repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
glasperfan/thesis
bach_code/logit.py
1
6793
from sklearn import linear_model from sklearn import naive_bayes from sklearn.preprocessing import OneHotEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier import h5py import numpy from collections import Counter def encode(train, test): encoder = OneHotEncoder() encoder.fit(numpy.vstack((train, test))) trainencoded = encoder.transform(train) testencoded = encoder.transform(test) return encoder, trainencoded, testencoded def runLogitAndNB(Xtrainsparse, Xtestsparse): for i in range(len(ytrainraw[0])): print "Output type %i" % i logit1 = linear_model.LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1) logit2 = linear_model.LogisticRegression(multi_class='multinomial', solver='lbfgs', C=100) logit3 = linear_model.LogisticRegression(multi_class='multinomial', solver='lbfgs', C=10000) nb1 = naive_bayes.MultinomialNB(alpha=0.01, fit_prior=True, class_prior=None) nb2 = naive_bayes.MultinomialNB(alpha=0.1, fit_prior=True, class_prior=None) nb3 = naive_bayes.MultinomialNB(alpha=1, fit_prior=True, class_prior=None) RF1 = RandomForestClassifier(1, "entropy", None) RF2 = RandomForestClassifier(10, "entropy", None) RF3 = RandomForestClassifier(20, "entropy", None) ytrain = numpy.hstack((ytrainraw[:, i], ydevraw[:, i])) ytest = ytestraw[:, i] RF1.fit(Xtrainsparse, ytrain) RF2.fit(Xtrainsparse, ytrain) RF3.fit(Xtrainsparse, ytrain) scores = [RF1.score(Xtestsparse, ytest), RF2.score(Xtestsparse, ytest), RF3.score(Xtestsparse, ytest)] print "R-FOREST: Best score %.2f%%, min of %.2f%%" % (max(scores) * 100, min(scores) * 100) ERF = ExtraTreesClassifier(n_estimators=40, max_depth=None, min_samples_split=1, random_state=0) ERF.fit(Xtrainsparse, ytrain) print "EXTRA TREES: Best score %.2f%%" % (ERF.score(Xtestsparse, ytest) * 100) nb1.fit(Xtrainsparse, ytrain) nb2.fit(Xtrainsparse, ytrain) nb3.fit(Xtrainsparse, ytrain) scores = [nb1.score(Xtestsparse, ytest), nb2.score(Xtestsparse, ytest), nb3.score(Xtestsparse, ytest)] print "MULTI-NB: Best score %.2f%%" % (max(scores) * 100) logit1.fit(Xtrainsparse, ytrain) logit2.fit(Xtrainsparse, ytrain) logit3.fit(Xtrainsparse, ytrain) scores = [logit1.score(Xtestsparse, ytest), logit2.score(Xtestsparse, ytest), logit3.score(Xtestsparse, ytest)] print "LOGIT: Best score %.2f%%" % (max(scores) * 100) most_common = lambda lst : max(set(list(lst)), key=list(lst).count) print "Most common class frequency: %.1f%% (train) %.1f%% (test)" % \ (Counter(ytrain)[most_common(ytrain)] / float(len(ytrain)) * 100., \ Counter(ytest)[most_common(ytest)] / float(len(ytest)) * 100.) print # Load data with h5py.File('data/chorales.hdf5', "r", libver='latest') as f: Xtrainraw = f['Xtrain'].value ytrainraw = f['ytrain'].value Xdevraw = f['Xdev'].value ydevraw = f['ydev'].value Xtestraw = f['Xtest'].value ytestraw = f['ytest'].value # Cycle through the output targets and see how logistic regression performs based solely on the melody def test1(): print("1. Testing learning on melody alone...") Xtrain = numpy.vstack((Xtrainraw[:, range(0,10)], Xdevraw[:, range(0,10)])) Xtest = Xtestraw[:, range(0,10)] encoder, Xtrainsparse, Xtestsparse = encode(Xtrain, Xtest) runLogitAndNB(Xtrainsparse, Xtestsparse) # Oracle experiments def test2(): print("2. Performing oracle experiment...") Xtrain = numpy.vstack((Xtrainraw, Xdevraw)) Xtest = Xtestraw encoder, Xtrainsparse, Xtestsparse = encode(Xtrain, Xtest) runLogitAndNB(Xtrainsparse, Xtestsparse) def load_dataset(name, data_file): dataX, datay = [], [] with h5py.File(data_file, "r", libver='latest') as f: counter = 0 while True: try: dataX.append(f['%s/chorale%d_X' % (name, counter)].value) datay.append(f['%s/chorale%d_y' % (name, counter)].value) except: break counter += 1 return dataX, datay # Score without counting padding def score_with_padding(pred, ytest, ypadding): correct = 0.0 for idx, p in enumerate(pred): if ytest[idx] == p and ytest[idx] != ypadding: correct += 1 return correct / ytest.shape[0] # Full harmonization def test3(): print("3. Testing softmax for full harmonization...") trainXc, trainyc = load_dataset("train", "data/chorales_rnn.hdf5") devXc, devyc = load_dataset("dev", "data/chorales_rnn.hdf5") testXc, testyc = load_dataset("test", "data/chorales_rnn.hdf5") stack = lambda x1, x2: numpy.vstack((x1, x2)) hstack = lambda x1, x2: numpy.hstack((x1, x2)) # Remove Oracle features trainXc = [X[:, range(0,10)] for X in trainXc] devXc = [X[:, range(0,10)] for X in devXc] testXc = [X[:, range(0,10)] for X in testXc] # Aggregate data Xtrain = stack(reduce(stack, trainXc), reduce(stack, devXc)) ytrain = hstack(reduce(hstack, trainyc), reduce(hstack, devyc)) Xtest, ytest = reduce(stack, testXc), reduce(hstack, testyc) # Remove padding ypadding = ytest.max() Xtrain_up, ytrain_up, Xtest_up, ytest_up = [], [], [], [] for idx, p in enumerate(ytrain): if p != ypadding: Xtrain_up.append(Xtrain[idx]) ytrain_up.append(ytrain[idx]) for idx, p in enumerate(ytest): if p != ypadding: Xtest_up.append(Xtest[idx]) ytest_up.append(ytest[idx]) Xtrain, ytrain, Xtest, ytest = numpy.array(Xtrain_up), numpy.array(ytrain_up), \ numpy.array(Xtest_up), numpy.array(ytest_up) encoder, Xtrainsparse, Xtestsparse = encode(Xtrain, Xtest) RF = RandomForestClassifier(10, "entropy", None) RF.fit(Xtrain, ytrain) # Write full harmonization data with h5py.File('data/chorales_sm.hdf5', "w", libver="latest") as f: f.create_dataset("Xtrain", Xtrain.shape, dtype="i", data=Xtrain) f.create_dataset("ytrain", ytrain.shape, dtype="i", data=ytrain) f.create_dataset("Xtest", Xtest.shape, dtype="i", data=Xtest) f.create_dataset("ytest", ytest.shape, dtype="i", data=ytest) print "Full harmonization data written" score_RF_train = RF.score(Xtrain, ytrain) score_RF_test = RF.score(Xtest, ytest) print "R-FOREST: %.2f%% training, %.2f%% test" % (score_RF_train * 100, score_RF_test * 100) ERF = ExtraTreesClassifier(n_estimators=40, max_depth=None, min_samples_split=1, random_state=0) ERF.fit(Xtrainsparse, ytrain) score_ERF_train = ERF.score(Xtrainsparse, ytrain) score_ERF_test = ERF.score(Xtestsparse, ytest) print "EXTRA TREES: %.2f%% training, %.2f%% test" % (score_ERF_train * 100, score_ERF_test * 100) logit = linear_model.LogisticRegression(multi_class='multinomial', solver='lbfgs', C=1) logit.fit(Xtrainsparse, ytrain) score_logit_train = logit.score(Xtrainsparse, ytrain) score_logit_test = logit.score(Xtestsparse, ytest) print "LOGIT: %.2f%% training, %.2f%% test" % (score_logit_train * 100, score_logit_test * 100) def run(): # test1() test2() # test3() run()
apache-2.0
lucasrodes/whatstk
tests/whatsapp/test_generation.py
1
2441
import numpy as np import pandas as pd from datetime import datetime from whatstk.whatsapp.objects import WhatsAppChat from whatstk.whatsapp.generation import ChatGenerator, generate_chats_hformats USERS = ['laurent', 'anna', 'lua', 'miquel'] def test_generate_messages(): cg = ChatGenerator(size=10, users=USERS) messages = cg._generate_messages() assert(isinstance(messages, (list, np.ndarray))) assert(all([isinstance(m, str) for m in messages])) def test_generate_emojis(): cg = ChatGenerator(size=10, users=USERS) emojis = cg._generate_emojis() assert(isinstance(emojis, (list, np.ndarray))) assert(all([isinstance(e, str) for e in emojis])) def test_generate_timestamps_1(): cg = ChatGenerator(size=10, users=USERS) timestamps = cg._generate_timestamps() assert(isinstance(timestamps, (list, np.ndarray))) assert(all([isinstance(ts, datetime) for ts in timestamps])) def test_generate_timestamps_2(): cg = ChatGenerator(size=10, users=USERS) timestamps = cg._generate_timestamps(last=datetime.now()) assert(isinstance(timestamps, (list, np.ndarray))) assert(all([isinstance(ts, datetime) for ts in timestamps])) def test_generate_users(): cg = ChatGenerator(size=10, users=USERS) users = cg._generate_users() assert(isinstance(users, (list, np.ndarray))) assert(all([isinstance(u, str) for u in users])) def test_generate_df(): cg = ChatGenerator(size=10, users=USERS) df = cg._generate_df() assert(isinstance(df, pd.DataFrame)) def test_generate_1(): cg = ChatGenerator(size=10, users=USERS) chat = cg.generate() assert(isinstance(chat, WhatsAppChat)) def test_generate_2(): cg = ChatGenerator(size=10, users=USERS) chat = cg.generate(hformat='y-%m-%d, %H:%M - %name:') assert(isinstance(chat, WhatsAppChat)) def test_generate_3(tmpdir): cg = ChatGenerator(size=10, users=USERS) filepath = tmpdir.join("export.txt") chat = cg.generate(filepath=str(filepath)) assert(isinstance(chat, WhatsAppChat)) def test_generate_chats_hformats(tmpdir): output_path = tmpdir.mkdir("output") generate_chats_hformats(output_path, size=2, verbose=False) def test_generate_chats_hformats_2(tmpdir): output_path = tmpdir.mkdir("output") hformat = '%Y-%m-%d, %H:%M - %name:' generate_chats_hformats(output_path, size=2, hformats=[hformat], filepaths=['file.txt'], verbose=False)
gpl-3.0
sameersingh/onebusaway
ml/oba_ml/lasso_regression.py
1
1186
from __future__ import division import numpy as np from common import * from sklearn import linear_model def main(): np.set_printoptions(threshold=np.nan) feature_names = get_feature_names() x_train, y_train, = get_data("training.dat") # run linear regression with l1 regularization clf = linear_model.Lasso(alpha=1000) clf.fit(x_train, y_train) #print clf.alpha_ w = clf.coef_ y_hat_train = x_train.dot(w) rmse_our_train, rmse_oba_train = get_rmse(y_train, y_hat_train) x_test, y_test = get_data("test.dat") y_hat_test = x_test.dot(w) rmse_our_test, rmse_oba_test = get_rmse(y_test, y_hat_test) print "RMSE OUR Train ", rmse_our_train print "RMSE OBA Train ", rmse_oba_train print "RMSE OUR Test ", rmse_our_test print "RMSE OBA Test ", rmse_oba_test save_scatter_plot(y_train, y_hat_train, "train") save_scatter_plot(y_test, y_hat_test, "test") build_output_files(y_hat_train, y_hat_test, y_train, y_test) print_weights(w, feature_names); report_range(y_train) report_range(y_test) if __name__ == '__main__': main()
apache-2.0
ryfeus/lambda-packs
Tensorflow_Pandas_Numpy/source3.6/pandas/util/_doctools.py
5
6806
import numpy as np import pandas as pd import pandas.compat as compat class TablePlotter(object): """ Layout some DataFrames in vertical/horizontal layout for explanation. Used in merging.rst """ def __init__(self, cell_width=0.37, cell_height=0.25, font_size=7.5): self.cell_width = cell_width self.cell_height = cell_height self.font_size = font_size def _shape(self, df): """ Calculate table chape considering index levels. """ row, col = df.shape return row + df.columns.nlevels, col + df.index.nlevels def _get_cells(self, left, right, vertical): """ Calculate appropriate figure size based on left and right data. """ if vertical: # calculate required number of cells vcells = max(sum(self._shape(l)[0] for l in left), self._shape(right)[0]) hcells = (max(self._shape(l)[1] for l in left) + self._shape(right)[1]) else: vcells = max([self._shape(l)[0] for l in left] + [self._shape(right)[0]]) hcells = sum([self._shape(l)[1] for l in left] + [self._shape(right)[1]]) return hcells, vcells def plot(self, left, right, labels=None, vertical=True): """ Plot left / right DataFrames in specified layout. Parameters ---------- left : list of DataFrames before operation is applied right : DataFrame of operation result labels : list of str to be drawn as titles of left DataFrames vertical : bool If True, use vertical layout. If False, use horizontal layout. """ import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec if not isinstance(left, list): left = [left] left = [self._conv(l) for l in left] right = self._conv(right) hcells, vcells = self._get_cells(left, right, vertical) if vertical: figsize = self.cell_width * hcells, self.cell_height * vcells else: # include margin for titles figsize = self.cell_width * hcells, self.cell_height * vcells fig = plt.figure(figsize=figsize) if vertical: gs = gridspec.GridSpec(len(left), hcells) # left max_left_cols = max(self._shape(l)[1] for l in left) max_left_rows = max(self._shape(l)[0] for l in left) for i, (l, label) in enumerate(zip(left, labels)): ax = fig.add_subplot(gs[i, 0:max_left_cols]) self._make_table(ax, l, title=label, height=1.0 / max_left_rows) # right ax = plt.subplot(gs[:, max_left_cols:]) self._make_table(ax, right, title='Result', height=1.05 / vcells) fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95) else: max_rows = max(self._shape(df)[0] for df in left + [right]) height = 1.0 / np.max(max_rows) gs = gridspec.GridSpec(1, hcells) # left i = 0 for l, label in zip(left, labels): sp = self._shape(l) ax = fig.add_subplot(gs[0, i:i + sp[1]]) self._make_table(ax, l, title=label, height=height) i += sp[1] # right ax = plt.subplot(gs[0, i:]) self._make_table(ax, right, title='Result', height=height) fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95) return fig def _conv(self, data): """Convert each input to appropriate for table outplot""" if isinstance(data, pd.Series): if data.name is None: data = data.to_frame(name='') else: data = data.to_frame() data = data.fillna('NaN') return data def _insert_index(self, data): # insert is destructive data = data.copy() idx_nlevels = data.index.nlevels if idx_nlevels == 1: data.insert(0, 'Index', data.index) else: for i in range(idx_nlevels): data.insert(i, 'Index{0}'.format(i), data.index._get_level_values(i)) col_nlevels = data.columns.nlevels if col_nlevels > 1: col = data.columns._get_level_values(0) values = [data.columns._get_level_values(i).values for i in range(1, col_nlevels)] col_df = pd.DataFrame(values) data.columns = col_df.columns data = pd.concat([col_df, data]) data.columns = col return data def _make_table(self, ax, df, title, height=None): if df is None: ax.set_visible(False) return import pandas.plotting as plotting idx_nlevels = df.index.nlevels col_nlevels = df.columns.nlevels # must be convert here to get index levels for colorization df = self._insert_index(df) tb = plotting.table(ax, df, loc=9) tb.set_fontsize(self.font_size) if height is None: height = 1.0 / (len(df) + 1) props = tb.properties() for (r, c), cell in compat.iteritems(props['celld']): if c == -1: cell.set_visible(False) elif r < col_nlevels and c < idx_nlevels: cell.set_visible(False) elif r < col_nlevels or c < idx_nlevels: cell.set_facecolor('#AAAAAA') cell.set_height(height) ax.set_title(title, size=self.font_size) ax.axis('off') if __name__ == "__main__": import matplotlib.pyplot as plt p = TablePlotter() df1 = pd.DataFrame({'A': [10, 11, 12], 'B': [20, 21, 22], 'C': [30, 31, 32]}) df2 = pd.DataFrame({'A': [10, 12], 'C': [30, 32]}) p.plot([df1, df2], pd.concat([df1, df2]), labels=['df1', 'df2'], vertical=True) plt.show() df3 = pd.DataFrame({'X': [10, 12], 'Z': [30, 32]}) p.plot([df1, df3], pd.concat([df1, df3], axis=1), labels=['df1', 'df2'], vertical=False) plt.show() idx = pd.MultiIndex.from_tuples([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), (2, 'C')]) col = pd.MultiIndex.from_tuples([(1, 'A'), (1, 'B')]) df3 = pd.DataFrame({'v1': [1, 2, 3, 4, 5, 6], 'v2': [5, 6, 7, 8, 9, 10]}, index=idx) df3.columns = col p.plot(df3, df3, labels=['df3']) plt.show()
