqs, freqz, freqs_zpk, freqz_zpk) from .lti_conversion import (tf2ss, abcd_normalize, ss2tf, zpk2ss, ss2zpk, cont2discrete) import numpy import numpy as np from numpy import (real, atleast_1d, atleast_2d, squeeze, asarray, zeros, dot, transpose, ones, zeros_like, linspace, nan_to_num) import copy __all__ = ['lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace', 'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode', 'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse', 'dfreqresp', 'dbode'] class LinearTimeInvariant(object): def __new__(cls, *system, **kwargs): """Create a new object, don't allow direct instances.""" if cls is LinearTimeInvariant: raise NotImplementedError('The LinearTimeInvariant class is not ' 'meant to be used directly, use `lti` ' 'or `dlti` instead.') return super(LinearTimeInvariant, cls).__new__(cls) def __init__(self): """ Initialize the `lti` baseclass. The heavy lifting is done by the subclasses. """ super(LinearTimeInvariant, self).__init__() self.inputs = None self.outputs = None self._dt = None @property def dt(self): """Return the sampling time of the system, `None` for `lti` systems.""" return self._dt @property def _dt_dict(self): if self.dt is None: return {} else: return {'dt': self.dt} @property def zeros(self): """Zeros of the system.""" return self.to_zpk().zeros @property def poles(self): """Poles of the system.""" return self.to_zpk().poles def _as_ss(self): """Convert to `StateSpace` system, without copying. Returns ------- sys: StateSpace The `StateSpace` system. If the class is already an instance of `StateSpace` then this instance is returned. """ if isinstance(self, StateSpace): return self else: return self.to_ss() def _as_zpk(self): """Convert to `ZerosPolesGain` system, without copying. Returns ------- sys: ZerosPolesGain The `ZerosPolesGain` system. If the class is already an instance of `ZerosPolesGain` then this instance is returned. """ if isinstance(self, ZerosPolesGain): return self else: return self.to_zpk() def _as_tf(self): """Convert to `TransferFunction` system, without copying. Returns ------- sys: ZerosPolesGain The `TransferFunction` system. If the class is already an instance of `TransferFunction` then this instance is returned. """ if isinstance(self, TransferFunction): return self else: return self.to_tf() class lti(LinearTimeInvariant): """ Continuous-time linear time invariant system base class. Parameters ---------- *system : arguments The `lti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding continuous-time subclass that is created: * 2: `TransferFunction`: (numerator, denominator) * 3: `ZerosPolesGain`: (zeros, poles, gain) * 4: `StateSpace`: (A, B, C, D) Each argument can be an array or a sequence. See Also -------- ZerosPolesGain, StateSpace, TransferFunction, dlti Notes ----- `lti` instances do not exist directly. Instead, `lti` creates an instance of one of its subclasses: `StateSpace`, `TransferFunction` or `ZerosPolesGain`. If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). Changing the value of properties that are not directly part of the current system representation (such as the `zeros` of a `StateSpace` system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain. Examples -------- >>> from scipy import signal >>> signal.lti(1, 2, 3, 4) StateSpaceContinuous( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: None ) >>> signal.lti([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None ) >>> signal.lti([3, 4], [1, 2]) TransferFunctionContinuous( array([ 3., 4.]), array([ 1., 2.]), dt: None ) """ def __new__(cls, *system): """Create an instance of the appropriate subclass.""" if cls is lti: N = len(system) if N == 2: return TransferFunctionContinuous.__new__( TransferFunctionContinuous, *system) elif N == 3: return ZerosPolesGainContinuous.__new__( ZerosPolesGainContinuous, *system) elif N == 4: return StateSpaceContinuous.__new__(StateSpaceContinuous, *system) else: raise ValueError("`system` needs to be an instance of `lti` " "or have 2, 3 or 4 arguments.") # __new__ was called from a subclass, let it call its own functions return super(lti, cls).__new__(cls) def __init__(self, *system): """ Initialize the `lti` baseclass. The heavy lifting is done by the subclasses. """ super(lti, self).__init__(*system) def impulse(self, X0=None, T=None, N=None): """ Return the impulse response of a continuous-time system. See `impulse` for details. """ return impulse(self, X0=X0, T=T, N=N) def step(self, X0=None, T=None, N=None): """ Return the step response of a continuous-time system. See `step` for details. """ return step(self, X0=X0, T=T, N=N) def output(self, U, T, X0=None): """ Return the response of a continuous-time system to input `U`. See `lsim` for details. """ return lsim(self, U, T, X0=X0) def bode(self, w=None, n=100): """ Calculate Bode magnitude and phase data of a continuous-time system. Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See `bode` for details. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> sys = signal.TransferFunction([1], [1, 1]) >>> w, mag, phase = sys.bode() >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ return bode(self, w=w, n=n) def freqresp(self, w=None, n=10000): """ Calculate the frequency response of a continuous-time system. Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See `freqresp` for details. """ return freqresp(self, w=w, n=n) def to_discrete(self, dt, method='zoh', alpha=None): """Return a discretized version of the current system. Parameters: See `cont2discrete` for details. Returns ------- sys: instance of `dlti` """ raise NotImplementedError('to_discrete is not implemented for this ' 'system class.') class dlti(LinearTimeInvariant): """ Discrete-time linear time invariant system base class. Parameters ---------- *system: arguments The `dlti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created: * 2: `TransferFunction`: (numerator, denominator) * 3: `ZerosPolesGain`: (zeros, poles, gain) * 4: `StateSpace`: (A, B, C, D) Each argument can be an array or a sequence. dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to ``True`` (unspecified sampling time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- ZerosPolesGain, StateSpace, TransferFunction, lti Notes ----- `dlti` instances do not exist directly. Instead, `dlti` creates an instance of one of its subclasses: `StateSpace`, `TransferFunction` or `ZerosPolesGain`. Changing the value of properties that are not directly part of the current system representation (such as the `zeros` of a `StateSpace` system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain. If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.18.0 Examples -------- >>> from scipy import signal >>> signal.dlti(1, 2, 3, 4) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: True ) >>> signal.dlti(1, 2, 3, 4, dt=0.1) StateSpaceDiscrete( array([[1]]), array([[2]]), array([[3]]), array([[4]]), dt: 0.1 ) >>> signal.dlti([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 ) >>> signal.dlti([3, 4], [1, 2], dt=0.1) TransferFunctionDiscrete( array([ 3., 4.]), array([ 1., 2.]), dt: 0.1 ) """ def __new__(cls, *system, **kwargs): """Create an instance of the appropriate subclass.""" if cls is dlti: N = len(system) if N == 2: return TransferFunctionDiscrete.__new__( TransferFunctionDiscrete, *system, **kwargs) elif N == 3: return ZerosPolesGainDiscrete.__new__(ZerosPolesGainDiscrete, *system, **kwargs) elif N == 4: return StateSpaceDiscrete.__new__(StateSpaceDiscrete, *system, **kwargs) else: raise ValueError("`system` needs to be an instance of `dlti` " "or have 2, 3 or 4 arguments.") # __new__ was called from a subclass, let it call its own functions return super(dlti, cls).__new__(cls) def __init__(self, *system, **kwargs): """ Initialize the `lti` baseclass. The heavy lifting is done by the subclasses. """ dt = kwargs.pop('dt', True) super(dlti, self).__init__(*system, **kwargs) self.dt = dt @property def dt(self): """Return the sampling time of the system.""" return self._dt @dt.setter def dt(self, dt): self._dt = dt def impulse(self, x0=None, t=None, n=None): """ Return the impulse response of the discrete-time `dlti` system. See `dimpulse` for details. """ return dimpulse(self, x0=x0, t=t, n=n) def step(self, x0=None, t=None, n=None): """ Return the step response of the discrete-time `dlti` system. See `dstep` for details. """ return dstep(self, x0=x0, t=t, n=n) def output(self, u, t, x0=None): """ Return the response of the discrete-time system to input `u`. See `dlsim` for details. """ return dlsim(self, u, t, x0=x0) def bode(self, w=None, n=100): """ Calculate Bode magnitude and phase data of a discrete-time system. Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude [dB] and phase [deg]. See `dbode` for details. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Transfer function: H(z) = 1 / (z^2 + 2z + 3) with sampling time 0.5s >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5) Equivalent: signal.dbode(sys) >>> w, mag, phase = sys.bode() >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ return dbode(self, w=w, n=n) def freqresp(self, w=None, n=10000, whole=False): """ Calculate the frequency response of a discrete-time system. Returns a 2-tuple containing arrays of frequencies [rad/s] and complex magnitude. See `dfreqresp` for details. """ return dfreqresp(self, w=w, n=n, whole=whole) class TransferFunction(LinearTimeInvariant): r"""Linear Time Invariant system class in transfer function form. Represents the system as the continuous-time transfer function :math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j` or the discrete-time transfer function :math:`H(s)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where :math:`b` are elements of the numerator `num`, :math:`a` are elements of the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``. `TransferFunction` systems inherit additional functionality from the `lti`, respectively the `dlti` classes, depending on which system representation is used. Parameters ---------- *system: arguments The `TransferFunction` class can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 2: array_like: (numerator, denominator) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `None` (continuous-time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- ZerosPolesGain, StateSpace, lti, dlti tf2ss, tf2zpk, tf2sos Notes ----- Changing the value of properties that are not part of the `TransferFunction` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_ss()`` before accessing/changing the A, B, C, D system matrices. If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` or ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``) Examples -------- Construct the transfer function: .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} >>> from scipy import signal >>> num = [1, 3, 3] >>> den = [1, 2, 1] >>> signal.TransferFunction(num, den) TransferFunctionContinuous( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: None ) Contruct the transfer function with a sampling time of 0.1 seconds: .. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1} >>> signal.TransferFunction(num, den, dt=0.1) TransferFunctionDiscrete( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: 0.1 ) """ def __new__(cls, *system, **kwargs): """Handle object conversion if input is an instance of lti.""" if len(system) == 1 and isinstance(system[0], LinearTimeInvariant): return system[0].to_tf() # Choose whether to inherit from `lti` or from `dlti` if cls is TransferFunction: if kwargs.get('dt') is None: return TransferFunctionContinuous.__new__( TransferFunctionContinuous, *system, **kwargs) else: return TransferFunctionDiscrete.__new__( TransferFunctionDiscrete, *system, **kwargs) # No special conversion needed return super(TransferFunction, cls).__new__(cls) def __init__(self, *system, **kwargs): """Initialize the state space LTI system.""" # Conversion of lti instances is handled in __new__ if isinstance(system[0], LinearTimeInvariant): return # Remove system arguments, not needed by parents anymore super(TransferFunction, self).__init__(**kwargs) self._num = None self._den = None self.num, self.den = normalize(*system) def __repr__(self): """Return representation of the system's transfer function""" return '{0}(\n{1},\n{2},\ndt: {3}\n)'.format( self.__class__.__name__, repr(self.num), repr(self.den), repr(self.dt), ) @property def num(self): """Numerator of the `TransferFunction` system.""" return self._num @num.setter def num(self, num): self._num = atleast_1d(num) # Update dimensions if len(self.num.shape) > 1: self.outputs, self.inputs = self.num.shape else: self.outputs = 1 self.inputs = 1 @property def den(self): """Denominator of the `TransferFunction` system.""" return self._den @den.setter def den(self, den): self._den = atleast_1d(den) def _copy(self, system): """ Copy the parameters of another `TransferFunction` object Parameters ---------- system : `TransferFunction` The `StateSpace` system that is to be copied """ self.num = system.num self.den = system.den def to_tf(self): """ Return a copy of the current `TransferFunction` system. Returns ------- sys : instance of `TransferFunction` The current system (copy) """ return copy.deepcopy(self) def to_zpk(self): """ Convert system representation to `ZerosPolesGain`. Returns ------- sys : instance of `ZerosPolesGain` Zeros, poles, gain representation of the current system """ return ZerosPolesGain(*tf2zpk(self.num, self.den), **self._dt_dict) def to_ss(self): """ Convert system representation to `StateSpace`. Returns ------- sys : instance of `StateSpace` State space model of the current system """ return StateSpace(*tf2ss(self.num, self.den), **self._dt_dict) @staticmethod def _z_to_zinv(num, den): """Change a transfer function from the variable `z` to `z**-1`. Parameters ---------- num, den: 1d array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree of 'z'. That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``. Returns ------- num, den: 1d array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of ascending degree of 'z**-1'. That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``. """ diff = len(num) - len(den) if diff > 0: den = np.hstack((np.zeros(diff), den)) elif diff < 0: num = np.hstack((np.zeros(-diff), num)) return num, den @staticmethod def _zinv_to_z(num, den): """Change a transfer function from the variable `z` to `z**-1`. Parameters ---------- num, den: 1d array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of ascending degree of 'z**-1'. That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``. Returns ------- num, den: 1d array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree of 'z'. That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``. """ diff = len(num) - len(den) if diff > 0: den = np.hstack((den, np.zeros(diff))) elif diff < 0: num = np.hstack((num, np.zeros(-diff))) return num, den class TransferFunctionContinuous(TransferFunction, lti): r""" Continuous-time Linear Time Invariant system in transfer function form. Represents the system as the transfer function :math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j`, where :math:`b` are elements of the numerator `num`, :math:`a` are elements of the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``. Continuous-time `TransferFunction` systems inherit additional functionality from the `lti` class. Parameters ---------- *system: arguments The `TransferFunction` class can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 2: array_like: (numerator, denominator) See Also -------- ZerosPolesGain, StateSpace, lti tf2ss, tf2zpk, tf2sos Notes ----- Changing the value of properties that are not part of the `TransferFunction` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_ss()`` before accessing/changing the A, B, C, D system matrices. If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``) Examples -------- Construct the transfer function: .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1} >>> from scipy import signal >>> num = [1, 3, 3] >>> den = [1, 2, 1] >>> signal.TransferFunction(num, den) TransferFunctionContinuous( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: None ) """ def to_discrete(self, dt, method='zoh', alpha=None): """ Returns the discretized `TransferFunction` system. Parameters: See `cont2discrete` for details. Returns ------- sys: instance of `dlti` and `StateSpace` """ return TransferFunction(*cont2discrete((self.num, self.den), dt, method=method, alpha=alpha)[:-1], dt=dt) class TransferFunctionDiscrete(TransferFunction, dlti): r""" Discrete-time Linear Time Invariant system in transfer function form. Represents the system as the transfer function :math:`H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where :math:`b` are elements of the numerator `num`, :math:`a` are elements of the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``. Discrete-time `TransferFunction` systems inherit additional functionality from the `dlti` class. Parameters ---------- *system: arguments The `TransferFunction` class can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation: * 1: `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 2: array_like: (numerator, denominator) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `True` (unspecified sampling time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- ZerosPolesGain, StateSpace, dlti tf2ss, tf2zpk, tf2sos Notes ----- Changing the value of properties that are not part of the `TransferFunction` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``). Examples -------- Construct the transfer function with a sampling time of 0.5 seconds: .. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1} >>> from scipy import signal >>> num = [1, 3, 3] >>> den = [1, 2, 1] >>> signal.TransferFunction(num, den, 0.5) TransferFunctionDiscrete( array([ 1., 3., 3.]), array([ 1., 2., 1.]), dt: 0.5 ) """ pass class ZerosPolesGain(LinearTimeInvariant): r""" Linear Time Invariant system class in zeros, poles, gain form. Represents the system as the continuous- or discrete-time transfer function :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`. `ZerosPolesGain` systems inherit additional functionality from the `lti`, respectively the `dlti` classes, depending on which system representation is used. Parameters ---------- *system : arguments The `ZerosPolesGain` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 3: array_like: (zeros, poles, gain) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `None` (continuous-time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- TransferFunction, StateSpace, lti, dlti zpk2ss, zpk2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_ss()`` before accessing/changing the A, B, C, D system matrices. Examples -------- >>> from scipy import signal Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4) >>> signal.ZerosPolesGain([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None ) Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4) >>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 ) """ def __new__(cls, *system, **kwargs): """Handle object conversion if input is an instance of `lti`""" if len(system) == 1 and isinstance(system[0], LinearTimeInvariant): return system[0].to_zpk() # Choose whether to inherit from `lti` or from `dlti` if cls is ZerosPolesGain: if kwargs.get('dt') is None: return ZerosPolesGainContinuous.__new__( ZerosPolesGainContinuous, *system, **kwargs) else: return ZerosPolesGainDiscrete.__new__( ZerosPolesGainDiscrete, *system, **kwargs ) # No special conversion needed return super(ZerosPolesGain, cls).__new__(cls) def __init__(self, *system, **kwargs): """Initialize the zeros, poles, gain system.""" # Conversion of lti instances is handled in __new__ if isinstance(system[0], LinearTimeInvariant): return super(ZerosPolesGain, self).__init__(**kwargs) self._zeros = None self._poles = None self._gain = None self.zeros, self.poles, self.gain = system def __repr__(self): """Return representation of the `ZerosPolesGain` system.""" return '{0}(\n{1},\n{2},\n{3},\ndt: {4}\n)'.format( self.__class__.__name__, repr(self.zeros), repr(self.poles), repr(self.gain), repr(self.dt), ) @property def zeros(self): """Zeros of the `ZerosPolesGain` system.""" return self._zeros @zeros.setter def zeros(self, zeros): self._zeros = atleast_1d(zeros) # Update dimensions if len(self.zeros.shape) > 1: self.outputs, self.inputs = self.zeros.shape else: self.outputs = 1 self.inputs = 1 @property def poles(self): """Poles of the `ZerosPolesGain` system.""" return self._poles @poles.setter def poles(self, poles): self._poles = atleast_1d(poles) @property def gain(self): """Gain of the `ZerosPolesGain` system.""" return self._gain @gain.setter def gain(self, gain): self._gain = gain def _copy(self, system): """ Copy the parameters of another `ZerosPolesGain` system. Parameters ---------- system : instance of `ZerosPolesGain` The zeros, poles gain system that is to be copied """ self.poles = system.poles self.zeros = system.zeros self.gain = system.gain def to_tf(self): """ Convert system representation to `TransferFunction`. Returns ------- sys : instance of `TransferFunction` Transfer function of the current system """ return TransferFunction(*zpk2tf(self.zeros, self.poles, self.gain), **self._dt_dict) def to_zpk(self): """ Return a copy of the current 'ZerosPolesGain' system. Returns ------- sys : instance of `ZerosPolesGain` The current system (copy) """ return copy.deepcopy(self) def to_ss(self): """ Convert system representation to `StateSpace`. Returns ------- sys : instance of `StateSpace` State space model of the current system """ return StateSpace(*zpk2ss(self.zeros, self.poles, self.gain), **self._dt_dict) class ZerosPolesGainContinuous(ZerosPolesGain, lti): r""" Continuous-time Linear Time Invariant system in zeros, poles, gain form. Represents the system as the continuous time transfer function :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`. Continuous-time `ZerosPolesGain` systems inherit additional functionality from the `lti` class. Parameters ---------- *system : arguments The `ZerosPolesGain` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 3: array_like: (zeros, poles, gain) See Also -------- TransferFunction, StateSpace, lti zpk2ss, zpk2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_ss()`` before accessing/changing the A, B, C, D system matrices. Examples -------- >>> from scipy import signal Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4) >>> signal.ZerosPolesGain([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None ) """ def to_discrete(self, dt, method='zoh', alpha=None): """ Returns the discretized `ZerosPolesGain` system. Parameters: See `cont2discrete` for details. Returns ------- sys: instance of `dlti` and `ZerosPolesGain` """ return ZerosPolesGain( *cont2discrete((self.zeros, self.poles, self.gain), dt, method=method, alpha=alpha)[:-1], dt=dt) class ZerosPolesGainDiscrete(ZerosPolesGain, dlti): r""" Discrete-time Linear Time Invariant system in zeros, poles, gain form. Represents the system as the discrete-time transfer function :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`. Discrete-time `ZerosPolesGain` systems inherit additional functionality from the `dlti` class. Parameters ---------- *system : arguments The `ZerosPolesGain` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 3: array_like: (zeros, poles, gain) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `True` (unspecified sampling time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- TransferFunction, StateSpace, dlti zpk2ss, zpk2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D` state-space matrices) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_ss()`` before accessing/changing the A, B, C, D system matrices. Examples -------- >>> from scipy import signal Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4) >>> signal.ZerosPolesGain([1, 2], [3, 4], 5) ZerosPolesGainContinuous( array([1, 2]), array([3, 4]), 5, dt: None ) Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4) >>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1) ZerosPolesGainDiscrete( array([1, 2]), array([3, 4]), 5, dt: 0.1 ) """ pass def _atleast_2d_or_none(arg): if arg is not None: return atleast_2d(arg) class StateSpace(LinearTimeInvariant): r""" Linear Time Invariant system in state-space form. Represents the system as the continuous-time, first order differential equation :math:`\dot{x} = A x + B u` or the discrete-time difference equation :math:`x[k+1] = A x[k] + B u[k]`. `StateSpace` systems inherit additional functionality from the `lti`, respectively the `dlti` classes, depending on which system representation is used. Parameters ---------- *system: arguments The `StateSpace` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 4: array_like: (A, B, C, D) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `None` (continuous-time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- TransferFunction, ZerosPolesGain, lti, dlti ss2zpk, ss2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `StateSpace` system representation (such as `zeros` or `poles`) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain. Examples -------- >>> from scipy import signal >>> a = np.array([[0, 1], [0, 0]]) >>> b = np.array([[0], [1]]) >>> c = np.array([[1, 0]]) >>> d = np.array([[0]]) >>> sys = signal.StateSpace(a, b, c, d) >>> print(sys) StateSpaceContinuous( array([[0, 1], [0, 0]]), array([[0], [1]]), array([[1, 0]]), array([[0]]), dt: None ) >>> sys.to_discrete(0.1) StateSpaceDiscrete( array([[ 1. , 0.1], [ 0. , 1. ]]), array([[ 0.005], [ 0.1 ]]), array([[1, 0]]), array([[0]]), dt: 0.1 ) >>> a = np.array([[1, 0.1], [0, 1]]) >>> b = np.array([[0.005], [0.1]]) >>> signal.StateSpace(a, b, c, d, dt=0.1) StateSpaceDiscrete( array([[ 1. , 0.1], [ 0. , 1. ]]), array([[ 0.005], [ 0.1 ]]), array([[1, 0]]), array([[0]]), dt: 0.1 ) """ def __new__(cls, *system, **kwargs): """Create new StateSpace object and settle inheritance.""" # Handle object conversion if input is an instance of `lti` if len(system) == 1 and isinstance(system[0], LinearTimeInvariant): return system[0].to_ss() # Choose whether to inherit from `lti` or from `dlti` if cls is StateSpace: if kwargs.get('dt') is None: return StateSpaceContinuous.__new__(StateSpaceContinuous, *system, **kwargs) else: return StateSpaceDiscrete.__new__(StateSpaceDiscrete, *system, **kwargs) # No special conversion needed return super(StateSpace, cls).__new__(cls) def __init__(self, *system, **kwargs): """Initialize the state space lti/dlti system.""" # Conversion of lti instances is handled in __new__ if isinstance(system[0], LinearTimeInvariant): return # Remove system arguments, not needed by parents anymore super(StateSpace, self).__init__(**kwargs) self._A = None self._B = None self._C = None self._D = None self.A, self.B, self.C, self.D = abcd_normalize(*system) def __repr__(self): """Return representation of the `StateSpace` system.""" return '{0}(\n{1},\n{2},\n{3},\n{4},\ndt: {5}\n)'.format( self.__class__.__name__, repr(self.A), repr(self.B), repr(self.C), repr(self.D), repr(self.dt), ) @property def A(self): """State matrix of the `StateSpace` system.""" return self._A @A.setter def A(self, A): self._A = _atleast_2d_or_none(A) @property def B(self): """Input matrix of the `StateSpace` system.""" return self._B @B.setter def B(self, B): self._B = _atleast_2d_or_none(B) self.inputs = self.B.shape[-1] @property def C(self): """Output matrix of the `StateSpace` system.""" return self._C @C.setter def C(self, C): self._C = _atleast_2d_or_none(C) self.outputs = self.C.shape[0] @property def D(self): """Feedthrough matrix of the `StateSpace` system.""" return self._D @D.setter def D(self, D): self._D = _atleast_2d_or_none(D) def _copy(self, system): """ Copy the parameters of another `StateSpace` system. Parameters ---------- system : instance of `StateSpace` The state-space system that is to be copied """ self.A = system.A self.B = system.B self.C = system.C self.D = system.D def to_tf(self, **kwargs): """ Convert system representation to `TransferFunction`. Parameters ---------- kwargs : dict, optional Additional keywords passed to `ss2zpk` Returns ------- sys : instance of `TransferFunction` Transfer function of the current system """ return TransferFunction(*ss2tf(self._A, self._B, self._C, self._D, **kwargs), **self._dt_dict) def to_zpk(self, **kwargs): """ Convert system representation to `ZerosPolesGain`. Parameters ---------- kwargs : dict, optional Additional keywords passed to `ss2zpk` Returns ------- sys : instance of `ZerosPolesGain` Zeros, poles, gain representation of the current system """ return ZerosPolesGain(*ss2zpk(self._A, self._B, self._C, self._D, **kwargs), **self._dt_dict) def to_ss(self): """ Return a copy of the current `StateSpace` system. Returns ------- sys : instance of `StateSpace` The current system (copy) """ return copy.deepcopy(self) class StateSpaceContinuous(StateSpace, lti): r""" Continuous-time Linear Time Invariant system in state-space form. Represents the system as the continuous-time, first order differential equation :math:`\dot{x} = A x + B u`. Continuous-time `StateSpace` systems inherit additional functionality from the `lti` class. Parameters ---------- *system: arguments The `StateSpace` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `lti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 4: array_like: (A, B, C, D) See Also -------- TransferFunction, ZerosPolesGain, lti ss2zpk, ss2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `StateSpace` system representation (such as `zeros` or `poles`) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain. Examples -------- >>> from scipy import signal >>> a = np.array([[0, 1], [0, 0]]) >>> b = np.array([[0], [1]]) >>> c = np.array([[1, 0]]) >>> d = np.array([[0]]) >>> sys = signal.StateSpace(a, b, c, d) >>> print(sys) StateSpaceContinuous( array([[0, 1], [0, 0]]), array([[0], [1]]), array([[1, 0]]), array([[0]]), dt: None ) """ def to_discrete(self, dt, method='zoh', alpha=None): """ Returns the discretized `StateSpace` system. Parameters: See `cont2discrete` for details. Returns ------- sys: instance of `dlti` and `StateSpace` """ return StateSpace(*cont2discrete((self.A, self.B, self.C, self.D), dt, method=method, alpha=alpha)[:-1], dt=dt) class StateSpaceDiscrete(StateSpace, dlti): r""" Discrete-time Linear Time Invariant system in state-space form. Represents the system as the discrete-time difference equation :math:`x[k+1] = A x[k] + B u[k]`. `StateSpace` systems inherit additional functionality from the `dlti` class. Parameters ---------- *system: arguments The `StateSpace` class can be instantiated with 1 or 3 arguments. The following gives the number of input arguments and their interpretation: * 1: `dlti` system: (`StateSpace`, `TransferFunction` or `ZerosPolesGain`) * 4: array_like: (A, B, C, D) dt: float, optional Sampling time [s] of the discrete-time systems. Defaults to `True` (unspecified sampling time). Must be specified as a keyword argument, for example, ``dt=0.1``. See Also -------- TransferFunction, ZerosPolesGain, dlti ss2zpk, ss2tf, zpk2sos Notes ----- Changing the value of properties that are not part of the `StateSpace` system representation (such as `zeros` or `poles`) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain. Examples -------- >>> from scipy import signal >>> a = np.array([[1, 0.1], [0, 1]]) >>> b = np.array([[0.005], [0.1]]) >>> c = np.array([[1, 0]]) >>> d = np.array([[0]]) >>> signal.StateSpace(a, b, c, d, dt=0.1) StateSpaceDiscrete( array([[ 1. , 0.1], [ 0. , 1. ]]), array([[ 0.005], [ 0.1 ]]), array([[1, 0]]), array([[0]]), dt: 0.1 ) """ pass def lsim2(system, U=None, T=None, X0=None, **kwargs): """ Simulate output of a continuous-time linear system, by using the ODE solver `scipy.integrate.odeint`. Parameters ---------- system : an instance of the `lti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like (1D or 2D), optional An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero. T : array_like (1D or 2D), optional The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval [0,10.0]. X0 : array_like (1D), optional The initial condition of the state vector. If `X0` is not given, the initial conditions are assumed to be 0. kwargs : dict Additional keyword arguments are passed on to the function `odeint`. See the notes below for more details. Returns ------- T : 1D ndarray The time values for the output. yout : ndarray The response of the system. xout : ndarray The time-evolution of the state-vector. Notes ----- This function uses `scipy.integrate.odeint` to solve the system's differential equations. Additional keyword arguments given to `lsim2` are passed on to `odeint`. See the documentation for `scipy.integrate.odeint` for the full list of arguments. If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('lsim2 can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() if X0 is None: X0 = zeros(sys.B.shape[0], sys.A.dtype) if T is None: # XXX T should really be a required argument, but U was # changed from a required positional argument to a keyword, # and T is after U in the argument list. So we either: change # the API and move T in front of U; check here for T being # None and raise an exception; or assign a default value to T # here. This code implements the latter. T = linspace(0, 10.0, 101) T = atleast_1d(T) if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") if U is not None: U = atleast_1d(U) if len(U.shape) == 1: U = U.reshape(-1, 1) sU = U.shape if sU[0] != len(T): raise ValueError("U must have the same number of rows " "as elements in T.") if sU[1] != sys.inputs: raise ValueError("The number of inputs in U (%d) is not " "compatible with the number of system " "inputs (%d)" % (sU[1], sys.inputs)) # Create a callable that uses linear interpolation to # calculate the input at any time. ufunc = interpolate.interp1d(T, U, kind='linear', axis=0, bounds_error=False) def fprime(x, t, sys, ufunc): """The vector field of the linear system.""" return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t])))) xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs) yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U)) else: def fprime(x, t, sys): """The vector field of the linear system.""" return dot(sys.A, x) xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs) yout = dot(sys.C, transpose(xout)) return T, squeeze(transpose(yout)), xout def _cast_to_array_dtype(in1, in2): """Cast array to dtype of other array, while avoiding ComplexWarning. Those can be raised when casting complex to real. """ if numpy.issubdtype(in2.dtype, numpy.float): # dtype to cast to is not complex, so use .real in1 = in1.real.astype(in2.dtype) else: in1 = in1.astype(in2.dtype) return in1 def lsim(system, U, T, X0=None, interp=True): """ Simulate output of a continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D) U : array_like An input array describing the input at each time `T` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. If U = 0 or None, a zero input is used. T : array_like The time steps at which the input is defined and at which the output is desired. Must be nonnegative, increasing, and equally spaced. X0 : array_like, optional The initial conditions on the state vector (zero by default). interp : bool, optional Whether to use linear (True, the default) or zero-order-hold (False) interpolation for the input array. Returns ------- T : 1D ndarray Time values for the output. yout : 1D ndarray System response. xout : ndarray Time evolution of the state vector. Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). Examples -------- Simulate a double integrator y'' = u, with a constant input u = 1 >>> from scipy import signal >>> system = signal.lti([[0., 1.], [0., 0.]], [[0.], [1.]], [[1., 0.]], 0.) >>> t = np.linspace(0, 5) >>> u = np.ones_like(t) >>> tout, y, x = signal.lsim(system, u, t) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y) """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('lsim can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() T = atleast_1d(T) if len(T.shape) != 1: raise ValueError("T must be a rank-1 array.") A, B, C, D = map(np.asarray, (sys.A, sys.B, sys.C, sys.D)) n_states = A.shape[0] n_inputs = B.shape[1] n_steps = T.size if X0 is None: X0 = zeros(n_states, sys.A.dtype) xout = zeros((n_steps, n_states), sys.A.dtype) if T[0] == 0: xout[0] = X0 elif T[0] > 0: # step forward to initial time, with zero input xout[0] = dot(X0, linalg.expm(transpose(A) * T[0])) else: raise ValueError("Initial time must be nonnegative") no_input = (U is None or (isinstance(U, (int, float)) and U == 0.) or not np.any(U)) if n_steps == 1: yout = squeeze(dot(xout, transpose(C))) if not no_input: yout += squeeze(dot(U, transpose(D))) return T, squeeze(yout), squeeze(xout) dt = T[1] - T[0] if not np.allclose((T[1:] - T[:-1]) / dt, 1.0): warnings.warn("Non-uniform timesteps are deprecated. Results may be " "slow and/or inaccurate.", DeprecationWarning) return lsim2(system, U, T, X0) if no_input: # Zero input: just use matrix exponential # take transpose because state is a row vector expAT_dt = linalg.expm(transpose(A) * dt) for i in xrange(1, n_steps): xout[i] = dot(xout[i-1], expAT_dt) yout = squeeze(dot(xout, transpose(C))) return T, squeeze(yout), squeeze(xout) # Nonzero input U = atleast_1d(U) if U.ndim == 1: U = U[:, np.newaxis] if U.shape[0] != n_steps: raise ValueError("U must have the same number of rows " "as elements in T.") if U.shape[1] != n_inputs: raise ValueError("System does not define that many inputs.") if not interp: # Zero-order hold # Algorithm: to integrate from time 0 to time dt, we solve # xdot = A x + B u, x(0) = x0 # udot = 0, u(0) = u0. # # Solution is # [ x(dt) ] [ A*dt B*dt ] [ x0 ] # [ u(dt) ] = exp [ 0 0 ] [ u0 ] M = np.vstack([np.hstack([A * dt, B * dt]), np.zeros((n_inputs, n_states + n_inputs))]) # transpose everything because the state and input are row vectors expMT = linalg.expm(transpose(M)) Ad = expMT[:n_states, :n_states] Bd = expMT[n_states:, :n_states] for i in xrange(1, n_steps): xout[i] = dot(xout[i-1], Ad) + dot(U[i-1], Bd) else: # Linear interpolation between steps # Algorithm: to integrate from time 0 to time dt, with linear # interpolation between inputs u(0) = u0 and u(dt) = u1, we solve # xdot = A x + B u, x(0) = x0 # udot = (u1 - u0) / dt, u(0) = u0. # # Solution is # [ x(dt) ] [ A*dt B*dt 0 ] [ x0 ] # [ u(dt) ] = exp [ 0 0 I ] [ u0 ] # [u1 - u0] [ 0 0 0 ] [u1 - u0] M = np.vstack([np.hstack([A * dt, B * dt, np.zeros((n_states, n_inputs))]), np.hstack([np.zeros((n_inputs, n_states + n_inputs)), np.identity(n_inputs)]), np.zeros((n_inputs, n_states + 2 * n_inputs))]) expMT = linalg.expm(transpose(M)) Ad = expMT[:n_states, :n_states] Bd1 = expMT[n_states+n_inputs:, :n_states] Bd0 = expMT[n_states:n_states + n_inputs, :n_states] - Bd1 for i in xrange(1, n_steps): xout[i] = (dot(xout[i-1], Ad) + dot(U[i-1], Bd0) + dot(U[i], Bd1)) yout = (squeeze(dot(xout, transpose(C))) + squeeze(dot(U, transpose(D)))) return T, squeeze(yout), squeeze(xout) def _default_response_times(A, n): """Compute a reasonable set of time samples for the response time. This function is used by `impulse`, `impulse2`, `step` and `step2` to compute the response time when the `T` argument to the function is None. Parameters ---------- A : array_like The system matrix, which is square. n : int The number of time samples to generate. Returns ------- t : ndarray The 1-D array of length `n` of time samples at which the response is to be computed. """ # Create a reasonable time interval. # TODO: This could use some more work. # For example, what is expected when the system is unstable? vals = linalg.eigvals(A) r = min(abs(real(vals))) if r == 0.0: r = 1.0 tc = 1.0 / r t = linspace(0.0, 7 * tc, n) return t def impulse(system, X0=None, T=None, N=None): """Impulse response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector. Defaults to zero. T : array_like, optional Time points. Computed if not given. N : int, optional The number of time points to compute (if `T` is not given). Returns ------- T : ndarray A 1-D array of time points. yout : ndarray A 1-D array containing the impulse response of the system (except for singularities at zero). Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('impulse can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() if X0 is None: X = squeeze(sys.B) else: X = squeeze(sys.B + X0) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) _, h, _ = lsim(sys, 0., T, X, interp=False) return T, h def impulse2(system, X0=None, T=None, N=None, **kwargs): """ Impulse response of a single-input, continuous-time linear system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : 1-D array_like, optional The initial condition of the state vector. Default: 0 (the zero vector). T : 1-D array_like, optional The time steps at which the input is defined and at which the output is desired. If `T` is not given, the function will generate a set of time samples automatically. N : int, optional Number of time points to compute. Default: 100. kwargs : various types Additional keyword arguments are passed on to the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`; see the latter's documentation for information about these arguments. Returns ------- T : ndarray The time values for the output. yout : ndarray The output response of the system. See Also -------- impulse, lsim2, integrate.odeint Notes ----- The solution is generated by calling `scipy.signal.lsim2`, which uses the differential equation solver `scipy.integrate.odeint`. If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.8.0 Examples -------- Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t) >>> from scipy import signal >>> system = ([1.0], [1.0, 2.0, 1.0]) >>> t, y = signal.impulse2(system) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y) """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('impulse2 can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() B = sys.B if B.shape[-1] != 1: raise ValueError("impulse2() requires a single-input system.") B = B.squeeze() if X0 is None: X0 = zeros_like(B) if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) # Move the impulse in the input to the initial conditions, and then # solve using lsim2(). ic = B + X0 Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs) return Tr, Yr def step(system, X0=None, T=None, N=None): """Step response of continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int, optional Number of time points to compute if `T` is not given. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step2 Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('step can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim(sys, U, T, X0=X0, interp=False) return vals[0], vals[1] def step2(system, X0=None, T=None, N=None, **kwargs): """Step response of continuous-time system. This function is functionally the same as `scipy.signal.step`, but it uses the function `scipy.signal.lsim2` to compute the step response. Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int, optional Number of time points to compute if `T` is not given. kwargs : various types Additional keyword arguments are passed on the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`. See the documentation for `scipy.integrate.odeint` for information about these arguments. Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system. See also -------- scipy.signal.step Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.8.0 """ if isinstance(system, lti): sys = system._as_ss() elif isinstance(system, dlti): raise AttributeError('step2 can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_ss() if N is None: N = 100 if T is None: T = _default_response_times(sys.A, N) else: T = asarray(T) U = ones(T.shape, sys.A.dtype) vals = lsim2(sys, U, T, X0=X0, **kwargs) return vals[0], vals[1] def bode(system, w=None, n=100): """ Calculate Bode magnitude and phase data of a continuous-time system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] mag : 1D ndarray Magnitude array [dB] phase : 1D ndarray Phase array [deg] Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.11.0 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> sys = signal.TransferFunction([1], [1, 1]) >>> w, mag, phase = signal.bode(sys) >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ w, y = freqresp(system, w=w, n=n) mag = 20.0 * numpy.log10(abs(y)) phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi return w, mag, phase def freqresp(system, w=None, n=10000): """Calculate the frequency response of a continuous-time system. Parameters ---------- system : an instance of the `lti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D) w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given, a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/s] H : 1D ndarray Array of complex magnitude values Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``). Examples -------- Generating the Nyquist plot of a transfer function >>> from scipy import signal >>> import matplotlib.pyplot as plt Transfer function: H(s) = 5 / (s-1)^3 >>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5]) >>> w, H = signal.freqresp(s1) >>> plt.figure() >>> plt.plot(H.real, H.imag, "b") >>> plt.plot(H.real, -H.imag, "r") >>> plt.show() """ if isinstance(system, lti): if isinstance(system, (TransferFunction, ZerosPolesGain)): sys = system else: sys = system._as_zpk() elif isinstance(system, dlti): raise AttributeError('freqresp can only be used with continuous-time ' 'systems.') else: sys = lti(*system)._as_zpk() if sys.inputs != 1 or sys.outputs != 1: raise ValueError("freqresp() requires a SISO (single input, single " "output) system.") if w is not None: worN = w else: worN = n if isinstance(sys, TransferFunction): # In the call to freqs(), sys.num.ravel() is used because there are # cases where sys.num is a 2-D array with a single row. w, h = freqs(sys.num.ravel(), sys.den, worN=worN) elif isinstance(sys, ZerosPolesGain): w, h = freqs_zpk(sys.zeros, sys.poles, sys.gain, worN=worN) return w, h # This class will be used by place_poles to return its results # see http://code.activestate.com/recipes/52308/ class Bunch: def __init__(self, **kwds): self.__dict__.update(kwds) def _valid_inputs(A, B, poles, method, rtol, maxiter): """ Check the poles come in complex conjugage pairs Check shapes of A, B and poles are compatible. Check the method chosen is compatible with provided poles Return update method to use and ordered poles """ poles = np.asarray(poles) if poles.ndim > 1: raise ValueError("Poles must be a 1D array like.") # Will raise ValueError if poles do not come in complex conjugates pairs poles = _order_complex_poles(poles) if A.ndim > 2: raise ValueError("A must be a 2D array/matrix.") if B.ndim > 2: raise ValueError("B must be a 2D array/matrix") if A.shape[0] != A.shape[1]: raise ValueError("A must be square") if len(poles) > A.shape[0]: raise ValueError("maximum number of poles is %d but you asked for %d" % (A.shape[0], len(poles))) if len(poles) < A.shape[0]: raise ValueError("number of poles is %d but you should provide %d" % (len(poles), A.shape[0])) r = np.linalg.matrix_rank(B) for p in poles: if sum(p == poles) > r: raise ValueError("at least one of the requested pole is repeated " "more than rank(B) times") # Choose update method update_loop = _YT_loop if method not in ('KNV0','YT'): raise ValueError("The method keyword must be one of 'YT' or 'KNV0'") if method == "KNV0": update_loop = _KNV0_loop if not all(np.isreal(poles)): raise ValueError("Complex poles are not supported by KNV0") if maxiter < 1: raise ValueError("maxiter must be at least equal to 1") # We do not check rtol <= 0 as the user can use a negative rtol to # force maxiter iterations if rtol > 1: raise ValueError("rtol can not be greater than 1") return update_loop, poles def _order_complex_poles(poles): """ Check we have complex conjugates pairs and reorder P according to YT, ie real_poles, complex_i, conjugate complex_i, .... The lexicographic sort on the complex poles is added to help the user to compare sets of poles. """ ordered_poles = np.sort(poles[np.isreal(poles)]) im_poles = [] for p in np.sort(poles[np.imag(poles) < 0]): if np.conj(p) in poles: im_poles.extend((p, np.conj(p))) ordered_poles = np.hstack((ordered_poles, im_poles)) if poles.shape[0] != len(ordered_poles): raise ValueError("Complex poles must come with their conjugates") return ordered_poles def _KNV0(B, ker_pole, transfer_matrix, j, poles): """ Algorithm "KNV0" Kautsky et Al. Robust pole assignment in linear state feedback, Int journal of Control 1985, vol 41 p 1129->1155 http://la.epfl.ch/files/content/sites/la/files/ users/105941/public/KautskyNicholsDooren """ # Remove xj form the base transfer_matrix_not_j = np.delete(transfer_matrix, j, axis=1) # If we QR this matrix in full mode Q=Q0|Q1 # then Q1 will be a single column orthogonnal to # Q0, that's what we are looking for ! # After merge of gh-4249 great speed improvements could be achieved # using QR updates instead of full QR in the line below # To debug with numpy qr uncomment the line below # Q, R = np.linalg.qr(transfer_matrix_not_j, mode="complete") Q, R = s_qr(transfer_matrix_not_j, mode="full") mat_ker_pj = np.dot(ker_pole[j], ker_pole[j].T) yj = np.dot(mat_ker_pj, Q[:, -1]) # If Q[:, -1] is "almost" orthogonal to ker_pole[j] its # projection into ker_pole[j] will yield a vector # close to 0. As we are looking for a vector in ker_pole[j] # simply stick with transfer_matrix[:, j] (unless someone provides me with # a better choice ?) if not np.allclose(yj, 0): xj = yj/np.linalg.norm(yj) transfer_matrix[:, j] = xj # KNV does not support complex poles, using YT technique the two lines # below seem to work 9 out of 10 times but it is not reliable enough: # transfer_matrix[:, j]=real(xj) # transfer_matrix[:, j+1]=imag(xj) # Add this at the beginning of this function if you wish to test # complex support: # if ~np.isreal(P[j]) and (j>=B.shape[0]-1 or P[j]!=np.conj(P[j+1])): # return # Problems arise when imag(xj)=>0 I have no idea on how to fix this def _YT_real(ker_pole, Q, transfer_matrix, i, j): """ Applies algorithm from YT section 6.1 page 19 related to real pairs """ # step 1 page 19 u = Q[:, -2, np.newaxis] v = Q[:, -1, np.newaxis] # step 2 page 19 m = np.dot(np.dot(ker_pole[i].T, np.dot(u, v.T) - np.dot(v, u.T)), ker_pole[j]) # step 3 page 19 um, sm, vm = np.linalg.svd(m) # mu1, mu2 two first columns of U => 2 first lines of U.T mu1, mu2 = um.T[:2, :, np.newaxis] # VM is V.T with numpy we want the first two lines of V.T nu1, nu2 = vm[:2, :, np.newaxis] # what follows is a rough python translation of the formulas # in section 6.2 page 20 (step 4) transfer_matrix_j_mo_transfer_matrix_j = np.vstack(( transfer_matrix[:, i, np.newaxis], transfer_matrix[:, j, np.newaxis])) if not np.allclose(sm[0], sm[1]): ker_pole_imo_mu1 = np.dot(ker_pole[i], mu1) ker_pole_i_nu1 = np.dot(ker_pole[j], nu1) ker_pole_mu_nu = np.vstack((ker_pole_imo_mu1, ker_pole_i_nu1)) else: ker_pole_ij = np.vstack(( np.hstack((ker_pole[i], np.zeros(ker_pole[i].shape))), np.hstack((np.zeros(ker_pole[j].shape), ker_pole[j])) )) mu_nu_matrix = np.vstack( (np.hstack((mu1, mu2)), np.hstack((nu1, nu2))) ) ker_pole_mu_nu = np.dot(ker_pole_ij, mu_nu_matrix) transfer_matrix_ij = np.dot(np.dot(ker_pole_mu_nu, ker_pole_mu_nu.T), transfer_matrix_j_mo_transfer_matrix_j) if not np.allclose(transfer_matrix_ij, 0): transfer_matrix_ij = (np.sqrt(2)*transfer_matrix_ij / np.linalg.norm(transfer_matrix_ij)) transfer_matrix[:, i] = transfer_matrix_ij[ :transfer_matrix[:, i].shape[0], 0 ] transfer_matrix[:, j] = transfer_matrix_ij[ transfer_matrix[:, i].shape[0]:, 0 ] else: # As in knv0 if transfer_matrix_j_mo_transfer_matrix_j is orthogonal to # Vect{ker_pole_mu_nu} assign transfer_matrixi/transfer_matrix_j to # ker_pole_mu_nu and iterate. As we are looking for a vector in # Vect{Matker_pole_MU_NU} (see section 6.1 page 19) this might help # (that's a guess, not a claim !) transfer_matrix[:, i] = ker_pole_mu_nu[ :transfer_matrix[:, i].shape[0], 0 ] transfer_matrix[:, j] = ker_pole_mu_nu[ transfer_matrix[:, i].shape[0]:, 0 ] def _YT_complex(ker_pole, Q, transfer_matrix, i, j): """ Applies algorithm from YT section 6.2 page 20 related to complex pairs """ # step 1 page 20 ur = np.sqrt(2)*Q[:, -2, np.newaxis] ui = np.sqrt(2)*Q[:, -1, np.newaxis] u = ur + 1j*ui # step 2 page 20 ker_pole_ij = ker_pole[i] m = np.dot(np.dot(np.conj(ker_pole_ij.T), np.dot(u, np.conj(u).T) - np.dot(np.conj(u), u.T)), ker_pole_ij) # step 3 page 20 e_val, e_vec = np.linalg.eig(m) # sort eigenvalues according to their module e_val_idx = np.argsort(np.abs(e_val)) mu1 = e_vec[:, e_val_idx[-1], np.newaxis] mu2 = e_vec[:, e_val_idx[-2], np.newaxis] # what follows is a rough python translation of the formulas # in section 6.2 page 20 (step 4) # remember transfer_matrix_i has been split as # transfer_matrix[i]=real(transfer_matrix_i) and # transfer_matrix[j]=imag(transfer_matrix_i) transfer_matrix_j_mo_transfer_matrix_j = ( transfer_matrix[:, i, np.newaxis] + 1j*transfer_matrix[:, j, np.newaxis] ) if not np.allclose(np.abs(e_val[e_val_idx[-1]]), np.abs(e_val[e_val_idx[-2]])): ker_pole_mu = np.dot(ker_pole_ij, mu1) else: mu1_mu2_matrix = np.hstack((mu1, mu2)) ker_pole_mu = np.dot(ker_pole_ij, mu1_mu2_matrix) transfer_matrix_i_j = np.dot(np.dot(ker_pole_mu, np.conj(ker_pole_mu.T)), transfer_matrix_j_mo_transfer_matrix_j) if not np.allclose(transfer_matrix_i_j, 0): transfer_matrix_i_j = (transfer_matrix_i_j / np.linalg.norm(transfer_matrix_i_j)) transfer_matrix[:, i] = np.real(transfer_matrix_i_j[:, 0]) transfer_matrix[:, j] = np.imag(transfer_matrix_i_j[:, 0]) else: # same idea as in YT_real transfer_matrix[:, i] = np.real(ker_pole_mu[:, 0]) transfer_matrix[:, j] = np.imag(ker_pole_mu[:, 0]) def _YT_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol): """ Algorithm "YT" Tits, Yang. Globally Convergent Algorithms for Robust Pole Assignment by State Feedback http://drum.lib.umd.edu/handle/1903/5598 The poles P have to be sorted accordingly to section 6.2 page 20 """ # The IEEE edition of the YT paper gives useful information on the # optimal update order for the real poles in order to minimize the number # of times we have to loop over all poles, see page 1442 nb_real = poles[np.isreal(poles)].shape[0] # hnb => Half Nb Real hnb = nb_real // 2 # Stick to the indices in the paper and then remove one to get numpy array # index it is a bit easier to link the code to the paper this way even if it # is not very clean. The paper is unclear about what should be done when # there is only one real pole => use KNV0 on this real pole seem to work if nb_real > 0: #update the biggest real pole with the smallest one update_order = [[nb_real], [1]] else: update_order = [[],[]] r_comp = np.arange(nb_real+1, len(poles)+1, 2) # step 1.a r_p = np.arange(1, hnb+nb_real % 2) update_order[0].extend(2*r_p) update_order[1].extend(2*r_p+1) # step 1.b update_order[0].extend(r_comp) update_order[1].extend(r_comp+1) # step 1.c r_p = np.arange(1, hnb+1) update_order[0].extend(2*r_p-1) update_order[1].extend(2*r_p) # step 1.d if hnb == 0 and np.isreal(poles[0]): update_order[0].append(1) update_order[1].append(1) update_order[0].extend(r_comp) update_order[1].extend(r_comp+1) # step 2.a r_j = np.arange(2, hnb+nb_real % 2) for j in r_j: for i in range(1, hnb+1): update_order[0].append(i) update_order[1].append(i+j) # step 2.b if hnb == 0 and np.isreal(poles[0]): update_order[0].append(1) update_order[1].append(1) update_order[0].extend(r_comp) update_order[1].extend(r_comp+1) # step 2.c r_j = np.arange(2, hnb+nb_real % 2) for j in r_j: for i in range(hnb+1, nb_real+1): idx_1 = i+j if idx_1 > nb_real: idx_1 = i+j-nb_real update_order[0].append(i) update_order[1].append(idx_1) # step 2.d if hnb == 0 and np.isreal(poles[0]): update_order[0].append(1) update_order[1].append(1) update_order[0].extend(r_comp) update_order[1].extend(r_comp+1) # step 3.a for i in range(1, hnb+1): update_order[0].append(i) update_order[1].append(i+hnb) # step 3.b if hnb == 0 and np.isreal(poles[0]): update_order[0].append(1) update_order[1].append(1) update_order[0].extend(r_comp) update_order[1].extend(r_comp+1) update_order = np.array(update_order).T-1 stop = False nb_try = 0 while nb_try < maxiter and not stop: det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix)) for i, j in update_order: if i == j: assert i == 0, "i!=0 for KNV call in YT" assert np.isreal(poles[i]), "calling KNV on a complex pole" _KNV0(B, ker_pole, transfer_matrix, i, poles) else: transfer_matrix_not_i_j = np.delete(transfer_matrix, (i, j), axis=1) # after merge of gh-4249 great speed improvements could be # achieved using QR updates instead of full QR in the line below #to debug with numpy qr uncomment the line below #Q, _ = np.linalg.qr(transfer_matrix_not_i_j, mode="complete") Q, _ = s_qr(transfer_matrix_not_i_j, mode="full") if np.isreal(poles[i]): assert np.isreal(poles[j]), "mixing real and complex " + \ "in YT_real" + str(poles) _YT_real(ker_pole, Q, transfer_matrix, i, j) else: assert ~np.isreal(poles[i]), "mixing real and complex " + \ "in YT_real" + str(poles) _YT_complex(ker_pole, Q, transfer_matrix, i, j) det_transfer_matrix = np.max((np.sqrt(np.spacing(1)), np.abs(np.linalg.det(transfer_matrix)))) cur_rtol = np.abs( (det_transfer_matrix - det_transfer_matrixb) / det_transfer_matrix) if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)): # Convergence test from YT page 21 stop = True nb_try += 1 return stop, cur_rtol, nb_try def _KNV0_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol): """ Loop over all poles one by one and apply KNV method 0 algorithm """ # This method is useful only because we need to be able to call # _KNV0 from YT without looping over all poles, otherwise it would # have been fine to mix _KNV0_loop and _KNV0 in a single function stop = False nb_try = 0 while nb_try < maxiter and not stop: det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix)) for j in range(B.shape[0]): _KNV0(B, ker_pole, transfer_matrix, j, poles) det_transfer_matrix = np.max((np.sqrt(np.spacing(1)), np.abs(np.linalg.det(transfer_matrix)))) cur_rtol = np.abs((det_transfer_matrix - det_transfer_matrixb) / det_transfer_matrix) if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)): # Convergence test from YT page 21 stop = True nb_try += 1 return stop, cur_rtol, nb_try def place_poles(A, B, poles, method="YT", rtol=1e-3, maxiter=30): """ Compute K such that eigenvalues (A - dot(B, K))=poles. K is the gain matrix such as the plant described by the linear system ``AX+BU`` will have its closed-loop poles, i.e the eigenvalues ``A - B*K``, as close as possible to those asked for in poles. SISO, MISO and MIMO systems are supported. Parameters ---------- A, B : ndarray State-space representation of linear system ``AX + BU``. poles : array_like Desired real poles and/or complex conjugates poles. Complex poles are only supported with ``method="YT"`` (default). method: {'YT', 'KNV0'}, optional Which method to choose to find the gain matrix K. One of: - 'YT': Yang Tits - 'KNV0': Kautsky, Nichols, Van Dooren update method 0 See References and Notes for details on the algorithms. rtol: float, optional After each iteration the determinant of the eigenvectors of ``A - B*K`` is compared to its previous value, when the relative error between these two values becomes lower than `rtol` the algorithm stops. Default is 1e-3. maxiter: int, optional Maximum number of iterations to compute the gain matrix. Default is 30. Returns ------- full_state_feedback : Bunch object full_state_feedback is composed of: gain_matrix : 1-D ndarray The closed loop matrix K such as the eigenvalues of ``A-BK`` are as close as possible to the requested poles. computed_poles : 1-D ndarray The poles corresponding to ``A-BK`` sorted as first the real poles in increasing order, then the complex congugates in lexicographic order. requested_poles : 1-D ndarray The poles the algorithm was asked to place sorted as above, they may differ from what was achieved. X : 2-D ndarray The transfer matrix such as ``X * diag(poles) = (A - B*K)*X`` (see Notes) rtol : float The relative tolerance achieved on ``det(X)`` (see Notes). `rtol` will be NaN if it is possible to solve the system ``diag(poles) = (A - B*K)``, or 0 when the optimization algorithms can't do anything i.e when ``B.shape[1] == 1``. nb_iter : int The number of iterations performed before converging. `nb_iter` will be NaN if it is possible to solve the system ``diag(poles) = (A - B*K)``, or 0 when the optimization algorithms can't do anything i.e when ``B.shape[1] == 1``. Notes ----- The Tits and Yang (YT), [2]_ paper is an update of the original Kautsky et al. (KNV) paper [1]_. KNV relies on rank-1 updates to find the transfer matrix X such that ``X * diag(poles) = (A - B*K)*X``, whereas YT uses rank-2 updates. This yields on average more robust solutions (see [2]_ pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV does not in its original version. Only update method 0 proposed by KNV has been implemented here, hence the name ``'KNV0'``. KNV extended to complex poles is used in Matlab's ``place`` function, YT is distributed under a non-free licence by Slicot under the name ``robpole``. It is unclear and undocumented how KNV0 has been extended to complex poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex poles), therefore only YT supports them in this implementation. As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they will converge to different solutions and therefore there is absolutely no guarantee that using ``'KNV0'`` will yield results similar to Matlab's or any other implementation of these algorithms. Using the default method ``'YT'`` should be fine in most cases; ``'KNV0'`` is only provided because it is needed by ``'YT'`` in some specific cases. Furthermore ``'YT'`` gives on average more robust results than ``'KNV0'`` when ``abs(det(X))`` is used as a robustness indicator. [2]_ is available as a technical report on the following URL: http://drum.lib.umd.edu/handle/1903/5598 References ---------- .. [1] J. Kautsky, N.K. Nichols and P. van Dooren, "Robust pole assignment in linear state feedback", International Journal of Control, Vol. 41 pp. 1129-1155, 1985. .. [2] A.L. Tits and Y. Yang, "Globally convergent algorithms for robust pole assignment by state feedback, IEEE Transactions on Automatic Control, Vol. 41, pp. 1432-1452, 1996. Examples -------- A simple example demonstrating real pole placement using both KNV and YT algorithms. This is example number 1 from section 4 of the reference KNV publication ([1]_): >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> A = np.array([[ 1.380, -0.2077, 6.715, -5.676 ], ... [-0.5814, -4.290, 0, 0.6750 ], ... [ 1.067, 4.273, -6.654, 5.893 ], ... [ 0.0480, 4.273, 1.343, -2.104 ]]) >>> B = np.array([[ 0, 5.679 ], ... [ 1.136, 1.136 ], ... [ 0, 0, ], ... [-3.146, 0 ]]) >>> P = np.array([-0.2, -0.5, -5.0566, -8.6659]) Now compute K with KNV method 0, with the default YT method and with the YT method while forcing 100 iterations of the algorithm and print some results after each call. >>> fsf1 = signal.place_poles(A, B, P, method='KNV0') >>> fsf1.gain_matrix array([[ 0.20071427, -0.96665799, 0.24066128, -0.10279785], [ 0.50587268, 0.57779091, 0.51795763, -0.41991442]]) >>> fsf2 = signal.place_poles(A, B, P) # uses YT method >>> fsf2.computed_poles array([-8.6659, -5.0566, -0.5 , -0.2 ]) >>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100) >>> fsf3.X array([[ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j], [-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j], [-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j], [ 0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]]) The absolute value of the determinant of X is a good indicator to check the robustness of the results, both ``'KNV0'`` and ``'YT'`` aim at maximizing it. Below a comparison of the robustness of the results above: >>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X)) True >>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X)) True Now a simple example for complex poles: >>> A = np.array([[ 0, 7/3., 0, 0 ], ... [ 0, 0, 0, 7/9. ], ... [ 0, 0, 0, 0 ], ... [ 0, 0, 0, 0 ]]) >>> B = np.array([[ 0, 0 ], ... [ 0, 0 ], ... [ 1, 0 ], ... [ 0, 1 ]]) >>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3. >>> fsf = signal.place_poles(A, B, P, method='YT') We can plot the desired and computed poles in the complex plane: >>> t = np.linspace(0, 2*np.pi, 401) >>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle >>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag, ... 'wo', label='Desired') >>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx', ... label='Placed') >>> plt.grid() >>> plt.axis('image') >>> plt.axis([-1.1, 1.1, -1.1, 1.1]) >>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1) """ # Move away all the inputs checking, it only adds noise to the code update_loop, poles = _valid_inputs(A, B, poles, method, rtol, maxiter) # The current value of the relative tolerance we achieved cur_rtol = 0 # The number of iterations needed before converging nb_iter = 0 # Step A: QR decomposition of B page 1132 KN # to debug with numpy qr uncomment the line below # u, z = np.linalg.qr(B, mode="complete") u, z = s_qr(B, mode="full") rankB = np.linalg.matrix_rank(B) u0 = u[:, :rankB] u1 = u[:, rankB:] z = z[:rankB, :] # If we can use the identity matrix as X the solution is obvious if B.shape[0] == rankB: # if B is square and full rank there is only one solution # such as (A+BK)=inv(X)*diag(P)*X with X=eye(A.shape[0]) # i.e K=inv(B)*(diag(P)-A) # if B has as many lines as its rank (but not square) there are many # solutions and we can choose one using least squares # => use lstsq in both cases. # In both cases the transfer matrix X will be eye(A.shape[0]) and I # can hardly think of a better one so there is nothing to optimize # # for complex poles we use the following trick # # |a -b| has for eigenvalues a+b and a-b # |b a| # # |a+bi 0| has the obvious eigenvalues a+bi and a-bi # |0 a-bi| # # e.g solving the first one in R gives the solution # for the second one in C diag_poles = np.zeros(A.shape) idx = 0 while idx < poles.shape[0]: p = poles[idx] diag_poles[idx, idx] = np.real(p) if ~np.isreal(p): diag_poles[idx, idx+1] = -np.imag(p) diag_poles[idx+1, idx+1] = np.real(p) diag_poles[idx+1, idx] = np.imag(p) idx += 1 # skip next one idx += 1 gain_matrix = np.linalg.lstsq(B, diag_poles-A, rcond=-1)[0] transfer_matrix = np.eye(A.shape[0]) cur_rtol = np.nan nb_iter = np.nan else: # step A (p1144 KNV) and begining of step F: decompose # dot(U1.T, A-P[i]*I).T and build our set of transfer_matrix vectors # in the same loop ker_pole = [] # flag to skip the conjugate of a complex pole skip_conjugate = False # select orthonormal base ker_pole for each Pole and vectors for # transfer_matrix for j in range(B.shape[0]): if skip_conjugate: skip_conjugate = False continue pole_space_j = np.dot(u1.T, A-poles[j]*np.eye(B.shape[0])).T # after QR Q=Q0|Q1 # only Q0 is used to reconstruct the qr'ed (dot Q, R) matrix. # Q1 is orthogonnal to Q0 and will be multiplied by the zeros in # R when using mode "complete". In default mode Q1 and the zeros # in R are not computed # To debug with numpy qr uncomment the line below # Q, _ = np.linalg.qr(pole_space_j, mode="complete") Q, _ = s_qr(pole_space_j, mode="full") ker_pole_j = Q[:, pole_space_j.shape[1]:] # We want to select one vector in ker_pole_j to build the transfer # matrix, however qr returns sometimes vectors with zeros on the # same line for each pole and this yields very long convergence # times. # Or some other times a set of vectors, one with zero imaginary # part and one (or several) with imaginary parts. After trying # many ways to select the best possible one (eg ditch vectors # with zero imaginary part for complex poles) I ended up summing # all vectors in ker_pole_j, this solves 100% of the problems and # is a valid choice for transfer_matrix. # This way for complex poles we are sure to have a non zero # imaginary part that way, and the problem of lines full of zeros # in transfer_matrix is solved too as when a vector from # ker_pole_j has a zero the other one(s) when # ker_pole_j.shape[1]>1) for sure won't have a zero there. transfer_matrix_j = np.sum(ker_pole_j, axis=1)[:, np.newaxis] transfer_matrix_j = (transfer_matrix_j / np.linalg.norm(transfer_matrix_j)) if ~np.isreal(poles[j]): # complex pole transfer_matrix_j = np.hstack([np.real(transfer_matrix_j), np.imag(transfer_matrix_j)]) ker_pole.extend([ker_pole_j, ker_pole_j]) # Skip next pole as it is the conjugate skip_conjugate = True else: # real pole, nothing to do ker_pole.append(ker_pole_j) if j == 0: transfer_matrix = transfer_matrix_j else: transfer_matrix = np.hstack((transfer_matrix, transfer_matrix_j)) if rankB > 1: # otherwise there is nothing we can optimize stop, cur_rtol, nb_iter = update_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol) if not stop and rtol > 0: # if rtol<=0 the user has probably done that on purpose, # don't annoy him err_msg = ( "Convergence was not reached after maxiter iterations.\n" "You asked for a relative tolerance of %f we got %f" % (rtol, cur_rtol) ) warnings.warn(err_msg) # reconstruct transfer_matrix to match complex conjugate pairs, # ie transfer_matrix_j/transfer_matrix_j+1 are # Re(Complex_pole), Im(Complex_pole) now and will be Re-Im/Re+Im after transfer_matrix = transfer_matrix.astype(complex) idx = 0 while idx < poles.shape[0]-1: if ~np.isreal(poles[idx]): rel = transfer_matrix[:, idx].copy() img = transfer_matrix[:, idx+1] # rel will be an array referencing a column of transfer_matrix # if we don't copy() it will changer after the next line and # and the line after will not yield the correct value transfer_matrix[:, idx] = rel-1j*img transfer_matrix[:, idx+1] = rel+1j*img idx += 1 # skip next one idx += 1 try: m = np.linalg.solve(transfer_matrix.T, np.dot(np.diag(poles), transfer_matrix.T)).T gain_matrix = np.linalg.solve(z, np.dot(u0.T, m-A)) except np.linalg.LinAlgError: raise ValueError("The poles you've chosen can't be placed. " "Check the controllability matrix and try " "another set of poles") # Beware: Kautsky solves A+BK but the usual form is A-BK gain_matrix = -gain_matrix # K still contains complex with ~=0j imaginary parts, get rid of them gain_matrix = np.real(gain_matrix) full_state_feedback = Bunch() full_state_feedback.gain_matrix = gain_matrix full_state_feedback.computed_poles = _order_complex_poles( np.linalg.eig(A - np.dot(B, gain_matrix))[0] ) full_state_feedback.requested_poles = poles full_state_feedback.X = transfer_matrix full_state_feedback.rtol = cur_rtol full_state_feedback.nb_iter = nb_iter return full_state_feedback def dlsim(system, u, t=None, x0=None): """ Simulate output of a discrete-time linear system. Parameters ---------- system : tuple of array_like or instance of `dlti` A tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt) u : array_like An input array describing the input at each time `t` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. t : array_like, optional The time steps at which the input is defined. If `t` is given, it must be the same length as `u`, and the final value in `t` determines the number of steps returned in the output. x0 : array_like, optional The initial conditions on the state vector (zero by default). Returns ------- tout : ndarray Time values for the output, as a 1-D array. yout : ndarray System response, as a 1-D array. xout : ndarray, optional Time-evolution of the state-vector. Only generated if the input is a `StateSpace` system. See Also -------- lsim, dstep, dimpulse, cont2discrete Examples -------- A simple integrator transfer function with a discrete time step of 1.0 could be implemented as: >>> from scipy import signal >>> tf = ([1.0,], [1.0, -1.0], 1.0) >>> t_in = [0.0, 1.0, 2.0, 3.0] >>> u = np.asarray([0.0, 0.0, 1.0, 1.0]) >>> t_out, y = signal.dlsim(tf, u, t=t_in) >>> y.T array([[ 0., 0., 0., 1.]]) """ # Convert system to dlti-StateSpace if isinstance(system, lti): raise AttributeError('dlsim can only be used with discrete-time dlti ' 'systems.') elif not isinstance(system, dlti): system = dlti(*system[:-1], dt=system[-1]) # Condition needed to ensure output remains compatible is_ss_input = isinstance(system, StateSpace) system = system._as_ss() u = np.atleast_1d(u) if u.ndim == 1: u = np.atleast_2d(u).T if t is None: out_samples = len(u) stoptime = (out_samples - 1) * system.dt else: stoptime = t[-1] out_samples = int(np.floor(stoptime / system.dt)) + 1 # Pre-build output arrays xout = np.zeros((out_samples, system.A.shape[0])) yout = np.zeros((out_samples, system.C.shape[0])) tout = np.linspace(0.0, stoptime, num=out_samples) # Check initial condition if x0 is None: xout[0, :] = np.zeros((system.A.shape[1],)) else: xout[0, :] = np.asarray(x0) # Pre-interpolate inputs into the desired time steps if t is None: u_dt = u else: if len(u.shape) == 1: u = u[:, np.newaxis] u_dt_interp = interp1d(t, u.transpose(), copy=False, bounds_error=True) u_dt = u_dt_interp(tout).transpose() # Simulate the system for i in range(0, out_samples - 1): xout[i+1, :] = (np.dot(system.A, xout[i, :]) + np.dot(system.B, u_dt[i, :])) yout[i, :] = (np.dot(system.C, xout[i, :]) + np.dot(system.D, u_dt[i, :])) # Last point yout[out_samples-1, :] = (np.dot(system.C, xout[out_samples-1, :]) + np.dot(system.D, u_dt[out_samples-1, :])) if is_ss_input: return tout, yout, xout else: return tout, yout def dimpulse(system, x0=None, t=None, n=None): """ Impulse response of discrete-time system. Parameters ---------- system : tuple of array_like or instance of `dlti` A tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt) x0 : array_like, optional Initial state-vector. Defaults to zero. t : array_like, optional Time points. Computed if not given. n : int, optional The number of time points to compute (if `t` is not given). Returns ------- tout : ndarray Time values for the output, as a 1-D array. yout : ndarray Impulse response of system. Each element of the tuple represents the output of the system based on an impulse in each input. See Also -------- impulse, dstep, dlsim, cont2discrete """ # Convert system to dlti-StateSpace if isinstance(system, dlti): system = system._as_ss() elif isinstance(system, lti): raise AttributeError('dimpulse can only be used with discrete-time ' 'dlti systems.') else: system = dlti(*system[:-1], dt=system[-1])._as_ss() # Default to 100 samples if unspecified if n is None: n = 100 # If time is not specified, use the number of samples # and system dt if t is None: t = np.linspace(0, n * system.dt, n, endpoint=False) else: t = np.asarray(t) # For each input, implement a step change yout = None for i in range(0, system.inputs): u = np.zeros((t.shape[0], system.inputs)) u[0, i] = 1.0 one_output = dlsim(system, u, t=t, x0=x0) if yout is None: yout = (one_output[1],) else: yout = yout + (one_output[1],) tout = one_output[0] return tout, yout def dstep(system, x0=None, t=None, n=None): """ Step response of discrete-time system. Parameters ---------- system : tuple of array_like A tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt) x0 : array_like, optional Initial state-vector. Defaults to zero. t : array_like, optional Time points. Computed if not given. n : int, optional The number of time points to compute (if `t` is not given). Returns ------- tout : ndarray Output time points, as a 1-D array. yout : ndarray Step response of system. Each element of the tuple represents the output of the system based on a step response to each input. See Also -------- step, dimpulse, dlsim, cont2discrete """ # Convert system to dlti-StateSpace if isinstance(system, dlti): system = system._as_ss() elif isinstance(system, lti): raise AttributeError('dstep can only be used with discrete-time dlti ' 'systems.') else: system = dlti(*system[:-1], dt=system[-1])._as_ss() # Default to 100 samples if unspecified if n is None: n = 100 # If time is not specified, use the number of samples # and system dt if t is None: t = np.linspace(0, n * system.dt, n, endpoint=False) else: t = np.asarray(t) # For each input, implement a step change yout = None for i in range(0, system.inputs): u = np.zeros((t.shape[0], system.inputs)) u[:, i] = np.ones((t.shape[0],)) one_output = dlsim(system, u, t=t, x0=x0) if yout is None: yout = (one_output[1],) else: yout = yout + (one_output[1],) tout = one_output[0] return tout, yout def dfreqresp(system, w=None, n=10000, whole=False): """ Calculate the frequency response of a discrete-time system. Parameters ---------- system : an instance of the `dlti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `dlti`) * 2 (numerator, denominator, dt) * 3 (zeros, poles, gain, dt) * 4 (A, B, C, D, dt) w : array_like, optional Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. whole : bool, optional Normally, if 'w' is not given, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. Returns ------- w : 1D ndarray Frequency array [radians/sample] H : 1D ndarray Array of complex magnitude values Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.18.0 Examples -------- Generating the Nyquist plot of a transfer function >>> from scipy import signal >>> import matplotlib.pyplot as plt Transfer function: H(z) = 1 / (z^2 + 2z + 3) >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05) >>> w, H = signal.dfreqresp(sys) >>> plt.figure() >>> plt.plot(H.real, H.imag, "b") >>> plt.plot(H.real, -H.imag, "r") >>> plt.show() """ if not isinstance(system, dlti): if isinstance(system, lti): raise AttributeError('dfreqresp can only be used with ' 'discrete-time systems.') system = dlti(*system[:-1], dt=system[-1]) if isinstance(system, StateSpace): # No SS->ZPK code exists right now, just SS->TF->ZPK system = system._as_tf() if not isinstance(system, (TransferFunction, ZerosPolesGain)): raise ValueError('Unknown system type') if system.inputs != 1 or system.outputs != 1: raise ValueError("dfreqresp requires a SISO (single input, single " "output) system.") if w is not None: worN = w else: worN = n if isinstance(system, TransferFunction): # Convert numerator and denominator from polynomials in the variable # 'z' to polynomials in the variable 'z^-1', as freqz expects. num, den = TransferFunction._z_to_zinv(system.num.ravel(), system.den) w, h = freqz(num, den, worN=worN, whole=whole) elif isinstance(system, ZerosPolesGain): w, h = freqz_zpk(system.zeros, system.poles, system.gain, worN=worN, whole=whole) return w, h def dbode(system, w=None, n=100): """ Calculate Bode magnitude and phase data of a discrete-time system. Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation: * 1 (instance of `dlti`) * 2 (num, den, dt) * 3 (zeros, poles, gain, dt) * 4 (A, B, C, D, dt) w : array_like, optional Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. Returns ------- w : 1D ndarray Frequency array [rad/time_unit] mag : 1D ndarray Magnitude array [dB] phase : 1D ndarray Phase array [deg] Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``). .. versionadded:: 0.18.0 Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt Transfer function: H(z) = 1 / (z^2 + 2z + 3) >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05) Equivalent: sys.bode() >>> w, mag, phase = signal.dbode(sys) >>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show() """ w, y = dfreqresp(system, w=w, n=n) if isinstance(system, dlti): dt = system.dt else: dt = system[-1] mag = 20.0 * numpy.log10(abs(y)) phase = numpy.rad2deg(numpy.unwrap(numpy.angle(y))) return w / dt, mag, phase