mit
speed-of-light/pyslider
lib/exp/evaluator/ground_truth.py
1
5773
import pandas as pd from lib.exp.base import ExpCommon from lib.exp.summary import Summary from base import DfExt class GroundTruth(ExpCommon, Summary): def __init__(self, root, name): """ Mainly designed to containing 3 dataframes: `abs_pairs`, `rel_pairs`, `segments` """ ExpCommon.__init__(self, root, name) Summary.__init__(self) def univ_df(self): """ Convert univ_df raw ground_truth to dataframe """ coll = [] gnd = "data/{}/{}/ground_truth".format(self.root, self.name) with open(gnd, 'r') as f: for ln in f.readlines(): cols = [int(x) for x in ln.split(',')] coll.append(cols) gf = pd.DataFrame(data=coll, columns=['fid', 'sid', 'slide_type', 'cam_status']) gcf = self.__aggregate(gf.copy()) return gcf def __aggregate(self, df): """ Get the univ aggregated result """ f_slid = -1 f_keep = -1 f_cnt = 1 for inx in df.index: if f_slid < 0: f_slid = df.ix[inx]['sid'] continue if f_slid == df.ix[inx]['sid']: if f_cnt == 1: f_cnt = 2 f_keep = inx continue if f_cnt > 1: df = df.drop(f_keep) f_keep = inx else: f_cnt = 1 f_slid = df.ix[inx]['sid'] continue return df def __ftyping(self, fsid, feid, ftype): if ftype == "duration": return feid - fsid elif ftype == "end": return feid def __ftuple(self, stat, ftp, gnd, ftype): if (stat == "init") or (stat == "singular"): ftv = self.__ftyping(gnd.fid, gnd.fid, ftype) return [gnd.fid, ftv, gnd.sid] elif stat == "found_pair": ftv = self.__ftyping(ftp[0], gnd.fid, ftype) ftp[1] = ftv return ftp def segments_df(self, df, ftype="duration"): """ Return dataframe version of segments """ segs = self.segments(df, ftype) cols = ['fstart', ftype, 'sid'] df = pd.DataFrame(segs, columns=cols) return df def segments(self, df, ftype="duration"): """ df: columns should be like `abs_pairs`. ftype: control the return data with "duration"(default) or just "end" frame id Return ground truth of segments, should return a list of [fstart, duration, sid] """ f_start = -1 seg = [] # segment for global use flp = [df.iloc[0].fid] # segment for local use for si in df.index: gnd = df.ix[si] if f_start < 0: flp = self.__ftuple("init", flp, gnd, ftype) f_start = gnd.sid elif f_start == gnd.sid: flp = self.__ftuple("found_pair", flp, gnd, ftype) seg.append(flp[:]) f_start = -1 else: # single point seg.append(flp[:]) flp = self.__ftuple("singular", flp, gnd, ftype) f_start = gnd.sid if flp is not None: seg.append(flp[:]) return seg def shrink(self, df): """ df: `fid`, `sid` pairs Get shrink data from original matched pairs Return a cloned copy of original input example: df.sid = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4] return should be [1, 2, 3, 4] """ f_sid = -1 ret = df.copy(deep=True) for di, dd in df.iterrows(): if f_sid < 0: # init f_sid = dd.sid elif f_sid == dd.sid: ret = ret.drop(di) continue elif f_sid != dd.sid: f_sid = dd.sid return ret def add_mark(self, df, sid=None, fid=None, ftype=None): """ Add mark to dataframe table, **not saved**. df: should come from `abs_pairs` """ db = DfExt(df) result = db.insert(sid, fid, ftype) return result def answer(self, fid): """ Get sid by given fid """ df = self._preload("segments") dfi = df[df.fstart <= fid] ret = -1 if len(dfi) > 0: dfi = dfi.iloc[-1] fs = dfi.fstart fe = dfi.fstart + dfi.duration if fs <= fid <= fe: ret = dfi.sid return ret def guess(self, fid, sid): """ Return true if a correct match """ asid = self.answer(fid) return asid == sid def __load_seg(self): seg = self.load("segments") self.__check_segments(seg) return seg def __check_segments(self, seg): if (seg is None) or (len(seg) == 0): raise Exception("Error", "Segments not exist") def update_segment(self): """ Fix unmarked frames from univ_07 groudtruth """ seg = self.__load_seg() gfp = "data/{}/{}/ground_truth".format(self.root, self.name) gdf = pd.read_csv(gfp, names=["fid", "sid", "stype", "ctype"]) pgd = gdf.iloc[0] drs = "duration" for gi, gd in gdf[1:].iterrows(): if (pgd.sid != gd.sid) & (pgd.sid != -1): fdiff = gd.fid - pgd.fid - 1 st = seg[seg.fstart < pgd.fid].iloc[-1] seg.ix[st.name, drs] = seg.ix[st.name][drs] + fdiff pgd = gd self.save("segments", seg) print "Finished update segments"
agpl-3.0
alekz112/statsmodels
examples/incomplete/arima.py
34
1605
from __future__ import print_function from statsmodels.datasets.macrodata import load_pandas from statsmodels.tsa.base.datetools import dates_from_range from statsmodels.tsa.arima_model import ARIMA import matplotlib.pyplot as plt import numpy as np import statsmodels.api as sm plt.interactive(False) # let's examine an ARIMA model of CPI cpi = load_pandas().data['cpi'] dates = dates_from_range('1959q1', '2009q3') cpi.index = dates res = ARIMA(cpi, (1, 1, 1), freq='Q').fit() print(res.summary()) # we can look at the series cpi.diff().plot() # maybe logs are better log_cpi = np.log(cpi) # check the ACF and PCF plots acf, confint_acf = sm.tsa.acf(log_cpi.diff().values[1:], confint=95) # center the confidence intervals about zero #confint_acf -= confint_acf.mean(1)[:, None] pacf = sm.tsa.pacf(log_cpi.diff().values[1:], method='ols') # confidence interval is now an option to pacf from scipy import stats confint_pacf = stats.norm.ppf(1 - .025) * np.sqrt(1 / 202.) fig = plt.figure() ax = fig.add_subplot(121) ax.set_title('Autocorrelation') ax.plot(range(41), acf, 'bo', markersize=5) ax.vlines(range(41), 0, acf) ax.fill_between(range(41), confint_acf[:, 0], confint_acf[:, 1], alpha=.25) fig.tight_layout() ax = fig.add_subplot(122, sharey=ax) ax.vlines(range(41), 0, pacf) ax.plot(range(41), pacf, 'bo', markersize=5) ax.fill_between(range(41), -confint_pacf, confint_pacf, alpha=.25) #NOTE: you'll be able to just to this when tsa-plots is in master #sm.graphics.acf_plot(x, nlags=40) #sm.graphics.pacf_plot(x, nlags=40) # still some seasonality # try an arma(1, 1) with ma(4) term
bsd-3-clause
jmargeta/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
4
6956
""" Testing for the boost module (sklearn.ensemble.boost). """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.dummy import DummyClassifier from sklearn.dummy import DummyRegressor from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_classification_toy(): """Check classification on a toy dataset.""" for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) def test_regression_toy(): """Check classification on a toy dataset.""" clf = AdaBoostRegressor() clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) def test_iris(): """Check consistency on dataset iris.""" for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) def test_boston(): """Check consistency on dataset boston house prices.""" clf = AdaBoostRegressor() clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): """Check staged predictions.""" # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target) staged_scores = [s for s in clf.staged_score(iris.data, iris.target)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10) clf.fit(boston.data, boston.target) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target) staged_scores = [s for s in clf.staged_score(boston.data, boston.target)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): """Check that base trees can be grid-searched.""" # AdaBoost classification boost = AdaBoostClassifier() parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor() parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): """Check pickability.""" import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor() obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): """Check variable importances.""" X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): """Test that it gives proper exception on deficient input.""" assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y) assert_raises(TypeError, AdaBoostClassifier(base_estimator=DummyRegressor()).fit, X, y) assert_raises(TypeError, AdaBoostRegressor(base_estimator=DummyClassifier()).fit, X, y) def test_base_estimator(): """Test different base estimators.""" from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor()) clf.fit(X, y) clf = AdaBoostRegressor(SVR()) clf.fit(X, y) if __name__ == "__main__": import nose nose.runmodule()
bsd-3-clause
domenkavran/scikit-learn_projects
scikit-learn-MNIST_SVM_one-vs-all/SVM_classification.py
1
1778
# coding: utf-8 # In[1]: from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import train_test_split from sklearn import datasets import numpy as np from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.model_selection import train_test_split # In[2]: from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist X, y = mnist["data"], mnist["target"] X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000],y[60000:] shuffle_index = np.random.permutation(60000) X_train, y_train = X_train[shuffle_index], y_train[shuffle_index] # In[3]: classificators = [None] * 10 Cs = [0.001, 0.01, 0.1, 1, 10] kernels = ['linear'] probability = [True] X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, train_size=6000, test_size=1000, random_state=42) #smaller train and test sets to speed up the process - consequently smaller precision and recall for index in range(10): y_train_tmp = (y_train == index) svc = SVC() parameters = {'C': Cs,'kernel':kernels, 'probability':probability} grid_search = GridSearchCV(svc, parameters, n_jobs=-1, cv=3) grid_search.fit(X_train, y_train_tmp) svc = grid_search.best_estimator_ classificators[index] = svc # In[4]: probabilities = [None] * 10 for index, classificator in enumerate(classificators): probabilities[index] = classificator.predict_proba(X_test)[:,1] probabilities = np.asarray(probabilities) predictions = probabilities.argmax(axis=0) # In[6]: print(classification_report(predictions,y_test),"\n",confusion_matrix(y_test,predictions)) #around 0.86 both precision and recall
mit
omdv/robinhood-portfolio
backend/robinhood_data.py
1
9271
""" Download and prepare robinhood data """ import pandas as pd import numpy as np class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafolder ---------- Parameters: datafolder : location of data client : connected pyrh client """ def __init__(self, datafolder, client): self.datafolder = datafolder self.client = client def _get_symbol_from_instrument_url(self, url): return self._fetch_json_by_url(url)['symbol'] # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self._get_symbol_from_instrument_url) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df = pd.DataFrame(dividends) if df.shape[0] > 0: df['symbol'] = df['instrument'].apply( self._get_symbol_from_instrument_url) df.sort_values(by='paid_at', inplace=True) df.reset_index(inplace=True, drop=True) df_div = self._delete_sensitive_fields(df) else: df_div = pd.DataFrame(columns=['symbol', 'amount', 'position', 'rate', 'paid_at', 'payable_date']) return df_div # process orders def _process_orders(self, df_ord): # assign to df and reduce the number of fields df = df_ord.copy() fields = [ 'created_at', 'average_price', 'cumulative_quantity', 'fees', 'symbol', 'side'] df = df[fields] # convert types for field in ['average_price', 'cumulative_quantity', 'fees']: df[field] = pd.to_numeric(df[field]) for field in ['created_at']: df[field] = pd.to_datetime(df[field]) # normalize dates idx = pd.Index(df['created_at']).normalize() df['date'] = idx # rename columns for consistency df.rename(columns={ 'cumulative_quantity': 'current_size' }, inplace=True) # quantity accounting for side of transaction for cumsum later df['signed_size'] = np.where( df.side == 'buy', df['current_size'], -df['current_size']) df['signed_size'] = df['signed_size'].astype(np.int64) # initialize columns df['realized_gains'] = 0. df['current_cost_basis'] = 0. return df # process_orders def _process_dividends(self, df_div): df = df_div.copy() # convert types for field in ['amount', 'position', 'rate']: df[field] = pd.to_numeric(df[field]) for field in ['paid_at', 'payable_date']: df[field] = pd.to_datetime(df[field]) # normalize dates idx = pd.Index(df['paid_at']).normalize() df['date'] = idx return df def _generate_positions(self, df_ord): """ Process orders dataframe and generate open and closed positions. For all open positions close those which were later sold, so that the cost_basis for open can be calculated correctly. For closed positions calculate the cost_basis based on the closed open positions. Note: the olders open positions are first to be closed. The logic here is to reduce the tax exposure. ----- Parameters: - Pre-processed df_ord Return: - Two dataframes with open and closed positions correspondingly """ # prepare dataframe for open and closed positions df_open = df_ord[df_ord.side == 'buy'].copy() df_closed = df_ord[df_ord.side == 'sell'].copy() # create a new column for today's position size df_open['final_size'] = df_open['current_size'] df_closed['final_size'] = df_closed['current_size'] # main loop for i_closed, row_closed in df_closed.iterrows(): sell_size = row_closed.final_size sell_cost_basis = 0 for i_open, _ in df_open[ (df_open.symbol == row_closed.symbol) & (df_open.date < row_closed.date)].iterrows(): new_sell_size = sell_size - df_open.loc[i_open, 'final_size'] new_sell_size = 0 if new_sell_size < 0 else new_sell_size new_open_size = df_open.loc[i_open, 'final_size'] - sell_size new_open_size = new_open_size if new_open_size > 0 else 0 # updating open positions df_open.loc[i_open, 'final_size'] = new_open_size # updating closed positions df_closed.loc[i_closed, 'final_size'] = new_sell_size sold_size = sell_size - new_sell_size sell_cost_basis +=\ df_open.loc[i_open, 'average_price'] * sold_size sell_size = new_sell_size # assign a cost_basis to the closed position df_closed.loc[i_closed, 'current_cost_basis'] = -sell_cost_basis # calculate cost_basis for open positions df_open['current_cost_basis'] =\ df_open['current_size'] * df_open['average_price'] df_open['final_cost_basis'] =\ df_open['final_size'] * df_open['average_price'] # calculate capital gains for closed positions if df_closed.shape[0] != 0: df_closed['realized_gains'] =\ df_closed['current_size'] * df_closed['average_price'] +\ df_closed['current_cost_basis'] df_closed['final_cost_basis'] = 0 return df_open, df_closed def download(self, orders=None, dividends=None): """ Download and parse method """ if dividends is None: dividends = self._download_dividends() df_div = self._process_dividends(dividends) df_div.to_pickle(self.datafolder + "dividends.pkl") if orders is None: orders = self._download_orders() df_ord = self._process_orders(orders) df_ord.to_pickle(self.datafolder + "orders.pkl") df_open, df_closed = self._generate_positions(df_ord) df_open.to_pickle(self.datafolder + "open.pkl") df_closed.to_pickle(self.datafolder + "closed.pkl") return df_div, df_ord, df_open, df_closed def demo_orders(self): """ Generate demo orders dataframe for testing """ orders = pd.DataFrame(index=range(11)) orders['created_at'] = pd.Timestamp('2018-01-02', tz='UTC') orders['date'] = pd.Timestamp('2018-01-02', tz='UTC') orders['symbol'] = ['MSFT', 'AAPL', 'CVX', 'XOM', 'BND', 'CAT', 'BA', 'TIF', 'BAC', 'JPM', 'MSFT'] orders['current_size'] = 100 orders['signed_size'] = 100 orders['average_price'] = 100.0 orders['fees'] = 0 orders['cumulative_quantity'] = 100 orders['side'] = 'buy' orders.to_pickle(self.datafolder + 'orders.pkl') # one sell order orders.loc[10, 'side'] = 'sell' orders.loc[10, 'average_price'] = 120. orders.loc[10, 'created_at'] = pd.Timestamp('2020-01-03', tz='UTC') orders.loc[10, 'date'] = pd.Timestamp('2020-01-03', tz='UTC') orders.loc[10, 'cumulative_quantity'] = 20 orders.loc[10, 'signed_size'] = -20 orders.loc[10, 'current_size'] = 20 orders.loc[10, 'fees'] = 0 return orders def demo_dividends(self): """ Generate demo dividends dataframe for testing """ dividends = pd.DataFrame(index=range(10)) dividends['symbol'] = ['MSFT', 'AAPL', 'CVX', 'XOM', 'BND', 'CAT', 'BA', 'TIF', 'BAC', 'JPM'] dividends['position'] = 100 dividends['amount'] = [20, 30, 40, 50, 60, 70, 80, 90, 100, 110] dividends['rate'] = dividends['amount'] / dividends['position'] dividends['paid_at'] = pd.Timestamp('2019-01-15', tz='UTC') dividends['payable_date'] = pd.Timestamp('2019-01-02', tz='UTC') return dividends if __name__ == "__main__": pass
mit
Sentient07/scikit-learn
examples/exercises/plot_cv_diabetes.py
27
2775
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import LassoCV from sklearn.linear_model import Lasso from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = Lasso(random_state=0) alphas = np.logspace(-4, -0.5, 30) tuned_parameters = [{'alpha': alphas}] n_folds = 3 clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False) clf.fit(X, y) scores = clf.cv_results_['mean_test_score'] scores_std = clf.cv_results_['std_test_score'] plt.figure().set_size_inches(8, 6) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores std_error = scores_std / np.sqrt(n_folds) plt.semilogx(alphas, scores + std_error, 'b--') plt.semilogx(alphas, scores - std_error, 'b--') # alpha=0.2 controls the translucency of the fill color plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2) plt.ylabel('CV score +/- std error') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') plt.xlim([alphas[0], alphas[-1]]) ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = LassoCV(alphas=alphas, random_state=0) k_fold = KFold(3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold.split(X, y)): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
prheenan/Research
Perkins/Projects/PythonCommandLine/InverseWeierstrass/UnitTest/test_equality.py
1
1086
# force floating point division. Can still use integer with // from __future__ import division # other good compatibility recquirements for python3 from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals # This file is used for importing the common utilities classes. import numpy as np import matplotlib.pyplot as plt import sys def run(): """ <Description> Args: param1: This is the first param. Returns: This is a description of what is returned. """ f1 = sys.argv[1] f2 = sys.argv[2] arr1 = np.loadtxt(f1,delimiter=",",skiprows=2) arr2 = np.loadtxt(f2,delimiter=",",skiprows=2) plt.plot(arr1[:,0]*1e9,arr1[:,1]/4.1e-21,'r--',label=r"$\Delta G^0$, debugged") plt.plot(arr2[:,0]*1e9,arr2[:,1]/4.1e-21,label=r"$\Delta G^0$, previous") plt.xlabel("Extension (nm)") plt.ylabel("Delta G (kT)") plt.legend() plt.show() tol = 1e-6 np.testing.assert_allclose(arr1,arr2,rtol=tol,atol=0,verbose=True) if __name__ == "__main__": run()
gpl-3.0
beni55/copperhead
samples/of_cg.py
5
5389
# # Copyright 2008-2010 NVIDIA Corporation # Copyright 2009-2010 University of California # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from copperhead import * import numpy as np import matplotlib as mat import matplotlib.pyplot as plt import matplotlib.image as mpimg import plac import urllib @cu def axpy(a, x, y): return [a * xi + yi for xi, yi in zip(x, y)] @cu def dot(x, y): return sum(map(op_mul, x, y)) @cu def vadd(x, y): return map(op_add, x, y) @cu def vmul(x, y): return map(op_mul, x, y) @cu def vsub(x, y): return map(op_sub, x, y) @cu def of_spmv((du, dv), width, (m1, m2, m3, m4, m5, m6, m7)): e = vadd(vmul(m1, du), vmul(m2, dv)) f = vadd(vmul(m2, du), vmul(m3, dv)) e = vadd(e, vmul(m4, shift(du, -width, float32(0.0)))) f = vadd(f, vmul(m4, shift(dv, -width, float32(0.0)))) e = vadd(e, vmul(m5, shift(du, -1, float32(0.0)))) f = vadd(f, vmul(m5, shift(dv, -1, float32(0.0)))) e = vadd(e, vmul(m6, shift(du, 1, float32(0.0)))) f = vadd(f, vmul(m6, shift(dv, 1, float32(0.0)))) e = vadd(e, vmul(m7, shift(du, width, float32(0.0)))) f = vadd(f, vmul(m7, shift(dv, width, float32(0.0)))) return (e, f) @cu def zeros(x): return [float32(0.0) for xi in x] eps = 1e-6 @cu def init_cg(V, D, width, A): u, v = of_spmv(V, width, A) du, dv = D ur = vsub(du, u) vr = vsub(dv, v) return ur, vr @cu def precondition(u, v, (p1, p2, p3)): e = vadd(vmul(p1, u), vmul(p2, v)) f = vadd(vmul(p2, u), vmul(p3, v)) return e, f @cu def pre_cg_iteration(width, V, R, D, Z, A, P): ux, vx = V ur, vr = R uz, vz = Z ud, vd = D uAdi, vAdi = of_spmv(D, width, A) urnorm = dot(ur, uz) vrnorm = dot(vr, vz) rnorm = urnorm + vrnorm udtAdi = dot(ud, uAdi) vdtAdi = dot(vd, vAdi) dtAdi = udtAdi + vdtAdi alpha = rnorm / dtAdi ux = axpy(alpha, ud, ux) vx = axpy(alpha, vd, vx) urp1 = axpy(-alpha, uAdi, ur) vrp1 = axpy(-alpha, vAdi, vr) uzp1, vzp1 = precondition(urp1, vrp1, P) urp1norm = dot(urp1, uzp1) vrp1norm = dot(vrp1, vzp1) beta = (urp1norm + vrp1norm)/rnorm udp1 = axpy(beta, uzp1, urp1) vdp1 = axpy(beta, vzp1, vrp1) return (ux, vx), (urp1, vrp1), (udp1, vdp1), (uzp1, vzp1), rnorm @cu def form_preconditioner(m1, m2, m3): def indet(a, b, c): return 1.0/(a * c - b * b) indets = map(indet, m1, m2, m3) p1 = map(op_mul, indets, m3) p2 = map(lambda a, b: -a * b, indets, m2) p3 = map(op_mul, indets, m1) return p1, p2, p3 @cu def pre_cg_solver(it, width, V, R, D, Z, A, P): if (it > 0): V, R, D, Z, rnorm = \ pre_cg_iteration(width, V, R, D, Z, A, P) return pre_cg_solver(it-1, width, V, R, D, Z, A, P) else: return V def cg(it, A, width, V, D): print("Solving...") m1, m2, m3, m4, m5, m6, m7 = A P = form_preconditioner(m1, m2, m3) R = init_cg(V, D, width, A) ur, vr = R Z = precondition(ur, vr, P) D = R return pre_cg_solver(it, width, V, R, D, Z, A, P) def initialize_data(file_name): print("Reading data from file") if not file_name: file_name, headers = urllib.urlretrieve('http://copperhead.github.com/data/Urban331.npz') npz = np.load(file_name) width = npz['width'].item() height = npz['height'].item() npixels = width * height m1 = cuarray(npz['m1']) m2 = cuarray(npz['m2']) m3 = cuarray(npz['m3']) m4 = cuarray(npz['m4']) m5 = cuarray(npz['m5']) m6 = cuarray(npz['m6']) m7 = cuarray(npz['m7']) A = (m1, m2, m3, m4, m5, m6, m7) du = cuarray(npz['du']) dv = cuarray(npz['dv']) D = (du, dv) ux = cuarray(np.zeros(npixels, dtype=np.float32)) vx = cuarray(np.zeros(npixels, dtype=np.float32)) V = (ux, vx) img = npz['img'] return(A, V, D, width, height, img) def plot_data(image, width, height, V): plt.subplot(121) plt.imshow(image[10:110, 10:110]) plt.subplot(122) ux, vx = V u = to_numpy(ux) v = to_numpy(vx) u = np.reshape(u, [height,width]) v = np.reshape(v, [height,width]) x, y = np.meshgrid(np.arange(0, 100), np.arange(99, -1, -1)) plt.quiver(x, y, u[10:110,10:110], v[10:110, 10:110], angles='xy') plt.show() @plac.annotations(data_file="""Filename of Numpy data file for this problem. If none is found, a default dataset will be loaded from http://copperhead.github.com/data/Urban331.npz""") def main(data_file=None): """Performs a Preconditioned Conjugate Gradient solver for a particular problem found in Variational Optical Flow methods for video analysis.""" A, V, D, width, height, image = initialize_data(data_file) VX = cg(100, A, width, V, D) plot_data(image, width, height, VX) if __name__ == '__main__': plac.call(main)
apache-2.0
futurulus/scipy
scipy/spatial/kdtree.py
11
37913
# Copyright Anne M. Archibald 2008 # Released under the scipy license from __future__ import division, print_function, absolute_import import sys import numpy as np from heapq import heappush, heappop import scipy.sparse __all__ = ['minkowski_distance_p', 'minkowski_distance', 'distance_matrix', 'Rectangle', 'KDTree'] def minkowski_distance_p(x, y, p=2): """ Compute the p-th power of the L**p distance between two arrays. For efficiency, this function computes the L**p distance but does not extract the pth root. If `p` is 1 or infinity, this is equal to the actual L**p distance. Parameters ---------- x : (M, K) array_like Input array. y : (N, K) array_like Input array. p : float, 1 <= p <= infinity Which Minkowski p-norm to use. Examples -------- >>> from scipy.spatial import minkowski_distance_p >>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]]) array([2, 1]) """ x = np.asarray(x) y = np.asarray(y) if p == np.inf: return np.amax(np.abs(y-x), axis=-1) elif p == 1: return np.sum(np.abs(y-x), axis=-1) else: return np.sum(np.abs(y-x)**p, axis=-1) def minkowski_distance(x, y, p=2): """ Compute the L**p distance between two arrays. Parameters ---------- x : (M, K) array_like Input array. y : (N, K) array_like Input array. p : float, 1 <= p <= infinity Which Minkowski p-norm to use. Examples -------- >>> from scipy.spatial import minkowski_distance >>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]]) array([ 1.41421356, 1. ]) """ x = np.asarray(x) y = np.asarray(y) if p == np.inf or p == 1: return minkowski_distance_p(x, y, p) else: return minkowski_distance_p(x, y, p)**(1./p) class Rectangle(object): """Hyperrectangle class. Represents a Cartesian product of intervals. """ def __init__(self, maxes, mins): """Construct a hyperrectangle.""" self.maxes = np.maximum(maxes,mins).astype(float) self.mins = np.minimum(maxes,mins).astype(float) self.m, = self.maxes.shape def __repr__(self): return "<Rectangle %s>" % list(zip(self.mins, self.maxes)) def volume(self): """Total volume.""" return np.prod(self.maxes-self.mins) def split(self, d, split): """ Produce two hyperrectangles by splitting. In general, if you need to compute maximum and minimum distances to the children, it can be done more efficiently by updating the maximum and minimum distances to the parent. Parameters ---------- d : int Axis to split hyperrectangle along. split : float Position along axis `d` to split at. """ mid = np.copy(self.maxes) mid[d] = split less = Rectangle(self.mins, mid) mid = np.copy(self.mins) mid[d] = split greater = Rectangle(mid, self.maxes) return less, greater def min_distance_point(self, x, p=2.): """ Return the minimum distance between input and points in the hyperrectangle. Parameters ---------- x : array_like Input. p : float, optional Input. """ return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p) def max_distance_point(self, x, p=2.): """ Return the maximum distance between input and points in the hyperrectangle. Parameters ---------- x : array_like Input array. p : float, optional Input. """ return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p) def min_distance_rectangle(self, other, p=2.): """ Compute the minimum distance between points in the two hyperrectangles. Parameters ---------- other : hyperrectangle Input. p : float Input. """ return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p) def max_distance_rectangle(self, other, p=2.): """ Compute the maximum distance between points in the two hyperrectangles. Parameters ---------- other : hyperrectangle Input. p : float, optional Input. """ return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p) class KDTree(object): """ kd-tree for quick nearest-neighbor lookup This class provides an index into a set of k-dimensional points which can be used to rapidly look up the nearest neighbors of any point. Parameters ---------- data : (N,K) array_like The data points to be indexed. This array is not copied, and so modifying this data will result in bogus results. leafsize : int, optional The number of points at which the algorithm switches over to brute-force. Has to be positive. Raises ------ RuntimeError The maximum recursion limit can be exceeded for large data sets. If this happens, either increase the value for the `leafsize` parameter or increase the recursion limit by:: >>> import sys >>> sys.setrecursionlimit(10000) Notes ----- The algorithm used is described in Maneewongvatana and Mount 1999. The general idea is that the kd-tree is a binary tree, each of whose nodes represents an axis-aligned hyperrectangle. Each node specifies an axis and splits the set of points based on whether their coordinate along that axis is greater than or less than a particular value. During construction, the axis and splitting point are chosen by the "sliding midpoint" rule, which ensures that the cells do not all become long and thin. The tree can be queried for the r closest neighbors of any given point (optionally returning only those within some maximum distance of the point). It can also be queried, with a substantial gain in efficiency, for the r approximate closest neighbors. For large dimensions (20 is already large) do not expect this to run significantly faster than brute force. High-dimensional nearest-neighbor queries are a substantial open problem in computer science. The tree also supports all-neighbors queries, both with arrays of points and with other kd-trees. These do use a reasonably efficient algorithm, but the kd-tree is not necessarily the best data structure for this sort of calculation. """ def __init__(self, data, leafsize=10): self.data = np.asarray(data) self.n, self.m = np.shape(self.data) self.leafsize = int(leafsize) if self.leafsize < 1: raise ValueError("leafsize must be at least 1") self.maxes = np.amax(self.data,axis=0) self.mins = np.amin(self.data,axis=0) self.tree = self.