mit
lordkman/burnman
burnman/output_seismo.py
3
11627
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2017 by the BurnMan team, released under the GNU # GPL v2 or later. from __future__ import absolute_import import numpy as np import warnings import scipy.integrate import matplotlib.pyplot as plt import pkgutil from . import tools from . import constants from . import seismic from . import geotherm def write_axisem_input(rock, min_depth=670.e3, max_depth=2890.e3, T0= 1900, filename='axisem_burnmantestrock.txt', axisem_ref='axisem_prem_ani_noocean.txt', plotting=False): """ Writing velocities and densities to AXISEM (www.axisem.info) input file Default is set to replacing the lower mantle with the BurnMan rock Note: - This implementation uses PREM to convert from depths to pressures to compute at - This implementation assumes an adiabatic temperature profile, only T0 at min_depth can be set - Currently, it only honors the discontinuities already in the synthetic input file, so it is best to only replace certain layers with burnman values (this should be improved in the future). Parameters ---------- rock : burnman.Composite() Composition to implement in the model min_depth : float minimum depth to replace model (m) (default = 670 km) max_depth : float minimum depth to replace model (m) (default = 2890 km) T0 : float Anchor temperature at min_depth for adiabatic profile (K) (default=1900) filename: string Output filename (default ='axisem_burnmantestrock.txt') axisem_ref: string Input filename (in burnman/data/input_seismic/) (default = 'axisem_prem_ani_noocean.txt') plotting: Boolean True means plot of the old model and replaced model will be shown (default = False) """ # Load reference input datastream = pkgutil.get_data('burnman', 'data/input_seismic/' + axisem_ref) lines = [line.strip() for line in datastream.decode('ascii').split('\n') if line.strip()] table = [] for line in lines[18:]: numbers = np.fromstring(line, sep=' ') if len(numbers)>0: if line[0] != "#" and line[0] != "%": table.append(numbers) table = np.array(table) ref_radius = table[:, 0] ref_depth = 6371.e3 - ref_radius ref_density = table[:, 1] ref_vpv = table[:, 2] ref_vsv = table[:, 3] ref_Qk = table[:, 4] ref_Qmu = table[:, 5] ref_vph = table[:, 6] ref_vsh = table[:, 7] ref_eta = table[:, 8] # Cutting out range to input in Axisem reference file (currently the lower mantle) indrange = [x for x in range(len(ref_depth)) if ref_depth[ x] > min_depth and ref_depth[x] < max_depth] # pad both ends to include up to discontinuity, bit of a hack... indrange.insert(0, indrange[0] - 1) indrange.append(indrange[-1] + 1) # Invert depthrange so adiabatic computations work! depthrange = ref_depth[indrange] # convert depths to pressures pressures = seismic.PREM().pressure(depthrange) # Computing adiabatic temperatures. T0 is an input parameter! T0 = T0 # K temperatures = geotherm.adiabatic(pressures, T0, rock) print("Calculations are done for:") rock.debug_print() rock_vp, rock_vs, rock_rho = rock.evaluate( ['v_p', 'v_s', 'density'], pressures, temperatures) discontinuity =0 # WRITE OUT FILE f = open(filename, 'w') print('Writing ' + filename + ' ...') f.write('# Input file '+ filename +' for AXISEM created using BurnMan, replacing ' + axisem_ref+ ' between ' +str(np.round(min_depth/1.e3)) + ' and ' + str(np.round(max_depth /1.e3)) +' km \n') f.write('NAME ' + filename + '\n') for line in lines[2:18]: f.write(line[:-1] + '\n') for i in range(indrange[0]): if i>0 and ref_radius[i] ==ref_radius[i-1]: discontinuity = discontinuity + 1 f.write('# Discontinuity ' +str(discontinuity) + ', depth: '+ str(np.round(ref_depth[i]/1.e3,decimals=2)) +' km \n') f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], ref_density[i], ref_vpv[i], ref_vsv[i], ref_Qk[i], ref_Qmu[i], ref_vph[i], ref_vsh[i], ref_eta[i])) for i in range(indrange[0], indrange[-1]): ind2 = -1 + i - indrange[0] if ref_radius[i] ==ref_radius[i-1]: discontinuity = discontinuity + 1 f.write('# Discontinuity '+ str(discontinuity) + ', depth: '+ str(np.round(ref_depth[i]/1.e3,decimals=2))+' km \n') f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], rock_rho[ind2], rock_vp[ind2], rock_vs[ind2], ref_Qk[i], ref_Qmu[i], rock_vp[ind2], rock_vs[ind2], ref_eta[i])) for i in range(indrange[-1], len(ref_radius)): if ref_radius[i] ==ref_radius[i-1]: discontinuity = discontinuity + 1 f.write('# Discontinuity ' +str(discontinuity) + ', depth: '+ str(np.round(ref_depth[i]/1.e3,decimals=2))+' km \n') f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], ref_density[i], ref_vpv[i], ref_vsv[i], ref_Qk[i], ref_Qmu[i], ref_vph[i], ref_vsh[i], ref_eta[i])) f.close() if plotting: # plot vp plt.plot(ref_depth / 1.e3, ref_vph / 1.e3, color='g', linestyle='-', label='vp') plt.plot(depthrange / 1.e3, rock_vp / 1.e3, color='g', linestyle='-', marker='o', markerfacecolor='g', markersize=1) # plot Vs plt.plot(ref_depth / 1.e3, ref_vsh / 1.e3, color='b', linestyle='-', label='vs') plt.plot(depthrange / 1.e3, rock_vs / 1.e3, color='b', linestyle='-', marker='o', markerfacecolor='b', markersize=1) # plot density plt.plot(ref_depth / 1.e3, ref_density / 1.e3, color='r', linestyle='-', label='density') plt.plot(depthrange / 1.e3, rock_rho / 1.e3, color='r', linestyle='-', marker='o', markerfacecolor='r', markersize=1) plt.title(filename + ' = ' + axisem_ref + ' replaced between ' + str(min_depth / 1.e3) + ' and ' + str(max_depth / 1.e3) + ' km') plt.legend(loc='lower right') plt.show() def write_mineos_input(rock, min_depth=670.e3, max_depth=2890.e3, T0 = 1900, filename='mineos_burnmantestrock.txt', mineos_ref='mineos_prem_noocean.txt', plotting=False): """ Writing velocities and densities to Mineos (https://geodynamics.org/cig/software/mineos/) input file Default is set to replacing the lower mantle with the BurnMan rock Note: - This implementation uses PREM to convert from depths to pressures to compute at - This implementation assumes an adiabatic temperature profile, only T0 at min_depth can be set - Currently, it only honors the discontinuities already in the synthetic input file, so it is best to only replace certain layers with burnman values (this should be improved in the future). Parameters ---------- rock : burnman.Composite() Composition to implement in the model min_depth : float minimum depth to replace model (m) (default = 670 km) max_depth : float minimum depth to replace model (m) (default = 2890 km) T0 : float Anchor temperature at min_depth for adiabatic profile (K) (default=1900) filename: string Output filename (default ='mineos_burnmantestrock.txt') axisem_ref: string Input filename (in burnman/data/input_seismic/) (default = 'mineos_prem_noocean.txt') plotting: Boolean True means plot of the old model and replaced model will be shown (default = False) """ # Load reference input datastream = pkgutil.get_data('burnman', 'data/input_seismic/' + mineos_ref) lines = [line.strip() for line in datastream.decode('ascii').split('\n') if line.strip()] table=[] for line in lines[3:]: numbers = np.fromstring(line, sep=' ') table.append(numbers) table = np.array(table) ref_radius = table[:, 0] ref_depth = 6371.e3 - ref_radius ref_density = table[:, 1] ref_vpv = table[:, 2] ref_vsv = table[:, 3] ref_Qk = table[:, 4] ref_Qmu = table[:, 5] ref_vph = table[:, 6] ref_vsh = table[:, 7] ref_eta = table[:, 8] # Cutting out range to input in Mineos (currently the lower mantle) indrange = [x for x in range(len(ref_depth)) if ref_depth[ x] > min_depth and ref_depth[x] < max_depth] # pad both ends to include up to discontinuity, bit of a hack... indrange.insert(0, indrange[0] - 1) indrange.append(indrange[-1] + 1) # Invert depthrange so adiabatic computations work! depthrange = ref_depth[indrange][::-1] # convert depths to pressures pressures = seismic.PREM().pressure(depthrange) # Computing adiabatic temperatures. T0 is a choice! T0 = T0 # K temperatures = geotherm.adiabatic(pressures, T0, rock) print("Calculations are done for:") rock.debug_print() rock_vp, rock_vs, rock_rho = rock.evaluate( ['v_p', 'v_s', 'density'], pressures, temperatures) # WRITE OUT FILE f = open(filename , 'w') print('Writing ' + filename + ' ...') f.write(lines[0][:-2] + ' + ' + filename + '\n') for line in lines[1:3]: f.write(line[:-2] + '\n') for i in range(indrange[0]): f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], ref_density[i], ref_vpv[i], ref_vsv[i], ref_Qk[i], ref_Qmu[i], ref_vph[i], ref_vsh[i], ref_eta[i])) for i in range(indrange[0], indrange[-1]): ind2 = -1 - i + indrange[0] f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], rock_rho[ind2], rock_vp[ind2], rock_vs[ind2], ref_Qk[i], ref_Qmu[i], rock_vp[ind2], rock_vs[ind2], ref_eta[i])) for i in range(indrange[-1], len(ref_radius)): f.write( '%8.0f %9.2f %9.2f %9.2f %9.1f %9.1f %9.2f %9.2f %9.5f \n' % (ref_radius[i], ref_density[i], ref_vpv[i], ref_vsv[i], ref_Qk[i], ref_Qmu[i], ref_vph[i], ref_vsh[i], ref_eta[i])) f.close() if plotting: # plot vp plt.plot(ref_depth / 1.e3, ref_vph / 1.e3, color='g', linestyle='-', label='vp') plt.plot(depthrange / 1.e3, rock_vp / 1.e3, color='g', linestyle='-', marker='o', markerfacecolor='g', markersize=1) # plot Vs plt.plot(ref_depth / 1.e3, ref_vsh / 1.e3, color='b', linestyle='-', label='vs') plt.plot(depthrange / 1.e3, rock_vs / 1.e3, color='b', linestyle='-', marker='o', markerfacecolor='b', markersize=1) # plot density plt.plot(ref_depth / 1.e3, ref_density / 1.e3, color='r', linestyle='-', label='density') plt.plot(depthrange / 1.e3, rock_rho / 1.e3, color='r', linestyle='-', marker='o', markerfacecolor='r', markersize=1) plt.title(filename + ' = ' + mineos_ref + ' replaced between ' + str(min_depth / 1.e3) + ' and ' + str(max_depth / 1.e3) + ' km') plt.legend(loc='lower right') plt.show()
gpl-2.0
HeraclesHX/scikit-learn
examples/linear_model/plot_sgd_weighted_samples.py
344
1458
""" ===================== SGD: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] y = [1] * 10 + [-1] * 10 sample_weight = 100 * np.abs(np.random.randn(20)) # and assign a bigger weight to the last 10 samples sample_weight[:10] *= 10 # plot the weighted data points xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=sample_weight, alpha=0.9, cmap=plt.cm.bone) ## fit the unweighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) no_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['solid']) ## fit the weighted model clf = linear_model.SGDClassifier(alpha=0.01, n_iter=100) clf.fit(X, y, sample_weight=sample_weight) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) samples_weights = plt.contour(xx, yy, Z, levels=[0], linestyles=['dashed']) plt.legend([no_weights.collections[0], samples_weights.collections[0]], ["no weights", "with weights"], loc="lower left") plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
rosswhitfield/mantid
scripts/Engineering/gui/engineering_diffraction/tabs/focus/model.py
3
17365
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2019 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + import csv from os import path, makedirs from matplotlib import gridspec import matplotlib.pyplot as plt from Engineering.gui.engineering_diffraction.tabs.common import vanadium_corrections, path_handling from Engineering.gui.engineering_diffraction.settings.settings_helper import get_setting from Engineering.EnggUtils import create_custom_grouping_workspace from mantid.simpleapi import logger, AnalysisDataService as Ads, SaveNexus, SaveGSS, SaveFocusedXYE, \ Load, NormaliseByCurrent, Divide, DiffractionFocussing, RebinToWorkspace, DeleteWorkspace, ApplyDiffCal, \ ConvertUnits, ReplaceSpecialValues SAMPLE_RUN_WORKSPACE_NAME = "engggui_focusing_input_ws" FOCUSED_OUTPUT_WORKSPACE_NAME = "engggui_focusing_output_ws_bank_" CALIB_PARAMS_WORKSPACE_NAME = "engggui_calibration_banks_parameters" NORTH_BANK_CAL = "EnginX_NorthBank.cal" SOUTH_BANK_CAL = "EnginX_SouthBank.cal" class FocusModel(object): def __init__(self): self._last_path = None self._last_path_ws = None def get_last_path(self): return self._last_path def focus_run(self, sample_paths, banks, plot_output, instrument, rb_num, spectrum_numbers, custom_cal): """ Focus some data using the current calibration. :param sample_paths: The paths to the data to be focused. :param banks: The banks that should be focused. :param plot_output: True if the output should be plotted. :param instrument: The instrument that the data came from. :param rb_num: The experiment number, used to create directories. Can be None :param spectrum_numbers: The specific spectra that should be focused. Used instead of banks. :param custom_cal: User defined calibration file to crop the focus to """ full_calib_path = get_setting(path_handling.INTERFACES_SETTINGS_GROUP, path_handling.ENGINEERING_PREFIX, "full_calibration") if not Ads.doesExist("full_inst_calib"): try: full_calib_workspace = Load(full_calib_path, OutputWorkspace="full_inst_calib") except RuntimeError: logger.error("Error loading Full instrument calibration - this is set in the interface settings.") return else: full_calib_workspace = Ads.retrieve("full_inst_calib") if not Ads.doesExist(vanadium_corrections.INTEGRATED_WORKSPACE_NAME) and not Ads.doesExist( vanadium_corrections.CURVES_WORKSPACE_NAME): return integration_workspace = Ads.retrieve(vanadium_corrections.INTEGRATED_WORKSPACE_NAME) curves_workspace = Ads.retrieve(vanadium_corrections.CURVES_WORKSPACE_NAME) output_workspaces = [] # List of collated workspaces to plot. df_kwarg, name, region_calib = None, None, None if spectrum_numbers: inst_ws = path_handling.load_workspace(sample_paths[0]) grp_ws = create_custom_grouping_workspace(spectrum_numbers, inst_ws) df_kwarg = {"GroupingWorkspace": grp_ws} region_calib = "engggui_calibration_Cropped" name = 'Cropped' elif custom_cal: # TODO this functionality has not yet been fully implemented df_kwarg = {"GroupingFileName": custom_cal} region_calib = "engggui_calibration_Custom" name = 'Custom' if df_kwarg: # check correct region calibration exists if not Ads.doesExist(region_calib): logger.warning(f"Cannot focus as the region calibration workspace \"{region_calib}\" is not " f"present.") return for sample_path in sample_paths: sample_workspace = path_handling.load_workspace(sample_path) run_no = path_handling.get_run_number_from_path(sample_path, instrument) tof_output_name = str(run_no) + "_" + FOCUSED_OUTPUT_WORKSPACE_NAME + name dspacing_output_name = tof_output_name + "_dSpacing" # perform prefocus operations on whole instrument workspace prefocus_success = self._whole_inst_prefocus(sample_workspace, integration_workspace, full_calib_workspace) if not prefocus_success: continue # perform focus over chosen region of interest self._run_focus(sample_workspace, tof_output_name, curves_workspace, df_kwarg, region_calib) output_workspaces.append([tof_output_name]) self._save_output(instrument, sample_path, "Cropped", tof_output_name, rb_num) self._save_output(instrument, sample_path, "Cropped", dspacing_output_name, rb_num, unit="dSpacing") self._output_sample_logs(instrument, run_no, sample_workspace, rb_num) # remove created grouping workspace if present if Ads.doesExist("grp_ws"): DeleteWorkspace("grp_ws") else: for sample_path in sample_paths: sample_workspace = path_handling.load_workspace(sample_path) run_no = path_handling.get_run_number_from_path(sample_path, instrument) workspaces_for_run = [] # perform prefocus operations on whole instrument workspace prefocus_success = self._whole_inst_prefocus(sample_workspace, integration_workspace, full_calib_workspace) if not prefocus_success: continue # perform focus over chosen banks for name in banks: tof_output_name = str(run_no) + "_" + FOCUSED_OUTPUT_WORKSPACE_NAME + str(name) dspacing_output_name = tof_output_name + "_dSpacing" if name == '1': df_kwarg = {"GroupingFileName": NORTH_BANK_CAL} region_calib = "engggui_calibration_bank_1" else: df_kwarg = {"GroupingFileName": SOUTH_BANK_CAL} region_calib = "engggui_calibration_bank_2" # check correct region calibration exists if not Ads.doesExist(region_calib): logger.warning(f"Cannot focus as the region calibration workspace \"{region_calib}\" is not " f"present.") return self._run_focus(sample_workspace, tof_output_name, curves_workspace, df_kwarg, region_calib) workspaces_for_run.append(tof_output_name) # Save the output to the file system. self._save_output(instrument, sample_path, name, tof_output_name, rb_num) self._save_output(instrument, sample_path, name, dspacing_output_name, rb_num, unit="dSpacing") output_workspaces.append(workspaces_for_run) self._output_sample_logs(instrument, run_no, sample_workspace, rb_num) DeleteWorkspace(sample_workspace) # Plot the output if plot_output: for ws_names in output_workspaces: self._plot_focused_workspaces(ws_names) @staticmethod def _whole_inst_prefocus(input_workspace, vanadium_integration_ws, full_calib) -> bool: """This is used to perform the operations done on the whole instrument workspace, before the chosen region of interest is focused using _run_focus :param input_workspace: Raw sample run to process prior to focussing over a region of interest :param vanadium_integration_ws: Integral of the supplied vanadium run :param full_calib: Full instrument calibration workspace (table ws output from PDCalibration) :return True if successful, False if aborted """ if input_workspace.getRun().getProtonCharge() > 0: NormaliseByCurrent(InputWorkspace=input_workspace, OutputWorkspace=input_workspace) else: logger.warning(f"Skipping focus of run {input_workspace.name()} because it has invalid proton charge.") return False input_workspace /= vanadium_integration_ws # replace nans created in sensitivity correction ReplaceSpecialValues(InputWorkspace=input_workspace, OutputWorkspace=input_workspace, NaNValue=0, InfinityValue=0) ApplyDiffCal(InstrumentWorkspace=input_workspace, CalibrationWorkspace=full_calib) ConvertUnits(InputWorkspace=input_workspace, OutputWorkspace=input_workspace, Target='dSpacing') return True @staticmethod def _run_focus(input_workspace, tof_output_name, vanadium_curves_ws, df_kwarg, region_calib) -> None: """Focus the processed full instrument workspace over the chosen region of interest :param input_workspace: Processed full instrument workspace converted to dSpacing :param tof_output_name: Name for the time-of-flight output workspace :param vanadium_curves_ws: Workspace containing the vanadium curves :param df_kwarg: kwarg to pass to DiffractionFocussing specifying the region of interest :param region_calib: Region of interest calibration workspace (table ws output from PDCalibration) """ # rename workspace prior to focussing to avoid errors later dspacing_output_name = tof_output_name + "_dSpacing" # focus over specified region of interest focused_sample = DiffractionFocussing(InputWorkspace=input_workspace, OutputWorkspace=dspacing_output_name, **df_kwarg) curves_rebinned = RebinToWorkspace(WorkspaceToRebin=vanadium_curves_ws, WorkspaceToMatch=focused_sample) Divide(LHSWorkspace=focused_sample, RHSWorkspace=curves_rebinned, OutputWorkspace=focused_sample, AllowDifferentNumberSpectra=True) # apply calibration from specified region of interest ApplyDiffCal(InstrumentWorkspace=focused_sample, CalibrationWorkspace=region_calib) # set bankid for use in fit tab run = focused_sample.getRun() if region_calib == "engggui_calibration_bank_1": run.addProperty("bankid", 1, True) elif region_calib == "engggui_calibration_bank_2": run.addProperty("bankid", 2, True) else: run.addProperty("bankid", 3, True) # output in both dSpacing and TOF ConvertUnits(InputWorkspace=focused_sample, OutputWorkspace=tof_output_name, Target='TOF') DeleteWorkspace(curves_rebinned) @staticmethod def _plot_focused_workspaces(focused_workspaces): fig = plt.figure() gs = gridspec.GridSpec(1, len(focused_workspaces)) plots = [ fig.add_subplot(gs[i], projection="mantid") for i in range(len(focused_workspaces)) ] for ax, ws_name in zip(plots, focused_workspaces): ax.plot(Ads.retrieve(ws_name), wkspIndex=0) ax.set_title(ws_name) fig.show() def _save_output(self, instrument, sample_path, bank, sample_workspace, rb_num, unit="TOF"): """ Save a focused workspace to the file system. Saves separate copies to a User directory if an rb number has been set. :param instrument: The instrument the data is from. :param sample_path: The path to the data file that was focused. :param bank: The name of the bank being saved. :param sample_workspace: The name of the workspace to be saved. :param rb_num: Usually an experiment id, defines the name of the user directory. """ self._save_focused_output_files_as_nexus(instrument, sample_path, bank, sample_workspace, rb_num, unit) self._save_focused_output_files_as_gss(instrument, sample_path, bank, sample_workspace, rb_num, unit) self._save_focused_output_files_as_topas_xye(instrument, sample_path, bank, sample_workspace, rb_num, unit) output_path = path.join(path_handling.get_output_path(), 'Focus') logger.notice(f"\n\nFocus files saved to: \"{output_path}\"\n\n") if rb_num: output_path = path.join(path_handling.get_output_path(), 'User', rb_num, 'Focus') logger.notice(f"\n\nFocus files also saved to: \"{output_path}\"\n\n") self._last_path = output_path if self._last_path and self._last_path_ws: self._last_path = path.join(self._last_path, self._last_path_ws) def _save_focused_output_files_as_gss(self, instrument, sample_path, bank, sample_workspace, rb_num, unit): gss_output_path = path.join( path_handling.get_output_path(), "Focus", self._generate_output_file_name(instrument, sample_path, bank, unit, ".gss")) SaveGSS(InputWorkspace=sample_workspace, Filename=gss_output_path) if rb_num: gss_output_path = path.join( path_handling.get_output_path(), "User", rb_num, "Focus", self._generate_output_file_name(instrument, sample_path, bank, unit, ".gss")) SaveGSS(InputWorkspace=sample_workspace, Filename=gss_output_path) def _save_focused_output_files_as_nexus(self, instrument, sample_path, bank, sample_workspace, rb_num, unit): file_name = self._generate_output_file_name(instrument, sample_path, bank, unit, ".nxs") nexus_output_path = path.join(path_handling.get_output_path(), "Focus", file_name) SaveNexus(InputWorkspace=sample_workspace, Filename=nexus_output_path) if rb_num: nexus_output_path = path.join( path_handling.get_output_path(), "User", rb_num, "Focus", file_name) SaveNexus(InputWorkspace=sample_workspace, Filename=nexus_output_path) self._last_path_ws = file_name def _save_focused_output_files_as_topas_xye(self, instrument, sample_path, bank, sample_workspace, rb_num, unit): xye_output_path = path.join( path_handling.get_output_path(), "Focus", self._generate_output_file_name(instrument, sample_path, bank, unit, ".abc")) SaveFocusedXYE(InputWorkspace=sample_workspace, Filename=xye_output_path, SplitFiles=False, Format="TOPAS") if rb_num: xye_output_path = path.join( path_handling.get_output_path(), "User", rb_num, "Focus", self._generate_output_file_name(instrument, sample_path, bank, unit, ".abc")) SaveFocusedXYE(InputWorkspace=sample_workspace, Filename=xye_output_path, SplitFiles=False, Format="TOPAS") @staticmethod def _output_sample_logs(instrument, run_number, workspace, rb_num): def write_to_file(): with open(output_path, "w", newline="") as logfile: writer = csv.writer(logfile, ["Sample Log", "Avg Value"]) for log in output_dict: writer.writerow([log, output_dict[log]]) output_dict = {} sample_run = workspace.getRun() log_names = sample_run.keys() # Collect numerical sample logs. for name in log_names: try: output_dict[name] = sample_run.getPropertyAsSingleValue(name) except ValueError: logger.information(f"Could not convert {name} to a numerical value. It will not be included in the " f"sample logs output file.") focus_dir = path.join(path_handling.get_output_path(), "Focus") if not path.exists(focus_dir): makedirs(focus_dir) output_path = path.join(focus_dir, (instrument + "_" + run_number + "_sample_logs.csv")) write_to_file() if rb_num: focus_user_dir = path.join(path_handling.get_output_path(), "User", rb_num, "Focus") if not path.exists(focus_user_dir): makedirs(focus_user_dir) output_path = path.join(focus_user_dir, (instrument + "_" + run_number + "_sample_logs.csv")) write_to_file() @staticmethod def _generate_output_file_name(instrument, sample_path, bank, unit, suffix): run_no = path_handling.get_run_number_from_path(sample_path, instrument) return instrument + '_' + run_no + '_' + "bank_" + bank + '_' + unit + suffix
gpl-3.0
davidgbe/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
181
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
fzalkow/scikit-learn
examples/calibration/plot_calibration.py
225
4795
""" ====================================== Probability calibration of classifiers ====================================== When performing classification you often want to predict not only the class label, but also the associated probability. This probability gives you some kind of confidence on the prediction. However, not all classifiers provide well-calibrated probabilities, some being over-confident while others being under-confident. Thus, a separate calibration of predicted probabilities is often desirable as a postprocessing. This example illustrates two different methods for this calibration and evaluates the quality of the returned probabilities using Brier's score (see http://en.wikipedia.org/wiki/Brier_score). Compared are the estimated probability using a Gaussian naive Bayes classifier without calibration, with a sigmoid calibration, and with a non-parametric isotonic calibration. One can observe that only the non-parametric model is able to provide a probability calibration that returns probabilities close to the expected 0.5 for most of the samples belonging to the middle cluster with heterogeneous labels. This results in a significantly improved Brier score. """ print(__doc__) # Author: Mathieu Blondel <[email protected]> # Alexandre Gramfort <[email protected]> # Balazs Kegl <[email protected]> # Jan Hendrik Metzen <[email protected]> # License: BSD Style. import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from sklearn.datasets import make_blobs from sklearn.naive_bayes import GaussianNB from sklearn.metrics import brier_score_loss from sklearn.calibration import CalibratedClassifierCV from sklearn.cross_validation import train_test_split n_samples = 50000 n_bins = 3 # use 3 bins for calibration_curve as we have 3 clusters here # Generate 3 blobs with 2 classes where the second blob contains # half positive samples and half negative samples. Probability in this # blob is therefore 0.5. centers = [(-5, -5), (0, 0), (5, 5)] X, y = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0, centers=centers, shuffle=False, random_state=42) y[:n_samples // 2] = 0 y[n_samples // 2:] = 1 sample_weight = np.random.RandomState(42).rand(y.shape[0]) # split train, test for calibration X_train, X_test, y_train, y_test, sw_train, sw_test = \ train_test_split(X, y, sample_weight, test_size=0.9, random_state=42) # Gaussian Naive-Bayes with no calibration clf = GaussianNB() clf.fit(X_train, y_train) # GaussianNB itself does not support sample-weights prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with isotonic calibration clf_isotonic = CalibratedClassifierCV(clf, cv=2, method='isotonic') clf_isotonic.fit(X_train, y_train, sw_train) prob_pos_isotonic = clf_isotonic.predict_proba(X_test)[:, 1] # Gaussian Naive-Bayes with sigmoid calibration clf_sigmoid = CalibratedClassifierCV(clf, cv=2, method='sigmoid') clf_sigmoid.fit(X_train, y_train, sw_train) prob_pos_sigmoid = clf_sigmoid.predict_proba(X_test)[:, 1] print("Brier scores: (the smaller the better)") clf_score = brier_score_loss(y_test, prob_pos_clf, sw_test) print("No calibration: %1.3f" % clf_score) clf_isotonic_score = brier_score_loss(y_test, prob_pos_isotonic, sw_test) print("With isotonic calibration: %1.3f" % clf_isotonic_score) clf_sigmoid_score = brier_score_loss(y_test, prob_pos_sigmoid, sw_test) print("With sigmoid calibration: %1.3f" % clf_sigmoid_score) ############################################################################### # Plot the data and the predicted probabilities plt.figure() y_unique = np.unique(y) colors = cm.rainbow(np.linspace(0.0, 1.0, y_unique.size)) for this_y, color in zip(y_unique, colors): this_X = X_train[y_train == this_y] this_sw = sw_train[y_train == this_y] plt.scatter(this_X[:, 0], this_X[:, 1], s=this_sw * 50, c=color, alpha=0.5, label="Class %s" % this_y) plt.legend(loc="best") plt.title("Data") plt.figure() order = np.lexsort((prob_pos_clf, )) plt.plot(prob_pos_clf[order], 'r', label='No calibration (%1.3f)' % clf_score) plt.plot(prob_pos_isotonic[order], 'g', linewidth=3, label='Isotonic calibration (%1.3f)' % clf_isotonic_score) plt.plot(prob_pos_sigmoid[order], 'b', linewidth=3, label='Sigmoid calibration (%1.3f)' % clf_sigmoid_score) plt.plot(np.linspace(0, y_test.size, 51)[1::2], y_test[order].reshape(25, -1).mean(1), 'k', linewidth=3, label=r'Empirical') plt.ylim([-0.05, 1.05]) plt.xlabel("Instances sorted according to predicted probability " "(uncalibrated GNB)") plt.ylabel("P(y=1)") plt.legend(loc="upper left") plt.title("Gaussian naive Bayes probabilities") plt.show()
bsd-3-clause
potash/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
159
10196
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius([query_pt], r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius([query_pt], r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
sonnyhu/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
shikhardb/scikit-learn
examples/linear_model/plot_sgd_iris.py
286
2202
""" ======================================== Plot multi-class SGD on the iris dataset ======================================== Plot decision surface of multi-class SGD on iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import SGDClassifier # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target colors = "bry" # shuffle idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) X = X[idx] y = y[idx] # standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std h = .02 # step size in the mesh clf = SGDClassifier(alpha=0.001, n_iter=100).fit(X, y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('tight') # Plot also the training points for i, color in zip(clf.classes_, colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i], cmap=plt.cm.Paired) plt.title("Decision surface of multi-class SGD") plt.axis('tight') # Plot the three one-against-all classifiers xmin, xmax = plt.xlim() ymin, ymax = plt.ylim() coef = clf.coef_ intercept = clf.intercept_ def plot_hyperplane(c, color): def line(x0): return (-(x0 * coef[c, 0]) - intercept[c]) / coef[c, 1] plt.plot([xmin, xmax], [line(xmin), line(xmax)], ls="--", color=color) for i, color in zip(clf.classes_, colors): plot_hyperplane(i, color) plt.legend() plt.show()
bsd-3-clause
mojoboss/scikit-learn
sklearn/utils/tests/test_random.py
230
7344
from __future__ import division import numpy as np import scipy.sparse as sp from scipy.misc import comb as combinations from numpy.testing import assert_array_almost_equal from sklearn.utils.random import sample_without_replacement from sklearn.utils.random import random_choice_csc from sklearn.utils.testing import ( assert_raises, assert_equal, assert_true) ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): assert_raises(ValueError, sample_without_replacement, 5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_poluation < n_sample assert_raises(ValueError, sample_without_replacement, 0, 1) assert_raises(ValueError, sample_without_replacement, 1, 2) # n_population == n_samples assert_equal(sample_without_replacement(0, 0).shape, (0, )) assert_equal(sample_without_replacement(1, 1).shape, (1, )) # n_population >= n_samples assert_equal(sample_without_replacement(5, 0).shape, (0, )) assert_equal(sample_without_replacement(5, 1).shape, (1, )) # n_population < 0 or n_samples < 0 assert_raises(ValueError, sample_without_replacement, -1, 5) assert_raises(ValueError, sample_without_replacement, 5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert_equal(len(s), n_samples) unique = np.unique(s) assert_equal(np.size(unique), n_samples) assert_true(np.all(unique < n_population)) # test edge case n_population == n_samples == 0 assert_equal(np.size(sample_without_replacement(0, 0)), 0) def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = combinations(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilites = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilites[k], p, decimal=1) # Edge case proabilites 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = random_choice_csc(n_samples, classes, class_probabilites, random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilites[k])) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilites = [np.array([0.0, 1.0]), np.array([1.0])] got = random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert_true(sp.issparse(got)) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilites[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilites is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilites = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1) # Given proabilites don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilites = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] assert_raises(ValueError, random_choice_csc, 4, classes, class_probabilites, 1)
bsd-3-clause
krez13/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
MDAnalysis/pmda
pmda/rms/rmsf.py
1
8614
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # PMDA # Copyright (c) 2019 The MDAnalysis Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the GNU Public Licence, v2 or any higher version """ Calculating Root-Mean-Square Fluctuations (RMSF) --- :mod:`pmda.rmsf` ===================================================================== This module contains parallel versions of analysis tasks in :mod:`MDAnalysis.analysis.rms`. .. autoclass:: RMSF :members: :inherited-members: See Also -------- MDAnalysis.analysis.rms.RMSF """ from __future__ import absolute_import, division import numpy as np from pmda.parallel import ParallelAnalysisBase from pmda.util import fold_second_order_moments class RMSF(ParallelAnalysisBase): r"""Parallel RMSF analysis. Calculates RMSF of given atoms across a trajectory. Attributes ---------- rmsf : array ``N``-length :class:`numpy.ndarray` array of RMSF values, where ``N`` is the number of atoms in the `atomgroup` of interest. Returned values have units of ångströms. Parameters ---------- atomgroup : AtomGroup Atoms for which RMSF is calculated Raises ------ ValueError raised if negative values are calculated, which indicates that a numerical overflow or underflow occured See Also -------- MDAnalysis.analysis.rms.RMSF Notes ----- No RMSD-superposition is performed; it is assumed that the user is providing a trajectory where the protein of interest has been structurally aligned to a reference structure (see the Examples section below). The protein also has be whole because periodic boundaries are not taken into account. Run the analysis with :meth:`RMSF.run`, which stores the results in the array :attr:`RMSF.rmsf`. The root mean square fluctuation of an atom :math:`i` is computed as the time average: .. math:: \sigma_{i} = \sqrt{\left\langle (\mathbf{x}_{i} - \langle\mathbf{x}_{i}\rangle)^2 \right\rangle} No mass weighting is performed. This method implements an algorithm for computing sums of squares while avoiding overflows and underflows [Welford1962]_, as well as an algorithm for combining the sum of squares and means of separate partitions of a given trajectory to calculate the RMSF of the entire trajectory [CGL1979]_. For more details about RMSF calculations, refer to [Awtrey2019]_. References ---------- .. [Welford1962] B. P. Welford (1962). "Note on a Method for Calculating Corrected Sums of Squares and Products." Technometrics 4(3):419-420. Examples -------- In this example we calculate the residue RMSF fluctuations by analyzing the :math:`\text{C}_\alpha` atoms. First we need to fit the trajectory to the average structure as a reference. That requires calculating the average structure first. Because we need to analyze and manipulate the same trajectory multiple times, we are going to load it into memory using the :mod:`~MDAnalysis.coordinates.MemoryReader`. (If your trajectory does not fit into memory, you will need to :ref:`write out intermediate trajectories <writing-trajectories>` to disk or :ref:`generate an in-memory universe <creating-in-memory-trajectory-label>` that only contains, say, the protein):: import MDAnalysis as mda from MDAnalysis.analysis import align from MDAnalysis.tests.datafiles import TPR, XTC u = mda.Universe(TPR, XTC, in_memory=True) protein = u.select_atoms("protein") # TODO: Need to center and make whole (this test trajectory # contains the protein being split across periodic boundaries # and the results will be WRONG!) # Fit to the initial frame to get a better average structure # (the trajectory is changed in memory) prealigner = align.AlignTraj(u, u, select="protein and name CA", in_memory=True).run() # ref = average structure ref_coordinates = u.trajectory.timeseries(asel=protein).mean(axis=1) # Make a reference structure (need to reshape into a # 1-frame "trajectory"). ref = mda.Merge(protein).load_new(ref_coordinates[:, None, :], order="afc") We created a new universe ``reference`` that contains a single frame with the averaged coordinates of the protein. Now we need to fit the whole trajectory to the reference by minimizing the RMSD. We use :class:`MDAnalysis.analysis.align.AlignTraj`:: aligner = align.AlignTraj(u, ref, select="protein and name CA", in_memory=True).run() # need to write the trajectory to disk for PMDA 0.3.0 (see issue #15) with mda.Writer("rmsfit.xtc", n_atoms=u.atoms.n_atoms) as W: for ts in u.trajectory: W.write(u.atoms) (For use with PMDA we cannot currently use a in-memory trajectory (see `Issue #15`_) so we must write out the RMS-superimposed trajectory to the file "rmsfit.xtc".) The trajectory is now fitted to the reference (the RMSD is stored as `aligner.rmsd` for further inspection). Now we can calculate the RMSF:: from pmda.rms import RMSF u = mda.Universe(TPR, "rmsfit.xtc") calphas = protein.select_atoms("protein and name CA") rmsfer = RMSF(calphas).run() and plot:: import matplotlib.pyplot as plt plt.plot(calphas.resnums, rmsfer.rmsf) .. versionadded:: 0.3.0 .. _`Issue #15`: https://github.com/MDAnalysis/pmda/issues/15 """ def __init__(self, atomgroup): u = atomgroup.universe super(RMSF, self).__init__(u, (atomgroup, )) self._atomgroup = atomgroup self._top = u.filename self._traj = u.trajectory.filename def _single_frame(self, ts, atomgroups): # mean and sum of squares calculations done in _reduce() return atomgroups[0] def _conclude(self): """ self._results : Array (n_blocks x 2 x N x 3) array """ n_blocks = len(self._results) # serial case if n_blocks == 1: # get length of trajectory slice self.mean = self._results[0, 0] self.sumsquares = self._results[0, 1] self.rmsf = np.sqrt(self.sumsquares.sum(axis=1) / self.n_frames) # parallel case else: mean = self._results[:, 0] sos = self._results[:, 1] # create list of (timesteps, mean, sumsq tuples for each block vals = [] for i in range(n_blocks): vals.append((len(self._blocks[i]), mean[i], sos[i])) # combine block results using fold method results = fold_second_order_moments(vals) self.mean = results[1] self.sumsquares = results[2] self.rmsf = np.sqrt(self.sumsquares.sum(axis=1) / self.n_frames) self._negative_rmsf(self.rmsf) @staticmethod def _reduce(res, result_single_frame): """ 'sum' action for time series """ atoms = result_single_frame positions = atoms.positions.astype(np.float64) # initial time step case if isinstance(res, list) and len(res) == 0: # initial mean position = initial position mean = positions # create new zero-array for sum of squares to prevent blocks from # using data from previous blocks sumsq = np.zeros((atoms.n_atoms, 3)) # set initial time step for each block to zero k = 0 # assign initial (sum of squares and mean) zero-arrays to res res = [mean, sumsq, k] else: # update time step k = res[2] + 1 # update sum of squares res[1] += (k / (k + 1)) * (positions - res[0]) ** 2 # update mean res[0] = (k * res[0] + positions) / (k + 1) # update time step in res res[2] = k return res @staticmethod def _negative_rmsf(rmsf): if not (rmsf >= 0).all(): raise ValueError("Some RMSF values negative; overflow " + "or underflow occurred")
gpl-2.0
nvoron23/scikit-learn
sklearn/preprocessing/label.py
137
27165
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Joel Nothman <[email protected]> # Hamzeh Alsalhi <[email protected]> # License: BSD 3 clause from collections import defaultdict import itertools import array import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import np_version from ..utils.fixes import sparse_min_max from ..utils.fixes import astype from ..utils.fixes import in1d from ..utils import column_or_1d from ..utils.validation import check_array from ..utils.validation import check_is_fitted from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] def _check_numpy_unicode_bug(labels): """Check that user is not subject to an old numpy bug Fixed in master before 1.7.0: https://github.com/numpy/numpy/pull/243 """ if np_version[:3] < (1, 7, 0) and labels.dtype.kind == 'U': raise RuntimeError("NumPy < 1.7.0 does not implement searchsorted" " on unicode data correctly. Please upgrade" " NumPy to use LabelEncoder with unicode inputs.") class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ check_is_fitted(self, 'classes_') classes = np.unique(y) _check_numpy_unicode_bug(classes) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ check_is_fitted(self, 'classes_') diff = np.setdiff1d(y, np.arange(len(self.classes_))) if diff: raise ValueError("y contains new labels: %s" % str(diff)) y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'mutliclass-multioutput', 'multilabel-indicator', and 'unknown'. multilabel_ : boolean True if the transformer was fitted on a multilabel rather than a multiclass set of labels. The ``multilabel_`` attribute is deprecated and will be removed in 0.18 sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. indicator_matrix_ : str 'sparse' when the input data to tansform is a multilable-indicator and is sparse, None otherwise. The ``indicator_matrix_`` attribute is deprecated as of version 0.16 and will be removed in 0.18 Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output def fit(self, y): """Fit label binarizer Parameters ---------- y : numpy array of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : numpy array or sparse matrix of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ check_is_fitted(self, 'classes_') y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ check_is_fitted(self, 'classes_') if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") if y_type == 'unknown': raise ValueError("The type of target data is not known") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if len(classes) == 1: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data else: raise ValueError("%s target data is not supported with label " "binarization" % y_type) if not sparse_output: Y = Y.toarray() Y = astype(Y, int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = astype(Y.data, int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: y = np.empty(len(y), dtype=classes.dtype) y.fill(classes[0]) return y else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) yt.indices = np.take(inverse, yt.indices) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
voxlol/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
258
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
tmthydvnprt/compfipy
compfipy/models.py
1
3612
""" models.py Various Stochastic models of the "market" that provide "fake" asset prices to test on. """ import math import datetime import pandas as pd import numpy as np from compfipy import market # Common conversion functions used across all models # ------------------------------------------------------------------------------------------------------------------------------ def convert_to_returns(log_returns=None): """ Convert log returns to normal returns. """ return np.exp(log_returns) def convert_to_price(x0=1, log_returns=None): """ Convert log returns to normal returns and calculate value from initial price. """ returns = convert_to_returns(log_returns) prices = pd.concat([pd.Series(x0), returns[:-1]], ignore_index=True) return prices.cumprod() # Stochastic Models # ------------------------------------------------------------------------------------------------------------------------------ def brownian_motion(time=500, delta_t=(1.0 / 252.0), sigma=2): """ Return asset price whose returnes evolve according to brownian motion. """ sqrt_delta_t_sigma = math.sqrt(delta_t) * sigma log_returns = pd.Series(np.random.normal(loc=0, scale=sqrt_delta_t_sigma, size=time)) return log_returns def geometric_brownian_motion(time=500, delta_t=(1.0 / 252.0), sigma=2, mu=0.5): """ Return asset price whose returnes evolve according to geometric brownian motion. """ wiener_process = brownian_motion(time, delta_t, sigma) sigma_pow_mu_delta_t = (mu - 0.5 * math.pow(sigma, 2)) * delta_t log_returns = wiener_process + sigma_pow_mu_delta_t return log_returns def jump_diffusion(time=500, delta_t=(1.0 / 252.0), mu=0.0, sigma=0.3, jd_lambda=0.1): """ Return jump diffusion process. """ s_n = 0 t = 0 small_lambda = -(1.0 / jd_lambda) jump_sizes = pd.Series(np.zeros((time,))) while s_n < time: s_n += small_lambda * math.log(np.random.uniform(0, 1)) for j in xrange(0, time): if t * delta_t <= s_n * delta_t <= (j+1) * delta_t: jump_sizes[j] += np.random.normal(loc=mu, scale=sigma) break t += 1 return jump_sizes def merton_jump_diffusion(time=500, delta_t=(1.0 / 252.0), sigma=2, gbm_mu=0.5, jd_mu=0.0, jd_sigma=0.3, jd_lambda=0.1): """ Return asset price whose returnes evolve according to geometric brownian motion with jump diffusion. """ jd = jump_diffusion(time, delta_t, jd_mu, jd_sigma, jd_lambda) gbm = geometric_brownian_motion(time, delta_t, sigma, gbm_mu) return gbm + jd # Create standard EOD data from price data # ------------------------------------------------------------------------------------------------------------------------------ def generate_ochlv(prices=None, ochl_mu=0.0, ochl_sigma=0.1, v_mu=100000, v_sigma=math.sqrt(10000)): """ Turn asset price into standard EOD data. """ date_rng = market.date_range(datetime.date.today(), periods=len(prices)) ochlv = pd.DataFrame({'Close':prices}) ochlv['Open'] = prices + prices * np.random.normal(loc=ochl_mu, scale=ochl_sigma, size=prices.shape) ochlv['High'] = prices + prices * np.random.normal(loc=ochl_mu, scale=ochl_sigma, size=prices.shape) ochlv['Low'] = prices + prices * np.random.normal(loc=ochl_mu, scale=ochl_sigma, size=prices.shape) ochlv['Volume'] = v_mu * np.abs(prices.pct_change(2).shift(-2).ffill()) \ + np.random.normal(loc=v_mu, scale=v_sigma, size=prices.shape) ochlv = ochlv.set_index(date_rng) return ochlv
mit
walterreade/scikit-learn
sklearn/tests/test_grid_search.py
68
28856
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import warnings import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.exceptions import ChangedBehaviorWarning from sklearn.exceptions import FitFailedWarning with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler) from sklearn.cross_validation import KFold, StratifiedKFold from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
ishank08/scikit-learn
sklearn/__init__.py
28
3073
""" Machine learning module for Python ================================== sklearn is a Python module integrating classical machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib). It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering. See http://scikit-learn.org for complete documentation. """ import sys import re import warnings # Make sure that DeprecationWarning within this package always gets printed warnings.filterwarnings('always', category=DeprecationWarning, module='^{0}\.'.format(re.escape(__name__))) # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.19.dev0' try: # This variable is injected in the __builtins__ by the build # process. It used to enable importing subpackages of sklearn when # the binaries are not built __SKLEARN_SETUP__ except NameError: __SKLEARN_SETUP__ = False if __SKLEARN_SETUP__: sys.stderr.write('Partial import of sklearn during the build process.\n') # We are not importing the rest of the scikit during the build # process, as it may not be compiled yet else: from . import __check_build from .base import clone __check_build # avoid flakes unused variable error __all__ = ['calibration', 'cluster', 'covariance', 'cross_decomposition', 'cross_validation', 'datasets', 'decomposition', 'dummy', 'ensemble', 'exceptions', 'externals', 'feature_extraction', 'feature_selection', 'gaussian_process', 'grid_search', 'isotonic', 'kernel_approximation', 'kernel_ridge', 'learning_curve', 'linear_model', 'manifold', 'metrics', 'mixture', 'model_selection', 'multiclass', 'multioutput', 'naive_bayes', 'neighbors', 'neural_network', 'pipeline', 'preprocessing', 'random_projection', 'semi_supervised', 'svm', 'tree', 'discriminant_analysis', # Non-modules: 'clone'] def setup_module(module): """Fixture for the tests to assure globally controllable seeding of RNGs""" import os import numpy as np import random # It could have been provided in the environment _random_seed = os.environ.get('SKLEARN_SEED', None) if _random_seed is None: _random_seed = np.random.uniform() * (2 ** 31 - 1) _random_seed = int(_random_seed) print("I: Seeding RNGs with %r" % _random_seed) np.random.seed(_random_seed) random.seed(_random_seed)
bsd-3-clause
jaduimstra/nilmtk
nilmtk/dataset_converters/redd/convert_redd.py
6
5462
from __future__ import print_function, division import pandas as pd import numpy as np from copy import deepcopy from os.path import join, isdir, isfile from os import listdir import re from sys import stdout from nilmtk.utils import get_datastore from nilmtk.datastore import Key from nilmtk.timeframe import TimeFrame from nilmtk.measurement import LEVEL_NAMES from nilmtk.utils import get_module_directory, check_directory_exists from nilm_metadata import convert_yaml_to_hdf5, save_yaml_to_datastore """ TODO: * The bottleneck appears to be CPU. So could be sped up by using multiprocessing module to use multiple CPU cores to load REDD channels in parallel. """ def convert_redd(redd_path, output_filename, format='HDF'): """ Parameters ---------- redd_path : str The root path of the REDD low_freq dataset. output_filename : str The destination filename (including path and suffix). format : str format of output. Either 'HDF' or 'CSV'. Defaults to 'HDF' """ def _redd_measurement_mapping_func(house_id, chan_id): ac_type = 'apparent' if chan_id <= 2 else 'active' return [('power', ac_type)] # Open DataStore store = get_datastore(output_filename, format, mode='w') # Convert raw data to DataStore _convert(redd_path, store, _redd_measurement_mapping_func, 'US/Eastern') # Add metadata save_yaml_to_datastore(join(get_module_directory(), 'dataset_converters', 'redd', 'metadata'), store) store.close() print("Done converting REDD to HDF5!") def _convert(input_path, store, measurement_mapping_func, tz, sort_index=True): """ Parameters ---------- input_path : str The root path of the REDD low_freq dataset. store : DataStore The NILMTK DataStore object. measurement_mapping_func : function Must take these parameters: - house_id - chan_id Function should return a list of tuples e.g. [('power', 'active')] tz : str Timezone e.g. 'US/Eastern' sort_index : bool """ check_directory_exists(input_path) # Iterate though all houses and channels houses = _find_all_houses(input_path) for house_id in houses: print("Loading house", house_id, end="... ") stdout.flush() chans = _find_all_chans(input_path, house_id) for chan_id in chans: print(chan_id, end=" ") stdout.flush() key = Key(building=house_id, meter=chan_id) measurements = measurement_mapping_func(house_id, chan_id) csv_filename = _get_csv_filename(input_path, key) df = _load_csv(csv_filename, measurements, tz) if sort_index: df = df.sort_index() # raw REDD data isn't always sorted store.put(str(key), df) print() def _find_all_houses(input_path): """ Returns ------- list of integers (house instances) """ dir_names = [p for p in listdir(input_path) if isdir(join(input_path, p))] return _matching_ints(dir_names, '^house_(\d)$') def _find_all_chans(input_path, house_id): """ Returns ------- list of integers (channels) """ house_path = join(input_path, 'house_{:d}'.format(house_id)) filenames = [p for p in listdir(house_path) if isfile(join(house_path, p))] return _matching_ints(filenames, '^channel_(\d\d?).dat$') def _matching_ints(strings, regex): """Uses regular expression to select and then extract an integer from strings. Parameters ---------- strings : list of strings regex : string Regular Expression. Including one group. This group is used to extract the integer from each string. Returns ------- list of ints """ ints = [] p = re.compile(regex) for string in strings: m = p.match(string) if m: integer = int(m.group(1)) ints.append(integer) ints.sort() return ints def _get_csv_filename(input_path, key_obj): """ Parameters ---------- input_path : (str) the root path of the REDD low_freq dataset key_obj : (nilmtk.Key) the house and channel to load Returns ------- filename : str """ assert isinstance(input_path, str) assert isinstance(key_obj, Key) # Get path house_path = 'house_{:d}'.format(key_obj.building) path = join(input_path, house_path) assert isdir(path) # Get filename filename = 'channel_{:d}.dat'.format(key_obj.meter) filename = join(path, filename) assert isfile(filename) return filename def _load_csv(filename, columns, tz): """ Parameters ---------- filename : str columns : list of tuples (for hierarchical column index) tz : str e.g. 'US/Eastern' Returns ------- dataframe """ # Load data df = pd.read_csv(filename, sep=' ', names=columns, dtype={m:np.float32 for m in columns}) # Modify the column labels to reflect the power measurements recorded. df.columns.set_names(LEVEL_NAMES, inplace=True) # Convert the integer index column to timezone-aware datetime df.index = pd.to_datetime(df.index.values, unit='s', utc=True) df = df.tz_convert(tz) return df
apache-2.0
trankmichael/scikit-learn
sklearn/datasets/svmlight_format.py
114
15826
"""This module implements a loader and dumper for the svmlight format This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. """ # Authors: Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from contextlib import closing import io import os.path import numpy as np import scipy.sparse as sp from ._svmlight_format import _load_svmlight_file from .. import __version__ from ..externals import six from ..externals.six import u, b from ..externals.six.moves import range, zip from ..utils import check_array from ..utils.fixes import frombuffer_empty def load_svmlight_file(f, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load datasets in the svmlight / libsvm format into sparse CSR matrix This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. This format is used as the default format for both svmlight and the libsvm command line programs. Parsing a text based source can be expensive. When working on repeatedly on the same dataset, it is recommended to wrap this loader with joblib.Memory.cache to store a memmapped backup of the CSR results of the first call and benefit from the near instantaneous loading of memmapped structures for the subsequent calls. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. This implementation is written in Cython and is reasonably fast. However, a faster API-compatible loader is also available at: https://github.com/mblondel/svmlight-loader Parameters ---------- f : {str, file-like, int} (Path to) a file to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. A file-like or file descriptor will not be closed by this function. A file-like object must be opened in binary mode. n_features : int or None The number of features to use. If None, it will be inferred. This argument is useful to load several files that are subsets of a bigger sliced dataset: each subset might not have examples of every feature, hence the inferred shape might vary from one slice to another. multilabel : boolean, optional, default False Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based : boolean or "auto", optional, default "auto" Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id : boolean, default False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- X: scipy.sparse matrix of shape (n_samples, n_features) y: ndarray of shape (n_samples,), or, in the multilabel a list of tuples of length n_samples. query_id: array of shape (n_samples,) query_id for each sample. Only returned when query_id is set to True. See also -------- load_svmlight_files: similar function for loading multiple files in this format, enforcing the same number of features/columns on all of them. Examples -------- To use joblib.Memory to cache the svmlight file:: from sklearn.externals.joblib import Memory from sklearn.datasets import load_svmlight_file mem = Memory("./mycache") @mem.cache def get_data(): data = load_svmlight_file("mysvmlightfile") return data[0], data[1] X, y = get_data() """ return tuple(load_svmlight_files([f], n_features, dtype, multilabel, zero_based, query_id)) def _gen_open(f): if isinstance(f, int): # file descriptor return io.open(f, "rb", closefd=False) elif not isinstance(f, six.string_types): raise TypeError("expected {str, int, file-like}, got %s" % type(f)) _, ext = os.path.splitext(f) if ext == ".gz": import gzip return gzip.open(f, "rb") elif ext == ".bz2": from bz2 import BZ2File return BZ2File(f, "rb") else: return open(f, "rb") def _open_and_load(f, dtype, multilabel, zero_based, query_id): if hasattr(f, "read"): actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # XXX remove closing when Python 2.7+/3.1+ required else: with closing(_gen_open(f)) as f: actual_dtype, data, ind, indptr, labels, query = \ _load_svmlight_file(f, dtype, multilabel, zero_based, query_id) # convert from array.array, give data the right dtype if not multilabel: labels = frombuffer_empty(labels, np.float64) data = frombuffer_empty(data, actual_dtype) indices = frombuffer_empty(ind, np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) # never empty query = frombuffer_empty(query, np.intc) data = np.asarray(data, dtype=dtype) # no-op for float{32,64} return data, indices, indptr, labels, query def load_svmlight_files(files, n_features=None, dtype=np.float64, multilabel=False, zero_based="auto", query_id=False): """Load dataset from multiple files in SVMlight format This function is equivalent to mapping load_svmlight_file over a list of files, except that the results are concatenated into a single, flat list and the samples vectors are constrained to all have the same number of features. In case the file contains a pairwise preference constraint (known as "qid" in the svmlight format) these are ignored unless the query_id parameter is set to True. These pairwise preference constraints can be used to constraint the combination of samples when using pairwise loss functions (as is the case in some learning to rank problems) so that only pairs with the same query_id value are considered. Parameters ---------- files : iterable over {str, file-like, int} (Paths of) files to load. If a path ends in ".gz" or ".bz2", it will be uncompressed on the fly. If an integer is passed, it is assumed to be a file descriptor. File-likes and file descriptors will not be closed by this function. File-like objects must be opened in binary mode. n_features: int or None The number of features to use. If None, it will be inferred from the maximum column index occurring in any of the files. This can be set to a higher value than the actual number of features in any of the input files, but setting it to a lower value will cause an exception to be raised. multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) zero_based: boolean or "auto", optional Whether column indices in f are zero-based (True) or one-based (False). If column indices are one-based, they are transformed to zero-based to match Python/NumPy conventions. If set to "auto", a heuristic check is applied to determine this from the file contents. Both kinds of files occur "in the wild", but they are unfortunately not self-identifying. Using "auto" or True should always be safe. query_id: boolean, defaults to False If True, will return the query_id array for each file. dtype : numpy data type, default np.float64 Data type of dataset to be loaded. This will be the data type of the output numpy arrays ``X`` and ``y``. Returns ------- [X1, y1, ..., Xn, yn] where each (Xi, yi) pair is the result from load_svmlight_file(files[i]). If query_id is set to True, this will return instead [X1, y1, q1, ..., Xn, yn, qn] where (Xi, yi, qi) is the result from load_svmlight_file(files[i]) Notes ----- When fitting a model to a matrix X_train and evaluating it against a matrix X_test, it is essential that X_train and X_test have the same number of features (X_train.shape[1] == X_test.shape[1]). This may not be the case if you load the files individually with load_svmlight_file. See also -------- load_svmlight_file """ r = [_open_and_load(f, dtype, multilabel, bool(zero_based), bool(query_id)) for f in files] if (zero_based is False or zero_based == "auto" and all(np.min(tmp[1]) > 0 for tmp in r)): for ind in r: indices = ind[1] indices -= 1 n_f = max(ind[1].max() for ind in r) + 1 if n_features is None: n_features = n_f elif n_features < n_f: raise ValueError("n_features was set to {}," " but input file contains {} features" .format(n_features, n_f)) result = [] for data, indices, indptr, y, query_values in r: shape = (indptr.shape[0] - 1, n_features) X = sp.csr_matrix((data, indices, indptr), shape) X.sort_indices() result += X, y if query_id: result.append(query_values) return result def _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id): is_sp = int(hasattr(X, "tocsr")) if X.dtype.kind == 'i': value_pattern = u("%d:%d") else: value_pattern = u("%d:%.16g") if y.dtype.kind == 'i': label_pattern = u("%d") else: label_pattern = u("%.16g") line_pattern = u("%s") if query_id is not None: line_pattern += u(" qid:%d") line_pattern += u(" %s\n") if comment: f.write(b("# Generated by dump_svmlight_file from scikit-learn %s\n" % __version__)) f.write(b("# Column indices are %s-based\n" % ["zero", "one"][one_based])) f.write(b("#\n")) f.writelines(b("# %s\n" % line) for line in comment.splitlines()) for i in range(X.shape[0]): if is_sp: span = slice(X.indptr[i], X.indptr[i + 1]) row = zip(X.indices[span], X.data[span]) else: nz = X[i] != 0 row = zip(np.where(nz)[0], X[i, nz]) s = " ".join(value_pattern % (j + one_based, x) for j, x in row) if multilabel: nz_labels = np.where(y[i] != 0)[0] labels_str = ",".join(label_pattern % j for j in nz_labels) else: labels_str = label_pattern % y[i] if query_id is not None: feat = (labels_str, query_id[i], s) else: feat = (labels_str, s) f.write((line_pattern % feat).encode('ascii')) def dump_svmlight_file(X, y, f, zero_based=True, comment=None, query_id=None, multilabel=False): """Dump the dataset in svmlight / libsvm file format. This format is a text-based format, with one sample per line. It does not store zero valued features hence is suitable for sparse dataset. The first element of each line can be used to store a target variable to predict. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. f : string or file-like in binary mode If string, specifies the path that will contain the data. If file-like, data will be written to f. f should be opened in binary mode. zero_based : boolean, optional Whether column indices should be written zero-based (True) or one-based (False). comment : string, optional Comment to insert at the top of the file. This should be either a Unicode string, which will be encoded as UTF-8, or an ASCII byte string. If a comment is given, then it will be preceded by one that identifies the file as having been dumped by scikit-learn. Note that not all tools grok comments in SVMlight files. query_id : array-like, shape = [n_samples] Array containing pairwise preference constraints (qid in svmlight format). multilabel: boolean, optional Samples may have several labels each (see http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html) """ if comment is not None: # Convert comment string to list of lines in UTF-8. # If a byte string is passed, then check whether it's ASCII; # if a user wants to get fancy, they'll have to decode themselves. # Avoid mention of str and unicode types for Python 3.x compat. if isinstance(comment, bytes): comment.decode("ascii") # just for the exception else: comment = comment.encode("utf-8") if six.b("\0") in comment: raise ValueError("comment string contains NUL byte") y = np.asarray(y) if y.ndim != 1 and not multilabel: raise ValueError("expected y of shape (n_samples,), got %r" % (y.shape,)) Xval = check_array(X, accept_sparse='csr') if Xval.shape[0] != y.shape[0]: raise ValueError("X.shape[0] and y.shape[0] should be the same, got" " %r and %r instead." % (Xval.shape[0], y.shape[0])) # We had some issues with CSR matrices with unsorted indices (e.g. #1501), # so sort them here, but first make sure we don't modify the user's X. # TODO We can do this cheaper; sorted_indices copies the whole matrix. if Xval is X and hasattr(Xval, "sorted_indices"): X = Xval.sorted_indices() else: X = Xval if hasattr(X, "sort_indices"): X.sort_indices() if query_id is not None: query_id = np.asarray(query_id) if query_id.shape[0] != y.shape[0]: raise ValueError("expected query_id of shape (n_samples,), got %r" % (query_id.shape,)) one_based = not zero_based if hasattr(f, "write"): _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id) else: with open(f, "wb") as f: _dump_svmlight(X, y, f, multilabel, one_based, comment, query_id)
bsd-3-clause
scattering/ipeek
server/plot_dcs.py
1
3478
# -*- coding: utf-8 -*- import h5py import simplejson import os import numpy as np #import matplotlib.pyplot as plt from time import time def Elam(lam): """ convert wavelength in angstroms to energy in meV """ return 81.81/lam**2 def Ek(k): """ convert wave-vector in inver angstroms to energy in meV """ return 2.072*k**2 def kE(E): return np.sqrt(E/2.072) def Qfunc(ki, kf, theta): """ evaluate the magnitude of Q from ki, kf, and theta theta is the angle between kf and ki, sometimes called 2 theta, units of degrees """ return np.sqrt( ki**2 + kf**2 - 2*ki*kf*np.cos(theta*np.pi/180) ) def Ef_from_timechannel(timeChannel, t_SD_min, speedRatDenom, masterSpeed): """ using the parameters t_SD_min = minimum sample to detector time speedRatDenom = to set FOL chopper speed masterSpeed = chopper speed (except for FOL chopper) using the variabl timeChannel, where I am numbering from 1 <be careful of this convention> """ return 8.41e7 / (t_SD_min + (timeChannel+1)* (6e4 *(speedRatDenom/masterSpeed)) )**2 def process_raw_dcs(data_path): # t0 = time() os.chdir(data_path) # change working directory detInfo = np.genfromtxt('dcs_detector_info.txt', skip_header=1, skip_footer=17) detToTwoTheta = detInfo[:,9] # 10th column os.system('gzip -dc livedata.dcs.gz > livedata.dcs') #os.system('C:\\Software\\Octave-3.6.4\\bin\\octave --eval "load livedata.dcs; save -hdf5 livedata.hdf;"') os.system('octave --eval "load livedata.dcs; save -hdf5 livedata.hdf;"') f = h5py.File('livedata.hdf') data = f['histodata']['value'].value ch_wl = f['ch_wl']['value'].value Ei = Elam(ch_wl) ki = kE(Ei) dE =0.5*(-0.10395+0.05616 *Ei+0.00108 *Ei**2) #take the putative resolution and halve it masterSpeed = f['ch_ms']['value'].value speedRatDenom = f['ch_srdenom']['value'].value t_SD_min = f['tsdmin']['value'].value Q_max = Qfunc(ki,ki,150) Q_min = 0 E_bins = np.linspace(-Ei, Ei, int(2*Ei/dE) ) Q_bins = np.linspace(Q_min,Q_max,301) #for every point in {timechannel, detectorchannel} space, map into a bin of {E,Q} space #remember, data is organized as data[detectorchannel][timechannel] i,j = np.indices(data.shape) ef = Ef_from_timechannel(j, t_SD_min, speedRatDenom, masterSpeed) Q_ = Qfunc(ki, kE(ef), detToTwoTheta[:, None]) E_transfer = Ei-ef E_mask = (E_transfer > -Ei) EQ_data, xedges, yedges = np.histogram2d(Q_[E_mask], E_transfer[E_mask], bins=(Q_bins, E_bins), range=([Q_min,Q_max], [-Ei, Ei]), weights=data[E_mask]) stop_date = ''.join(chr(a) for a in f['stop_date']['value'].value.flatten()) start_date = ''.join(chr(a) for a in f['start_date']['value'].value.flatten()) output = { "title": "DCS snapshot", "dims": { "ymin": -Ei, "ymax": Ei, "ydim": EQ_data.shape[1], "xmin": 0, "xmax": Q_max, "xdim": EQ_data.shape[0], "zmin": EQ_data.min(), "zmax": EQ_data.max() }, "type": "2d", "ylabel": "Ei-Ef [meV]", "xlabel": "|Q| [Å⁻¹]", "z": [EQ_data.T.tolist()], "options": {}, "metadata": { "stop_date": stop_date, "start_date": start_date } } #print time()-t0 return simplejson.dumps([output])
unlicense
ebernhardson/l2r
code/bench_formats.py
1
1186
import pandas as pd import feather import os import timeit import config from utils import table_utils df = table_utils._read(config.ALL_DATA) FILE_HDF = os.path.join(config.TMP_DIR, 'test.h5') FILE_PICKLE = os.path.join(config.TMP_DIR, 'test.pkl') FILE_FEATHER = os.path.join(config.TMP_DIR, 'test.feather') def test_hdf_write(): df.to_hdf(FILE_HDF, 'test', mode='w') def test_hdf_read(): pd.read_hdf(FILE_HDF, 'test') def test_pickle_write(): df.to_pickle(FILE_PICKLE) def test_pickle_read(): pd.read_pickle(FILE_PICKLE) def test_feather_write(): feather.write_dataframe(df.copy(), FILE_FEATHER) def test_feather_read(): feather.read_dataframe(FILE_FEATHER) def test(func): took = timeit.timeit("%s()" % (func.__name__), setup="from __main__ import %s" % (func.__name__), number=3) print "%s: %.3f" % (func.__name__, took) if __name__ == "__main__": res = [] res.append(test(test_hdf_write)) res.append(test(test_hdf_read)) res.append(test(test_pickle_write)) res.append(test(test_pickle_read)) res.append(test(test_feather_write)) res.append(test(test_feather_read)) print "\n\n\n" print "\n".join(res)
mit
msultan/msmbuilder
setup.py
3
7479
"""MSMBuilder: Statistical models for Biomolecular Dynamics """ from __future__ import print_function, absolute_import DOCLINES = __doc__.split("\n") import sys import traceback import numpy as np from os.path import join as pjoin from setuptools import setup, Extension, find_packages try: sys.dont_write_bytecode = True sys.path.insert(0, '.') from basesetup import write_version_py, CompilerDetection, \ check_dependencies finally: sys.dont_write_bytecode = False try: import mdtraj mdtraj_capi = mdtraj.capi() except (ImportError, AttributeError): print('=' * 80) print('MDTraj version 1.1.X or later is required') print('=' * 80) traceback.print_exc() sys.exit(1) if '--debug' in sys.argv: sys.argv.remove('--debug') DEBUG = True else: DEBUG = False if '--disable-openmp' in sys.argv: sys.argv.remove('--disable-openmp') DISABLE_OPENMP = True else: DISABLE_OPENMP = False try: import Cython from Cython.Distutils import build_ext if Cython.__version__ < '0.18': raise ImportError() except ImportError: print( 'Cython version 0.18 or later is required. Try "conda install cython"') sys.exit(1) # ######################### VERSION = '3.9.0.dev0' ISRELEASED = False __version__ = VERSION # ######################### CLASSIFIERS = """\ Intended Audience :: Science/Research Intended Audience :: Developers License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+) Programming Language :: C++ Programming Language :: Python Development Status :: 5 - Production/Stable Topic :: Software Development Topic :: Scientific/Engineering Operating System :: POSIX Operating System :: Unix Operating System :: MacOS Programming Language :: Python :: 2 Programming Language :: Python :: 2.7 Programming Language :: Python :: 3 Programming Language :: Python :: 3.4 Programming Language :: Python :: 3.5 """ if any(cmd in sys.argv for cmd in ('install', 'build', 'develop')): check_dependencies(( ('numpy',), ('scipy',), ('pandas',), ('six',), ('mdtraj',), ('sklearn', 'scikit-learn'), ('numpydoc',), ('tables', 'pytables'), )) # Where to find extensions MSMDIR = 'msmbuilder/msm/' HMMDIR = 'msmbuilder/hmm/' CLUSTERDIR = 'msmbuilder/cluster/' compiler = CompilerDetection(DISABLE_OPENMP) with open('msmbuilder/src/config.pxi', 'w') as f: f.write(''' DEF DEBUG = {debug} DEF OPENMP = {openmp} '''.format(openmp=compiler.openmp_enabled, debug=DEBUG)) extensions = [] extensions.append( Extension('msmbuilder.example_datasets._muller', sources=[pjoin('msmbuilder', 'example_datasets', '_muller.pyx')], include_dirs=[np.get_include()])) extensions.append( Extension('msmbuilder.msm._markovstatemodel', sources=[pjoin(MSMDIR, '_markovstatemodel.pyx'), pjoin(MSMDIR, 'src/transmat_mle_prinz.c')], include_dirs=[pjoin(MSMDIR, 'src'), np.get_include()])) extensions.append( Extension('msmbuilder.tests.test_cyblas', sources=['msmbuilder/tests/test_cyblas.pyx'], include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.msm._ratematrix', sources=[pjoin(MSMDIR, '_ratematrix.pyx')], language='c++', extra_compile_args=compiler.compiler_args_openmp, libraries=compiler.compiler_libraries_openmp, include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.decomposition._speigh', sources=[pjoin('msmbuilder', 'decomposition', '_speigh.pyx')], language='c++', extra_compile_args=compiler.compiler_args_openmp, libraries=compiler.compiler_libraries_openmp, include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.msm._metzner_mcmc_fast', sources=[pjoin(MSMDIR, '_metzner_mcmc_fast.pyx'), pjoin(MSMDIR, 'src/metzner_mcmc.c')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_openmp, include_dirs=[pjoin(MSMDIR, 'src'), np.get_include()])) extensions.append( Extension('msmbuilder.libdistance', language='c++', sources=['msmbuilder/libdistance/libdistance.pyx'], # msvc needs to be told "libtheobald", gcc wants just "theobald" libraries=['%stheobald' % ('lib' if compiler.msvc else '')], include_dirs=["msmbuilder/libdistance/src", mdtraj_capi['include_dir'], np.get_include()], library_dirs=[mdtraj_capi['lib_dir']], )) extensions.append( Extension('msmbuilder.cluster._kmedoids', language='c++', sources=[pjoin(CLUSTERDIR, '_kmedoids.pyx'), pjoin(CLUSTERDIR, 'src', 'kmedoids.cc')], include_dirs=[np.get_include()])) # To get debug symbols on Windows, use # extra_link_args=['/DEBUG'] # extra_compile_args=['/Zi'] extensions.append( Extension('msmbuilder.hmm.gaussian', language='c++', sources=[pjoin(HMMDIR, 'gaussian.pyx'), pjoin(HMMDIR, 'src/GaussianHMMFitter.cpp')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_sse3 + compiler.compiler_args_openmp, include_dirs=[np.get_include(), HMMDIR, pjoin(HMMDIR, 'src/include/'), pjoin(HMMDIR, 'src/')])) extensions.append( Extension('msmbuilder.hmm.vonmises', language='c++', sources=[pjoin(HMMDIR, 'vonmises.pyx'), pjoin(HMMDIR, 'src/VonMisesHMMFitter.cpp'), pjoin(HMMDIR, 'cephes/i0.c'), pjoin(HMMDIR, 'cephes/chbevl.c')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_sse3 + compiler.compiler_args_openmp, include_dirs=[np.get_include(), HMMDIR, pjoin(HMMDIR, 'src/include/'), pjoin(HMMDIR, 'src/'), pjoin(HMMDIR, 'cephes/')])) write_version_py(VERSION, ISRELEASED, filename='msmbuilder/version.py') setup(name='msmbuilder', author='Robert McGibbon', author_email='[email protected]', description=DOCLINES[0], long_description="\n".join(DOCLINES[2:]), version=__version__, url='https://github.com/msmbuilder/msmbuilder', platforms=['Linux', 'Mac OS-X', 'Unix'], classifiers=CLASSIFIERS.splitlines(), packages=find_packages(), package_data={ 'msmbuilder.tests': ['workflows/*'], 'msmbuilder': ['project_templates/*.*', 'project_templates/*/*', 'io_templates/*', ], }, entry_points={'console_scripts': ['msmb = msmbuilder.scripts.msmb:main']}, zip_safe=False, ext_modules=extensions, cmdclass={'build_ext': build_ext})
lgpl-2.1
casselineau/Tracer
tracer/surface.py
1
7040