__build(np.arange(self.n), self.maxes, self.mins) class node(object): if sys.version_info[0] >= 3: def __lt__(self, other): return id(self) < id(other) def __gt__(self, other): return id(self) > id(other) def __le__(self, other): return id(self) <= id(other) def __ge__(self, other): return id(self) >= id(other) def __eq__(self, other): return id(self) == id(other) class leafnode(node): def __init__(self, idx): self.idx = idx self.children = len(idx) class innernode(node): def __init__(self, split_dim, split, less, greater): self.split_dim = split_dim self.split = split self.less = less self.greater = greater self.children = less.children+greater.children def __build(self, idx, maxes, mins): if len(idx) <= self.leafsize: return KDTree.leafnode(idx) else: data = self.data[idx] # maxes = np.amax(data,axis=0) # mins = np.amin(data,axis=0) d = np.argmax(maxes-mins) maxval = maxes[d] minval = mins[d] if maxval == minval: # all points are identical; warn user? return KDTree.leafnode(idx) data = data[:,d] # sliding midpoint rule; see Maneewongvatana and Mount 1999 # for arguments that this is a good idea. split = (maxval+minval)/2 less_idx = np.nonzero(data <= split)[0] greater_idx = np.nonzero(data > split)[0] if len(less_idx) == 0: split = np.amin(data) less_idx = np.nonzero(data <= split)[0] greater_idx = np.nonzero(data > split)[0] if len(greater_idx) == 0: split = np.amax(data) less_idx = np.nonzero(data < split)[0] greater_idx = np.nonzero(data >= split)[0] if len(less_idx) == 0: # _still_ zero? all must have the same value if not np.all(data == data[0]): raise ValueError("Troublesome data array: %s" % data) split = data[0] less_idx = np.arange(len(data)-1) greater_idx = np.array([len(data)-1]) lessmaxes = np.copy(maxes) lessmaxes[d] = split greatermins = np.copy(mins) greatermins[d] = split return KDTree.innernode(d, split, self.__build(idx[less_idx],lessmaxes,mins), self.__build(idx[greater_idx],maxes,greatermins)) def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf): side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x)) if p != np.inf: side_distances **= p min_distance = np.sum(side_distances) else: min_distance = np.amax(side_distances) # priority queue for chasing nodes # entries are: # minimum distance between the cell and the target # distances between the nearest side of the cell and the target # the head node of the cell q = [(min_distance, tuple(side_distances), self.tree)] # priority queue for the nearest neighbors # furthest known neighbor first # entries are (-distance**p, i) neighbors = [] if eps == 0: epsfac = 1 elif p == np.inf: epsfac = 1/(1+eps) else: epsfac = 1/(1+eps)**p if p != np.inf and distance_upper_bound != np.inf: distance_upper_bound = distance_upper_bound**p while q: min_distance, side_distances, node = heappop(q) if isinstance(node, KDTree.leafnode): # brute-force data = self.data[node.idx] ds = minkowski_distance_p(data,x[np.newaxis,:],p) for i in range(len(ds)): if ds[i] < distance_upper_bound: if len(neighbors) == k: heappop(neighbors) heappush(neighbors, (-ds[i], node.idx[i])) if len(neighbors) == k: distance_upper_bound = -neighbors[0][0] else: # we don't push cells that are too far onto the queue at all, # but since the distance_upper_bound decreases, we might get # here even if the cell's too far if min_distance > distance_upper_bound*epsfac: # since this is the nearest cell, we're done, bail out break # compute minimum distances to the children and push them on if x[node.split_dim] < node.split: near, far = node.less, node.greater else: near, far = node.greater, node.less # near child is at the same distance as the current node heappush(q,(min_distance, side_distances, near)) # far child is further by an amount depending only # on the split value sd = list(side_distances) if p == np.inf: min_distance = max(min_distance, abs(node.split-x[node.split_dim])) elif p == 1: sd[node.split_dim] = np.abs(node.split-x[node.split_dim]) min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim] else: sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim] # far child might be too far, if so, don't bother pushing it if min_distance <= distance_upper_bound*epsfac: heappush(q,(min_distance, tuple(sd), far)) if p == np.inf: return sorted([(-d,i) for (d,i) in neighbors]) else: return sorted([((-d)**(1./p),i) for (d,i) in neighbors]) def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf): """ Query the kd-tree for nearest neighbors Parameters ---------- x : array_like, last dimension self.m An array of points to query. k : int, optional The number of nearest neighbors to return. eps : nonnegative float, optional Return approximate nearest neighbors; the kth returned value is guaranteed to be no further than (1+eps) times the distance to the real kth nearest neighbor. p : float, 1<=p<=infinity, optional Which Minkowski p-norm to use. 1 is the sum-of-absolute-values "Manhattan" distance 2 is the usual Euclidean distance infinity is the maximum-coordinate-difference distance distance_upper_bound : nonnegative float, optional Return only neighbors within this distance. This is used to prune tree searches, so if you are doing a series of nearest-neighbor queries, it may help to supply the distance to the nearest neighbor of the most recent point. Returns ------- d : float or array of floats The distances to the nearest neighbors. If x has shape tuple+(self.m,), then d has shape tuple if k is one, or tuple+(k,) if k is larger than one. Missing neighbors (e.g. when k > n or distance_upper_bound is given) are indicated with infinite distances. If k is None, then d is an object array of shape tuple, containing lists of distances. In either case the hits are sorted by distance (nearest first). i : integer or array of integers The locations of the neighbors in self.data. i is the same shape as d. Examples -------- >>> from scipy import spatial >>> x, y = np.mgrid[0:5, 2:8] >>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel()))) >>> tree.data array([[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 2], [2, 3], [2, 4], [2, 5], [2, 6], [2, 7], [3, 2], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [4, 2], [4, 3], [4, 4], [4, 5], [4, 6], [4, 7]]) >>> pts = np.array([[0, 0], [2.1, 2.9]]) >>> tree.query(pts) (array([ 2. , 0.14142136]), array([ 0, 13])) >>> tree.query(pts[0]) (2.0, 0) """ x = np.asarray(x) if np.shape(x)[-1] != self.m: raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x))) if p < 1: raise ValueError("Only p-norms with 1<=p<=infinity permitted") retshape = np.shape(x)[:-1] if retshape != (): if k is None: dd = np.empty(retshape,dtype=object) ii = np.empty(retshape,dtype=object) elif k > 1: dd = np.empty(retshape+(k,),dtype=float) dd.fill(np.inf) ii = np.empty(retshape+(k,),dtype=int) ii.fill(self.n) elif k == 1: dd = np.empty(retshape,dtype=float) dd.fill(np.inf) ii = np.empty(retshape,dtype=int) ii.fill(self.n) else: raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None") for c in np.ndindex(retshape): hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound) if k is None: dd[c] = [d for (d,i) in hits] ii[c] = [i for (d,i) in hits] elif k > 1: for j in range(len(hits)): dd[c+(j,)], ii[c+(j,)] = hits[j] elif k == 1: if len(hits) > 0: dd[c], ii[c] = hits[0] else: dd[c] = np.inf ii[c] = self.n return dd, ii else: hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound) if k is None: return [d for (d,i) in hits], [i for (d,i) in hits] elif k == 1: if len(hits) > 0: return hits[0] else: return np.inf, self.n elif k > 1: dd = np.empty(k,dtype=float) dd.fill(np.inf) ii = np.empty(k,dtype=int) ii.fill(self.n) for j in range(len(hits)): dd[j], ii[j] = hits[j] return dd, ii else: raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None") def __query_ball_point(self, x, r, p=2., eps=0): R = Rectangle(self.maxes, self.mins) def traverse_checking(node, rect): if rect.min_distance_point(x, p) > r / (1. + eps): return [] elif rect.max_distance_point(x, p) < r * (1. + eps): return traverse_no_checking(node) elif isinstance(node, KDTree.leafnode): d = self.data[node.idx] return node.idx[minkowski_distance(d, x, p) <= r].tolist() else: less, greater = rect.split(node.split_dim, node.split) return traverse_checking(node.less, less) + \ traverse_checking(node.greater, greater) def traverse_no_checking(node): if isinstance(node, KDTree.leafnode): return node.idx.tolist() else: return traverse_no_checking(node.less) + \ traverse_no_checking(node.greater) return traverse_checking(self.tree, R) def query_ball_point(self, x, r, p=2., eps=0): """Find all points within distance r of point(s) x. Parameters ---------- x : array_like, shape tuple + (self.m,) The point or points to search for neighbors of. r : positive float The radius of points to return. p : float, optional Which Minkowski p-norm to use. Should be in the range [1, inf]. eps : nonnegative float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r / (1 + eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1 + eps)``. Returns ------- results : list or array of lists If `x` is a single point, returns a list of the indices of the neighbors of `x`. If `x` is an array of points, returns an object array of shape tuple containing lists of neighbors. Notes ----- If you have many points whose neighbors you want to find, you may save substantial amounts of time by putting them in a KDTree and using query_ball_tree. Examples -------- >>> from scipy import spatial >>> x, y = np.mgrid[0:5, 0:5] >>> points = zip(x.ravel(), y.ravel()) >>> tree = spatial.KDTree(points) >>> tree.query_ball_point([2, 0], 1) [5, 10, 11, 15] Query multiple points and plot the results: >>> import matplotlib.pyplot as plt >>> points = np.asarray(points) >>> plt.plot(points[:,0], points[:,1], '.') >>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1): ... nearby_points = points[results] ... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o') >>> plt.margins(0.1, 0.1) >>> plt.show() """ x = np.asarray(x) if x.shape[-1] != self.m: raise ValueError("Searching for a %d-dimensional point in a " "%d-dimensional KDTree" % (x.shape[-1], self.m)) if len(x.shape) == 1: return self.__query_ball_point(x, r, p, eps) else: retshape = x.shape[:-1] result = np.empty(retshape, dtype=object) for c in np.ndindex(retshape): result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps) return result def query_ball_tree(self, other, r, p=2., eps=0): """Find all pairs of points whose distance is at most r Parameters ---------- other : KDTree instance The tree containing points to search against. r : float The maximum distance, has to be positive. p : float, optional Which Minkowski norm to use. `p` has to meet the condition ``1 <= p <= infinity``. eps : float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r/(1+eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1+eps)``. `eps` has to be non-negative. Returns ------- results : list of lists For each element ``self.data[i]`` of this tree, ``results[i]`` is a list of the indices of its neighbors in ``other.data``. """ results = [[] for i in range(self.n)] def traverse_checking(node1, rect1, node2, rect2): if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps): return elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps): traverse_no_checking(node1, node2) elif isinstance(node1, KDTree.leafnode): if isinstance(node2, KDTree.leafnode): d = other.data[node2.idx] for i in node1.idx: results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist() else: less, greater = rect2.split(node2.split_dim, node2.split) traverse_checking(node1,rect1,node2.less,less) traverse_checking(node1,rect1,node2.greater,greater) elif isinstance(node2, KDTree.leafnode): less, greater = rect1.split(node1.split_dim, node1.split) traverse_checking(node1.less,less,node2,rect2) traverse_checking(node1.greater,greater,node2,rect2) else: less1, greater1 = rect1.split(node1.split_dim, node1.split) less2, greater2 = rect2.split(node2.split_dim, node2.split) traverse_checking(node1.less,less1,node2.less,less2) traverse_checking(node1.less,less1,node2.greater,greater2) traverse_checking(node1.greater,greater1,node2.less,less2) traverse_checking(node1.greater,greater1,node2.greater,greater2) def traverse_no_checking(node1, node2): if isinstance(node1, KDTree.leafnode): if isinstance(node2, KDTree.leafnode): for i in node1.idx: results[i] += node2.idx.tolist() else: traverse_no_checking(node1, node2.less) traverse_no_checking(node1, node2.greater) else: traverse_no_checking(node1.less, node2) traverse_no_checking(node1.greater, node2) traverse_checking(self.tree, Rectangle(self.maxes, self.mins), other.tree, Rectangle(other.maxes, other.mins)) return results def query_pairs(self, r, p=2., eps=0): """ Find all pairs of points within a distance. Parameters ---------- r : positive float The maximum distance. p : float, optional Which Minkowski norm to use. `p` has to meet the condition ``1 <= p <= infinity``. eps : float, optional Approximate search. Branches of the tree are not explored if their nearest points are further than ``r/(1+eps)``, and branches are added in bulk if their furthest points are nearer than ``r * (1+eps)``. `eps` has to be non-negative. Returns ------- results : set Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding positions are close. """ results = set() def traverse_checking(node1, rect1, node2, rect2): if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps): return elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps): traverse_no_checking(node1, node2) elif isinstance(node1, KDTree.leafnode): if isinstance(node2, KDTree.leafnode): # Special care to avoid duplicate pairs if id(node1) == id(node2): d = self.data[node2.idx] for i in node1.idx: for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]: if i < j: results.add((i,j)) else: d = self.data[node2.idx] for i in node1.idx: for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]: if i < j: results.add((i,j)) elif j < i: results.add((j,i)) else: less, greater = rect2.split(node2.split_dim, node2.split) traverse_checking(node1,rect1,node2.less,less) traverse_checking(node1,rect1,node2.greater,greater) elif isinstance(node2, KDTree.leafnode): less, greater = rect1.split(node1.split_dim, node1.split) traverse_checking(node1.less,less,node2,rect2) traverse_checking(node1.greater,greater,node2,rect2) else: less1, greater1 = rect1.split(node1.split_dim, node1.split) less2, greater2 = rect2.split(node2.split_dim, node2.split) traverse_checking(node1.less,less1,node2.less,less2) traverse_checking(node1.less,less1,node2.greater,greater2) # Avoid traversing (node1.less, node2.greater) and # (node1.greater, node2.less) (it's the same node pair twice # over, which is the source of the complication in the # original KDTree.query_pairs) if id(node1) != id(node2): traverse_checking(node1.greater,greater1,node2.less,less2) traverse_checking(node1.greater,greater1,node2.greater,greater2) def traverse_no_checking(node1, node2): if isinstance(node1, KDTree.leafnode): if isinstance(node2, KDTree.leafnode): # Special care to avoid duplicate pairs if id(node1) == id(node2): for i in node1.idx: for j in node2.idx: if i < j: results.add((i,j)) else: for i in node1.idx: for j in node2.idx: if i < j: results.add((i,j)) elif j < i: results.add((j,i)) else: traverse_no_checking(node1, node2.less) traverse_no_checking(node1, node2.greater) else: # Avoid traversing (node1.less, node2.greater) and # (node1.greater, node2.less) (it's the same node pair twice # over, which is the source of the complication in the # original KDTree.query_pairs) if id(node1) == id(node2): traverse_no_checking(node1.less, node2.less) traverse_no_checking(node1.less, node2.greater) traverse_no_checking(node1.greater, node2.greater) else: traverse_no_checking(node1.less, node2) traverse_no_checking(node1.greater, node2) traverse_checking(self.tree, Rectangle(self.maxes, self.mins), self.tree, Rectangle(self.maxes, self.mins)) return results def count_neighbors(self, other, r, p=2.): """ Count how many nearby pairs can be formed. Count the number of pairs (x1,x2) can be formed, with x1 drawn from self and x2 drawn from `other`, and where ``distance(x1, x2, p) <= r``. This is the "two-point correlation" described in Gray and Moore 2000, "N-body problems in statistical learning", and the code here is based on their algorithm. Parameters ---------- other : KDTree instance The other tree to draw points from. r : float or one-dimensional array of floats The radius to produce a count for. Multiple radii are searched with a single tree traversal. p : float, 1<=p<=infinity, optional Which Minkowski p-norm to use Returns ------- result : int or 1-D array of ints The number of pairs. Note that this is internally stored in a numpy int, and so may overflow if very large (2e9). """ def traverse(node1, rect1, node2, rect2, idx): min_r = rect1.min_distance_rectangle(rect2,p) max_r = rect1.max_distance_rectangle(rect2,p) c_greater = r[idx] > max_r result[idx[c_greater]] += node1.children*node2.children idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)] if len(idx) == 0: return if isinstance(node1,KDTree.leafnode): if isinstance(node2,KDTree.leafnode): ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:], other.data[node2.idx][np.newaxis,:,:], p).ravel() ds.sort() result[idx] += np.searchsorted(ds,r[idx],side='right') else: less, greater = rect2.split(node2.split_dim, node2.split) traverse(node1, rect1, node2.less, less, idx) traverse(node1, rect1, node2.greater, greater, idx) else: if isinstance(node2,KDTree.leafnode): less, greater = rect1.split(node1.split_dim, node1.split) traverse(node1.less, less, node2, rect2, idx) traverse(node1.greater, greater, node2, rect2, idx) else: less1, greater1 = rect1.split(node1.split_dim, node1.split) less2, greater2 = rect2.split(node2.split_dim, node2.split) traverse(node1.less,less1,node2.less,less2,idx) traverse(node1.less,less1,node2.greater,greater2,idx) traverse(node1.greater,greater1,node2.less,less2,idx) traverse(node1.greater,greater1,node2.greater,greater2,idx) R1 = Rectangle(self.maxes, self.mins) R2 = Rectangle(other.maxes, other.mins) if np.shape(r) == (): r = np.array([r]) result = np.zeros(1,dtype=int) traverse(self.tree, R1, other.tree, R2, np.arange(1)) return result[0] elif len(np.shape(r)) == 1: r = np.asarray(r) n, = r.shape result = np.zeros(n,dtype=int) traverse(self.tree, R1, other.tree, R2, np.arange(n)) return result else: raise ValueError("r must be either a single value or a one-dimensional array of values") def sparse_distance_matrix(self, other, max_distance, p=2.): """ Compute a sparse distance matrix Computes a distance matrix between two KDTrees, leaving as zero any distance greater than max_distance. Parameters ---------- other : KDTree max_distance : positive float p : float, optional Returns ------- result : dok_matrix Sparse matrix representing the results in "dictionary of keys" format. """ result = scipy.sparse.dok_matrix((self.n,other.n)) def traverse(node1, rect1, node2, rect2): if rect1.min_distance_rectangle(rect2, p) > max_distance: return elif isinstance(node1, KDTree.leafnode): if isinstance(node2, KDTree.leafnode): for i in node1.idx: for j in node2.idx: d = minkowski_distance(self.data[i],other.data[j],p) if d <= max_distance: result[i,j] = d else: less, greater = rect2.split(node2.split_dim, node2.split) traverse(node1,rect1,node2.less,less) traverse(node1,rect1,node2.greater,greater) elif isinstance(node2, KDTree.leafnode): less, greater = rect1.split(node1.split_dim, node1.split) traverse(node1.less,less,node2,rect2) traverse(node1.greater,greater,node2,rect2) else: less1, greater1 = rect1.split(node1.split_dim, node1.split) less2, greater2 = rect2.split(node2.split_dim, node2.split) traverse(node1.less,less1,node2.less,less2) traverse(node1.less,less1,node2.greater,greater2) traverse(node1.greater,greater1,node2.less,less2) traverse(node1.greater,greater1,node2.greater,greater2) traverse(self.tree, Rectangle(self.maxes, self.mins), other.tree, Rectangle(other.maxes, other.mins)) return result def distance_matrix(x, y, p=2, threshold=1000000): """ Compute the distance matrix. Returns the matrix of all pair-wise distances. Parameters ---------- x : (M, K) array_like TODO: description needed y : (N, K) array_like TODO: description needed p : float, 1 <= p <= infinity Which Minkowski p-norm to use. threshold : positive int If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead of large temporary arrays. Returns ------- result : (M, N) ndarray Distance matrix. Examples -------- >>> from scipy.spatial import distance_matrix >>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]]) array([[ 1. , 1.41421356], [ 1.41421356, 1. ]]) """ x = np.asarray(x) m, k = x.shape y = np.asarray(y) n, kk = y.shape if k != kk: raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk)) if m*n*k <= threshold: return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p) else: result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype if m < n: for i in range(m): result[i,:] = minkowski_distance(x[i],y,p) else: for j in range(n): result[:,j] = minkowski_distance(x,y[j],p) return result
bsd-3-clause
maestrotf/pymepps
docs/examples/example_plot_stationnc.py
2
2009
""" Load station data based on NetCDF files ======================================= In this example we show how to load station data based on NetCDF files. The data is loaded with the pymepps package. Thanks to Ingo Lange we could use original data from the Wettermast for this example. In the following the data is loaded, plotted and saved as json file. """ import pymepps import matplotlib.pyplot as plt ###################################################################### # We could use the global pymepps open\_station\_dataset function to open # the Wettermast data. We have to specify the data path and the data type. # wm_ds = pymepps.open_station_dataset('../data/station/wettermast.nc', 'nc') print(wm_ds) ###################################################################### # Now we could extract the temperature in 2 m height. For this we use the # select method of the resulted dataset. # t2m = wm_ds.select('TT002_M10') print(type(t2m)) print(t2m.describe()) ###################################################################### # We could see that the resulting temperature is a normal pandas.Series. # So it is possible to use all pandas methods, e.g. plotting of the # Series. # t2m.plot() plt.xlabel('Date') plt.ylabel('Temperature in °C') plt.title('Temperature at the Wettermast Hamburg') plt.show() ###################################################################### # Pymepps uses an accessor to extend the pandas functionality. The # accessor could be accessed with Series.pp. At the moment there is only a # lonlat attribute, update, save and load method defined, but it is # planned to expand the number of additional methods. # print(t2m.pp.lonlat) ###################################################################### # We could see that the logitude and latitude are None at the moment, # because we haven't set the yet. We could either set them directly or set # the coordintes in the open\_station\_dataset function with the lonlat # argument. #
gpl-3.0
Chinmoy07/ML-Term-Project-Team-Pikachu
Python-PHP-Codes/svm_classifier.py
1
1555
from sklearn import svm import matplotlib.pyplot as plt import json import numpy as np training_length = 0.60 with open("../Output-files/features.json", "r") as features_file: data = json.load( features_file ) X = [] Y = [] index_feat = data["Index Features"] features_key = [ "Moving Average", "Price Momentum Oscillator", "Relative Strength Index", "On Balance Volume", "Stochastic Oscillator", "Sentiment Strength" ] for i in range( 0, len( index_feat ) ): temp_arr = [] for j in range( 0, len( features_key ) ): temp_arr.append( index_feat[i][ features_key[j] ] ) X.append( temp_arr ) Y.append( index_feat[i]["Target"] ) X = np.array( X ) Y = np.array( Y ) X_train = X[ : int( training_length*len( X ) ) ] Y_train = Y[ : int( training_length*len( Y ) ) ] X_test = X[ int( training_length*len( X ) ) : ] Y_test = Y[ int( training_length*len( Y ) ) : ] clf = svm.SVC( kernel='rbf' ) clf.fit( X_train, Y_train ) Y_pred = clf.predict( X_test ) cnt = 0 pred_file = open("../Output-files/Predictions.txt", "w") pred_file.write("Actual Predicted\n") for i in range( 0, len( Y_pred ) ): pred_file.write( (' '+str(Y_test[i]))[-2:] + " " + (' '+str(Y_pred[i]))[-2:] + "\n" ) if( Y_pred[i] != Y_test[i] ): cnt+=1 print( "Prediction done with accuracy : " + str( ( len( Y_pred ) - cnt )/( len( Y_pred ) ) ) + " and predictions saved to Output-files/Predictions.txt")
mit
alfonsokim/nupic
src/nupic/algorithms/monitor_mixin/plot.py
20
5229
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014-2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Plot class used in monitor mixin framework. """ import os try: # We import in here to avoid creating a matplotlib dependency in nupic. import matplotlib.pyplot as plt import matplotlib.cm as cm except ImportError: # Suppress this optional dependency on matplotlib. NOTE we don't log this, # because python logging implicitly adds the StreamHandler to root logger when # calling `logging.debug`, etc., which may undermine an application's logging # configuration. plt = None cm = None class Plot(object): def __init__(self, monitor, title, show=True): """ @param monitor (MonitorMixinBase) Monitor Mixin instance that generated this plot @param title (string) Plot title """ self._monitor = monitor self._title = title self._fig = self._initFigure() self._show = show if self._show: plt.ion() plt.show() def _initFigure(self): fig = plt.figure() fig.suptitle(self._prettyPrintTitle()) return fig def _prettyPrintTitle(self): if self._monitor.mmName is not None: return "[{0}] {1}".format(self._monitor.mmName, self._title) return self._title def addGraph(self, data, position=111, xlabel=None, ylabel=None): """ Adds a graph to the plot's figure. @param data See matplotlib.Axes.plot documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.plot(data) plt.draw() def addHistogram(self, data, position=111, xlabel=None, ylabel=None, bins=None): """ Adds a histogram to the plot's figure. @param data See matplotlib.Axes.hist documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis """ ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.hist(data, bins=bins, color="green", alpha=0.8) plt.draw() def add2DArray(self, data, position=111, xlabel=None, ylabel=None, cmap=None, aspect="auto", interpolation="nearest", name=None): """ Adds an image to the plot's figure. @param data a 2D array. See matplotlib.Axes.imshow documentation. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @param cmap color map used in the rendering @param aspect how aspect ratio is handled during resize @param interpolation interpolation method """ if cmap is None: # The default colormodel is an ugly blue-red model. cmap = cm.Greys ax = self._addBase(position, xlabel=xlabel, ylabel=ylabel) ax.imshow(data, cmap=cmap, aspect=aspect, interpolation=interpolation) if self._show: plt.draw() if name is not None: if not os.path.exists("log"): os.mkdir("log") plt.savefig("log/{name}.png".format(name=name), bbox_inches="tight", figsize=(8, 6), dpi=400) def _addBase(self, position, xlabel=None, ylabel=None): """ Adds a subplot to the plot's figure at specified position. @param position A 3-digit number. The first two digits define a 2D grid where subplots may be added. The final digit specifies the nth grid location for the added subplot @param xlabel text to be displayed on the x-axis @param ylabel text to be displayed on the y-axis @returns (matplotlib.Axes) Axes instance """ ax = self._fig.add_subplot(position) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax
agpl-3.0
goulu/networkx
networkx/drawing/tests/test_pylab.py
9
1133
"""Unit tests for matplotlib drawing functions.""" import os from nose import SkipTest import networkx as nx class TestPylab(object): @classmethod def setupClass(cls): global plt try: import matplotlib as mpl mpl.use('PS', warn=False) import matplotlib.pyplot as plt plt.rcParams['text.usetex'] = False except ImportError: raise SkipTest('matplotlib not available.') except RuntimeError: raise SkipTest('matplotlib not available.') def setUp(self): self.G = nx.barbell_graph(5,10) def test_draw(self): try: N = self.G nx.draw_spring(N) plt.savefig('test.ps') nx.draw_random(N) plt.savefig('test.ps') nx.draw_circular(N) plt.savefig('test.ps') nx.draw_spectral(N) plt.savefig('test.ps') nx.draw_spring(N.to_directed()) plt.savefig('test.ps') finally: try: os.unlink('test.ps') except OSError: pass
bsd-3-clause
matthewalbani/scipy
scipy/interpolate/interpolate.py
4
106038