# Define some basic surfaces for use with the ray tracer. From this minimal # hierarchy other surfaces should be derived to implement actual geometric # operations. # # References: # [1] John J. Craig, Introduction to Robotics, 3rd ed., 2005. import numpy as N from has_frame import HasFrame class Surface(HasFrame): """ Defines the base of surfaces that interact with rays. """ def __init__(self, geometry, optics, location=None, rotation=None, fixed_color=False): """ Arguments: geometry - a GeometryManager object responsible for finding ray intersections with the surface. optics - a callable that gets the geometry manageri, bundle and selector, and returns the outgoing ray bundle generated by the geometry and bundle. location, rotation - passed directly to the HasFrame constructor. fixed_color - For rendering purposed. If a tuple of normalised RGB or RGBa is given, the geometry will be of that color in the rendering. """ HasFrame.__init__(self, location, rotation) self._geom = geometry self._opt = optics self._fixed_color = fixed_color if fixed_color: self._fixed_color = fixed_color[:3] if len(fixed_color) == 4: self._transparency = fixed_color[-1] else: self._transparency = 0 def get_optics_manager(self): """ Returns the optics-manager callable. May be useful for introspection. Note that it is a read-only attribute. """ return self._opt def get_geometry_manager(self): """ Returns the geometry-manager instance. May be useful for introspection. Note that it is a read-only attribute. """ return self._geom def register_incoming(self, ray_bundle): """ Records the incoming ray bundle, and uses the geometry manager to return the parametric positions of intersection with the surface along the ray. Arguments: ray_bundle - a RayBundle object with at-least its vertices and directions specified. Returns A 1D array with the parametric position of intersection along each of the rays. Rays that missed the surface return +infinity. """ self._current_bundle = ray_bundle return self._geom.find_intersections(self._temp_frame, ray_bundle) def select_rays(self, idxs): """ Informs the geometry manager that only the specified rays are to be used henceforth. Arguments: idxs - an array with indices into the last registered ray bundle, marking rays that will be used. """ self._selected = idxs self._geom.select_rays(idxs) def get_outgoing(self): """ Generates a new ray bundle, which is the reflections/refractions of the user-selected rays out of the incoming ray-bundle that was previously registered. Returns: a RayBundle object with the new bundle, with vertices on the surface and directions according to optics laws. """ return self._opt(self._geom, self._current_bundle, self._selected) def done(self): """ When this is called, the surface will no longer be queried on the results of the latest trace iteration, so it can discard internal data to relieve memory pressure. """ if hasattr(self, '_current_bundle'): del self._current_bundle self._geom.done() def global_to_local(self, points): """ Transform a set of points in the global coordinates back into the frame used during tracing. Arguments: points - a 3 x n array for n 3D points returns: local - a 3 x n array with the respective points in local coordinates. """ proj = N.round(N.linalg.inv(self._temp_frame), decimals=9) return N.dot(proj, N.vstack((points, N.ones(points.shape[1])))) def mesh(self, resolution): """ Represent the surface as a mesh in global coordinates. Arguments: resolution - in points per unit length (so the number of points returned is O(A*resolution**2) for area A) Returns: x, y, z - each a 2D array holding in its (i,j) cell the x, y, and z coordinate (respectively) of point (i,j) in the mesh. """ # The geometry manager has the local-coordinates mesh. x, y, z = self._geom.mesh(resolution) local = N.array((x, y, z, N.ones_like(x))) glob = N.tensordot(self._temp_frame, local, axes=([1], [0])) return glob[:3] def get_scene_graph(self, resolution, fluxmap, trans, vmin, vmax): """ Any object that provides a nice QuadMesh from the previous code should be able to render in Coin3D with with the following... """ from pivy import coin import matplotlib.cm as cm from matplotlib import colors n0 = self.get_scene_graph_transform() o = self.get_optics_manager() if self._fixed_color: mat = coin.SoMaterial() mat.diffuseColor = self._fixed_color mat.specularColor = self._fixed_color mat.transparency = (self._transparency) n0.addChild(mat) fluxmap = False else: if o.__class__.__name__[-10:] == 'Reflective': mat = coin.SoMaterial() mat.diffuseColor = (.5,.5,.5) mat.specularColor = (.6,.6,.6) mat.shininess = o._abs n0.addChild(mat) fluxmap = False elif o.__class__.__name__ == 'PeriodicBoundary': mat = coin.SoMaterial() mat.ambientColor = (.0,.5,.5) mat.transparency = (0.8) n0.addChild(mat) fluxmap = False elif fluxmap != None: if hasattr(o,'get_all_hits'): hitdata = o.get_all_hits() xyz = self.global_to_local(hitdata[1])[:3] # plot the histogram into the scenegraph g = self.get_geometry_manager() if hasattr(g, 'get_fluxmap'): flux = g.get_fluxmap(hitdata[0], xyz, resolution) if not(hasattr(flux[0],'__len__')): flux = [flux] else: fluxmap = False else: mat = coin.SoMaterial() mat.diffuseColor = (0.2,0.2,0.2) mat.specularColor = (0.2,0.2,0.2) n0.addChild(mat) fluxmap = False meshes = self._geom.get_scene_graph(resolution) for m in xrange(len(meshes)/3): n = coin.SoSeparator() X,Y,Z = meshes[3*m:3*m+3] nr,nc = X.shape A = [(X.flat[i],Y.flat[i],Z.flat[i]) for i in range(len(X.flat))] coor = coin.SoCoordinate3() coor.point.setValues(0, len(A), A) n.addChild(coor) qm = coin.SoQuadMesh() qm.verticesPerRow = nc qm.verticesPerColumn = nr n.addChild(qm) sh = coin.SoShapeHints() sh.shapeType = coin.SoShapeHintsElement.UNKNOWN_SHAPE_TYPE sh.vertexOrdering = coin.SoShapeHintsElement.COUNTERCLOCKWISE sh.faceType = coin.SoShapeHintsElement.UNKNOWN_FACE_TYPE n.addChild(sh) if fluxmap: # It works using n0 instead of n here but I have absolutely not clue why. norm = colors.Normalize(vmin=vmin, vmax=vmax) M = cm.ScalarMappable(norm=norm, cmap=cm.viridis) colormap = M.to_rgba(flux[m]) mat = coin.SoMaterial() mat.ambientColor = (1,1,1) mat.diffuseColor.setValues(0, colormap.shape[0], colormap) if trans==True: mat.transparency.setValues(0,colormap.shape[0], 1.-flux[m]/N.amax(flux[m])) n0.addChild(mat) mymatbind = coin.SoMaterialBinding() mymatbind.value = coin.SoMaterialBinding.PER_FACE n0.addChild(mymatbind) n0.addChild(n) return n0
gpl-3.0
mo-g/iris
lib/iris/tests/test_mapping.py
11
8113
# (C) British Crown Copyright 2010 - 2015, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Tests map creation. """ from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests import numpy as np import numpy.testing as np_testing import cartopy.crs as ccrs import iris import iris.coord_systems import iris.cube import iris.tests.stock # Run tests in no graphics mode if matplotlib is not available. if tests.MPL_AVAILABLE: import matplotlib.pyplot as plt import iris.plot as iplt # A specific cartopy Globe matching the iris RotatedGeogCS default. _DEFAULT_GLOBE = ccrs.Globe(semimajor_axis=6371229.0, semiminor_axis=6371229.0, ellipse=None) @tests.skip_plot class TestBasic(tests.GraphicsTest): cube = iris.tests.stock.realistic_4d() def test_contourf(self): cube = self.cube[0, 0] iplt.contourf(cube) self.check_graphic() def test_pcolor(self): cube = self.cube[0, 0] iplt.pcolor(cube) self.check_graphic() def test_unmappable(self): cube = self.cube[0, 0] cube.coord('grid_longitude').standard_name = None iplt.contourf(cube) self.check_graphic() def test_default_projection_and_extent(self): self.assertEqual(iplt.default_projection(self.cube), ccrs.RotatedPole(357.5 - 180, 37.5, globe=_DEFAULT_GLOBE)) np_testing.assert_array_almost_equal( iplt.default_projection_extent(self.cube), (3.59579163e+02, 3.59669159e+02, -1.28250003e-01, -3.82499993e-02), decimal=3) @tests.skip_data @tests.skip_plot class TestUnmappable(tests.GraphicsTest): def setUp(self): src_cube = iris.tests.stock.global_pp() # Make a cube that can't be located on the globe. cube = iris.cube.Cube(src_cube.data) cube.add_dim_coord( iris.coords.DimCoord(np.arange(96, dtype=np.float32) * 100, long_name='x', units='m'), 1) cube.add_dim_coord( iris.coords.DimCoord(np.arange(73, dtype=np.float32) * 100, long_name='y', units='m'), 0) cube.standard_name = 'air_temperature' cube.units = 'K' cube.assert_valid() self.cube = cube def test_simple(self): iplt.contourf(self.cube) self.check_graphic() @tests.skip_data @tests.skip_plot class TestMappingSubRegion(tests.GraphicsTest): def setUp(self): cube_path = tests.get_data_path( ('PP', 'aPProt1', 'rotatedMHtimecube.pp')) cube = iris.load_cube(cube_path)[0] # make the data smaller to speed things up. self.cube = cube[::10, ::10] def test_simple(self): # First sub-plot plt.subplot(221) plt.title('Default') iplt.contourf(self.cube) plt.gca().coastlines() # Second sub-plot plt.subplot(222, projection=ccrs.Mollweide(central_longitude=120)) plt.title('Molleweide') iplt.contourf(self.cube) plt.gca().coastlines() # Third sub-plot (the projection part is redundant, but a useful # test none-the-less) ax = plt.subplot(223, projection=iplt.default_projection(self.cube)) plt.title('Native') iplt.contour(self.cube) ax.coastlines() # Fourth sub-plot ax = plt.subplot(2, 2, 4, projection=ccrs.PlateCarree()) plt.title('PlateCarree') iplt.contourf(self.cube) ax.coastlines() self.check_graphic() def test_default_projection_and_extent(self): self.assertEqual(iplt.default_projection(self.cube), ccrs.RotatedPole(357.5 - 180, 37.5, globe=_DEFAULT_GLOBE)) np_testing.assert_array_almost_equal( iplt.default_projection_extent(self.cube), (313.01998901, 391.11999512, -22.48999977, 24.80999947)) @tests.skip_data @tests.skip_plot class TestLowLevel(tests.GraphicsTest): def setUp(self): self.cube = iris.tests.stock.global_pp() self.few = 4 self.few_levels = list(range(280, 300, 5)) self.many_levels = np.linspace( self.cube.data.min(), self.cube.data.max(), 40) def test_simple(self): iplt.contour(self.cube) self.check_graphic() def test_params(self): iplt.contourf(self.cube, self.few) self.check_graphic() iplt.contourf(self.cube, self.few_levels) self.check_graphic() iplt.contourf(self.cube, self.many_levels) self.check_graphic() def test_keywords(self): iplt.contourf(self.cube, levels=self.few_levels) self.check_graphic() iplt.contourf(self.cube, levels=self.many_levels, alpha=0.5) self.check_graphic() @tests.skip_data @tests.skip_plot class TestBoundedCube(tests.GraphicsTest): def setUp(self): self.cube = iris.tests.stock.global_pp() # Add some bounds to this data (this will actually make the bounds # invalid as they will straddle the north pole and overlap on the # dateline, but that doesn't matter for this test.) self.cube.coord('latitude').guess_bounds() self.cube.coord('longitude').guess_bounds() def test_pcolormesh(self): # pcolormesh can only be drawn in native coordinates (or more # specifically, in coordinates that don't wrap). plt.axes(projection=ccrs.PlateCarree(central_longitude=180)) iplt.pcolormesh(self.cube) self.check_graphic() def test_grid(self): iplt.outline(self.cube) self.check_graphic() def test_default_projection_and_extent(self): self.assertEqual(iplt.default_projection(self.cube), ccrs.PlateCarree()) np_testing.assert_array_almost_equal( iplt.default_projection_extent(self.cube), [0., 360., -89.99995422, 89.99998474]) np_testing.assert_array_almost_equal( iplt.default_projection_extent( self.cube, mode=iris.coords.BOUND_MODE), [-1.875046, 358.124954, -91.24995422, 91.24998474]) @tests.skip_data @tests.skip_plot class TestLimitedAreaCube(tests.GraphicsTest): def setUp(self): cube_path = tests.get_data_path(('PP', 'aPProt1', 'rotated.pp')) self.cube = iris.load_cube(cube_path)[::20, ::20] self.cube.coord('grid_latitude').guess_bounds() self.cube.coord('grid_longitude').guess_bounds() def test_pcolormesh(self): iplt.pcolormesh(self.cube) self.check_graphic() def test_grid(self): iplt.pcolormesh(self.cube, facecolors='none', edgecolors='blue') # the result is a graphic which has coloured edges. This is a mpl bug, # see https://github.com/matplotlib/matplotlib/issues/1302 self.check_graphic() def test_outline(self): iplt.outline(self.cube) self.check_graphic() def test_scatter(self): iplt.points(self.cube) plt.gca().coastlines() self.check_graphic() if __name__ == "__main__": tests.main()
gpl-3.0
ChanderG/scikit-learn
examples/cluster/plot_kmeans_digits.py
230
4524
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example we compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
cllamb0/dosenet-raspberrypi
graph.py
2
7840
# Python file that graphs air quality test result CSV files import matplotlib.pyplot as plt import matplotlib.figure as fig import matplotlib.pylab as pyl import matplotlib import csv import dateutil import argparse import numpy import time import datetime from matplotlib.dates import DateFormatter #Given a certain argument, combine results for each size molecule parser = argparse.ArgumentParser() parser.add_argument("combinenumber", type = int, help = "Enter a natural number value that will determine the amount of results added together before being graphed") info = parser.parse_args() combine_number = info.combinenumber user_file = input("What air quality test result file do you want to graph? (Put quotation marks around the file name.) File Name: ") results = csv.reader(open(user_file), delimiter=',') times = [] P3 = [] P5 = [] P10 = [] P25 = [] P50 = [] P100 = [] Val10 = [] Val25 = [] Val100 = [] row_counter= 0 for r in results: row_counter += 1 if row_counter>1: #Append each column in CSV to a separate list times.append(dateutil.parser.parse(r[0])) #converts str date and time to datetime P3.append(r[1]) P5.append(r[2]) P10.append(r[3]) P25.append(r[4]) P50.append(r[5]) P100.append(r[6]) Val10.append(r[7]) Val25.append(r[8]) Val100.append(r[9]) #Make sure the argument was valid while len(times)< combine_number or combine_number<1: if len(times) == 1: print("The number provided was too large or not a natural number. There is only 1 result. All data points will be graphed.") combine_number = 1 elif len(times) == 0: print("There are no results in the document provided.") quit() else: combine_number = input("The number provided was too large or not a natural number. There are "+str(len(times))+" results. Choose a natural number between 1 and "+str(len(times))+" that will determine the amount of results added together before being graphed. Number: ") #convert str into int for i in range(len(P3)): P3[i] = int(P3[i]) for i in range(len(P5)): P5[i] = int(P5[i]) for i in range(len(P10)): P10[i] = int(P10[i]) for i in range(len(P25)): P25[i] = int(P25[i]) for i in range(len(P50)): P50[i] = int(P50[i]) for i in range(len(P100)): P100[i] = int(P100[i]) for i in range(len(Val10)): Val10[i] = int(Val10[i]) for i in range(len(Val25)): Val25[i] = int(Val25[i]) for i in range(len(Val100)): Val100[i] = int(Val100[i]) new_P3 = [] new_P5 = [] new_P10 = [] new_P25 = [] new_P50 = [] new_P100 = [] new_Val10 = [] new_Val25 = [] new_Val100 = [] #Get rid of unnecessary data remainder_P3 = (len(P3)%(combine_number)) if remainder_P3 !=0: for i in range(int(remainder_P3)): P3.pop() remainder_P5 = (len(P5)%(combine_number)) if remainder_P5 !=0: for i in range(int(remainder_P5)): P5.pop() remainder_P10 = (len(P10)%(combine_number)) if remainder_P10 !=0: for i in range(int(remainder_P10)): P10.pop() remainder_P25 = (len(P25)%(combine_number)) if remainder_P25 !=0: for i in range(int(remainder_P25)): P25.pop() remainder_P50 = (len(P50)%(combine_number)) if remainder_P50 !=0: for i in range(int(remainder_P50)): P50.pop() remainder_P100 = (len(P100)%(combine_number)) if remainder_P100 !=0: for i in range(int(remainder_P100)): P100.pop() remainder_Val10 = (len(Val10)%(combine_number)) if remainder_Val10 !=0: for i in range(int(remainder_Val10)): Val10.pop() remainder_Val25 = (len(Val25)%(combine_number)) if remainder_Val25 !=0: for i in range(int(remainder_Val25)): Val25.pop() remainder_Val100 = (len(Val100)%(combine_number)) if remainder_Val100 !=0: for i in range(int(remainder_Val100)): Val100.pop() #Add up data for i in range(int(len(P3)/combine_number)): numberA = int(i*combine_number) numberB = int((i*combine_number) + combine_number) sum_P3 = [sum(P3[numberA:numberB])] new_P3.append(sum_P3) for i in range(int(len(P5)/combine_number)): numberC = int(i*combine_number) numberD = int((i*combine_number) + combine_number) sum_P5 = [sum(P5[numberC:numberD])] new_P5.append(sum_P5) for i in range(int(len(P10)/combine_number)): numberE = int(i*combine_number) numberF = int((i*combine_number) + combine_number) sum_P10 = [sum(P10[numberE:numberF])] new_P10.append(sum_P10) for i in range(int(len(P25)/combine_number)): numberG = int(i*combine_number) numberH = int((i*combine_number) + combine_number) sum_P25 = [sum(P25[numberG:numberH])] new_P25.append(sum_P25) for i in range(int(len(P50)/combine_number)): numberJ = int(i*combine_number) numberK = int((i*combine_number) + combine_number) sum_P50 = [sum(P50[numberJ:numberK])] new_P50.append(sum_P50) for i in range(int(len(P100)/combine_number)): numberL = int((i*combine_number) + 1) numberM = int((i*combine_number) + combine_number) sum_P100 = [sum(P100[numberL:numberM])] new_P100.append(sum_P100) for i in range(int(len(Val10)/combine_number)): numberQ = int(i*combine_number) numberR = int((i*combine_number) + combine_number) sum_Val10 = [sum(Val10[numberQ:numberR])] new_Val10.append(sum_Val10) for i in range(int(len(Val25)/combine_number)): numberS = int(i*combine_number) numberT = int((i*combine_number) + combine_number) sum_Val25 = [sum(Val25[numberS:numberT])] new_Val25.append(sum_Val25) for i in range(int(len(Val100)/combine_number)): numberV = int(i*combine_number) numberW = int((i*combine_number) + combine_number) sum_Val100 = [sum(Val100[numberV:numberW])] new_Val100.append(sum_Val100) #Get rid of last time if unecessary if remainder_P25 !=0: for i in range(int(remainder_P25)): times.pop() #State how many results have been excluded if int(remainder_P25) != 1: print(str(int(remainder_P25))+" results have been excluded from the graph.") else: print("1 result has been excluded from the graph.") #Find middle time middletimes = [] for i in range(int(len(times)/combine_number)): numberN = int(i*combine_number) numberP = int((i*combine_number) + combine_number) time = times[numberN:numberP] middletimes.append(time[int(len(time)/2)]) print(middletimes) #Use plot() method to graph particle count vs. time and add legend plt.figure(figsize = [5,5]) plt.plot(middletime_final, new_P3, "b.", label='P3') plt.plot(middletime_final, new_P5, "g.", label = 'P5') plt.plot(middletime_final, new_P10, "r.", label = 'P10') plt.plot(middletime_final, new_P25, "m.", label = 'P25') plt.plot(middletime_final, new_P50, "y.", label = 'P50') plt.plot(middletime_final, new_P100, "c.", label = 'P100') plt.legend(loc="best", title = "Key") plt.xlabel("Time") plt.ylabel("Particle Count") file_title = "Air Quality Test Results: From "+datetime.datetime.strftime(times[0], "%Y-%m-%d %H:%M:%S")+" To "+datetime.datetime.strftime(times[-1], "%Y-%m-%d %H:%M:%S") plt.title("Particle Count vs. Time") wtitle = pyl.gcf() wtitle.canvas.set_window_title(file_title) #Use plot() method to graph particle concentration vs. time and add legend plt.figure(figsize = [5,5]) plt.plot(middletime_final, new_Val10, "b.", label='1.0') plt.plot(middletime_final, new_Val25, "g.", label = '2.5') plt.plot(middletime_final, new_Val100, "r.", label = '10') plt.legend(loc="best", title = "Key") plt.xlabel("Time") plt.ylabel("Particle Concentration") file_title = "Air Quality Test Results: From "+datetime.datetime.strftime(times[0], "%Y-%m-%d %H:%M:%S")+" To "+datetime.datetime.strftime(times[-1], "%Y-%m-%d %H:%M:%S") plt.title("Particle Concentration vs. Time") wtitle = pyl.gcf() wtitle.canvas.set_window_title(file_title) plt.show()
mit
liyu1990/sklearn
examples/cluster/plot_kmeans_silhouette_analysis.py
242
5885
""" =============================================================================== Selecting the number of clusters with silhouette analysis on KMeans clustering =============================================================================== Silhouette analysis can be used to study the separation distance between the resulting clusters. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters and thus provides a way to assess parameters like number of clusters visually. This measure has a range of [-1, 1]. Silhoette coefficients (as these values are referred to as) near +1 indicate that the sample is far away from the neighboring clusters. A value of 0 indicates that the sample is on or very close to the decision boundary between two neighboring clusters and negative values indicate that those samples might have been assigned to the wrong cluster. In this example the silhouette analysis is used to choose an optimal value for ``n_clusters``. The silhouette plot shows that the ``n_clusters`` value of 3, 5 and 6 are a bad pick for the given data due to the presence of clusters with below average silhouette scores and also due to wide fluctuations in the size of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. Also from the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 when ``n_clusters`` is equal to 2, is bigger in size owing to the grouping of the 3 sub clusters into one big cluster. However when the ``n_clusters`` is equal to 4, all the plots are more or less of similar thickness and hence are of similar sizes as can be also verified from the labelled scatter plot on the right. """ from __future__ import print_function from sklearn.datasets import make_blobs from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np print(__doc__) # Generating the sample data from make_blobs # This particular setting has one distict cluster and 3 clusters placed close # together. X, y = make_blobs(n_samples=500, n_features=2, centers=4, cluster_std=1, center_box=(-10.0, 10.0), shuffle=True, random_state=1) # For reproducibility range_n_clusters = [2, 3, 4, 5, 6] for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) # The 1st subplot is the silhouette plot # The silhouette coefficient can range from -1, 1 but in this example all # lie within [-0.1, 1] ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10]) # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. clusterer = KMeans(n_clusters=n_clusters, random_state=10) cluster_labels = clusterer.fit_predict(X) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(cluster_labels.astype(float) / n_clusters) ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.show()
bsd-3-clause
sevas/csxj-crawler
scripts/make_figures.py
1
7756
#from __future__ import division # #import os, os.path #import json #import itertools #from collections import namedtuple #import matplotlib.pyplot as plt #import numpy as np # #from csxj.datasources.parser_tools.article import ArticleData # # # #BACKGROUND_COLOR = '#e3e1dd' #LIGHT_COLOR = '#f0efed' #DARK_COLOR = '#4c4c4c' # # #def get_subdirs(parent_path): # return [d for d in os.listdir(parent_path) if os.path.isdir(os.path.join(parent_path, d))] # # # #def get_articles(json_filepath): # with open(json_filepath, 'r') as f: # json_content = json.load(f) # articles_string = json_content['articles'] # return [ArticleData.from_json(article_s) for article_s in articles_string] # # # #def get_flat_article_list(provider_path): # all_days = get_subdirs(provider_path) # all_articles = [] # # # for day in all_days: # day_path = os.path.join(provider_path, day) # all_batches = get_subdirs(day_path) # # for batch in all_batches: # batch_path = os.path.join(day_path, batch) # all_articles.extend(get_articles(os.path.join(batch_path, 'articles.json'))) # # return all_articles # # #def categorize_articles(articles): # def keyfunc(article): # return article.category # # groups = [] # uniquekeys = [] # data = sorted(articles, key=keyfunc) # for k, g in itertools.groupby(data, keyfunc): # groups.append(list(g)) # Store group iterator as a list # uniquekeys.append(k) # # return zip(uniquekeys, groups) # # # #def count_links(articles): # ext_links = sum([len(art.external_links) for art in articles]) # int_links = sum([len(art.internal_links) for art in articles]) # # return ext_links, int_links # # # #CategoryCounters = namedtuple('CategoryCounters', 'name total_links total_articles link_article_ratio') # # #def make_barchart_in_subplot(ax, xs, title, labels): # ind = np.arange(len(xs)) # ind = np.arange(len(xs)) # ax.barh(ind, xs, color=LIGHT_COLOR) # ax.set_yticklabels(ind+0.35, labels, fontsize='small') # ax.set_title(title) # # #def make_barchart(xs, title, labels): # ind = np.arange(len(xs)) # plt.barh(ind, xs, color=LIGHT_COLOR) # plt.yticks(ind+0.35, labels, fontsize='small') # plt.title(title) # # # #def sort_categories_by_links_article_ratio(categorized_articles): # link_counters = list() # # max_total_articles = len(max(categorized_articles, key=lambda a: len(a[1]))[1]) # # for (group, articles) in categorized_articles: # total_articles = len(articles) # # total_links = sum(count_links(articles)) # if total_links and max_total_articles: # ratio = (total_articles / total_links) / max_total_articles # link_counters.append(CategoryCounters(name=group, # total_links=total_links, # total_articles=total_articles, # link_article_ratio=ratio)) # # def keyfunc(counter): # return counter.link_article_ratio # link_counters.sort(key=keyfunc) # # return link_counters # # #def plot_categories_by_links_article_ratio_in_subplot(ax, categorized_articles, source_name): # link_counters = sort_categories_by_links_article_ratio(categorized_articles) # # x = np.array([c.link_article_ratio for c in link_counters]) # # def make_label(counter): # return u'{0} (n_a={1} n_l={2})'.format(u'/'.join(counter.name), # counter.total_articles, # counter.total_links) # # # labels = [make_label(c) for c in link_counters] # make_barchart_in_subplot(ax, x, source_name, labels) # # #def plot_categories_by_links_article_ratio(name, categorized_articles, outdir): # link_counters = sort_categories_by_links_article_ratio(categorized_articles) # # x = np.array([c.link_article_ratio for c in link_counters]) # # def make_label(counter): # return u'{0} (n_a={1} n_l={2})'.format(u'/'.join(counter.name), # counter.total_articles, # counter.total_links) # # plt.clf() # labels = [make_label(c) for c in link_counters] # make_barchart(x, 'Categories by article/links ratio ({0})'.format(name), labels) # plt.savefig(os.path.join(outdir, name+'_article_link_ratio.png'), bbox_inches='tight') # # # #def plot_categories_by_number_of_articles(name, categorized_articles, outdir): # article_counters = list() # for (group, articles) in categorized_articles: # article_counters.append((group, len(articles))) # # def keyfunc(counter): # return counter[1] # article_counters.sort(key=keyfunc) # # x = np.array([counter[1] for counter in article_counters]) # # def make_label(article_counter): # return u'{0}'.format(u'/'.join(article_counter[0])) # # plt.clf() # labels = [make_label(c) for c in article_counters] # make_barchart(x, '# Articles per category ({0})'.format(name), labels) # plt.savefig(os.path.join(outdir, name+'_articles_by_category.png'), bbox_inches='tight') # # # #def plot_categories_by_number_of_links(name, categorized_articles, outdir): # # LinkCounter = namedtuple('LinkCounter', 'name total_ext_links total_int_links total_links') # # link_counters = list() # for (group, articles) in categorized_articles: # n_ext_links, n_int_links = count_links(articles) # link_counters.append(LinkCounter(name=group, # total_ext_links=n_ext_links, # total_int_links=n_int_links, # total_links=n_ext_links+n_int_links)) # # def keyfunc(counter): # return counter.total_links # link_counters.sort(key=keyfunc) # # # x1 = np.array([counter.total_ext_links for counter in link_counters]) # x2 = np.array([counter.total_int_links for counter in link_counters]) # # def make_label(link_counter): # return u'{0}'.format(u'/'.join(link_counter.name)) # labels = [make_label(c) for c in link_counters] # # plt.clf() # plt.autumn() # ind = np.arange(len(x1)) # p1 = plt.barh(ind, x1, color=DARK_COLOR) # p2 = plt.barh(ind, x2, left=x1, color=LIGHT_COLOR) # plt.yticks(ind+0.35, labels, fontsize='small') # plt.title('Number of links per category ({0})'.format(name)) # plt.legend( (p1[0], p2[0]), ('External links', 'Internal links'), 'lower right' ) # plt.savefig(os.path.join(outdir, name+'_number_of_links.png'), bbox_inches='tight') # # # #def make_all_figures(db_root, outdir): # if not os.path.exists(outdir): # os.mkdir(outdir) # # for source_dir in get_subdirs(db_root): # articles = get_flat_article_list(os.path.join(db_root, source_dir)) # # categorized_articles = categorize_articles(articles) # # plot_categories_by_links_article_ratio(source_dir, categorized_articles, outdir) # plot_categories_by_number_of_articles(source_dir, categorized_articles, outdir) # plot_categories_by_number_of_links(source_dir, categorized_articles, outdir) # # #if __name__=='__main__': # import argparse # # parser = argparse.ArgumentParser(description='Make (hopefully) interesting figures from the json db') # parser.add_argument('--dir', type=str, dest='input_dir', required=True, help='json db directory') # parser.add_argument('--outdir', type=str, dest='output_dir', required=True, help='directory to dump the figures in') # args = parser.parse_args() # make_all_figures(args.input_dir, args.output_dir) # # # #
mit
trachelr/mne-python
mne/decoding/time_gen.py
2
49656
# Authors: Jean-Remi King <[email protected]> # Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Clement Moutard <[email protected]> # # License: BSD (3-clause) import numpy as np import copy from ..io.pick import pick_types from ..viz.decoding import plot_gat_matrix, plot_gat_times from ..parallel import parallel_func, check_n_jobs class _DecodingTime(dict): """A dictionary to configure the training times that has the following keys: 'slices' : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. 'start' : float Time at which to start decoding (in seconds). Defaults to min(epochs.times). 'stop' : float Maximal time at which to stop decoding (in seconds). Defaults to max(times). 'step' : float Duration separating the start of subsequent classifiers (in seconds). Defaults to one time sample. 'length' : float Duration of each classifier (in seconds). Defaults to one time sample. If None, empty dict. """ def __repr__(self): s = "" if "start" in self: s += "start: %0.3f (s)" % (self["start"]) if "stop" in self: s += ", stop: %0.3f (s)" % (self["stop"]) if "step" in self: s += ", step: %0.3f (s)" % (self["step"]) if "length" in self: s += ", length: %0.3f (s)" % (self["length"]) if "slices" in self: # identify depth: training times only contains n_time but # testing_times can contain n_times or n_times * m_times depth = [len(ii) for ii in self["slices"]] if len(np.unique(depth)) == 1: # if all slices have same depth if depth[0] == 1: # if depth is one s += ", n_time_windows: %s" % (len(depth)) else: s += ", n_time_windows: %s x %s" % (len(depth), depth[0]) else: s += (", n_time_windows: %s x [%s, %s]" % (len(depth), min([len(ii) for ii in depth]), max(([len(ii) for ii in depth])))) return "<DecodingTime | %s>" % s class _GeneralizationAcrossTime(object): """ see GeneralizationAcrossTime """ # noqa def __init__(self, picks=None, cv=5, clf=None, train_times=None, test_times=None, predict_mode='cross-validation', scorer=None, n_jobs=1): from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline # Store parameters in object self.cv = cv # Define training sliding window self.train_times = (_DecodingTime() if train_times is None else _DecodingTime(train_times)) # Define testing sliding window. If None, will be set in predict() if test_times is None: self.test_times = _DecodingTime() elif test_times == 'diagonal': self.test_times = 'diagonal' else: self.test_times = _DecodingTime(test_times) # Default classification pipeline if clf is None: scaler = StandardScaler() estimator = LogisticRegression() clf = Pipeline([('scaler', scaler), ('estimator', estimator)]) self.clf = clf self.predict_mode = predict_mode self.scorer = scorer self.picks = picks self.n_jobs = n_jobs def fit(self, epochs, y=None): """ Train a classifier on each specified time slice. Note. This function sets the ``picks_``, ``ch_names``, ``cv_``, ``y_train``, ``train_times_`` and ``estimators_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. y : list or ndarray of int, shape (n_samples,) or None, optional To-be-fitted model values. If None, y = epochs.events[:, 2]. Returns ------- self : GeneralizationAcrossTime Returns fitted GeneralizationAcrossTime object. Notes ------ If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ from sklearn.base import clone from sklearn.cross_validation import check_cv, StratifiedKFold # clean attributes for att in ['picks_', 'ch_names', 'y_train_', 'cv_', 'train_times_', 'estimators_', 'test_times_', 'y_pred_', 'y_true_', 'scores_', 'scorer_']: if hasattr(self, att): delattr(self, att) n_jobs = self.n_jobs # Extract data from MNE structure X, y, self.picks_ = _check_epochs_input(epochs, y, self.picks) self.ch_names = [epochs.ch_names[p] for p in self.picks_] cv = self.cv if isinstance(cv, (int, np.int)): cv = StratifiedKFold(y, cv) cv = check_cv(cv, X, y, classifier=True) self.cv_ = cv # update CV self.y_train_ = y # Cross validation scheme # XXX Cross validation should later be transformed into a make_cv, and # defined in __init__ self.train_times_ = copy.deepcopy(self.train_times) if 'slices' not in self.train_times_: self.train_times_ = _sliding_window(epochs.times, self.train_times) # Parallel across training time parallel, p_time_gen, n_jobs = parallel_func(_fit_slices, n_jobs) n_chunks = min(X.shape[2], n_jobs) splits = np.array_split(self.train_times_['slices'], n_chunks) def f(x): return np.unique(np.concatenate(x)) out = parallel(p_time_gen(clone(self.clf), X[..., f(train_slices_chunk)], y, train_slices_chunk, cv) for train_slices_chunk in splits) # Unpack estimators into time slices X folds list of lists. self.estimators_ = sum(out, list()) return self def predict(self, epochs): """ Test each classifier on each specified testing time slice. .. note:: This function sets the ``y_pred_`` and ``test_times_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. Can be similar to fitted epochs or not. See predict_mode parameter. Returns ------- y_pred : list of lists of arrays of floats, shape (n_train_t, n_test_t, n_epochs, n_prediction_dims) The single-trial predictions at each training time and each testing time. Note that the number of testing times per training time need not be regular; else ``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs)``. """ # noqa # Check that at least one classifier has been trained if not hasattr(self, 'estimators_'): raise RuntimeError('Please fit models before trying to predict') # clean attributes for att in ['y_pred_', 'test_times_', 'scores_', 'scorer_', 'y_true_']: if hasattr(self, att): delattr(self, att) n_jobs = self.n_jobs X, y, _ = _check_epochs_input(epochs, None, self.picks_) # Define testing sliding window if self.test_times == 'diagonal': test_times = _DecodingTime() test_times['slices'] = [[s] for s in self.train_times_['slices']] test_times['times'] = [[s] for s in self.train_times_['times']] elif isinstance(self.test_times, dict): test_times = copy.deepcopy(self.test_times) else: raise ValueError('`test_times` must be a dict or "diagonal"') if 'slices' not in test_times: # Check that same number of time sample in testing than in training # (otherwise it won 't be the same number of features') if 'length' not in test_times: test_times['length'] = self.train_times_['length'] if test_times['length'] != self.train_times_['length']: raise ValueError('`train_times` and `test_times` must have ' 'identical `length` keys') # Make a sliding window for each training time. slices_list = list() times_list = list() for t in range(0, len(self.train_times_['slices'])): test_times_ = _sliding_window(epochs.times, test_times) times_list += [test_times_['times']] slices_list += [test_times_['slices']] test_times = test_times_ test_times['slices'] = slices_list test_times['times'] = times_list # Store all testing times parameters self.test_times_ = test_times # Prepare parallel predictions parallel, p_time_gen, _ = parallel_func(_predict_time_loop, n_jobs) # Loop across estimators (i.e. training times) self.y_pred_ = parallel(p_time_gen(X, self.estimators_[t_train], self.cv_, slices, self.predict_mode) for t_train, slices in enumerate(self.test_times_['slices'])) return self.y_pred_ def score(self, epochs=None, y=None): """Score Epochs Estimate scores across trials by comparing the prediction estimated for each trial to its true value. Calls ``predict()`` if it has not been already. Note. The function updates the ``scorer_``, ``scores_``, and ``y_true_`` attributes. Parameters ---------- epochs : instance of Epochs | None, optional The epochs. Can be similar to fitted epochs or not. If None, it needs to rely on the predictions ``y_pred_`` generated with ``predict()``. y : list | ndarray, shape (n_epochs,) | None, optional True values to be compared with the predictions ``y_pred_`` generated with ``predict()`` via ``scorer_``. If None and ``predict_mode``=='cross-validation' y = ``y_train_``. Returns ------- scores : list of lists of float The scores estimated by ``scorer_`` at each training time and each testing time (e.g. mean accuracy of ``predict(X)``). Note that the number of testing times per training time need not be regular; else, np.shape(scores) = (n_train_time, n_test_time). """ from sklearn.metrics import accuracy_score # Run predictions if not already done if epochs is not None: self.predict(epochs) else: if not hasattr(self, 'y_pred_'): raise RuntimeError('Please predict() epochs first or pass ' 'epochs to score()') # clean gat.score() attributes for att in ['scores_', 'scorer_', 'y_true_']: if hasattr(self, att): delattr(self, att) # Check scorer # XXX Need API to identify proper scorer from the clf self.scorer_ = accuracy_score if self.scorer is None else self.scorer # If no regressor is passed, use default epochs events if y is None: if self.predict_mode == 'cross-validation': y = self.y_train_ else: if epochs is not None: y = epochs.events[:, 2] else: raise RuntimeError('y is undefined because ' 'predict_mode="mean-prediction" and ' 'epochs are missing. You need to ' 'explicitly specify y.') if not np.all(np.unique(y) == np.unique(self.y_train_)): raise ValueError('Classes (y) passed differ from classes used ' 'for training. Please explicitly pass your y ' 'for scoring.') elif isinstance(y, list): y = np.array(y) self.y_true_ = y # to be compared with y_pred for scoring # Preprocessing for parallelization: n_jobs = min(len(self.y_pred_[0][0]), check_n_jobs(self.n_jobs)) parallel, p_time_gen, n_jobs = parallel_func(_score_loop, n_jobs) # Score each training and testing time point scores = parallel(p_time_gen(self.y_true_, self.y_pred_[t_train], slices, self.scorer_) for t_train, slices in enumerate(self.test_times_['slices'])) self.scores_ = scores return scores def _predict_time_loop(X, estimators, cv, slices, predict_mode): """Aux function of GeneralizationAcrossTime Run classifiers predictions loop across time samples. Parameters ---------- X : ndarray, shape (n_epochs, n_features, n_times) To-be-fitted data. estimators : array-like, shape (n_times, n_folds) Array of scikit-learn classifiers fitted in cross-validation. slices : list List of slices selecting data from X from which is prediction is generated. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: 'cross-validation' : estimates a single prediction per sample based on the unique independent classifier fitted in the cross- validation. 'mean-prediction' : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Default: 'cross-validation' """ n_epochs = len(X) # Loop across testing slices y_pred = [list() for _ in range(len(slices))] # XXX EHN: This loop should be parallelized in a similar way to fit() for t, indices in enumerate(slices): # Flatten features in case of multiple time samples Xtrain = X[:, :, indices].reshape( n_epochs, np.prod(X[:, :, indices].shape[1:])) # Single trial predictions if predict_mode == 'cross-validation': # If predict within cross validation, only predict with # corresponding classifier, else predict with each fold's # classifier and average prediction. # Check that training cv and predicting cv match if (len(estimators) != cv.n_folds) or (cv.n != Xtrain.shape[0]): raise ValueError( 'When `predict_mode = "cross-validation"`, the training ' 'and predicting cv schemes must be identical.') for k, (train, test) in enumerate(cv): # XXX I didn't manage to initialize correctly this array, as # its size depends on the the type of predictor and the # number of class. if k == 0: y_pred_ = _predict(Xtrain[test, :], estimators[k:k + 1]) y_pred[t] = np.empty((n_epochs, y_pred_.shape[1])) y_pred[t][test, :] = y_pred_ y_pred[t][test, :] = _predict(Xtrain[test, :], estimators[k:k + 1]) elif predict_mode == 'mean-prediction': y_pred[t] = _predict(Xtrain, estimators) else: raise ValueError('`predict_mode` must be a str, "mean-prediction"' ' or "cross-validation"') return y_pred def _score_loop(y_true, y_pred, slices, scorer): n_time = len(slices) # Loop across testing times scores = [0] * n_time for t, indices in enumerate(slices): # Scores across trials scores[t] = scorer(y_true, y_pred[t]) return scores def _check_epochs_input(epochs, y, picks=None): """Aux function of GeneralizationAcrossTime Format MNE data into scikit-learn X and y Parameters ---------- epochs : instance of Epochs The epochs. y : ndarray shape (n_epochs) | list shape (n_epochs) | None To-be-fitted model. If y is None, y == epochs.events. picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. Returns ------- X : ndarray, shape (n_epochs, n_selected_chans, n_times) To-be-fitted data. y : ndarray, shape (n_epochs,) To-be-fitted model. picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. """ if y is None: y = epochs.events[:, 2] elif isinstance(y, list): y = np.array(y) # Convert MNE data into trials x features x time matrix X = epochs.get_data() # Pick channels if picks is None: # just use good data channels picks = pick_types(epochs.info, meg=True, eeg=True, seeg=True, eog=False, ecg=False, misc=False, stim=False, ref_meg=False, exclude='bads') if isinstance(picks, (list, np.ndarray)): picks = np.array(picks, dtype=np.int) else: raise ValueError('picks must be a list or a numpy.ndarray of int') X = X[:, picks, :] # Check data sets assert X.shape[0] == y.shape[0] return X, y, picks def _fit_slices(clf, x_chunk, y, slices, cv): """Aux function of GeneralizationAcrossTime Fit each classifier. Parameters ---------- clf : scikit-learn classifier The classifier object. x_chunk : ndarray, shape (n_epochs, n_features, n_times) To-be-fitted data. y : list | array, shape (n_epochs,) To-be-fitted model. slices : list | array, shape (n_training_slice,) List of training slices, indicating time sample relative to X cv : scikit-learn cross-validation generator A cross-validation generator to use. Returns ------- estimators : list of lists of estimators List of fitted scikit-learn classifiers corresponding to each training slice. """ from sklearn.base import clone # Initialize n_epochs = len(x_chunk) estimators = list() # Identify the time samples of X_chunck corresponding to X values = np.unique(np.concatenate(slices)) indices = range(len(values)) # Loop across time slices for t_slice in slices: # Translate absolute time samples into time sample relative to x_chunk for ii in indices: t_slice[t_slice == values[ii]] = indices[ii] # Select slice X = x_chunk[..., t_slice] # Reshape data matrix to flatten features in case of multiple time # samples. X = X.reshape(n_epochs, np.prod(X.shape[1:])) # Loop across folds estimators_ = list() for fold, (train, test) in enumerate(cv): # Fit classifier clf_ = clone(clf) clf_.fit(X[train, :], y[train]) estimators_.append(clf_) # Store classifier estimators.append(estimators_) return estimators def _sliding_window(times, window_params): """Aux function of GeneralizationAcrossTime Define the slices on which to train each classifier. Parameters ---------- times : ndarray, shape (n_times,) Array of times from MNE epochs. window_params : dict keys: ('start', 'stop', 'step', 'length') Either train or test times. See GAT documentation. Returns ------- time_pick : list List of training slices, indicating for each classifier the time sample (in indices of times) to be fitted on. """ window_params = _DecodingTime(window_params) # Sampling frequency as int freq = (times[-1] - times[0]) / len(times) # Default values if ('slices' in window_params and all(k in window_params for k in ('start', 'stop', 'step', 'length'))): time_pick = window_params['slices'] else: if 'start' not in window_params: window_params['start'] = times[0] if 'stop' not in window_params: window_params['stop'] = times[-1] if 'step' not in window_params: window_params['step'] = freq if 'length' not in window_params: window_params['length'] = freq if (window_params['start'] < times[0] or window_params['start'] > times[-1]): raise ValueError( '`start` (%.2f s) outside time range [%.2f, %.2f].' % ( window_params['start'], times[0], times[-1])) if (window_params['stop'] < times[0] or window_params['stop'] > times[-1]): raise ValueError( '`stop` (%.2f s) outside time range [%.2f, %.2f].' % ( window_params['stop'], times[0], times[-1])) if window_params['step'] < freq: raise ValueError('`step` must be >= 1 / sampling_frequency') if window_params['length'] < freq: raise ValueError('`length` must be >= 1 / sampling_frequency') if window_params['length'] > np.ptp(times): raise ValueError('`length` must be <= time range') # Convert seconds to index def find_time_idx(t): # find closest time point return np.argmin(np.abs(np.asarray(times) - t)) start = find_time_idx(window_params['start']) stop = find_time_idx(window_params['stop']) step = int(round(window_params['step'] / freq)) length = int(round(window_params['length'] / freq)) # For each training slice, give time samples to be included time_pick = [range(start, start + length)] while (time_pick[-1][0] + step) <= (stop - length + 1): start = time_pick[-1][0] + step time_pick.append(range(start, start + length)) window_params['slices'] = time_pick # Keep last training times in milliseconds t_inds_ = [t[-1] for t in window_params['slices']] window_params['times'] = times[t_inds_] return window_params def _predict(X, estimators): """Aux function of GeneralizationAcrossTime Predict each classifier. If multiple classifiers are passed, average prediction across all classifiers to result in a single prediction per classifier. Parameters ---------- estimators : ndarray, shape (n_folds,) | shape (1,) Array of scikit-learn classifiers to predict data. X : ndarray, shape (n_epochs, n_features, n_times) To-be-predicted data Returns ------- y_pred : ndarray, shape (n_epochs, m_prediction_dimensions) Classifier's prediction for each trial. """ from scipy import stats from sklearn.base import is_classifier # Initialize results: n_epochs = X.shape[0] n_clf = len(estimators) # Compute prediction for each sub-estimator (i.e. per fold) # if independent, estimators = all folds for fold, clf in enumerate(estimators): _y_pred = clf.predict(X) # initialize predict_results array if fold == 0: predict_size = _y_pred.shape[1] if _y_pred.ndim > 1 else 1 y_pred = np.ones((n_epochs, predict_size, n_clf)) if predict_size == 1: y_pred[:, 0, fold] = _y_pred else: y_pred[:, :, fold] = _y_pred # Collapse y_pred across folds if necessary (i.e. if independent) if fold > 0: # XXX need API to identify how multiple predictions can be combined? if is_classifier(clf): y_pred, _ = stats.mode(y_pred, axis=2) else: y_pred = np.mean(y_pred, axis=2) # Format shape y_pred = y_pred.reshape((n_epochs, predict_size)) return y_pred class GeneralizationAcrossTime(_GeneralizationAcrossTime): """Generalize across time and conditions Creates and estimator object used to 1) fit a series of classifiers on multidimensional time-resolved data, and 2) test the ability of each classifier to generalize across other time samples. Parameters ---------- picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. cv : int | object If an integer is passed, it is the number of folds. Specific cross-validation objects can be passed, see scikit-learn.cross_validation module for the list of possible objects. Defaults to 5. clf : object | None An estimator compliant with the scikit-learn API (fit & predict). If None the classifier will be a standard pipeline including StandardScaler and LogisticRegression with default parameters. train_times : dict | None A dictionary to configure the training times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. ``start`` : float Time at which to start decoding (in seconds). Defaults to min(epochs.times). ``stop`` : float Maximal time at which to stop decoding (in seconds). Defaults to max(times). ``step`` : float Duration separating the start of subsequent classifiers (in seconds). Defaults to one time sample. ``length`` : float Duration of each classifier (in seconds). Defaults to one time sample. If None, empty dict. test_times : 'diagonal' | dict | None, optional Configures the testing times. If set to 'diagonal', predictions are made at the time at which each classifier is trained. If set to None, predictions are made at all time points. If set to dict, the dict should contain ``slices`` or be contructed in a similar way to train_times:: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. If None, empty dict. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: ``cross-validation`` : estimates a single prediction per sample based on the unique independent classifier fitted in the cross-validation. ``mean-prediction`` : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Default: 'cross-validation' scorer : object | None scikit-learn Scorer instance. If None, set to accuracy_score. n_jobs : int Number of jobs to run in parallel. Defaults to 1. Attributes ---------- picks_ : array-like of int | None The channels indices to include. ch_names : list, array-like, shape (n_channels,) Names of the channels used for training. y_train_ : list | ndarray, shape (n_samples,) The categories used for training. train_times_ : dict A dictionary that configures the training times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. ``times`` : ndarray, shape (n_clfs,) The training times (in seconds). test_times_ : dict A dictionary that configures the testing times for each training time: ``slices`` : ndarray, shape (n_clfs, n_testing_times) Array of time slices (in indices) used for each classifier. ``times`` : ndarray, shape (n_clfs, n_testing_times) The testing times (in seconds) for each training time. cv_ : CrossValidation object The actual CrossValidation input depending on y. estimators_ : list of list of scikit-learn.base.BaseEstimator subclasses. The estimators for each time point and each fold. y_pred_ : list of lists of arrays of floats, shape (n_train_times, n_test_times, n_epochs, n_prediction_dims) The single-trial predictions estimated by self.predict() at each training time and each testing time. Note that the number of testing times per training time need not be regular, else ``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs).`` y_true_ : list | ndarray, shape (n_samples,) The categories used for scoring ``y_pred_``. scorer_ : object scikit-learn Scorer instance. scores_ : list of lists of float The scores estimated by ``self.scorer_`` at each training time and each testing time (e.g. mean accuracy of self.predict(X)). Note that the number of testing times per training time need not be regular; else, ``np.shape(scores) = (n_train_time, n_test_time)``. See Also -------- TimeDecoding Notes ----- The function implements the method used in: Jean-Remi King, Alexandre Gramfort, Aaron Schurger, Lionel Naccache and Stanislas Dehaene, "Two distinct dynamic modes subtend the detection of unexpected sounds", PLoS ONE, 2014 DOI: 10.1371/journal.pone.0085791 .. versionadded:: 0.9.0 """ # noqa def __init__(self, picks=None, cv=5, clf=None, train_times=None, test_times=None, predict_mode='cross-validation', scorer=None, n_jobs=1): super(GeneralizationAcrossTime, self).__init__( picks=picks, cv=cv, clf=clf, train_times=train_times, test_times=test_times, predict_mode=predict_mode, scorer=scorer, n_jobs=n_jobs) def __repr__(self): s = '' if hasattr(self, "estimators_"): s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % ( self.train_times_['start'], self.train_times_['stop']) else: s += 'no fit' if hasattr(self, 'y_pred_'): s += (", predicted %d epochs" % len(self.y_pred_[0][0])) else: s += ", no prediction" if hasattr(self, "estimators_") and hasattr(self, 'scores_'): s += ',\n ' else: s += ', ' if hasattr(self, 'scores_'): s += "scored" if callable(self.scorer_): s += " (%s)" % (self.scorer_.__name__) else: s += "no score" return "<GAT | %s>" % s def plot(self, title=None, vmin=None, vmax=None, tlim=None, ax=None, cmap='RdBu_r', show=True, colorbar=True, xlabel=True, ylabel=True): """Plotting function of GeneralizationAcrossTime object Plot the score of each classifier at each tested time window. Parameters ---------- title : str | None Figure title. vmin : float | None Min color value for scores. If None, sets to min(gat.scores_). vmax : float | None Max color value for scores. If None, sets to max(gat.scores_). tlim : ndarray, (train_min, test_max) | None The time limits used for plotting. ax : object | None Plot pointer. If None, generate new figure. cmap : str | cmap object The color map to be used. Defaults to 'RdBu_r'. show : bool If True, the figure will be shown. Defaults to True. colorbar : bool If True, the colorbar of the figure is displayed. Defaults to True. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ return plot_gat_matrix(self, title=title, vmin=vmin, vmax=vmax, tlim=tlim, ax=ax, cmap=cmap, show=show, colorbar=colorbar, xlabel=xlabel, ylabel=ylabel) def plot_diagonal(self, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function of GeneralizationAcrossTime object Plot each classifier score trained and tested at identical time windows. Parameters ---------- title : str | None Figure title. xmin : float | None, optional Min time value. xmax : float | None, optional Max time value. ymin : float | None, optional Min score value. If None, sets to min(scores). ymax : float | None, optional Max score value. If None, sets to max(scores). ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str Score line color. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Defaults to None Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ return plot_gat_times(self, train_time='diagonal', title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) def plot_times(self, train_time, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function of GeneralizationAcrossTime object Plot the scores of the classifier trained at specific training time(s). Parameters ---------- train_time : float | list or array of float Plots scores of the classifier trained at train_time. title : str | None Figure title. xmin : float | None, optional Min time value. xmax : float | None, optional Max time value. ymin : float | None, optional Min score value. If None, sets to min(scores). ymax : float | None, optional Max score value. If None, sets to max(scores). ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str or list of str Score line color(s). xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ if (not isinstance(train_time, float) and not (isinstance(train_time, (list, np.ndarray)) and np.all([isinstance(time, float) for time in train_time]))): raise ValueError('train_time must be float | list or array of ' 'floats. Got %s.' % type(train_time)) return plot_gat_times(self, train_time=train_time, title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) class TimeDecoding(_GeneralizationAcrossTime): """Train and test a series of classifiers at each time point to obtain a score across time. Parameters ---------- picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. cv : int | object If an integer is passed, it is the number of folds. Specific cross-validation objects can be passed, see scikit-learn.cross_validation module for the list of possible objects. Defaults to 5. clf : object | None An estimator compliant with the scikit-learn API (fit & predict). If None the classifier will be a standard pipeline including StandardScaler and a Logistic Regression with default parameters. times : dict | None A dictionary to configure the training times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. ``start`` : float Time at which to start decoding (in seconds). By default, min(epochs.times). ``stop`` : float Maximal time at which to stop decoding (in seconds). By default, max(times). ``step`` : float Duration separating the start of subsequent classifiers (in seconds). By default, equals one time sample. ``length`` : float Duration of each classifier (in seconds). By default, equals one time sample. If None, empty dict. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: ``cross-validation`` : estimates a single prediction per sample based on the unique independent classifier fitted in the cross-validation. ``mean-prediction`` : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Default: 'cross-validation' scorer : object | None scikit-learn Scorer instance. If None, set to accuracy_score. n_jobs : int Number of jobs to run in parallel. Defaults to 1. Attributes ---------- picks_ : array-like of int | None The channels indices to include. ch_names : list, array-like, shape (n_channels,) Names of the channels used for training. y_train_ : ndarray, shape (n_samples,) The categories used for training. times_ : dict A dictionary that configures the training times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. ``times`` : ndarray, shape (n_clfs,) The training times (in seconds). cv_ : CrossValidation object The actual CrossValidation input depending on y. estimators_ : list of list of scikit-learn.base.BaseEstimator subclasses. The estimators for each time point and each fold. y_pred_ : ndarray, shape (n_times, n_epochs, n_prediction_dims) Class labels for samples in X. y_true_ : list | ndarray, shape (n_samples,) The categories used for scoring y_pred_. scorer_ : object scikit-learn Scorer instance. scores_ : list of float, shape (n_times,) The scores (mean accuracy of self.predict(X) wrt. y.). See Also -------- GeneralizationAcrossTime Notes ----- The function is equivalent to the diagonal of GeneralizationAcrossTime() .. versionadded:: 0.10 """ def __init__(self, picks=None, cv=5, clf=None, times=None, predict_mode='cross-validation', scorer=None, n_jobs=1): super(TimeDecoding, self).__init__(picks=picks, cv=cv, clf=None, train_times=times, test_times='diagonal', predict_mode=predict_mode, scorer=scorer, n_jobs=n_jobs) self._clean_times() def __repr__(self): s = '' if hasattr(self, "estimators_"): s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % ( self.times_['start'], self.times_['stop']) else: s += 'no fit' if hasattr(self, 'y_pred_'): s += (", predicted %d epochs" % len(self.y_pred_[0])) else: s += ", no prediction" if hasattr(self, "estimators_") and hasattr(self, 'scores_'): s += ',\n ' else: s += ', ' if hasattr(self, 'scores_'): s += "scored" if callable(self.scorer_): s += " (%s)" % (self.scorer_.__name__) else: s += "no score" return "<TimeDecoding | %s>" % s def fit(self, epochs, y=None): """ Train a classifier on each specified time slice. Note. This function sets the ``picks_``, ``ch_names``, ``cv_``, ``y_train``, ``train_times_`` and ``estimators_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. y : list or ndarray of int, shape (n_samples,) or None, optional To-be-fitted model values. If None, y = epochs.events[:, 2]. Returns ------- self : TimeDecoding Returns fitted TimeDecoding object. Notes ------ If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ self._prep_times() super(TimeDecoding, self).fit(epochs, y=y) self._clean_times() return self def predict(self, epochs): """ Test each classifier on each specified testing time slice. .. note:: This function sets the ``y_pred_`` and ``test_times_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. Can be similar to fitted epochs or not. See predict_mode parameter. Returns ------- y_pred : list of lists of arrays of floats, shape (n_times, n_epochs, n_prediction_dims) The single-trial predictions at each time sample. """ # noqa self._prep_times() super(TimeDecoding, self).predict(epochs) self._clean_times() return self.y_pred_ def score(self, epochs=None, y=None): """Score Epochs Estimate scores across trials by comparing the prediction estimated for each trial to its true value. Calls ``predict()`` if it has not been already. Note. The function updates the ``scorer_``, ``scores_``, and ``y_true_`` attributes. Parameters ---------- epochs : instance of Epochs | None, optional The epochs. Can be similar to fitted epochs or not. If None, it needs to rely on the predictions ``y_pred_`` generated with ``predict()``. y : list | ndarray, shape (n_epochs,) | None, optional True values to be compared with the predictions ``y_pred_`` generated with ``predict()`` via ``scorer_``. If None and ``predict_mode``=='cross-validation' y = ``y_train_``. Returns ------- scores : list of float, shape (n_times,) The scores estimated by ``scorer_`` at each time sample (e.g. mean accuracy of ``predict(X)``). """ if epochs is not None: self.predict(epochs) else: if not hasattr(self, 'y_pred_'): raise RuntimeError('Please predict() epochs first or pass ' 'epochs to score()') self._prep_times() super(TimeDecoding, self).score(epochs=None, y=y) self._clean_times() return self.scores_ def plot(self, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function Predict each classifier. If multiple classifiers are passed, average prediction across all classifiers to result in a single prediction per classifier. Parameters ---------- title : str | None Figure title. xmin : float | None, optional, Min time value. xmax : float | None, optional, Max time value. ymin : float Min score value. Defaults to 0. ymax : float Max score value. Defaults to 1. ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str Score line color. Defaults to 'steelblue'. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Defaults to None Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ # XXX JRK: need cleanup in viz self._prep_times() fig = plot_gat_times(self, train_time='diagonal', title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) self._clean_times() return fig def _prep_times(self): """Auxiliary function to allow compability with GAT""" self.test_times = 'diagonal' if hasattr(self, 'times'): self.train_times = self.times if hasattr(self, 'times_'): self.train_times_ = self.times_ self.test_times_ = _DecodingTime() self.test_times_['slices'] = [[slic] for slic in self.train_times_['slices']] self.test_times_['times'] = [[tim] for tim in self.train_times_['times']] if hasattr(self, 'scores_'): self.scores_ = [[score] for score in self.scores_] if hasattr(self, 'y_pred_'): self.y_pred_ = [[y_pred] for y_pred in self.y_pred_] def _clean_times(self): """Auxiliary function to allow compability with GAT""" if hasattr(self, 'train_times'): self.times = self.train_times if hasattr(self, 'train_times_'): self.times_ = self.train_times_ for attr in ['test_times', 'train_times', 'test_times_', 'train_times_']: if hasattr(self, attr): delattr(self, attr) if hasattr(self, 'y_pred_'): self.y_pred_ = [y_pred[0] for y_pred in self.y_pred_] if hasattr(self, 'scores_'): self.scores_ = [score[0] for score in self.scores_]
bsd-3-clause
lamby/pkg-rst2pdf
rst2pdf/math_flowable.py
8
6239
# -*- coding: utf-8 -*- # See LICENSE.txt for licensing terms import tempfile import os import re from reportlab.platypus import * from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfbase import pdfmetrics from opt_imports import mathtext from log import log HAS_MATPLOTLIB = mathtext is not None if HAS_MATPLOTLIB: from matplotlib.font_manager import FontProperties from matplotlib.colors import ColorConverter fonts = {} def enclose(s): """Enclose the string in $...$ if needed""" if not re.match(r'.*\$.+\$.*', s, re.MULTILINE | re.DOTALL): s = u"$%s$" % s return s class Math(Flowable): def __init__(self, s, label=None, fontsize=12,color='black'): self.s = s self.label = label self.fontsize = fontsize self.color = color if HAS_MATPLOTLIB: self.parser = mathtext.MathTextParser("Pdf") else: log.error("Math support not available," " some parts of this document will be rendered incorrectly." " Install matplotlib.") Flowable.__init__(self) self.hAlign='CENTER' def wrap(self, aW, aH): if HAS_MATPLOTLIB: try: width, height, descent, glyphs, \ rects, used_characters = self.parser.parse( enclose(self.s), 72, prop=FontProperties(size=self.fontsize)) return width, height except: pass # FIXME: report error return 10, 10 def drawOn(self, canv, x, y, _sW=0): if _sW and hasattr(self,'hAlign'): from reportlab.lib.enums import TA_LEFT, TA_CENTER, TA_RIGHT, TA_JUSTIFY a = self.hAlign if a in ('CENTER','CENTRE', TA_CENTER): x = x + 0.5*_sW elif a in ('RIGHT',TA_RIGHT): x = x + _sW elif a not in ('LEFT',TA_LEFT): raise ValueError, "Bad hAlign value "+str(a) height = 0 if HAS_MATPLOTLIB: global fonts canv.saveState() canv.translate(x, y) try: width, height, descent, glyphs, \ rects, used_characters = self.parser.parse( enclose(self.s), 72, prop=FontProperties(size=self.fontsize)) for ox, oy, fontname, fontsize, num, symbol_name in glyphs: if not fontname in fonts: fonts[fontname] = fontname pdfmetrics.registerFont(TTFont(fontname, fontname)) canv.setFont(fontname, fontsize) col_conv=ColorConverter() rgb_color=col_conv.to_rgb(self.color) canv.setFillColorRGB(rgb_color[0],rgb_color[1],rgb_color[2]) canv.drawString(ox, oy, unichr(num)) canv.setLineWidth(0) canv.setDash([]) for ox, oy, width, height in rects: canv.rect(ox, oy+2*height, width, height, fill=1) except: # FIXME: report error col_conv=ColorConverter() rgb_color=col_conv.to_rgb(self.color) canv.setFillColorRGB(rgb_color[0],rgb_color[1],rgb_color[2]) canv.drawString(0,0,self.s) canv.restoreState() else: canv.saveState() canv.drawString(x, y, self.s) canv.restoreState() if self.label: log.info('Drawing equation-%s'%self.label) canv.bookmarkHorizontal('equation-%s'%self.label,0,height) def descent(self): """Return the descent of this flowable, useful to align it when used inline.""" if HAS_MATPLOTLIB: width, height, descent, glyphs, rects, used_characters = \ self.parser.parse(enclose(self.s), 72, prop=FontProperties(size=self.fontsize)) return descent return 0 def genImage(self): """Create a PNG from the contents of this flowable. Required so we can put inline math in paragraphs. Returns the file name. The file is caller's responsability. """ dpi = 72 scale = 10 try: import Image import ImageFont import ImageDraw import ImageColor except ImportError: from PIL import ( Image, ImageFont, ImageDraw, ImageColor, ) if not HAS_MATPLOTLIB: img = Image.new('RGBA', (120, 120), (255,255,255,0)) else: width, height, descent, glyphs,\ rects, used_characters = self.parser.parse( enclose(self.s), dpi, prop=FontProperties(size=self.fontsize)) img = Image.new('RGBA', (int(width*scale), int(height*scale)),(255,255,255,0)) draw = ImageDraw.Draw(img) for ox, oy, fontname, fontsize, num, symbol_name in glyphs: font = ImageFont.truetype(fontname, int(fontsize*scale)) tw, th = draw.textsize(unichr(num), font=font) # No, I don't understand why that 4 is there. # As we used to say in the pure math # department, that was a numerical solution. col_conv=ColorConverter() fc=col_conv.to_rgb(self.color) rgb_color=(int(fc[0]*255),int(fc[1]*255),int(fc[2]*255)) draw.text((ox*scale, (height - oy - fontsize + 4)*scale), unichr(num), font=font,fill=rgb_color) for ox, oy, w, h in rects: x1 = ox*scale x2 = x1 + w*scale y1 = (height - oy)*scale y2 = y1 + h*scale draw.rectangle([x1, y1, x2, y2],(0,0,0)) fh, fn = tempfile.mkstemp(suffix=".png") os.close(fh) img.save(fn) return fn if __name__ == "__main__": doc = SimpleDocTemplate("mathtest.pdf") Story = [Math(r'\mathcal{R}\prod_{i=\alpha\mathcal{B}}'\ r'^\infty a_i\sin(2 \pi f x_i)')] doc.build(Story)
mit
jbogaardt/chainladder-python
examples/plot_munich_resid.py
1
1537
""" ==================================== Munich Chainladder Correlation Plots ==================================== This example demonstrates how to recreate the the residual correlation plots of the Munich Chainladder paper. """ import chainladder as cl import pandas as pd import numpy as np import matplotlib.pyplot as plt # Fit Munich Model mcl = cl.load_sample('mcl') model = cl.MunichAdjustment([('paid', 'incurred')]).fit(mcl) # Plot Data fig, ((ax0, ax1)) = plt.subplots(ncols=2, figsize=(15,5)) # Paid lambda line pd.DataFrame( {'(P/I)': np.linspace(-2,2,2), 'P': np.linspace(-2,2,2)*model.lambda_.loc['paid']}).plot( x='(P/I)', y='P', legend=False, ax=ax0) # Paid scatter paid_plot = pd.concat( (model.resids_['paid'].melt(value_name='P')['P'], model.q_resids_['paid'].melt(value_name='(P/I)')['(P/I)']), axis=1).plot( kind='scatter', y='P', x='(P/I)', ax=ax0, xlim=(-2,2), ylim=(-2,2), grid=True, title='Paid') # Incurred lambda line inc_lambda = pd.DataFrame( {'(I/P)': np.linspace(-2,2,2), 'I': np.linspace(-2,2,2)*model.lambda_.loc['incurred']}) inc_lambda.plot(x='(I/P)', y='I', ax=ax1, legend=False); # Incurred scatter incurred_plot = pd.concat( (model.resids_['incurred'].melt(value_name='I')['I'], model.q_resids_['incurred'].melt(value_name='(I/P)')['(I/P)']), axis=1).plot( kind='scatter', y='I', x='(I/P)', ax=ax1, xlim=(-2,2), ylim=(-2,2), grid=True, title='Incurred'); fig.suptitle("Munich Chainladder Residual Correlations");
mit
zooniverse/aggregation
experimental/condor/site.py
2
3590
#!/usr/bin/env python __author__ = 'greghines' import numpy as np import os import pymongo import sys import urllib import matplotlib.cbook as cbook from PIL import Image import matplotlib.pyplot as plt import warnings import random import math if os.path.exists("/home/ggdhines"): sys.path.append("/home/ggdhines/PycharmProjects/reduction/experimental/clusteringAlg") else: sys.path.append("/home/greg/github/reduction/experimental/clusteringAlg") from divisiveKmeans import DivisiveKmeans if os.path.exists("/home/ggdhines"): base_directory = "/home/ggdhines" else: base_directory = "/home/greg" client = pymongo.MongoClient() db = client['condor_2014-11-11'] classification_collection = db["condor_classifications"] subject_collection = db["condor_subjects"] relations = [] one = [] #print subject_collection.count({"classification_count":{"$gt":1}}) for subject in subject_collection.find({"classification_count":{"$gt":1}}): #if not("USFWS photos/Remote Feeding Site Photos/Remote Feeding Photos_2008/Bitter Creek/NRFS/NRFS 4.16-4.17.2008=CORA, 17CACO/" in subject["metadata"]["file"]): if not("USFWS photos/Remote Feeding Site Photos/Remote Feeding Photos_2011/Bitter Creek/BC 34.929570, -119.363840 Dec 17-Jan 8, 2011-12" in subject["metadata"]["file"]): continue zooniverse_id = subject["zooniverse_id"] #print zooniverse_id # print subject["metadata"]["file"] # print subject["location"]["standard"] annotation_list = [] user_list = [] for user_index,classification in enumerate(classification_collection.find({"subjects.zooniverse_id":zooniverse_id})): try: mark_index = [ann.keys() for ann in classification["annotations"]].index(["marks",]) markings = classification["annotations"][mark_index].values()[0] for animal in markings.values(): scale = 1.875 x = scale*float(animal["x"]) y = scale*float(animal["y"]) try: animal_type = animal["animal"] #if not(animal_type in ["carcassOrScale","carcass"]): if animal_type == "condor": annotation_list.append((x,y)) user_list.append(user_index) except KeyError: annotation_list.append((x,y)) user_list.append(user_index) except ValueError: pass user_identified_condors,clusters = DivisiveKmeans(3).fit2(annotation_list,user_list,debug=True) #print len(user_identified_condors) tt = 0 if len(user_identified_condors) > 1: for c1_index in range(len(clusters)): for c2_index in range(c1_index+1,len(clusters)): condor1 = user_identified_condors[c1_index] condor2 = user_identified_condors[c2_index] dist = math.sqrt((condor1[0]-condor2[0])**2+(condor1[1]-condor2[1])**2) users_1 = [user_list[annotation_list.index(pt)] for pt in clusters[c1_index]] users_2 = [user_list[annotation_list.index(pt)] for pt in clusters[c2_index]] overlap = [u for u in users_1 if u in users_2] if len(overlap) <= 1: relations.append((dist,len(overlap),c1_index,c2_index)) tt += 1 #relations.sort(key= lambda x:x[0]) if tt > 0: one.append(zooniverse_id) print tt print len(relations) x = zip(*relations)[0] n, bins, patches = plt.hist(x, 20) print bins print one plt.show()
apache-2.0
santis19/tesina-fisica
Flexion/modelo-sintetico/6-deflexion-flexural/garcia.py
1
1205
import numpy as np from scipy import fftpack import matplotlib.pyplot as plt from garcia_functions import * """ A partir de una topografia y una grilla de rigidez D obtenemos la deflexion que genera dicha carga topografica a traves del metodo de Garcia (2014). """ def ploteo(x, y, z, contours=150, title=""): plt.axes(aspect='equal') plt.contourf(x, y, z, contours) plt.colorbar() plt.title(title) plt.show() ## LEO ARCHIVO DATOS datos = np.loadtxt("../grillas/datos.txt") topo = np.loadtxt("../grillas/topografia.npy") Te = np.loadtxt("../grillas/espesor-elastico-grillado.npy") x1, x2, y1, y2, nx, ny, rho_t, rho_c, rho_m, t = datos[:] E = 1e11 nu = 0.25 ## GRILLA DE TRABAJO x = np.linspace(x1, x2, nx) y = np.linspace(y1, y2, ny) x, y = np.meshgrid(x, y) Te[np.isnan(Te)] = 0 print Te Te_0 = 12000 w0 = deflection_calculation(x, y, topo, rho_t, rho_c, rho_m, Te_0, E, nu) w = garcia_iteration(x, y, w0, Te, Te_0, rho_t, rho_c, rho_m, E, nu, rms_dif_tolerance=1e-13) #~ np.savetxt("../grillas/topografia.npy", topo) np.savetxt("../grillas/deflexion-flexural.npy", w) ploteo(x, y, Te, title="Te") ploteo(x, y, w0, title="w0") ploteo(x, y, w, title="w")
gpl-2.0
zehpunktbarron/iOSMAnalyzer
scripts/c2_actuality_point.py
1
5651
# -*- coding: utf-8 -*- #!/usr/bin/python2.7 #description :This file creates a plot: Calculate the actuality of all points #author :Christopher Barron @ http://giscience.uni-hd.de/ #date :19.01.2013 #version :0.1 #usage :python pyscript.py #============================================================================== import psycopg2 from pylab import * # import db connection parameters import db_conn_para as db ### ### Connect to database with psycopg2. Add arguments from parser to the connection-string ### try: conn_string="dbname= %s user= %s host= %s password= %s" %(db.g_my_dbname, db.g_my_username, db.g_my_hostname, db.g_my_dbpassword) print "Connecting to database\n->%s" % (conn_string) conn = psycopg2.connect(conn_string) print "Connection to database was established succesfully" except: print "Connection to database failed" ### ### Execute SQL query ### # New cursor method for sql cur = conn.cursor() # Execute SQL query. For more than one row use three '"' try: cur.execute(""" SELECT (SELECT count(id) FROM (SELECT id, -- select latest edit in the whole database as timestamp of the dataset extract(days FROM(SELECT max(valid_from) FROM hist_plp) - valid_from) AS age FROM hist_point WHERE visible = 'true' AND (version = (SELECT max(version) FROM hist_point AS h WHERE h.id = hist_point.id AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null))) AND minor = (SELECT max(minor) FROM hist_point AS h WHERE h.id = hist_point.id AND h.version = hist_point.version AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null)))) ) AS foo WHERE age <= 183 -- less than 6 months ), (SELECT count(id) FROM (SELECT id, -- select latest edit in the whole database as timestamp of the dataset extract(days FROM(SELECT max(valid_from) FROM hist_plp) - valid_from) AS age FROM hist_point WHERE visible = 'true' AND (version = (SELECT max(version) FROM hist_point AS h WHERE h.id = hist_point.id AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null))) AND minor = (SELECT max(minor) FROM hist_point AS h WHERE h.id = hist_point.id AND h.version = hist_point.version AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null)))) ) AS foo WHERE age > 183 AND age <= 365 -- older than 6 months and les than 1 year ), (SELECT count(id) FROM (SELECT id, -- select latest edit in the whole database as timestamp of the dataset extract(days FROM(SELECT max(valid_from) FROM hist_plp) - valid_from) AS age FROM hist_point WHERE visible = 'true' AND (version = (SELECT max(version) FROM hist_point AS h WHERE h.id = hist_point.id AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null))) AND minor = (SELECT max(minor) FROM hist_point AS h WHERE h.id = hist_point.id AND h.version = hist_point.version AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null)))) ) AS foo WHERE age > 365 AND age <= 730 -- older than 1 year and less than 2 years ), (SELECT count(id) FROM (SELECT id, -- select latest edit in the whole database as timestamp of the dataset extract(days FROM(SELECT max(valid_from) FROM hist_plp) - valid_from) AS age FROM hist_point WHERE visible = 'true' AND (version = (SELECT max(version) FROM hist_point AS h WHERE h.id = hist_point.id AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null))) AND minor = (SELECT max(minor) FROM hist_point AS h WHERE h.id = hist_point.id AND h.version = hist_point.version AND (valid_from <= CURRENT_TIMESTAMP AND (valid_to >= CURRENT_TIMESTAMP OR valid_to is null)))) ) AS foo WHERE age > 730 -- older than 2 years ) """) # Return the results of the query. Fetchall() = all rows, fetchone() = first row records = cur.fetchone() cur.close() except: print "Query could not be executed" # Get data from query one = records[0] two = records[1] three = records[2] four = records[3] # make a square figure and axes figure(1, figsize=(9,9)) ax = axes([0.2, 0.2, 0.6, 0.6]) # pie-labelling labels = '< 6 months', '> 6 and <= 12 months', '> 1 year and <= 2 years', '> 2 years' # get db-values as fracs fracs = [one, two, three, four] # explode values explode=(0.05, 0.05, 0.05, 0.05) # Color in RGB. not shure about the values (counts). Source: http://stackoverflow.com/questions/5133871/how-to-plot-a-pie-of-color-list # Matplotlib for some reasons changes colors. Therefore color 2 and 4 have to be changed... data = {(0, 210, 0): 11, (236, 0, 0): 11, (255, 127, 36): 11, (234, 234, 0): 11, } # values in hexa: #2DD700 ,#00A287, #FF6700 colors = [] counts = [] for color, count in data.items(): # matplotlib wants colors as 0.0-1.0 floats, not 0-255 ints colors.append([float(x)/255 for x in color]) counts.append(count) # Percentage (and total values) def my_autopct(pct): total=sum(fracs) val=int(pct*total/100.0) return '{p:.1f}% ({v:d})'.format(p=pct,v=val) # The pie chart (DB-values, explode pies, Labels, decimal places, add shadows to pies pie(fracs, explode=explode, colors=colors, autopct=my_autopct, labels=labels, shadow=True) # Title of the pie chart title('Actuality of all OSM-Point-Features') # Save plot to *.png-file plt.savefig('pics/c2_actuality_point.jpeg') plt.clf()
gpl-3.0
hvanwyk/quadmesh
debug/debug_hanging_nodes.py
1
3525
from mesh import Mesh from finite_element import QuadFE, DofHandler import matplotlib.pyplot as plt import numpy as np from plot import Plot # TODO: Add this all to the test file. mesh = Mesh.newmesh() mesh.refine() mesh.root_node().children['SE'].mark('l') mesh.refine('l') mesh.root_node().children['SE'].children['SW'] = None _,ax = plt.subplots() element_type = 'Q3' V = QuadFE(2,element_type) d = DofHandler(mesh,V) d.distribute_dofs() order = int(list(element_type)[1]) x = [i*1.0/order for i in range(order+1)] xy = [] for xi in x: for yi in x: xy.append((xi,yi)) zlist = [] for n in range(order+1): print('\n\n') for yi in x: zline = [] for xi in x: zline.append(V.phi(n,np.array([(xi,yi)]))) print([v for v in zline]) """ print('Evaluating shape functions at hanging nodes.') x = [i*0.5/order for i in range(2*order+1)] xy = [(xi,1.0) for xi in x] for xx in xy: print('Point {0}'.format(xx)) zline = [] for n in range(12): zline.append(V.phi(n,xx)) print([v for v in zline]) print('\n') """ C = d.make_hanging_node_constraints() print(C) c = V.constraint_coefficients() plot = Plot() plot.mesh(ax, mesh, element=V, cell_numbers=True, vertex_numbers=False, dofs=True ) plt.show() ''' # Number nodes Q1 count = 0 for node in mesh.root_node().find_leaves(): node.dofs = dict.fromkeys(['SW','SE','NW','NE']) for key in ['SW','SE','NW','NE']: if node.dofs[key] == None: node.dofs[key] = count # # Shared cells # for direction in list(key).append(key): nb = node.find_neighbor(direction) if nb != None if nb.has_children(): nb = nb.children[opposite[direction]] no_neighbor = dict.fromkeys(list(key), False) print(no_neighbor) for direction in list(key): nb = node.find_neighbor(direction) if nb != None: pos = key.replace(direction,opposite[direction]) if nb.has_children(): child = nb.children[pos] shared_cells[direction] = {pos: child} else: shared_cells[direction] = {pos: nb} else: no_neighbor[direction] = True # Diagonal neighbor if all(no_neighbor.values()): # No neighbors in either direction """ if nb.has_children(): new_key = nb = nb.children[new_key] if nb != None: if not hasattr(nb,'dofs'): nb.dofs = dict.fromkeys(['SW','SE','NW','NE']) if nb.dofs[key] != None: nb.dofs().vertices[new_key] = count else: if nb.dofs[key] != None: nb.dofs[key.replace(direction,opposite[direction])] = count if not hasattr(nb,'dofs'): nb.dofs = dict.fromkeys(['SW','SE','NW','NE']) """ print(no_neighbor) count += 1 '''
mit
krez13/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
russel1237/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
329
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
elkingtonmcb/scikit-learn
sklearn/neighbors/classification.py
132
14388
"""Nearest Neighbor Classification""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck <[email protected]> # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import numpy as np from scipy import stats from ..utils.extmath import weighted_mode from .base import \ _check_weights, _get_weights, \ NeighborsBase, KNeighborsMixin,\ RadiusNeighborsMixin, SupervisedIntegerMixin from ..base import ClassifierMixin from ..utils import check_array class KNeighborsClassifier(NeighborsBase, KNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing the k-nearest neighbors vote. Read more in the :ref:`User Guide <classification>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default = 'minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(neigh.predict([[1.1]])) [0] >>> print(neigh.predict_proba([[0.9]])) [[ 0.66666667 0.33333333]] See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. .. warning:: Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but but different labels, the results will depend on the ordering of the training data. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs) self.weights = _check_weights(weights) def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): if weights is None: mode, _ = stats.mode(_y[neigh_ind, k], axis=1) else: mode, _ = weighted_mode(_y[neigh_ind, k], weights, axis=1) mode = np.asarray(mode.ravel(), dtype=np.intp) y_pred[:, k] = classes_k.take(mode) if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred def predict_proba(self, X): """Return probability estimates for the test data X. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order. """ X = check_array(X, accept_sparse='csr') neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_samples = X.shape[0] weights = _get_weights(neigh_dist, self.weights) if weights is None: weights = np.ones_like(neigh_ind) all_rows = np.arange(X.shape[0]) probabilities = [] for k, classes_k in enumerate(classes_): pred_labels = _y[:, k][neigh_ind] proba_k = np.zeros((n_samples, classes_k.size)) # a simple ':' index doesn't work right for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors) proba_k[all_rows, idx] += weights[:, i] # normalize 'votes' into real [0,1] probabilities normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer probabilities.append(proba_k) if not self.outputs_2d_: probabilities = probabilities[0] return probabilities class RadiusNeighborsClassifier(NeighborsBase, RadiusNeighborsMixin, SupervisedIntegerMixin, ClassifierMixin): """Classifier implementing a vote among neighbors within a given radius Read more in the :ref:`User Guide <classification>`. Parameters ---------- radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. weights : str or callable weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. Uniform weights are used by default. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. metric : string or DistanceMetric object (default='minkowski') the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. outlier_label : int, optional (default = None) Label, which is given for outlier samples (samples with no neighbors on given radius). If set to None, ValueError is raised, when outlier is detected. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. Examples -------- >>> X = [[0], [1], [2], [3]] >>> y = [0, 0, 1, 1] >>> from sklearn.neighbors import RadiusNeighborsClassifier >>> neigh = RadiusNeighborsClassifier(radius=1.0) >>> neigh.fit(X, y) # doctest: +ELLIPSIS RadiusNeighborsClassifier(...) >>> print(neigh.predict([[1.5]])) [0] See also -------- KNeighborsClassifier RadiusNeighborsRegressor KNeighborsRegressor NearestNeighbors Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, radius=1.0, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, **kwargs): self._init_params(radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, **kwargs) self.weights = _check_weights(weights) self.outlier_label = outlier_label def predict(self, X): """Predict the class labels for the provided data Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' Test samples. Returns ------- y : array of shape [n_samples] or [n_samples, n_outputs] Class labels for each data sample. """ X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] neigh_dist, neigh_ind = self.radius_neighbors(X) inliers = [i for i, nind in enumerate(neigh_ind) if len(nind) != 0] outliers = [i for i, nind in enumerate(neigh_ind) if len(nind) == 0] classes_ = self.classes_ _y = self._y if not self.outputs_2d_: _y = self._y.reshape((-1, 1)) classes_ = [self.classes_] n_outputs = len(classes_) if self.outlier_label is not None: neigh_dist[outliers] = 1e-6 elif outliers: raise ValueError('No neighbors found for test samples %r, ' 'you can try using larger radius, ' 'give a label for outliers, ' 'or consider removing them from your dataset.' % outliers) weights = _get_weights(neigh_dist, self.weights) y_pred = np.empty((n_samples, n_outputs), dtype=classes_[0].dtype) for k, classes_k in enumerate(classes_): pred_labels = np.array([_y[ind, k] for ind in neigh_ind], dtype=object) if weights is None: mode = np.array([stats.mode(pl)[0] for pl in pred_labels[inliers]], dtype=np.int) else: mode = np.array([weighted_mode(pl, w)[0] for (pl, w) in zip(pred_labels[inliers], weights)], dtype=np.int) mode = mode.ravel() y_pred[inliers, k] = classes_k.take(mode) if outliers: y_pred[outliers, :] = self.outlier_label if not self.outputs_2d_: y_pred = y_pred.ravel() return y_pred
bsd-3-clause
sunny94/temp
sympy/external/importtools.py
85
7294
"""Tools to assist importing optional external modules.""" from __future__ import print_function, division import sys # Override these in the module to change the default warning behavior. # For example, you might set both to False before running the tests so that # warnings are not printed to the console, or set both to True for debugging. WARN_NOT_INSTALLED = None # Default is False WARN_OLD_VERSION = None # Default is True def __sympy_debug(): # helper function from sympy/__init__.py # We don't just import SYMPY_DEBUG from that file because we don't want to # import all of sympy just to use this module. import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) if __sympy_debug(): WARN_OLD_VERSION = True WARN_NOT_INSTALLED = True def import_module(module, min_module_version=None, min_python_version=None, warn_not_installed=None, warn_old_version=None, module_version_attr='__version__', module_version_attr_call_args=None, __import__kwargs={}, catch=()): """ Import and return a module if it is installed. If the module is not installed, it returns None. A minimum version for the module can be given as the keyword argument min_module_version. This should be comparable against the module version. By default, module.__version__ is used to get the module version. To override this, set the module_version_attr keyword argument. If the attribute of the module to get the version should be called (e.g., module.version()), then set module_version_attr_call_args to the args such that module.module_version_attr(*module_version_attr_call_args) returns the module's version. If the module version is less than min_module_version using the Python < comparison, None will be returned, even if the module is installed. You can use this to keep from importing an incompatible older version of a module. You can also specify a minimum Python version by using the min_python_version keyword argument. This should be comparable against sys.version_info. If the keyword argument warn_not_installed is set to True, the function will emit a UserWarning when the module is not installed. If the keyword argument warn_old_version is set to True, the function will emit a UserWarning when the library is installed, but cannot be imported because of the min_module_version or min_python_version options. Note that because of the way warnings are handled, a warning will be emitted for each module only once. You can change the default warning behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and WARN_OLD_VERSION is True. This function uses __import__() to import the module. To pass additional options to __import__(), use the __import__kwargs keyword argument. For example, to import a submodule A.B, you must pass a nonempty fromlist option to __import__. See the docstring of __import__(). This catches ImportError to determine if the module is not installed. To catch additional errors, pass them as a tuple to the catch keyword argument. Examples ======== >>> from sympy.external import import_module >>> numpy = import_module('numpy') >>> numpy = import_module('numpy', min_python_version=(2, 7), ... warn_old_version=False) >>> numpy = import_module('numpy', min_module_version='1.5', ... warn_old_version=False) # numpy.__version__ is a string >>> # gmpy does not have __version__, but it does have gmpy.version() >>> gmpy = import_module('gmpy', min_module_version='1.14', ... module_version_attr='version', module_version_attr_call_args=(), ... warn_old_version=False) >>> # To import a submodule, you must pass a nonempty fromlist to >>> # __import__(). The values do not matter. >>> p3 = import_module('mpl_toolkits.mplot3d', ... __import__kwargs={'fromlist':['something']}) >>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened >>> matplotlib = import_module('matplotlib', ... __import__kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,)) """ # keyword argument overrides default, and global variable overrides # keyword argument. warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None else warn_old_version or True) warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None else warn_not_installed or False) import warnings # Check Python first so we don't waste time importing a module we can't use if min_python_version: if sys.version_info < min_python_version: if warn_old_version: warnings.warn("Python version is too old to use %s " "(%s or newer required)" % ( module, '.'.join(map(str, min_python_version))), UserWarning) return # PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it if module == 'numpy' and '__pypy__' in sys.builtin_module_names: return try: mod = __import__(module, **__import__kwargs) ## there's something funny about imports with matplotlib and py3k. doing ## from matplotlib import collections ## gives python's stdlib collections module. explicitly re-importing ## the module fixes this. from_list = __import__kwargs.get('fromlist', tuple()) for submod in from_list: if submod == 'collections' and mod.__name__ == 'matplotlib': __import__(module + '.' + submod) except ImportError: if warn_not_installed: warnings.warn("%s module is not installed" % module, UserWarning) return except catch as e: if warn_not_installed: warnings.warn( "%s module could not be used (%s)" % (module, repr(e))) return if min_module_version: modversion = getattr(mod, module_version_attr) if module_version_attr_call_args is not None: modversion = modversion(*module_version_attr_call_args) if modversion < min_module_version: if warn_old_version: # Attempt to create a pretty string version of the version if isinstance(min_module_version, basestring): verstr = min_module_version elif isinstance(min_module_version, (tuple, list)): verstr = '.'.join(map(str, min_module_version)) else: # Either don't know what this is. Hopefully # it's something that has a nice str version, like an int. verstr = str(min_module_version) warnings.warn("%s version is too old to use " "(%s or newer required)" % (module, verstr), UserWarning) return return mod
bsd-3-clause
avmarchenko/exatomic
exatomic/interfaces/xyz.py
2
5330
# -*- coding: utf-8 -*- # Copyright (c) 2015-2018, Exa Analytics Development Team # Distributed under the terms of the Apache License 2.0 """ XYZ File Editor ################## """ from __future__ import absolute_import from __future__ import print_function from __future__ import division import six import csv import numpy as np import pandas as pd from exa import TypedMeta from exa.util.units import Length from exa.util.utility import mkp from exatomic.core.editor import Editor from exatomic.core.frame import compute_frame_from_atom, Frame from exatomic.core.atom import Atom from exatomic.algorithms.indexing import starts_counts class Meta(TypedMeta): atom = Atom frame = Frame class XYZ(six.with_metaclass(Meta, Editor)): """ An editor for programmatically editing `xyz`_ files. .. _xyz: https://en.wikipedia.org/wiki/XYZ_file_format """ _header = '{nat}\n{comment}\n' _cols = ['symbol', 'x', 'y', 'z'] def parse_frame(self): self.frame = compute_frame_from_atom(self.atom) def parse_atom(self, unit='Angstrom', names=('symbol', 'x', 'y', 'z')): """ Parse the atom table from the current xyz file. Args: unit (str): Default xyz unit of length is the Angstrom """ df = pd.read_csv(six.StringIO(six.u(str(self))), delim_whitespace=True, names=names, header=None, skip_blank_lines=False) # The following algorithm works for both trajectory files and single xyz files nats = pd.Series(df[df[['y', 'z']].isnull().all(axis=1)].index) nats = nats[nats.diff() != 1].values comments = nats + 1 nats = df.loc[nats, 'symbol'] comments = df.loc[comments, :].dropna(how='all').index initials = nats.index.values.astype(np.int64) + 2 counts = nats.values.astype(np.int64) frame, _, indices = starts_counts(initials, counts) df = df[df.index.isin(indices)] df[['x', 'y', 'z']] = df[['x', 'y', 'z']].astype(np.float64) df['symbol'] = df['symbol'].astype('category') df['frame'] = frame df['frame'] = df['frame'].astype('category') df.reset_index(drop=True, inplace=True) df.index.names = ['atom'] df['x'] *= Length[unit, 'au'] df['y'] *= Length[unit, 'au'] df['z'] *= Length[unit, 'au'] if self.meta is not None: self.meta['comments'] = {line: self._lines[line] for line in comments} else: self.meta = {'comments': {line: self._lines[line] for line in comments}} self.atom = df def write(self, path, trajectory=True, float_format='% .8f'): """ Write an xyz file (or files) to disk. Args: path (str): Directory or file path trajectory (bool): Write xyz trajectory file (default) or individual Returns: path (str): On success, return the directory or file path written """ if trajectory: with open(path, 'w') as f: f.write(str(self)) else: grps = self.atom.cardinal_groupby() n = len(str(self.frame.index.max())) for frame, atom in grps: filename = str(frame).zfill(n) + '.xyz' with open(mkp(path, filename), 'w') as f: f.write(self._header.format(nat=str(len(atom)), comment='frame: ' + str(frame))) a = atom[self._cols].copy() a['x'] *= Length['au', 'Angstrom'] a['y'] *= Length['au', 'Angstrom'] a['z'] *= Length['au', 'Angstrom'] a.to_csv(f, header=False, index=False, sep=' ', float_format=float_format, quoting=csv.QUOTE_NONE, escapechar=' ') @classmethod def from_universe(cls, universe, atom_table='atom', float_format='% .8f'): """ Create an xyz file editor from a given universe. If the universe has more than one frame, creates an xyz trajectory format editor. Args: universe: The universe atom_table (str): One of 'atom', 'unit', or 'visual' corresponding to coordinates float_format (str): Floating point format (for writing) """ string = '' grps = universe.atom.cardinal_groupby() for frame, atom in grps: string += cls._header.format(nat=len(atom), comment='frame: ' + str(frame)) atom_copy = atom[cls._cols].copy() if atom_table == 'unit': atom_copy.update(universe.unit_atom) elif atom_table == 'visual': atom_copy.update(universe.visual_atom) atom_copy['x'] *= Length['au', 'Angstrom'] atom_copy['y'] *= Length['au', 'Angstrom'] atom_copy['z'] *= Length['au', 'Angstrom'] string += atom_copy.to_csv(sep=' ', header=False, quoting=csv.QUOTE_NONE, index=False, float_format=float_format, escapechar=' ') return cls(string, name=universe.name, description=universe.description, meta=universe.meta)
apache-2.0
SchwarzerWolf/KSFH
main.py
1
3687
#!/usr/bin/env python """ SchwarzerWolf.cc ************************** *date = '2017-12-17' * *module_version = '0.4.4'* ************************** *********************************************************************** *[KSFH - Kraftsport und Fitness Helfer] * *Module -> '.main.py' * * * *Copyleft [2017] - [SchwarzerWolf.cc] * *This program is free software: you can redistribute it and/or modify * *it under the terms of the GNU General Public License as published by * *the Free Software Foundation, either version 3 of the License, or * *(at your option) any later version. * * * *This program is distributed in the hope that it will be useful, * *but WITHOUT ANY WARRANTY; without even the implied warranty of * *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * *GNU General Public License for more details. * * * *You should have received a copy of the GNU General Public License * *along with this program. If not, see <http://www.gnu.org/licenses/>.* *********************************************************************** """ # Module imports # ********************************************************** import tkinter as tk from tkinter import ttk from matplotlib import pyplot as plt from modules.base import Base from modules.calculate_reference import CalculationReference from modules.license import ProgramLic from modules.one_rep_max import OneRepMax from modules.run import Run from modules.strength_standards import StrengthStandards from modules.version import program_title, program_version # ********************************************************** # Constants # ************************************************* plt.style.use('./templates/schwarzerwolf.mplstyle') # ************************************************* class Program(tk.Tk): """ Basis of the program. Used to configure the ttk.Notebook. """ def __init__(self): tk.Tk.__init__(self) # Title self.title('{title} - {ver}'.format(title=program_title, ver=program_version)) # Resizeable -> no self.resizable(False, False) # Notebook self.nb = ttk.Notebook(master=self, width=1100, height=650) # Methods -> load self.nb_conf() def nb_conf(self): """ Here, large parts of the 'ttk.Notebook' are configured. """ # Classes base = Base(self.nb) one_rep_max = OneRepMax(self.nb) strength_std = StrengthStandards(self.nb) run = Run(self.nb) calc_ref = CalculationReference(self.nb) program_lic = ProgramLic(self.nb) # Style style = ttk.Style() style.configure('TNotebook', foreground='#ffffff', background='#000000') # Config self.nb.add(base, text='Basis'), self.nb.add(one_rep_max, text='1RM') self.nb.add(strength_std, text='Kraftstandards') self.nb.add(run, text='Laufsport') self.nb.add(calc_ref, text='Berechnungsreferenz') self.nb.add(program_lic, text='Programlizenz') # Grid self.nb.grid() def main(): Program().mainloop() if __name__ == '__main__': main()
gpl-3.0
davidgardenier/frbpoppy
tests/chime/obs_rep_frac.py
1
1849
"""Calculate the actual CHIME repeater fraction.""" import pandas as pd from frbcat import ChimeRepeaters def calc_rep_frac(): df = ChimeRepeaters().df df.timestamp = pd.to_datetime(df.timestamp) df.sort_values('timestamp', inplace=True) starting_time = df['timestamp'].iloc[0] srcs_seen_once = [] srcs_seen_twice = [] time_rep_seen = [] for index, row in df.iterrows(): src = row['name'] dt = (row['timestamp'] - starting_time).total_seconds() / 86400 if src not in srcs_seen_once: srcs_seen_once.append(src) continue elif src not in srcs_seen_twice: # Timedelta at which repeater detected time_rep_seen.append(dt) srcs_seen_twice.append(src) return time_rep_seen if __name__ == '__main__': import matplotlib.pyplot as plt from tests.convenience import plot_aa_style, rel_path import numpy as np from tqdm import tqdm # Set up plot style plot_aa_style(cols=1) f, ax1 = plt.subplots(1, 1) # See how the real fraction changes over time chime_fracs = [] dts = calc_rep_frac() days = [d for d in range(301)] for day in tqdm(days, desc='frbcat'): n_rep = sum([dt <= day for dt in dts]) n_one_offs = 2*day try: frac = n_rep / (n_rep + n_one_offs) except ZeroDivisionError: frac = np.nan chime_fracs.append(frac) ax1.plot(days, chime_fracs, label='chime-frb') # Further plot details ax1.set_xlabel(r'Time (days)') ax1.set_ylabel(r'$f_{\textrm{rep}}$') # Equal to $N_{\textrm{repeaters}}/N_{\textrm{detections}}$ ax1.set_xlim(0, max(days)) ax1.set_yscale('log') # Save figure plt.tight_layout() plt.savefig(rel_path('plots/obs_rep_frac_chime.pdf')) plt.clf()
mit
CG-F16-24-Rutgers/steersuite-rutgers
steerstats/tools/deap/tools/support.py
19
26469
from __future__ import division try: import cPickle as pickle except ImportError: import pickle from bisect import bisect_right from collections import defaultdict from copy import deepcopy from functools import partial from itertools import chain from operator import eq def identity(obj): """Returns directly the argument *obj*. """ return obj class History(object): """The :class:`History` class helps to build a genealogy of all the individuals produced in the evolution. It contains two attributes, the :attr:`genealogy_tree` that is a dictionary of lists indexed by individual, the list contain the indices of the parents. The second attribute :attr:`genealogy_history` contains every individual indexed by their individual number as in the genealogy tree. The produced genealogy tree is compatible with `NetworkX <http://networkx.lanl.gov/index.html>`_, here is how to plot the genealogy tree :: history = History() # Decorate the variation operators toolbox.decorate("mate", history.decorator) toolbox.decorate("mutate", history.decorator) # Create the population and populate the history population = toolbox.population(n=POPSIZE) history.update(population) # Do the evolution, the decorators will take care of updating the # history # [...] import matplotlib.pyplot as plt import networkx graph = networkx.DiGraph(history.genealogy_tree) graph = graph.reverse() # Make the grah top-down colors = [toolbox.evaluate(history.genealogy_history[i])[0] for i in graph] networkx.draw(graph, node_color=colors) plt.show() Using NetworkX in combination with `pygraphviz <http://networkx.lanl.gov/pygraphviz/>`_ (dot layout) this amazing genealogy tree can be obtained from the OneMax example with a population size of 20 and 5 generations, where the color of the nodes indicate there fitness, blue is low and red is high. .. image:: /_images/genealogy.png :width: 67% .. note:: The genealogy tree might get very big if your population and/or the number of generation is large. """ def __init__(self): self.genealogy_index = 0 self.genealogy_history = dict() self.genealogy_tree = dict() def update(self, individuals): """Update the history with the new *individuals*. The index present in their :attr:`history_index` attribute will be used to locate their parents, it is then modified to a unique one to keep track of those new individuals. This method should be called on the individuals after each variation. :param individuals: The list of modified individuals that shall be inserted in the history. If the *individuals* do not have a :attr:`history_index` attribute, the attribute is added and this individual is considered as having no parent. This method should be called with the initial population to initialize the history. Modifying the internal :attr:`genealogy_index` of the history or the :attr:`history_index` of an individual may lead to unpredictable results and corruption of the history. """ try: parent_indices = tuple(ind.history_index for ind in individuals) except AttributeError: parent_indices = tuple() for ind in individuals: self.genealogy_index += 1 ind.history_index = self.genealogy_index self.genealogy_history[self.genealogy_index] = deepcopy(ind) self.genealogy_tree[self.genealogy_index] = parent_indices @property def decorator(self): """Property that returns an appropriate decorator to enhance the operators of the toolbox. The returned decorator assumes that the individuals are returned by the operator. First the decorator calls the underlying operation and then calls the :func:`update` function with what has been returned by the operator. Finally, it returns the individuals with their history parameters modified according to the update function. """ def decFunc(func): def wrapFunc(*args, **kargs): individuals = func(*args, **kargs) self.update(individuals) return individuals return wrapFunc return decFunc def getGenealogy(self, individual, max_depth=float("inf")): """Provide the genealogy tree of an *individual*. The individual must have an attribute :attr:`history_index` as defined by :func:`~deap.tools.History.update` in order to retrieve its associated genealogy tree. The returned graph contains the parents up to *max_depth* variations before this individual. If not provided the maximum depth is up to the begining of the evolution. :param individual: The individual at the root of the genealogy tree. :param max_depth: The approximate maximum distance between the root (individual) and the leaves (parents), optional. :returns: A dictionary where each key is an individual index and the values are a tuple corresponding to the index of the parents. """ gtree = {} visited = set() # Adds memory to the breadth first search def genealogy(index, depth): if index not in self.genealogy_tree: return depth += 1 if depth > max_depth: return parent_indices = self.genealogy_tree[index] gtree[index] = parent_indices for ind in parent_indices: if ind not in visited: genealogy(ind, depth) visited.add(ind) genealogy(individual.history_index, 0) return gtree class Statistics(object): """Object that compiles statistics on a list of arbitrary objects. When created the statistics object receives a *key* argument that is used to get the values on which the function will be computed. If not provided the *key* argument defaults to the identity function. The value returned by the key may be a multi-dimensional object, i.e.: a tuple or a list, as long as the statistical function registered support it. So for example, statistics can be computed directly on multi-objective fitnesses when using numpy statistical function. :param key: A function to access the values on which to compute the statistics, optional. :: >>> s = Statistics() >>> s.register("mean", numpy.mean) >>> s.register("max", max) >>> s.compile([1, 2, 3, 4]) {'max': 4, 'mean': 2.5} >>> s.compile([5, 6, 7, 8]) {'max': 8, 'mean': 6.5} """ def __init__(self, key=identity): self.key = key self.functions = dict() self.fields = [] def register(self, name, function, *args, **kargs): """Register a *function* that will be applied on the sequence each time :meth:`record` is called. :param name: The name of the statistics function as it would appear in the dictionnary of the statistics object. :param function: A function that will compute the desired statistics on the data as preprocessed by the key. :param argument: One or more argument (and keyword argument) to pass automatically to the registered function when called, optional. """ self.functions[name] = partial(function, *args, **kargs) self.fields.append(name) def compile(self, data): """Apply to the input sequence *data* each registered function and return the results as a dictionnary. :param data: Sequence of objects on which the statistics are computed. """ values = tuple(self.key(elem) for elem in data) entry = dict() for key, func in self.functions.iteritems(): entry[key] = func(values) return entry class MultiStatistics(dict): """Dictionary of :class:`Statistics` object allowing to compute statistics on multiple keys using a single call to :meth:`compile`. It takes a set of key-value pairs associating a statistics object to a unique name. This name can then be used to retrieve the statistics object. The following code computes statistics simultaneously on the length and the first value of the provided objects. :: >>> len_stats = Statistics(key=len) >>> itm0_stats = Statistics(key=itemgetter(0)) >>> mstats = MultiStatistics(length=len_stats, item=itm0_stats) >>> mstats.register("mean", numpy.mean, axis=0) >>> mstats.register("max", numpy.max, axis=0) >>> mstats.compile([[0.0, 1.0, 1.0, 5.0], [2.0, 5.0]]) {'length': {'max': 4, 'mean': 3.0}, 'item': {'max': 2.0, 'mean': 1.0}} """ def compile(self, data): """Calls :meth:`Statistics.compile` with *data* of each :class:`Statistics` object. :param data: Sequence of objects on which the statistics are computed. """ record = {} for name, stats in self.items(): record[name] = stats.compile(data) return record @property def fields(self): return sorted(self.keys()) def register(self, name, function, *args, **kargs): """Register a *function* in each :class:`Statistics` object. :param name: The name of the statistics function as it would appear in the dictionnary of the statistics object. :param function: A function that will compute the desired statistics on the data as preprocessed by the key. :param argument: One or more argument (and keyword argument) to pass automatically to the registered function when called, optional. """ for stats in self.values(): stats.register(name, function, *args, **kargs) class Logbook(list): """Evolution records as a chronological list of dictionaries. Data can be retrieved via the :meth:`select` method given the appropriate names. The :class:`Logbook` class may also contain other logbooks refered to as chapters. Chapters are used to store information associated to a specific part of the evolution. For example when computing statistics on different components of individuals (namely :class:`MultiStatistics`), chapters can be used to distinguish the average fitness and the average size. """ def __init__(self): self.buffindex = 0 self.chapters = defaultdict(Logbook) """Dictionary containing the sub-sections of the logbook which are also :class:`Logbook`. Chapters are automatically created when the right hand side of a keyworded argument, provided to the *record* function, is a dictionnary. The keyword determines the chapter's name. For example, the following line adds a new chapter "size" that will contain the fields "max" and "mean". :: logbook.record(gen=0, size={'max' : 10.0, 'mean' : 7.5}) To access a specific chapter, use the name of the chapter as a dictionnary key. For example, to access the size chapter and select the mean use :: logbook.chapters["size"].select("mean") Compiling a :class:`MultiStatistics` object returns a dictionary containing dictionnaries, therefore when recording such an object in a logbook using the keyword argument unpacking operator (**), chapters will be automatically added to the logbook. :: >>> fit_stats = Statistics(key=attrgetter("fitness.values")) >>> size_stats = Statistics(key=len) >>> mstats = MultiStatistics(fitness=fit_stats, size=size_stats) >>> # [...] >>> record = mstats.compile(population) >>> logbook.record(**record) >>> print logbook fitness length ------------ ------------ max mean max mean 2 1 4 3 """ self.columns_len = None self.header = None """Order of the columns to print when using the :data:`stream` and :meth:`__str__` methods. The syntax is a single iterable containing string elements. For example, with the previously defined statistics class, one can print the generation and the fitness average, and maximum with :: logbook.header = ("gen", "mean", "max") If not set the header is built with all fields, in arbritrary order on insertion of the first data. The header can be removed by setting it to :data:`None`. """ self.log_header = True """Tells the log book to output or not the header when streaming the first line or getting its entire string representation. This defaults :data:`True`. """ def record(self, **infos): """Enter a record of event in the logbook as a list of key-value pairs. The informations are appended chronogically to a list as a dictionnary. When the value part of a pair is a dictionnary, the informations contained in the dictionnary are recorded in a chapter entitled as the name of the key part of the pair. Chapters are also Logbook. """ for key, value in infos.items(): if isinstance(value, dict): self.chapters[key].record(**value) del infos[key] self.append(infos) def select(self, *names): """Return a list of values associated to the *names* provided in argument in each dictionary of the Statistics object list. One list per name is returned in order. :: >>> log = Logbook() >>> log.record(gen = 0, mean = 5.4, max = 10.0) >>> log.record(gen = 1, mean = 9.4, max = 15.0) >>> log.select("mean") [5.4, 9.4] >>> log.select("gen", "max") ([0, 1], [10.0, 15.0]) With a :class:`MultiStatistics` object, the statistics for each measurement can be retrieved using the :data:`chapters` member : :: >>> log = Logbook() >>> log.record(**{'gen' : 0, 'fit' : {'mean' : 0.8, 'max' : 1.5}, ... 'size' : {'mean' : 25.4, 'max' : 67}}) >>> log.record(**{'gen' : 1, 'fit' : {'mean' : 0.95, 'max' : 1.7}, ... 'size' : {'mean' : 28.1, 'max' : 71}}) >>> log.chapters['size'].select("mean") [25.4, 28.1] >>> log.chapters['fit'].select("gen", "max") ([0, 1], [1.5, 1.7]) """ if len(names) == 1: return [entry.get(names[0], None) for entry in self] return tuple([entry.get(name, None) for entry in self] for name in names) @property def stream(self): """Retrieve the formatted not streamed yet entries of the database including the headers. :: >>> log = Logbook() >>> log.append({'gen' : 0}) >>> print log.stream gen 0 >>> log.append({'gen' : 1}) >>> print log.stream 1 """ startindex, self.buffindex = self.buffindex, len(self) return self.__str__(startindex) def __delitem__(self, key): if isinstance(key, slice): for i, in range(*key.indices(len(self))): self.pop(i) for chapter in self.chapters.values(): chapter.pop(i) else: self.pop(key) for chapter in self.chapters.values(): chapter.pop(key) def pop(self, index=0): """Retrieve and delete element *index*. The header and stream will be adjusted to follow the modification. :param item: The index of the element to remove, optional. It defaults to the first element. You can also use the following syntax to delete elements. :: del log[0] del log[1::5] """ if index < self.buffindex: self.buffindex -= 1 return super(self.__class__, self).pop(index) def __txt__(self, startindex): columns = self.header if not columns: columns = sorted(self[0].keys()) + sorted(self.chapters.keys()) if not self.columns_len or len(self.columns_len) != len(columns): self.columns_len = map(len, columns) chapters_txt = {} offsets = defaultdict(int) for name, chapter in self.chapters.items(): chapters_txt[name] = chapter.__txt__(startindex) if startindex == 0: offsets[name] = len(chapters_txt[name]) - len(self) str_matrix = [] for i, line in enumerate(self[startindex:]): str_line = [] for j, name in enumerate(columns): if name in chapters_txt: column = chapters_txt[name][i+offsets[name]] else: value = line.get(name, "") string = "{0:n}" if isinstance(value, float) else "{0}" column = string.format(value) self.columns_len[j] = max(self.columns_len[j], len(column)) str_line.append(column) str_matrix.append(str_line) if startindex == 0 and self.log_header: header = [] nlines = 1 if len(self.chapters) > 0: nlines += max(map(len, chapters_txt.values())) - len(self) + 1 header = [[] for i in xrange(nlines)] for j, name in enumerate(columns): if name in chapters_txt: length = max(len(line.expandtabs()) for line in chapters_txt[name]) blanks = nlines - 2 - offsets[name] for i in xrange(blanks): header[i].append(" " * length) header[blanks].append(name.center(length)) header[blanks+1].append("-" * length) for i in xrange(offsets[name]): header[blanks+2+i].append(chapters_txt[name][i]) else: length = max(len(line[j].expandtabs()) for line in str_matrix) for line in header[:-1]: line.append(" " * length) header[-1].append(name) str_matrix = chain(header, str_matrix) template = "\t".join("{%i:<%i}" % (i, l) for i, l in enumerate(self.columns_len)) text = [template.format(*line) for line in str_matrix] return text def __str__(self, startindex=0): text = self.__txt__(startindex) return "\n".join(text) class HallOfFame(object): """The hall of fame contains the best individual that ever lived in the population during the evolution. It is lexicographically sorted at all time so that the first element of the hall of fame is the individual that has the best first fitness value ever seen, according to the weights provided to the fitness at creation time. The insertion is made so that old individuals have priority on new individuals. A single copy of each individual is kept at all time, the equivalence between two individuals is made by the operator passed to the *similar* argument. :param maxsize: The maximum number of individual to keep in the hall of fame. :param similar: An equivalence operator between two individuals, optional. It defaults to operator :func:`operator.eq`. The class :class:`HallOfFame` provides an interface similar to a list (without being one completely). It is possible to retrieve its length, to iterate on it forward and backward and to get an item or a slice from it. """ def __init__(self, maxsize, similar=eq): self.maxsize = maxsize self.keys = list() self.items = list() self.similar = similar def update(self, population): """Update the hall of fame with the *population* by replacing the worst individuals in it by the best individuals present in *population* (if they are better). The size of the hall of fame is kept constant. :param population: A list of individual with a fitness attribute to update the hall of fame with. """ if len(self) == 0 and self.maxsize !=0: # Working on an empty hall of fame is problematic for the # "for else" self.insert(population[0]) for ind in population: if ind.fitness > self[-1].fitness or len(self) < self.maxsize: for hofer in self: # Loop through the hall of fame to check for any # similar individual if self.similar(ind, hofer): break else: # The individual is unique and strictly better than # the worst if len(self) >= self.maxsize: self.remove(-1) self.insert(ind) def insert(self, item): """Insert a new individual in the hall of fame using the :func:`~bisect.bisect_right` function. The inserted individual is inserted on the right side of an equal individual. Inserting a new individual in the hall of fame also preserve the hall of fame's order. This method **does not** check for the size of the hall of fame, in a way that inserting a new individual in a full hall of fame will not remove the worst individual to maintain a constant size. :param item: The individual with a fitness attribute to insert in the hall of fame. """ item = deepcopy(item) i = bisect_right(self.keys, item.fitness) self.items.insert(len(self) - i, item) self.keys.insert(i, item.fitness) def remove(self, index): """Remove the specified *index* from the hall of fame. :param index: An integer giving which item to remove. """ del self.keys[len(self) - (index % len(self) + 1)] del self.items[index] def clear(self): """Clear the hall of fame.""" del self.items[:] del self.keys[:] def __len__(self): return len(self.items) def __getitem__(self, i): return self.items[i] def __iter__(self): return iter(self.items) def __reversed__(self): return reversed(self.items) def __str__(self): return str(self.items) class ParetoFront(HallOfFame): """The Pareto front hall of fame contains all the non-dominated individuals that ever lived in the population. That means that the Pareto front hall of fame can contain an infinity of different individuals. :param similar: A function that tels the Pareto front whether or not two individuals are similar, optional. The size of the front may become very large if it is used for example on a continuous function with a continuous domain. In order to limit the number of individuals, it is possible to specify a similarity function that will return :data:`True` if the genotype of two individuals are similar. In that case only one of the two individuals will be added to the hall of fame. By default the similarity function is :func:`operator.eq`. Since, the Pareto front hall of fame inherits from the :class:`HallOfFame`, it is sorted lexicographically at every moment. """ def __init__(self, similar=eq): HallOfFame.__init__(self, None, similar) def update(self, population): """Update the Pareto front hall of fame with the *population* by adding the individuals from the population that are not dominated by the hall of fame. If any individual in the hall of fame is dominated it is removed. :param population: A list of individual with a fitness attribute to update the hall of fame with. """ for ind in population: is_dominated = False has_twin = False to_remove = [] for i, hofer in enumerate(self): # hofer = hall of famer if hofer.fitness.dominates(ind.fitness): is_dominated = True break elif ind.fitness.dominates(hofer.fitness): to_remove.append(i) elif ind.fitness == hofer.fitness and self.similar(ind, hofer): has_twin = True break for i in reversed(to_remove): # Remove the dominated hofer self.remove(i) if not is_dominated and not has_twin: self.insert(ind) __all__ = ['HallOfFame', 'ParetoFront', 'History', 'Statistics', 'MultiStatistics', 'Logbook'] if __name__ == "__main__": import doctest from operator import itemgetter import numpy doctest.run_docstring_examples(Statistics, globals()) doctest.run_docstring_examples(Statistics.register, globals()) doctest.run_docstring_examples(Statistics.compile, globals()) doctest.run_docstring_examples(MultiStatistics, globals()) doctest.run_docstring_examples(MultiStatistics.register, globals()) doctest.run_docstring_examples(MultiStatistics.compile, globals())
gpl-3.0
ddboline/kaggle_imdb_sentiment_model
backup/my_word2vec_model.py
1
2182
#!/usr/bin/python import os import pandas as pd from KaggleWord2VecUtility import KaggleWord2VecUtility from sklearn.ensemble import RandomForestClassifier from sklearn.feature_extraction.text import CountVectorizer import itertools import nltk.data # Load the punkt tokenizer tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') def clean_review_function(review): list_of_sentences = KaggleWord2VecUtility.review_to_sentences(review, tokenizer, remove_stopwords=False) return list_of_sentences def my_model(nfeatures=100, run_test_data=False): print 'nfeatures', nfeatures labeledtrain_data = pd.read_csv('labeledTrainData.tsv', header=0, delimiter='\t', quoting=3) unlabeledtrain_data = pd.read_csv('unlabeledTrainData.tsv', header=0, delimiter='\t', quoting=3) test_data = pd.read_csv('testData.tsv', header=0, delimiter='\t', quoting=3) print 'labeledtrain_data.shape', labeledtrain_data.shape print 'unlabeledtrain_data.shape', unlabeledtrain_data.shape print 'test_data.shape', test_data.shape sentences = (pd.concat([labeledtrain_data['review'], unlabeledtrain_data['review']])).apply(clean_review_function) print len(sentences) # Set values for various parameters num_features = 300 # Word vector dimensionality min_word_count = 40 # Minimum word count num_workers = 4 # Number of threads to run in parallel context = 10 # Context window size downsampling = 1e-3 # Downsample setting for frequent words # Initialize and train the model (this will take some time) print "Training Word2Vec model..." model = Word2Vec(sentences, workers=num_workers, \ size=num_features, min_count = min_word_count, \ window = context, sample = downsampling, seed=1) # If you don't plan to train the model any further, calling # init_sims will make the model much more memory-efficient. model.init_sims(replace=True) if __name__ == '__main__': nfeatures = 100 for arg in os.sys.argv: try: nfeatures = int(arg) except ValueError: pass my_model(nfeatures, run_test_data=True)
mit
xguse/scikit-bio
skbio/stats/ordination/tests/test_redundancy_analysis.py
8
6413
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function import numpy as np import numpy.testing as npt import pandas as pd from unittest import TestCase, main from skbio import OrdinationResults from skbio.stats.ordination import rda from skbio.util import get_data_path, assert_ordination_results_equal class TestRDAErrors(TestCase): def setUp(self): pass def test_shape(self): for n, p, n_, m in [(3, 4, 2, 1), (3, 4, 3, 10)]: Y = pd.DataFrame(np.random.randn(n, p)) X = pd.DataFrame(np.random.randn(n_, m)) yield npt.assert_raises, ValueError, rda, Y, X, None, None class TestRDAResults(TestCase): # STATUS: L&L only shows results with scaling 1, and they agree # with vegan's (module multiplying by a constant). I can also # compute scaling 2, agreeing with vegan, but there are no written # results in L&L. def setUp(self): """Data from table 11.3 in Legendre & Legendre 1998.""" self.sample_ids = ['Site0', 'Site1', 'Site2', 'Site3', 'Site4', 'Site5', 'Site6', 'Site7', 'Site8', 'Site9'] self.feature_ids = ['Species0', 'Species1', 'Species2', 'Species3', 'Species4', 'Species5'] self.env_ids = map(str, range(4)) self.pc_ids = ['RDA1', 'RDA2', 'RDA3', 'RDA4', 'RDA5', 'RDA6', 'RDA7'] self.Y = pd.DataFrame( np.loadtxt(get_data_path('example2_Y')), index=self.sample_ids, columns=self.feature_ids) self.X = pd.DataFrame( np.loadtxt(get_data_path('example2_X')), index=self.sample_ids, columns=self.env_ids) def test_scaling1(self): scores = rda(self.Y, self.X, scaling=1) biplot_scores = pd.DataFrame(np.loadtxt( get_data_path('example2_biplot_scaling1'))) sample_constraints = pd.DataFrame(np.loadtxt( get_data_path('example2_sample_constraints_scaling1'))) # Load data as computed with vegan 2.0-8 vegan_features = pd.DataFrame( np.loadtxt(get_data_path( 'example2_species_scaling1_from_vegan')), index=self.feature_ids, columns=self.pc_ids) vegan_samples = pd.DataFrame( np.loadtxt(get_data_path( 'example2_site_scaling1_from_vegan')), index=self.sample_ids, columns=self.pc_ids) sample_constraints = pd.DataFrame( np.loadtxt(get_data_path( 'example2_sample_constraints_scaling1')), index=self.sample_ids, columns=self.pc_ids) biplot_scores = pd.DataFrame( np.loadtxt(get_data_path( 'example2_biplot_scaling1'))) # These are wrong. See issue #1002 proportion_explained = pd.Series([0.44275783, 0.25614586, 0.15280354, 0.10497021, 0.02873375, 0.00987052, 0.00471828], index=self.pc_ids) # These are wrong. See issue #1002 eigvals = pd.Series([25.897954, 14.982578, 8.937841, 6.139956, 1.680705, 0.577350, 0.275984], index=self.pc_ids) exp = OrdinationResults( 'RDA', 'Redundancy Analysis', samples=vegan_samples, features=vegan_features, sample_constraints=sample_constraints, biplot_scores=biplot_scores, proportion_explained=proportion_explained, eigvals=eigvals) assert_ordination_results_equal(scores, exp, ignore_biplot_scores_labels=True, decimal=6) def test_scaling2(self): scores = rda(self.Y, self.X, scaling=2) biplot_scores = pd.DataFrame(np.loadtxt( get_data_path('example2_biplot_scaling2'))) sample_constraints = pd.DataFrame(np.loadtxt( get_data_path('example2_sample_constraints_scaling2'))) # Load data as computed with vegan 2.0-8 vegan_features = pd.DataFrame( np.loadtxt(get_data_path( 'example2_species_scaling2_from_vegan')), index=self.feature_ids, columns=self.pc_ids) vegan_samples = pd.DataFrame( np.loadtxt(get_data_path( 'example2_site_scaling2_from_vegan')), index=self.sample_ids, columns=self.pc_ids) sample_constraints = pd.DataFrame( np.loadtxt(get_data_path( 'example2_sample_constraints_scaling2')), index=self.sample_ids, columns=self.pc_ids) biplot_scores = pd.DataFrame( np.loadtxt(get_data_path( 'example2_biplot_scaling2'))) # These are wrong. See issue #1002 proportion_explained = pd.Series([0.44275783, 0.25614586, 0.15280354, 0.10497021, 0.02873375, 0.00987052, 0.00471828], index=self.pc_ids) # These are wrong. See issue #1002 eigvals = pd.Series([25.897954, 14.982578, 8.937841, 6.139956, 1.680705, 0.577350, 0.275984], index=self.pc_ids) exp = OrdinationResults( 'RDA', 'Redundancy Analysis', samples=vegan_samples, features=vegan_features, sample_constraints=sample_constraints, biplot_scores=biplot_scores, proportion_explained=proportion_explained, eigvals=eigvals) assert_ordination_results_equal(scores, exp, ignore_biplot_scores_labels=True, decimal=6) if __name__ == '__main__': main()
bsd-3-clause
sandeepkbhat/pylearn2
pylearn2/models/svm.py
21
3386
"""Wrappers for SVM models.""" __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import numpy as np import warnings try: from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC except ImportError: warnings.warn("Could not import sklearn.") class OneVsRestClassifier(object): """ Dummy replacement for `sklearn.multiclass.OneVsRestClassifier`. Parameters ---------- estimator : see `sklearn` doc. See `sklearn` doc. Notes ----- This class is a dummy class included so that sphinx can import DenseMulticlassSVM and document it even when sklearn is not installed. """ def __init__(self, estimator): raise RuntimeError("sklearn not available.") class DenseMulticlassSVM(OneVsRestClassifier): """ sklearn does very different things behind the scenes depending upon the exact identity of the class you use. The only way to get an SVM implementation that works with dense data is to use the `SVC` class, which implements one-against-one classification. This wrapper uses it to implement one-against- rest classification, which generally works better in my experiments. To avoid duplicating the training data, use only numpy ndarrays whose tags.c_contigous flag is true, and which are in float64 format. Parameters ---------- C : float SVM regularization parameter. See SVC.__init__ for details. kernel : str Type of kernel to use. See SVC.__init__ for details. gamma : float Optional parameter of kernel. See SVC.__init__ for details. coef0 : float Optional parameter of kernel. See SVC.__init__ for details. degree : int Degree of kernel, if kernel is polynomial. See SVC.__init__ for details. """ def __init__(self, C, kernel='rbf', gamma=1.0, coef0=1.0, degree=3): estimator = SVC(C=C, kernel=kernel, gamma=gamma, coef0=coef0, degree=degree) super(DenseMulticlassSVM, self).__init__(estimator) def fit(self, X, y): """ Fit underlying estimators. Parameters ---------- X : array-like, shape = [n_samples, n_features] Data. y : array-like, shape = [n_samples] or [n_samples, n_classes] Multi-class targets. An indicator matrix turns on multilabel classification. Returns ------- self """ super(DenseMulticlassSVM, self).fit(X, y) return self def decision_function(self, X): """ Returns the distance of each sample from the decision boundary for each class. Parameters ---------- X : array-like, shape = [n_samples, n_features] A 2D ndarray with each row containing the input features for one example. Returns ------- T : array-like, shape = [n_samples, n_classes] """ return np.column_stack([estimator.decision_function(X) for estimator in self.estimators_])
bsd-3-clause
c-wilson/klustaviewa
klustaviewa/control/controller.py
1
9136
"""The Controller offers high-level methods to change the data.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import inspect import numpy as np import pandas as pd from klustaviewa.control.processor import Processor from klustaviewa.control.stack import Stack from kwiklib.utils import logger as log from kwiklib.dataio.selection import get_indices, select from kwiklib.dataio.tools import get_array # ----------------------------------------------------------------------------- # Utility functions # ----------------------------------------------------------------------------- def get_pretty_arg(item): if isinstance(item, (pd.Series)): if item.size == 0: return '[]' elif item.size == 1: return '[{0:s}]'.format(str(item.values[0])) else: return '[{0:s}, ..., {1:s}]'.format(*map(str, item.values[[0, -1]])) if isinstance(item, (pd.Int64Index, pd.Index)): if item.size == 0: return '[]' elif item.size == 1: return '[{0:s}]'.format(str(item.values[0])) else: return '[{0:s}, ..., {1:s}]'.format(*map(str, item.values[[0, -1]])) return str(item).replace('\n', '') def get_pretty_action(method_name, args, kwargs, verb='Process'): args_str = ', '.join(map(get_pretty_arg, args)) kwargs_str = ', '.join([key + '=' + str(val) for key, val in kwargs.iteritems()]) if kwargs_str: kwargs_str = ', ' + kwargs_str return '{3:s} action {0:s}({1:s}{2:s})'.format( method_name, args_str, kwargs_str, verb) def log_action(action, prefix=''): method_name, args, kwargs = action description = kwargs.get('_description', get_pretty_action(*action)) log.info(prefix + description) def call_action(processor, action, suffix=''): method_name, args, kwargs = action kwargs = kwargs.copy() kwargs.pop('_description', None) return getattr(processor, method_name + suffix)(*args, **kwargs) # ----------------------------------------------------------------------------- # Controller # ----------------------------------------------------------------------------- class Controller(object): """Implement actions that can be undone and redone. An Action object is: (method_name, args, kwargs) """ def __init__(self, loader): self.loader = loader self.processor = Processor(loader) # Create the action stack. self.stack = Stack(maxsize=20) # Internal action methods. # ------------------------ def _process(self, method_name, *args, **kwargs): """Create, register, and process an action.""" # Create the action. action = (method_name, args, kwargs) # Add the action to the stack. self.stack.add(action) # Log the action. log_action(action) # Process the action. output = call_action(self.processor, action) return method_name, output or {} # Public action methods. # ---------------------- def merge_clusters(self, clusters): clusters_to_merge = clusters cluster_merged = self.loader.get_new_clusters(1)[0] clusters_old = self.loader.get_clusters(clusters=clusters_to_merge) cluster_groups = self.loader.get_cluster_groups(clusters_to_merge) cluster_colors = self.loader.get_cluster_colors(clusters_to_merge) return self._process('merge_clusters', clusters_old, cluster_groups, cluster_colors, cluster_merged, _description='Merged clusters {0:s} into {1:s}'.format( get_pretty_arg(list(clusters)), get_pretty_arg(cluster_merged))) def split_clusters(self, clusters, spikes): # Old clusters for all spikes to split. clusters_old = self.loader.get_clusters(spikes=spikes) assert np.all(np.in1d(clusters_old, clusters)) # Old cluster indices. cluster_indices_old = np.unique(clusters_old) nclusters = len(cluster_indices_old) # New clusters indices. clusters_indices_new = self.loader.get_new_clusters(nclusters) # Generate new clusters array. clusters_new = clusters_old.copy() # Assign new clusters. for cluster_old, cluster_new in zip(cluster_indices_old, clusters_indices_new): clusters_new[clusters_old == cluster_old] = cluster_new cluster_groups = self.loader.get_cluster_groups(cluster_indices_old) cluster_colors = self.loader.get_cluster_colors(cluster_indices_old) return self._process('split_clusters', clusters, clusters_old, cluster_groups, cluster_colors, clusters_new, _description='Split clusters {0:s} into {1:s}'.format( get_pretty_arg(list(cluster_indices_old)), get_pretty_arg(list(clusters_indices_new)), )) def split2_clusters(self, spikes, clusters): # clusters is new # Old clusters for all spikes to split. clusters_old = self.loader.get_clusters(spikes=spikes) # assert np.all(np.in1d(clusters_old, clusters)) # Old cluster indices. cluster_indices_old = np.unique(clusters_old) nclusters = len(cluster_indices_old) # Renumber output of klustakwik. clu_idx = np.unique(clusters) nclusters_new = len(clu_idx) # Get new clusters indices. clusters_indices_new = self.loader.get_new_clusters(nclusters_new) clu_renumber = np.zeros(clu_idx.max() + 1, dtype=np.int32) clu_renumber[clu_idx] = clusters_indices_new clusters_new = clu_renumber[clusters] cluster_groups = self.loader.get_cluster_groups(cluster_indices_old) cluster_colors = self.loader.get_cluster_colors(cluster_indices_old) return self._process('split_clusters', get_array(cluster_indices_old), clusters_old, cluster_groups, cluster_colors, clusters_new, _description='Split2') def change_cluster_color(self, cluster, color): color_old = self.loader.get_cluster_colors(cluster) color_new = color clusters_selected = self.loader.get_clusters_selected() return self._process('change_cluster_color', cluster, color_old, color_new, clusters_selected, _description='Changed cluster color of {0:s}'.format(get_pretty_arg(cluster))) def move_clusters(self, clusters, group): groups_old = self.loader.get_cluster_groups(clusters) group_new = group return self._process('move_clusters', clusters, groups_old, group_new, _description='Moved clusters {0:s} to {1:s}'.format( get_pretty_arg(clusters), get_pretty_arg(group))) def rename_group(self, group, name): name_old = self.loader.get_group_names(group) name_new = name return self._process('rename_group', group, name_old, name_new, _description='Renamed group {0:s} to {1:s}'.format( get_pretty_arg(group), get_pretty_arg(name))) def change_group_color(self, group, color): color_old = self.loader.get_group_colors(group) color_new = color return self._process('change_group_color', group, color_old, color_new, _description='Changed color of group {0:s}'.format(get_pretty_arg(group))) def add_group(self, group, name, color): return self._process('add_group', group, name, color, _description='Added group {0:s}'.format(get_pretty_arg(name))) def remove_group(self, group): name = self.loader.get_group_names(group) color = self.loader.get_group_colors(group) return self._process('remove_group', group, name, color, _description='Removed group {0:s}'.format(get_pretty_arg(group))) # Stack methods. # -------------- def undo(self): """Undo an action if possible.""" action = self.stack.undo() if action is None: return None, None # Get the undone action. method_name, args, kwargs = action # Log the action. log_action(action, prefix='Undo: ') # Undo the action. output = call_action(self.processor, action, suffix='_undo') return method_name + '_undo', output or {} def redo(self): action = self.stack.redo() if action is None: return # Get the redo action. method_name, args, kwargs = action # Log the action. log_action(action, prefix='Redo: ') # Redo the action. output = call_action(self.processor, action) return method_name, output or {} def can_undo(self): return self.stack.can_undo() def can_redo(self): return self.stack.can_redo()
bsd-3-clause
timqian/sms-tools
lectures/3-Fourier-properties/plots-code/convolution-1.py
24
1341
import matplotlib.pyplot as plt import numpy as np import time, os, sys from scipy.fftpack import fft, ifft, fftshift import math sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import utilFunctions as UF import dftModel as DF (fs, x) = UF.wavread('../../../sounds/ocean.wav') (fs, x2) = UF.wavread('../../../sounds/impulse-response.wav') x1 = x[40000:44096] N = 4096 plt.figure(1, figsize=(9.5, 7)) plt.subplot(3,2,1) plt.title('x1 (ocean.wav)') plt.plot(x1, 'b') plt.axis([0,N,min(x1),max(x1)]) plt.subplot(3,2,2) plt.title('x2 (impulse-response.wav)') plt.plot(x2, 'b') plt.axis([0,N,min(x2),max(x2)]) mX1, pX1 = DF.dftAnal(x1, np.ones(N), N) mX1 = mX1 - max(mX1) plt.subplot(3,2,3) plt.title('X1') plt.plot(mX1, 'r') plt.axis([0,N/2,-70,0]) mX2, pX2 = DF.dftAnal(x2, np.ones(N), N) mX2 = mX2 - max(mX2) plt.subplot(3,2,4) plt.title('X2') plt.plot(mX2, 'r') plt.axis([0,N/2,-70,0]) y = np.convolve(x1, x2) mY, pY = DF.dftAnal(y[0:N], np.ones(N), N) mY = mY - max(mY) plt.subplot(3,2,5) plt.title('DFT(x1 * x2)') plt.plot(mY, 'r') plt.axis([0,N/2,-70,0]) plt.subplot(3,2,6) plt.title('X1 x X2') mY1 = 20*np.log10(np.abs(fft(x1) * fft(x2))) mY1 = mY1 - max(mY1) plt.plot(mY1[0:N/2], 'r') plt.axis([0,N/2,-84,0]) plt.tight_layout() plt.savefig('convolution-1.png') plt.show()
agpl-3.0
colinsheppard/beam
src/main/python/counts_tools/exec/visualize_validations.py
2
12809
import ConfigParser from os import path import time import sys import geopandas as gpd import matplotlib.ticker import matplotlib.pyplot as plt import numpy as np import pandas as pd from utils import spatial_tools __author__ = "Andrew A Campbell" ''' Calculates and plots a network performance and demand metrics. ''' if __name__ == '__main__': if len(sys.argv) < 2: print 'ERROR: need to supply the path to the conifg file' config_path = sys.argv[1] conf = ConfigParser.ConfigParser() conf.read(config_path) # Complete Paths taz_file = conf.get('Paths', 'taz_file') county_file = conf.get('Paths', 'county_file') # Root Dirs matsim_out_root = conf.get('Paths', 'matsim_out_root') validation_out_root = conf.get('Paths', 'validation_out_root') # File Names comm_val_total_name = conf.get('Paths', 'comm_val_total_name') comm_val_fwy_name = conf.get('Paths', 'comm_val_fwy_name') VIZ_1_out_name = conf.get('Paths', 'VIZ_1_out_name') VIZ_2_time_out_name = conf.get('Paths', 'VIZ_2_time_out_name') VIZ_3_dist_out_name = conf.get('Paths', 'VIZ_3_dist_out_name') VIZ_4_tab_out_name = conf.get('Paths', 'VIZ_4_tab_out_name') VIZ_4_stacked_out_name = conf.get('Paths', 'VIZ_4_stacked_out_name') VIZ_4_bars_out_name = conf.get('Paths', 'VIZ_4_bars_out_name') # Build complete paths validation_out_root = conf.get('Paths', 'validation_out_root') out_prefix = conf.get('Paths', 'out_prefix') commute_validation_total_file = path.join(matsim_out_root, out_prefix + comm_val_total_name) commute_validation_fwy_file = path.join(matsim_out_root, out_prefix + comm_val_fwy_name) VIZ_1_out_file = path.join(validation_out_root, out_prefix + VIZ_1_out_name) VIZ_2_time_out_file = path.join(validation_out_root, out_prefix + VIZ_2_time_out_name) VIZ_3_dist_out_file = path.join(validation_out_root, out_prefix + VIZ_3_dist_out_name) VIZ_4_tab_out_file = path.join(validation_out_root, out_prefix + VIZ_4_tab_out_name) VIZ_4_stacked_out_file = path.join(validation_out_root, out_prefix + VIZ_4_stacked_out_name) VIZ_4_bars_out_file = path.join(validation_out_root, out_prefix + VIZ_4_bars_out_name) #Params pop_total_commuters = np.float(conf.get('Params', 'pop_total_commuters')) # for scaling agent commuters up to total taz_title = conf.get('Params', 'taz_title') comm_title = conf.get('Params', 'comm_title') min_time = np.float(conf.get('Params', 'min_time')) max_time = np.float(conf.get('Params', 'max_time')) barx_min = np.float(conf.get('Params', 'barx_min')) barx_max = np.float(conf.get('Params', 'barx_max')) #################################################################################################################### # VIZ_1 - total commute times by TAZ #################################################################################################################### # Load the TAZ shapefile and validation files taz_gdf = gpd.read_file(taz_file) crs_orig = {'init' :'epsg:26910'} val_total_gdf = spatial_tools.text_to_points_gdf(commute_validation_total_file, 'HomeX', 'HomeY', sep='\t', crs=crs_orig) crs_new = {'init' :'epsg:4326'} val_total_gdf.to_crs(crs_new, inplace=True) # project to WGS84 ## # Spatial join map points to TAZs ## t0 = time.time() val_gdf_1 = gpd.sjoin(val_total_gdf, taz_gdf, how='left', op='within') print 'Method 1 Time: %f' % (time.time() - t0) ## # Aggregate values to TAZ level ## g_1 = val_gdf_1.groupby('taz_key') means_1 = g_1.mean() means_1['taz_key'] = means_1.index.astype(int) # join with the geometries merged_1 = taz_gdf.merge(means_1, how='outer', on='taz_key') ## # Plots ## # Total HW commute time alpha = 1 linewidth = .1 clrmap = 'hot' merged_1['TotalTimeH2W_Minutes'] = merged_1['TotalTimeH2W'] / 60.0 # If min and max time set, use them, else use the observed min and max from the data if min_time: vmin = min_time vmax = max_time else: vmin = np.min(merged_1['TotalTimeH2W_Minutes']) vmax = np.max(merged_1['TotalTimeH2W_Minutes']) ax = merged_1.plot('TotalTimeH2W_Minutes', colormap=clrmap, vmin=vmin, vmax=vmax, figsize=(15, 12.5), linewidth=linewidth, alpha=alpha) ax.set_title(taz_title, fontsize=20) ax.get_xaxis().set_ticks([]) ax.get_yaxis().set_ticks([]) fig = ax.get_figure() cax = fig.add_axes([0.91, 0.11, 0.03, 0.775]) sm = plt.cm.ScalarMappable(cmap=clrmap, norm=plt.Normalize(vmin=vmin, vmax=vmax)) # fake up the array of the scalar mappable. Urgh... sm._A = [] cb = fig.colorbar(sm, cax=cax, alpha=alpha) cb.set_label('minutes', fontsize=20) cb.ax.tick_params(labelsize=15) # using ColorBase # cb1 = mpl.colorbar.ColorBase(cax, cmap=sm, orientation='vertical' ) plt.savefig(VIZ_1_out_file) # plt.show() # plt.close() #################################################################################################################### # VIZ_2 and VIZ_3 - freeway commute times and distances tables #################################################################################################################### # Load the freeway-only validation file val_fwy_gdf = spatial_tools.text_to_points_gdf(commute_validation_fwy_file, 'HomeX', 'HomeY', sep='\t', crs=crs_orig) val_fwy_gdf.to_crs(crs_new, inplace=True) # project to WGS84 ## # Spatial join to map points to Counties ## county_gdf = gpd.read_file(county_file) ## # Spatial join map points to Counties ## val_total_gdf_2 = gpd.sjoin(val_total_gdf, county_gdf, how='left', op='within') val_fwy_gdf_2 = gpd.sjoin(val_fwy_gdf, county_gdf, how='left', op='within') ## # Aggregate values at County level ## # Freeway g_2_fwy = val_fwy_gdf_2.groupby('COUNTY') means_2_fwy = g_2_fwy.mean() means_2_fwy['COUNTY'] = means_2_fwy.index # join with the geometries merged_2_fwy = county_gdf.merge(means_2_fwy, how='outer', on='COUNTY') # Totals g_2_total = val_total_gdf_2.groupby('COUNTY') means_2_total = g_2_total.mean() means_2_total['COUNTY'] = means_2_total.index # join with the geometries merged_2_total = county_gdf.merge(means_2_total, how='outer', on='COUNTY') ## # Tables ## # Times (TotalH2W from totals, others from the fwy data) comm_times = merged_2_total[['TotalTimeH2W', 'COUNTY']].merge( merged_2_fwy[['DelayTimeH2W','TimeInCongestionH2W', 'COUNTY']], how='outer', on='COUNTY') # comm_times_old = merged_2_fwy[['TotalTimeH2W', 'DelayTimeH2W','TimeInCongestionH2W']] comm_times.index = comm_times['COUNTY'] comm_times.drop('COUNTY', axis=1, inplace=True) # Totals s = val_fwy_gdf.mean()[['TotalTimeH2W', 'DelayTimeH2W', 'TimeInCongestionH2W']] # Replace the TotalTimeH2W with the totals value instead of the fwy value s['TotalTimeH2W'] = val_total_gdf.mean()['TotalTimeH2W'] s.name = 'TOTALS' comm_times = comm_times.append(s) comm_times = (comm_times/60).round(1) comm_times.sort(inplace=True) comm_times.index.rename('', inplace=True) comm_times.to_csv(VIZ_2_time_out_file, sep='\t') # Distances comm_dists = merged_2_fwy[['TotalDistH2W', 'DistInCongestionH2W']] comm_dists.index = merged_2_fwy['COUNTY'] s = val_fwy_gdf.mean()[['TotalDistH2W', 'DistInCongestionH2W']] s.name = 'TOTALS' comm_dists = comm_dists.append(s) comm_dists = (comm_dists/1609.344).round(1) comm_dists.sort(inplace=True) comm_dists.index.rename('', inplace=True) comm_dists.to_csv(VIZ_3_dist_out_file, sep='\t') #################################################################################################################### # VIZ_4 Commute patterns - horizontal stacked bars #################################################################################################################### ## # Calculate the county-to-county h2w commute flows ## # Get home counties from totals gdf val_gdf = spatial_tools.text_to_points_gdf(commute_validation_total_file, 'HomeX', 'HomeY', sep='\t', crs=crs_orig) val_gdf.to_crs(crs_new, inplace=True) # project to WGS84 val_gdf_4_home = gpd.sjoin(val_gdf, county_gdf, how='left', op='within') # val_gdf_4_home.rename(index=str, columns={'COUNTY': 'COUNTY_HOME', 'geometry': 'geometry_home'}, inplace=True) # Create a geometry column of work locations x_col, y_col = 'WorkX', 'WorkY' val_gdf_4_work = spatial_tools.text_to_points_gdf(commute_validation_total_file, x_col, y_col, sep='\t', crs=crs_orig) val_gdf_4_work.to_crs(crs_new, inplace=True) val_gdf_4_work = gpd.sjoin(val_gdf_4_work, county_gdf, how='left', op='within') # Create merged df w/ home and work counties merged_4 = pd.DataFrame({'COUNTY_HOME': val_gdf_4_home['COUNTY'], 'COUNTY_WORK': val_gdf_4_work['COUNTY'], 'cnt': 1.00}) # # Scale commuter counts up to the population total # merged_4.cnt = np.true_divide(pop_total_commuters, merged_4.cnt.sum()) # Group by counties and get total counts g_4 = merged_4.groupby(['COUNTY_HOME', 'COUNTY_WORK']) # NOTE: we lose about 4% here because they are not mapped to any counties # Scale commuter counts up to the population totals commute_patterns = g_4.sum() commute_patterns.cnt = np.true_divide(pop_total_commuters, commute_patterns.cnt.sum())*commute_patterns.cnt commute_patterns.cnt = commute_patterns.cnt.round().astype(int) commute_patterns.to_csv(VIZ_4_stacked_out_file, sep='\t') cp = commute_patterns.unstack() cp.to_csv(VIZ_4_tab_out_file, sep='\t') ## # Build the visualization ## counties = sorted(cp.index.values) # sorted list of county names cp.sort(inplace=True) cp.sort(axis=1, inplace=True) # Get the widths of each individual bar in the horizontal stacks widths = [] for i in range(cp.shape[0]): # row = [-1 * n for n in cp.iloc[i,:].values.tolist()] + cp.iloc[:,i].values.tolist()[::-1] row = cp.iloc[i, :].values.tolist() + cp.iloc[:, i].values.tolist()[::-1] row = np.delete(row, [i, len(row) -i - 1]) # delete the self-self flows widths.append(row) widths = np.array(widths) print widths # Calc left edges of each bar lefts = [] for i in range(cp.shape[0]): left = [-1*np.sum(widths[i, 0:widths.shape[1]/2])] left = np.append(left, left[0] + np.cumsum(widths[i, 0:-1])) # # for j in np.arange(widths.shape[1] - 1): # left.append(left[j] + widths[i, j]) lefts.append(left) lefts = np.array(lefts) # Define colors for each bar. Skips the colors for self-self flows cmmap_name = 'Set1' cmap = plt.get_cmap(cmmap_name) all_colors = [cmap(i) for i in np.linspace(0, 1, cp.shape[0])] all_colors = all_colors + all_colors[::-1] colors = [np.array(all_colors[1:-1])] for i in range(1, cp.shape[0]): c_left = all_colors[0:i] c_mid = all_colors[i+1: -i -1] c_right = all_colors[-i:] colors.append(np.array(c_left + c_mid + c_right)) colors = np.array(colors) # Build the stacked horizontal bar plot pos = -1*np.arange(cp.shape[0]) - 0.5 fig = plt.figure(figsize=(16, 9)) plts = [] for i in np.arange(widths.shape[1]): # for i in np.arange(3): p = plt.barh(pos, widths[:, i], left=lefts[:, i], color=colors[:, i, :], alpha=0.5) plts.append(p) # patches = [p[0] for p in plts] patches = [plts[i].patches[i+1] for i in np.arange(cp.shape[0]-1)] patches.append(plts[cp.shape[0]].patches[0]) # # face_colors = [plts[i].patches[i+1].get_facecolor() for i in np.arange(cp.shape[0]-1)] # face_colors.append(plts[cp.shape[0]-1].patches[0].get_facecolor()) plt.legend(patches[0:9], counties, bbox_to_anchor=(0.0, -0.15, 1.0, .102), loc=3, ncol=5, mode="expand", borderaxespad=0.0, fontsize=15) plt.yticks(pos+0.4, counties, fontsize=20) # Fix the axis is barx_min set # if barx_min: # ox = plt.axis() # plt.axis([barx_min, barx_max, ox[2], ox[3]]) ax = fig.axes[0] ax.get_xaxis().set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, b: format(int(x), ','))) # ax.set_xticklabels(ax.get_xticklabels(), fontsize=20) ax.set_title(comm_title, fontsize=25) plt.setp(ax.get_xticklabels(), fontsize=20) plt.savefig(VIZ_4_bars_out_file, bbox_inches='tight') # plt.show() # plt.close()
gpl-3.0
piskvorky/gensim
gensim/test/test_d2vmodel.py
2
1579
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 Radim Rehurek <[email protected]> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking D2VTransformer class. """ import unittest import logging from gensim.sklearn_api import D2VTransformer from gensim.test.utils import common_texts class IteratorForIterable: """Iterator capable of folding into list.""" def __init__(self, iterable): self._data = iterable self._index = 0 def __next__(self): if len(self._data) > self._index: result = self._data[self._index] self._index += 1 return result raise StopIteration class IterableWithoutZeroElement: """ Iterable, emulating pandas.Series behaviour without 0-th element. Equivalent to calling `series.index += 1`. """ def __init__(self, data): self.data = data def __getitem__(self, key): if key == 0: raise KeyError("Emulation of absence of item with key 0.") return self.data[key] def __iter__(self): return IteratorForIterable(self.data) class TestD2VTransformer(unittest.TestCase): def TestWorksWithIterableNotHavingElementWithZeroIndex(self): a = IterableWithoutZeroElement(common_texts) transformer = D2VTransformer(min_count=1, vector_size=5) transformer.fit(a) if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()
lgpl-2.1
lancezlin/pylearn2
pylearn2/cross_validation/tests/test_dataset_iterators.py
49
6535
""" Test cross-validation dataset iterators. """ from pylearn2.config import yaml_parse from pylearn2.testing.skip import skip_if_no_sklearn def test_dataset_k_fold(): """Test DatasetKFold.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'DatasetKFold'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_stratified_dataset_k_fold(): """Test StratifiedDatasetKFold.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'StratifiedDatasetKFold'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_dataset_shuffle_split(): """Test DatasetShuffleSplit.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'DatasetShuffleSplit'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_stratified_dataset_shuffle_split(): """Test StratifiedDatasetShuffleSplit.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'StratifiedDatasetShuffleSplit'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_dataset_validation_k_fold(): """Test DatasetValidKFold.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'DatasetValidationKFold'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_stratified_dataset_validation_k_fold(): """Test StratifiedDatasetValidKFold.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'StratifiedDatasetValidationKFold'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_dataset_validation_shuffle_split(): """Test DatasetValidShuffleSplit.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'DatasetValidationShuffleSplit'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_stratified_dataset_validation_shuffle_split(): """Test StratifiedDatasetValidShuffleSplit.""" skip_if_no_sklearn() mapping = {'dataset_iterator': 'StratifiedDatasetValidationShuffleSplit'} test_yaml = test_yaml_dataset_iterator % mapping trainer = yaml_parse.load(test_yaml) trainer.main_loop() def test_which_set(): """Test which_set selector.""" skip_if_no_sklearn() # one label this_yaml = test_yaml_which_set % {'which_set': 'train'} trainer = yaml_parse.load(this_yaml) trainer.main_loop() # multiple labels this_yaml = test_yaml_which_set % {'which_set': ['train', 'test']} trainer = yaml_parse.load(this_yaml) trainer.main_loop() # improper label (iterator only returns 'train' and 'test' subsets) this_yaml = test_yaml_which_set % {'which_set': 'valid'} try: trainer = yaml_parse.load(this_yaml) trainer.main_loop() raise AssertionError except ValueError: pass # bogus label (not in approved list) this_yaml = test_yaml_which_set % {'which_set': 'bogus'} try: yaml_parse.load(this_yaml) raise AssertionError except ValueError: pass def test_no_targets(): """Test cross-validation without targets.""" skip_if_no_sklearn() trainer = yaml_parse.load(test_yaml_no_targets) trainer.main_loop() test_yaml_dataset_iterator = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.%(dataset_iterator)s { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 10, nhid: 8, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, } """ test_yaml_which_set = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, which_set: %(which_set)s, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 10, nhid: 8, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, } """ test_yaml_no_targets = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 0, }, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 10, nhid: 8, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, } """
bsd-3-clause
ContinuumIO/dask
dask/dataframe/io/tests/test_sql.py
1
13359