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types, string_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Note that calling `interp2d` with NaNs present in input values results in undefined behaviour. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) def _check_broadcast_up_to(arr_from, shape_to, name): """Helper to check that arr_from broadcasts up to shape_to""" shape_from = arr_from.shape if len(shape_to) >= len(shape_from): for t, f in zip(shape_to[::-1], shape_from[::-1]): if f != 1 and f != t: break else: # all checks pass, do the upcasting that we need later if arr_from.size != 1 and arr_from.shape != shape_to: arr_from = np.ones(shape_to, arr_from.dtype) * arr_from return arr_from.ravel() # at least one check failed raise ValueError('%s argument must be able to broadcast up ' 'to shape %s but had shape %s' % (name, shape_to, shape_from)) def _do_extrapolate(fill_value): """Helper to check if fill_value == "extrapolate" without warnings""" return (isinstance(fill_value, string_types) and fill_value == 'extrapolate') class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Note that calling `interp1d` with NaNs present in input values results in undefined behaviour. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised unless `fill_value="extrapolate"`. fill_value : array-like or (array-like, array_like) or "extrapolate", optional - if a ndarray (or float), this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. The array-like must broadcast properly to the dimensions of the non-interpolation axes. - If a two-element tuple, then the first element is used as a fill value for ``x_new < x[0]`` and the second element is used for ``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant to be used for both bounds as ``below, above = fill_value, fill_value``. .. versionadded:: 0.17.0 - If "extrapolate", then points outside the data range will be extrapolated. ("nearest" and "linear" kinds only.) .. versionadded:: 0.17.0 assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.bounds_error = bounds_error # used by fill_value setter self.copy = copy if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0, 'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y self._y = self._reshape_yi(self.y) self.x = x del y, x # clean up namespace to prevent misuse; use attributes self._kind = kind self.fill_value = fill_value # calls the setter, can modify bounds_err # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': # Do division before addition to prevent possible integer overflow self.x_bds = self.x / 2.0 self.x_bds = self.x_bds[1:] + self.x_bds[:-1] self._call = self.__class__._call_nearest else: # Check if we can delegate to numpy.interp (2x-10x faster). cond = self.x.dtype == np.float_ and self.y.dtype == np.float_ cond = cond and self.y.ndim == 1 cond = cond and not _do_extrapolate(fill_value) if cond: self._call = self.__class__._call_linear_np else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(self.x, self._y, order=order) self._call = self.__class__._call_spline if len(self.x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) @property def fill_value(self): # backwards compat: mimic a public attribute return self._fill_value_orig @fill_value.setter def fill_value(self, fill_value): # extrapolation only works for nearest neighbor and linear methods if _do_extrapolate(fill_value): if self._kind not in ('nearest', 'linear'): raise ValueError("Extrapolation does not work with " "kind=%s" % self._kind) if self.bounds_error: raise ValueError("Cannot extrapolate and raise " "at the same time.") self.bounds_error = False self._extrapolate = True else: broadcast_shape = (self.y.shape[:self.axis] + self.y.shape[self.axis + 1:]) if len(broadcast_shape) == 0: broadcast_shape = (1,) # it's either a pair (_below_range, _above_range) or a single value # for both above and below range if isinstance(fill_value, tuple) and len(fill_value) == 2: below_above = [np.asarray(fill_value[0]), np.asarray(fill_value[1])] names = ('fill_value (below)', 'fill_value (above)') for ii in range(2): below_above[ii] = _check_broadcast_up_to( below_above[ii], broadcast_shape, names[ii]) else: fill_value = np.asarray(fill_value) below_above = [_check_broadcast_up_to( fill_value, broadcast_shape, 'fill_value')] * 2 self._fill_value_below, self._fill_value_above = below_above self._extrapolate = False if self.bounds_error is None: self.bounds_error = True # backwards compat: fill_value was a public attr; make it writeable self._fill_value_orig = fill_value def _call_linear_np(self, x_new): # Note that out-of-bounds values are taken care of in self._evaluate return np.interp(x_new, self.x, self.y) def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) y_new = self._call(self, x_new) if not self._extrapolate: below_bounds, above_bounds = self._check_bounds(x_new) if len(y_new) > 0: # Note fill_value must be broadcast up to the proper size # and flattened to work here y_new[below_bounds] = self._fill_value_below y_new[above_bounds] = self._fill_value_above return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. return below_bounds, above_bounds class _PPolyBase(object): """Base class for piecewise polynomials.""" __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True elif extrapolate != 'periodic': extrapolate = bool(extrapolate) self.extrapolate = extrapolate if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") dx = np.diff(self.x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` must be strictly increasing or decreasing.") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=None): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals. Note that the first additional interval will be formed using one of the `self.x` end points. x : ndarray, size (m,) Additional breakpoints. Must be sorted in the same order as `self.x` and either to the right or to the left of the current breakpoints. right Deprecated argument. Has no effect. .. deprecated:: 0.19 """ if right is not None: warnings.warn("`right` is deprecated and will be removed.") c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if c.size == 0: return dx = np.diff(x) if not (np.all(dx >= 0) or np.all(dx <= 0)): raise ValueError("`x` is not sorted.") if self.x[-1] >= self.x[0]: if not x[-1] >= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] >= self.x[-1]: action = 'append' elif x[-1] <= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") else: if not x[-1] <= x[0]: raise ValueError("`x` is in the different order " "than `self.x`.") if x[0] <= self.x[-1]: action = 'append' elif x[-1] >= self.x[0]: action = 'prepend' else: raise ValueError("`x` is neither on the left or on the right " "from `self.x`.") dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if action == 'append': c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] elif action == 'prepend': c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative. Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) # With periodic extrapolation we map x to the segment # [self.x[0], self.x[-1]]. if extrapolate == 'periodic': x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) extrapolate = False out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the local power basis:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate solve roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate # construct a compatible polynomial return self.construct_fast(c, self.x, extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() # Compute the integral. if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) if n_periods > 0: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xe, False, out=range_int) range_int *= n_periods else: range_int.fill(0) # Map a to [xs, xe], b is always a + left. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. remainder_int = np.empty_like(range_int) if b <= xe: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, xe, False, out=remainder_int) range_int += remainder_int _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xs + left + a - xe, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def solve(self, y=0., discontinuity=True, extrapolate=None): """ Find real solutions of the the equation ``pp(x) == y``. Parameters ---------- y : float, optional Right-hand side. Default is zero. discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") y = float(y) r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, y, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. See Also -------- PPoly.solve """ return self.solve(0, discontinuity, extrapolate) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """Piecewise polynomial in terms of coefficients and breakpoints. The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), where ``k`` is the degree of the polynomial, and:: b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a), with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial coefficient. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. Must be sorted in either increasing or decreasing order. extrapolate : bool, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, :doi:`10.1155/2011/829543`. Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k + nu representing the antiderivative of this polynomial. Notes ----- If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate return self.construct_fast(c2, x, extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is None: extrapolate = self.extrapolate # ib.extrapolate shouldn't be 'periodic', it is converted to # False for 'periodic. in antiderivative() call. if extrapolate != 'periodic': ib.extrapolate = extrapolate if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. # For simplicity and clarity convert to a <= b case. if a <= b: sign = 1 else: a, b = b, a sign = -1 xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) res = n_periods * (ib(xe) - ib(xs)) # Map a and b to [xs, xe]. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. if b <= xe: res += ib(b) - ib(a) else: res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) return sign * res else: return ib(b) - ib(a) def extend(self, c, x, right=None): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, (integer_types, np.integer)): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class NdPPoly(object): """ Piecewise tensor product polynomial The value at point `xp = (x', y', z', ...)` is evaluated by first computing the interval indices `i` such that:: x[0][i[0]] <= x' < x[0][i[0]+1] x[1][i[1]] <= y' < x[1][i[1]+1] ... and then computing:: S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] * (xp[0] - x[0][i[0]])**m0 * ... * (xp[n] - x[n][i[n]])**mn for m0 in range(k[0]+1) ... for mn in range(k[n]+1)) where ``k[j]`` is the degree of the polynomial in dimension j. This representation is the piecewise multivariate power basis. Parameters ---------- c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) Polynomial coefficients, with polynomial order `kj` and `mj+1` intervals for each dimension `j`. x : ndim-tuple of ndarrays, shapes (mj+1,) Polynomial breakpoints for each dimension. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : tuple of ndarrays Breakpoints. c : ndarray Coefficients of the polynomials. Methods ------- __call__ construct_fast See also -------- PPoly : piecewise polynomials in 1D Notes ----- High-order polynomials in the power basis can be numerically unstable. """ def __init__(self, c, x, extrapolate=None): self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) self.c = np.asarray(c) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) ndim = len(self.x) if any(v.ndim != 1 for v in self.x): raise ValueError("x arrays must all be 1-dimensional") if any(v.size < 2 for v in self.x): raise ValueError("x arrays must all contain at least 2 points") if c.ndim < 2*ndim: raise ValueError("c must have at least 2*len(x) dimensions") if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): raise ValueError("x-coordinates are not in increasing order") if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): raise ValueError("x and c do not agree on the number of intervals") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) @classmethod def construct_fast(cls, c, x, extrapolate=None): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ def _ensure_c_contiguous(self): if not self.c.flags.c_contiguous: self.c = self.c.copy() if not isinstance(self.x, tuple): self.x = tuple(self.x) def __call__(self, x, nu=None, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array-like Points to evaluate the interpolant at. nu : tuple, optional Orders of derivatives to evaluate. Each must be non-negative. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array-like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) x = _ndim_coords_from_arrays(x) x_shape = x.shape x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float_) if nu is None: nu = np.zeros((ndim,), dtype=np.intc) else: nu = np.asarray(nu, dtype=np.intc) if nu.ndim != 1 or nu.shape[0] != ndim: raise ValueError("invalid number of derivative orders nu") dim1 = prod(self.c.shape[:ndim]) dim2 = prod(self.c.shape[ndim:2*ndim]) dim3 = prod(self.c.shape[2*ndim:]) ks = np.array(self.c.shape[:ndim], dtype=np.intc) out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), self.x, ks, x, nu, bool(extrapolate), out) return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) def _derivative_inplace(self, nu, axis): """ Compute 1D derivative along a selected dimension in-place May result to non-contiguous c array. """ if nu < 0: return self._antiderivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim # reduce order if nu == 0: # noop return else: sl = [slice(None)]*ndim sl[axis] = slice(None, -nu, None) c2 = self.c[sl] if c2.shape[axis] == 0: # derivative of order 0 is zero shp = list(c2.shape) shp[axis] = 1 c2 = np.zeros(shp, dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) sl = [None]*c2.ndim sl[axis] = slice(None) c2 *= factor[sl] self.c = c2 def _antiderivative_inplace(self, nu, axis): """ Compute 1D antiderivative along a selected dimension May result to non-contiguous c array. """ if nu <= 0: return self._derivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim perm = list(range(ndim)) perm[0], perm[axis] = perm[axis], perm[0] perm = perm + list(range(ndim, self.c.ndim)) c = self.c.transpose(perm) c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], dtype=c.dtype) c2[:-nu] = c # divide by the correct rising factorials factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom perm2 = list(range(c2.ndim)) perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] c2 = c2.transpose(perm2) c2 = c2.copy() _ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), self.x[axis], nu-1) c2 = c2.transpose(perm2) c2 = c2.transpose(perm) # Done self.c = c2 def derivative(self, nu): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the antiderivative is returned. Returns ------- pp : NdPPoly Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._derivative_inplace(n, axis) p._ensure_c_contiguous() return p def antiderivative(self, nu): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._antiderivative_inplace(n, axis) p._ensure_c_contiguous() return p def integrate_1d(self, a, b, axis, extrapolate=None): r""" Compute NdPPoly representation for one dimensional definite integral The result is a piecewise polynomial representing the integral: .. math:: p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) where the dimension integrated over is specified with the `axis` parameter. Parameters ---------- a, b : float Lower and upper bound for integration. axis : int Dimension over which to compute the 1D integrals extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : NdPPoly or array-like Definite integral of the piecewise polynomial over [a, b]. If the polynomial was 1-dimensional, an array is returned, otherwise, an NdPPoly object. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) axis = int(axis) % ndim # Reuse 1D integration routines c = self.c swap = list(range(c.ndim)) swap.insert(0, swap[axis]) del swap[axis + 1] swap.insert(1, swap[ndim + axis]) del swap[ndim + axis + 1] c = c.transpose(swap) p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), self.x[axis], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) # Construct result if ndim == 1: return out.reshape(c.shape[2:]) else: c = out.reshape(c.shape[2:]) x = self.x[:axis] + self.x[axis+1:] return self.construct_fast(c, x, extrapolate=extrapolate) def integrate(self, ranges, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- ranges : ndim-tuple of 2-tuples float Sequence of lower and upper bounds for each dimension, ``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] """ ndim = len(self.x) if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) if not hasattr(ranges, '__len__') or len(ranges) != ndim: raise ValueError("Range not a sequence of correct length") self._ensure_c_contiguous() # Reuse 1D integration routine c = self.c for n, (a, b) in enumerate(ranges): swap = list(range(c.ndim)) swap.insert(1, swap[ndim - n]) del swap[ndim - n + 1] c = c.transpose(swap) p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) c = out.reshape(c.shape[2:]) return c class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
bsd-3-clause
KordingLab/spykes
tests/ml/test_neuropop.py
2
1911
from __future__ import absolute_import import numpy as np import matplotlib.pyplot as p from nose.tools import ( assert_true, assert_equal, assert_raises, ) from spykes.ml.neuropop import NeuroPop from spykes.utils import train_test_split np.random.seed(42) p.switch_backend('Agg') def test_neuropop(): np.random.seed(1738) num_neurons = 10 for num_neurons in [1, 10]: for tunemodel in ['glm', 'gvm']: for i in range(2): pop = NeuroPop(tunemodel=tunemodel, n_neurons=num_neurons, verbose=True) if i == 0: pop.set_params() else: pop.set_params(mu=np.random.randn(), k0=np.random.randn(), k=np.random.randn(), g=np.random.randn(), b=np.random.randn()) x, Y, mu, k0, k, g, b = pop.simulate(tunemodel) _helper_test_neuropop(pop, num_neurons, x, Y) def _helper_test_neuropop(pop, num_neurons, x, Y): # Splits into training and testing parts. x_split, Y_split = train_test_split(x, Y, percent=0.5) (x_train, x_test), (Y_train, Y_test) = x_split, Y_split pop.fit(x_train, Y_train) Yhat_test = pop.predict(x_test) assert_equal(Yhat_test.shape[0], x_test.shape[0]) assert_equal(Yhat_test.shape[1], num_neurons) Ynull = np.mean(Y_train, axis=0) score = pop.score(Y_test, Yhat_test, Ynull, method='pseudo_R2') assert_equal(len(score), num_neurons) xhat_test = pop.decode(Y_test) assert_equal(xhat_test.shape[0], Y_test.shape[0]) for method in ['circ_corr', 'cosine_dist']: score = pop.score(x_test, xhat_test, method=method) pop.display(x, Y, 0) pop.display(x, Y, 0, xjitter=True, yjitter=True)
mit
justincassidy/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
234
12267
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence from ..utils.fixes import frombuffer_empty def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = frombuffer_empty(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
mailhexu/pyDFTutils
build/lib/pyDFTutils/phonon/parser.py
2
16721
#!/usr/bin/env python import os import numpy as np from ase.data import chemical_symbols import matplotlib.pyplot as plt from abipy.abilab import abiopen from pyDFTutils.perovskite.perovskite_mode import label_zone_boundary, label_Gamma from ase.units import Ha from spglib import spglib def displacement_cart_to_evec(displ_cart, masses, scaled_positions, qpoint=None, add_phase=True): """ displ_cart: cartisien displacement. (atom1_x, atom1_y, atom1_z, atom2_x, ...) masses: masses of atoms. scaled_postions: scaled postions of atoms. qpoint: if phase needs to be added, qpoint must be given. add_phase: whether to add phase to the eigenvectors. """ if add_phase and qpoint is None: raise ValueError('qpoint must be given if adding phase is needed') m = np.sqrt(np.kron(masses, [1, 1, 1])) evec = displ_cart * m if add_phase: phase = [ np.exp(-2j * np.pi * np.dot(pos, qpoint)) for pos in scaled_positions ] phase = np.kron(phase, [1, 1, 1]) evec *= phase evec /= np.linalg.norm(evec) return evec def ixc_to_xc(ixc): """ translate ixc (positive: abinit. negative: libxc) to XC. """ xcdict = { 0: 'NO-XC', 1: 'LDA', 2: 'LDA-PZCA', 3: 'LDA-CA', 4: 'LDA-Winger', 5: 'LDA-Hedin-Lundqvist', 6: 'LDA-X-alpha', 7: 'LDA-PW92', 8: 'LDA-PW92-xonly', 9: 'LDA-PW92-xRPA', 11: 'GGA-PBE', 12: 'GGA-PBE-xonly', 14: 'GGA-revPBE', 15: 'GGA-RPBE', 16: 'GGA-HTCH93', 17: 'GGA-HTCH120', 23: 'GGA-WC', 40: 'Hartree-Fock', 41: 'GGA-PBE0', 42: 'GGA-PBE0-1/3', -1009: 'LDA-PZCA', -101130: 'GGA-PBE', -106131: 'GGA-BLYP', -106132: 'GGA-BP86', -116133: 'GGA-PBEsol', -118130: 'GGA-WC', } if ixc in xcdict: return xcdict[ixc] else: return 'libxc_%s' % ixc class mat_data(): def __init__(self, name, mag='PM', description="None", author='High Throughput Bot', email='[email protected]', is_verified=False, verification_info="", tags=[] ): self._already_in_db = False self.name = name self.db_directory = None self.all_data_directory = None self.mag = mag self.insert_time = None self.update_time = None self.log = "" self.description = description self.author = author self.email = email self.tags=tags self.is_verified = is_verified self.verification_info = verification_info # properties in database. should be band | phonon self.has_ebands = False self.has_phonon = False self.is_cubic_perovskite = True self.cellpar = [0] * 6 self.cell = [0]*9 self.natoms = 0 self.chemical_symbols = [] self.masses = [] self.scaled_positions = [] self.ispin = 0 self.spinat = [] self.spgroup = 1 self.spgroup_name = 'P1' self.ixc = 1 self.XC = 'PBEsol' self.pp_type = 'ONCV' self.pp_info = 'Not implemented yet.' self.U_type=0 self.species=[] self.zion=[] self.U_l=[] self.U_u=[] self.U_j=[] self.GSR_parameters = {} self.energy = 0 self.efermi = 0 self.bandgap = 0 self.ebands = {} self.kptrlatt=[] self.usepaw=0 self.pawecutdg=0.0 self.nsppol=1 self.nspden=1 self.emacro = [0.0] * 9 self.becs = {} self.elastic = [] self.nqpts = [1, 1, 1] self.special_qpts = {} self.phonon_mode_freqs = {} self.phonon_mode_names = {} self.phonon_mode_evecs = {} self.phonon_mode_phdispl = {} self.phonon_mode_freqs_LOTO = {} self.phonon_mode_names_LOTO = {} self.phonon_mode_evecs_LOTO = {} self.phonon_mode_phdispl_LOTO = {} def read_BAND_nc(self, fname, outputfile='Ebands.png', plot_ebands=True): try: band_file = abiopen(fname) self.has_ebands = True except Exception: raise IOError("can't read %s" % fname) self.efermi = band_file.energy_terms.e_fermie gap = band_file.ebands.fundamental_gaps if len(gap) != 0: for g in gap: self.gap = g.energy self.is_direct_gap = g.is_direct self.bandgap = self.gap if plot_ebands: fig, ax = plt.subplots() fig = band_file.ebands.plot(ax=ax, show=False, ylims=[-7, 5]) fig.savefig(outputfile) def read_OUT_nc(self, fname): f = abiopen(fname) self.invars = f.get_allvars() for key in self.invars: if isinstance(self.invars[key], np.ndarray): self.invars[key] = tuple(self.invars[key]) self.spgroup = f.spgroup[0] self.ixc = f.ixc[0] self.XC = ixc_to_xc(self.ixc) self.ecut = f.ecut[0] self.species = [chemical_symbols[int(i)] for i in f.znucl] if 'usepawu' in self.invars: self.U_type= f.usepawu[0] else: self.U_type= 0 if self.U_type: self.U_l = f.lpawu self.U_u= [ x * Ha for x in f.upawu] self.U_j= [ x* Ha for x in f.jpawu ] #self.nband = f.nband[0] self.kptrlatt = tuple(f.kptrlatt) def print_scf_info(self): for key, val in self.invars: print("%s : %s\n" % (key, val)) def read_GSR_nc(self, fname): f = abiopen(fname) self.energy = f.energy self.stress_tensor = f.cart_stress_tensor # unit ? self.forces = np.array(f.cart_forces) # unit eV/ang def read_DDB(self, fname=None, do_label=True, workdir=None, phonon_output_dipdip='phonon_band_dipdip.png', phonon_output_nodipdip='phonon_band_nodipdip.png'): """ read phonon related properties from DDB file. """ self.has_phonon = True ddb = abiopen(fname) self.ddb_header = ddb.header self.atoms = ddb.structure.to_ase_atoms() self.natoms = len(self.atoms) self.cellpar = self.atoms.get_cell_lengths_and_angles() self.cell=self.atoms.get_cell().flatten() self.masses = self.atoms.get_masses() self.scaled_positions = self.atoms.get_scaled_positions() self.chemical_symbols = self.atoms.get_chemical_symbols() self.spgroup_name = spglib.get_spacegroup(self.atoms,symprec=1e-4) self.ixc = self.ddb_header['ixc'] self.XC = ixc_to_xc( self.ixc) self.ispin = self.ddb_header['nsppol'] self.spinat = self.ddb_header['spinat'] self.nband = self.ddb_header['nband'] self.ecut = self.ddb_header['ecut'] self.tsmear =self.ddb_header['tsmear'] self.usepaw =self.ddb_header['usepaw'] self.pawecutdg = self.ddb_header['tsmear'] self.nsppol = self.ddb_header['nsppol'] self.nspden= self.ddb_header['nspden'] self.species = [chemical_symbols[int(i)] for i in self.ddb_header['znucl']] self.zion = [int(x) for x in self.ddb_header['zion']] self.znucl = [int(x) for x in self.ddb_header['znucl']] emacror, becsr = ddb.anaget_emacro_and_becs() emacro = emacror[0].cartesian_tensor becs_array = becsr.values becs = {} for i, bec in enumerate(becs_array): becs[str(i)] = bec nqpts = ddb._guess_ngqpt() qpts = tuple(ddb.qpoints.frac_coords) self.emacro = emacro self.becs = becs self.nqpts = nqpts self.qpts = qpts for qpt in qpts: qpt = tuple(qpt) m = ddb.anaget_phmodes_at_qpoint(qpt) #self.results['phonon'][qpt]['frequencies'] = m.phfreqs #self.results['phonon'][qpt][ # 'eigen_displacements'] = m.phdispl_cart qpoints, evals, evecs, edisps = self.phonon_band( ddb, lo_to_splitting=False, phonon_output_dipdip=phonon_output_dipdip, phonon_output_nodipdip=phonon_output_nodipdip) #for i in range(15): # print(evecs[0, :, i]) self.special_qpts = { 'X': (0, 0.5, 0.0), 'M': (0.5, 0.5, 0), 'R': (0.5, 0.5, 0.5) } zb_modes = self.label_zone_boundary_all( qpoints, evals, evecs, label=do_label) for qname in self.special_qpts: self.phonon_mode_freqs[qname] = zb_modes[qname][0] self.phonon_mode_names[qname] = zb_modes[qname][1] self.phonon_mode_evecs[qname] = zb_modes[qname][2] Gmodes = self.label_Gamma_all(qpoints, evals, evecs, label=do_label) self.phonon_mode_freqs['Gamma'] = Gmodes[0] self.phonon_mode_names['Gamma'] = Gmodes[1] self.phonon_mode_evecs['Gamma'] = Gmodes[2] def get_zb_mode(self, qname, mode_name): """ return the frequencies of mode name. """ ibranches = [] freqs = [] for imode, mode in enumerate( self.results['phonon']['boundary_modes'][qname]): freq, mname = mode if mname == mode_name: ibranches.append(imode) freqs.append(freq) return ibranches, freqs def get_gamma_modes(self): """ return (Freqs, names, evecs) """ return self.phonon_mode_freqs['Gamma'], self.phonon_mode_names['Gamma'], self.phonon_mode_evecs['Gamma'], def get_gamma_mode(self, mode_name): """ return the frequencies of mode name. """ ibranches = [] freqs = [] for imode, mode in enumerate(zip(self.phonon_mode_freqs['Gamma'], self.phonon_mode_names['Gamma'])): freq, mname = mode if mname == mode_name: ibranches.append(imode) freqs.append(freq) return ibranches, freqs def label_Gamma_all(self, qpoints, evals, evecs, label=True): Gamma_mode_freqs = [] Gamma_mode_names = [] Gamma_mode_evecs = [] for i, qpt in enumerate(qpoints): if np.isclose(qpt, [0, 0, 0], rtol=1e-5, atol=1e-3).all(): evecq = evecs[i] for j, evec in enumerate(evecq.T): freq = evals[i][j] if label: mode = label_Gamma( evec=evec, masses=self.atoms.get_masses()) Gamma_mode_names.append(mode) else: Gamma_mode_names.append('') Gamma_mode_freqs.append(freq) Gamma_mode_evecs.append(np.real(evec)) return Gamma_mode_freqs, Gamma_mode_names, Gamma_mode_evecs if Gamma_mode_names == []: print("Warning: No Gamma point found in qpoints.\n") return Gamma_mode_freqs, Gamma_mode_names, Gamma_mode_evecs def label_zone_boundary_all(self, qpoints, evals, evecs, label=True): mode_dict = {} qdict = {'X': (0, 0.5, 0.0), 'M': (0.5, 0.5, 0), 'R': (0.5, 0.5, 0.5)} for i, qpt in enumerate(qpoints): for qname in qdict: if np.isclose(qpt, qdict[qname], rtol=1e-5, atol=1e-3).all(): mode_freqs = [] mode_names = [] mode_evecs = [] #print "====================================" #print qname evecq = evecs[i] for j, evec in enumerate(evecq.T): freq = evals[i][j] mode_freqs.append(freq) if label: mode = label_zone_boundary(qname, evec=evec) mode_names.append(mode) else: mode_names.append('') mode_evecs.append(np.real(evec)) mode_dict[qname] = (mode_freqs, mode_names, mode_evecs) return mode_dict def phonon_band(self, ddb, lo_to_splitting=False, workdir=None, phonon_output_dipdip='phonon_band_dipdip.png', phonon_output_nodipdip='phonon_band_nodipdip.png', show=False): atoms = ddb.structure.to_ase_atoms() if workdir is not None: workdir_dip = os.path.join(workdir, '/phbst_dipdip') #if os.path.exists(workdir_dip): # os.system('rm -r %s' % workdir_dip) else: workdir_dip = None phbst, phdos = ddb.anaget_phbst_and_phdos_files( nqsmall=10, asr=1, chneut=1, dipdip=1, verbose=1, lo_to_splitting=True, anaddb_kwargs={'alphon': 1}, workdir=workdir_dip, #qptbounds=kpath_bounds, ) fig, ax = plt.subplots(nrows=1, ncols=1) #plt.tight_layout(pad=2.19) #plt.axis('tight') plt.gcf().subplots_adjust(left=0.17) ax.axhline(0, linestyle='--', color='black') ax.set_title(self.name) ticks, labels = phbst.phbands._make_ticks_and_labels(qlabels=None) fig.axes[0].set_xlim([ticks[0],ticks[-1]]) fig = phbst.phbands.plot( ax=ax, units='cm-1', match_bands=False, linewidth=1.7, color='blue', show=False) fig.axes[0].grid(False) if show: plt.show() if phonon_output_dipdip: fig.savefig(phonon_output_dipdip) plt.close() if workdir is not None: workdir_nodip = os.path.join(workdir, 'phbst_nodipdip') #if os.path.exists(workdir_dip): # os.system('rm -r %s' % workdir_nodip) else: workdir_nodip = None phbst, phdos = ddb.anaget_phbst_and_phdos_files( nqsmall=5, asr=1, chneut=1, dipdip=0, verbose=1, lo_to_splitting=False, anaddb_kwargs={'alphon': 1}, workdir=workdir_nodip #qptbounds=kpath_bounds, ) fig, ax = plt.subplots(nrows=1, ncols=1) #plt.tight_layout(pad=2.19) #plt.axis('tight') plt.gcf().subplots_adjust(left=0.17) ax.axhline(0, linestyle='--', color='black') ax.set_title(self.name) ax.set_title(self.name) ticks, labels = phbst.phbands._make_ticks_and_labels(qlabels=None) fig.axes[0].set_xlim([ticks[0],ticks[-1]]) fig = phbst.phbands.plot( ax=ax, units='cm-1', match_bands=False, linewidth=1.4, color='blue', show=False) fig.axes[0].grid(False) if show: plt.show() if phonon_output_dipdip: fig.savefig(phonon_output_nodipdip) plt.close() qpoints = phbst.qpoints.frac_coords nqpts = len(qpoints) nbranch = 3 * len(atoms) evals = np.zeros([nqpts, nbranch]) evecs = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') edisps = np.zeros([nqpts, nbranch, nbranch], dtype='complex128') masses = atoms.get_masses() scaled_positions = atoms.get_scaled_positions() for iqpt, qpt in enumerate(qpoints): for ibranch in range(nbranch): phmode = phbst.get_phmode(qpt, ibranch) evals[iqpt, ibranch] = phmode.freq * 8065.6 evec = displacement_cart_to_evec( phmode.displ_cart, masses, scaled_positions, qpoint=qpt, add_phase=False) evecs[iqpt, :, ibranch] = evec / np.linalg.norm(evec) edisps[iqpt, :, ibranch] = phmode.displ_cart return qpoints, evals, evecs, edisps def test(): m = mat_data() m.read_BAND_nc('./BAND_GSR.nc') m.read_OUT_nc('./OUT.nc') m.read_DDB('out_DDB') #test()