from contextlib import contextmanager import io import pytest # import dask from dask.dataframe.io.sql import read_sql_table from dask.dataframe.utils import assert_eq, PANDAS_GT_0240 from dask.utils import tmpfile pd = pytest.importorskip("pandas") dd = pytest.importorskip("dask.dataframe") pytest.importorskip("sqlalchemy") pytest.importorskip("sqlite3") np = pytest.importorskip("numpy") data = """ name,number,age,negish Alice,0,33,-5 Bob,1,40,-3 Chris,2,22,3 Dora,3,16,5 Edith,4,53,0 Francis,5,30,0 Garreth,6,20,0 """ df = pd.read_csv(io.StringIO(data), index_col="number") @pytest.yield_fixture def db(): with tmpfile() as f: uri = "sqlite:///%s" % f df.to_sql("test", uri, index=True, if_exists="replace") yield uri def test_empty(db): from sqlalchemy import create_engine, MetaData, Table, Column, Integer with tmpfile() as f: uri = "sqlite:///%s" % f metadata = MetaData() engine = create_engine(uri) table = Table( "empty_table", metadata, Column("id", Integer, primary_key=True), Column("col2", Integer), ) metadata.create_all(engine) dask_df = read_sql_table(table.name, uri, index_col="id", npartitions=1) assert dask_df.index.name == "id" assert dask_df.col2.dtype == np.dtype("int64") pd_dataframe = dask_df.compute() assert pd_dataframe.empty is True @pytest.mark.skip( reason="Requires a postgres server. Sqlite does not support multiple schemas." ) def test_empty_other_schema(): from sqlalchemy import create_engine, MetaData, Table, Column, Integer, event, DDL # Database configurations. pg_host = "localhost" pg_port = "5432" pg_user = "user" pg_pass = "pass" pg_db = "db" db_url = "postgresql://%s:%s@%s:%s/%s" % (pg_user, pg_pass, pg_host, pg_port, pg_db) # Create an empty table in a different schema. table_name = "empty_table" schema_name = "other_schema" engine = create_engine(db_url) metadata = MetaData() table = Table( table_name, metadata, Column("id", Integer, primary_key=True), Column("col2", Integer), schema=schema_name, ) # Create the schema and the table. event.listen( metadata, "before_create", DDL("CREATE SCHEMA IF NOT EXISTS %s" % schema_name) ) metadata.create_all(engine) # Read the empty table from the other schema. dask_df = read_sql_table( table.name, db_url, index_col="id", schema=table.schema, npartitions=1 ) # Validate that the retrieved table is empty. assert dask_df.index.name == "id" assert dask_df.col2.dtype == np.dtype("int64") pd_dataframe = dask_df.compute() assert pd_dataframe.empty is True # Drop the schema and the table. engine.execute("DROP SCHEMA IF EXISTS %s CASCADE" % schema_name) def test_needs_rational(db): import datetime now = datetime.datetime.now() d = datetime.timedelta(seconds=1) df = pd.DataFrame( { "a": list("ghjkl"), "b": [now + i * d for i in range(5)], "c": [True, True, False, True, True], } ) df = df.append( [ {"a": "x", "b": now + d * 1000, "c": None}, {"a": None, "b": now + d * 1001, "c": None}, ] ) with tmpfile() as f: uri = "sqlite:///%s" % f df.to_sql("test", uri, index=False, if_exists="replace") # one partition contains NULL data = read_sql_table("test", uri, npartitions=2, index_col="b") df2 = df.set_index("b") assert_eq(data, df2.astype({"c": bool})) # bools are coerced # one partition contains NULL, but big enough head data = read_sql_table("test", uri, npartitions=2, index_col="b", head_rows=12) df2 = df.set_index("b") assert_eq(data, df2) # empty partitions data = read_sql_table("test", uri, npartitions=20, index_col="b") part = data.get_partition(12).compute() assert part.dtypes.tolist() == ["O", bool] assert part.empty df2 = df.set_index("b") assert_eq(data, df2.astype({"c": bool})) # explicit meta data = read_sql_table("test", uri, npartitions=2, index_col="b", meta=df2[:0]) part = data.get_partition(1).compute() assert part.dtypes.tolist() == ["O", "O"] df2 = df.set_index("b") assert_eq(data, df2) def test_simple(db): # single chunk data = read_sql_table("test", db, npartitions=2, index_col="number").compute() assert (data.name == df.name).all() assert data.index.name == "number" assert_eq(data, df) def test_npartitions(db): data = read_sql_table( "test", db, columns=list(df.columns), npartitions=2, index_col="number" ) assert len(data.divisions) == 3 assert (data.name.compute() == df.name).all() data = read_sql_table( "test", db, columns=["name"], npartitions=6, index_col="number" ) assert_eq(data, df[["name"]]) data = read_sql_table( "test", db, columns=list(df.columns), bytes_per_chunk=2 ** 30, index_col="number", ) assert data.npartitions == 1 assert (data.name.compute() == df.name).all() data_1 = read_sql_table( "test", db, columns=list(df.columns), bytes_per_chunk=2 ** 30, index_col="number", head_rows=1, ) assert data_1.npartitions == 1 assert (data_1.name.compute() == df.name).all() data = read_sql_table( "test", db, columns=list(df.columns), bytes_per_chunk=250, index_col="number", head_rows=1, ) assert data.npartitions == 2 def test_divisions(db): data = read_sql_table( "test", db, columns=["name"], divisions=[0, 2, 4], index_col="number" ) assert data.divisions == (0, 2, 4) assert data.index.max().compute() == 4 assert_eq(data, df[["name"]][df.index <= 4]) def test_division_or_partition(db): with pytest.raises(TypeError): read_sql_table( "test", db, columns=["name"], index_col="number", divisions=[0, 2, 4], npartitions=3, ) out = read_sql_table("test", db, index_col="number", bytes_per_chunk=100) m = out.map_partitions( lambda d: d.memory_usage(deep=True, index=True).sum() ).compute() assert (50 < m).all() and (m < 200).all() assert_eq(out, df) def test_range(db): data = read_sql_table("test", db, npartitions=2, index_col="number", limits=[1, 4]) assert data.index.min().compute() == 1 assert data.index.max().compute() == 4 def test_datetimes(): import datetime now = datetime.datetime.now() d = datetime.timedelta(seconds=1) df = pd.DataFrame( {"a": list("ghjkl"), "b": [now + i * d for i in range(2, -3, -1)]} ) with tmpfile() as f: uri = "sqlite:///%s" % f df.to_sql("test", uri, index=False, if_exists="replace") data = read_sql_table("test", uri, npartitions=2, index_col="b") assert data.index.dtype.kind == "M" assert data.divisions[0] == df.b.min() df2 = df.set_index("b") assert_eq(data.map_partitions(lambda x: x.sort_index()), df2.sort_index()) def test_with_func(db): from sqlalchemy import sql index = sql.func.abs(sql.column("negish")).label("abs") # function for the index, get all columns data = read_sql_table("test", db, npartitions=2, index_col=index) assert data.divisions[0] == 0 part = data.get_partition(0).compute() assert (part.index == 0).all() # now an arith op for one column too; it's name will be 'age' data = read_sql_table( "test", db, npartitions=2, index_col=index, columns=[index, -(sql.column("age"))], ) assert (data.age.compute() < 0).all() # a column that would have no name, give it a label index = (-(sql.column("negish"))).label("index") data = read_sql_table( "test", db, npartitions=2, index_col=index, columns=["negish", "age"] ) d = data.compute() assert (-d.index == d["negish"]).all() def test_no_nameless_index(db): from sqlalchemy import sql index = -(sql.column("negish")) with pytest.raises(ValueError): read_sql_table( "test", db, npartitions=2, index_col=index, columns=["negish", "age", index] ) index = sql.func.abs(sql.column("negish")) # function for the index, get all columns with pytest.raises(ValueError): read_sql_table("test", db, npartitions=2, index_col=index) def test_select_from_select(db): from sqlalchemy import sql s1 = sql.select([sql.column("number"), sql.column("name")]).select_from( sql.table("test") ) out = read_sql_table(s1, db, npartitions=2, index_col="number") assert_eq(out, df[["name"]]) def test_extra_connection_engine_keywords(capsys, db): data = read_sql_table( "test", db, npartitions=2, index_col="number", engine_kwargs={"echo": False} ).compute() # no captured message from the stdout with the echo=False parameter (this is the default) out, err = capsys.readouterr() assert "SELECT" not in out assert_eq(data, df) # with the echo=True sqlalchemy parameter, you should get all SQL queries in the stdout data = read_sql_table( "test", db, npartitions=2, index_col="number", engine_kwargs={"echo": True} ).compute() out, err = capsys.readouterr() assert "WHERE test.number >= ? AND test.number < ?" in out assert "WHERE test.number >= ? AND test.number <= ?" in out assert_eq(data, df) def test_no_character_index_without_divisions(db): # attempt to read the sql table with a character index and no divisions with pytest.raises(TypeError): read_sql_table("test", db, npartitions=2, index_col="name", divisions=None) @contextmanager def tmp_db_uri(): with tmpfile() as f: yield "sqlite:///%s" % f @pytest.mark.parametrize("npartitions", (1, 2)) @pytest.mark.parametrize("parallel", (False, True)) def test_to_sql(npartitions, parallel): df_by_age = df.set_index("age") df_appended = pd.concat([df, df,]) ddf = dd.from_pandas(df, npartitions) ddf_by_age = ddf.set_index("age") # Simple round trip test: use existing "number" index_col with tmp_db_uri() as uri: ddf.to_sql("test", uri, parallel=parallel) result = read_sql_table("test", uri, "number") assert_eq(df, result) # Test writing no index, and reading back in with one of the other columns as index (`read_sql_table` requires # an index_col) with tmp_db_uri() as uri: ddf.to_sql("test", uri, parallel=parallel, index=False) result = read_sql_table("test", uri, "negish") assert_eq(df.set_index("negish"), result) result = read_sql_table("test", uri, "age") assert_eq(df_by_age, result) # Index by "age" instead with tmp_db_uri() as uri: ddf_by_age.to_sql("test", uri, parallel=parallel) result = read_sql_table("test", uri, "age") assert_eq(df_by_age, result) # Index column can't have "object" dtype if no partitions are provided with tmp_db_uri() as uri: ddf.set_index("name").to_sql("test", uri) with pytest.raises( TypeError, match='Provided index column is of type "object". If divisions is not provided the index column type must be numeric or datetime.', # noqa: E501 ): read_sql_table("test", uri, "name") # Test various "if_exists" values with tmp_db_uri() as uri: ddf.to_sql("test", uri) # Writing a table that already exists fails with pytest.raises(ValueError, match="Table 'test' already exists"): ddf.to_sql("test", uri) ddf.to_sql("test", uri, parallel=parallel, if_exists="append") result = read_sql_table("test", uri, "number") assert_eq(df_appended, result) ddf_by_age.to_sql("test", uri, parallel=parallel, if_exists="replace") result = read_sql_table("test", uri, "age") assert_eq(df_by_age, result) # Verify number of partitions returned, when compute=False with tmp_db_uri() as uri: result = ddf.to_sql("test", uri, parallel=parallel, compute=False) # the first result is from the "meta" insert actual = len(result.compute()) assert actual == npartitions def test_to_sql_kwargs(): ddf = dd.from_pandas(df, 2) with tmp_db_uri() as uri: # "method" keyword is allowed iff pandas>=0.24.0 if PANDAS_GT_0240: ddf.to_sql("test", uri, method="multi") else: with pytest.raises( NotImplementedError, match=r"'method' requires pandas>=0.24.0. You have version 0.23.\d", ): ddf.to_sql("test", uri, method="multi") # Other, unknown keywords always disallowed with pytest.raises( TypeError, match="to_sql\\(\\) got an unexpected keyword argument 'unknown'" ): ddf.to_sql("test", uri, unknown=None)
bsd-3-clause
faneshion/MatchZoo
setup.py
1
1863
import io import os from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) # Avoids IDE errors, but actual version is read from version.py __version__ = None exec(open('matchzoo/version.py').read()) short_description = 'Facilitating the design, comparison and sharing of deep text matching models.' # Get the long description from the README file with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() install_requires = [ 'keras >= 2.3.0', 'nltk >= 3.2.3', 'numpy >= 1.14', 'tqdm >= 4.19.4', 'dill >= 0.2.7.1', 'pandas >= 0.23.1', 'networkx >= 2.1', 'h5py >= 2.8.0', 'hyperopt >= 0.1.1' ] extras_requires = { 'tests': [ 'coverage >= 4.3.4', 'codecov >= 2.0.15', 'pytest >= 3.0.3', 'pytest-cov >= 2.4.0', 'flake8 >= 3.6.0', 'flake8_docstrings >= 1.0.2'], } setup( name="MatchZoo", version=__version__, author="Yixing Fan, Bo Wang, Zeyi Wang, Liang Pang, Liu Yang, Qinghua Wang, etc.", author_email="[email protected]", description=(short_description), license="Apache 2.0", keywords="text matching models", url="https://github.com/NTMC-Community/MatchZoo", packages=find_packages(), long_description=long_description, long_description_content_type='text/markdown', classifiers=[ "Development Status :: 3 - Alpha", 'Environment :: Console', 'Operating System :: POSIX :: Linux', 'Topic :: Scientific/Engineering :: Artificial Intelligence', "License :: OSI Approved :: Apache Software License", 'Programming Language :: Python :: 3.6' ], install_requires=install_requires, extras_require=extras_requires )
apache-2.0
gsnyder206/mock-surveys
MAST_HLSP/render_script.py
1
8480
import astropy import astropy.io.fits as fits import matplotlib import matplotlib.pyplot as pyplot import os import scipy import scipy.ndimage import scipy.ndimage.interpolation import congrid #http://scipy-cookbook.readthedocs.io/items/Rebinning.html#Example-3 import make_color_image #written by Gregory Snyder; Also in gsnyder206/synthetic-image-morph sq_arcsec_per_sr = 42545170296.0 c = 3.0e8 hlsp_dir='/astro/snyder_lab2/Illustris/Lightcones/Lightcone_Catalog_Images/' def do_hst_illustris(fieldstr,alph,Q,rf,gf,bf): #in nJy fielda_f435 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f435w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f606 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f606w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f775 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f775w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f814 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f814w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f850 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f850lp_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f105 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-wfc3_f105w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f125 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-wfc3_f125w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f140 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-wfc3_f140w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data fielda_f160 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-wfc3_f160w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')['IMAGE_PSF'].data ra= rf * (0.25*fielda_f105 +0.25*fielda_f125 + 0.25*fielda_f140 + 0.25*fielda_f160) ga= gf * (0.50*fielda_f850 + 0.50*fielda_f775) ba= bf * (0.50*fielda_f435 + 0.50*fielda_f606) gnew=congrid.congrid(ga,ra.shape)*4.0 #preserve surface brightness bnew=congrid.congrid(ba,ra.shape)*4.0 print(fielda_f435.shape) print(ra.shape,ga.shape,gnew.shape) rgb_field = make_color_image.make_interactive_nasa(bnew,gnew,ra,alph,Q) f1 = pyplot.figure(figsize=(10.0,10.0), dpi=600) pyplot.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0,wspace=0.0,hspace=0.0) axi=f1.add_subplot(111) axi.imshow(rgb_field,interpolation='nearest',aspect='auto',origin='lower') f1.savefig('illustris_render_'+fieldstr+'.pdf',dpi=600) pyplot.close(f1) def do_jwst_illustris(fieldstr,alph,Q,rf,gf,bf,x=None,y=None,n=None): #in nJy ui='IMAGE_PSF' fielda_f435 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f435w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f606 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f606w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f775 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_hst-acs_f775w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f090 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f090w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f115 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f115w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f150 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f150w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f200 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f200w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f277 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f277w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f356 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f356w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data fielda_f444 =fits.open(hlsp_dir+'mag30-'+fieldstr+'-11-10/hlsp_misty_illustris_jwst-nircam_f444w_mag30-'+fieldstr+'-11-10_v1_lightcone.fits')[ui].data ra= rf * (0.50*fielda_f150 + 0.50*fielda_f200) ga= gf * (0.50*fielda_f090 + 0.50*fielda_f115) ba= bf * (0.33*fielda_f435 + 0.33*fielda_f606 + 0.33*fielda_f775) gnew=congrid.congrid(ga,ra.shape)*1.0 #preserve surface brightness bnew=congrid.congrid(ba,ra.shape)*1.0 print(fielda_f435.shape) print(ra.shape,ga.shape,gnew.shape) if n is not None: rgb_field = make_color_image.make_interactive_nasa(bnew[x:x+n,y:y+n],gnew[x:x+n,y:y+n],ra[x:x+n,y:y+n],alph,Q) else: rgb_field = make_color_image.make_interactive_nasa(bnew,gnew,ra,alph,Q) f1 = pyplot.figure(figsize=(10.0,10.0), dpi=600) pyplot.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0,wspace=0.0,hspace=0.0) axi=f1.add_subplot(111) axi.imshow(rgb_field,interpolation='nearest',aspect='auto',origin='lower') if n is not None: saven='illustris_jwstzoom_'+fieldstr+'.pdf' else: saven='illustris_jwst_'+fieldstr+'.pdf' f1.savefig(saven,dpi=600) pyplot.close(f1) def do_xdf(alph,Q,rf,gf,bf): xdf_file='/astro/snyder_lab2/Illustris/Illustris_MockUDFs/L75n1820FP/XDF/HST_XDF2012_SunriseUnits_60mas.fits' xdf_hdus=fits.open(xdf_file) print(xdf_hdus.info()) pixsize_arcsec=0.06 pixel_Sr = (pixsize_arcsec**2)/sq_arcsec_per_sr to_nJy_per_Sr_perlambdasqum = (1.0e9)*(1.0e14)/c to_nJy_per_pix = to_nJy_per_Sr_perlambdasqum*pixel_Sr dx=200 ; dy=200 xx1=2200+dx xx2=5042+dx xy1=2200+dy xy2=5042+dy #gives 2.841 arcmin xdf_f435 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F435W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (0.435)**2 xdf_f606 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F606W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (0.606)**2 xdf_f775 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F775W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (0.775)**2 xdf_f814 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F814W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (0.814)**2 xdf_f850 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F850LP'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (0.850)**2 xdf_f105 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F105W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (1.05)**2 xdf_f125 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F125W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (1.25)**2 xdf_f140 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F140W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (1.40)**2 xdf_f160 = scipy.ndimage.interpolation.rotate( fits.open(xdf_file)['F160W'].data, 42)[xx1:xx2,xy1:xy2] * to_nJy_per_pix * (1.60)**2 print(xdf_f435.shape) rx= rf * (0.25*xdf_f105 +0.25*xdf_f125 + 0.25*xdf_f140 + 0.25*xdf_f160) gx= gf * (0.50*xdf_f850 + 0.50*xdf_f775) bx= bf * (0.50*xdf_f435 + 0.50*xdf_f606) rgb_xdf = make_color_image.make_interactive_nasa(bx,gx,rx,alph,Q) f1 = pyplot.figure(figsize=(10.0,10.0), dpi=600) pyplot.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0,wspace=0.0,hspace=0.0) axi=f1.add_subplot(111) axi.imshow(rgb_xdf,interpolation='nearest',aspect='auto',origin='lower') f1.savefig('xdf_render.pdf',dpi=600) pyplot.close(f1) return if __name__=="__main__": rf= 1.0 gf= 1.0 bf= 1.0 alph=1.0 Q=6.0 #plot real XDF #do_xdf(alph,Q,rf,gf,bf) #Illustris XDF analogue #do_hst_illustris('fielda',alph,Q,rf,gf,bf) #do_hst_illustris('fieldb',alph,Q,rf,gf,bf) #do_hst_illustris('fieldc',alph,Q,rf,gf,bf) #Illustris HST+ JWST alph=2.0 Q=7.0 rf=1.3 ; gf=1 ; bf=1.2 #do_jwst_illustris('fielda',alph,Q,rf,gf,bf) #do_jwst_illustris('fieldb',alph,Q,rf,gf,bf) #do_jwst_illustris('fieldc',alph,Q,rf,gf,bf) do_jwst_illustris('fieldc',alph,Q,rf,gf,bf,x=1200,y=4600,n=600)
mit
ClimbsRocks/auto_ml
tests/core_tests/api_coverage_tests_classifiers.py
1
17000
# This file is just to test passing a bunch of different parameters into train to make sure that things work # At first, it is not necessarily testing whether those things have the intended effect or not import datetime import os import random import sys sys.path = [os.path.abspath(os.path.dirname(__file__))] + sys.path sys.path = [os.path.abspath(os.path.dirname(os.path.dirname(__file__)))] + sys.path os.environ['is_test_suite'] = 'True' from auto_ml import Predictor from auto_ml.utils_models import load_ml_model import dill import numpy as np from nose.tools import assert_equal, assert_not_equal, with_setup from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import utils_testing as utils def test_perform_feature_selection_false_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, perform_feature_selection=False) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 # For some reason, this test now causes a Segmentation Default on travis when run on python 3.5. # home/travis/.travis/job_stages: line 53: 8810 Segmentation fault (core dumped) nosetests -v --with-coverage --cover-package auto_ml tests # It didn't error previously # It appears to be an environment issue (possibly cuased by running too many parallelized things, which only happens in a test suite), not an issue with auto_ml. So we'll run this test to make sure the library functionality works, but only on some environments if os.environ.get('TRAVIS_PYTHON_VERSION', '0') != '3.5': def test_compare_all_models_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, compare_all_models=True) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 def test_perform_feature_selection_true_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, perform_feature_selection=True) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.124 def test_perform_feature_scaling_true_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, perform_feature_scaling=True) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 def test_perform_feature_scaling_false_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, perform_feature_scaling=False) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.14 def test_user_input_func_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() def age_bucketing(data): def define_buckets(age): if age <= 17: return 'youth' elif age <= 40: return 'adult' elif age <= 60: return 'adult2' else: return 'over_60' if isinstance(data, dict): data['age_bucket'] = define_buckets(data['age']) else: data['age_bucket'] = data.age.apply(define_buckets) return data column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' , 'age_bucket': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, user_input_func=age_bucketing) file_name = ml_predictor.save(str(random.random())) saved_ml_pipeline = load_ml_model(file_name) os.remove(file_name) try: keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5' os.remove(keras_file_name) except: pass df_titanic_test_dictionaries = df_titanic_test.to_dict('records') # 1. make sure the accuracy is the same predictions = [] for row in df_titanic_test_dictionaries: predictions.append(saved_ml_pipeline.predict_proba(row)[1]) print('predictions') print(predictions) first_score = utils.calculate_brier_score_loss(df_titanic_test.survived, predictions) print('first_score') print(first_score) # Make sure our score is good, but not unreasonably good lower_bound = -0.16 assert -0.16 < first_score < -0.135 # 2. make sure the speed is reasonable (do it a few extra times) data_length = len(df_titanic_test_dictionaries) start_time = datetime.datetime.now() for idx in range(1000): row_num = idx % data_length saved_ml_pipeline.predict(df_titanic_test_dictionaries[row_num]) end_time = datetime.datetime.now() duration = end_time - start_time print('duration.total_seconds()') print(duration.total_seconds()) # It's very difficult to set a benchmark for speed that will work across all machines. # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions # That's about 1 millisecond per prediction # Assuming we might be running on a test box that's pretty weak, multiply by 3 # Also make sure we're not running unreasonably quickly assert 0.2 < duration.total_seconds() < 15 # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time) predictions = [] for row in df_titanic_test_dictionaries: predictions.append(saved_ml_pipeline.predict_proba(row)[1]) print('predictions') print(predictions) print('df_titanic_test_dictionaries') print(df_titanic_test_dictionaries) second_score = utils.calculate_brier_score_loss(df_titanic_test.survived, predictions) print('second_score') print(second_score) # Make sure our score is good, but not unreasonably good assert -0.16 < second_score < -0.135 def test_binary_classification_predict_on_Predictor_instance(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() ml_predictor = utils.train_basic_binary_classifier(df_titanic_train) predictions = ml_predictor.predict(df_titanic_test) test_score = accuracy_score(predictions, df_titanic_test.survived) # Make sure our score is good, but not unreasonably good print(test_score) assert .77 < test_score < .805 def test_multilabel_classification_predict_on_Predictor_instance(): np.random.seed(0) df_twitter_train, df_twitter_test = utils.get_twitter_sentiment_multilabel_classification_dataset() # Note that this does not take 'text' into account, intentionally (as that takes a while longer to train) ml_predictor = utils.train_basic_multilabel_classifier(df_twitter_train) predictions = ml_predictor.predict(df_twitter_test) test_score = accuracy_score(predictions, df_twitter_test.airline_sentiment) # Make sure our score is good, but not unreasonably good print('test_score') print(test_score) assert 0.72 < test_score < 0.77 def test_binary_classification_predict_proba_on_Predictor_instance(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() ml_predictor = utils.train_basic_binary_classifier(df_titanic_train) # predictions = ml_predictor.predict_proba(df_titanic_test) predictions = [pred[1] for pred in predictions] test_score = utils.calculate_brier_score_loss(df_titanic_test.survived, predictions) # Make sure our score is good, but not unreasonably good print(test_score) assert -0.16 < test_score < -0.135 def test_pass_in_list_of_dictionaries_train_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) list_titanic_train = df_titanic_train.to_dict('records') ml_predictor.train(list_titanic_train) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 def test_pass_in_list_of_dictionaries_predict_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) list_titanic_train = df_titanic_train.to_dict('records') ml_predictor.train(df_titanic_train) test_score = ml_predictor.score(df_titanic_test.to_dict('records'), df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 def test_include_bad_y_vals_train_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) df_titanic_train.iloc[1]['survived'] = None df_titanic_train.iloc[8]['survived'] = None df_titanic_train.iloc[26]['survived'] = None ml_predictor.train(df_titanic_train) test_score = ml_predictor.score(df_titanic_test.to_dict('records'), df_titanic_test.survived) print('test_score') print(test_score) assert -0.17 < test_score < -0.135 def test_include_bad_y_vals_predict_classification(): np.random.seed(0) df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) df_titanic_test.iloc[1]['survived'] = float('nan') df_titanic_test.iloc[8]['survived'] = float('inf') df_titanic_test.iloc[26]['survived'] = None ml_predictor.train(df_titanic_train) test_score = ml_predictor.score(df_titanic_test.to_dict('records'), df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 def test_list_of_single_model_name_classification(): np.random.seed(0) model_name = 'GradientBoostingClassifier' df_titanic_train, df_titanic_test = utils.get_titanic_binary_classification_dataset() column_descriptions = { 'survived': 'output' , 'sex': 'categorical' , 'embarked': 'categorical' , 'pclass': 'categorical' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_titanic_train, model_names=[model_name]) test_score = ml_predictor.score(df_titanic_test, df_titanic_test.survived) print('test_score') print(test_score) assert -0.16 < test_score < -0.135 if os.environ.get('TRAVIS_PYTHON_VERSION', '0') != '3.5': def test_getting_single_predictions_nlp_date_multilabel_classification(): np.random.seed(0) df_twitter_train, df_twitter_test = utils.get_twitter_sentiment_multilabel_classification_dataset() column_descriptions = { 'airline_sentiment': 'output' , 'airline': 'categorical' , 'text': 'nlp' , 'tweet_location': 'categorical' , 'user_timezone': 'categorical' , 'tweet_created': 'date' } ml_predictor = Predictor(type_of_estimator='classifier', column_descriptions=column_descriptions) ml_predictor.train(df_twitter_train) file_name = ml_predictor.save(str(random.random())) saved_ml_pipeline = load_ml_model(file_name) os.remove(file_name) try: keras_file_name = file_name[:-5] + '_keras_deep_learning_model.h5' os.remove(keras_file_name) except: pass df_twitter_test_dictionaries = df_twitter_test.to_dict('records') # 1. make sure the accuracy is the same predictions = [] for row in df_twitter_test_dictionaries: predictions.append(saved_ml_pipeline.predict(row)) print('predictions') print(predictions) first_score = accuracy_score(df_twitter_test.airline_sentiment, predictions) print('first_score') print(first_score) # Make sure our score is good, but not unreasonably good lower_bound = 0.73 assert lower_bound < first_score < 0.79 # 2. make sure the speed is reasonable (do it a few extra times) data_length = len(df_twitter_test_dictionaries) start_time = datetime.datetime.now() for idx in range(1000): row_num = idx % data_length saved_ml_pipeline.predict(df_twitter_test_dictionaries[row_num]) end_time = datetime.datetime.now() duration = end_time - start_time print('duration.total_seconds()') print(duration.total_seconds()) # It's very difficult to set a benchmark for speed that will work across all machines. # On my 2013 bottom of the line 15" MacBook Pro, this runs in about 0.8 seconds for 1000 predictions # That's about 1 millisecond per prediction # Assuming we might be running on a test box that's pretty weak, multiply by 3 # Also make sure we're not running unreasonably quickly assert 0.2 < duration.total_seconds() < 15 # 3. make sure we're not modifying the dictionaries (the score is the same after running a few experiments as it is the first time) predictions = [] for row in df_twitter_test_dictionaries: predictions.append(saved_ml_pipeline.predict(row)) print('predictions') print(predictions) print('df_twitter_test_dictionaries') print(df_twitter_test_dictionaries) second_score = accuracy_score(df_twitter_test.airline_sentiment, predictions) print('second_score') print(second_score) # Make sure our score is good, but not unreasonably good assert lower_bound < second_score < 0.79
mit
hainm/scipy
scipy/special/basic.py
26
64332
# # Author: Travis Oliphant, 2002 # from __future__ import division, print_function, absolute_import import warnings import numpy as np from scipy._lib.six import xrange from numpy import (pi, asarray, floor, isscalar, iscomplex, real, imag, sqrt, where, mgrid, sin, place, issubdtype, extract, less, inexact, nan, zeros, atleast_1d, sinc) from ._ufuncs import (ellipkm1, mathieu_a, mathieu_b, iv, jv, gamma, psi, zeta, hankel1, hankel2, yv, kv, gammaln, ndtri, errprint, poch, binom) from . import specfun from . import orthogonal __all__ = ['agm', 'ai_zeros', 'assoc_laguerre', 'bei_zeros', 'beip_zeros', 'ber_zeros', 'bernoulli', 'berp_zeros', 'bessel_diff_formula', 'bi_zeros', 'clpmn', 'comb', 'digamma', 'diric', 'ellipk', 'erf_zeros', 'erfcinv', 'erfinv', 'errprint', 'euler', 'factorial', 'factorialk', 'factorial2', 'fresnel_zeros', 'fresnelc_zeros', 'fresnels_zeros', 'gamma', 'gammaln', 'h1vp', 'h2vp', 'hankel1', 'hankel2', 'hyp0f1', 'iv', 'ivp', 'jn_zeros', 'jnjnp_zeros', 'jnp_zeros', 'jnyn_zeros', 'jv', 'jvp', 'kei_zeros', 'keip_zeros', 'kelvin_zeros', 'ker_zeros', 'kerp_zeros', 'kv', 'kvp', 'lmbda', 'lpmn', 'lpn', 'lqmn', 'lqn', 'mathieu_a', 'mathieu_b', 'mathieu_even_coef', 'mathieu_odd_coef', 'ndtri', 'obl_cv_seq', 'pbdn_seq', 'pbdv_seq', 'pbvv_seq', 'perm', 'polygamma', 'pro_cv_seq', 'psi', 'riccati_jn', 'riccati_yn', 'sinc', 'sph_in', 'sph_inkn', 'sph_jn', 'sph_jnyn', 'sph_kn', 'sph_yn', 'y0_zeros', 'y1_zeros', 'y1p_zeros', 'yn_zeros', 'ynp_zeros', 'yv', 'yvp', 'zeta', 'SpecialFunctionWarning'] class SpecialFunctionWarning(Warning): """Warning that can be issued with ``errprint(True)``""" pass warnings.simplefilter("always", category=SpecialFunctionWarning) def diric(x, n): """Periodic sinc function, also called the Dirichlet function. The Dirichlet function is defined as:: diric(x) = sin(x * n/2) / (n * sin(x / 2)), where n is a positive integer. Parameters ---------- x : array_like Input data n : int Integer defining the periodicity. Returns ------- diric : ndarray Examples -------- >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201) >>> plt.figure(figsize=(8,8)); >>> for idx, n in enumerate([2,3,4,9]): ... plt.subplot(2, 2, idx+1) ... plt.plot(x, special.diric(x, n)) ... plt.title('diric, n={}'.format(n)) >>> plt.show() The following example demonstrates that `diric` gives the magnitudes (modulo the sign and scaling) of the Fourier coefficients of a rectangular pulse. Suppress output of values that are effectively 0: >>> np.set_printoptions(suppress=True) Create a signal `x` of length `m` with `k` ones: >>> m = 8 >>> k = 3 >>> x = np.zeros(m) >>> x[:k] = 1 Use the FFT to compute the Fourier transform of `x`, and inspect the magnitudes of the coefficients: >>> np.abs(np.fft.fft(x)) array([ 3. , 2.41421356, 1. , 0.41421356, 1. , 0.41421356, 1. , 2.41421356]) Now find the same values (up to sign) using `diric`. We multiply by `k` to account for the different scaling conventions of `numpy.fft.fft` and `diric`: >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False) >>> k * special.diric(theta, k) array([ 3. , 2.41421356, 1. , -0.41421356, -1. , -0.41421356, 1. , 2.41421356]) We get the exact Fourier transform if we multiply by the phase factors ``np.exp(-1j*theta)``: >>> np.fft.fft(x) array([ 3.00000000+0.j , 1.70710678-1.70710678j, 0.00000000-1.j , 0.29289322+0.29289322j, 1.00000000+0.j , 0.29289322-0.29289322j, 0.00000000+1.j , 1.70710678+1.70710678j]) >>> np.exp(-1j*theta) * k * special.diric(theta, k) array([ 3.00000000+0.j , 1.70710678-1.70710678j, 0.00000000-1.j , 0.29289322+0.29289322j, 1.00000000+0.j , 0.29289322-0.29289322j, -0.00000000+1.j , 1.70710678+1.70710678j]) """ x, n = asarray(x), asarray(n) n = asarray(n + (x-x)) x = asarray(x + (n-n)) if issubdtype(x.dtype, inexact): ytype = x.dtype else: ytype = float y = zeros(x.shape, ytype) # empirical minval for 32, 64 or 128 bit float computations # where sin(x/2) < minval, result is fixed at +1 or -1 if np.finfo(ytype).eps < 1e-18: minval = 1e-11 elif np.finfo(ytype).eps < 1e-15: minval = 1e-7 else: minval = 1e-3 mask1 = (n <= 0) | (n != floor(n)) place(y, mask1, nan) x = x / 2 denom = sin(x) mask2 = (1-mask1) & (abs(denom) < minval) xsub = extract(mask2, x) nsub = extract(mask2, n) zsub = xsub / pi place(y, mask2, pow(-1, np.round(zsub)*(nsub-1))) mask = (1-mask1) & (1-mask2) xsub = extract(mask, x) nsub = extract(mask, n) dsub = extract(mask, denom) place(y, mask, sin(nsub*xsub)/(nsub*dsub)) return y def jnjnp_zeros(nt): """Compute nt zeros of Bessel functions Jn and Jn'. Results are arranged in order of the magnitudes of the zeros. Parameters ---------- nt : int Number (<=1200) of zeros to compute Returns ------- zo[l-1] : ndarray Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`. n[l-1] : ndarray Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. m[l-1] : ndarray Serial number of the zeros of Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. t[l-1] : ndarray 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of length `nt`. See Also -------- jn_zeros, jnp_zeros : to get separated arrays of zeros. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200): raise ValueError("Number must be integer <= 1200.") nt = int(nt) n, m, t, zo = specfun.jdzo(nt) return zo[1:nt+1], n[:nt], m[:nt], t[:nt] def jnyn_zeros(n, nt): """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x). Returns 4 arrays of length nt, corresponding to the first nt zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. Parameters ---------- n : int Order of the Bessel functions nt : int Number (<=1200) of zeros to compute See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(nt) and isscalar(n)): raise ValueError("Arguments must be scalars.") if (floor(n) != n) or (floor(nt) != nt): raise ValueError("Arguments must be integers.") if (nt <= 0): raise ValueError("nt > 0") return specfun.jyzo(abs(n), nt) def jn_zeros(n, nt): """Compute nt zeros of Bessel function Jn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[0] def jnp_zeros(n, nt): """Compute nt zeros of Bessel function derivative Jn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[1] def yn_zeros(n, nt): """Compute nt zeros of Bessel function Yn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[2] def ynp_zeros(n, nt): """Compute nt zeros of Bessel function derivative Yn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[3] def y0_zeros(nt, complex=0): """Compute nt zeros of Bessel function Y0(z), and derivative at each zero. The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0. Parameters ---------- nt : int Number of zeros to return complex : int, default 0 Set to 0 to return only the real zeros; set to 1 to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z0n : ndarray Location of nth zero of Y0(z) y0pz0n : ndarray Value of derivative Y0'(z0) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 0 kc = (complex != 1) return specfun.cyzo(nt, kf, kc) def y1_zeros(nt, complex=0): """Compute nt zeros of Bessel function Y1(z), and derivative at each zero. The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1. Parameters ---------- nt : int Number of zeros to return complex : int, default 0 Set to 0 to return only the real zeros; set to 1 to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1n : ndarray Location of nth zero of Y1(z) y1pz1n : ndarray Value of derivative Y1'(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 1 kc = (complex != 1) return specfun.cyzo(nt, kf, kc) def y1p_zeros(nt, complex=0): """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero. The values are given by Y1(z1) at each z1 where Y1'(z1)=0. Parameters ---------- nt : int Number of zeros to return complex : int, default 0 Set to 0 to return only the real zeros; set to 1 to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1pn : ndarray Location of nth zero of Y1'(z) y1z1pn : ndarray Value of derivative Y1(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 2 kc = (complex != 1) return specfun.cyzo(nt, kf, kc) def _bessel_diff_formula(v, z, n, L, phase): # from AMS55. # L(v,z) = J(v,z), Y(v,z), H1(v,z), H2(v,z), phase = -1 # L(v,z) = I(v,z) or exp(v*pi*i)K(v,z), phase = 1 # For K, you can pull out the exp((v-k)*pi*i) into the caller p = 1.0 s = L(v-n, z) for i in xrange(1, n+1): p = phase * (p * (n-i+1)) / i # = choose(k, i) s += p*L(v-n + i*2, z) return s / (2.**n) bessel_diff_formula = np.deprecate(_bessel_diff_formula, message="bessel_diff_formula is a private function, do not use it!") def jvp(v, z, n=1): """Compute nth derivative of Bessel function Jv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return jv(v, z) else: return _bessel_diff_formula(v, z, n, jv, -1) def yvp(v, z, n=1): """Compute nth derivative of Bessel function Yv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return yv(v, z) else: return _bessel_diff_formula(v, z, n, yv, -1) def kvp(v, z, n=1): """Compute nth derivative of modified Bessel function Kv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return kv(v, z) else: return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1) def ivp(v, z, n=1): """Compute nth derivative of modified Bessel function Iv(z) with respect to z. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return iv(v, z) else: return _bessel_diff_formula(v, z, n, iv, 1) def h1vp(v, z, n=1): """Compute nth derivative of Hankel function H1v(z) with respect to z. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel1(v, z) else: return _bessel_diff_formula(v, z, n, hankel1, -1) def h2vp(v, z, n=1): """Compute nth derivative of Hankel function H2v(z) with respect to z. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel2(v, z) else: return _bessel_diff_formula(v, z, n, hankel2, -1) def sph_jn(n, z): """Compute spherical Bessel function jn(z) and derivative. This function computes the value and first derivative of jn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)] def sph_yn(n, z): """Compute spherical Bessel function yn(z) and derivative. This function computes the value and first derivative of yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of yn to compute z : complex Argument at which to evaluate Returns ------- yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) return yn[:(n+1)], ynp[:(n+1)] def sph_jnyn(n, z): """Compute spherical Bessel functions jn(z) and yn(z) and derivatives. This function computes the value and first derivative of jn(z) and yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn and yn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)], yn[:(n+1)], ynp[:(n+1)] def sph_in(n, z): """Compute spherical Bessel function in(z) and derivative. This function computes the value and first derivative of in(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) return In[:(n+1)], Inp[:(n+1)] def sph_kn(n, z): """Compute spherical Bessel function kn(z) and derivative. This function computes the value and first derivative of kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of kn to compute z : complex Argument at which to evaluate Returns ------- kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, kn, knp = specfun.sphk(n1, z) return kn[:(n+1)], knp[:(n+1)] def sph_inkn(n, z): """Compute spherical Bessel functions in(z), kn(z), and derivatives. This function computes the value and first derivative of in(z) and kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in and kn to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) nm, kn, knp = specfun.sphk(n1, z) return In[:(n+1)], Inp[:(n+1)], kn[:(n+1)], knp[:(n+1)] def riccati_jn(n, x): """Compute Ricatti-Bessel function of the first kind and derivative. This function computes the value and first derivative of the function for all orders up to and including n. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- jn : ndarray Value of j0(x), ..., jn(x) jnp : ndarray First derivative j0'(x), ..., jn'(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rctj(n1, x) return jn[:(n+1)], jnp[:(n+1)] def riccati_yn(n, x): """Compute Ricatti-Bessel function of the second kind and derivative. This function computes the value and first derivative of the function for all orders up to and including n. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- yn : ndarray Value of y0(x), ..., yn(x) ynp : ndarray First derivative y0'(x), ..., yn'(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rcty(n1, x) return jn[:(n+1)], jnp[:(n+1)] def erfinv(y): """Inverse function for erf. """ return ndtri((y+1)/2.0)/sqrt(2) def erfcinv(y): """Inverse function for erfc. """ return -ndtri(0.5*y)/sqrt(2) def erf_zeros(nt): """Compute nt complex zeros of error function erf(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.cerzo(nt) def fresnelc_zeros(nt): """Compute nt complex zeros of cosine Fresnel integral C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(1, nt) def fresnels_zeros(nt): """Compute nt complex zeros of sine Fresnel integral S(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt) def fresnel_zeros(nt): """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt), specfun.fcszo(1, nt) def hyp0f1(v, z): r"""Confluent hypergeometric limit function 0F1. Parameters ---------- v, z : array_like Input values. Returns ------- hyp0f1 : ndarray The confluent hypergeometric limit function. Notes ----- This function is defined as: .. math:: _0F_1(v,z) = \sum_{k=0}^{\inf}\frac{z^k}{(v)_k k!}. It's also the limit as q -> infinity of ``1F1(q;v;z/q)``, and satisfies the differential equation :math:`f''(z) + vf'(z) = f(z)`. """ v = atleast_1d(v) z = atleast_1d(z) v, z = np.broadcast_arrays(v, z) arg = 2 * sqrt(abs(z)) old_err = np.seterr(all='ignore') # for z=0, a<1 and num=inf, next lines num = where(z.real >= 0, iv(v - 1, arg), jv(v - 1, arg)) den = abs(z)**((v - 1.0) / 2) num *= gamma(v) np.seterr(**old_err) num[z == 0] = 1 den[z == 0] = 1 return num / den def assoc_laguerre(x, n, k=0.0): """Compute nth-order generalized (associated) Laguerre polynomial. The polynomial :math:`L^(alpha)_n(x)` is orthogonal over ``[0, inf)``, with weighting function ``exp(-x) * x**alpha`` with ``alpha > -1``. Notes ----- `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with reversed argument order ``(x, n, k=0.0) --> (n, k, x)``. """ return orthogonal.eval_genlaguerre(n, k, x) digamma = psi def polygamma(n, x): """Polygamma function n. This is the nth derivative of the digamma (psi) function. Parameters ---------- n : array_like of int The order of the derivative of `psi`. x : array_like Where to evaluate the polygamma function. Returns ------- polygamma : ndarray The result. Examples -------- >>> from scipy import special >>> x = [2, 3, 25.5] >>> special.polygamma(1, x) array([ 0.64493407, 0.39493407, 0.03999467]) >>> special.polygamma(0, x) == special.psi(x) array([ True, True, True], dtype=bool) """ n, x = asarray(n), asarray(x) fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x) return where(n == 0, psi(x), fac2) def mathieu_even_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the even solutions of the Mathieu differential equation are of the form .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Ak : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/28.4#i """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m < 0): raise ValueError("m must be an integer >=0.") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 1 m = int(floor(m)) if m % 2: kd = 2 a = mathieu_a(m, q) fc = specfun.fcoef(kd, m, q, a) return fc[:km] def mathieu_odd_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the odd solutions of the Mathieu differential equation are of the form .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Bk : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m <= 0): raise ValueError("m must be an integer > 0") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 4 m = int(floor(m)) if m % 2: kd = 3 b = mathieu_b(m, q) fc = specfun.fcoef(kd, m, q, b) return fc[:km] def lpmn(m, n, z): """Associated Legendre function of the first kind, Pmn(z). Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. This function takes a real argument ``z``. For complex arguments ``z`` use clpmn instead. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float Input value. Returns ------- Pmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Pmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n See Also -------- clpmn: associated Legendre functions of the first kind for complex z Notes ----- In the interval (-1, 1), Ferrer's function of the first kind is returned. The phase convention used for the intervals (1, inf) and (-inf, -1) is such that the result is always real. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.3 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if iscomplex(z): raise ValueError("Argument must be real. Use clpmn instead.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if abs(z) < 1: # Ferrer function; DLMF 14.9.3 fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: # Match to clpmn; DLMF 14.9.13 fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.lpmn(mp, n, z) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def clpmn(m, n, z, type=3): """Associated Legendre function of the first kind, Pmn(z). Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float or complex Input value. type : int, optional takes values 2 or 3 2: cut on the real axis ``|x| > 1`` 3: cut on the real axis ``-1 < x < 1`` (default) Returns ------- Pmn_z : (m+1, n+1) array Values for all orders ``0..m`` and degrees ``0..n`` Pmn_d_z : (m+1, n+1) array Derivatives for all orders ``0..m`` and degrees ``0..n`` See Also -------- lpmn: associated Legendre functions of the first kind for real z Notes ----- By default, i.e. for ``type=3``, phase conventions are chosen according to [1]_ such that the function is analytic. The cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor with respect to Ferrer's function of the first kind (cf. `lpmn`). For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values on the interval (-1, 1) in the complex plane yields Ferrer's function of the first kind. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.21 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if not(type == 2 or type == 3): raise ValueError("type must be either 2 or 3.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if type == 2: fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.clpmn(mp, n, real(z), imag(z), type) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def lqmn(m, n, z): """Associated Legendre function of the second kind, Qmn(z). Computes the associated Legendre function of the second kind of order m and degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : complex Input value. Returns ------- Qmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Qmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(m) or (m < 0): raise ValueError("m must be a non-negative integer.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") m = int(m) n = int(n) # Ensure neither m nor n == 0 mm = max(1, m) nn = max(1, n) if iscomplex(z): q, qd = specfun.clqmn(mm, nn, z) else: q, qd = specfun.lqmn(mm, nn, z) return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)] def bernoulli(n): """Bernoulli numbers B0..Bn (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.bernob(int(n1))[:(n+1)] def euler(n): """Euler numbers E0..En (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.eulerb(n1)[:(n+1)] def lpn(n, z): """Legendre functions of the first kind, Pn(z). Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive). See also special.legendre for polynomial class. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): pn, pd = specfun.clpn(n1, z) else: pn, pd = specfun.lpn(n1, z) return pn[:(n+1)], pd[:(n+1)] def lqn(n, z): """Legendre functions of the second kind, Qn(z). Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): qn, qd = specfun.clqn(n1, z) else: qn, qd = specfun.lqnb(n1, z) return qn[:(n+1)], qd[:(n+1)] def ai_zeros(nt): """ Compute `nt` zeros and values of the Airy function Ai and its derivative. Computes the first nt zeros, a, of the Airy function Ai(x); first nt zeros, a', of the derivative of the Airy function Ai'(x); the corresponding values Ai(a'); and the corresponding values Ai'(a). Parameters ---------- nt : int Number of zeros to compute Returns ------- a : ndarray First nt zeros of Ai(x) ap : ndarray First nt zeros of Ai'(x) ai : ndarray Values of Ai(x) evaluated at first nt zeros of Ai'(x) aip : ndarray Values of Ai'(x) evaluated at first nt zeros of Ai(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 1 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def bi_zeros(nt): """ Compute `nt` zeros and values of the Airy function Bi and its derivative. Computes the first nt zeros, b, of the Airy function Bi(x); first nt zeros, b', of the derivative of the Airy function Bi'(x); the corresponding values Bi(b'); and the corresponding values Bi'(b). Parameters ---------- nt : int Number of zeros to compute Returns ------- b : ndarray First nt zeros of Bi(x) bp : ndarray First nt zeros of Bi'(x) bi : ndarray Values of Bi(x) evaluated at first nt zeros of Bi'(x) bip : ndarray Values of Bi'(x) evaluated at first nt zeros of Bi(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 2 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def lmbda(v, x): """Jahnke-Emden Lambda function, Lambdav(x). Parameters ---------- v : float Order of the Lambda function x : float Value at which to evaluate the function and derivatives Returns ------- vl : ndarray Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dl : ndarray Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") if (v < 0): raise ValueError("argument must be > 0.") n = int(v) v0 = v - n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 if (v != floor(v)): vm, vl, dl = specfun.lamv(v1, x) else: vm, vl, dl = specfun.lamn(v1, x) return vl[:(n+1)], dl[:(n+1)] def pbdv_seq(v, x): """Parabolic cylinder functions Dv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbdv(v1, x) return dv[:n1+1], dp[:n1+1] def pbvv_seq(v, x): """Parabolic cylinder functions Vv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n <= 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbvv(v1, x) return dv[:n1+1], dp[:n1+1] def pbdn_seq(n, z): """Parabolic cylinder functions Dn(z) and derivatives. Parameters ---------- n : int Order of the parabolic cylinder function z : complex Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_i(z), for i=0, ..., i=n. dp : ndarray Derivatives D_i'(z), for i=0, ..., i=n. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (floor(n) != n): raise ValueError("n must be an integer.") if (abs(n) <= 1): n1 = 1 else: n1 = n cpb, cpd = specfun.cpbdn(n1, z) return cpb[:n1+1], cpd[:n1+1] def ber_zeros(nt): """Compute nt zeros of the Kelvin function ber(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 1) def bei_zeros(nt): """Compute nt zeros of the Kelvin function bei(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 2) def ker_zeros(nt): """Compute nt zeros of the Kelvin function ker(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 3) def kei_zeros(nt): """Compute nt zeros of the Kelvin function kei(x). """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 4) def berp_zeros(nt): """Compute nt zeros of the Kelvin function ber'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 5) def beip_zeros(nt): """Compute nt zeros of the Kelvin function bei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 6) def kerp_zeros(nt): """Compute nt zeros of the Kelvin function ker'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 7) def keip_zeros(nt): """Compute nt zeros of the Kelvin function kei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 8) def kelvin_zeros(nt): """Compute nt zeros of all Kelvin functions. Returned in a length-8 tuple of arrays of length nt. The tuple contains the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei'). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return (specfun.klvnzo(nt, 1), specfun.klvnzo(nt, 2), specfun.klvnzo(nt, 3), specfun.klvnzo(nt, 4), specfun.klvnzo(nt, 5), specfun.klvnzo(nt, 6), specfun.klvnzo(nt, 7), specfun.klvnzo(nt, 8)) def pro_cv_seq(m, n, c): """Characteristic values for prolate spheroidal wave functions. Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, 1)[1][:maxL] def obl_cv_seq(m, n, c): """Characteristic values for oblate spheroidal wave functions. Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, -1)[1][:maxL] def ellipk(m): """Complete elliptic integral of the first kind. This function is defined as .. math:: K(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt Parameters ---------- m : array_like The parameter of the elliptic integral. Returns ------- K : array_like Value of the elliptic integral. Notes ----- For more precision around point m = 1, use `ellipkm1`. See Also -------- ellipkm1 : Complete elliptic integral of the first kind around m = 1 ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind """ return ellipkm1(1 - asarray(m)) def agm(a, b): """Arithmetic, Geometric Mean. Start with a_0=a and b_0=b and iteratively compute a_{n+1} = (a_n+b_n)/2 b_{n+1} = sqrt(a_n*b_n) until a_n=b_n. The result is agm(a,b) agm(a,b)=agm(b,a) agm(a,a) = a min(a,b) < agm(a,b) < max(a,b) """ s = a + b + 0.0 return (pi / 4) * s / ellipkm1(4 * a * b / s ** 2) def comb(N, k, exact=False, repetition=False): """The number of combinations of N things taken k at a time. This is often expressed as "N choose k". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. repetition : bool, optional If `repetition` is True, then the number of combinations with repetition is computed. Returns ------- val : int, ndarray The total number of combinations. Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import comb >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> comb(n, k, exact=False) array([ 120., 210.]) >>> comb(10, 3, exact=True) 120L >>> comb(10, 3, exact=True, repetition=True) 220L """ if repetition: return comb(N + k - 1, k, exact) if exact: N = int(N) k = int(k) if (k > N) or (N < 0) or (k < 0): return 0 val = 1 for j in xrange(min(k, N-k)): val = (val*(N-j))//(j+1) return val else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = binom(N, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals def perm(N, k, exact=False): """Permutations of N things taken k at a time, i.e., k-permutations of N. It's also known as "partial permutations". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. Returns ------- val : int, ndarray The number of k-permutations of N. Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import perm >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> perm(n, k) array([ 720., 5040.]) >>> perm(10, 3, exact=True) 720 """ if exact: if (k > N) or (N < 0) or (k < 0): return 0 val = 1 for i in xrange(N - k + 1, N + 1): val *= i return val else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = poch(N - k + 1, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals def factorial(n, exact=False): """The factorial function, n! = special.gamma(n+1). If exact is 0, then floating point precision is used, otherwise exact long integer is computed. - Array argument accepted only for exact=False case. - If n<0, the return value is 0. Parameters ---------- n : int or array_like of ints Calculate ``n!``. Arrays are only supported with `exact` set to False. If ``n < 0``, the return value is 0. exact : bool, optional The result can be approximated rapidly using the gamma-formula above. If `exact` is set to True, calculate the answer exactly using integer arithmetic. Default is False. Returns ------- nf : float or int Factorial of `n`, as an integer or a float depending on `exact`. Examples -------- >>> from scipy.special import factorial >>> arr = np.array([3,4,5]) >>> factorial(arr, exact=False) array([ 6., 24., 120.]) >>> factorial(5, exact=True) 120L """ if exact: if n < 0: return 0 val = 1 for k in xrange(1, n+1): val *= k return val else: n = asarray(n) vals = gamma(n+1) return where(n >= 0, vals, 0) def factorial2(n, exact=False): """Double factorial. This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5 * 3 * 1``. It can be approximated numerically as:: n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd = 2**(n/2) * (n/2)! n even Parameters ---------- n : int or array_like Calculate ``n!!``. Arrays are only supported with `exact` set to False. If ``n < 0``, the return value is 0. exact : bool, optional The result can be approximated rapidly using the gamma-formula above (default). If `exact` is set to True, calculate the answer exactly using integer arithmetic. Returns ------- nff : float or int Double factorial of `n`, as an int or a float depending on `exact`. Examples -------- >>> from scipy.special import factorial2 >>> factorial2(7, exact=False) array(105.00000000000001) >>> factorial2(7, exact=True) 105L """ if exact: if n < -1: return 0 if n <= 0: return 1 val = 1 for k in xrange(n, 0, -2): val *= k return val else: n = asarray(n) vals = zeros(n.shape, 'd') cond1 = (n % 2) & (n >= -1) cond2 = (1-(n % 2)) & (n >= -1) oddn = extract(cond1, n) evenn = extract(cond2, n) nd2o = oddn / 2.0 nd2e = evenn / 2.0 place(vals, cond1, gamma(nd2o + 1) / sqrt(pi) * pow(2.0, nd2o + 0.5)) place(vals, cond2, gamma(nd2e + 1) * pow(2.0, nd2e)) return vals def factorialk(n, k, exact=True): """Multifactorial of n of order k, n(!!...!). This is the multifactorial of n skipping k values. For example, factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1 In particular, for any integer ``n``, we have factorialk(n, 1) = factorial(n) factorialk(n, 2) = factorial2(n) Parameters ---------- n : int Calculate multifactorial. If `n` < 0, the return value is 0. k : int Order of multifactorial. exact : bool, optional If exact is set to True, calculate the answer exactly using integer arithmetic. Returns ------- val : int Multifactorial of `n`. Raises ------ NotImplementedError Raises when exact is False Examples -------- >>> from scipy.special import factorialk >>> factorialk(5, 1, exact=True) 120L >>> factorialk(5, 3, exact=True) 10L """ if exact: if n < 1-k: return 0 if n <= 0: return 1 val = 1 for j in xrange(n, 0, -k): val = val*j return val else: raise NotImplementedError
bsd-3-clause
waterponey/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
41
2672
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.model_selection import cross_val_score np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_val_score(pipeline, X[:, np.newaxis], y, scoring="neg_mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
rlong011/trading-with-python
lib/extra.py
77
2540
''' Created on Apr 28, 2013 Copyright: Jev Kuznetsov License: BSD ''' from __future__ import print_function import sys import urllib import os import xlrd # module for excel file reading import pandas as pd class ProgressBar: def __init__(self, iterations): self.iterations = iterations self.prog_bar = '[]' self.fill_char = '*' self.width = 50 self.__update_amount(0) def animate(self, iteration): print('\r', self, end='') sys.stdout.flush() self.update_iteration(iteration + 1) def update_iteration(self, elapsed_iter): self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0) self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations) def __update_amount(self, new_amount): percent_done = int(round((new_amount / 100.0) * 100.0)) all_full = self.width - 2 num_hashes = int(round((percent_done / 100.0) * all_full)) self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']' pct_place = (len(self.prog_bar) // 2) - len(str(percent_done)) pct_string = '%d%%' % percent_done self.prog_bar = self.prog_bar[0:pct_place] + \ (pct_string + self.prog_bar[pct_place + len(pct_string):]) def __str__(self): return str(self.prog_bar) def getSpyHoldings(dataDir): ''' get SPY holdings from the net, uses temp data storage to save xls file ''' dest = os.path.join(dataDir,"spy_holdings.xls") if os.path.exists(dest): print('File found, skipping download') else: print('saving to', dest) urllib.urlretrieve ("https://www.spdrs.com/site-content/xls/SPY_All_Holdings.xls?fund=SPY&docname=All+Holdings&onyx_code1=1286&onyx_code2=1700", dest) # download xls file and save it to data directory # parse wb = xlrd.open_workbook(dest) # open xls file, create a workbook sh = wb.sheet_by_index(0) # select first sheet data = {'name':[], 'symbol':[], 'weight':[],'sector':[]} for rowNr in range(5,505): # cycle through the rows v = sh.row_values(rowNr) # get all row values data['name'].append(v[0]) data['symbol'].append(v[1]) # symbol is in the second column, append it to the list data['weight'].append(float(v[2])) data['sector'].append(v[3]) return pd.DataFrame(data)
bsd-3-clause
unnikrishnankgs/va
venv/lib/python3.5/site-packages/mpl_toolkits/mplot3d/art3d.py
10
25411
# art3d.py, original mplot3d version by John Porter # Parts rewritten by Reinier Heeres <[email protected]> # Minor additions by Ben Axelrod <[email protected]> ''' Module containing 3D artist code and functions to convert 2D artists into 3D versions which can be added to an Axes3D. ''' from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip from matplotlib import lines, text as mtext, path as mpath, colors as mcolors from matplotlib import artist from matplotlib.collections import Collection, LineCollection, \ PolyCollection, PatchCollection, PathCollection from matplotlib.cm import ScalarMappable from matplotlib.patches import Patch from matplotlib.colors import Normalize from matplotlib.cbook import iterable import warnings import numpy as np import math from . import proj3d def norm_angle(a): """Return angle between -180 and +180""" a = (a + 360) % 360 if a > 180: a = a - 360 return a def norm_text_angle(a): """Return angle between -90 and +90""" a = (a + 180) % 180 if a > 90: a = a - 180 return a def get_dir_vector(zdir): if zdir == 'x': return np.array((1, 0, 0)) elif zdir == 'y': return np.array((0, 1, 0)) elif zdir == 'z': return np.array((0, 0, 1)) elif zdir is None: return np.array((0, 0, 0)) elif iterable(zdir) and len(zdir) == 3: return zdir else: raise ValueError("'x', 'y', 'z', None or vector of length 3 expected") class Text3D(mtext.Text): ''' Text object with 3D position and (in the future) direction. ''' def __init__(self, x=0, y=0, z=0, text='', zdir='z', **kwargs): ''' *x*, *y*, *z* Position of text *text* Text string to display *zdir* Direction of text Keyword arguments are passed onto :func:`~matplotlib.text.Text`. ''' mtext.Text.__init__(self, x, y, text, **kwargs) self.set_3d_properties(z, zdir) def set_3d_properties(self, z=0, zdir='z'): x, y = self.get_position() self._position3d = np.array((x, y, z)) self._dir_vec = get_dir_vector(zdir) self.stale = True def draw(self, renderer): proj = proj3d.proj_trans_points([self._position3d, \ self._position3d + self._dir_vec], renderer.M) dx = proj[0][1] - proj[0][0] dy = proj[1][1] - proj[1][0] if dx==0. and dy==0.: # atan2 raises ValueError: math domain error on 0,0 angle = 0. else: angle = math.degrees(math.atan2(dy, dx)) self.set_position((proj[0][0], proj[1][0])) self.set_rotation(norm_text_angle(angle)) mtext.Text.draw(self, renderer) self.stale = False def text_2d_to_3d(obj, z=0, zdir='z'): """Convert a Text to a Text3D object.""" obj.__class__ = Text3D obj.set_3d_properties(z, zdir) class Line3D(lines.Line2D): ''' 3D line object. ''' def __init__(self, xs, ys, zs, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.lines.Line2D`. ''' lines.Line2D.__init__(self, [], [], *args, **kwargs) self._verts3d = xs, ys, zs def set_3d_properties(self, zs=0, zdir='z'): xs = self.get_xdata() ys = self.get_ydata() try: # If *zs* is a list or array, then this will fail and # just proceed to juggle_axes(). zs = float(zs) zs = [zs for x in xs] except TypeError: pass self._verts3d = juggle_axes(xs, ys, zs, zdir) self.stale = True def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_data(xs, ys) lines.Line2D.draw(self, renderer) self.stale = False def line_2d_to_3d(line, zs=0, zdir='z'): ''' Convert a 2D line to 3D. ''' line.__class__ = Line3D line.set_3d_properties(zs, zdir) def path_to_3d_segment(path, zs=0, zdir='z'): '''Convert a path to a 3D segment.''' if not iterable(zs): zs = np.ones(len(path)) * zs seg = [] pathsegs = path.iter_segments(simplify=False, curves=False) for (((x, y), code), z) in zip(pathsegs, zs): seg.append((x, y, z)) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d def paths_to_3d_segments(paths, zs=0, zdir='z'): ''' Convert paths from a collection object to 3D segments. ''' if not iterable(zs): zs = np.ones(len(paths)) * zs segments = [] for path, pathz in zip(paths, zs): segments.append(path_to_3d_segment(path, pathz, zdir)) return segments def path_to_3d_segment_with_codes(path, zs=0, zdir='z'): '''Convert a path to a 3D segment with path codes.''' if not iterable(zs): zs = np.ones(len(path)) * zs seg = [] codes = [] pathsegs = path.iter_segments(simplify=False, curves=False) for (((x, y), code), z) in zip(pathsegs, zs): seg.append((x, y, z)) codes.append(code) seg3d = [juggle_axes(x, y, z, zdir) for (x, y, z) in seg] return seg3d, codes def paths_to_3d_segments_with_codes(paths, zs=0, zdir='z'): ''' Convert paths from a collection object to 3D segments with path codes. ''' if not iterable(zs): zs = np.ones(len(paths)) * zs segments = [] codes_list = [] for path, pathz in zip(paths, zs): segs, codes = path_to_3d_segment_with_codes(path, pathz, zdir) segments.append(segs) codes_list.append(codes) return segments, codes_list class Line3DCollection(LineCollection): ''' A collection of 3D lines. ''' def __init__(self, segments, *args, **kwargs): ''' Keyword arguments are passed onto :func:`~matplotlib.collections.LineCollection`. ''' LineCollection.__init__(self, segments, *args, **kwargs) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_segments(self, segments): ''' Set 3D segments ''' self._segments3d = np.asanyarray(segments) LineCollection.set_segments(self, []) def do_3d_projection(self, renderer): ''' Project the points according to renderer matrix. ''' xyslist = [ proj3d.proj_trans_points(points, renderer.M) for points in self._segments3d] segments_2d = [list(zip(xs, ys)) for (xs, ys, zs) in xyslist] LineCollection.set_segments(self, segments_2d) # FIXME minz = 1e9 for (xs, ys, zs) in xyslist: minz = min(minz, min(zs)) return minz def draw(self, renderer, project=False): if project: self.do_3d_projection(renderer) LineCollection.draw(self, renderer) def line_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a LineCollection to a Line3DCollection object.""" segments3d = paths_to_3d_segments(col.get_paths(), zs, zdir) col.__class__ = Line3DCollection col.set_segments(segments3d) class Patch3D(Patch): ''' 3D patch object. ''' def __init__(self, *args, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_3d_properties(self, verts, zs=0, zdir='z'): if not iterable(zs): zs = np.ones(len(verts)) * zs self._segment3d = [juggle_axes(x, y, z, zdir) \ for ((x, y), z) in zip(verts, zs)] self._facecolor3d = Patch.get_facecolor(self) def get_path(self): return self._path2d def get_facecolor(self): return self._facecolor2d def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys))) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def draw(self, renderer): Patch.draw(self, renderer) class PathPatch3D(Patch3D): ''' 3D PathPatch object. ''' def __init__(self, path, **kwargs): zs = kwargs.pop('zs', []) zdir = kwargs.pop('zdir', 'z') Patch.__init__(self, **kwargs) self.set_3d_properties(path, zs, zdir) def set_3d_properties(self, path, zs=0, zdir='z'): Patch3D.set_3d_properties(self, path.vertices, zs=zs, zdir=zdir) self._code3d = path.codes def do_3d_projection(self, renderer): s = self._segment3d xs, ys, zs = list(zip(*s)) vxs, vys,vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) self._path2d = mpath.Path(list(zip(vxs, vys)), self._code3d) # FIXME: coloring self._facecolor2d = self._facecolor3d return min(vzs) def get_patch_verts(patch): """Return a list of vertices for the path of a patch.""" trans = patch.get_patch_transform() path = patch.get_path() polygons = path.to_polygons(trans) if len(polygons): return polygons[0] else: return [] def patch_2d_to_3d(patch, z=0, zdir='z'): """Convert a Patch to a Patch3D object.""" verts = get_patch_verts(patch) patch.__class__ = Patch3D patch.set_3d_properties(verts, z, zdir) def pathpatch_2d_to_3d(pathpatch, z=0, zdir='z'): """Convert a PathPatch to a PathPatch3D object.""" path = pathpatch.get_path() trans = pathpatch.get_patch_transform() mpath = trans.transform_path(path) pathpatch.__class__ = PathPatch3D pathpatch.set_3d_properties(mpath, z, zdir) class Patch3DCollection(PatchCollection): ''' A collection of 3D patches. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D patches with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of patches in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PatchCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PatchCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() self.stale = True def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PatchCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0: return min(vzs) else: return np.nan class Path3DCollection(PathCollection): ''' A collection of 3D paths. ''' def __init__(self, *args, **kwargs): """ Create a collection of flat 3D paths with its normal vector pointed in *zdir* direction, and located at *zs* on the *zdir* axis. 'zs' can be a scalar or an array-like of the same length as the number of paths in the collection. Constructor arguments are the same as for :class:`~matplotlib.collections.PathCollection`. In addition, keywords *zs=0* and *zdir='z'* are available. Also, the keyword argument "depthshade" is available to indicate whether or not to shade the patches in order to give the appearance of depth (default is *True*). This is typically desired in scatter plots. """ zs = kwargs.pop('zs', 0) zdir = kwargs.pop('zdir', 'z') self._depthshade = kwargs.pop('depthshade', True) PathCollection.__init__(self, *args, **kwargs) self.set_3d_properties(zs, zdir) def set_sort_zpos(self, val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def set_3d_properties(self, zs, zdir): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() offsets = self.get_offsets() if len(offsets) > 0: xs, ys = list(zip(*offsets)) else: xs = [] ys = [] self._offsets3d = juggle_axes(xs, ys, np.atleast_1d(zs), zdir) self._facecolor3d = self.get_facecolor() self._edgecolor3d = self.get_edgecolor() self.stale = True def do_3d_projection(self, renderer): xs, ys, zs = self._offsets3d vxs, vys, vzs, vis = proj3d.proj_transform_clip(xs, ys, zs, renderer.M) fcs = (zalpha(self._facecolor3d, vzs) if self._depthshade else self._facecolor3d) fcs = mcolors.to_rgba_array(fcs, self._alpha) self.set_facecolors(fcs) ecs = (zalpha(self._edgecolor3d, vzs) if self._depthshade else self._edgecolor3d) ecs = mcolors.to_rgba_array(ecs, self._alpha) self.set_edgecolors(ecs) PathCollection.set_offsets(self, list(zip(vxs, vys))) if vzs.size > 0 : return min(vzs) else : return np.nan def patch_collection_2d_to_3d(col, zs=0, zdir='z', depthshade=True): """ Convert a :class:`~matplotlib.collections.PatchCollection` into a :class:`Patch3DCollection` object (or a :class:`~matplotlib.collections.PathCollection` into a :class:`Path3DCollection` object). Keywords: *za* The location or locations to place the patches in the collection along the *zdir* axis. Defaults to 0. *zdir* The axis in which to place the patches. Default is "z". *depthshade* Whether to shade the patches to give a sense of depth. Defaults to *True*. """ if isinstance(col, PathCollection): col.__class__ = Path3DCollection elif isinstance(col, PatchCollection): col.__class__ = Patch3DCollection col._depthshade = depthshade col.set_3d_properties(zs, zdir) class Poly3DCollection(PolyCollection): ''' A collection of 3D polygons. ''' def __init__(self, verts, *args, **kwargs): ''' Create a Poly3DCollection. *verts* should contain 3D coordinates. Keyword arguments: zsort, see set_zsort for options. Note that this class does a bit of magic with the _facecolors and _edgecolors properties. ''' zsort = kwargs.pop('zsort', True) PolyCollection.__init__(self, verts, *args, **kwargs) self.set_zsort(zsort) self._codes3d = None _zsort_functions = { 'average': np.average, 'min': np.min, 'max': np.max, } def set_zsort(self, zsort): ''' Set z-sorting behaviour: boolean: if True use default 'average' string: 'average', 'min' or 'max' ''' if zsort is True: zsort = 'average' if zsort is not False: if zsort in self._zsort_functions: zsortfunc = self._zsort_functions[zsort] else: return False else: zsortfunc = None self._zsort = zsort self._sort_zpos = None self._zsortfunc = zsortfunc self.stale = True def get_vector(self, segments3d): """Optimize points for projection""" si = 0 ei = 0 segis = [] points = [] for p in segments3d: points.extend(p) ei = si+len(p) segis.append((si, ei)) si = ei if len(segments3d) > 0 : xs, ys, zs = list(zip(*points)) else : # We need this so that we can skip the bad unpacking from zip() xs, ys, zs = [], [], [] ones = np.ones(len(xs)) self._vec = np.array([xs, ys, zs, ones]) self._segis = segis def set_verts(self, verts, closed=True): '''Set 3D vertices.''' self.get_vector(verts) # 2D verts will be updated at draw time PolyCollection.set_verts(self, [], closed) def set_verts_and_codes(self, verts, codes): '''Sets 3D vertices with path codes''' # set vertices with closed=False to prevent PolyCollection from # setting path codes self.set_verts(verts, closed=False) # and set our own codes instead. self._codes3d = codes def set_3d_properties(self): # Force the collection to initialize the face and edgecolors # just in case it is a scalarmappable with a colormap. self.update_scalarmappable() self._sort_zpos = None self.set_zsort(True) self._facecolors3d = PolyCollection.get_facecolors(self) self._edgecolors3d = PolyCollection.get_edgecolors(self) self._alpha3d = PolyCollection.get_alpha(self) self.stale = True def set_sort_zpos(self,val): '''Set the position to use for z-sorting.''' self._sort_zpos = val self.stale = True def do_3d_projection(self, renderer): ''' Perform the 3D projection for this object. ''' # FIXME: This may no longer be needed? if self._A is not None: self.update_scalarmappable() self._facecolors3d = self._facecolors txs, tys, tzs = proj3d.proj_transform_vec(self._vec, renderer.M) xyzlist = [(txs[si:ei], tys[si:ei], tzs[si:ei]) for si, ei in self._segis] # This extra fuss is to re-order face / edge colors cface = self._facecolors3d cedge = self._edgecolors3d if len(cface) != len(xyzlist): cface = cface.repeat(len(xyzlist), axis=0) if len(cedge) != len(xyzlist): if len(cedge) == 0: cedge = cface else: cedge = cedge.repeat(len(xyzlist), axis=0) # if required sort by depth (furthest drawn first) if self._zsort: indices = range(len(xyzlist)) z_segments_2d = [(self._zsortfunc(zs), list(zip(xs, ys)), fc, ec, idx) for (xs, ys, zs), fc, ec, idx in zip(xyzlist, cface, cedge, indices)] z_segments_2d.sort(key=lambda x: x[0], reverse=True) else: raise ValueError("whoops") segments_2d = [s for z, s, fc, ec, idx in z_segments_2d] if self._codes3d is not None: codes = [self._codes3d[idx] for z, s, fc, ec, idx in z_segments_2d] PolyCollection.set_verts_and_codes(self, segments_2d, codes) else: PolyCollection.set_verts(self, segments_2d) self._facecolors2d = [fc for z, s, fc, ec, idx in z_segments_2d] if len(self._edgecolors3d) == len(cface): self._edgecolors2d = [ec for z, s, fc, ec, idx in z_segments_2d] else: self._edgecolors2d = self._edgecolors3d # Return zorder value if self._sort_zpos is not None: zvec = np.array([[0], [0], [self._sort_zpos], [1]]) ztrans = proj3d.proj_transform_vec(zvec, renderer.M) return ztrans[2][0] elif tzs.size > 0 : # FIXME: Some results still don't look quite right. # In particular, examine contourf3d_demo2.py # with az = -54 and elev = -45. return np.min(tzs) else : return np.nan def set_facecolor(self, colors): PolyCollection.set_facecolor(self, colors) self._facecolors3d = PolyCollection.get_facecolor(self) set_facecolors = set_facecolor def set_edgecolor(self, colors): PolyCollection.set_edgecolor(self, colors) self._edgecolors3d = PolyCollection.get_edgecolor(self) set_edgecolors = set_edgecolor def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float or *None*. ACCEPTS: float or None """ if alpha is not None: try: float(alpha) except TypeError: raise TypeError('alpha must be a float or None') artist.Artist.set_alpha(self, alpha) try: self._facecolors = mcolors.to_rgba_array( self._facecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass try: self._edgecolors = mcolors.to_rgba_array( self._edgecolors3d, self._alpha) except (AttributeError, TypeError, IndexError): pass self.stale = True def get_facecolors(self): return self._facecolors2d get_facecolor = get_facecolors def get_edgecolors(self): return self._edgecolors2d get_edgecolor = get_edgecolors def draw(self, renderer): return Collection.draw(self, renderer) def poly_collection_2d_to_3d(col, zs=0, zdir='z'): """Convert a PolyCollection to a Poly3DCollection object.""" segments_3d, codes = paths_to_3d_segments_with_codes(col.get_paths(), zs, zdir) col.__class__ = Poly3DCollection col.set_verts_and_codes(segments_3d, codes) col.set_3d_properties() def juggle_axes(xs, ys, zs, zdir): """ Reorder coordinates so that 2D xs, ys can be plotted in the plane orthogonal to zdir. zdir is normally x, y or z. However, if zdir starts with a '-' it is interpreted as a compensation for rotate_axes. """ if zdir == 'x': return zs, xs, ys elif zdir == 'y': return xs, zs, ys elif zdir[0] == '-': return rotate_axes(xs, ys, zs, zdir) else: return xs, ys, zs def rotate_axes(xs, ys, zs, zdir): """ Reorder coordinates so that the axes are rotated with zdir along the original z axis. Prepending the axis with a '-' does the inverse transform, so zdir can be x, -x, y, -y, z or -z """ if zdir == 'x': return ys, zs, xs elif zdir == '-x': return zs, xs, ys elif zdir == 'y': return zs, xs, ys elif zdir == '-y': return ys, zs, xs else: return xs, ys, zs def iscolor(c): try: if len(c) == 4 or len(c) == 3: if iterable(c[0]): return False if hasattr(c[0], '__float__'): return True except: return False return False def get_colors(c, num): """Stretch the color argument to provide the required number num""" if type(c) == type("string"): c = mcolors.to_rgba(c) if iscolor(c): return [c] * num if len(c) == num: return c elif iscolor(c): return [c] * num elif len(c) == 0: #if edgecolor or facecolor is specified as 'none' return [[0,0,0,0]] * num elif iscolor(c[0]): return [c[0]] * num else: raise ValueError('unknown color format %s' % c) def zalpha(colors, zs): """Modify the alphas of the color list according to depth""" # FIXME: This only works well if the points for *zs* are well-spaced # in all three dimensions. Otherwise, at certain orientations, # the min and max zs are very close together. # Should really normalize against the viewing depth. colors = get_colors(colors, len(zs)) if zs.size > 0 : norm = Normalize(min(zs), max(zs)) sats = 1 - norm(zs) * 0.7 colors = [(c[0], c[1], c[2], c[3] * s) for c, s in zip(colors, sats)] return colors
bsd-2-clause
xwolf12/scikit-learn
sklearn/decomposition/dict_learning.py
104
44632
""" Dictionary learning """ from __future__ import print_function # Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import sys import itertools from math import sqrt, ceil import numpy as np from scipy import linalg from numpy.lib.stride_tricks import as_strided from ..base import BaseEstimator, TransformerMixin from ..externals.joblib import Parallel, delayed, cpu_count from ..externals.six.moves import zip from ..utils import (check_array, check_random_state, gen_even_slices, gen_batches, _get_n_jobs) from ..utils.extmath import randomized_svd, row_norms from ..utils.validation import check_is_fitted from ..linear_model import Lasso, orthogonal_mp_gram, LassoLars, Lars def _sparse_encode(X, dictionary, gram, cov=None, algorithm='lasso_lars', regularization=None, copy_cov=True, init=None, max_iter=1000): """Generic sparse coding Each column of the result is the solution to a Lasso problem. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows. gram: None | array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' gram can be None if method is 'threshold'. cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary * X' algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than regularization from the projection dictionary * data' regularization : int | float The regularization parameter. It corresponds to alpha when algorithm is 'lasso_lars', 'lasso_cd' or 'threshold'. Otherwise it corresponds to n_nonzero_coefs. init: array of shape (n_samples, n_components) Initialization value of the sparse code. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. Returns ------- code: array of shape (n_components, n_features) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ if X.ndim == 1: X = X[:, np.newaxis] n_samples, n_features = X.shape if cov is None and algorithm != 'lasso_cd': # overwriting cov is safe copy_cov = False cov = np.dot(dictionary, X.T) if algorithm == 'lasso_lars': alpha = float(regularization) / n_features # account for scaling try: err_mgt = np.seterr(all='ignore') lasso_lars = LassoLars(alpha=alpha, fit_intercept=False, verbose=False, normalize=False, precompute=gram, fit_path=False) lasso_lars.fit(dictionary.T, X.T, Xy=cov) new_code = lasso_lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'lasso_cd': alpha = float(regularization) / n_features # account for scaling clf = Lasso(alpha=alpha, fit_intercept=False, normalize=False, precompute=gram, max_iter=max_iter, warm_start=True) clf.coef_ = init clf.fit(dictionary.T, X.T, check_input=False) new_code = clf.coef_ elif algorithm == 'lars': try: err_mgt = np.seterr(all='ignore') lars = Lars(fit_intercept=False, verbose=False, normalize=False, precompute=gram, n_nonzero_coefs=int(regularization), fit_path=False) lars.fit(dictionary.T, X.T, Xy=cov) new_code = lars.coef_ finally: np.seterr(**err_mgt) elif algorithm == 'threshold': new_code = ((np.sign(cov) * np.maximum(np.abs(cov) - regularization, 0)).T) elif algorithm == 'omp': new_code = orthogonal_mp_gram(gram, cov, regularization, None, row_norms(X, squared=True), copy_Xy=copy_cov).T else: raise ValueError('Sparse coding method must be "lasso_lars" ' '"lasso_cd", "lasso", "threshold" or "omp", got %s.' % algorithm) return new_code # XXX : could be moved to the linear_model module def sparse_encode(X, dictionary, gram=None, cov=None, algorithm='lasso_lars', n_nonzero_coefs=None, alpha=None, copy_cov=True, init=None, max_iter=1000, n_jobs=1): """Sparse coding Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix dictionary: array of shape (n_components, n_features) The dictionary matrix against which to solve the sparse coding of the data. Some of the algorithms assume normalized rows for meaningful output. gram: array, shape=(n_components, n_components) Precomputed Gram matrix, dictionary * dictionary' cov: array, shape=(n_components, n_samples) Precomputed covariance, dictionary' * X algorithm: {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'} lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' n_nonzero_coefs: int, 0.1 * n_features by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. alpha: float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threhold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. init: array of shape (n_samples, n_components) Initialization value of the sparse codes. Only used if `algorithm='lasso_cd'`. max_iter: int, 1000 by default Maximum number of iterations to perform if `algorithm='lasso_cd'`. copy_cov: boolean, optional Whether to copy the precomputed covariance matrix; if False, it may be overwritten. n_jobs: int, optional Number of parallel jobs to run. Returns ------- code: array of shape (n_samples, n_components) The sparse codes See also -------- sklearn.linear_model.lars_path sklearn.linear_model.orthogonal_mp sklearn.linear_model.Lasso SparseCoder """ dictionary = check_array(dictionary) X = check_array(X) n_samples, n_features = X.shape n_components = dictionary.shape[0] if gram is None and algorithm != 'threshold': # Transposing product to ensure Fortran ordering gram = np.dot(dictionary, dictionary.T).T if cov is None and algorithm != 'lasso_cd': copy_cov = False cov = np.dot(dictionary, X.T) if algorithm in ('lars', 'omp'): regularization = n_nonzero_coefs if regularization is None: regularization = min(max(n_features / 10, 1), n_components) else: regularization = alpha if regularization is None: regularization = 1. if n_jobs == 1 or algorithm == 'threshold': code = _sparse_encode(X, dictionary, gram, cov=cov, algorithm=algorithm, regularization=regularization, copy_cov=copy_cov, init=init, max_iter=max_iter) # This ensure that dimensionality of code is always 2, # consistant with the case n_jobs > 1 if code.ndim == 1: code = code[np.newaxis, :] return code # Enter parallel code block code = np.empty((n_samples, n_components)) slices = list(gen_even_slices(n_samples, _get_n_jobs(n_jobs))) code_views = Parallel(n_jobs=n_jobs)( delayed(_sparse_encode)( X[this_slice], dictionary, gram, cov[:, this_slice] if cov is not None else None, algorithm, regularization=regularization, copy_cov=copy_cov, init=init[this_slice] if init is not None else None, max_iter=max_iter) for this_slice in slices) for this_slice, this_view in zip(slices, code_views): code[this_slice] = this_view return code def _update_dict(dictionary, Y, code, verbose=False, return_r2=False, random_state=None): """Update the dense dictionary factor in place. Parameters ---------- dictionary: array of shape (n_features, n_components) Value of the dictionary at the previous iteration. Y: array of shape (n_features, n_samples) Data matrix. code: array of shape (n_components, n_samples) Sparse coding of the data against which to optimize the dictionary. verbose: Degree of output the procedure will print. return_r2: bool Whether to compute and return the residual sum of squares corresponding to the computed solution. random_state: int or RandomState Pseudo number generator state used for random sampling. Returns ------- dictionary: array of shape (n_features, n_components) Updated dictionary. """ n_components = len(code) n_samples = Y.shape[0] random_state = check_random_state(random_state) # Residuals, computed 'in-place' for efficiency R = -np.dot(dictionary, code) R += Y R = np.asfortranarray(R) ger, = linalg.get_blas_funcs(('ger',), (dictionary, code)) for k in range(n_components): # R <- 1.0 * U_k * V_k^T + R R = ger(1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) dictionary[:, k] = np.dot(R, code[k, :].T) # Scale k'th atom atom_norm_square = np.dot(dictionary[:, k], dictionary[:, k]) if atom_norm_square < 1e-20: if verbose == 1: sys.stdout.write("+") sys.stdout.flush() elif verbose: print("Adding new random atom") dictionary[:, k] = random_state.randn(n_samples) # Setting corresponding coefs to 0 code[k, :] = 0.0 dictionary[:, k] /= sqrt(np.dot(dictionary[:, k], dictionary[:, k])) else: dictionary[:, k] /= sqrt(atom_norm_square) # R <- -1.0 * U_k * V_k^T + R R = ger(-1.0, dictionary[:, k], code[k, :], a=R, overwrite_a=True) if return_r2: R **= 2 # R is fortran-ordered. For numpy version < 1.6, sum does not # follow the quick striding first, and is thus inefficient on # fortran ordered data. We take a flat view of the data with no # striding R = as_strided(R, shape=(R.size, ), strides=(R.dtype.itemsize,)) R = np.sum(R) return dictionary, R return dictionary def dict_learning(X, n_components, alpha, max_iter=100, tol=1e-8, method='lars', n_jobs=1, dict_init=None, code_init=None, callback=None, verbose=False, random_state=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components: int, Number of dictionary atoms to extract. alpha: int, Sparsity controlling parameter. max_iter: int, Maximum number of iterations to perform. tol: float, Tolerance for the stopping condition. method: {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. n_jobs: int, Number of parallel jobs to run, or -1 to autodetect. dict_init: array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. code_init: array of shape (n_samples, n_components), Initial value for the sparse code for warm restart scenarios. callback: Callable that gets invoked every five iterations. verbose: Degree of output the procedure will print. random_state: int or RandomState Pseudo number generator state used for random sampling. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code: array of shape (n_samples, n_components) The sparse code factor in the matrix factorization. dictionary: array of shape (n_components, n_features), The dictionary factor in the matrix factorization. errors: array Vector of errors at each iteration. n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to True. See also -------- dict_learning_online DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if method not in ('lars', 'cd'): raise ValueError('Coding method %r not supported as a fit algorithm.' % method) method = 'lasso_' + method t0 = time.time() # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init the code and the dictionary with SVD of Y if code_init is not None and dict_init is not None: code = np.array(code_init, order='F') # Don't copy V, it will happen below dictionary = dict_init else: code, S, dictionary = linalg.svd(X, full_matrices=False) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: # True even if n_components=None code = code[:, :n_components] dictionary = dictionary[:n_components, :] else: code = np.c_[code, np.zeros((len(code), n_components - r))] dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] # Fortran-order dict, as we are going to access its row vectors dictionary = np.array(dictionary, order='F') residuals = 0 errors = [] current_cost = np.nan if verbose == 1: print('[dict_learning]', end=' ') # If max_iter is 0, number of iterations returned should be zero ii = -1 for ii in range(max_iter): dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: print ("Iteration % 3i " "(elapsed time: % 3is, % 4.1fmn, current cost % 7.3f)" % (ii, dt, dt / 60, current_cost)) # Update code code = sparse_encode(X, dictionary, algorithm=method, alpha=alpha, init=code, n_jobs=n_jobs) # Update dictionary dictionary, residuals = _update_dict(dictionary.T, X.T, code.T, verbose=verbose, return_r2=True, random_state=random_state) dictionary = dictionary.T # Cost function current_cost = 0.5 * residuals + alpha * np.sum(np.abs(code)) errors.append(current_cost) if ii > 0: dE = errors[-2] - errors[-1] # assert(dE >= -tol * errors[-1]) if dE < tol * errors[-1]: if verbose == 1: # A line return print("") elif verbose: print("--- Convergence reached after %d iterations" % ii) break if ii % 5 == 0 and callback is not None: callback(locals()) if return_n_iter: return code, dictionary, errors, ii + 1 else: return code, dictionary, errors def dict_learning_online(X, n_components=2, alpha=1, n_iter=100, return_code=True, dict_init=None, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', iter_offset=0, random_state=None, return_inner_stats=False, inner_stats=None, return_n_iter=False): """Solves a dictionary learning matrix factorization problem online. Finds the best dictionary and the corresponding sparse code for approximating the data matrix X by solving:: (U^*, V^*) = argmin 0.5 || X - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components where V is the dictionary and U is the sparse code. This is accomplished by repeatedly iterating over mini-batches by slicing the input data. Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- X: array of shape (n_samples, n_features) Data matrix. n_components : int, Number of dictionary atoms to extract. alpha : float, Sparsity controlling parameter. n_iter : int, Number of iterations to perform. return_code : boolean, Whether to also return the code U or just the dictionary V. dict_init : array of shape (n_components, n_features), Initial value for the dictionary for warm restart scenarios. callback : Callable that gets invoked every five iterations. batch_size : int, The number of samples to take in each batch. verbose : Degree of output the procedure will print. shuffle : boolean, Whether to shuffle the data before splitting it in batches. n_jobs : int, Number of parallel jobs to run, or -1 to autodetect. method : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. iter_offset : int, default 0 Number of previous iterations completed on the dictionary used for initialization. random_state : int or RandomState Pseudo number generator state used for random sampling. return_inner_stats : boolean, optional Return the inner statistics A (dictionary covariance) and B (data approximation). Useful to restart the algorithm in an online setting. If return_inner_stats is True, return_code is ignored inner_stats : tuple of (A, B) ndarrays Inner sufficient statistics that are kept by the algorithm. Passing them at initialization is useful in online settings, to avoid loosing the history of the evolution. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix return_n_iter : bool Whether or not to return the number of iterations. Returns ------- code : array of shape (n_samples, n_components), the sparse code (only returned if `return_code=True`) dictionary : array of shape (n_components, n_features), the solutions to the dictionary learning problem n_iter : int Number of iterations run. Returned only if `return_n_iter` is set to `True`. See also -------- dict_learning DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ if n_components is None: n_components = X.shape[1] if method not in ('lars', 'cd'): raise ValueError('Coding method not supported as a fit algorithm.') method = 'lasso_' + method t0 = time.time() n_samples, n_features = X.shape # Avoid integer division problems alpha = float(alpha) random_state = check_random_state(random_state) if n_jobs == -1: n_jobs = cpu_count() # Init V with SVD of X if dict_init is not None: dictionary = dict_init else: _, S, dictionary = randomized_svd(X, n_components, random_state=random_state) dictionary = S[:, np.newaxis] * dictionary r = len(dictionary) if n_components <= r: dictionary = dictionary[:n_components, :] else: dictionary = np.r_[dictionary, np.zeros((n_components - r, dictionary.shape[1]))] if verbose == 1: print('[dict_learning]', end=' ') if shuffle: X_train = X.copy() random_state.shuffle(X_train) else: X_train = X dictionary = check_array(dictionary.T, order='F', dtype=np.float64, copy=False) X_train = check_array(X_train, order='C', dtype=np.float64, copy=False) batches = gen_batches(n_samples, batch_size) batches = itertools.cycle(batches) # The covariance of the dictionary if inner_stats is None: A = np.zeros((n_components, n_components)) # The data approximation B = np.zeros((n_features, n_components)) else: A = inner_stats[0].copy() B = inner_stats[1].copy() # If n_iter is zero, we need to return zero. ii = iter_offset - 1 for ii, batch in zip(range(iter_offset, iter_offset + n_iter), batches): this_X = X_train[batch] dt = (time.time() - t0) if verbose == 1: sys.stdout.write(".") sys.stdout.flush() elif verbose: if verbose > 10 or ii % ceil(100. / verbose) == 0: print ("Iteration % 3i (elapsed time: % 3is, % 4.1fmn)" % (ii, dt, dt / 60)) this_code = sparse_encode(this_X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs).T # Update the auxiliary variables if ii < batch_size - 1: theta = float((ii + 1) * batch_size) else: theta = float(batch_size ** 2 + ii + 1 - batch_size) beta = (theta + 1 - batch_size) / (theta + 1) A *= beta A += np.dot(this_code, this_code.T) B *= beta B += np.dot(this_X.T, this_code.T) # Update dictionary dictionary = _update_dict(dictionary, B, A, verbose=verbose, random_state=random_state) # XXX: Can the residuals be of any use? # Maybe we need a stopping criteria based on the amount of # modification in the dictionary if callback is not None: callback(locals()) if return_inner_stats: if return_n_iter: return dictionary.T, (A, B), ii - iter_offset + 1 else: return dictionary.T, (A, B) if return_code: if verbose > 1: print('Learning code...', end=' ') elif verbose == 1: print('|', end=' ') code = sparse_encode(X, dictionary.T, algorithm=method, alpha=alpha, n_jobs=n_jobs) if verbose > 1: dt = (time.time() - t0) print('done (total time: % 3is, % 4.1fmn)' % (dt, dt / 60)) if return_n_iter: return code, dictionary.T, ii - iter_offset + 1 else: return code, dictionary.T if return_n_iter: return dictionary.T, ii - iter_offset + 1 else: return dictionary.T class SparseCodingMixin(TransformerMixin): """Sparse coding mixin""" def _set_sparse_coding_params(self, n_components, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self.n_components = n_components self.transform_algorithm = transform_algorithm self.transform_n_nonzero_coefs = transform_n_nonzero_coefs self.transform_alpha = transform_alpha self.split_sign = split_sign self.n_jobs = n_jobs def transform(self, X, y=None): """Encode the data as a sparse combination of the dictionary atoms. Coding method is determined by the object parameter `transform_algorithm`. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. Returns ------- X_new : array, shape (n_samples, n_components) Transformed data """ check_is_fitted(self, 'components_') # XXX : kwargs is not documented X = check_array(X) n_samples, n_features = X.shape code = sparse_encode( X, self.components_, algorithm=self.transform_algorithm, n_nonzero_coefs=self.transform_n_nonzero_coefs, alpha=self.transform_alpha, n_jobs=self.n_jobs) if self.split_sign: # feature vector is split into a positive and negative side n_samples, n_features = code.shape split_code = np.empty((n_samples, 2 * n_features)) split_code[:, :n_features] = np.maximum(code, 0) split_code[:, n_features:] = -np.minimum(code, 0) code = split_code return code class SparseCoder(BaseEstimator, SparseCodingMixin): """Sparse coding Finds a sparse representation of data against a fixed, precomputed dictionary. Each row of the result is the solution to a sparse coding problem. The goal is to find a sparse array `code` such that:: X ~= code * dictionary Read more in the :ref:`User Guide <SparseCoder>`. Parameters ---------- dictionary : array, [n_components, n_features] The dictionary atoms used for sparse coding. Lines are assumed to be normalized to unit norm. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data: lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run Attributes ---------- components_ : array, [n_components, n_features] The unchanged dictionary atoms See also -------- DictionaryLearning MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA sparse_encode """ def __init__(self, dictionary, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, split_sign=False, n_jobs=1): self._set_sparse_coding_params(dictionary.shape[0], transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.components_ = dictionary def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ return self class DictionaryLearning(BaseEstimator, SparseCodingMixin): """Dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter max_iter : int, maximum number of iterations to perform tol : float, tolerance for numerical error fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection ``dictionary * X'`` transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run code_init : array of shape (n_samples, n_components), initial value for the code, for warm restart dict_init : array of shape (n_components, n_features), initial values for the dictionary, for warm restart verbose : degree of verbosity of the printed output random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] dictionary atoms extracted from the data error_ : array vector of errors at each iteration n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder MiniBatchDictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, max_iter=1000, tol=1e-8, fit_algorithm='lars', transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, n_jobs=1, code_init=None, dict_init=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.max_iter = max_iter self.tol = tol self.fit_algorithm = fit_algorithm self.code_init = code_init self.dict_init = dict_init self.verbose = verbose self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self: object Returns the object itself """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components V, U, E, self.n_iter_ = dict_learning( X, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, code_init=self.code_init, dict_init=self.dict_init, verbose=self.verbose, random_state=random_state, return_n_iter=True) self.components_ = U self.error_ = E return self class MiniBatchDictionaryLearning(BaseEstimator, SparseCodingMixin): """Mini-batch dictionary learning Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code. Solves the optimization problem:: (U^*,V^*) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components Read more in the :ref:`User Guide <DictionaryLearning>`. Parameters ---------- n_components : int, number of dictionary elements to extract alpha : float, sparsity controlling parameter n_iter : int, total number of iterations to perform fit_algorithm : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. transform_algorithm : {'lasso_lars', 'lasso_cd', 'lars', 'omp', \ 'threshold'} Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X' transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case. transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`. split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers. n_jobs : int, number of parallel jobs to run dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios verbose : degree of verbosity of the printed output batch_size : int, number of samples in each mini-batch shuffle : bool, whether to shuffle the samples before forming batches random_state : int or RandomState Pseudo number generator state used for random sampling. Attributes ---------- components_ : array, [n_components, n_features] components extracted from the data inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid loosing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix n_iter_ : int Number of iterations run. Notes ----- **References:** J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (http://www.di.ens.fr/sierra/pdfs/icml09.pdf) See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA """ def __init__(self, n_components=None, alpha=1, n_iter=1000, fit_algorithm='lars', n_jobs=1, batch_size=3, shuffle=True, dict_init=None, transform_algorithm='omp', transform_n_nonzero_coefs=None, transform_alpha=None, verbose=False, split_sign=False, random_state=None): self._set_sparse_coding_params(n_components, transform_algorithm, transform_n_nonzero_coefs, transform_alpha, split_sign, n_jobs) self.alpha = alpha self.n_iter = n_iter self.fit_algorithm = fit_algorithm self.dict_init = dict_init self.verbose = verbose self.shuffle = shuffle self.batch_size = batch_size self.split_sign = split_sign self.random_state = random_state def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) U, (A, B), self.n_iter_ = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, return_code=False, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=self.dict_init, batch_size=self.batch_size, shuffle=self.shuffle, verbose=self.verbose, random_state=random_state, return_inner_stats=True, return_n_iter=True) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = self.n_iter return self def partial_fit(self, X, y=None, iter_offset=None): """Updates the model using the data in X as a mini-batch. Parameters ---------- X: array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. iter_offset: integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used. Returns ------- self : object Returns the instance itself. """ if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) X = check_array(X) if hasattr(self, 'components_'): dict_init = self.components_ else: dict_init = self.dict_init inner_stats = getattr(self, 'inner_stats_', None) if iter_offset is None: iter_offset = getattr(self, 'iter_offset_', 0) U, (A, B) = dict_learning_online( X, self.n_components, self.alpha, n_iter=self.n_iter, method=self.fit_algorithm, n_jobs=self.n_jobs, dict_init=dict_init, batch_size=len(X), shuffle=False, verbose=self.verbose, return_code=False, iter_offset=iter_offset, random_state=self.random_state_, return_inner_stats=True, inner_stats=inner_stats) self.components_ = U # Keep track of the state of the algorithm to be able to do # some online fitting (partial_fit) self.inner_stats_ = (A, B) self.iter_offset_ = iter_offset + self.n_iter return self
bsd-3-clause
timsnyder/bokeh
examples/app/movies/main.py
1
4227
from os.path import dirname, join import numpy as np import pandas.io.sql as psql import sqlite3 as sql from bokeh.plotting import figure from bokeh.layouts import layout, column from bokeh.models import ColumnDataSource, Div from bokeh.models.widgets import Slider, Select, TextInput from bokeh.io import curdoc from bokeh.sampledata.movies_data import movie_path conn = sql.connect(movie_path) query = open(join(dirname(__file__), 'query.sql')).read() movies = psql.read_sql(query, conn) movies["color"] = np.where(movies["Oscars"] > 0, "orange", "grey") movies["alpha"] = np.where(movies["Oscars"] > 0, 0.9, 0.25) movies.fillna(0, inplace=True) # just replace missing values with zero movies["revenue"] = movies.BoxOffice.apply(lambda x: '{:,d}'.format(int(x))) with open(join(dirname(__file__), "razzies-clean.csv")) as f: razzies = f.read().splitlines() movies.loc[movies.imdbID.isin(razzies), "color"] = "purple" movies.loc[movies.imdbID.isin(razzies), "alpha"] = 0.9 axis_map = { "Tomato Meter": "Meter", "Numeric Rating": "numericRating", "Number of Reviews": "Reviews", "Box Office (dollars)": "BoxOffice", "Length (minutes)": "Runtime", "Year": "Year", } desc = Div(text=open(join(dirname(__file__), "description.html")).read(), sizing_mode="stretch_width") # Create Input controls reviews = Slider(title="Minimum number of reviews", value=80, start=10, end=300, step=10) min_year = Slider(title="Year released", start=1940, end=2014, value=1970, step=1) max_year = Slider(title="End Year released", start=1940, end=2014, value=2014, step=1) oscars = Slider(title="Minimum number of Oscar wins", start=0, end=4, value=0, step=1) boxoffice = Slider(title="Dollars at Box Office (millions)", start=0, end=800, value=0, step=1) genre = Select(title="Genre", value="All", options=open(join(dirname(__file__), 'genres.txt')).read().split()) director = TextInput(title="Director name contains") cast = TextInput(title="Cast names contains") x_axis = Select(title="X Axis", options=sorted(axis_map.keys()), value="Tomato Meter") y_axis = Select(title="Y Axis", options=sorted(axis_map.keys()), value="Number of Reviews") # Create Column Data Source that will be used by the plot source = ColumnDataSource(data=dict(x=[], y=[], color=[], title=[], year=[], revenue=[], alpha=[])) TOOLTIPS=[ ("Title", "@title"), ("Year", "@year"), ("$", "@revenue") ] p = figure(plot_height=600, plot_width=700, title="", toolbar_location=None, tooltips=TOOLTIPS, sizing_mode="scale_both") p.circle(x="x", y="y", source=source, size=7, color="color", line_color=None, fill_alpha="alpha") def select_movies(): genre_val = genre.value director_val = director.value.strip() cast_val = cast.value.strip() selected = movies[ (movies.Reviews >= reviews.value) & (movies.BoxOffice >= (boxoffice.value * 1e6)) & (movies.Year >= min_year.value) & (movies.Year <= max_year.value) & (movies.Oscars >= oscars.value) ] if (genre_val != "All"): selected = selected[selected.Genre.str.contains(genre_val)==True] if (director_val != ""): selected = selected[selected.Director.str.contains(director_val)==True] if (cast_val != ""): selected = selected[selected.Cast.str.contains(cast_val)==True] return selected def update(): df = select_movies() x_name = axis_map[x_axis.value] y_name = axis_map[y_axis.value] p.xaxis.axis_label = x_axis.value p.yaxis.axis_label = y_axis.value p.title.text = "%d movies selected" % len(df) source.data = dict( x=df[x_name], y=df[y_name], color=df["color"], title=df["Title"], year=df["Year"], revenue=df["revenue"], alpha=df["alpha"], ) controls = [reviews, boxoffice, genre, min_year, max_year, oscars, director, cast, x_axis, y_axis] for control in controls: control.on_change('value', lambda attr, old, new: update()) inputs = column(*controls, width=320, height=1000) inputs.sizing_mode = "fixed" l = layout([ [desc], [inputs, p], ], sizing_mode="scale_both") update() # initial load of the data curdoc().add_root(l) curdoc().title = "Movies"
bsd-3-clause
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/skimage/viewer/viewers/core.py
33
13265
""" ImageViewer class for viewing and interacting with images. """ import numpy as np from ... import io, img_as_float from ...util.dtype import dtype_range from ...exposure import rescale_intensity from ..qt import QtWidgets, Qt, Signal from ..widgets import Slider from ..utils import (dialogs, init_qtapp, figimage, start_qtapp, update_axes_image) from ..utils.canvas import BlitManager, EventManager from ..plugins.base import Plugin __all__ = ['ImageViewer', 'CollectionViewer'] def mpl_image_to_rgba(mpl_image): """Return RGB image from the given matplotlib image object. Each image in a matplotlib figure has its own colormap and normalization function. Return RGBA (RGB + alpha channel) image with float dtype. Parameters ---------- mpl_image : matplotlib.image.AxesImage object The image being converted. Returns ------- img : array of float, shape (M, N, 4) An image of float values in [0, 1]. """ image = mpl_image.get_array() if image.ndim == 2: input_range = (mpl_image.norm.vmin, mpl_image.norm.vmax) image = rescale_intensity(image, in_range=input_range) # cmap complains on bool arrays image = mpl_image.cmap(img_as_float(image)) elif image.ndim == 3 and image.shape[2] == 3: # add alpha channel if it's missing image = np.dstack((image, np.ones_like(image))) return img_as_float(image) class ImageViewer(QtWidgets.QMainWindow): """Viewer for displaying images. This viewer is a simple container object that holds a Matplotlib axes for showing images. `ImageViewer` doesn't subclass the Matplotlib axes (or figure) because of the high probability of name collisions. Subclasses and plugins will likely extend the `update_image` method to add custom overlays or filter the displayed image. Parameters ---------- image : array Image being viewed. Attributes ---------- canvas, fig, ax : Matplotlib canvas, figure, and axes Matplotlib canvas, figure, and axes used to display image. image : array Image being viewed. Setting this value will update the displayed frame. original_image : array Plugins typically operate on (but don't change) the *original* image. plugins : list List of attached plugins. Examples -------- >>> from skimage import data >>> image = data.coins() >>> viewer = ImageViewer(image) # doctest: +SKIP >>> viewer.show() # doctest: +SKIP """ dock_areas = {'top': Qt.TopDockWidgetArea, 'bottom': Qt.BottomDockWidgetArea, 'left': Qt.LeftDockWidgetArea, 'right': Qt.RightDockWidgetArea} # Signal that the original image has been changed original_image_changed = Signal(np.ndarray) def __init__(self, image, useblit=True): # Start main loop init_qtapp() super(ImageViewer, self).__init__() #TODO: Add ImageViewer to skimage.io window manager self.setAttribute(Qt.WA_DeleteOnClose) self.setWindowTitle("Image Viewer") self.file_menu = QtWidgets.QMenu('&File', self) self.file_menu.addAction('Open file', self.open_file, Qt.CTRL + Qt.Key_O) self.file_menu.addAction('Save to file', self.save_to_file, Qt.CTRL + Qt.Key_S) self.file_menu.addAction('Quit', self.close, Qt.CTRL + Qt.Key_Q) self.menuBar().addMenu(self.file_menu) self.main_widget = QtWidgets.QWidget() self.setCentralWidget(self.main_widget) if isinstance(image, Plugin): plugin = image image = plugin.filtered_image plugin.image_changed.connect(self._update_original_image) # When plugin is started, start plugin._started.connect(self._show) self.fig, self.ax = figimage(image) self.canvas = self.fig.canvas self.canvas.setParent(self) self.ax.autoscale(enable=False) self._tools = [] self.useblit = useblit if useblit: self._blit_manager = BlitManager(self.ax) self._event_manager = EventManager(self.ax) self._image_plot = self.ax.images[0] self._update_original_image(image) self.plugins = [] self.layout = QtWidgets.QVBoxLayout(self.main_widget) self.layout.addWidget(self.canvas) status_bar = self.statusBar() self.status_message = status_bar.showMessage sb_size = status_bar.sizeHint() cs_size = self.canvas.sizeHint() self.resize(cs_size.width(), cs_size.height() + sb_size.height()) self.connect_event('motion_notify_event', self._update_status_bar) def __add__(self, plugin): """Add plugin to ImageViewer""" plugin.attach(self) self.original_image_changed.connect(plugin._update_original_image) if plugin.dock: location = self.dock_areas[plugin.dock] dock_location = Qt.DockWidgetArea(location) dock = QtWidgets.QDockWidget() dock.setWidget(plugin) dock.setWindowTitle(plugin.name) self.addDockWidget(dock_location, dock) horiz = (self.dock_areas['left'], self.dock_areas['right']) dimension = 'width' if location in horiz else 'height' self._add_widget_size(plugin, dimension=dimension) return self def _add_widget_size(self, widget, dimension='width'): widget_size = widget.sizeHint() viewer_size = self.frameGeometry() dx = dy = 0 if dimension == 'width': dx = widget_size.width() elif dimension == 'height': dy = widget_size.height() w = viewer_size.width() h = viewer_size.height() self.resize(w + dx, h + dy) def open_file(self, filename=None): """Open image file and display in viewer.""" if filename is None: filename = dialogs.open_file_dialog() if filename is None: return image = io.imread(filename) self._update_original_image(image) def update_image(self, image): """Update displayed image. This method can be overridden or extended in subclasses and plugins to react to image changes. """ self._update_original_image(image) def _update_original_image(self, image): self.original_image = image # update saved image self.image = image.copy() # update displayed image self.original_image_changed.emit(image) def save_to_file(self, filename=None): """Save current image to file. The current behavior is not ideal: It saves the image displayed on screen, so all images will be converted to RGB, and the image size is not preserved (resizing the viewer window will alter the size of the saved image). """ if filename is None: filename = dialogs.save_file_dialog() if filename is None: return if len(self.ax.images) == 1: io.imsave(filename, self.image) else: underlay = mpl_image_to_rgba(self.ax.images[0]) overlay = mpl_image_to_rgba(self.ax.images[1]) alpha = overlay[:, :, 3] # alpha can be set by channel of array or by a scalar value. # Prefer the alpha channel, but fall back to scalar value. if np.all(alpha == 1): alpha = np.ones_like(alpha) * self.ax.images[1].get_alpha() alpha = alpha[:, :, np.newaxis] composite = (overlay[:, :, :3] * alpha + underlay[:, :, :3] * (1 - alpha)) io.imsave(filename, composite) def closeEvent(self, event): self.close() def _show(self, x=0): self.move(x, 0) for p in self.plugins: p.show() super(ImageViewer, self).show() self.activateWindow() self.raise_() def show(self, main_window=True): """Show ImageViewer and attached plugins. This behaves much like `matplotlib.pyplot.show` and `QWidget.show`. """ self._show() if main_window: start_qtapp() return [p.output() for p in self.plugins] def redraw(self): if self.useblit: self._blit_manager.redraw() else: self.canvas.draw_idle() @property def image(self): return self._img @image.setter def image(self, image): self._img = image update_axes_image(self._image_plot, image) # update display (otherwise image doesn't fill the canvas) h, w = image.shape[:2] self.ax.set_xlim(0, w) self.ax.set_ylim(h, 0) # update color range clim = dtype_range[image.dtype.type] if clim[0] < 0 and image.min() >= 0: clim = (0, clim[1]) self._image_plot.set_clim(clim) if self.useblit: self._blit_manager.background = None self.redraw() def reset_image(self): self.image = self.original_image.copy() def connect_event(self, event, callback): """Connect callback function to matplotlib event and return id.""" cid = self.canvas.mpl_connect(event, callback) return cid def disconnect_event(self, callback_id): """Disconnect callback by its id (returned by `connect_event`).""" self.canvas.mpl_disconnect(callback_id) def _update_status_bar(self, event): if event.inaxes and event.inaxes.get_navigate(): self.status_message(self._format_coord(event.xdata, event.ydata)) else: self.status_message('') def add_tool(self, tool): if self.useblit: self._blit_manager.add_artists(tool.artists) self._tools.append(tool) self._event_manager.attach(tool) def remove_tool(self, tool): if tool not in self._tools: return if self.useblit: self._blit_manager.remove_artists(tool.artists) self._tools.remove(tool) self._event_manager.detach(tool) def _format_coord(self, x, y): # callback function to format coordinate display in status bar x = int(x + 0.5) y = int(y + 0.5) try: return "%4s @ [%4s, %4s]" % (self.image[y, x], x, y) except IndexError: return "" class CollectionViewer(ImageViewer): """Viewer for displaying image collections. Select the displayed frame of the image collection using the slider or with the following keyboard shortcuts: left/right arrows Previous/next image in collection. number keys, 0--9 0% to 90% of collection. For example, "5" goes to the image in the middle (i.e. 50%) of the collection. home/end keys First/last image in collection. Parameters ---------- image_collection : list of images List of images to be displayed. update_on : {'move' | 'release'} Control whether image is updated on slide or release of the image slider. Using 'on_release' will give smoother behavior when displaying large images or when writing a plugin/subclass that requires heavy computation. """ def __init__(self, image_collection, update_on='move', **kwargs): self.image_collection = image_collection self.index = 0 self.num_images = len(self.image_collection) first_image = image_collection[0] super(CollectionViewer, self).__init__(first_image) slider_kws = dict(value=0, low=0, high=self.num_images - 1) slider_kws['update_on'] = update_on slider_kws['callback'] = self.update_index slider_kws['value_type'] = 'int' self.slider = Slider('frame', **slider_kws) self.layout.addWidget(self.slider) #TODO: Adjust height to accomodate slider; the following doesn't work # s_size = self.slider.sizeHint() # cs_size = self.canvas.sizeHint() # self.resize(cs_size.width(), cs_size.height() + s_size.height()) def update_index(self, name, index): """Select image on display using index into image collection.""" index = int(round(index)) if index == self.index: return # clip index value to collection limits index = max(index, 0) index = min(index, self.num_images - 1) self.index = index self.slider.val = index self.update_image(self.image_collection[index]) def keyPressEvent(self, event): if type(event) == QtWidgets.QKeyEvent: key = event.key() # Number keys (code: 0 = key 48, 9 = key 57) move to deciles if 48 <= key < 58: index = 0.1 * int(key - 48) * self.num_images self.update_index('', index) event.accept() else: event.ignore() else: event.ignore()
mit
vortex-ape/scikit-learn
examples/compose/plot_digits_pipe.py
2
1658
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) # Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs), cv=5) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/pandas/tests/io/formats/test_printing.py
7
7591
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd from pandas import compat import pandas.io.formats.printing as printing import pandas.io.formats.format as fmt import pandas.core.config as cf def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = printing.adjoin(2, *data) assert (adjoined == expected) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.get_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = printing.pprint_thing(b, quote_strings=True) assert res == repr(b) res = printing.pprint_thing(b, quote_strings=False) assert res == b class TestFormattBase(object): def test_adjoin(self): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = printing.adjoin(2, *data) assert adjoined == expected def test_adjoin_unicode(self): data = [[u'あ', 'b', 'c'], ['dd', u'ええ', 'ff'], ['ggg', 'hhh', u'いいい']] expected = u'あ dd ggg\nb ええ hhh\nc ff いいい' adjoined = printing.adjoin(2, *data) assert adjoined == expected adj = fmt.EastAsianTextAdjustment() expected = u"""あ dd ggg b ええ hhh c ff いいい""" adjoined = adj.adjoin(2, *data) assert adjoined == expected cols = adjoined.split('\n') assert adj.len(cols[0]) == 13 assert adj.len(cols[1]) == 13 assert adj.len(cols[2]) == 16 expected = u"""あ dd ggg b ええ hhh c ff いいい""" adjoined = adj.adjoin(7, *data) assert adjoined == expected cols = adjoined.split('\n') assert adj.len(cols[0]) == 23 assert adj.len(cols[1]) == 23 assert adj.len(cols[2]) == 26 def test_justify(self): adj = fmt.EastAsianTextAdjustment() def just(x, *args, **kwargs): # wrapper to test single str return adj.justify([x], *args, **kwargs)[0] assert just('abc', 5, mode='left') == 'abc ' assert just('abc', 5, mode='center') == ' abc ' assert just('abc', 5, mode='right') == ' abc' assert just(u'abc', 5, mode='left') == 'abc ' assert just(u'abc', 5, mode='center') == ' abc ' assert just(u'abc', 5, mode='right') == ' abc' assert just(u'パンダ', 5, mode='left') == u'パンダ' assert just(u'パンダ', 5, mode='center') == u'パンダ' assert just(u'パンダ', 5, mode='right') == u'パンダ' assert just(u'パンダ', 10, mode='left') == u'パンダ ' assert just(u'パンダ', 10, mode='center') == u' パンダ ' assert just(u'パンダ', 10, mode='right') == u' パンダ' def test_east_asian_len(self): adj = fmt.EastAsianTextAdjustment() assert adj.len('abc') == 3 assert adj.len(u'abc') == 3 assert adj.len(u'パンダ') == 6 assert adj.len(u'パンダ') == 5 assert adj.len(u'パンダpanda') == 11 assert adj.len(u'パンダpanda') == 10 def test_ambiguous_width(self): adj = fmt.EastAsianTextAdjustment() assert adj.len(u'¡¡ab') == 4 with cf.option_context('display.unicode.ambiguous_as_wide', True): adj = fmt.EastAsianTextAdjustment() assert adj.len(u'¡¡ab') == 6 data = [[u'あ', 'b', 'c'], ['dd', u'ええ', 'ff'], ['ggg', u'¡¡ab', u'いいい']] expected = u'あ dd ggg \nb ええ ¡¡ab\nc ff いいい' adjoined = adj.adjoin(2, *data) assert adjoined == expected class TestTableSchemaRepr(object): @classmethod def setup_class(cls): pytest.importorskip('IPython') try: import mock except ImportError: try: from unittest import mock except ImportError: pytest.skip("Mock is not installed") cls.mock = mock from IPython.core.interactiveshell import InteractiveShell cls.display_formatter = InteractiveShell.instance().display_formatter def test_publishes(self): df = pd.DataFrame({"A": [1, 2]}) objects = [df['A'], df, df] # dataframe / series expected_keys = [ {'text/plain', 'application/vnd.dataresource+json'}, {'text/plain', 'text/html', 'application/vnd.dataresource+json'}, ] opt = pd.option_context('display.html.table_schema', True) for obj, expected in zip(objects, expected_keys): with opt: formatted = self.display_formatter.format(obj) assert set(formatted[0].keys()) == expected with_latex = pd.option_context('display.latex.repr', True) with opt, with_latex: formatted = self.display_formatter.format(obj) expected = {'text/plain', 'text/html', 'text/latex', 'application/vnd.dataresource+json'} assert set(formatted[0].keys()) == expected def test_publishes_not_implemented(self): # column MultiIndex # GH 15996 midx = pd.MultiIndex.from_product([['A', 'B'], ['a', 'b', 'c']]) df = pd.DataFrame(np.random.randn(5, len(midx)), columns=midx) opt = pd.option_context('display.html.table_schema', True) with opt: formatted = self.display_formatter.format(df) expected = {'text/plain', 'text/html'} assert set(formatted[0].keys()) == expected def test_config_on(self): df = pd.DataFrame({"A": [1, 2]}) with pd.option_context("display.html.table_schema", True): result = df._repr_data_resource_() assert result is not None def test_config_default_off(self): df = pd.DataFrame({"A": [1, 2]}) with pd.option_context("display.html.table_schema", False): result = df._repr_data_resource_() assert result is None def test_enable_data_resource_formatter(self): # GH 10491 formatters = self.display_formatter.formatters mimetype = 'application/vnd.dataresource+json' with pd.option_context('display.html.table_schema', True): assert 'application/vnd.dataresource+json' in formatters assert formatters[mimetype].enabled # still there, just disabled assert 'application/vnd.dataresource+json' in formatters assert not formatters[mimetype].enabled # able to re-set with pd.option_context('display.html.table_schema', True): assert 'application/vnd.dataresource+json' in formatters assert formatters[mimetype].enabled # smoke test that it works self.display_formatter.format(cf) # TODO: fix this broken test # def test_console_encode(): # """ # On Python 2, if sys.stdin.encoding is None (IPython with zmq frontend) # common.console_encode should encode things as utf-8. # """ # if compat.PY3: # pytest.skip # with tm.stdin_encoding(encoding=None): # result = printing.console_encode(u"\u05d0") # expected = u"\u05d0".encode('utf-8') # assert (result == expected)
agpl-3.0
av8ramit/tensorflow
tensorflow/contrib/learn/python/learn/estimators/kmeans_test.py
13
20278
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for KMeans.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import time import numpy as np from sklearn.cluster import KMeans as SklearnKMeans # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators import kmeans as kmeans_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import flags from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import queue_runner FLAGS = flags.FLAGS def normalize(x): return x / np.sqrt(np.sum(x * x, axis=-1, keepdims=True)) def cosine_similarity(x, y): return np.dot(normalize(x), np.transpose(normalize(y))) def make_random_centers(num_centers, num_dims, center_norm=500): return np.round( np.random.rand(num_centers, num_dims).astype(np.float32) * center_norm) def make_random_points(centers, num_points, max_offset=20): num_centers, num_dims = centers.shape assignments = np.random.choice(num_centers, num_points) offsets = np.round( np.random.randn(num_points, num_dims).astype(np.float32) * max_offset) return (centers[assignments] + offsets, assignments, np.add.reduce( offsets * offsets, 1)) class KMeansTestBase(test.TestCase): def input_fn(self, batch_size=None, points=None, randomize=None, num_epochs=None): """Returns an input_fn that randomly selects batches from given points.""" batch_size = batch_size or self.batch_size points = points if points is not None else self.points num_points = points.shape[0] if randomize is None: randomize = (self.use_mini_batch and self.mini_batch_steps_per_iteration <= 1) def _fn(): x = constant_op.constant(points) if batch_size == num_points: return input_lib.limit_epochs(x, num_epochs=num_epochs), None if randomize: indices = random_ops.random_uniform( constant_op.constant([batch_size]), minval=0, maxval=num_points - 1, dtype=dtypes.int32, seed=10) else: # We need to cycle through the indices sequentially. We create a queue # to maintain the list of indices. q = data_flow_ops.FIFOQueue(num_points, dtypes.int32, ()) # Conditionally initialize the Queue. def _init_q(): with ops.control_dependencies( [q.enqueue_many(math_ops.range(num_points))]): return control_flow_ops.no_op() init_q = control_flow_ops.cond(q.size() <= 0, _init_q, control_flow_ops.no_op) with ops.control_dependencies([init_q]): offsets = q.dequeue_many(batch_size) with ops.control_dependencies([q.enqueue_many(offsets)]): indices = array_ops.identity(offsets) batch = array_ops.gather(x, indices) return (input_lib.limit_epochs(batch, num_epochs=num_epochs), None) return _fn @staticmethod def config(tf_random_seed): return run_config.RunConfig(tf_random_seed=tf_random_seed) @property def initial_clusters(self): return kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT @property def batch_size(self): return self.num_points @property def use_mini_batch(self): return False @property def mini_batch_steps_per_iteration(self): return 1 class KMeansTest(KMeansTestBase): def setUp(self): np.random.seed(3) self.num_centers = 5 self.num_dims = 2 self.num_points = 1000 self.true_centers = make_random_centers(self.num_centers, self.num_dims) self.points, _, self.scores = make_random_points(self.true_centers, self.num_points) self.true_score = np.add.reduce(self.scores) def _kmeans(self, relative_tolerance=None): return kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, random_seed=24, relative_tolerance=relative_tolerance) def test_clusters(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) clusters = kmeans.clusters() self.assertAllEqual(list(clusters.shape), [self.num_centers, self.num_dims]) def test_fit(self): kmeans = self._kmeans() kmeans.fit(input_fn=self.input_fn(), steps=1) score1 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) steps = 10 * self.num_points // self.batch_size kmeans.fit(input_fn=self.input_fn(), steps=steps) score2 = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertTrue(score1 > score2) self.assertNear(self.true_score, score2, self.true_score * 0.05) def test_monitor(self): if self.use_mini_batch: # We don't test for use_mini_batch case since the loss value can be noisy. return kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=learn.RunConfig(tf_random_seed=14), random_seed=12, relative_tolerance=1e-4) kmeans.fit( input_fn=self.input_fn(), # Force it to train until the relative tolerance monitor stops it. steps=None) score = kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertNear(self.true_score, score, self.true_score * 0.01) def _infer_helper(self, kmeans, clusters, num_points): points, true_assignments, true_offsets = make_random_points( clusters, num_points) # Test predict assignments = list( kmeans.predict_cluster_idx(input_fn=self.input_fn( batch_size=num_points, points=points, num_epochs=1))) self.assertAllEqual(assignments, true_assignments) # Test score score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertNear(score, np.sum(true_offsets), 0.01 * score) # Test transform transform = kmeans.transform( input_fn=lambda: (constant_op.constant(points), None)) true_transform = np.maximum( 0, np.sum(np.square(points), axis=1, keepdims=True) - 2 * np.dot(points, np.transpose(clusters)) + np.transpose(np.sum(np.square(clusters), axis=1, keepdims=True))) self.assertAllClose(transform, true_transform, rtol=0.05, atol=10) def test_infer(self): kmeans = self._kmeans() # Make a call to fit to initialize the cluster centers. max_steps = 1 kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) clusters = kmeans.clusters() # Run inference on small datasets. self._infer_helper(kmeans, clusters, num_points=10) self._infer_helper(kmeans, clusters, num_points=1) class KMeansTestMultiStageInit(KMeansTestBase): def test_random(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_just_right(self): points = np.array([[1, 2]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) kmeans.fit( input_fn=self.input_fn(batch_size=1, points=points, randomize=False), steps=1) clusters = kmeans.clusters() self.assertAllEqual(points, clusters) def test_kmeans_plus_plus_batch_too_small(self): points = np.array( [[1, 2], [3, 4], [5, 6], [7, 8], [9, 0]], dtype=np.float32) kmeans = kmeans_lib.KMeansClustering( num_clusters=points.shape[0], initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, distance_metric=kmeans_lib.KMeansClustering.SQUARED_EUCLIDEAN_DISTANCE, use_mini_batch=True, mini_batch_steps_per_iteration=100, random_seed=24, relative_tolerance=None) with self.assertRaisesOpError(AssertionError): kmeans.fit( input_fn=self.input_fn(batch_size=4, points=points, randomize=False), steps=1) class MiniBatchKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansTest(KMeansTest): @property def batch_size(self): return 50 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansCosineDistanceTest(KMeansTestBase): def setUp(self): self.points = np.array( [[2.5, 0.1], [2, 0.2], [3, 0.1], [4, 0.2], [0.1, 2.5], [0.2, 2], [0.1, 3], [0.2, 4]], dtype=np.float32) self.num_points = self.points.shape[0] self.true_centers = np.array( [ normalize( np.mean(normalize(self.points)[0:4, :], axis=0, keepdims=True))[ 0], normalize( np.mean(normalize(self.points)[4:, :], axis=0, keepdims=True))[ 0] ], dtype=np.float32) self.true_assignments = np.array([0] * 4 + [1] * 4) self.true_score = len(self.points) - np.tensordot( normalize(self.points), self.true_centers[self.true_assignments]) self.num_centers = 2 self.kmeans = kmeans_lib.KMeansClustering( self.num_centers, initial_clusters=kmeans_lib.KMeansClustering.RANDOM_INIT, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) def test_fit(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) def test_transform(self): self.kmeans.fit(input_fn=self.input_fn(), steps=10) centers = normalize(self.kmeans.clusters()) true_transform = 1 - cosine_similarity(self.points, centers) transform = self.kmeans.transform(input_fn=self.input_fn( batch_size=self.num_points)) self.assertAllClose(transform, true_transform, atol=1e-3) def test_predict(self): max_steps = 10 * self.num_points // self.batch_size self.kmeans.fit(input_fn=self.input_fn(), max_steps=max_steps) centers = normalize(self.kmeans.clusters()) assignments = list( self.kmeans.predict_cluster_idx(input_fn=self.input_fn( num_epochs=1, batch_size=self.num_points))) self.assertAllClose( centers[assignments], self.true_centers[self.true_assignments], atol=1e-2) centers = centers[centers[:, 0].argsort()] true_centers = self.true_centers[self.true_centers[:, 0].argsort()] self.assertAllClose(centers, true_centers, atol=0.04) score = self.kmeans.score( input_fn=self.input_fn(batch_size=self.num_points), steps=1) self.assertAllClose(score, self.true_score, atol=1e-2) def test_predict_kmeans_plus_plus(self): # Most points are concetrated near one center. KMeans++ is likely to find # the less populated centers. points = np.array( [[2.5, 3.5], [2.5, 3.5], [-2, 3], [-2, 3], [-3, -3], [-3.1, -3.2], [-2.8, -3.], [-2.9, -3.1], [-3., -3.1], [-3., -3.1], [-3.2, -3.], [-3., -3.]], dtype=np.float32) true_centers = np.array( [ normalize( np.mean(normalize(points)[0:2, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[2:4, :], axis=0, keepdims=True))[0], normalize( np.mean(normalize(points)[4:, :], axis=0, keepdims=True))[0] ], dtype=np.float32) true_assignments = [0] * 2 + [1] * 2 + [2] * 8 true_score = len(points) - np.tensordot( normalize(points), true_centers[true_assignments]) kmeans = kmeans_lib.KMeansClustering( 3, initial_clusters=self.initial_clusters, distance_metric=kmeans_lib.KMeansClustering.COSINE_DISTANCE, use_mini_batch=self.use_mini_batch, mini_batch_steps_per_iteration=self.mini_batch_steps_per_iteration, config=self.config(3)) kmeans.fit(input_fn=lambda: (constant_op.constant(points), None), steps=30) centers = normalize(kmeans.clusters()) self.assertAllClose( sorted(centers.tolist()), sorted(true_centers.tolist()), atol=1e-2) def _input_fn(): return (input_lib.limit_epochs( constant_op.constant(points), num_epochs=1), None) assignments = list(kmeans.predict_cluster_idx(input_fn=_input_fn)) self.assertAllClose( centers[assignments], true_centers[true_assignments], atol=1e-2) score = kmeans.score( input_fn=lambda: (constant_op.constant(points), None), steps=1) self.assertAllClose(score, true_score, atol=1e-2) class MiniBatchKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True class FullBatchAsyncKMeansCosineTest(KMeansCosineDistanceTest): @property def batch_size(self): return 2 @property def use_mini_batch(self): return True @property def mini_batch_steps_per_iteration(self): return self.num_points // self.batch_size class KMeansBenchmark(benchmark.Benchmark): """Base class for benchmarks.""" def SetUp(self, dimension=50, num_clusters=50, points_per_cluster=10000, center_norm=500, cluster_width=20): np.random.seed(123456) self.num_clusters = num_clusters self.num_points = num_clusters * points_per_cluster self.centers = make_random_centers( self.num_clusters, dimension, center_norm=center_norm) self.points, _, scores = make_random_points( self.centers, self.num_points, max_offset=cluster_width) self.score = float(np.sum(scores)) def _report(self, num_iters, start, end, scores): print(scores) self.report_benchmark( iters=num_iters, wall_time=(end - start) / num_iters, extras={'true_sum_squared_distances': self.score, 'fit_scores': scores}) def _fit(self, num_iters=10): pass def benchmark_01_2dim_5center_500point(self): self.SetUp(dimension=2, num_clusters=5, points_per_cluster=100) self._fit() def benchmark_02_20dim_20center_10kpoint(self): self.SetUp(dimension=20, num_clusters=20, points_per_cluster=500) self._fit() def benchmark_03_100dim_50center_50kpoint(self): self.SetUp(dimension=100, num_clusters=50, points_per_cluster=1000) self._fit() def benchmark_03_100dim_50center_50kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=50, points_per_cluster=1000, cluster_width=250) self._fit() def benchmark_04_100dim_500center_500kpoint(self): self.SetUp(dimension=100, num_clusters=500, points_per_cluster=1000) self._fit(num_iters=4) def benchmark_05_100dim_500center_500kpoint_unseparated(self): self.SetUp( dimension=100, num_clusters=500, points_per_cluster=1000, cluster_width=250) self._fit(num_iters=4) class TensorflowKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting tensorflow KMeans: %d' % i) tf_kmeans = kmeans_lib.KMeansClustering( self.num_clusters, initial_clusters=kmeans_lib.KMeansClustering.KMEANS_PLUS_PLUS_INIT, kmeans_plus_plus_num_retries=int(math.log(self.num_clusters) + 2), random_seed=i * 42, relative_tolerance=1e-6, config=run_config.RunConfig(tf_random_seed=3)) tf_kmeans.fit( input_fn=lambda: (constant_op.constant(self.points), None), steps=50) _ = tf_kmeans.clusters() scores.append( tf_kmeans.score( input_fn=lambda: (constant_op.constant(self.points), None), steps=1)) self._report(num_iters, start, time.time(), scores) class SklearnKMeansBenchmark(KMeansBenchmark): def _fit(self, num_iters=10): scores = [] start = time.time() for i in range(num_iters): print('Starting sklearn KMeans: %d' % i) sklearn_kmeans = SklearnKMeans( n_clusters=self.num_clusters, init='k-means++', max_iter=50, n_init=1, tol=1e-4, random_state=i * 42) sklearn_kmeans.fit(self.points) scores.append(sklearn_kmeans.inertia_) self._report(num_iters, start, time.time(), scores) class KMeansTestQueues(test.TestCase): def input_fn(self): def _fn(): queue = data_flow_ops.FIFOQueue( capacity=10, dtypes=dtypes.float32, shapes=[10, 3]) enqueue_op = queue.enqueue(array_ops.zeros([10, 3], dtype=dtypes.float32)) queue_runner.add_queue_runner( queue_runner.QueueRunner(queue, [enqueue_op])) return queue.dequeue(), None return _fn # This test makes sure that there are no deadlocks when using a QueueRunner. # Note that since cluster initialization is dependendent on inputs, if input # is generated using a QueueRunner, one has to make sure that these runners # are started before the initialization. def test_queues(self): kmeans = kmeans_lib.KMeansClustering(5) kmeans.fit(input_fn=self.input_fn(), steps=1) if __name__ == '__main__': test.main()
apache-2.0
biomadeira/pycma
src/__init__.py
1
2165
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright (c) 2012 F. Madeira and L. Krippahl, 2012 # This code is part of PyCMA distribution. # GNU General Public License - See LICENSE for more details. #----------------------------------------------------------------------- """ PyCMA - A Python Module for Correlated Mutation Analysis. """ """ This file is part of PyCMA. pycma is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. pycma is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this file. If not, see <http://www.gnu.org/licenses/>. """ #----------------------------------------------------------------------- __author__ = "F. Madeira ([email protected])" __all__ = ["pycma", "utils", "version", "test_installation"] # ensure the user is running the version of python we require import sys if not hasattr(sys, "version_info") or sys.version_info < (2,7): raise RuntimeError("pycoevol requires Python 2.7 or later.") del sys # ensure the user has Biopython installed try: import Bio del Bio except ImportError: raise RuntimeError("pycoevol requires Biopython 1.5.7 or later.") # ensure the user has Biopython installed try: import numpy del numpy except ImportError: raise RuntimeError("pycoevol requires Numpy 1.5.1 or later.") # ensure the user has MatplotLib installed try: import matplotlib del matplotlib except ImportError: raise RuntimeError("pycoevol requires MatplotLib 1.0.1 or later.") # imports from pycma import *
gpl-3.0
dhruv13J/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
blorgon9000/pyopus
pyopus/evaluator/measure.py
1
36720
# Measurements module """ .. inheritance-diagram:: pyopus.evaluator.measure :parts: 1 **Performance measure extraction module** All functions in this module do one of the following things: * return an object of a Python numeric type (int, float, or complex) * return an n-dimensional array (where n can be 0) of int, float or complex type * return None to indicate a failure * raise an exception to indicate a more severe failure All signals x(t) are defined in tabular form which means that a signal is fully defined with two 1-dimensional arrays of values of the same size. One array is the **scale** which represents the values of the scale (t) while the other column represents the values of the **signal** (x) corresponding to the scale points. """ from numpy import array, floor, ceil, where, hstack, unique, abs, arctan, pi, NaN, log10 from scipy import angle, unwrap # import matplotlib.pyplot as plt __all__ = [ 'Deg2Rad', 'Rad2Deg', 'dB2gain', 'gain2dB', 'XatI', 'IatXval', 'filterI', 'XatIrange', 'dYdI', 'dYdX', 'integYdX', 'DCgain', 'DCswingAtGain', 'ACcircle', 'ACtf', 'ACmag', 'ACphase', 'ACgain' ,'ACbandwidth', 'ACphaseMargin', 'ACgainMargin', 'Tdelay', 'Tshoot', 'Tovershoot', 'Tundershoot', 'TedgeTime', 'TriseTime', 'TfallTime', 'TslewRate', 'TsettlingTime', 'Poverdrive' ] #------------------------------------------------------------------------------ # Conversions def Deg2Rad(degrees): """ Converts degrees to radians. """ return degrees/180.0*pi def Rad2Deg(radians): """ Converts radians to degrees. """ return radians*180.0/pi def dB2gain(db, unit='db20'): """ Converts gain magnitude in decibels to gain as a factor. *unit* is the type of decibels to convert from: * ``db`` and ``db20`` are equivalent and should be used when the conversion of voltage/current gain decibels is required (20dB = gain factor of 10.0). * ``db10`` should be used for power gain decibels conversion (10dB = gain factor of 10.0) """ if unit=='db': return 10.0**(db/20.0) elif unit=='db20': return 10.0**(db/20.0) elif unit=='db10': return 10.0**(db/10.0) else: raise Exception, "Bad magnitude unit." def gain2dB(x, unit='db20'): """ Converts gain as a factor to magnitude in decibels. *unit* is the type of decibels to convert to: * ``db`` and ``db20`` are equivalent and should be used when the conversion to voltage/current gain decibels is required (gain factor of 10.0 = 20dB). * ``db10`` should be used for conversion to power gain decibels conversion (gain factor of 10.0 = 10dB) """ if unit=='db': return 20.0*log10(x) elif unit=='db20': return 20.0*log10(x) elif unit=='db10': return 10.0*log10(x) else: raise Exception, "Bad magnitude unit." #------------------------------------------------------------------------------ # Fractional indexing and cursors def XatI(x, i): """ Returns the value in 1-dimensional array *x* corresponding to fractional index *i*. This operation is equivalent to a table lookup with linear interpolation where the first column of the table represents the index (*i) and the second column holds the components of *x*. If *i* is a 1-dimensional array the return value is an array of the same shape holding the results of table lookups corresponding to fractional indices in array *i*. *i* must satisfy 0 <= *i* <= x.size-1. """ xLen=x.size xa=array(x) ia=array(i) if ia.size==0: return array([]) if array(i<0).any() or array(i>xLen-1).any(): raise Exception, "Index out of range." # Interpolate i1=floor(ia).astype(int) i2=ceil(ia).astype(int) frac=ia-i1 xa1=xa[i1] xa2=xa[i2] return xa1+(xa2-xa1)*frac def IatXval(x, val, slope='any'): """ Returns a 1-dimensional array of fractional indices corresponding places in vector *x* where the linearly interpolated value is equal to *val*. These are the crossings of function f(i)=x(i) with g(i)=val. *slope* specifies what kind of crossings are returned: * ``any`` - return all crossings * ``rising`` - return only crossings where the slope of f(i) is positive or zero * ``falling`` - return only crossings where the slope of f(i) is negative or zero This function corresponds to a reverse table lookup with linear interpolation where the first folumn of the table contains the index and the second column contains the corresponding values of *x*. The reverse lookup finds the fractional indices coresponding to *val* in the second column of the table. There can be no crossings (empty return array) or more than one crossing (return array size>1). The fractional indices are returned in an increasing sequence. """ xa=array(x) val=array(val) if val.size!=1: raise Exception, "Value must be a scalar." if (val<xa.min()) or (val>xa.max()): return array([], float) # Detect level corssing belowOrEqual=(xa<=val) aboveOrEqual=(xa>=val) # Detect edges risingEdge=belowOrEqual[:-1] & aboveOrEqual[1:] fallingEdge=aboveOrEqual[:-1] & belowOrEqual[1:] anyEdge=risingEdge | fallingEdge if slope=='rising': edge=risingEdge elif slope=='falling': edge=fallingEdge elif slope=='any': edge=anyEdge else: raise Exception, "Bad edge type." # Get candidate intervals candidates=where(edge)[0] # Prepare interval edges and deltas i1=candidates i2=candidates+array(1) x1=xa[i1] x2=xa[i2] dx=x2-x1 # Zero delta interval indices zeroDeltaI=where(dx==0)[0] nonzeroDeltaI=where(dx!=0)[0] # Handle zero delta intervals ii=hstack((i1[zeroDeltaI], i2[zeroDeltaI])) # Handle nonzero delta intervals ii=hstack((ii, 1.0/dx[nonzeroDeltaI]*(val-x1[nonzeroDeltaI])+i1[nonzeroDeltaI])) return unique(ii) def filterI(i, direction='right', start=None, includeStart=False): """ Returns a 1-dimensional array of fractional indices obtained by processing fractional indices given in *i*. If *direction* is ``right`` *i* is traversed from lower to higher indices. Only the indices from *i* that are greater than *start* are included in the return value. If *direction* is ``left`` *i* is traversed from higher to lower indices. Only the indices from *i* that are less than *start* are included in the return value. The filtered indices are returned in the same order as they appear in *i*. If *includeStart* is ``True`` the *greater than* and *less than* comparison operators are replaced by *greater than or equal to* and *less than or equal to*. This includes indices which are equal to *start* in the return value. If *start* is not given, it defaults to ``i[0]`` if *direction* is ``right`` and ``i[-1]`` if *direction* is ``left``. """ if start is None: if direction=='right': if i.size>0: start=i[0] else: start=0 elif direction=='left': if i.size>0: start=i[-1] else: start=0 else: raise Exception, "Bad direction." if direction=='right': if includeStart: selector=i>=start else: selector=i>start elif direction=='left': if includeStart: selector=i<=start else: selector=i<start else: raise Exception, "Bad direction." return i[where(selector)[0]] def XatIrange(x, i1, i2=None): """ Returns a subvector (1-dimensional array) of a vector given by 1-dimensional array *x*. The endpoints of the subvector correspond to fractional indices *i1* and *i2*. If *i2* is not given the return value is the same as the return value of ``XatI(x, i1)``. *i1* and *i2* must satisfy * 0 <= *i1* <= x.size-1 * 0 <= *i2* <= x.size-1 * *i1* <= *i2* If the endpoints do not correspond to integer indices the subvector endpoints are obtained with linear interpolation (see :func:`XatI` function). """ xLen=x.size if (i1<0) or (i1>xLen-1): raise Exception, "Bad fractional index (i1)." if i2 is None: return XatI(x, i1) if (i2<i1) or (i2<0) or (i2>xLen-1): raise Exception, "Bad fractional index range." if i1==i2: return XatI(x, i1) # Get integer subrange ilo=ceil(i1).astype(int) ihi=floor(i2).astype(int) # Get core vector for the integer subrange if ilo<=ihi: coreVector=x[ilo:(ihi+1)] else: coreVector=[] # Construct result if i1!=ilo: retval=XatI(x, i1) else: retval=[] retval=hstack((retval, coreVector)) if i2!=ihi: retval=hstack((retval, XatI(x, i2))) # Done return retval #------------------------------------------------------------------------------ # Calculus # Derivative wrt integer index def dYdI(y): """ Returns the derivative of 1-dimensional vector *y* with respect to its index. Uses 2nd order polynomial interpolation before the actual derivative is calculated. """ # Interpolating polynomial of 2nd order # indices used for # 0, 1, 2 0 and 1 # 1, 2, 3 2 # 2, 3, 4 3 # ... ... # n-4, n-3, n-2 n-3 # n-3, n-2, n-1 n-2 and n-1 # y=a x^2 + b x + c # dy/dx = 2 a x + b # There are n-2 interpolating polynomials, get their coefficients yminus=array(y[:-2]) y0=array(y[1:-1]) yplus=array(y[2:]) c=y0 b=(yplus-yminus)/2.0 a=(yplus+yminus-2.0*y0)/2.0 # Now differentiate polynomial c=b b=2.0*a a=0 # Generate edge points # For i=0 (effective index x=-1) dylo=-b[0]+c[0] # For i=n-1 (effective index x=1) dyhi=b[-1]+c[-1] # For everything else (effective index x=0) coreVector=c # Done return hstack((dylo, coreVector, dyhi)) def dYdX(y, x): """ Derivative of a 1-dimensional vector *y* with respect to the 1-dimensional vector *x*. The arrays representing *y* and *x* must be of the same size. """ return dYdI(y)/dYdI(x) # Integrate vector wrt scale # Returns an array of values. Each value is an integral from the beginning to belonging x component. def integYdX(y, x): """ Integral of a 1-dimensional vector *x* with respect to its scale given by a 1-dimensional vector *x*. The arrays representing *y* and *x* must be of the same size. Uses 2nd order polynomial interpolation before the actual integral is calculated. The lower limit for integration is ``x[0]`` while the pints in *x* define the upper limits. This means that the first point of the result (the one corresponding to ``x[0]``) is 0. """ # Interpolating polynomial of 2nd order # indices used for # 0, 1, 2 0 and 1 # 1, 2, 3 2 # 2, 3, 4 3 # ... ... # n-4, n-3, n-2 n-3 # n-3, n-2, n-1 n-2 and n-1 # y=a x^2 + b x + c # dy/dx = 2 a x + b # There are n-2 interpolating polynomials, get their coefficients hminus=array(x[:-2]-x[1:-1]) hplus=array(x[2:]-x[1:-1]) yminus=array(y[:-2]) y0=array(y[1:-1]) yplus=array(y[2:]) c=y0 a=(yminus*hplus-yplus*hminus-c*(hplus-hminus))/(hplus*hminus*(hminus-hplus)) b=(yminus-c-a*hminus*hminus)/hminus # Integrate polynomial (resulting in a x^3 + b x^2 + c x + C) # Constant C is ignored. a=a/3.0 b=b/2.0 # Calculate integral for last interval based on last interpolation # (corresponding to 0..hplus) ydxLast=a[-1]*(hplus[-1]**3)+b[-1]*(hplus[-1]**2)+c[-1]*hplus[-1] # Calculate integral for first interval based on first interpolation # (corresponding to hminus..0) ydxFirst=-(a[0]*(hminus[0]**3)+b[0]*(hminus[0]**2)+c[0]*hminus[0]) # Calculate core integral - leading part # values of integral for i..i+1 (corresponding to hminus..0) coreVectorLeading=-(a*(hminus**3)+b*(hminus**2)+c*hminus) # Calculate core integral - trailing part # values of integral for i..i+1 (corresponding to 0..hplus) coreVectorTrailing=a*(hplus**3)+b*(hplus**2)+c*hplus # With zero, leading core vector, and ydxLast do a cumulative sum integLeading=hstack((array(0.0), coreVectorLeading, ydxLast)).cumsum() # With zero, ydxFirst, and trailing core vector do a cumulative sum integTrailing=hstack((array(0.0), ydxFirst, coreVectorTrailing)).cumsum() # Done return (integLeading+integTrailing)/2.0 #------------------------------------------------------------------------------ # DC measurements def DCgain(output, input): """ Returns the maximal gain (slope) of a nonlinear transfer function *output(input*). *output* and *input* are 1-dimensional arrays of the same size. """ # Get gain A=dYdX(output, input) # Return maximum return A.max() def DCswingAtGain(output, input, relLevel, type='out'): """ Returns the *input* or *output* interval corresponding to the range where the gain (slope) of *output(input)* is above *relLevel* times maximal slope. Only *rellevel* < 1 makes sense in this measurement. *type* specifies what to return * ``out`` - return the *output* values interval * ``in`` - return the *input* values interval *relLevel* must satisfy 0 <= *relLevel* <= 1. """ # Check if (relLevel<=0) or (relLevel>=1): raise Exception, "Bad relative level." # Get gain (absolute) A=abs(dYdX(output, input)) # Get maximum and level Amax=A.max() Alev=Amax*relLevel # Find maximum maxI=IatXval(A, Amax) # Find crossings crossI=IatXval(A, Alev) if crossI.size<=0: raise Exception, "No crossings with specified level found." # Extract crossings to left and to right Ileft=filterI(crossI, 'left', maxI.min()) Iright=filterI(crossI, 'right', maxI.max()) if Ileft.size<=0: raise Exception, "No crossing to the left from the maximum found." if Iright.size<=0: raise Exception, "No crossing to the right from the maximum found." # max(), min() will raise an exception if no crossing is found i1=Ileft.max() i2=Iright.min() # Get corresponding range if type=='out': vec=output elif type=='in': vec=input else: raise Exception, "Bad output type." return abs(XatI(vec, i2)-XatI(vec, i1)) #------------------------------------------------------------------------------ # AC measurements def ACcircle(unit='deg'): """ Returns the full circle in units specified by *unit* * ``deg`` - return 360 * ``rad`` - return 2*``pi`` """ if unit=='deg': return 360 elif unit=='rad': return 2*pi else: raise Exception, "Bad angle unit." def ACtf(output, input): """ Return the transfer function *output/input* where *output* and *input* are complex vectors of the same size representing the systems response at various frequencies. """ return array(output)/array(input) def ACmag(tf, unit='db'): """ Return the magnitude in desired *unit* of a small signal tranfer function *tf*. * ``db`` and ``db20`` stand for voltage/current gain decibels where 20dB = gain factor of 10.0 * ``db10`` stands for voltage/current gain decibels where 10dB = gain factor of 10.0 * ``abs`` stands for gain factor """ mag=abs(array(tf)) if (unit=='db') or (unit=='db20'): return 20*log10(mag) elif unit=='db10': return 10*log10(mag) elif unit=='abs': return mag else: raise Exception, "Bad magnitude unit." def ACphase(tf, unit='deg', unwrapTol=0.5): """ Return the phase in desired *unit* of a transfer function *tf* * ``deg`` stands for degrees * ``rad`` stands for radians The phase is unwrapped (discontinuities are stiched together to make it continuous). The tolerance of the unwrapping (in radians) is *unwrapTol* times ``pi``. """ # Get argument ph=angle(tf) # Unwrap if requested if (unwrapTol>0) and (unwrapTol<1): ph=unwrap(ph, unwrapTol*pi) # Convert to requested unit if unit=='deg': return ph/pi*180.0 elif unit=='rad': return ph else: raise Exception, "Bad phase unit." def ACgain(tf, unit='db'): """ Returns the maximal gain magnitude of a transfer function in units given by *unit* * ``db`` and ``db20`` stand for voltage/current gain decibels where 20dB = gain factor of 10.0 * ``db10`` stands for power gain decibels where 10dB = gain factor of 10.0 * ``abs`` stands for gain factor """ mag=ACmag(tf, unit) return mag.max() def ACbandwidth(tf, scl, filter='lp', levelType='db', level=-3.0): """ Return the bandwidth of a transfer function *tf* on frequency scale *scl*. *tf* and *scl* must be 1-dimensional arrays of the same size. The type of the transfer function is given by *filter* where * ``lp`` stands for low-pass (return frequency at *level*) * ``hp`` stands for high-pass (return frequency at *level*) * ``bp`` stands for band-pass (return bandwidth at *level*) *levelType* gives the units for the *level* argument. Allowed values for *levelType* are * ``db`` and ``db20`` stand for voltage/current gain decibels where 20dB = gain factor of 10.0 * ``db10`` stands for power gain decibels where 10dB = gain factor of 10.0 * ``abs`` stands for gain factor *level* specifies the level at which the bandwidth should be measured. For ``db``, ``db10``, and ``db20`` *levelType* the level is relative to the maximal gain and is added to the maximal gain. For ``abs`` *levelType* the level is a factor with which the maximal gain factor must be multiplied to obtain the gain factor level at which the bandwidth should be measured. """ # Magnitude mag=ACmag(tf, levelType) # Reference level ref=mag.max() # Crossing level if levelType=='abs': cross=ref*level else: cross=ref+level # Find crossings crossI=IatXval(mag, cross) # Find reference position crossMaxI=IatXval(mag, ref).min() if crossI.size<=0: raise Exception, "No crossings with specified level found." # Make scale real scl=abs(scl) # Handle filter type if filter=='lp': # Get first crossing to the right of the reference position # min() will raise an exception if no crossing is found bwI=filterI(crossI, 'right', crossMaxI) if bwI.size<=0: raise Exception, "No crossing to the right from the maximum found." bwI=bwI.min() bw=XatI(scl, bwI) elif filter=='hp': # Get first crossing to the left of the reference position # max() will raise an exception if no crossing is found bwI=filterI(crossI, 'left', crossMaxI).max() if bwI.size<=0: raise Exception, "No crossing to the left from the maximum found." bwI=bwI.max() bw=XatI(scl, bwI) elif filter=='bp': # Get first crossing to the left and the right of the reference position # max(), min() will raise an exception if no crossing is found bwI1=filterI(crossI, 'left', crossMaxI).max() bwI2=filterI(crossI, 'right', crossMaxI).min() if bwI1.size<=0: raise Exception, "No crossing to the left from the maximum found." if bwI2.size<=0: raise Exception, "No crossing to the right from the maximum found." bwI1=bwI1.max() bwI2=bwI2.man() bw=XatI(scl, bwI2)-XatI(scl, bwI1) else: raise Exception, "Bad filter type." return bw def ACugbw(tf, scl): """ Returns the uniti-gain bandwidth of a transfer function *tf* on frequency scale *scl*. 1-dimensional arrays *tf* and *scl* must be of the same size. The return value is the frequency at which the transfer function reaches 1.0 (0dB). """ # Magnitude mag=ACmag(tf, 'db') # Make scale real scl=abs(scl) # Find 0dB magnitude # min() will raise an exception if no crossing is found crossI=IatXval(mag, 0.0) if crossI.size<=0: raise Exception, "No crossing with 0dB level found." crossI=crossI.min() # Calculate ugbw ugbw=XatI(scl, crossI) return ugbw def ACphaseMargin(tf, unit='deg', unwrapTol=0.5): """ Returns the phase margin of a transfer function given by 1-dimensional array *tf*. Uses *unwrapTol* as the unwrap tolerance for phase (see :func:`ACphase`). The phase margin is returned in units given by *unit* where * ``deg`` stands for degrees * ``rad`` stands for radians The phase margin (in degrees) is the amount the phase at the point where the transfer function magnitude reaches 0dB should be decreased to become equal to -180. For stable systems the phase margin is >0. """ # Magnitude mag=ACmag(tf, 'db') # Phase ph=ACphase(tf, unit, unwrapTol) # Find 0dB magnitude crossI=IatXval(mag, 0.0) if crossI.size<=0: raise Exception, "No crossing with 0dB level found." crossI=crossI.min() # Calculate phase at 0dB ph0=XatI(ph, crossI) # Return phase margin pm=ph0+ACcircle(unit)/2 return pm # Gain margin of a tf def ACgainMargin(tf, unit='db', unwrapTol=0.5): """ Returns the gain margin of a transfer function given by 1-dimensional array *tf*. Uses *unwrapTol* as the unwrap tolerance for phase (see :func:`ACphase`). The gain margin is returned in units given by *unit* where * ``db`` and ``db20`` stand for voltage/current gain decibels where 20dB = gain factor of 10.0 * ``db10`` stands for power gain decibels where 10dB = gain factor of 10.0 * ``abs`` stands for gain factor The phase margin (in voltage/current gain decibels) is the amount the gain at the point where phase reaches -180 degrees should be increased to become equal to 0. For stable systems the gain margin is >0. """ # Magnitude mag=ACmag(tf, 'abs') # Phase ph=ACphase(tf, 'deg', unwrapTol) # Find -180deg in phase crossI=IatXval(ph, -180.0) if crossI.size<=0: raise Exception, "No crossing with -180 degrees level found." crossI=crossI.min() # Get gain at -180 degrees mag180=XatI(mag, crossI) # Gain margin in absolute units gm=1.0/mag180 # Return selected units return ACmag(gm, unit) #------------------------------------------------------------------------------ # Transient measurements def _refLevel(sig, scl, t1=None, t2=None): """ In signal *sig* with scale *scl* looks up the points where scale is equal to *t1* and *t2*. The default values of *t1* and *t2* are the first and the last value in *scl. Returns a tuple (i1, s1, i2, s2) where i1 and i2 represent the fractional indices of the two points in signal (or scale) while s1 and s2 represent the values of the signal at those two points. """ # Get interesting part in terms of indices if t1 is None: i1=0 else: i1=IatXval(scl, t1, 'rising') if i1.size<=0: raise Exception, "Start point not found." i1=i1[0] if t2 is None: i2=scl.size-1 else: i2=IatXval(scl, t2, 'rising') if i2.size<=0: raise Exception, "End point not found." i2=i2[0] if i1>=i2: raise Exception, "Start point after end point." # Get reference levels s1=XatI(sig, i1) s2=XatI(sig, i2) return (i1, s1, i2, s2) def Tdelay(sig1, sig2, scl, lev1type='rel', lev1=0.5, edge1='any', skip1=0, lev2type='rel', lev2=0.5, edge2='any', skip2=0, t1=None, t2=None): """ Calculates the delay of signal *sig2* with respect to signal *sig1*. Both signals share a common scale *scl*. The delay is the difference in scale between the point where *sig2* reaches level *lev2*. *edge2* defines the type of crossing between *sig2* and *lev2* * ``rising`` - the slope of *sig2* is positive or zero at the crossing * ``falling`` - the slope of *sig2* is negative or zero at the crossing * ``any`` - the slope of *sig2* does not matter *skip2* specifies how many crossings since the beginning of *sig2* are skipped before the crossing that is used as the point in *sig2* is reached. 0 means that the first crossing is used as the point in *sig2*. Similarly the point in *sig1* is defined with *lev1*, *edge1*, and *skip1*. *t1* and *t2* are the points on the scale defining the beginning and the end of the part of *sig1* and *sig2* which is used in the calculation of the delay. *skip1* and *skip2* are counted from point *t1* on the scale. The default values of *t1* and *t2* are the first and the last value in *scl*. If *lev1type* is ``abs`` *lev1* specifies the value of the signal at the crossing. If *lev1type* is ``rel`` *lev1* specifies the relative value of the signal (between 0.0 and 1.0) where the 0.0 level is defined as the *sig1* level at point *t1* on the scale while the 1.0 level is defined as the *sig1* level at point *t2* on the scale. If *t1* and *t2* are not given the 0.0 and 1.0 relative levels are taken at the beginning and the end of *sig2*. Similarly *lev2type* defines the meaning of *lev2* with respect to *sig2*, *t1*, and *t2*. """ # Get reference levels of sig1 (i1, s11, i2, s12)=_refLevel(sig1, scl, t1, t2) # Get reference levels of sig2 s21=XatI(sig2, i1) s22=XatI(sig2, i2) # Extract interesting part partsig1=XatIrange(sig1, i1, i2) partsig2=XatIrange(sig2, i1, i2) partscl=XatIrange(scl, i1, i2) # Get level crossing for signal 1 if lev1type=='abs': crossI1=IatXval(partsig1, lev1, edge1) elif lev1type=='rel': crossI1=IatXval(partsig1, s11+(s12-s11)*lev1, edge1) else: raise Exception, "Bad level type for first signal." if skip1>=crossI1.size: raise Exception, "No such crossing for first signal." # Get level crossing for signal 2 if lev2type=='abs': crossI2=IatXval(partsig2, lev2, edge2) elif lev2type=='rel': crossI2=IatXval(partsig2, s21+(s22-s21)*lev2, edge2) else: raise Exception, "Bad level type for first signal." if skip2>=crossI2.size: raise Exception, "No such crossing for second signal." crossI1=crossI1[skip1] crossI2=crossI2[skip2] delay=XatI(partscl, crossI2)-XatI(partscl, crossI1) return delay def Tshoot(measureType, sig, scl, t1=None, t2=None, outputType='rel'): """ Gets the overshoot or the undershoot of signal *sig* with scale *scl*. The over/undershoot is measured on the scale interval between *t1* and *t2*. If *t1* and *t2* are not given the whole signal *sig1* is used in the measurement. The 0.0 and 1.0 relative levels in the signal are defined as the values of *sig* at points *t1* and *t2* on the scale. The default values of *t1* and *t2* are the first and the last value in *scl*. Overshoot is the amount the signal rises above the 1.0 relative level on the observed scale interval defined by *t1* and *t2*. Undershoot is the amount the signal falls below the 0.0 relative level on the observed scale interval. If *measureType* is set to ``over``, overshoot is measured and the function expects the signal level at *t1* to be lower than the signal level at *t2*. If *measureType* is ``under`` the opposite must hold. Over/undershoot can be measured as relative (when *outputType* is ``rel``) or absolute (when *outputType* is ``abs``). Abolute values reflect actual signal values while relative values are measured with respect to the 0.0 and 1.0 relative signal level. """ # Get reference levels (i1, s1, i2, s2)=_refLevel(sig, scl, t1, t2) # Extract interesting part partsig=XatIrange(sig, i1, i2) partscl=XatIrange(scl, i1, i2) if measureType=='over': # Overshoot if s1<=s2: delta=partsig.max()-s2 else: delta=0 elif measureType=='under': # Undershoot if s1>=s2: delta=s2-partsig.min() else: delta=0 else: raise Exception, "Bad measurement type." if outputType=='abs': return delta elif outputType=='rel': span=abs(s2-s1) if span==0.0: raise Exception, "Can't get relative value on flat signal." return delta/span else: raise Exception, "Bad output type." def Tovershoot(sig, scl, t1=None, t2=None, outputType='rel'): """ An alias for :func:`Tshoot` with *measureType* set to ``over``. """ return Tshoot('over', sig, scl, t1, t2, outputType); def Tundershoot(sig, scl, t1=None, t2=None, outputType='rel'): """ An alias for :func:`Tshoot` with *measureType* set to ``under``. """ return Tshoot('under', sig, scl, t1, t2, outputType); def TedgeTime(edgeType, sig, scl, lev1type='rel', lev1=0.1, lev2type='rel', lev2=0.9, t1=None, t2=None): """ Measures rise or fall time (scale interval) of signal *sig* on scale *scl*. The value of the *edgeType* parameter determines the type of the measurement * ``rising`` - measures rise time * ``falling`` - measures fall time *t1* and *t2* specify the scale interval on which the measurement takes place. Their default values correspond to the first and the last value in *scl. The values of the signal at *t1* and *t2* define the 0.0 and the 1.0 relative signal value. *lev1type* and *lev* specify the point at which the signal rise/fall begins. If *lev1type* is ``abs`` the level specified by *lev1* is the actual signal value. If *lev1type* is ``rel`` the value given by *lev1* is a relative signal value. Similarly *lev2type* and *lev2* apply to the point at which the signal rise/fall ends. *lev1type*, *lev1*, *lev2type*, and *lev2* are by default set to measure the 10%..90% rise/fall time. """ # Get reference levels (i1, s1, i2, s2)=_refLevel(sig, scl, t1, t2) # Extract interesting part partsig=XatIrange(sig, i1, i2) partscl=XatIrange(scl, i1, i2) # Get crossing levels if lev1type=='abs': sc1=lev1 elif lev1type=='rel': sc1=s1+(s2-s1)*lev1 else: raise Exception, "Bad level type for first point." if lev2type=='abs': sc2=lev2 elif lev1type=='rel': sc2=s1+(s2-s1)*lev2 else: raise Exception, "Bad level type for second point." # Get level crossings crossI1=IatXval(partsig, sc1, edgeType) if crossI1.size<=0: raise Exception, "First point not found." # Use first crossing crossI1=crossI1.min() crossI2=IatXval(partsig, sc2, edgeType) # Expect second point after first point crossI2=filterI(crossI2, 'right', crossI1, includeStart=True) if crossI2.size<=0: raise Exception, "Second point not found." # Use first crossing that remains unfiltered crossI2=crossI2.min() # Get crossing times delta=XatI(partscl, crossI2)-XatI(partscl, crossI1) return delta def TriseTime(sig, scl, lev1type='rel', lev1=0.1, lev2type='rel', lev2=0.9, t1=None, t2=None): """ An alias for :func:`TedgeTime` with *edgeType* set to ``rising``. """ return TedgeTime('rising', sig, scl, lev1type, lev1, lev2type, lev2, t1, t2) def TfallTime(sig, scl, lev1type='rel', lev1=0.1, lev2type='rel', lev2=0.9, t1=None, t2=None): """ An alias for :func:`TedgeTime` with *edgeType* set to ``falling``. """ return TedgeTime('falling', sig, scl, lev1type, lev1, lev2type, lev2, t1, t2) def TslewRate(edgeType, sig, scl, lev1type='rel', lev1=0.1, lev2type='rel', lev2=0.9, t1=None, t2=None): """ Measures the slew rate of a signal. The slew rate is defined as the quotient dx/dt where dx denotes the signal difference between the beginning and the end of signal's rise/fall, while dt denotes the rise/fall time. Slew rate is always positive. See :func:`TedgeTime` for the explanation of the function's parameters. """ # Get reference levels (i1, s1, i2, s2)=_refLevel(sig, scl, t1, t2) if lev1type=='abs': sl1=lev1 else: sl1=s1+(s2-s1)*lev1 if lev2type=='abs': sl2=lev2 else: sl2=s1+(s2-s1)*lev2 sigDelta=sl2-sl1 # Get edge time dt=TedgeTime(edgeType, sig, scl, lev1type, lev1, lev2type, lev2, t1, t2) if dt==0: raise Exception, "Can't evaluate slew rate if edge time is zero." # Get slew rate return abs(sigDelta)/dt def TsettlingTime(sig, scl, tolType='rel', tol=0.05, t1=None, t2=None): """ Measures the time (scale interval on scale *scl*) in which signal *sig* settles within some prescribed tolerance of its final value. *t1* and *t2* define the scale interval within which the settling time is measured. The default values of *t1* and *t2* are the first and the last value of *scl*. The final signal value if the value of the signal corresponding to point *t2* on the scale. The 0.0 and the 1.0 relative signal levels are defined as signal levels at points *t1* and *t2* on the scale. If *tolType* is ``abs`` the settling time is measured from *t1* to the point at which the signal remains within *tol* of its final value at *t2*. If *tolType* is ``rel`` the settling tolerance is defined as *tol* times the difference between the signal levels corresponding to the 0.0 and 1.0 relative signal level. """ # Get reference levels (i1, s1, i2, s2)=_refLevel(sig, scl, t1, t2) sigDelta=s2-s1 # Extract interesting part partsig=XatIrange(sig, i1, i2) partscl=XatIrange(scl, i1, i2) # Get tolerance level if tolType=='abs': tolInt=tol elif tolType=='rel': tolInt=tol*abs(sigDelta) else: raise Exception, "Bad tolerance type." # Get absolute deviation from settled value sigdev=abs(partsig-s2) # Find crossing of absolute deviation with tolerance level crossI=IatXval(sigdev, tolInt, 'any') if crossI.size<=0: raise Exception, "No crossing with tolerance level found." # Take last crossing cross=crossI[-1] # Get settling time delta=XatI(partscl, cross)-partscl[0] if delta<0: raise Exception, "This is weird. Negative settling time." return delta #------------------------------------------------------------------------------ # Overdrive calculation (generic) # e.g. Vgs-Vth class Poverdrive: """ Calculates the difference between the values obtained from two driver functions. Objects of this class are callable. The calling convention is ``object(name)``. When called it returns the difference between the values returned by a call to *driver1* with arguments (name, p1) and the value returned by a call to *driver2* with arguments (name, p2). The difference is returned as an array. If the size of the array is 1, it is returned as a scalar (0-dimensional array). :class:`Poverdrive` can be used for calculating the Vgs-Vth difference of one or more MOS transistors by defining the measurement script in the following way:: obj=m.Poverdrive(p, 'vgs', p, 'vth') retval=map(obj, ['mn2', 'mn3', 'mn9']) __result=np.array(retval) The :func:`map` Python builtin function calls the :class:`Poverdrive` object ``obj`` 3 times, once for every member of the list ``['mn2', 'mn3', 'mn9']`` and collects the return values in a list which is then returned by ``map`` and stored in ``retval``. A call to :class:`Poverdrive` object ``obj`` with argument ``mn2`` returns the result of:: p('mn2', 'vgs')-p('mn2', 'vth') which is actually the difference between the Vgs and the threshold voltage of MOS transistor ``mn1``. So ``retval`` is a list holding the values of the difference between Vgs and the threshold voltage of transistors listed in ``['mn2', 'mn3', 'mn9']``. Finally the list is converted to an array because the :class:`~pyopus.evaluator.performance.PerformanceEvaluator` object can's handle lists. The previous measurement script could also be written as a measurement expression:: np.array(map(m.Poverdrive(p, 'vgs', p, 'vth'), ['mn2', 'mn3', 'mn9'])) Note that during measurement evaluation (when a :class:`~pyopus.evaluator.performance.PerformanceEvaluator` object is called) the function :func:`p` accesses device properties calculated by the simulator while the :mod:`pyopus.evaluator.measure` and :mod:`numpy` modules are available as :mod:`m` and :mod:`np`. """ def __init__(self, driver1, p1, driver2, p2): self.driver1=driver1 self.p1=p1 self.driver2=driver2 self.p2=p2 def __call__(self, instance): if type(self.p1) is str: v1=self.driver1(instance, self.p1) else: v1=self.driver1(instance, *self.p1) if type(self.p2) is str: v2=self.driver2(instance, self.p2) else: v2=self.driver2(instance, *self.p2) diff=array(v1-v2) # Scalarize if diff is 1 long if diff.size==1: diff=diff[0] return diff
gpl-3.0
JeanKossaifi/scikit-learn
sklearn/ensemble/tests/test_voting_classifier.py
140
6926
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier from sklearn.grid_search import GridSearchCV from sklearn import datasets from sklearn import cross_validation from sklearn.datasets import make_multilabel_classification from sklearn.svm import SVC from sklearn.multiclass import OneVsRestClassifier # Load the iris dataset and randomly permute it iris = datasets.load_iris() X, y = iris.data[:, 1:3], iris.target def test_majority_label_iris(): """Check classification by majority label on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.95, decimal=2) def test_tie_situation(): """Check voting classifier selects smaller class label in tie situation.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)], voting='hard') assert_equal(clf1.fit(X, y).predict(X)[73], 2) assert_equal(clf2.fit(X, y).predict(X)[73], 1) assert_equal(eclf.fit(X, y).predict(X)[73], 1) def test_weights_iris(): """Check classification by average probabilities on dataset iris.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 2, 10]) scores = cross_validation.cross_val_score(eclf, X, y, cv=5, scoring='accuracy') assert_almost_equal(scores.mean(), 0.93, decimal=2) def test_predict_on_toy_problem(): """Manually check predicted class labels for toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]) y = np.array([1, 1, 1, 2, 2, 2]) assert_equal(all(clf1.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf2.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) assert_equal(all(clf3.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[1, 1, 1]) assert_equal(all(eclf.fit(X, y).predict(X)), all([1, 1, 1, 2, 2, 2])) def test_predict_proba_on_toy_problem(): """Calculate predicted probabilities on toy dataset.""" clf1 = LogisticRegression(random_state=123) clf2 = RandomForestClassifier(random_state=123) clf3 = GaussianNB() X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]]) y = np.array([1, 1, 2, 2]) clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838], [0.50728456, 0.49271544], [0.40241774, 0.59758226]]) clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]]) clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0., 1.], [0., 1.]]) t00 = (2*clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4 t11 = (2*clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4 t21 = (2*clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4 t31 = (2*clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4 eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft', weights=[2, 1, 1]) eclf_res = eclf.fit(X, y).predict_proba(X) assert_almost_equal(t00, eclf_res[0][0], decimal=1) assert_almost_equal(t11, eclf_res[1][1], decimal=1) assert_almost_equal(t21, eclf_res[2][1], decimal=1) assert_almost_equal(t31, eclf_res[3][1], decimal=1) try: eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') eclf.fit(X, y).predict_proba(X) except AttributeError: pass else: raise AssertionError('AttributeError for voting == "hard"' ' and with predict_proba not raised') def test_multilabel(): """Check if error is raised for multilabel classification.""" X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123) clf = OneVsRestClassifier(SVC(kernel='linear')) eclf = VotingClassifier(estimators=[('ovr', clf)], voting='hard') try: eclf.fit(X, y) except NotImplementedError: return def test_gridsearch(): """Check GridSearch support.""" clf1 = LogisticRegression(random_state=1) clf2 = RandomForestClassifier(random_state=1) clf3 = GaussianNB() eclf = VotingClassifier(estimators=[ ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='soft') params = {'lr__C': [1.0, 100.0], 'voting': ['soft', 'hard'], 'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]} grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5) grid.fit(iris.data, iris.target)
bsd-3-clause
ahoyosid/scikit-learn
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
materialsvirtuallab/veidt
veidt/tests/test_abstract.py
2
1839
import unittest import numpy as np from veidt.abstract import Describer, Model import os import pandas as pd from sklearn.linear_model import LinearRegression file_path = os.path.dirname(__file__) class DummyDescriber(Describer): def describe(self, obj): return pd.Series(np.sum(obj)) class DummyModel(Model): def __init__(self): self.model = LinearRegression() def fit(self, x, y): self.model.fit(x, y) return self def predict(self, x): return self.model.predict(x) class TestDescrber(unittest.TestCase): @classmethod def setUpClass(cls): cls.dd = DummyDescriber() def test_fit(self): dd2 = self.dd.fit([1, 2, 3]) self.assertEqual(dd2, self.dd) def test_describe(self): result = self.dd.describe([1, 2, 3]) self.assertEqual(result.values[0], 6) def test_describe_all(self): results = self.dd.describe_all([[1, 1, 1], [2, 2, 2]]) self.assertListEqual(list(results.shape), [2]) results_transform = self.dd.transform([[1, 1, 1], [2, 2, 2]]) self.assertEqual(9, np.sum(results_transform)) class TestModel(unittest.TestCase): @classmethod def setUpClass(cls): cls.model = DummyModel() def test_fit(self): model_dummy = self.model.fit([[1, 2], [3, 4]], [[3], [7]]) self.assertEqual(model_dummy, self.model) def test_predict(self): self.model.fit([[1, 2], [3, 4]], [[3], [7]]) result = self.model.predict([[1, 5]]) self.assertEqual(result[0], 6) def test_evaluate(self): self.model.fit([[1, 2], [3, 4]], [[3], [7]]) error = self.model.evaluate([[1, 2], [3, 4]], [[4, 8]]) # print(error) self.assertAlmostEqual(error['mae'][0], 1) if __name__ == '__main__': unittest.main()
bsd-3-clause
mjudsp/Tsallis
sklearn/feature_selection/tests/test_chi2.py
56
2400
""" Tests for chi2, currently the only feature selection function designed specifically to work with sparse matrices. """ import numpy as np from scipy.sparse import coo_matrix, csr_matrix import scipy.stats from sklearn.feature_selection import SelectKBest, chi2 from sklearn.feature_selection.univariate_selection import _chisquare from nose.tools import assert_raises from numpy.testing import assert_equal, assert_array_almost_equal # Feature 0 is highly informative for class 1; # feature 1 is the same everywhere; # feature 2 is a bit informative for class 2. X = [[2, 1, 2], [9, 1, 1], [6, 1, 2], [0, 1, 2]] y = [0, 1, 2, 2] def mkchi2(k): """Make k-best chi2 selector""" return SelectKBest(chi2, k=k) def test_chi2(): # Test Chi2 feature extraction chi2 = mkchi2(k=1).fit(X, y) chi2 = mkchi2(k=1).fit(X, y) assert_equal(chi2.get_support(indices=True), [0]) assert_equal(chi2.transform(X), np.array(X)[:, [0]]) chi2 = mkchi2(k=2).fit(X, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xsp = csr_matrix(X, dtype=np.float64) chi2 = mkchi2(k=2).fit(Xsp, y) assert_equal(sorted(chi2.get_support(indices=True)), [0, 2]) Xtrans = chi2.transform(Xsp) assert_equal(Xtrans.shape, [Xsp.shape[0], 2]) # == doesn't work on scipy.sparse matrices Xtrans = Xtrans.toarray() Xtrans2 = mkchi2(k=2).fit_transform(Xsp, y).toarray() assert_equal(Xtrans, Xtrans2) def test_chi2_coo(): # Check that chi2 works with a COO matrix # (as returned by CountVectorizer, DictVectorizer) Xcoo = coo_matrix(X) mkchi2(k=2).fit_transform(Xcoo, y) # if we got here without an exception, we're safe def test_chi2_negative(): # Check for proper error on negative numbers in the input X. X, y = [[0, 1], [-1e-20, 1]], [0, 1] for X in (X, np.array(X), csr_matrix(X)): assert_raises(ValueError, chi2, X, y) def test_chisquare(): # Test replacement for scipy.stats.chisquare against the original. obs = np.array([[2., 2.], [1., 1.]]) exp = np.array([[1.5, 1.5], [1.5, 1.5]]) # call SciPy first because our version overwrites obs chi_scp, p_scp = scipy.stats.chisquare(obs, exp) chi_our, p_our = _chisquare(obs, exp) assert_array_almost_equal(chi_scp, chi_our) assert_array_almost_equal(p_scp, p_our)
bsd-3-clause
stuliveshere/SeismicProcessing2015
prac1_student_full/toolbox/toolbox.py
3
9756
import numpy as np import matplotlib.pyplot as pylab from matplotlib.widgets import Slider pylab.rcParams['image.interpolation'] = 'sinc' #================================================== # decorators #================================================== def io(func): ''' an io decorator that allows input/output to be either a filename (i.e. a string) or an array ''' def wrapped(*args, **kwargs) : if type(args[0]) == type(''): workspace = read(args[0]) else: workspace = args[0] result = func(workspace, **kwargs) if type(result) != type(None): if type(args[1]) == type(''): return write(result, args[1]) else: return result return wrapped #================================================== # display tools #================================================== class KeyHandler(object): def __init__(self, fig, ax, dataset, kwargs): self.fig = fig self.ax = ax self.kwargs = kwargs self.dataset = dataset self.start = 0 if kwargs['primary'] == None: self.slice = self.dataset else: keys = np.unique(dataset[kwargs['primary']]) self.keys = keys[::kwargs['step']] self.nkeys = self.keys.size self.ensemble() if 'clip' in kwargs and kwargs['clip'] != 0: self.clip = kwargs['clip'] else: self.clip = np.mean(np.abs(self.dataset['trace'])) print 'PySeis Seismic Viewer' print 'type "h" for help' self.draw() def __call__(self, e): print e.xdata, e.ydata if e.key == "right": self.start += 1 self.ensemble() elif e.key == "left": self.start -= 1 self.ensemble() elif e.key == "up": self.clip /= 1.1 print self.clip elif e.key == "down": self.clip *= 1.1 print self.clip elif e.key == "h": print "right arrow: next gather" print "left arrow: last gather" print "up arrow: hotter" print "down arrow: colder" print "clip=", self.clip else: return self.draw() def draw(self): self.ax.cla() self.im = self.ax.imshow(self.slice['trace'].T, aspect='auto', cmap='Greys', vmax =self.clip, vmin=-1*self.clip) try: self.ax.set_title('%s = %d' %(self.kwargs['primary'], self.keys[self.start])) except AttributeError: pass self.fig.canvas.draw() def ensemble(self): try: self.slice = self.dataset[self.dataset[self.kwargs['primary']] == self.keys[self.start]] except IndexError: self.start = 0 @io def display(dataset, **kwargs): ''' iterates through dataset using left and right keys parameters required: primary key seconary key step size ''' fig = pylab.figure() ax = fig.add_subplot(111) eventManager = KeyHandler(fig, ax, dataset, kwargs) fig.canvas.mpl_connect('key_press_event',eventManager) def scan(dataset): print " %0-35s: %0-15s %s" %('key', 'min', 'max') print "=========================================" for key in np.result_type(dataset).descr: a = np.amin(dataset[key[0]]) b = np.amax(dataset[key[0]]) if (a != 0) and (b != 0): print "%0-35s %0-15.3f %.3f" %(key, a, b) print "=========================================" #~ def build_vels(times, velocities, ns=1000, dt=0.001): #~ '''builds a full velocity trace from a list of vels and times''' #~ tx = np.linspace(dt, dt*ns, ns) #~ vels = np.interp(tx, times, velocities) #~ vels = np.pad(vels, (100,100), 'reflect') #~ vels = np.convolve(np.ones(100.0)/100.0, vels, mode='same') #~ vels = vels[100:-100] #~ return vels @io def cp(workspace, **params): return workspace @io def agc(workspace, window=100, **params): ''' automatic gain control inputs: window ''' vec = np.ones(window, 'f') func = np.apply_along_axis(lambda m: np.convolve(np.abs(m), vec, mode='same'), axis=-1, arr=workspace['trace']) workspace['trace'] /= func workspace['trace'][~np.isfinite(workspace['trace'])] = 0 workspace['trace'] /= np.amax(np.abs(workspace['trace'])) return workspace def ricker(f, length=0.512, dt=0.001): t = np.linspace(-length/2, (length-dt)/2, length/dt) y = (1.0 - 2.0*(np.pi**2)*(f**2)*(t**2)) * np.exp(-(np.pi**2)*(f**2)*(t**2)) y = np.around(y, 10) inds = np.nonzero(y)[0] return y[np.amin(inds):np.amax(inds)] def conv(workspace, wavelet): workspace['trace'] = np.apply_along_axis(lambda m: np.convolve(m, wavelet, mode='same'), axis=-1, arr=workspace['trace']) return workspace @io def fx(workspace, **params): f = np.abs(np.fft.rfft(workspace['trace'], axis=-1)) correction = np.mean(np.abs(f), axis=-1).reshape(-1,1) f /= correction f = 20.0*np.log10(f)[:,::-1] freq = np.fft.rfftfreq(params['ns'], params['dt']) print params['ns'], params['dt'] hmin = np.amin(workspace['cdp']) hmax = np.amax(workspace['cdp']) vmin = np.amin(freq) vmax = np.amax(freq) extent=[hmin,hmax,vmin,vmax] pylab.imshow(f.T, aspect='auto', extent=extent) def db(data): return 20.0*np.log10(data) import numpy as np su_header_dtype = np.dtype([ ('tracl', np.int32), ('tracr', np.int32), ('fldr', np.int32), ('tracf', np.int32), ('ep', np.int32), ('cdp', np.int32), ('cdpt', np.int32), ('trid', np.int16), ('nvs', np.int16), ('nhs', np.int16), ('duse', np.int16), ('offset', np.int32), ('gelev', np.int32), ('selev', np.int32), ('sdepth', np.int32), ('gdel', np.int32), ('sdel', np.int32), ('swdep', np.int32), ('gwdep', np.int32), ('scalel', np.int16), ('scalco', np.int16), ('sx', np.int32), ('sy', np.int32), ('gx', np.int32), ('gy', np.int32), ('counit', np.int16), ('wevel', np.int16), ('swevel', np.int16), ('sut', np.int16), ('gut', np.int16), ('sstat', np.int16), ('gstat', np.int16), ('tstat', np.int16), ('laga', np.int16), ('lagb', np.int16), ('delrt', np.int16), ('muts', np.int16), ('mute', np.int16), ('ns', np.uint16), ('dt', np.uint16), ('gain', np.int16), ('igc', np.int16), ('igi', np.int16), ('corr', np.int16), ('sfs', np.int16), ('sfe', np.int16), ('slen', np.int16), ('styp', np.int16), ('stas', np.int16), ('stae', np.int16), ('tatyp', np.int16), ('afilf', np.int16), ('afils', np.int16), ('nofilf', np.int16), ('nofils', np.int16), ('lcf', np.int16), ('hcf', np.int16), ('lcs', np.int16), ('hcs', np.int16), ('year', np.int16), ('day', np.int16), ('hour', np.int16), ('minute', np.int16), ('sec', np.int16), ('timebas', np.int16), ('trwf', np.int16), ('grnors', np.int16), ('grnofr', np.int16), ('grnlof', np.int16), ('gaps', np.int16), ('otrav', np.int16), #179,180 ('d1', np.float32), #181,184 ('f1', np.float32), #185,188 ('d2', np.float32), #189,192 ('f2', np.float32), #193, 196 ('ShotPoint', np.int32), #197,200 ('unscale', np.int16), #201, 204 ('TraceValueMeasurementUnit', np.int16), ('TransductionConstantMantissa', np.int32), ('TransductionConstantPower', np.int16), ('TransductionUnit', np.int16), ('TraceIdentifier', np.int16), ('ScalarTraceHeader', np.int16), ('SourceType', np.int16), ('SourceEnergyDirectionMantissa', np.int32), ('SourceEnergyDirectionExponent', np.int16), ('SourceMeasurementMantissa', np.int32), ('SourceMeasurementExponent', np.int16), ('SourceMeasurementUnit', np.int16), ('UnassignedInt1', np.int32), ('ns1', np.int32), ]) def typeSU(ns): return np.dtype(su_header_dtype.descr + [('trace', ('<f4',ns))]) def readSUheader(filename): raw = open(filename, 'rb').read() return np.fromstring(raw, dtype=su_header_dtype, count=1) def read(filename=None): if filename == None: raw= sys.stdin.read() else: raw = open(filename, 'rb').read() return readData(raw) def readData(raw): su_header = np.fromstring(raw, dtype=su_header_dtype, count=1) ns = su_header['ns'][0] file_dtype = typeSU(ns) data = np.fromstring(raw, dtype=file_dtype) return data def write(data, filename=None): if filename == None: data.tofile(sys.stdout) else: data.tofile(filename)
mit
rhyolight/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
agpl-3.0
misdoro/python-ase
ase/dft/stm.py
2
6272
import pickle import numpy as np class STM: def __init__(self, atoms, symmetries=None, use_density=False): """Scanning tunneling microscope. atoms: Atoms object or filename Atoms to scan or name of file to read LDOS from. symmetries: list of int List of integers 0, 1, and/or 2 indicating which surface symmetries have been used to reduce the number of k-points for the DFT calculation. The three integers correspond to the following three symmetry operations:: [-1 0] [ 1 0] [ 0 1] [ 0 1] [ 0 -1] [ 1 0] use_density: bool Use the electron density instead of the LDOS. """ self.use_density = use_density if isinstance(atoms, str): with open(atoms, 'rb') as f: self.ldos, self.bias, self.cell = pickle.load(f) self.atoms = None else: self.atoms = atoms self.cell = atoms.cell self.bias = None self.ldos = None assert not self.cell[2, :2].any() and not self.cell[:2, 2].any() self.symmetries = symmetries or [] def calculate_ldos(self, bias): """Calculate local density of states for given bias.""" if self.ldos is not None and bias == self.bias: return self.bias = bias calc = self.atoms.calc if self.use_density: self.ldos = calc.get_pseudo_density() return if bias < 0: emin = bias emax = 0.0 else: emin = 0 emax = bias nbands = calc.get_number_of_bands() weights = calc.get_k_point_weights() nkpts = len(weights) nspins = calc.get_number_of_spins() eigs = np.array([[calc.get_eigenvalues(k, s) for k in range(nkpts)] for s in range(nspins)]) eigs -= calc.get_fermi_level() ldos = 0.0 for s in range(nspins): for k in range(nkpts): for n in range(nbands): e = eigs[s, k, n] if emin < e < emax: psi = calc.get_pseudo_wave_function(n, k, s) ldos += weights[k] * (psi * np.conj(psi)).real if 0 in self.symmetries: # (x,y) -> (-x,y) ldos[1:] += ldos[:0:-1].copy() ldos[1:] *= 0.5 if 1 in self.symmetries: # (x,y) -> (x,-y) ldos[:, 1:] += ldos[:, :0:-1].copy() ldos[:, 1:] *= 0.5 if 2 in self.symmetries: # (x,y) -> (y,x) ldos += ldos.transpose((1, 0, 2)).copy() ldos *= 0.5 self.ldos = ldos def write(self, filename='stm.pckl'): """Write local density of states to pickle file.""" with open(filename, 'wb') as f: pickle.dump((self.ldos, self.bias, self.cell), f, protocol=pickle.HIGHEST_PROTOCOL) def get_averaged_current(self, bias, z): """Calculate avarage current at height z. Use this to get an idea of what current to use when scanning.""" self.calculate_ldos(bias) nz = self.ldos.shape[2] # Find grid point: n = z / self.cell[2, 2] * nz dn = n - np.floor(n) n = int(n) % nz # Average and do linear interpolation: return ((1 - dn) * self.ldos[:, :, n].mean() + dn * self.ldos[:, :, (n + 1) % nz].mean()) def scan(self, bias, current, z0=None, repeat=(1, 1)): """Constant current 2-d scan. Returns three 2-d arrays (x, y, z) containing x-coordinates, y-coordinates and heights. These three arrays can be passed to matplotlibs contourf() function like this: >>> import matplotlib.pyplot as plt >>> plt.gca(aspect='equal') >>> plt.contourf(x, y, z) >>> plt.show() """ self.calculate_ldos(bias) L = self.cell[2, 2] nz = self.ldos.shape[2] h = L / nz ldos = self.ldos.reshape((-1, nz)) heights = np.empty(ldos.shape[0]) for i, a in enumerate(ldos): heights[i] = find_height(a, current, h, z0) s0 = heights.shape = self.ldos.shape[:2] heights = np.tile(heights, repeat) s = heights.shape ij = np.indices(s, dtype=float).reshape((2, -1)).T x, y = np.dot(ij / s0, self.cell[:2, :2]).T.reshape((2,) + s) return x, y, heights def linescan(self, bias, current, p1, p2, npoints=50, z0=None): """Constant current line scan. Example:: stm = STM(...) z = ... # tip position c = stm.get_averaged_current(-1.0, z) stm.linescan(-1.0, c, (1.2, 0.0), (1.2, 3.0)) """ heights = self.scan(bias, current, z0)[2] p1 = np.asarray(p1, float) p2 = np.asarray(p2, float) d = p2 - p1 s = np.dot(d, d)**0.5 cell = self.cell[:2, :2] shape = np.array(heights.shape, float) M = np.linalg.inv(cell) line = np.empty(npoints) for i in range(npoints): p = p1 + i * d / (npoints - 1) q = np.dot(p, M) * shape line[i] = interpolate(q, heights) return np.linspace(0, s, npoints), line def interpolate(q, heights): qi = q.astype(int) f = q - qi g = 1 - f qi %= heights.shape n0, m0 = qi n1, m1 = (qi + 1) % heights.shape z = (g[0] * g[1] * heights[n0, m0] + f[0] * g[1] * heights[n1, m0] + g[0] * f[1] * heights[n0, m1] + f[0] * f[1] * heights[n1, m1]) return z def find_height(ldos, current, h, z0=None): if z0 is None: n = len(ldos) - 2 else: n = int(z0 / h) while n >= 0: if ldos[n] > current: break n -= 1 else: return 0.0 c2, c1 = ldos[n:n + 2] return (n + 1 - (current - c1) / (c2 - c1)) * h
gpl-2.0
Statoil/libecl
python/ecl/grid/ecl_grid.py
1
58619
# Copyright (C) 2011 Equinor ASA, Norway. # # The file 'ecl_grid.py' is part of ERT - Ensemble based Reservoir Tool. # # ERT is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ERT is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. # # See the GNU General Public License at <http://www.gnu.org/licenses/gpl.html> # for more details. """ Module to load and query ECLIPSE GRID/EGRID files. The ecl_grid module contains functionality to load and query an ECLIPSE grid file; it is currently not possible to manipulate or let alone create a grid with ecl_grid module. The functionality is implemented in the EclGrid class. The ecl_grid module is a thin wrapper around the ecl_grid.c implementation from the libecl library. """ import ctypes import warnings import numpy import pandas import sys import os.path import math import itertools from cwrap import CFILE, BaseCClass, load, open as copen from ecl import EclPrototype from ecl.util.util import monkey_the_camel from ecl.util.util import IntVector from ecl import EclDataType, EclUnitTypeEnum, EclTypeEnum from ecl.eclfile import EclKW, FortIO from ecl.grid import Cell class EclGrid(BaseCClass): """ Class for loading and internalizing ECLIPSE GRID/EGRID files. """ TYPE_NAME = "ecl_grid" _fread_alloc = EclPrototype("void* ecl_grid_load_case__(char*, bool)", bind = False) _grdecl_create = EclPrototype("ecl_grid_obj ecl_grid_alloc_GRDECL_kw(int, int, int, ecl_kw, ecl_kw, ecl_kw, ecl_kw)", bind = False) _alloc_rectangular = EclPrototype("ecl_grid_obj ecl_grid_alloc_rectangular(int, int, int, double, double, double, int*)", bind = False) _exists = EclPrototype("bool ecl_grid_exists(char*)", bind = False) _get_numbered_lgr = EclPrototype("ecl_grid_ref ecl_grid_get_lgr_from_lgr_nr(ecl_grid, int)") _get_named_lgr = EclPrototype("ecl_grid_ref ecl_grid_get_lgr(ecl_grid, char*)") _get_cell_lgr = EclPrototype("ecl_grid_ref ecl_grid_get_cell_lgr1(ecl_grid, int)") _num_coarse_groups = EclPrototype("int ecl_grid_get_num_coarse_groups(ecl_grid)") _in_coarse_group1 = EclPrototype("bool ecl_grid_cell_in_coarse_group1(ecl_grid, int)") _free = EclPrototype("void ecl_grid_free(ecl_grid)") _get_nx = EclPrototype("int ecl_grid_get_nx(ecl_grid)") _get_ny = EclPrototype("int ecl_grid_get_ny(ecl_grid)") _get_nz = EclPrototype("int ecl_grid_get_nz(ecl_grid)") _get_global_size = EclPrototype("int ecl_grid_get_global_size(ecl_grid)") _get_active = EclPrototype("int ecl_grid_get_active_size(ecl_grid)") _get_active_fracture = EclPrototype("int ecl_grid_get_nactive_fracture(ecl_grid)") _get_name = EclPrototype("char* ecl_grid_get_name(ecl_grid)") _ijk_valid = EclPrototype("bool ecl_grid_ijk_valid(ecl_grid, int, int, int)") _get_active_index3 = EclPrototype("int ecl_grid_get_active_index3(ecl_grid, int, int, int)") _get_global_index3 = EclPrototype("int ecl_grid_get_global_index3(ecl_grid, int, int, int)") _get_active_index1 = EclPrototype("int ecl_grid_get_active_index1(ecl_grid, int)") _get_active_fracture_index1 = EclPrototype("int ecl_grid_get_active_fracture_index1(ecl_grid, int)") _get_global_index1A = EclPrototype("int ecl_grid_get_global_index1A(ecl_grid, int)") _get_global_index1F = EclPrototype("int ecl_grid_get_global_index1F(ecl_grid, int)") _get_ijk1 = EclPrototype("void ecl_grid_get_ijk1(ecl_grid, int, int*, int*, int*)") _get_ijk1A = EclPrototype("void ecl_grid_get_ijk1A(ecl_grid, int, int*, int*, int*)") _get_xyz3 = EclPrototype("void ecl_grid_get_xyz3(ecl_grid, int, int, int, double*, double*, double*)") _get_xyz1 = EclPrototype("void ecl_grid_get_xyz1(ecl_grid, int, double*, double*, double*)") _get_cell_corner_xyz1 = EclPrototype("void ecl_grid_get_cell_corner_xyz1(ecl_grid, int, int, double*, double*, double*)") _get_corner_xyz = EclPrototype("void ecl_grid_get_corner_xyz(ecl_grid, int, int, int, double*, double*, double*)") _get_xyz1A = EclPrototype("void ecl_grid_get_xyz1A(ecl_grid, int, double*, double*, double*)") _get_ij_xy = EclPrototype("bool ecl_grid_get_ij_from_xy(ecl_grid, double, double, int, int*, int*)") _get_ijk_xyz = EclPrototype("int ecl_grid_get_global_index_from_xyz(ecl_grid, double, double, double, int)") _cell_contains = EclPrototype("bool ecl_grid_cell_contains_xyz1(ecl_grid, int, double, double, double)") _cell_regular = EclPrototype("bool ecl_grid_cell_regular1(ecl_grid, int)") _num_lgr = EclPrototype("int ecl_grid_get_num_lgr(ecl_grid)") _has_numbered_lgr = EclPrototype("bool ecl_grid_has_lgr_nr(ecl_grid, int)") _has_named_lgr = EclPrototype("bool ecl_grid_has_lgr(ecl_grid, char*)") _grid_value = EclPrototype("double ecl_grid_get_property(ecl_grid, ecl_kw, int, int, int)") _get_cell_volume = EclPrototype("double ecl_grid_get_cell_volume1(ecl_grid, int)") _get_cell_thickness = EclPrototype("double ecl_grid_get_cell_thickness1(ecl_grid, int)") _get_cell_dx = EclPrototype("double ecl_grid_get_cell_dx1(ecl_grid, int)") _get_cell_dy = EclPrototype("double ecl_grid_get_cell_dy1(ecl_grid, int)") _get_depth = EclPrototype("double ecl_grid_get_cdepth1(ecl_grid, int)") _fwrite_grdecl = EclPrototype("void ecl_grid_grdecl_fprintf_kw(ecl_grid, ecl_kw, char*, FILE, double)") _load_column = EclPrototype("void ecl_grid_get_column_property(ecl_grid, ecl_kw, int, int, double_vector)") _get_top = EclPrototype("double ecl_grid_get_top2(ecl_grid, int, int)") _get_top1A = EclPrototype("double ecl_grid_get_top1A(ecl_grid, int)") _get_bottom = EclPrototype("double ecl_grid_get_bottom2(ecl_grid, int, int)") _locate_depth = EclPrototype("int ecl_grid_locate_depth(ecl_grid, double, int, int)") _invalid_cell = EclPrototype("bool ecl_grid_cell_invalid1(ecl_grid, int)") _valid_cell = EclPrototype("bool ecl_grid_cell_valid1(ecl_grid, int)") _get_distance = EclPrototype("void ecl_grid_get_distance(ecl_grid, int, int, double*, double*, double*)") _fprintf_grdecl2 = EclPrototype("void ecl_grid_fprintf_grdecl2(ecl_grid, FILE, ecl_unit_enum) ") _fwrite_GRID2 = EclPrototype("void ecl_grid_fwrite_GRID2(ecl_grid, char*, ecl_unit_enum)") _fwrite_EGRID2 = EclPrototype("void ecl_grid_fwrite_EGRID2(ecl_grid, char*, ecl_unit_enum)") _equal = EclPrototype("bool ecl_grid_compare(ecl_grid, ecl_grid, bool, bool)") _dual_grid = EclPrototype("bool ecl_grid_dual_grid(ecl_grid)") _init_actnum = EclPrototype("void ecl_grid_init_actnum_data(ecl_grid, int*)") _compressed_kw_copy = EclPrototype("void ecl_grid_compressed_kw_copy(ecl_grid, ecl_kw, ecl_kw)") _global_kw_copy = EclPrototype("void ecl_grid_global_kw_copy(ecl_grid, ecl_kw, ecl_kw)") _create_volume_keyword = EclPrototype("ecl_kw_obj ecl_grid_alloc_volume_kw(ecl_grid, bool)") _use_mapaxes = EclPrototype("bool ecl_grid_use_mapaxes(ecl_grid)") _export_coord = EclPrototype("ecl_kw_obj ecl_grid_alloc_coord_kw(ecl_grid)") _export_zcorn = EclPrototype("ecl_kw_obj ecl_grid_alloc_zcorn_kw(ecl_grid)") _export_actnum = EclPrototype("ecl_kw_obj ecl_grid_alloc_actnum_kw(ecl_grid)") _export_mapaxes = EclPrototype("ecl_kw_obj ecl_grid_alloc_mapaxes_kw(ecl_grid)") _get_unit_system = EclPrototype("ecl_unit_enum ecl_grid_get_unit_system(ecl_grid)") _export_index_frame = EclPrototype("void ecl_grid_export_index(ecl_grid, int*, int*, bool)") _export_data_as_int = EclPrototype("void ecl_grid_export_data_as_int(int, int*, ecl_kw, int*)", bind = False) _export_data_as_double = EclPrototype("void ecl_grid_export_data_as_double(int, int*, ecl_kw, double*)", bind = False) _export_volume = EclPrototype("void ecl_grid_export_volume(ecl_grid, int, int*, double*)") _export_position = EclPrototype("void ecl_grid_export_position(ecl_grid, int, int*, double*)") _export_corners = EclPrototype("void export_corners(ecl_grid, int, int*, double*)") @classmethod def load_from_grdecl(cls, filename): """Will create a new EclGrid instance from grdecl file. This function will scan the input file @filename and look for the keywords required to build a grid. The following keywords are required: SPECGRID ZCORN COORD In addition the function will look for and use the ACTNUM and MAPAXES keywords if they are found; if ACTNUM is not found all cells are assumed to be active. Slightly more exotic grid concepts like dual porosity, NNC mapping, LGR and coarsened cells will be completely ignored; if you need such concepts you must have an EGRID file and use the default EclGrid() constructor - that is also considerably faster. """ if os.path.isfile(filename): with copen(filename) as f: specgrid = EclKW.read_grdecl(f, "SPECGRID", ecl_type=EclDataType.ECL_INT, strict=False) zcorn = EclKW.read_grdecl(f, "ZCORN") coord = EclKW.read_grdecl(f, "COORD") try: actnum = EclKW.read_grdecl(f, "ACTNUM", ecl_type=EclDataType.ECL_INT) except ValueError: actnum = None try: mapaxes = EclKW.read_grdecl(f, "MAPAXES") except ValueError: mapaxes = None return EclGrid.create(specgrid, zcorn, coord, actnum, mapaxes) else: raise IOError("No such file:%s" % filename) @classmethod def load_from_file(cls, filename): """ Will inspect the @filename argument and create a new EclGrid instance. """ if FortIO.isFortranFile(filename): return EclGrid(filename) else: return EclGrid.loadFromGrdecl(filename) @classmethod def create(cls, specgrid, zcorn, coord, actnum, mapaxes=None): """ Create a new grid instance from existing keywords. This is a class method which can be used to create an EclGrid instance based on the EclKW instances @specgrid, @zcorn, @coord and @actnum. An ECLIPSE EGRID file contains the SPECGRID, ZCORN, COORD and ACTNUM keywords, so a somewhat involved way to create a EclGrid instance could be: file = ecl.EclFile("ECLIPSE.EGRID") specgrid_kw = file.iget_named_kw("SPECGRID", 0) zcorn_kw = file.iget_named_kw("ZCORN", 0) coord_kw = file.iget_named_kw("COORD", 0) actnum_kw = file.iget_named_kw("ACTNUM", 0) grid = EclGrid.create(specgrid_kw, zcorn_kw, coord_kw, actnum_kw) If you are so inclined ... """ return cls._grdecl_create(specgrid[0], specgrid[1], specgrid[2], zcorn, coord, actnum, mapaxes) @classmethod def create_rectangular(cls, dims, dV, actnum=None): """ Will create a new rectangular grid. @dims = (nx,ny,nz) @dVg = (dx,dy,dz) With the default value @actnum == None all cells will be active, """ warnings.warn("EclGrid.createRectangular is deprecated. " + "Please used the similar method in EclGridGenerator!", DeprecationWarning) if actnum is None: ecl_grid = cls._alloc_rectangular(dims[0], dims[1], dims[2], dV[0], dV[1], dV[2], None) else: if not isinstance(actnum, IntVector): tmp = IntVector(initial_size=len(actnum)) for (index, value) in enumerate(actnum): tmp[index] = value actnum = tmp if not len(actnum) == dims[0] * dims[1] * dims[2]: raise ValueError("ACTNUM size mismatch: len(ACTNUM):%d Expected:%d" % (len(actnum), dims[0] * dims[1] * dims[2])) ecl_grid = cls._alloc_rectangular(dims[0], dims[1], dims[2], dV[0], dV[1], dV[2], actnum.getDataPtr()) # If we have not succeeded in creatin the grid we *assume* the # error is due to a failed malloc. if ecl_grid is None: raise MemoryError("Failed to allocated regualar grid") return ecl_grid def __init__(self, filename, apply_mapaxes=True): """ Will create a grid structure from an EGRID or GRID file. """ c_ptr = self._fread_alloc(filename, apply_mapaxes) if c_ptr: super(EclGrid, self).__init__(c_ptr) else: raise IOError("Loading grid from:%s failed" % filename) def free(self): self._free() def _nicename(self): """name is often full path to grid, if so, output basename, else name""" name = self.getName() if os.path.isfile(name): name = os.path.basename(name) return name def __repr__(self): """Returns, e.g.: EclGrid("NORNE_ATW2013.EGRID", 46x112x22, global_size=113344, active_size=44431) at 0x28c4a70 """ name = self._nicename() if name: name = '"%s", ' % name g_size = self.getGlobalSize() a_size = self.getNumActive() xyz_s = '%dx%dx%d' % (self.getNX(),self.getNY(),self.getNZ()) return self._create_repr('%s%s, global_size=%d, active_size=%d' % (name, xyz_s, g_size, a_size)) def __len__(self): """ len(grid) wil return the total number of cells. """ return self._get_global_size() def equal(self, other, include_lgr=True, include_nnc=False, verbose=False): """ Compare the current grid with the other grid. """ if not isinstance(other, EclGrid): raise TypeError("The other argument must be an EclGrid instance") return self._equal(other, include_lgr, include_nnc, verbose) def dual_grid(self): """Is this grid dual porosity model?""" return self._dual_grid() def get_dims(self): """A tuple of four elements: (nx, ny, nz, nactive).""" return (self.getNX(), self.getNY(), self.getNZ(), self.getNumActive()) @property def nx(self): return self._get_nx() def get_nx(self): """ The number of elements in the x direction""" return self._get_nx() @property def ny(self): return self._get_ny() def get_ny(self): """ The number of elements in the y direction""" return self._get_ny() @property def nz(self): return self._get_nz() def get_nz(self): """ The number of elements in the z direction""" return self._get_nz() def get_global_size(self): """Returns the total number of cells in this grid""" return self._get_global_size() def get_num_active(self): """The number of active cells in the grid.""" return self._get_active() def get_num_active_fracture(self): """The number of active cells in the grid.""" return self._get_active_fracture() def get_bounding_box_2d(self, layer=0, lower_left=None, upper_right=None): if 0 <= layer <= self.getNZ(): x = ctypes.c_double() y = ctypes.c_double() z = ctypes.c_double() if lower_left is None: i1 = 0 j1 = 0 else: i1,j1 = lower_left if not 0 < i1 < self.getNX(): raise ValueError("lower_left i coordinate invalid") if not 0 < j1 < self.getNY(): raise ValueError("lower_left j coordinate invalid") if upper_right is None: i2 = self.getNX() j2 = self.getNY() else: i2,j2 = upper_right if not 1 < i2 <= self.getNX(): raise ValueError("upper_right i coordinate invalid") if not 1 < j2 <= self.getNY(): raise ValueError("upper_right j coordinate invalid") if not i1 < i2: raise ValueError("Must have lower_left < upper_right") if not j1 < j2: raise ValueError("Must have lower_left < upper_right") self._get_corner_xyz(i1, j1, layer, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) p0 = (x.value, y.value) self._get_corner_xyz(i2, j1, layer, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) p1 = (x.value, y.value ) self._get_corner_xyz( i2, j2, layer, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) p2 = (x.value, y.value ) self._get_corner_xyz(i1, j2, layer, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) p3 = (x.value, y.value ) return (p0,p1,p2,p3) else: raise ValueError("Invalid layer value:%d Valid range: [0,%d]" % (layer, self.getNZ())) def get_name(self): """ Name of the current grid, returns a string. For the main grid this is the filename given to the constructor when loading the grid; for an LGR this is the name of the LGR. If the grid instance has been created with the create() classmethod this can be None. """ n = self._get_name() return str(n) if n else '' def cell(self, global_index=None, active_index=None, i=None, j=None, k=None): if global_index is not None: return Cell(self, global_index) if active_index is not None: return Cell(self, self.global_index(active_index=active_index)) if i is not None: return Cell(self, self.global_index(ijk=(i,j,k))) def __getitem__(self, global_index): if isinstance(global_index, tuple): i,j,k = global_index return self.cell(i=i, j=j, k=k) return self.cell(global_index=global_index) def __iter__(self): for i in range(len(self)): yield self[i] def cells(self, active=False): """Iterator over all the (active) cells""" if not active: for c in self: yield c else: for i in range(self.get_num_active()): yield self.cell(active_index=i) def global_index(self, active_index=None, ijk=None): """ Will convert either active_index or (i,j,k) to global index. """ return self.__global_index(active_index=active_index, ijk=ijk) def __global_index(self, active_index=None, global_index=None, ijk=None): """ Will convert @active_index or @ijk to global_index. This method will convert @active_index or @ijk to a global index. Exactly one of the arguments @active_index, @global_index or @ijk must be supplied. The method is used extensively internally in the EclGrid class; most methods which take coordinate input pass through this method to normalize the coordinate representation. """ set_count = 0 if not active_index is None: set_count += 1 if not global_index is None: set_count += 1 if ijk: set_count += 1 if not set_count == 1: raise ValueError("Exactly one of the kewyord arguments active_index, global_index or ijk must be set") if not active_index is None: global_index = self._get_global_index1A( active_index) elif ijk: nx = self.getNX() ny = self.getNY() nz = self.getNZ() i,j,k = ijk if not 0 <= i < nx: raise IndexError("Invalid value i:%d Range: [%d,%d)" % (i, 0, nx)) if not 0 <= j < ny: raise IndexError("Invalid value j:%d Range: [%d,%d)" % (j, 0, ny)) if not 0 <= k < nz: raise IndexError("Invalid value k:%d Range: [%d,%d)" % (k, 0, nz)) global_index = self._get_global_index3(i,j,k) else: if not 0 <= global_index < self.getGlobalSize(): raise IndexError("Invalid value global_index:%d Range: [%d,%d)" % (global_index, 0, self.getGlobalSize())) return global_index def get_active_index(self, ijk=None, global_index=None): """ Lookup active index based on ijk or global index. Will determine the active_index of a cell, based on either @ijk = (i,j,k) or @global_index. If the cell specified by the input arguments is not active the function will return -1. """ gi = self.__global_index(global_index=global_index, ijk=ijk) return self._get_active_index1(gi) def get_active_fracture_index(self, ijk=None, global_index=None): """ For dual porosity - get the active fracture index. """ gi = self.__global_index(global_index=global_index, ijk=ijk) return self._get_active_fracture_index1(gi) def get_global_index1F(self, active_fracture_index): """ Will return the global index corresponding to active fracture index. """ return self._get_global_index1F(active_fracture_index) def cell_invalid(self, ijk=None, global_index=None, active_index=None): """ Tries to check if a cell is invalid. Cells which are used to represent numerical aquifers are typically located in UTM position (0,0); these cells have completely whacked up shape and size, and should **NOT** be used in calculations involving real world coordinates. To protect against this a heuristic is used identify such cells and mark them as invalid. There might be other sources than numerical aquifers to this problem. """ gi = self.__global_index(global_index=global_index, ijk=ijk, active_index=active_index) return self._invalid_cell(gi) def valid_cell_geometry(self, ijk=None, global_index=None, active_index=None): """Checks if the cell has valid geometry. There are at least two reasons why a cell might have invalid gemetry: 1. In the case of GRID files it is not necessary to supply the geometry for all the cells; in that case this function will return false for cells which do not have valid coordinates. 2. Cells which are used to represent numerical aquifers are typically located in UTM position (0,0); these cells have completely whacked up shape and size; these cells are identified by a heuristic - which might fail If the validCellGeometry() returns false for a particular cell functions which calculate cell volumes, real world coordinates and so on - should not be used. """ gi = self.__global_index(global_index=global_index, ijk=ijk, active_index=active_index) return self._valid_cell(gi) def active(self, ijk=None, global_index=None): """ Is the cell active? See documentation og get_xyz() for explanation of parameters @ijk and @global_index. """ gi = self.__global_index(global_index=global_index, ijk=ijk) active_index = self._get_active_index1(gi) if active_index >= 0: return True else: return False def get_global_index(self, ijk=None, active_index=None): """ Lookup global index based on ijk or active index. """ gi = self.__global_index(active_index=active_index, ijk=ijk) return gi def get_ijk(self, active_index=None, global_index=None): """ Lookup (i,j,k) for a cell, based on either active index or global index. The return value is a tuple with three elements (i,j,k). """ i = ctypes.c_int() j = ctypes.c_int() k = ctypes.c_int() gi = self.__global_index(active_index=active_index, global_index=global_index) self._get_ijk1(gi, ctypes.byref(i), ctypes.byref(j), ctypes.byref(k)) return (i.value, j.value, k.value) def get_xyz(self, active_index=None, global_index=None, ijk=None): """ Find true position of cell center. Will return world position of the center of a cell in the grid. The return value is a tuple of three elements: (utm_x, utm_y, depth). The cells of a grid can be specified in three different ways: (i,j,k) : As a tuple of i,j,k values. global_index : A number in the range [0,nx*ny*nz). The global index is related to (i,j,k) as: global_index = i + j*nx + k*nx*ny active_index : A number in the range [0,nactive). For many of the EclGrid methods a cell can be specified using any of these three methods. Observe that one and only method is allowed: OK: pos1 = grid.get_xyz(active_index=100) pos2 = grid.get_xyz(ijk=(10,20,7)) Crash and burn: pos3 = grid.get_xyz(ijk=(10,20,7), global_index=10) pos4 = grid.get_xyz() All the indices in the EclGrid() class are zero offset, this is in contrast to ECLIPSE which has an offset 1 interface. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) x = ctypes.c_double() y = ctypes.c_double() z = ctypes.c_double() self._get_xyz1(gi, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) return (x.value, y.value, z.value) def get_node_pos(self, i, j, k): """Will return the (x,y,z) for the node given by (i,j,k). Observe that this method does not consider cells, but the nodes in the grid. This means that the valid input range for i,j and k are are upper end inclusive. To get the four bounding points of the lower layer of the grid: p0 = grid.getNodePos(0, 0, 0) p1 = grid.getNodePos(grid.getNX(), 0, 0) p2 = grid.getNodePos(0, grid.getNY(), 0) p3 = grid.getNodePos(grid.getNX(), grid.getNY(), 0) """ if not 0 <= i <= self.getNX(): raise IndexError("Invalid I value:%d - valid range: [0,%d]" % (i, self.getNX())) if not 0 <= j <= self.getNY(): raise IndexError("Invalid J value:%d - valid range: [0,%d]" % (j, self.getNY())) if not 0 <= k <= self.getNZ(): raise IndexError("Invalid K value:%d - valid range: [0,%d]" % (k, self.getNZ())) x = ctypes.c_double() y = ctypes.c_double() z = ctypes.c_double() self._get_corner_xyz(i,j,k, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) return (x.value, y.value, z.value) def get_cell_corner(self, corner_nr, active_index=None, global_index=None, ijk=None): """ Will look up xyz of corner nr @corner_nr lower layer: upper layer 2---3 6---7 | | | | 0---1 4---5 """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) x = ctypes.c_double() y = ctypes.c_double() z = ctypes.c_double() self._get_cell_corner_xyz1(gi, corner_nr, ctypes.byref(x), ctypes.byref(y), ctypes.byref(z)) return (x.value, y.value, z.value) def get_node_xyz(self, i,j,k): """ This function returns the position of Vertex (i,j,k). The coordinates are in the inclusive interval [0,nx] x [0,ny] x [0,nz]. """ nx = self.getNX() ny = self.getNY() nz = self.getNZ() corner = 0 if i == nx: i -= 1 corner += 1 if j == ny: j -= 1 corner += 2 if k == nz: k -= 1 corner += 4 if self._ijk_valid(i, j, k): return self.getCellCorner(corner, global_index=i + j*nx + k*nx*ny) else: raise IndexError("Invalid coordinates: (%d,%d,%d) " % (i,j,k)) def get_layer_xyz(self, xy_corner, layer): nx = self.getNX() (j, i) = divmod(xy_corner, nx + 1) k = layer return self.getNodeXYZ(i,j,k) def distance(self, global_index1, global_index2): dx = ctypes.c_double() dy = ctypes.c_double() dz = ctypes.c_double() self._get_distance(global_index1, global_index2, ctypes.byref(dx), ctypes.byref(dy), ctypes.byref(dz)) return (dx.value, dy.value, dz.value) def depth(self, active_index=None, global_index=None, ijk=None): """ Depth of the center of a cell. Returns the depth of the center of the cell given by @active_index, @global_index or @ijk. See method get_xyz() for documentation of @active_index, @global_index and @ijk. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) return self._get_depth( gi) def top(self, i, j): """ Top of the reservoir; in the column (@i, @j). Returns average depth of the four top corners. """ return self._get_top(i, j) def top_active(self, i, j): """ Top of the active part of the reservoir; in the column (@i, @j). Raises ValueError if (i,j) column is inactive. """ for k in range(self.getNZ()): a_idx = self.get_active_index(ijk=(i,j,k)) if a_idx >= 0: return self._get_top1A(a_idx) raise ValueError('No active cell in column (%d,%d)' % (i,j)) def bottom(self, i, j): """ Bottom of the reservoir; in the column (@i, @j). """ return self._get_bottom( i, j) def locate_depth(self, depth, i, j): """ Will locate the k value of cell containing specified depth. Will scan through the grid column specified by the input arguments @i and @j and search for a cell containing the depth given by input argument @depth. The return value is the k value of cell containing @depth. If @depth is above the top of the reservoir the function will return -1, and if @depth is below the bottom of the reservoir the function will return -nz. """ return self._locate_depth( depth, i, j) def find_cell(self, x, y, z, start_ijk=None): """ Lookup cell containg true position (x,y,z). Will locate the cell in the grid which contains the true position (@x,@y,@z), the return value is as a triplet (i,j,k). The underlying C implementation is not veeery efficient, and can potentially take quite long time. If you provide a good intial guess with the parameter @start_ijk (a tuple (i,j,k)) things can speed up quite substantially. If the location (@x,@y,@z) can not be found in the grid, the method will return None. """ start_index = 0 if start_ijk: start_index = self.__global_index(ijk=start_ijk) global_index = self._get_ijk_xyz(x, y, z, start_index) if global_index >= 0: i = ctypes.c_int() j = ctypes.c_int() k = ctypes.c_int() self._get_ijk1(global_index, ctypes.byref(i), ctypes.byref(j), ctypes.byref(k)) return (i.value, j.value, k.value) return None def cell_contains(self, x, y, z, active_index=None, global_index=None, ijk=None): """ Will check if the cell contains point given by world coordinates (x,y,z). See method get_xyz() for documentation of @active_index, @global_index and @ijk. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) return self._cell_contains(gi, x,y,z) def find_cell_xy(self, x, y, k): """Will find the i,j of cell with utm coordinates x,y. The @k input is the layer you are interested in, the allowed values for k are [0,nz]. If the coordinates (x,y) are found to be outside the grid a ValueError exception is raised. """ if 0 <= k <= self.getNZ(): i = ctypes.c_int() j = ctypes.c_int() ok = self._get_ij_xy(x,y,k, ctypes.byref(i), ctypes.byref(j)) if ok: return (i.value, j.value) else: raise ValueError("Could not find the point:(%g,%g) in layer:%d" % (x,y,k)) else: raise IndexError("Invalid layer value:%d" % k) def find_cell_corner_xy(self, x, y, k): """Will find the corner nr of corner closest to utm coordinates x,y. The @k input is the layer you are interested in, the allowed values for k are [0,nz]. If the coordinates (x,y) are found to be outside the grid a ValueError exception is raised. """ i,j = self.findCellXY(x,y,k) if k == self.getNZ(): k -= 1 corner_shift = 4 else: corner_shift = 0 nx = self.getNX() x0,y0,z0 = self.getCellCorner(corner_shift, ijk=(i,j,k)) d0 = math.sqrt((x0 - x)*(x0 - x) + (y0 - y)*(y0 - y)) c0 = i + j*(nx + 1) x1,y1,z1 = self.getCellCorner(1 + corner_shift, ijk=(i,j,k)) d1 = math.sqrt((x1 - x)*(x1 - x) + (y1 - y)*(y1 - y)) c1 = i + 1 + j*(nx + 1) x2,y2,z2 = self.getCellCorner(2 + corner_shift, ijk=(i,j,k)) d2 = math.sqrt((x2 - x)*(x2 - x) + (y2 - y)*(y2 - y)) c2 = i + (j + 1)*(nx + 1) x3,y3,z3 = self.getCellCorner(3 + corner_shift, ijk=(i,j,k)) d3 = math.sqrt((x3 - x)*(x3 - x) + (y3 - y)*(y3 - y)) c3 = i + 1 + (j + 1)*(nx + 1) l = [(d0, c0), (d1,c1), (d2, c2), (d3,c3)] l.sort(key=lambda k: k[0]) return l[0][1] def cell_regular(self, active_index=None, global_index=None, ijk=None): """ The ECLIPSE grid models often contain various degenerate cells, which are twisted, have overlapping corners or what not. This function gives a moderate sanity check on a cell, essentially what the function does is to check if the cell contains it's own centerpoint - which is actually not as trivial as it sounds. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) return self._cell_regular( gi) def cell_volume(self, active_index=None, global_index=None, ijk=None): """ Calculate the volume of a cell. Will calculate the total volume of the cell. See method get_xyz() for documentation of @active_index, @global_index and @ijk. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) return self._get_cell_volume(gi) def cell_dz(self, active_index=None, global_index=None, ijk=None): """ The thickness of a cell. Will calculate the (average) thickness of the cell. See method get_xyz() for documentation of @active_index, @global_index and @ijk. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) return self._get_cell_thickness( gi) def get_cell_dims(self, active_index=None, global_index=None, ijk=None): """Will return a tuple (dx,dy,dz) for cell dimension. The dx and dy values are best effor estimates of the cell size along the i and j directions respectively. The three values are guaranteed to satisfy: dx * dy * dz = dV See method get_xyz() for documentation of @active_index, @global_index and @ijk. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) dx = self._get_cell_dx(gi) dy = self._get_cell_dy(gi) dz = self._get_cell_thickness( gi) return (dx,dy,dz) def get_num_lgr(self): """ How many LGRs are attached to this main grid? How many LGRs are attached to this main grid; the grid instance doing the query must itself be a main grid. """ return self._num_lgr() def has_lgr(self, lgr_name): """ Query if the grid has an LGR with name @lgr_name. """ if self._has_named_lgr(lgr_name): return True else: return False def get_lgr(self, lgr_key): """Get EclGrid instance with LGR content. Return an EclGrid instance based on the LGR @lgr, the input argument can either be the name of an LGR or the grid number of the LGR. The LGR grid instance is mostly like an ordinary grid instance; the only difference is that it can not be used for further queries about LGRs. If the grid does not contain an LGR with this name/nr exception KeyError will be raised. """ lgr = None if isinstance(lgr_key, int): if self._has_numbered_lgr(lgr_key): lgr = self._get_numbered_lgr(lgr_key) else: if self._has_named_lgr(lgr_key): lgr = self._get_named_lgr(lgr_key) if lgr is None: raise KeyError("No such LGR: %s" % lgr_key) lgr.setParent(self) return lgr def get_cell_lgr(self, active_index=None, global_index=None, ijk=None): """ Get EclGrid instance located in cell. Will query the current grid instance if the cell given by @active_index, @global_index or @ijk has been refined with an LGR. Will return None if the cell in question has not been refined, the return value can be used for further queries. See get_xyz() for documentation of the input parameters. """ gi = self.__global_index(ijk=ijk, active_index=active_index, global_index=global_index) lgr = self._get_cell_lgr(gi) if lgr: lgr.setParent(self) return lgr else: raise IndexError("No LGR defined for this cell") def grid_value(self, kw, i, j, k): """ Will evalute @kw in location (@i,@j,@k). The ECLIPSE properties and solution vectors are stored in restart and init files as 1D vectors of length nx*nx*nz or nactive. The grid_value() method is a minor convenience function to convert the (@i,@j,@k) input values to an appropriate 1D index. Depending on the length of kw the input arguments are converted either to an active index or to a global index. If the length of kw does not fit with either the global size of the grid or the active size of the grid things will fail hard. """ return self._grid_value(kw, i, j, k) def load_column(self, kw, i, j, column): """ Load the values of @kw from the column specified by (@i,@j). The method will scan through all k values of the input field @kw for fixed values of i and j. The size of @kw must be either nactive or nx*ny*nz. The input argument @column should be a DoubleVector instance, observe that if size of @kw == nactive k values corresponding to inactive cells will not be modified in the @column instance; in that case it is important that @column is initialized with a suitable default value. """ self._load_column( kw, i, j, column) def create_kw(self, array, kw_name, pack): """ Creates an EclKW instance based on existing 3D numpy object. The method create3D() does the inverse operation; creating a 3D numpy object from an EclKW instance. If the argument @pack is true the resulting keyword will have length 'nactive', otherwise the element will have length nx*ny*nz. """ if array.ndim == 3: dims = array.shape if dims[0] == self.getNX() and dims[1] == self.getNY() and dims[2] == self.getNZ(): dtype = array.dtype if dtype == numpy.int32: type = EclDataType.ECL_INT elif dtype == numpy.float32: type = EclDataType.ECL_FLOAT elif dtype == numpy.float64: type = EclDataType.ECL_DOUBLE else: sys.exit("Do not know how to create ecl_kw from type:%s" % dtype) if pack: size = self.getNumActive() else: size = self.getGlobalSize() if len(kw_name) > 8: # Silently truncate to length 8 - ECLIPSE has it's challenges. kw_name = kw_name[0:8] kw = EclKW(kw_name, size, type) active_index = 0 global_index = 0 for k in range(self.getNZ()): for j in range(self.getNY()): for i in range(self.getNX()): if pack: if self.active(global_index=global_index): kw[active_index] = array[i,j,k] active_index += 1 else: if dtype == numpy.int32: kw[global_index] = int(array[i,j,k]) else: kw[global_index] = array[i,j,k] global_index += 1 return kw raise ValueError("Wrong size / dimension on array") def coarse_groups(self): """ Will return the number of coarse groups in this grid. """ return self._num_coarse_groups() def in_coarse_group(self, global_index=None, ijk=None, active_index=None): """ Will return True or False if the cell is part of coarse group. """ global_index = self.__global_index(active_index=active_index, ijk=ijk, global_index=global_index) return self._in_coarse_group1(global_index) def create_3d(self, ecl_kw, default = 0): """ Creates a 3D numpy array object with the data from @ecl_kw. Observe that 3D numpy object is a copy of the data in the EclKW instance, i.e. modification to the numpy object will not be reflected in the ECLIPSE keyword. The methods createKW() does the inverse operation; creating an EclKW instance from a 3D numpy object. Alternative: Creating the numpy array object is not very efficient; if you only need a limited number of elements from the ecl_kw instance it might be wiser to use the grid_value() method: value = grid.grid_value(ecl_kw, i, j, k) """ if len(ecl_kw) == self.getNumActive() or len(ecl_kw) == self.getGlobalSize(): array = numpy.ones([ self.getGlobalSize() ], dtype=ecl_kw.dtype) * default kwa = ecl_kw.array if len(ecl_kw) == self.getGlobalSize(): for i in range(kwa.size): array[i] = kwa[i] else: for global_index in range(self.getGlobalSize()): active_index = self._get_active_index1(global_index) array[global_index] = kwa[active_index] array = array.reshape([self.getNX(), self.getNY(), self.getNZ()], order='F') return array else: err_msg_fmt = 'Keyword "%s" has invalid size %d; must be either nactive=%d or nx*ny*nz=%d' err_msg = err_msg_fmt % (ecl_kw, len(ecl_kw), self.getNumActive(), self.getGlobalSize()) raise ValueError(err_msg) def save_grdecl(self, pyfile, output_unit=EclUnitTypeEnum.ECL_METRIC_UNITS): """ Will write the the grid content as grdecl formatted keywords. Will only write the main grid. """ cfile = CFILE(pyfile) self._fprintf_grdecl2(cfile, output_unit) def save_EGRID(self, filename, output_unit=None): if output_unit is None: output_unit = self.unit_system self._fwrite_EGRID2(filename, output_unit) def save_GRID(self, filename, output_unit=EclUnitTypeEnum.ECL_METRIC_UNITS): """ Will save the current grid as a GRID file. """ self._fwrite_GRID2( filename, output_unit) def write_grdecl(self, ecl_kw, pyfile, special_header=None, default_value=0): """ Writes an EclKW instance as an ECLIPSE grdecl formatted file. The input argument @ecl_kw must be an EclKW instance of size nactive or nx*ny*nz. If the size is nactive the inactive cells will be filled with @default_value; hence the function will always write nx*ny*nz elements. The data in the @ecl_kw argument can be of type integer, float, double or bool. In the case of bool the default value must be specified as 1 (True) or 0 (False). The input argument @pyfile should be a valid python filehandle opened for writing; i.e. pyfile = open("PORO.GRDECL", "w") grid.write_grdecl(poro_kw , pyfile, default_value=0.0) grid.write_grdecl(permx_kw, pyfile, default_value=0.0) pyfile.close() """ if len(ecl_kw) == self.getNumActive() or len(ecl_kw) == self.getGlobalSize(): cfile = CFILE(pyfile) self._fwrite_grdecl(ecl_kw, special_header, cfile, default_value) else: raise ValueError("Keyword: %s has invalid size(%d), must be either nactive:%d or nx*ny*nz:%d" % (ecl_kw.getName(), len(ecl_kw), self.getNumActive(), self.getGlobalSize())) def exportACTNUM(self): actnum = IntVector(initial_size=self.getGlobalSize()) self._init_actnum(actnum.getDataPtr()) return actnum def compressed_kw_copy(self, kw): if len(kw) == self.getNumActive(): return kw.copy() elif len(kw) == self.getGlobalSize(): kw_copy = EclKW(kw.getName(), self.getNumActive(), kw.data_type) self._compressed_kw_copy(kw_copy, kw) return kw_copy else: raise ValueError("The input keyword must have nx*n*nz or nactive elements. Size:%d invalid" % len(kw)) def global_kw_copy(self, kw, default_value): if len(kw) == self.getGlobalSize(): return kw.copy() elif len(kw) == self.getNumActive(): kw_copy = EclKW(kw.getName(), self.getGlobalSize(), kw.data_type) kw_copy.assign(default_value) self._global_kw_copy(kw_copy, kw) return kw_copy else: raise ValueError("The input keyword must have nx*n*nz or nactive elements. Size:%d invalid" % len(kw)) def export_ACTNUM_kw(self): actnum = EclKW("ACTNUM", self.getGlobalSize(), EclDataType.ECL_INT) self._init_actnum(actnum.getDataPtr()) return actnum def create_volume_keyword(self, active_size=True): """Will create a EclKW initialized with cell volumes. The purpose of this method is to create a EclKW instance which is initialized with all the cell volumes, this can then be used to perform volume summation; i.e. to calculate the total oil volume: soil = 1 - sgas - swat cell_volume = grid.createVolumeKeyword() tmp = cell_volume * soil oip = tmp.sum() The oil in place calculation shown above could easily be implemented by iterating over the soil kw, however using the volume keyword has two advantages: 1. The calculation of cell volumes is quite time consuming, by storing the results in a kw they can be reused. 2. By using the compact form 'oip = cell_volume * soil' the inner loop iteration will go in C - which is faster. By default the kw will only have values for the active cells, but by setting the optional variable @active_size to False you will get volume values for all cells in the grid. """ return self._create_volume_keyword(active_size) def export_index(self, active_only = False): """ Exports a pandas dataframe containing index data of grid cells. The global_index of the cells is used as index in the pandas frame. columns 0, 1, 2 are i, j, k, respectively column 3 contains the active_index if active_only == True, only active cells are listed, otherwise all cells are listed. This index frame should typically be passed to the epxport_data(), export_volume() and export_corners() functions. """ if active_only: size = self.get_num_active() else: size = self.get_global_size() indx = numpy.zeros(size, dtype=numpy.int32) data = numpy.zeros([size, 4], dtype=numpy.int32) self._export_index_frame( indx.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), active_only ) df = pandas.DataFrame(data=data, index=indx, columns=['i', 'j', 'k', 'active']) return df def export_data(self, index_frame, kw, default = 0): """ Exports keywoard data to a numpy vector. Index_fram must be a pandas dataframe with the same structure as obtained from export_index. kw must have size of either global_size or num_active. The length of the numpy vector is the number of rows in index_frame. If kw is of length num_active, values in the output vector corresponding to inactive cells are set to default. """ if not isinstance(index_frame, pandas.DataFrame): raise TypeError("index_frame must be pandas.DataFrame") if len(kw) == self.get_global_size(): index = numpy.array( index_frame.index, dtype=numpy.int32 ) elif len(kw) == self.get_num_active(): index = numpy.array( index_frame["active"], dtype=numpy.int32 ) else: raise ValueError("The keyword must have a 3D compatible length") if kw.type is EclTypeEnum.ECL_INT_TYPE: data = numpy.full( len(index), default, dtype=numpy.int32 ) self._export_data_as_int( len(index), index.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), kw, data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)) ) return data elif kw.type is EclTypeEnum.ECL_FLOAT_TYPE or kw.type is EclTypeEnum.ECL_DOUBLE_TYPE: data = numpy.full( len(index), default, dtype=numpy.float64 ) self._export_data_as_double( len(index), index.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), kw, data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) ) return data else: raise TypeError("Keyword must be either int, float or double.") def export_volume(self, index_frame): """ Exports cell volume data to a numpy vector. Index_fram must be a pandas dataframe with the same structure as obtained from export_index. """ index = numpy.array( index_frame.index, dtype=numpy.int32 ) data = numpy.zeros( len(index ), dtype=numpy.float64 ) self._export_volume( len(index), index.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) ) return data def export_position(self, index_frame): """Exports cell position coordinates to a numpy vector (matrix), with columns 0, 1, 2 denoting coordinates x, y, and z, respectively. Index_fram must be a pandas dataframe with the same structure as obtained from export_index. """ index = numpy.array( index_frame.index, dtype=numpy.int32 ) data = numpy.zeros( [len(index), 3], dtype=numpy.float64 ) self._export_position( len(index), index.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) ) return data def export_corners(self, index_frame): """Exports cell corner position coordinates to a numpy vector (matrix). Index_fram must be a pandas dataframe with the same structure as obtained from export_index. Example of a row of the output matrix: 0 1 2 .... 21 22 23 x1 y1 z1 .... x8 y8 z8 In total there are eight 8 corners. They are described as follows: The corners in a cell are numbered 0 - 7, where corners 0-3 constitute one layer and the corners 4-7 consitute the other layer. Observe that the numbering does not follow a consistent rotation around the face: j 6---7 /|\ | | | 4---5 | | o----------> i 2---3 | | 0---1 Many grids are left-handed, i.e. the direction of increasing z will point down towards the center of the earth. Hence in the figure above the layer 4-7 will be deeper down in the reservoir than layer 0-3, and also have higher z-value. Warning: The main author of this code suspects that the coordinate system can be right-handed as well, giving a z axis which will increase 'towards the sky'; the safest way is probably to check this explicitly if it matters for the case at hand. """ index = numpy.array( index_frame.index, dtype=numpy.int32 ) data = numpy.zeros( [len(index), 24], dtype=numpy.float64 ) self._export_corners( len(index), index.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)), data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)) ) return data def export_coord(self): return self._export_coord() def export_zcorn(self): return self._export_zcorn() def export_actnum(self): return self._export_actnum() def export_mapaxes(self): if not self._use_mapaxes(): return None return self._export_mapaxes() @property def unit_system(self): return self._get_unit_system() monkey_the_camel(EclGrid, 'loadFromGrdecl', EclGrid.load_from_grdecl, classmethod) monkey_the_camel(EclGrid, 'loadFromFile', EclGrid.load_from_file, classmethod) monkey_the_camel(EclGrid, 'createRectangular', EclGrid.create_rectangular, classmethod) monkey_the_camel(EclGrid, 'dualGrid', EclGrid.dual_grid) monkey_the_camel(EclGrid, 'getDims', EclGrid.get_dims) monkey_the_camel(EclGrid, 'getNX', EclGrid.get_nx) monkey_the_camel(EclGrid, 'getNY', EclGrid.get_ny) monkey_the_camel(EclGrid, 'getNZ', EclGrid.get_nz) monkey_the_camel(EclGrid, 'getGlobalSize', EclGrid.get_global_size) monkey_the_camel(EclGrid, 'getNumActive', EclGrid.get_num_active) monkey_the_camel(EclGrid, 'getNumActiveFracture', EclGrid.get_num_active_fracture) monkey_the_camel(EclGrid, 'getBoundingBox2D', EclGrid.get_bounding_box_2d) monkey_the_camel(EclGrid, 'getName', EclGrid.get_name) monkey_the_camel(EclGrid, 'validCellGeometry', EclGrid.valid_cell_geometry) monkey_the_camel(EclGrid, 'getNodePos', EclGrid.get_node_pos) monkey_the_camel(EclGrid, 'getCellCorner', EclGrid.get_cell_corner) monkey_the_camel(EclGrid, 'getNodeXYZ', EclGrid.get_node_xyz) monkey_the_camel(EclGrid, 'getLayerXYZ', EclGrid.get_layer_xyz) monkey_the_camel(EclGrid, 'findCellXY', EclGrid.find_cell_xy) monkey_the_camel(EclGrid, 'findCellCornerXY', EclGrid.find_cell_corner_xy) monkey_the_camel(EclGrid, 'getCellDims', EclGrid.get_cell_dims) monkey_the_camel(EclGrid, 'getNumLGR', EclGrid.get_num_lgr) monkey_the_camel(EclGrid, 'createKW', EclGrid.create_kw) monkey_the_camel(EclGrid, 'create3D', EclGrid.create_3d) monkey_the_camel(EclGrid, 'compressedKWCopy', EclGrid.compressed_kw_copy) monkey_the_camel(EclGrid, 'globalKWCopy', EclGrid.global_kw_copy) monkey_the_camel(EclGrid, 'exportACTNUMKw', EclGrid.export_ACTNUM_kw) monkey_the_camel(EclGrid, 'createVolumeKeyword', EclGrid.create_volume_keyword)
gpl-3.0
gobabiertoAR/data-cleaner
data_cleaner/fingerprint_keyer.py
1
3587
#!/usr/bin/env python # -*- coding: utf-8 -*- """Implementa funciones para clusterizar strings. Utiliza el algoritmo Key Collision: Fingerprint. """ import string from unidecode import unidecode from functools import partial import pandas as pd def fingerprint_keyer(key_string, sort_tokens=False, remove_duplicates=False): """Convierte un string en su fingerprint key representation. Args: key_string (str): String para convertir en fingerprint key. Returns: str: Fingerprint correspondiente al input. """ if pd.isnull(key_string): return pd.np.nan # enforece string type if not isinstance(key_string, str): key_string = str(key_string) # remove leading and trailing whitespace, go to lowercase key_string = key_string.strip().lower() # remove all punctuation and control characters for punct in (set(key_string) & set(string.punctuation)): key_string = key_string.replace(punct, "") key_string = key_string.replace("\t", " ") # split the string into whitespace-separated tokens split_key = key_string.split() # remove duplicates, if chosen if remove_duplicates: dups_removed = set(split_key) else: dups_removed = split_key # sort the tokens, if chosen if sort_tokens: # sort the tokens sorted_split_key = sorted(dups_removed) else: sorted_split_key = dups_removed # join the tokens back together finger_printed_key = " ".join(sorted_split_key) # normalize extended western characters to their ASCII # representation (for example "gödel" → "godel") return unidecode(finger_printed_key) def group_fingerprint_strings(raw_strs, sort_tokens=False, remove_duplicates=False): """Clusteriza un conjunto de strings, según sus fingerprints. Args: raw_strs (list): Lista de strings sin procesar. Returns: (dict, dict): En el primer dict las keys son los fingerprints y los valores las strings originales. En el segundo las keys son las strings sin normalizar y los valores el conteo de la cantidad de veces que aparecen. """ res = {} counts = {} fingerprint_keyer_with_args = partial(fingerprint_keyer, sort_tokens=sort_tokens, remove_duplicates=remove_duplicates) for (key, raw_str) in zip(map(fingerprint_keyer_with_args, raw_strs), raw_strs): res[key] = res.get(key, []) + [raw_str] counts[raw_str] = counts.get(raw_str, 0) + 1 return res, counts def get_best_replacements(clusters, counts): """Selecciona los strings más utilizados por cluster. Itera por cada cluster para determinar la mejor string para reemplazar las strings originales. De momento solo utiliza un conteo simple pero podria agregarse algun criterio basado en la capitalizacion de las palabras Args: clusters (dict): {fingerprint: [raw_string_1, raw_string_2]} counts (dict): {raw_string: cant_veces_utilizada} Returns: dict: {fingerprint: string_mas_usada_para_esa_fingerprint} """ res = {} for (fingerprint, key_strings) in clusters.items(): res[fingerprint] = max(key_strings, key=lambda s: counts[s]) return res def replace_by_key(replacements, raw_strs): """Reemplaza strings por sus mejores equivalentes.""" return [replacements.get(fingerprint_keyer(s), s) for s in raw_strs]
gpl-3.0
pv/scikit-learn
examples/text/document_clustering.py
230
8356
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent sematic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
DGrady/pandas
pandas/tests/test_multilevel.py
2
106590
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101,W0141 from warnings import catch_warnings import datetime import itertools import pytest import pytz from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notna, isna, Timestamp from pandas.core.dtypes.common import is_float_dtype, is_integer_dtype import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, product as cart_product, zip) import pandas as pd import pandas._libs.index as _index class Base(object): def setup_method(self, method): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) class TestMultiLevel(Base): def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_append_index(self): idx1 = Index([1.1, 1.2, 1.3]) idx2 = pd.date_range('2011-01-01', freq='D', periods=3, tz='Asia/Tokyo') idx3 = Index(['A', 'B', 'C']) midx_lv2 = MultiIndex.from_arrays([idx1, idx2]) midx_lv3 = MultiIndex.from_arrays([idx1, idx2, idx3]) result = idx1.append(midx_lv2) # see gh-7112 tz = pytz.timezone('Asia/Tokyo') expected_tuples = [(1.1, tz.localize(datetime.datetime(2011, 1, 1))), (1.2, tz.localize(datetime.datetime(2011, 1, 2))), (1.3, tz.localize(datetime.datetime(2011, 1, 3)))] expected = Index([1.1, 1.2, 1.3] + expected_tuples) tm.assert_index_equal(result, expected) result = midx_lv2.append(idx1) expected = Index(expected_tuples + [1.1, 1.2, 1.3]) tm.assert_index_equal(result, expected) result = midx_lv2.append(midx_lv2) expected = MultiIndex.from_arrays([idx1.append(idx1), idx2.append(idx2)]) tm.assert_index_equal(result, expected) result = midx_lv2.append(midx_lv3) tm.assert_index_equal(result, expected) result = midx_lv3.append(midx_lv2) expected = Index._simple_new( np.array([(1.1, tz.localize(datetime.datetime(2011, 1, 1)), 'A'), (1.2, tz.localize(datetime.datetime(2011, 1, 2)), 'B'), (1.3, tz.localize(datetime.datetime(2011, 1, 3)), 'C')] + expected_tuples), None) tm.assert_index_equal(result, expected) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) assert isinstance(multi.index, MultiIndex) assert not isinstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array( ['x', 'y', 'x', 'y'])]) assert isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) assert isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) tm.assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) tm.assert_series_equal(result, expected, check_names=False) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T tm.assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) tm.assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby(level='month').transform( np.sum) expected = op(self.ymd['A'], broadcasted) expected.name = 'A' tm.assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): unpickled = tm.round_trip_pickle(frame) tm.assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): expected = self.frame.iloc[[0, 3]] reindexed = self.frame.loc[[('foo', 'one'), ('bar', 'one')]] tm.assert_frame_equal(reindexed, expected) with catch_warnings(record=True): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] tm.assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) assert chunk.index is new_index chunk = self.ymd.loc[new_index] assert chunk.index is new_index with catch_warnings(record=True): chunk = self.ymd.ix[new_index] assert chunk.index is new_index ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) assert chunk.columns is new_index chunk = ymdT.loc[:, new_index] assert chunk.columns is new_index def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') assert lines[2].startswith('a 0 foo') def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] tm.assert_almost_equal(col.values, df.values[:, 0]) with pytest.raises(KeyError): df[('foo', 'four')] with pytest.raises(KeyError): df['foobar'] def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] # TODO(wesm): unused? # result2 = s.loc[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) tm.assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] assert result == expected # fancy expected = s.reindex(s.index[49:51]) result = s.loc[[(2000, 3, 10), (2000, 3, 13)]] tm.assert_series_equal(result, expected) with catch_warnings(record=True): result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] tm.assert_series_equal(result, expected) # key error pytest.raises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access pytest.raises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] tm.assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan assert isna(s.values[42:65]).all() assert notna(s.values[:42]).all() assert notna(s.values[65:]).all() s[2000, 3, 10] = np.nan assert isna(s[49]) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) tm.assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) with tm.assert_raises_regex(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.iloc[:4] expected = self.frame[:4] tm.assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.iloc[:4] = 0 assert (cp.values[:4] == 0).all() assert (cp.values[4:] != 0).all() def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.loc[:, 'value'] tm.assert_series_equal(df['value'], result) with catch_warnings(record=True): result = df.ix[:, 'value'] tm.assert_series_equal(df['value'], result) result = df.loc[df.index[1:3], 'value'] tm.assert_series_equal(df['value'][1:3], result) result = df.loc[:, :] tm.assert_frame_equal(df, result) result = df df.loc[:, 'value'] = 10 result['value'] = 10 tm.assert_frame_equal(df, result) df.loc[:, :] = 10 tm.assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) tm.assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] tm.assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values tm.assert_frame_equal(cp['a'], cp['b']) # --------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work assert (df['A'].values == 0).all() # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] sliced_a1 = df['A', '1'] sliced_a2 = df['A', '2'] sliced_b1 = df['B', '1'] tm.assert_series_equal(sliced_a1, sliced_b1, check_names=False) tm.assert_series_equal(sliced_a2, sliced_b1, check_names=False) assert sliced_a1.name == ('A', '1') assert sliced_a2.name == ('A', '2') assert sliced_b1.name == ('B', '1') def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.loc[(0, 0), :] expected = idf.loc[0, 0] expected2 = idf.xs((0, 0)) with catch_warnings(record=True): expected3 = idf.ix[0, 0] tm.assert_series_equal(result, expected) tm.assert_series_equal(result, expected2) tm.assert_series_equal(result, expected3) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.loc[(2000, 1, 6), ['A', 'B', 'C']] expected = df.loc[2000, 1, 6][['A', 'B', 'C']] tm.assert_series_equal(result, expected) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.loc[('bar', 'two')] tm.assert_series_equal(xs, xs2) tm.assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a', 'abcde', 1), ('b', 'bbcde', 2), ('y', 'yzcde', 25), ('z', 'xbcde', 24), ('z', None, 26), ('z', 'zbcde', 25), ('z', 'ybcde', 26), ] df = DataFrame(acc, columns=['a1', 'a2', 'cnt']).set_index(['a1', 'a2']) expected = DataFrame({'cnt': [24, 26, 25, 26]}, index=Index( ['xbcde', np.nan, 'zbcde', 'ybcde'], name='a2')) result = df.xs('z', level='a1') tm.assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.loc['foo'] expected = self.frame.T['foo'].T tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.loc[2000, 4] tm.assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.loc['foo', 'one'] tm.assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ( 'p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) tm.assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 pytest.raises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep=r'\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') tm.assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 pytest.raises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.loc[20111201, :] tm.assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep=r'\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') assert len(result) == 2 tm.assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] tm.assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.loc[2000, 5]['A'] tm.assert_series_equal(result, expected) # not implementing this for now pytest.raises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # tm.assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) result = df['bar'] result2 = df.loc[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.loc[1:2] exp = frame.reindex(frame.index[2:]) tm.assert_frame_equal(res, exp) frame.loc[1:2] = 7 assert (frame.loc[1:2] == 7).values.all() series = Series(np.random.randn(len(index)), index=index) res = series.loc[1:2] exp = series.reindex(series.index[2:]) tm.assert_series_equal(res, exp) series.loc[1:2] = 7 assert (series.loc[1:2] == 7).values.all() def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.loc[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) # raises exception pytest.raises(KeyError, frame.loc.__getitem__, 3) # however this will work result = self.frame.iloc[2] expected = self.frame.xs(self.frame.index[2]) tm.assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) tm.assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() tm.assert_series_equal(dft['foo', 'two'], s > s.median()) # assert isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) tm.assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.loc[('bar', 'two'), 'B'] = 5 assert self.frame.loc[('bar', 'two'), 'B'] == 5 # with integer labels df = self.frame.copy() df.columns = lrange(3) df.loc[('bar', 'two'), 1] = 7 assert df.loc[('bar', 'two'), 1] == 7 with catch_warnings(record=True): df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 assert df.loc[('bar', 'two'), 1] == 7 def test_fancy_slice_partial(self): result = self.frame.loc['bar':'baz'] expected = self.frame[3:7] tm.assert_frame_equal(result, expected) result = self.ymd.loc[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] tm.assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.loc[('a', 'y'), :] expected = df.loc[('a', 'y')] tm.assert_frame_equal(result, expected) result = df.loc[('a', 'y'), [1, 0]] expected = df.loc[('a', 'y')][[1, 0]] tm.assert_frame_equal(result, expected) with catch_warnings(record=True): result = df.ix[('a', 'y'), [1, 0]] tm.assert_frame_equal(result, expected) pytest.raises(KeyError, df.loc.__getitem__, (('a', 'foo'), slice(None, None))) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product( ['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() assert is_integer_dtype(deleveled['prm1']) assert is_float_dtype(deleveled['prm2']) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) assert len(deleveled.columns) == len(self.ymd.columns) deleveled = self.series.reset_index() assert isinstance(deleveled, DataFrame) assert len(deleveled.columns) == len(self.series.index.levels) + 1 deleveled = self.series.reset_index(drop=True) assert isinstance(deleveled, Series) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count() expected = expected.reindex_like(result).astype('i8') tm.assert_frame_equal(result, expected) self.frame.iloc[1, [1, 2]] = np.nan self.frame.iloc[7, [0, 1]] = np.nan self.ymd.iloc[1, [1, 2]] = np.nan self.ymd.iloc[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() tm.assert_raises_regex( TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) tm.assert_index_equal(result.columns, pd.Index(['A', 'B', 'C'], name='exp')) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() tm.assert_series_equal( result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() tm.assert_series_equal( result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0], name='A') tm.assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_get_level_number_out_of_bounds(self): with tm.assert_raises_regex(IndexError, "Too many levels"): self.frame.index._get_level_number(2) with tm.assert_raises_regex(IndexError, "not a valid level number"): self.frame.index._get_level_number(-3) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked.unstack() # test that ints work self.ymd.astype(int).unstack() # test that int32 work self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), ( 1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() tm.assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sort_index(level=2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) tm.assert_frame_equal(restacked.sort_index(level=0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort_index(axis=1, ascending=False) restacked = unstacked.stack() tm.assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() tm.assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) tm.assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) tm.assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).loc[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() tm.assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) # GH10417 def check(left, right): tm.assert_series_equal(left, right) assert not left.index.is_unique li, ri = left.index, right.index tm.assert_index_equal(li, ri) df = DataFrame(np.arange(12).reshape(4, 3), index=list('abab'), columns=['1st', '2nd', '3rd']) mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd', '3rd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.tile( np.arange(3), 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) df.columns = ['1st', '2nd', '1st'] mi = MultiIndex(levels=[['a', 'b'], ['1st', '2nd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.tile( [0, 1, 0], 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) tpls = ('a', 2), ('b', 1), ('a', 1), ('b', 2) df.index = MultiIndex.from_tuples(tpls) mi = MultiIndex(levels=[['a', 'b'], [1, 2], ['1st', '2nd']], labels=[np.tile( np.arange(2).repeat(3), 2), np.repeat( [1, 0, 1], [3, 6, 3]), np.tile( [0, 1, 0], 4)]) left, right = df.stack(), Series(np.arange(12), index=mi) check(left, right) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() tm.assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sort_index(level=1, axis=1) stacked = df.stack() result = df['foo'].stack().sort_index() tm.assert_series_equal(stacked['foo'], result, check_names=False) assert result.name is None assert stacked['bar'].dtype == np.float_ def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() tm.assert_series_equal( restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() assert unstacked.index.name == 'first' assert unstacked.columns.names == ['exp', 'second'] restacked = unstacked.stack() assert restacked.index.names == self.frame.index.names def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) tm.assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) tm.assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() tm.assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') tm.assert_frame_equal(unstacked, expected) assert unstacked.columns.names == expected.columns.names # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) tm.assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sort_index(level=0) tm.assert_frame_equal(restacked, self.ymd) assert restacked.index.names == self.ymd.index.names # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') tm.assert_frame_equal(unstacked, expected.loc[:, unstacked.columns]) def test_stack_names_and_numbers(self): unstacked = self.ymd.unstack(['year', 'month']) # Can't use mixture of names and numbers to stack with tm.assert_raises_regex(ValueError, "level should contain"): unstacked.stack([0, 'month']) def test_stack_multiple_out_of_bounds(self): # nlevels == 3 unstacked = self.ymd.unstack(['year', 'month']) with tm.assert_raises_regex(IndexError, "Too many levels"): unstacked.stack([2, 3]) with tm.assert_raises_regex(IndexError, "not a valid level number"): unstacked.stack([-4, -3]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex( ['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) tm.assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) tm.assert_frame_equal(result1, expected) tm.assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex( ['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) tm.assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU').mean() rs = down.stack('ID') xp = unst.loc[:, ['VAR1']].resample('W-THU').mean().stack('ID') xp.columns.name = 'Params' tm.assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) assert len(stacked) > len(stacked.dropna()) stacked = df.unstack().stack(dropna=True) tm.assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1 ]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) result = applied.reindex(expected.index) tm.assert_series_equal(result, expected, check_names=False) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() assert len(result.columns) == 4 recons = result.stack() tm.assert_frame_equal(recons, df) def test_stack_order_with_unsorted_levels(self): # GH 16323 def manual_compare_stacked(df, df_stacked, lev0, lev1): assert all(df.loc[row, col] == df_stacked.loc[(row, col[lev0]), col[lev1]] for row in df.index for col in df.columns) # deep check for 1-row case for width in [2, 3]: levels_poss = itertools.product( itertools.permutations([0, 1, 2], width), repeat=2) for levels in levels_poss: columns = MultiIndex(levels=levels, labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(columns=columns, data=[range(4)]) for stack_lev in range(2): df_stacked = df.stack(stack_lev) manual_compare_stacked(df, df_stacked, stack_lev, 1 - stack_lev) # check multi-row case mi = MultiIndex(levels=[["A", "C", "B"], ["B", "A", "C"]], labels=[np.repeat(range(3), 3), np.tile(range(3), 3)]) df = DataFrame(columns=mi, index=range(5), data=np.arange(5 * len(mi)).reshape(5, -1)) manual_compare_stacked(df, df.stack(0), 0, 1) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ( 'f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() assert (result.columns == ['f2', 'f3']).all() def test_join(self): a = self.frame.loc[self.frame.index[:5], ['A']] b = self.frame.loc[self.frame.index[2:], ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan assert not np.isnan(joined.values).all() # TODO what should join do with names ? tm.assert_frame_equal(joined, expected, check_names=False) def test_swaplevel(self): swapped = self.frame['A'].swaplevel() swapped2 = self.frame['A'].swaplevel(0) swapped3 = self.frame['A'].swaplevel(0, 1) swapped4 = self.frame['A'].swaplevel('first', 'second') assert not swapped.index.equals(self.frame.index) tm.assert_series_equal(swapped, swapped2) tm.assert_series_equal(swapped, swapped3) tm.assert_series_equal(swapped, swapped4) back = swapped.swaplevel() back2 = swapped.swaplevel(0) back3 = swapped.swaplevel(0, 1) back4 = swapped.swaplevel('second', 'first') assert back.index.equals(self.frame.index) tm.assert_series_equal(back, back2) tm.assert_series_equal(back, back3) tm.assert_series_equal(back, back4) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T tm.assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): with catch_warnings(record=True): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) for result in (panel.swaplevel(axis='major'), panel.swaplevel(0, axis='major'), panel.swaplevel(0, 1, axis='major')): tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) tm.assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) tm.assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) tm.assert_frame_equal(result, expected) with tm.assert_raises_regex(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with tm.assert_raises_regex(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] assert isinstance(df.columns, MultiIndex) assert (df[2000, 1, 10] == df[2000, 1, 7]).all() def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ( "A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ( "Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) tm.assert_series_equal(res, exp) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 assert (df['foo'].values == 0).all() # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sort_index(level=0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df pytest.raises(com.SettingWithCopyError, f) try: df = f() except: pass assert (df['foo', 'one'] == 0).all() def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) tm.assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) tm.assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) tm.assert_series_equal(result, expect, check_names=False) assert result.index.name == 'b' result = series.count(level='a') expect = self.series.count(level=0) tm.assert_series_equal(result, expect, check_names=False) assert result.index.name == 'a' pytest.raises(KeyError, series.count, 'x') pytest.raises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var', 'sem'] def test_series_group_min_max(self): for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) tm.assert_series_equal(leftside, rightside) def test_frame_group_ops(self): self.frame.iloc[1, [1, 2]] = np.nan self.frame.iloc[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] tm.assert_index_equal(leftside._get_axis(axis), level_index) tm.assert_index_equal(rightside._get_axis(axis), level_index) tm.assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) tm.assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) tm.assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) tm.assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile( np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) tm.assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) tm.assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() tm.assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum() tm.assert_series_equal(result, expected) def test_groupby_multilevel(self): result = self.ymd.groupby(level=[0, 1]).mean() k1 = self.ymd.index.get_level_values(0) k2 = self.ymd.index.get_level_values(1) expected = self.ymd.groupby([k1, k2]).mean() # TODO groupby with level_values drops names tm.assert_frame_equal(result, expected, check_names=False) assert result.index.names == self.ymd.index.names[:2] result2 = self.ymd.groupby(level=self.ymd.index.names[:2]).mean() tm.assert_frame_equal(result, result2) def test_groupby_multilevel_with_transform(self): pass def test_multilevel_consolidate(self): index = MultiIndex.from_tuples([('foo', 'one'), ('foo', 'two'), ( 'bar', 'one'), ('bar', 'two')]) df = DataFrame(np.random.randn(4, 4), index=index, columns=index) df['Totals', ''] = df.sum(1) df = df._consolidate() def test_ix_preserve_names(self): result = self.ymd.loc[2000] result2 = self.ymd['A'].loc[2000] assert result.index.names == self.ymd.index.names[1:] assert result2.index.names == self.ymd.index.names[1:] result = self.ymd.loc[2000, 2] result2 = self.ymd['A'].loc[2000, 2] assert result.index.name == self.ymd.index.names[2] assert result2.index.name == self.ymd.index.names[2] def test_partial_set(self): # GH #397 df = self.ymd.copy() exp = self.ymd.copy() df.loc[2000, 4] = 0 exp.loc[2000, 4].values[:] = 0 tm.assert_frame_equal(df, exp) df['A'].loc[2000, 4] = 1 exp['A'].loc[2000, 4].values[:] = 1 tm.assert_frame_equal(df, exp) df.loc[2000] = 5 exp.loc[2000].values[:] = 5 tm.assert_frame_equal(df, exp) # this works...for now df['A'].iloc[14] = 5 assert df['A'][14] == 5 def test_unstack_preserve_types(self): # GH #403 self.ymd['E'] = 'foo' self.ymd['F'] = 2 unstacked = self.ymd.unstack('month') assert unstacked['A', 1].dtype == np.float64 assert unstacked['E', 1].dtype == np.object_ assert unstacked['F', 1].dtype == np.float64 def test_unstack_group_index_overflow(self): labels = np.tile(np.arange(500), 2) level = np.arange(500) index = MultiIndex(levels=[level] * 8 + [[0, 1]], labels=[labels] * 8 + [np.arange(2).repeat(500)]) s = Series(np.arange(1000), index=index) result = s.unstack() assert result.shape == (500, 2) # test roundtrip stacked = result.stack() tm.assert_series_equal(s, stacked.reindex(s.index)) # put it at beginning index = MultiIndex(levels=[[0, 1]] + [level] * 8, labels=[np.arange(2).repeat(500)] + [labels] * 8) s = Series(np.arange(1000), index=index) result = s.unstack(0) assert result.shape == (500, 2) # put it in middle index = MultiIndex(levels=[level] * 4 + [[0, 1]] + [level] * 4, labels=([labels] * 4 + [np.arange(2).repeat(500)] + [labels] * 4)) s = Series(np.arange(1000), index=index) result = s.unstack(4) assert result.shape == (500, 2) def test_getitem_lowerdim_corner(self): pytest.raises(KeyError, self.frame.loc.__getitem__, (('bar', 'three'), 'B')) # in theory should be inserting in a sorted space???? self.frame.loc[('bar', 'three'), 'B'] = 0 assert self.frame.sort_index().loc[('bar', 'three'), 'B'] == 0 # --------------------------------------------------------------------- # AMBIGUOUS CASES! def test_partial_ix_missing(self): pytest.skip("skipping for now") result = self.ymd.loc[2000, 0] expected = self.ymd.loc[2000]['A'] tm.assert_series_equal(result, expected) # need to put in some work here # self.ymd.loc[2000, 0] = 0 # assert (self.ymd.loc[2000]['A'] == 0).all() # Pretty sure the second (and maybe even the first) is already wrong. pytest.raises(Exception, self.ymd.loc.__getitem__, (2000, 6)) pytest.raises(Exception, self.ymd.loc.__getitem__, (2000, 6), 0) # --------------------------------------------------------------------- def test_to_html(self): self.ymd.columns.name = 'foo' self.ymd.to_html() self.ymd.T.to_html() def test_level_with_tuples(self): index = MultiIndex(levels=[[('foo', 'bar', 0), ('foo', 'baz', 0), ( 'foo', 'qux', 0)], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar', 0)] result2 = series.loc[('foo', 'bar', 0)] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) pytest.raises(KeyError, series.__getitem__, (('foo', 'bar', 0), 2)) result = frame.loc[('foo', 'bar', 0)] result2 = frame.xs(('foo', 'bar', 0)) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) index = MultiIndex(levels=[[('foo', 'bar'), ('foo', 'baz'), ( 'foo', 'qux')], [0, 1]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) series = Series(np.random.randn(6), index=index) frame = DataFrame(np.random.randn(6, 4), index=index) result = series[('foo', 'bar')] result2 = series.loc[('foo', 'bar')] expected = series[:2] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = frame.loc[('foo', 'bar')] result2 = frame.xs(('foo', 'bar')) expected = frame[:2] expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_int_series_slicing(self): s = self.ymd['A'] result = s[5:] expected = s.reindex(s.index[5:]) tm.assert_series_equal(result, expected) exp = self.ymd['A'].copy() s[5:] = 0 exp.values[5:] = 0 tm.assert_numpy_array_equal(s.values, exp.values) result = self.ymd[5:] expected = self.ymd.reindex(s.index[5:]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('unicode_strings', [True, False]) def test_mixed_depth_get(self, unicode_strings): # If unicode_strings is True, the column labels in dataframe # construction will use unicode strings in Python 2 (pull request # #17099). arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] if unicode_strings: arrays = [[u(s) for s in arr] for arr in arrays] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.randn(4, 6), columns=index) result = df['a'] expected = df['a', '', ''].rename('a') tm.assert_series_equal(result, expected) result = df['routine1', 'result1'] expected = df['routine1', 'result1', ''] expected = expected.rename(('routine1', 'result1')) tm.assert_series_equal(result, expected) def test_mixed_depth_insert(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.copy() expected = df.copy() result['b'] = [1, 2, 3, 4] expected['b', '', ''] = [1, 2, 3, 4] tm.assert_frame_equal(result, expected) def test_mixed_depth_drop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) result = df.drop('a', axis=1) expected = df.drop([('a', '', '')], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(['top'], axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) expected = expected.drop([('top', 'OD', 'wy')], axis=1) tm.assert_frame_equal(expected, result) result = df.drop(('top', 'OD', 'wx'), axis=1) expected = df.drop([('top', 'OD', 'wx')], axis=1) tm.assert_frame_equal(expected, result) expected = df.drop([('top', 'OD', 'wy')], axis=1) expected = df.drop('top', axis=1) result = df.drop('result1', level=1, axis=1) expected = df.drop([('routine1', 'result1', ''), ('routine2', 'result1', '')], axis=1) tm.assert_frame_equal(expected, result) def test_drop_nonunique(self): df = DataFrame([["x-a", "x", "a", 1.5], ["x-a", "x", "a", 1.2], ["z-c", "z", "c", 3.1], ["x-a", "x", "a", 4.1], ["x-b", "x", "b", 5.1], ["x-b", "x", "b", 4.1], ["x-b", "x", "b", 2.2], ["y-a", "y", "a", 1.2], ["z-b", "z", "b", 2.1]], columns=["var1", "var2", "var3", "var4"]) grp_size = df.groupby("var1").size() drop_idx = grp_size.loc[grp_size == 1] idf = df.set_index(["var1", "var2", "var3"]) # it works! #2101 result = idf.drop(drop_idx.index, level=0).reset_index() expected = df[-df.var1.isin(drop_idx.index)] result.index = expected.index tm.assert_frame_equal(result, expected) def test_mixed_depth_pop(self): arrays = [['a', 'top', 'top', 'routine1', 'routine1', 'routine2'], ['', 'OD', 'OD', 'result1', 'result2', 'result1'], ['', 'wx', 'wy', '', '', '']] tuples = sorted(zip(*arrays)) index = MultiIndex.from_tuples(tuples) df = DataFrame(randn(4, 6), columns=index) df1 = df.copy() df2 = df.copy() result = df1.pop('a') expected = df2.pop(('a', '', '')) tm.assert_series_equal(expected, result, check_names=False) tm.assert_frame_equal(df1, df2) assert result.name == 'a' expected = df1['top'] df1 = df1.drop(['top'], axis=1) result = df2.pop('top') tm.assert_frame_equal(expected, result) tm.assert_frame_equal(df1, df2) def test_reindex_level_partial_selection(self): result = self.frame.reindex(['foo', 'qux'], level=0) expected = self.frame.iloc[[0, 1, 2, 7, 8, 9]] tm.assert_frame_equal(result, expected) result = self.frame.T.reindex_axis(['foo', 'qux'], axis=1, level=0) tm.assert_frame_equal(result, expected.T) result = self.frame.loc[['foo', 'qux']] tm.assert_frame_equal(result, expected) result = self.frame['A'].loc[['foo', 'qux']] tm.assert_series_equal(result, expected['A']) result = self.frame.T.loc[:, ['foo', 'qux']] tm.assert_frame_equal(result, expected.T) def test_setitem_multiple_partial(self): expected = self.frame.copy() result = self.frame.copy() result.loc[['foo', 'bar']] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_frame_equal(result, expected) expected = self.frame.copy() result = self.frame.copy() result.loc['foo':'bar'] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_frame_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.loc[['foo', 'bar']] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_series_equal(result, expected) expected = self.frame['A'].copy() result = self.frame['A'].copy() result.loc['foo':'bar'] = 0 expected.loc['foo'] = 0 expected.loc['bar'] = 0 tm.assert_series_equal(result, expected) def test_drop_level(self): result = self.frame.drop(['bar', 'qux'], level='first') expected = self.frame.iloc[[0, 1, 2, 5, 6]] tm.assert_frame_equal(result, expected) result = self.frame.drop(['two'], level='second') expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]] tm.assert_frame_equal(result, expected) result = self.frame.T.drop(['bar', 'qux'], axis=1, level='first') expected = self.frame.iloc[[0, 1, 2, 5, 6]].T tm.assert_frame_equal(result, expected) result = self.frame.T.drop(['two'], axis=1, level='second') expected = self.frame.iloc[[0, 2, 3, 6, 7, 9]].T tm.assert_frame_equal(result, expected) def test_drop_level_nonunique_datetime(self): # GH 12701 idx = pd.Index([2, 3, 4, 4, 5], name='id') idxdt = pd.to_datetime(['201603231400', '201603231500', '201603231600', '201603231600', '201603231700']) df = DataFrame(np.arange(10).reshape(5, 2), columns=list('ab'), index=idx) df['tstamp'] = idxdt df = df.set_index('tstamp', append=True) ts = pd.Timestamp('201603231600') assert not df.index.is_unique result = df.drop(ts, level='tstamp') expected = df.loc[idx != 4] tm.assert_frame_equal(result, expected) def test_drop_preserve_names(self): index = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [1, 2, 3, 1, 2, 3]], names=['one', 'two']) df = DataFrame(np.random.randn(6, 3), index=index) result = df.drop([(0, 2)]) assert result.index.names == ('one', 'two') def test_unicode_repr_issues(self): levels = [Index([u('a/\u03c3'), u('b/\u03c3'), u('c/\u03c3')]), Index([0, 1])] labels = [np.arange(3).repeat(2), np.tile(np.arange(2), 3)] index = MultiIndex(levels=levels, labels=labels) repr(index.levels) # NumPy bug # repr(index.get_level_values(1)) def test_unicode_repr_level_names(self): index = MultiIndex.from_tuples([(0, 0), (1, 1)], names=[u('\u0394'), 'i1']) s = Series(lrange(2), index=index) df = DataFrame(np.random.randn(2, 4), index=index) repr(s) repr(df) def test_dataframe_insert_column_all_na(self): # GH #1534 mix = MultiIndex.from_tuples([('1a', '2a'), ('1a', '2b'), ('1a', '2c') ]) df = DataFrame([[1, 2], [3, 4], [5, 6]], index=mix) s = Series({(1, 1): 1, (1, 2): 2}) df['new'] = s assert df['new'].isna().all() def test_join_segfault(self): # 1532 df1 = DataFrame({'a': [1, 1], 'b': [1, 2], 'x': [1, 2]}) df2 = DataFrame({'a': [2, 2], 'b': [1, 2], 'y': [1, 2]}) df1 = df1.set_index(['a', 'b']) df2 = df2.set_index(['a', 'b']) # it works! for how in ['left', 'right', 'outer']: df1.join(df2, how=how) def test_set_column_scalar_with_ix(self): subset = self.frame.index[[1, 4, 5]] self.frame.loc[subset] = 99 assert (self.frame.loc[subset].values == 99).all() col = self.frame['B'] col[subset] = 97 assert (self.frame.loc[subset, 'B'] == 97).all() def test_frame_dict_constructor_empty_series(self): s1 = Series([ 1, 2, 3, 4 ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)])) s2 = Series([ 1, 2, 3, 4 ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)])) s3 = Series() # it works! DataFrame({'foo': s1, 'bar': s2, 'baz': s3}) DataFrame.from_dict({'foo': s1, 'baz': s3, 'bar': s2}) def test_indexing_ambiguity_bug_1678(self): columns = MultiIndex.from_tuples([('Ohio', 'Green'), ('Ohio', 'Red'), ( 'Colorado', 'Green')]) index = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2) ]) frame = DataFrame(np.arange(12).reshape((4, 3)), index=index, columns=columns) result = frame.iloc[:, 1] exp = frame.loc[:, ('Ohio', 'Red')] assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_nonunique_assignment_1750(self): df = DataFrame([[1, 1, "x", "X"], [1, 1, "y", "Y"], [1, 2, "z", "Z"]], columns=list("ABCD")) df = df.set_index(['A', 'B']) ix = MultiIndex.from_tuples([(1, 1)]) df.loc[ix, "C"] = '_' assert (df.xs((1, 1))['C'] == '_').all() def test_indexing_over_hashtable_size_cutoff(self): n = 10000 old_cutoff = _index._SIZE_CUTOFF _index._SIZE_CUTOFF = 20000 s = Series(np.arange(n), MultiIndex.from_arrays((["a"] * n, np.arange(n)))) # hai it works! assert s[("a", 5)] == 5 assert s[("a", 6)] == 6 assert s[("a", 7)] == 7 _index._SIZE_CUTOFF = old_cutoff def test_multiindex_na_repr(self): # only an issue with long columns from numpy import nan df3 = DataFrame({ 'A' * 30: {('A', 'A0006000', 'nuit'): 'A0006000'}, 'B' * 30: {('A', 'A0006000', 'nuit'): nan}, 'C' * 30: {('A', 'A0006000', 'nuit'): nan}, 'D' * 30: {('A', 'A0006000', 'nuit'): nan}, 'E' * 30: {('A', 'A0006000', 'nuit'): 'A'}, 'F' * 30: {('A', 'A0006000', 'nuit'): nan}, }) idf = df3.set_index(['A' * 30, 'C' * 30]) repr(idf) def test_assign_index_sequences(self): # #2200 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}).set_index(["a", "b"]) l = list(df.index) l[0] = ("faz", "boo") df.index = l repr(df) # this travels an improper code path l[0] = ["faz", "boo"] df.index = l repr(df) def test_tuples_have_na(self): index = MultiIndex(levels=[[1, 0], [0, 1, 2, 3]], labels=[[1, 1, 1, 1, -1, 0, 0, 0], [0, 1, 2, 3, 0, 1, 2, 3]]) assert isna(index[4][0]) assert isna(index.values[4][0]) def test_duplicate_groupby_issues(self): idx_tp = [('600809', '20061231'), ('600809', '20070331'), ('600809', '20070630'), ('600809', '20070331')] dt = ['demo', 'demo', 'demo', 'demo'] idx = MultiIndex.from_tuples(idx_tp, names=['STK_ID', 'RPT_Date']) s = Series(dt, index=idx) result = s.groupby(s.index).first() assert len(result) == 3 def test_duplicate_mi(self): # GH 4516 df = DataFrame([['foo', 'bar', 1.0, 1], ['foo', 'bar', 2.0, 2], ['bah', 'bam', 3.0, 3], ['bah', 'bam', 4.0, 4], ['foo', 'bar', 5.0, 5], ['bah', 'bam', 6.0, 6]], columns=list('ABCD')) df = df.set_index(['A', 'B']) df = df.sort_index(level=0) expected = DataFrame([['foo', 'bar', 1.0, 1], ['foo', 'bar', 2.0, 2], ['foo', 'bar', 5.0, 5]], columns=list('ABCD')).set_index(['A', 'B']) result = df.loc[('foo', 'bar')] tm.assert_frame_equal(result, expected) def test_duplicated_drop_duplicates(self): # GH 4060 idx = MultiIndex.from_arrays(([1, 2, 3, 1, 2, 3], [1, 1, 1, 1, 2, 2])) expected = np.array( [False, False, False, True, False, False], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([1, 2, 3, 2, 3], [1, 1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(), expected) expected = np.array([True, False, False, False, False, False]) duplicated = idx.duplicated(keep='last') tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([2, 3, 1, 2, 3], [1, 1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(keep='last'), expected) expected = np.array([True, False, False, True, False, False]) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool expected = MultiIndex.from_arrays(([2, 3, 2, 3], [1, 1, 2, 2])) tm.assert_index_equal(idx.drop_duplicates(keep=False), expected) def test_multiindex_set_index(self): # segfault in #3308 d = {'t1': [2, 2.5, 3], 't2': [4, 5, 6]} df = DataFrame(d) tuples = [(0, 1), (0, 2), (1, 2)] df['tuples'] = tuples index = MultiIndex.from_tuples(df['tuples']) # it works! df.set_index(index) def test_datetimeindex(self): idx1 = pd.DatetimeIndex( ['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00' ] * 2, tz='Asia/Tokyo') idx2 = pd.date_range('2010/01/01', periods=6, freq='M', tz='US/Eastern') idx = MultiIndex.from_arrays([idx1, idx2]) expected1 = pd.DatetimeIndex(['2013-04-01 9:00', '2013-04-02 9:00', '2013-04-03 9:00'], tz='Asia/Tokyo') tm.assert_index_equal(idx.levels[0], expected1) tm.assert_index_equal(idx.levels[1], idx2) # from datetime combos # GH 7888 date1 = datetime.date.today() date2 = datetime.datetime.today() date3 = Timestamp.today() for d1, d2 in itertools.product( [date1, date2, date3], [date1, date2, date3]): index = pd.MultiIndex.from_product([[d1], [d2]]) assert isinstance(index.levels[0], pd.DatetimeIndex) assert isinstance(index.levels[1], pd.DatetimeIndex) def test_constructor_with_tz(self): index = pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific') columns = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo') result = MultiIndex.from_arrays([index, columns]) tm.assert_index_equal(result.levels[0], index) tm.assert_index_equal(result.levels[1], columns) result = MultiIndex.from_arrays([Series(index), Series(columns)]) tm.assert_index_equal(result.levels[0], index) tm.assert_index_equal(result.levels[1], columns) def test_set_index_datetime(self): # GH 3950 df = pd.DataFrame( {'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'datetime': ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], 'value': range(6)}) df.index = pd.to_datetime(df.pop('datetime'), utc=True) df.index = df.index.tz_localize('UTC').tz_convert('US/Pacific') expected = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], name='datetime') expected = expected.tz_localize('UTC').tz_convert('US/Pacific') df = df.set_index('label', append=True) tm.assert_index_equal(df.index.levels[0], expected) tm.assert_index_equal(df.index.levels[1], pd.Index(['a', 'b'], name='label')) df = df.swaplevel(0, 1) tm.assert_index_equal(df.index.levels[0], pd.Index(['a', 'b'], name='label')) tm.assert_index_equal(df.index.levels[1], expected) df = DataFrame(np.random.random(6)) idx1 = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Eastern') idx2 = pd.DatetimeIndex(['2012-04-01 09:00', '2012-04-01 09:00', '2012-04-01 09:00', '2012-04-02 09:00', '2012-04-02 09:00', '2012-04-02 09:00'], tz='US/Eastern') idx3 = pd.date_range('2011-01-01 09:00', periods=6, tz='Asia/Tokyo') df = df.set_index(idx1) df = df.set_index(idx2, append=True) df = df.set_index(idx3, append=True) expected1 = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Eastern') expected2 = pd.DatetimeIndex(['2012-04-01 09:00', '2012-04-02 09:00'], tz='US/Eastern') tm.assert_index_equal(df.index.levels[0], expected1) tm.assert_index_equal(df.index.levels[1], expected2) tm.assert_index_equal(df.index.levels[2], idx3) # GH 7092 tm.assert_index_equal(df.index.get_level_values(0), idx1) tm.assert_index_equal(df.index.get_level_values(1), idx2) tm.assert_index_equal(df.index.get_level_values(2), idx3) def test_reset_index_datetime(self): # GH 3950 for tz in ['UTC', 'Asia/Tokyo', 'US/Eastern']: idx1 = pd.date_range('1/1/2011', periods=5, freq='D', tz=tz, name='idx1') idx2 = pd.Index(range(5), name='idx2', dtype='int64') idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame( {'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx) expected = pd.DataFrame({'idx1': [datetime.datetime(2011, 1, 1), datetime.datetime(2011, 1, 2), datetime.datetime(2011, 1, 3), datetime.datetime(2011, 1, 4), datetime.datetime(2011, 1, 5)], 'idx2': np.arange(5, dtype='int64'), 'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, columns=['idx1', 'idx2', 'a', 'b']) expected['idx1'] = expected['idx1'].apply( lambda d: pd.Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) idx3 = pd.date_range('1/1/2012', periods=5, freq='MS', tz='Europe/Paris', name='idx3') idx = pd.MultiIndex.from_arrays([idx1, idx2, idx3]) df = pd.DataFrame( {'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, index=idx) expected = pd.DataFrame({'idx1': [datetime.datetime(2011, 1, 1), datetime.datetime(2011, 1, 2), datetime.datetime(2011, 1, 3), datetime.datetime(2011, 1, 4), datetime.datetime(2011, 1, 5)], 'idx2': np.arange(5, dtype='int64'), 'idx3': [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 2, 1), datetime.datetime(2012, 3, 1), datetime.datetime(2012, 4, 1), datetime.datetime(2012, 5, 1)], 'a': np.arange(5, dtype='int64'), 'b': ['A', 'B', 'C', 'D', 'E']}, columns=['idx1', 'idx2', 'idx3', 'a', 'b']) expected['idx1'] = expected['idx1'].apply( lambda d: pd.Timestamp(d, tz=tz)) expected['idx3'] = expected['idx3'].apply( lambda d: pd.Timestamp(d, tz='Europe/Paris')) tm.assert_frame_equal(df.reset_index(), expected) # GH 7793 idx = pd.MultiIndex.from_product([['a', 'b'], pd.date_range( '20130101', periods=3, tz=tz)]) df = pd.DataFrame( np.arange(6, dtype='int64').reshape( 6, 1), columns=['a'], index=idx) expected = pd.DataFrame({'level_0': 'a a a b b b'.split(), 'level_1': [ datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 2), datetime.datetime(2013, 1, 3)] * 2, 'a': np.arange(6, dtype='int64')}, columns=['level_0', 'level_1', 'a']) expected['level_1'] = expected['level_1'].apply( lambda d: pd.Timestamp(d, freq='D', tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_reset_index_period(self): # GH 7746 idx = pd.MultiIndex.from_product([pd.period_range('20130101', periods=3, freq='M'), ['a', 'b', 'c']], names=['month', 'feature']) df = pd.DataFrame(np.arange(9, dtype='int64') .reshape(-1, 1), index=idx, columns=['a']) expected = pd.DataFrame({ 'month': ([pd.Period('2013-01', freq='M')] * 3 + [pd.Period('2013-02', freq='M')] * 3 + [pd.Period('2013-03', freq='M')] * 3), 'feature': ['a', 'b', 'c'] * 3, 'a': np.arange(9, dtype='int64') }, columns=['month', 'feature', 'a']) tm.assert_frame_equal(df.reset_index(), expected) def test_reset_index_multiindex_columns(self): levels = [['A', ''], ['B', 'b']] df = pd.DataFrame([[0, 2], [1, 3]], columns=pd.MultiIndex.from_tuples(levels)) result = df[['B']].rename_axis('A').reset_index() tm.assert_frame_equal(result, df) # gh-16120: already existing column with tm.assert_raises_regex(ValueError, ("cannot insert \('A', ''\), " "already exists")): df.rename_axis('A').reset_index() # gh-16164: multiindex (tuple) full key result = df.set_index([('A', '')]).reset_index() tm.assert_frame_equal(result, df) # with additional (unnamed) index level idx_col = pd.DataFrame([[0], [1]], columns=pd.MultiIndex.from_tuples([('level_0', '')])) expected = pd.concat([idx_col, df[[('B', 'b'), ('A', '')]]], axis=1) result = df.set_index([('B', 'b')], append=True).reset_index() tm.assert_frame_equal(result, expected) # with index name which is a too long tuple... with tm.assert_raises_regex(ValueError, ("Item must have length equal to number " "of levels.")): df.rename_axis([('C', 'c', 'i')]).reset_index() # or too short... levels = [['A', 'a', ''], ['B', 'b', 'i']] df2 = pd.DataFrame([[0, 2], [1, 3]], columns=pd.MultiIndex.from_tuples(levels)) idx_col = pd.DataFrame([[0], [1]], columns=pd.MultiIndex.from_tuples([('C', 'c', 'ii')])) expected = pd.concat([idx_col, df2], axis=1) result = df2.rename_axis([('C', 'c')]).reset_index(col_fill='ii') tm.assert_frame_equal(result, expected) # ... which is incompatible with col_fill=None with tm.assert_raises_regex(ValueError, ("col_fill=None is incompatible with " "incomplete column name \('C', 'c'\)")): df2.rename_axis([('C', 'c')]).reset_index(col_fill=None) # with col_level != 0 result = df2.rename_axis([('c', 'ii')]).reset_index(col_level=1, col_fill='C') tm.assert_frame_equal(result, expected) def test_set_index_period(self): # GH 6631 df = DataFrame(np.random.random(6)) idx1 = pd.period_range('2011-01-01', periods=3, freq='M') idx1 = idx1.append(idx1) idx2 = pd.period_range('2013-01-01 09:00', periods=2, freq='H') idx2 = idx2.append(idx2).append(idx2) idx3 = pd.period_range('2005', periods=6, freq='A') df = df.set_index(idx1) df = df.set_index(idx2, append=True) df = df.set_index(idx3, append=True) expected1 = pd.period_range('2011-01-01', periods=3, freq='M') expected2 = pd.period_range('2013-01-01 09:00', periods=2, freq='H') tm.assert_index_equal(df.index.levels[0], expected1) tm.assert_index_equal(df.index.levels[1], expected2) tm.assert_index_equal(df.index.levels[2], idx3) tm.assert_index_equal(df.index.get_level_values(0), idx1) tm.assert_index_equal(df.index.get_level_values(1), idx2) tm.assert_index_equal(df.index.get_level_values(2), idx3) def test_repeat(self): # GH 9361 # fixed by # GH 7891 m_idx = pd.MultiIndex.from_tuples([(1, 2), (3, 4), (5, 6), (7, 8)]) data = ['a', 'b', 'c', 'd'] m_df = pd.Series(data, index=m_idx) assert m_df.repeat(3).shape == (3 * len(data), ) def test_iloc_mi(self): # GH 13797 # Test if iloc can handle integer locations in MultiIndexed DataFrame data = [ ['str00', 'str01'], ['str10', 'str11'], ['str20', 'srt21'], ['str30', 'str31'], ['str40', 'str41'] ] mi = pd.MultiIndex.from_tuples( [('CC', 'A'), ('CC', 'B'), ('CC', 'B'), ('BB', 'a'), ('BB', 'b') ]) expected = pd.DataFrame(data) df_mi = pd.DataFrame(data, index=mi) result = pd.DataFrame([[df_mi.iloc[r, c] for c in range(2)] for r in range(5)]) tm.assert_frame_equal(result, expected) class TestSorted(Base): """ everthing you wanted to test about sorting """ def test_sort_index_preserve_levels(self): result = self.frame.sort_index() assert result.index.names == self.frame.index.names def test_sorting_repr_8017(self): np.random.seed(0) data = np.random.randn(3, 4) for gen, extra in [([1., 3., 2., 5.], 4.), ([1, 3, 2, 5], 4), ([Timestamp('20130101'), Timestamp('20130103'), Timestamp('20130102'), Timestamp('20130105')], Timestamp('20130104')), (['1one', '3one', '2one', '5one'], '4one')]: columns = MultiIndex.from_tuples([('red', i) for i in gen]) df = DataFrame(data, index=list('def'), columns=columns) df2 = pd.concat([df, DataFrame('world', index=list('def'), columns=MultiIndex.from_tuples( [('red', extra)]))], axis=1) # check that the repr is good # make sure that we have a correct sparsified repr # e.g. only 1 header of read assert str(df2).splitlines()[0].split() == ['red'] # GH 8017 # sorting fails after columns added # construct single-dtype then sort result = df.copy().sort_index(axis=1) expected = df.iloc[:, [0, 2, 1, 3]] tm.assert_frame_equal(result, expected) result = df2.sort_index(axis=1) expected = df2.iloc[:, [0, 2, 1, 4, 3]] tm.assert_frame_equal(result, expected) # setitem then sort result = df.copy() result[('red', extra)] = 'world' result = result.sort_index(axis=1) tm.assert_frame_equal(result, expected) def test_sort_index_level(self): df = self.frame.copy() df.index = np.arange(len(df)) # axis=1 # series a_sorted = self.frame['A'].sort_index(level=0) # preserve names assert a_sorted.index.names == self.frame.index.names # inplace rs = self.frame.copy() rs.sort_index(level=0, inplace=True) tm.assert_frame_equal(rs, self.frame.sort_index(level=0)) def test_sort_index_level_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int64) # it works! result = df.sort_index(level=0) assert result.index.lexsort_depth == 3 # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)] * 3) df = DataFrame(np.random.randn(4000), index=index, dtype=np.int32) # it works! result = df.sort_index(level=0) assert (result.dtypes.values == df.dtypes.values).all() assert result.index.lexsort_depth == 3 def test_sort_index_level_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sort_index(level='second') expected = self.frame.sort_index(level=1) tm.assert_frame_equal(result, expected) def test_sort_index_level_mixed(self): sorted_before = self.frame.sort_index(level=1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sort_index(level=1) tm.assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sort_index(level=1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sort_index(level=1, axis=1) tm.assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) assert index.is_lexsorted() index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) assert not index.is_lexsorted() index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) assert not index.is_lexsorted() assert index.lexsort_depth == 0 def test_getitem_multilevel_index_tuple_not_sorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.loc[query_index, "data"] xp_idx = MultiIndex.from_tuples([(0, 1, 0)], names=['a', 'b', 'c']) xp = Series(['x'], index=xp_idx, name='data') tm.assert_series_equal(rs, xp) def test_getitem_slice_not_sorted(self): df = self.frame.sort_index(level=1).T # buglet with int typechecking result = df.iloc[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted2(self): # 13431 df = DataFrame({'col1': ['b', 'd', 'b', 'a'], 'col2': [3, 1, 1, 2], 'data': ['one', 'two', 'three', 'four']}) df2 = df.set_index(['col1', 'col2']) df2_original = df2.copy() df2.index.set_levels(['b', 'd', 'a'], level='col1', inplace=True) df2.index.set_labels([0, 1, 0, 2], level='col1', inplace=True) assert not df2.index.is_lexsorted() assert not df2.index.is_monotonic assert df2_original.index.equals(df2.index) expected = df2.sort_index() assert expected.index.is_lexsorted() assert expected.index.is_monotonic result = df2.sort_index(level=0) assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns.values)] result = df['foo'] result2 = df.loc[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.loc['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index.values)] result = s['qux'] result2 = s.loc['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) def test_sort_index_and_reconstruction(self): # 15622 # lexsortedness should be identical # across MultiIndex consruction methods df = DataFrame([[1, 1], [2, 2]], index=list('ab')) expected = DataFrame([[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_tuples([(0.5, 'a'), (0.5, 'b'), (0.8, 'a'), (0.8, 'b')])) assert expected.index.is_lexsorted() result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex.from_product([[0.5, 0.8], list('ab')])) result = result.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) result = DataFrame( [[1, 1], [2, 2], [1, 1], [2, 2]], index=MultiIndex(levels=[[0.5, 0.8], ['a', 'b']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) result = result.sort_index() assert result.index.is_lexsorted() tm.assert_frame_equal(result, expected) concatted = pd.concat([df, df], keys=[0.8, 0.5]) result = concatted.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # 14015 df = DataFrame([[1, 2], [6, 7]], columns=MultiIndex.from_tuples( [(0, '20160811 12:00:00'), (0, '20160809 12:00:00')], names=['l1', 'Date'])) df.columns.set_levels(pd.to_datetime(df.columns.levels[1]), level=1, inplace=True) assert not df.columns.is_lexsorted() assert not df.columns.is_monotonic result = df.sort_index(axis=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic result = df.sort_index(axis=1, level=1) assert result.columns.is_lexsorted() assert result.columns.is_monotonic def test_sort_index_and_reconstruction_doc_example(self): # doc example df = DataFrame({'value': [1, 2, 3, 4]}, index=MultiIndex( levels=[['a', 'b'], ['bb', 'aa']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) assert df.index.is_lexsorted() assert not df.index.is_monotonic # sort it expected = DataFrame({'value': [2, 1, 4, 3]}, index=MultiIndex( levels=[['a', 'b'], ['aa', 'bb']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]])) result = df.sort_index() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) # reconstruct result = df.sort_index().copy() result.index = result.index._sort_levels_monotonic() assert result.index.is_lexsorted() assert result.index.is_monotonic tm.assert_frame_equal(result, expected) def test_sort_index_reorder_on_ops(self): # 15687 df = pd.DataFrame( np.random.randn(8, 2), index=MultiIndex.from_product( [['a', 'b'], ['big', 'small'], ['red', 'blu']], names=['letter', 'size', 'color']), columns=['near', 'far']) df = df.sort_index() def my_func(group): group.index = ['newz', 'newa'] return group result = df.groupby(level=['letter', 'size']).apply( my_func).sort_index() expected = MultiIndex.from_product( [['a', 'b'], ['big', 'small'], ['newa', 'newz']], names=['letter', 'size', None]) tm.assert_index_equal(result.index, expected) def test_sort_non_lexsorted(self): # degenerate case where we sort but don't # have a satisfying result :< # GH 15797 idx = MultiIndex([['A', 'B', 'C'], ['c', 'b', 'a']], [[0, 1, 2, 0, 1, 2], [0, 2, 1, 1, 0, 2]]) df = DataFrame({'col': range(len(idx))}, index=idx, dtype='int64') assert df.index.is_lexsorted() is False assert df.index.is_monotonic is False sorted = df.sort_index() assert sorted.index.is_lexsorted() is True assert sorted.index.is_monotonic is True expected = DataFrame( {'col': [1, 4, 5, 2]}, index=MultiIndex.from_tuples([('B', 'a'), ('B', 'c'), ('C', 'a'), ('C', 'b')]), dtype='int64') result = sorted.loc[pd.IndexSlice['B':'C', 'a':'c'], :] tm.assert_frame_equal(result, expected) def test_sort_index_nan(self): # GH 14784 # incorrect sorting w.r.t. nans tuples = [[12, 13], [np.nan, np.nan], [np.nan, 3], [1, 2]] mi = MultiIndex.from_tuples(tuples) df = DataFrame(np.arange(16).reshape(4, 4), index=mi, columns=list('ABCD')) s = Series(np.arange(4), index=mi) df2 = DataFrame({ 'date': pd.to_datetime([ '20121002', '20121007', '20130130', '20130202', '20130305', '20121002', '20121207', '20130130', '20130202', '20130305', '20130202', '20130305' ]), 'user_id': [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5], 'whole_cost': [1790, np.nan, 280, 259, np.nan, 623, 90, 312, np.nan, 301, 359, 801], 'cost': [12, 15, 10, 24, 39, 1, 0, np.nan, 45, 34, 1, 12] }).set_index(['date', 'user_id']) # sorting frame, default nan position is last result = df.sort_index() expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position last result = df.sort_index(na_position='last') expected = df.iloc[[3, 0, 2, 1], :] tm.assert_frame_equal(result, expected) # sorting frame, nan position first result = df.sort_index(na_position='first') expected = df.iloc[[1, 2, 3, 0], :] tm.assert_frame_equal(result, expected) # sorting frame with removed rows result = df2.dropna().sort_index() expected = df2.sort_index().dropna() tm.assert_frame_equal(result, expected) # sorting series, default nan position is last result = s.sort_index() expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position last result = s.sort_index(na_position='last') expected = s.iloc[[3, 0, 2, 1]] tm.assert_series_equal(result, expected) # sorting series, nan position first result = s.sort_index(na_position='first') expected = s.iloc[[1, 2, 3, 0]] tm.assert_series_equal(result, expected) def test_sort_ascending_list(self): # GH: 16934 # Set up a Series with a three level MultiIndex arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], [4, 3, 2, 1, 4, 3, 2, 1]] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second', 'third']) s = pd.Series(range(8), index=index) # Sort with boolean ascending result = s.sort_index(level=['third', 'first'], ascending=False) expected = s.iloc[[4, 0, 5, 1, 6, 2, 7, 3]] tm.assert_series_equal(result, expected) # Sort with list of boolean ascending result = s.sort_index(level=['third', 'first'], ascending=[False, True]) expected = s.iloc[[0, 4, 1, 5, 2, 6, 3, 7]] tm.assert_series_equal(result, expected)
bsd-3-clause
Tong-Chen/scikit-learn
examples/plot_digits_classification.py
7
2231
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import pylab as pl # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, # let's have a look at the first 3 images, stored in the `images` # attribute of the dataset. If we were working from image files, we # could load them using pylab.imread. For these images know which # digit they represent: it is given in the 'target' of the dataset. for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index + 1) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Training: %i' % label) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) for index, (image, prediction) in enumerate( zip(digits.images[n_samples / 2:], predicted)[:4]): pl.subplot(2, 4, index + 5) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Prediction: %i' % prediction) pl.show()
bsd-3-clause
alvarofierroclavero/scikit-learn
sklearn/linear_model/omp.py
127
30417
"""Orthogonal matching pursuit algorithms """ # Author: Vlad Niculae # # License: BSD 3 clause import warnings from distutils.version import LooseVersion import numpy as np from scipy import linalg from scipy.linalg.lapack import get_lapack_funcs from .base import LinearModel, _pre_fit from ..base import RegressorMixin from ..utils import as_float_array, check_array, check_X_y from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed import scipy solve_triangular_args = {} if LooseVersion(scipy.__version__) >= LooseVersion('0.12'): # check_finite=False is an optimization available only in scipy >=0.12 solve_triangular_args = {'check_finite': False} premature = """ Orthogonal matching pursuit ended prematurely due to linear dependence in the dictionary. The requested precision might not have been met. """ def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True, return_path=False): """Orthogonal Matching Pursuit step using the Cholesky decomposition. Parameters ---------- X : array, shape (n_samples, n_features) Input dictionary. Columns are assumed to have unit norm. y : array, shape (n_samples,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coef : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ if copy_X: X = X.copy('F') else: # even if we are allowed to overwrite, still copy it if bad order X = np.asfortranarray(X) min_float = np.finfo(X.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,)) potrs, = get_lapack_funcs(('potrs',), (X,)) alpha = np.dot(X.T, y) residual = y gamma = np.empty(0) n_active = 0 indices = np.arange(X.shape[1]) # keeping track of swapping max_features = X.shape[1] if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=X.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=X.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(np.dot(X.T, residual))) if lam < n_active or alpha[lam] ** 2 < min_float: # atom already selected or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=2) break if n_active > 0: # Updates the Cholesky decomposition of X' X L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam]) linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=2) break L[n_active, n_active] = np.sqrt(1 - v) X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam]) alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active] indices[n_active], indices[lam] = indices[lam], indices[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma residual = y - np.dot(X[:, :n_active], gamma) if tol is not None and nrm2(residual) ** 2 <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None, copy_Gram=True, copy_Xy=True, return_path=False): """Orthogonal Matching Pursuit step on a precomputed Gram matrix. This function uses the the Cholesky decomposition method. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data matrix Xy : array, shape (n_features,) Input targets n_nonzero_coefs : int Targeted number of non-zero elements tol_0 : float Squared norm of y, required if tol is not None. tol : float Targeted squared error, if not None overrides n_nonzero_coefs. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. Returns ------- gamma : array, shape (n_nonzero_coefs,) Non-zero elements of the solution idx : array, shape (n_nonzero_coefs,) Indices of the positions of the elements in gamma within the solution vector coefs : array, shape (n_features, n_nonzero_coefs) The first k values of column k correspond to the coefficient value for the active features at that step. The lower left triangle contains garbage. Only returned if ``return_path=True``. n_active : int Number of active features at convergence. """ Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram) if copy_Xy: Xy = Xy.copy() min_float = np.finfo(Gram.dtype).eps nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,)) potrs, = get_lapack_funcs(('potrs',), (Gram,)) indices = np.arange(len(Gram)) # keeping track of swapping alpha = Xy tol_curr = tol_0 delta = 0 gamma = np.empty(0) n_active = 0 max_features = len(Gram) if tol is not None else n_nonzero_coefs if solve_triangular_args: # new scipy, don't need to initialize because check_finite=False L = np.empty((max_features, max_features), dtype=Gram.dtype) else: # old scipy, we need the garbage upper triangle to be non-Inf L = np.zeros((max_features, max_features), dtype=Gram.dtype) L[0, 0] = 1. if return_path: coefs = np.empty_like(L) while True: lam = np.argmax(np.abs(alpha)) if lam < n_active or alpha[lam] ** 2 < min_float: # selected same atom twice, or inner product too small warnings.warn(premature, RuntimeWarning, stacklevel=3) break if n_active > 0: L[n_active, :n_active] = Gram[lam, :n_active] linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **solve_triangular_args) v = nrm2(L[n_active, :n_active]) ** 2 if 1 - v <= min_float: # selected atoms are dependent warnings.warn(premature, RuntimeWarning, stacklevel=3) break L[n_active, n_active] = np.sqrt(1 - v) Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam]) Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam]) indices[n_active], indices[lam] = indices[lam], indices[n_active] Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active] n_active += 1 # solves LL'x = y as a composition of two triangular systems gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True, overwrite_b=False) if return_path: coefs[:n_active, n_active - 1] = gamma beta = np.dot(Gram[:, :n_active], gamma) alpha = Xy - beta if tol is not None: tol_curr += delta delta = np.inner(gamma, beta[:n_active]) tol_curr -= delta if abs(tol_curr) <= tol: break elif n_active == max_features: break if return_path: return gamma, indices[:n_active], coefs[:, :n_active], n_active else: return gamma, indices[:n_active], n_active def orthogonal_mp(X, y, n_nonzero_coefs=None, tol=None, precompute=False, copy_X=True, return_path=False, return_n_iter=False): """Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems. An instance of the problem has the form: When parametrized by the number of non-zero coefficients using `n_nonzero_coefs`: argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs} When parametrized by error using the parameter `tol`: argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol Read more in the :ref:`User Guide <omp>`. Parameters ---------- X : array, shape (n_samples, n_features) Input data. Columns are assumed to have unit norm. y : array, shape (n_samples,) or (n_samples, n_targets) Input targets n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. precompute : {True, False, 'auto'}, Whether to perform precomputations. Improves performance when n_targets or n_samples is very large. copy_X : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp_gram lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ X = check_array(X, order='F', copy=copy_X) copy_X = False if y.ndim == 1: y = y.reshape(-1, 1) y = check_array(y) if y.shape[1] > 1: # subsequent targets will be affected copy_X = True if n_nonzero_coefs is None and tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1) if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > X.shape[1]: raise ValueError("The number of atoms cannot be more than the number " "of features") if precompute == 'auto': precompute = X.shape[0] > X.shape[1] if precompute: G = np.dot(X.T, X) G = np.asfortranarray(G) Xy = np.dot(X.T, y) if tol is not None: norms_squared = np.sum((y ** 2), axis=0) else: norms_squared = None return orthogonal_mp_gram(G, Xy, n_nonzero_coefs, tol, norms_squared, copy_Gram=copy_X, copy_Xy=False, return_path=return_path) if return_path: coef = np.zeros((X.shape[1], y.shape[1], X.shape[1])) else: coef = np.zeros((X.shape[1], y.shape[1])) n_iters = [] for k in range(y.shape[1]): out = _cholesky_omp( X, y[:, k], n_nonzero_coefs, tol, copy_X=copy_X, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if y.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) def orthogonal_mp_gram(Gram, Xy, n_nonzero_coefs=None, tol=None, norms_squared=None, copy_Gram=True, copy_Xy=True, return_path=False, return_n_iter=False): """Gram Orthogonal Matching Pursuit (OMP) Solves n_targets Orthogonal Matching Pursuit problems using only the Gram matrix X.T * X and the product X.T * y. Read more in the :ref:`User Guide <omp>`. Parameters ---------- Gram : array, shape (n_features, n_features) Gram matrix of the input data: X.T * X Xy : array, shape (n_features,) or (n_features, n_targets) Input targets multiplied by X: X.T * y n_nonzero_coefs : int Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float Maximum norm of the residual. If not None, overrides n_nonzero_coefs. norms_squared : array-like, shape (n_targets,) Squared L2 norms of the lines of y. Required if tol is not None. copy_Gram : bool, optional Whether the gram matrix must be copied by the algorithm. A false value is only helpful if it is already Fortran-ordered, otherwise a copy is made anyway. copy_Xy : bool, optional Whether the covariance vector Xy must be copied by the algorithm. If False, it may be overwritten. return_path : bool, optional. Default: False Whether to return every value of the nonzero coefficients along the forward path. Useful for cross-validation. return_n_iter : bool, optional default False Whether or not to return the number of iterations. Returns ------- coef : array, shape (n_features,) or (n_features, n_targets) Coefficients of the OMP solution. If `return_path=True`, this contains the whole coefficient path. In this case its shape is (n_features, n_features) or (n_features, n_targets, n_features) and iterating over the last axis yields coefficients in increasing order of active features. n_iters : array-like or int Number of active features across every target. Returned only if `return_n_iter` is set to True. See also -------- OrthogonalMatchingPursuit orthogonal_mp lars_path decomposition.sparse_encode Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf """ Gram = check_array(Gram, order='F', copy=copy_Gram) Xy = np.asarray(Xy) if Xy.ndim > 1 and Xy.shape[1] > 1: # or subsequent target will be affected copy_Gram = True if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if tol is not None: norms_squared = [norms_squared] if n_nonzero_coefs is None and tol is None: n_nonzero_coefs = int(0.1 * len(Gram)) if tol is not None and norms_squared is None: raise ValueError('Gram OMP needs the precomputed norms in order ' 'to evaluate the error sum of squares.') if tol is not None and tol < 0: raise ValueError("Epsilon cannot be negative") if tol is None and n_nonzero_coefs <= 0: raise ValueError("The number of atoms must be positive") if tol is None and n_nonzero_coefs > len(Gram): raise ValueError("The number of atoms cannot be more than the number " "of features") if return_path: coef = np.zeros((len(Gram), Xy.shape[1], len(Gram))) else: coef = np.zeros((len(Gram), Xy.shape[1])) n_iters = [] for k in range(Xy.shape[1]): out = _gram_omp( Gram, Xy[:, k], n_nonzero_coefs, norms_squared[k] if tol is not None else None, tol, copy_Gram=copy_Gram, copy_Xy=copy_Xy, return_path=return_path) if return_path: _, idx, coefs, n_iter = out coef = coef[:, :, :len(idx)] for n_active, x in enumerate(coefs.T): coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1] else: x, idx, n_iter = out coef[idx, k] = x n_iters.append(n_iter) if Xy.shape[1] == 1: n_iters = n_iters[0] if return_n_iter: return np.squeeze(coef), n_iters else: return np.squeeze(coef) class OrthogonalMatchingPursuit(LinearModel, RegressorMixin): """Orthogonal Matching Pursuit model (OMP) Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features. tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. precompute : {True, False, 'auto'}, default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when `n_targets` or `n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method. Read more in the :ref:`User Guide <omp>`. Attributes ---------- coef_ : array, shape (n_features,) or (n_features, n_targets) parameter vector (w in the formula) intercept_ : float or array, shape (n_targets,) independent term in decision function. n_iter_ : int or array-like Number of active features across every target. Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf) This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode """ def __init__(self, n_nonzero_coefs=None, tol=None, fit_intercept=True, normalize=True, precompute='auto'): self.n_nonzero_coefs = n_nonzero_coefs self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, multi_output=True, y_numeric=True) n_features = X.shape[1] X, y, X_mean, y_mean, X_std, Gram, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if self.n_nonzero_coefs is None and self.tol is None: # default for n_nonzero_coefs is 0.1 * n_features # but at least one. self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1) else: self.n_nonzero_coefs_ = self.n_nonzero_coefs if Gram is False: coef_, self.n_iter_ = orthogonal_mp( X, y, self.n_nonzero_coefs_, self.tol, precompute=False, copy_X=True, return_n_iter=True) else: norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None coef_, self.n_iter_ = orthogonal_mp_gram( Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol, norms_squared=norms_sq, copy_Gram=True, copy_Xy=True, return_n_iter=True) self.coef_ = coef_.T self._set_intercept(X_mean, y_mean, X_std) return self def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True, fit_intercept=True, normalize=True, max_iter=100): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array, shape (n_samples, n_features) The data to fit the LARS on y_train : array, shape (n_samples) The target variable to fit LARS on X_test : array, shape (n_samples, n_features) The data to compute the residues on y_test : array, shape (n_samples) The target variable to compute the residues on copy : boolean, optional Whether X_train, X_test, y_train and y_test should be copied. If False, they may be overwritten. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If True, the regressors X will be normalized before regression. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 100 by default. Returns ------- residues: array, shape (n_samples, max_features) Residues of the prediction on the test data """ if copy: X_train = X_train.copy() y_train = y_train.copy() X_test = X_test.copy() y_test = y_test.copy() if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None, precompute=False, copy_X=False, return_path=True) if coefs.ndim == 1: coefs = coefs[:, np.newaxis] if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] return np.dot(coefs.T, X_test.T) - y_test class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin): """Cross-validated Orthogonal Matching Pursuit model (OMP) Parameters ---------- copy : bool, optional Whether the design matrix X must be copied by the algorithm. A false value is only helpful if X is already Fortran-ordered, otherwise a copy is made anyway. fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If False, the regressors X are assumed to be already normalized. max_iter : integer, optional Maximum numbers of iterations to perform, therefore maximum features to include. 10% of ``n_features`` but at least 5 if available. cv : cross-validation generator, optional see :mod:`sklearn.cross_validation`. If ``None`` is passed, default to a 5-fold strategy n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs verbose : boolean or integer, optional Sets the verbosity amount Read more in the :ref:`User Guide <omp>`. Attributes ---------- intercept_ : float or array, shape (n_targets,) Independent term in decision function. coef_ : array, shape (n_features,) or (n_features, n_targets) Parameter vector (w in the problem formulation). n_nonzero_coefs_ : int Estimated number of non-zero coefficients giving the best mean squared error over the cross-validation folds. n_iter_ : int or array-like Number of active features across every target for the model refit with the best hyperparameters got by cross-validating across all folds. See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars OrthogonalMatchingPursuit LarsCV LassoLarsCV decomposition.sparse_encode """ def __init__(self, copy=True, fit_intercept=True, normalize=True, max_iter=None, cv=None, n_jobs=1, verbose=False): self.copy = copy self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.cv = cv self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape [n_samples, n_features] Training data. y : array-like, shape [n_samples] Target values. Returns ------- self : object returns an instance of self. """ X, y = check_X_y(X, y, y_numeric=True) X = as_float_array(X, copy=False, force_all_finite=False) cv = check_cv(self.cv, X, y, classifier=False) max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1]) if not self.max_iter else self.max_iter) cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_omp_path_residues)( X[train], y[train], X[test], y[test], self.copy, self.fit_intercept, self.normalize, max_iter) for train, test in cv) min_early_stop = min(fold.shape[0] for fold in cv_paths) mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1) for fold in cv_paths]) best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1 self.n_nonzero_coefs_ = best_n_nonzero_coefs omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs, fit_intercept=self.fit_intercept, normalize=self.normalize) omp.fit(X, y) self.coef_ = omp.coef_ self.intercept_ = omp.intercept_ self.n_iter_ = omp.n_iter_ return self
bsd-3-clause