lgpl-3.0
michigraber/scikit-learn
examples/ensemble/plot_adaboost_regression.py
311
1529
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) regr_1.fit(X, y) regr_2.fit(X, y) # Predict y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
ky822/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
258
2861
from __future__ import unicode_literals import numpy as np from sklearn.feature_extraction import FeatureHasher from nose.tools import assert_raises, assert_true from numpy.testing import assert_array_equal, assert_equal def test_feature_hasher_dicts(): h = FeatureHasher(n_features=16) assert_equal("dict", h.input_type) raw_X = [{"dada": 42, "tzara": 37}, {"gaga": 17}] X1 = FeatureHasher(n_features=16).transform(raw_X) gen = (iter(d.items()) for d in raw_X) X2 = FeatureHasher(n_features=16, input_type="pair").transform(gen) assert_array_equal(X1.toarray(), X2.toarray()) def test_feature_hasher_strings(): # mix byte and Unicode strings; note that "foo" is a duplicate in row 0 raw_X = [["foo", "bar", "baz", "foo".encode("ascii")], ["bar".encode("ascii"), "baz", "quux"]] for lg_n_features in (7, 9, 11, 16, 22): n_features = 2 ** lg_n_features it = (x for x in raw_X) # iterable h = FeatureHasher(n_features, non_negative=True, input_type="string") X = h.transform(it) assert_equal(X.shape[0], len(raw_X)) assert_equal(X.shape[1], n_features) assert_true(np.all(X.data > 0)) assert_equal(X[0].sum(), 4) assert_equal(X[1].sum(), 3) assert_equal(X.nnz, 6) def test_feature_hasher_pairs(): raw_X = (iter(d.items()) for d in [{"foo": 1, "bar": 2}, {"baz": 3, "quux": 4, "foo": -1}]) h = FeatureHasher(n_features=16, input_type="pair") x1, x2 = h.transform(raw_X).toarray() x1_nz = sorted(np.abs(x1[x1 != 0])) x2_nz = sorted(np.abs(x2[x2 != 0])) assert_equal([1, 2], x1_nz) assert_equal([1, 3, 4], x2_nz) def test_hash_empty_input(): n_features = 16 raw_X = [[], (), iter(range(0))] h = FeatureHasher(n_features=n_features, input_type="string") X = h.transform(raw_X) assert_array_equal(X.A, np.zeros((len(raw_X), n_features))) def test_hasher_invalid_input(): assert_raises(ValueError, FeatureHasher, input_type="gobbledygook") assert_raises(ValueError, FeatureHasher, n_features=-1) assert_raises(ValueError, FeatureHasher, n_features=0) assert_raises(TypeError, FeatureHasher, n_features='ham') h = FeatureHasher(n_features=np.uint16(2 ** 6)) assert_raises(ValueError, h.transform, []) assert_raises(Exception, h.transform, [[5.5]]) assert_raises(Exception, h.transform, [[None]]) def test_hasher_set_params(): # Test delayed input validation in fit (useful for grid search). hasher = FeatureHasher() hasher.set_params(n_features=np.inf) assert_raises(TypeError, hasher.fit) def test_hasher_zeros(): # Assert that no zeros are materialized in the output. X = FeatureHasher().transform([{'foo': 0}]) assert_equal(X.data.shape, (0,))
bsd-3-clause
jseabold/scikit-learn
sklearn/utils/tests/test_testing.py
107
4210
import warnings import unittest import sys from nose.tools import assert_raises from sklearn.utils.testing import ( _assert_less, _assert_greater, assert_less_equal, assert_greater_equal, assert_warns, assert_no_warnings, assert_equal, set_random_state, assert_raise_message) from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis try: from nose.tools import assert_less def test_assert_less(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_less(0, 1) _assert_less(0, 1) assert_raises(AssertionError, assert_less, 1, 0) assert_raises(AssertionError, _assert_less, 1, 0) except ImportError: pass try: from nose.tools import assert_greater def test_assert_greater(): # Check that the nose implementation of assert_less gives the # same thing as the scikit's assert_greater(1, 0) _assert_greater(1, 0) assert_raises(AssertionError, assert_greater, 0, 1) assert_raises(AssertionError, _assert_greater, 0, 1) except ImportError: pass def test_assert_less_equal(): assert_less_equal(0, 1) assert_less_equal(1, 1) assert_raises(AssertionError, assert_less_equal, 1, 0) def test_assert_greater_equal(): assert_greater_equal(1, 0) assert_greater_equal(1, 1) assert_raises(AssertionError, assert_greater_equal, 0, 1) def test_set_random_state(): lda = LinearDiscriminantAnalysis() tree = DecisionTreeClassifier() # Linear Discriminant Analysis doesn't have random state: smoke test set_random_state(lda, 3) set_random_state(tree, 3) assert_equal(tree.random_state, 3) def test_assert_raise_message(): def _raise_ValueError(message): raise ValueError(message) def _no_raise(): pass assert_raise_message(ValueError, "test", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "something else", _raise_ValueError, "test") assert_raises(ValueError, assert_raise_message, TypeError, "something else", _raise_ValueError, "test") assert_raises(AssertionError, assert_raise_message, ValueError, "test", _no_raise) # multiple exceptions in a tuple assert_raises(AssertionError, assert_raise_message, (ValueError, AttributeError), "test", _no_raise) # This class is inspired from numpy 1.7 with an alteration to check # the reset warning filters after calls to assert_warns. # This assert_warns behavior is specific to scikit-learn because #`clean_warning_registry()` is called internally by assert_warns # and clears all previous filters. class TestWarns(unittest.TestCase): def test_warn(self): def f(): warnings.warn("yo") return 3 # Test that assert_warns is not impacted by externally set # filters and is reset internally. # This is because `clean_warning_registry()` is called internally by # assert_warns and clears all previous filters. warnings.simplefilter("ignore", UserWarning) assert_equal(assert_warns(UserWarning, f), 3) # Test that the warning registry is empty after assert_warns assert_equal(sys.modules['warnings'].filters, []) assert_raises(AssertionError, assert_no_warnings, f) assert_equal(assert_no_warnings(lambda x: x, 1), 1) def test_warn_wrong_warning(self): def f(): warnings.warn("yo", DeprecationWarning) failed = False filters = sys.modules['warnings'].filters[:] try: try: # Should raise an AssertionError assert_warns(UserWarning, f) failed = True except AssertionError: pass finally: sys.modules['warnings'].filters = filters if failed: raise AssertionError("wrong warning caught by assert_warn")
bsd-3-clause
tequa/ammisoft
ammimain/WinPython-64bit-2.7.13.1Zero/python-2.7.13.amd64/Lib/site-packages/matplotlib/backends/__init__.py
21
2487
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib import inspect import warnings # ipython relies on interactive_bk being defined here from matplotlib.rcsetup import interactive_bk __all__ = ['backend','show','draw_if_interactive', 'new_figure_manager', 'backend_version'] backend = matplotlib.get_backend() # validates, to match all_backends def pylab_setup(): 'return new_figure_manager, draw_if_interactive and show for pylab' # Import the requested backend into a generic module object if backend.startswith('module://'): backend_name = backend[9:] else: backend_name = 'backend_'+backend backend_name = backend_name.lower() # until we banish mixed case backend_name = 'matplotlib.backends.%s'%backend_name.lower() # the last argument is specifies whether to use absolute or relative # imports. 0 means only perform absolute imports. backend_mod = __import__(backend_name, globals(),locals(),[backend_name],0) # Things we pull in from all backends new_figure_manager = backend_mod.new_figure_manager # image backends like pdf, agg or svg do not need to do anything # for "show" or "draw_if_interactive", so if they are not defined # by the backend, just do nothing def do_nothing_show(*args, **kwargs): frame = inspect.currentframe() fname = frame.f_back.f_code.co_filename if fname in ('<stdin>', '<ipython console>'): warnings.warn(""" Your currently selected backend, '%s' does not support show(). Please select a GUI backend in your matplotlibrc file ('%s') or with matplotlib.use()""" % (backend, matplotlib.matplotlib_fname())) def do_nothing(*args, **kwargs): pass backend_version = getattr(backend_mod,'backend_version', 'unknown') show = getattr(backend_mod, 'show', do_nothing_show) draw_if_interactive = getattr(backend_mod, 'draw_if_interactive', do_nothing) # Additional imports which only happen for certain backends. This section # should probably disappear once all backends are uniform. if backend.lower() in ['wx','wxagg']: Toolbar = backend_mod.Toolbar __all__.append('Toolbar') matplotlib.verbose.report('backend %s version %s' % (backend,backend_version)) return backend_mod, new_figure_manager, draw_if_interactive, show
bsd-3-clause
IshankGulati/scikit-learn
examples/gaussian_process/plot_gpr_prior_posterior.py
104
2878
""" ========================================================================== Illustration of prior and posterior Gaussian process for different kernels ========================================================================== This example illustrates the prior and posterior of a GPR with different kernels. Mean, standard deviation, and 10 samples are shown for both prior and posterior. """ print(__doc__) # Authors: Jan Hendrik Metzen <[email protected]> # # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import (RBF, Matern, RationalQuadratic, ExpSineSquared, DotProduct, ConstantKernel) kernels = [1.0 * RBF(length_scale=1.0, length_scale_bounds=(1e-1, 10.0)), 1.0 * RationalQuadratic(length_scale=1.0, alpha=0.1), 1.0 * ExpSineSquared(length_scale=1.0, periodicity=3.0, length_scale_bounds=(0.1, 10.0), periodicity_bounds=(1.0, 10.0)), ConstantKernel(0.1, (0.01, 10.0)) * (DotProduct(sigma_0=1.0, sigma_0_bounds=(0.0, 10.0)) ** 2), 1.0 * Matern(length_scale=1.0, length_scale_bounds=(1e-1, 10.0), nu=1.5)] for fig_index, kernel in enumerate(kernels): # Specify Gaussian Process gp = GaussianProcessRegressor(kernel=kernel) # Plot prior plt.figure(fig_index, figsize=(8, 8)) plt.subplot(2, 1, 1) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Prior (kernel: %s)" % kernel, fontsize=12) # Generate data and fit GP rng = np.random.RandomState(4) X = rng.uniform(0, 5, 10)[:, np.newaxis] y = np.sin((X[:, 0] - 2.5) ** 2) gp.fit(X, y) # Plot posterior plt.subplot(2, 1, 2) X_ = np.linspace(0, 5, 100) y_mean, y_std = gp.predict(X_[:, np.newaxis], return_std=True) plt.plot(X_, y_mean, 'k', lw=3, zorder=9) plt.fill_between(X_, y_mean - y_std, y_mean + y_std, alpha=0.5, color='k') y_samples = gp.sample_y(X_[:, np.newaxis], 10) plt.plot(X_, y_samples, lw=1) plt.scatter(X[:, 0], y, c='r', s=50, zorder=10) plt.xlim(0, 5) plt.ylim(-3, 3) plt.title("Posterior (kernel: %s)\n Log-Likelihood: %.3f" % (gp.kernel_, gp.log_marginal_likelihood(gp.kernel_.theta)), fontsize=12) plt.tight_layout() plt.show()
bsd-3-clause
nathanielvarona/airflow
docs/conf.py
1
22928
# flake8: noqa # Disable Flake8 because of all the sphinx imports # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # Airflow documentation build configuration file, created by # sphinx-quickstart on Thu Oct 9 20:50:01 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. """Configuration of Airflow Docs""" import glob import json import os import sys from collections import defaultdict from typing import Any, Dict, List, Optional, Tuple import yaml try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader # type: ignore[misc] import airflow from airflow.configuration import AirflowConfigParser, default_config_yaml from docs.exts.docs_build.third_party_inventories import ( # pylint: disable=no-name-in-module,wrong-import-order THIRD_PARTY_INDEXES, ) sys.path.append(os.path.join(os.path.dirname(__file__), 'exts')) CONF_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__))) INVENTORY_CACHE_DIR = os.path.join(CONF_DIR, '_inventory_cache') ROOT_DIR = os.path.abspath(os.path.join(CONF_DIR, os.pardir)) FOR_PRODUCTION = os.environ.get('AIRFLOW_FOR_PRODUCTION', 'false') == 'true' # By default (e.g. on RTD), build docs for `airflow` package PACKAGE_NAME = os.environ.get('AIRFLOW_PACKAGE_NAME', 'apache-airflow') PACKAGE_DIR: Optional[str] if PACKAGE_NAME == 'apache-airflow': PACKAGE_DIR = os.path.join(ROOT_DIR, 'airflow') PACKAGE_VERSION = airflow.__version__ elif PACKAGE_NAME.startswith('apache-airflow-providers-'): from provider_yaml_utils import load_package_data # pylint: disable=no-name-in-module ALL_PROVIDER_YAMLS = load_package_data() try: CURRENT_PROVIDER = next( provider_yaml for provider_yaml in ALL_PROVIDER_YAMLS if provider_yaml['package-name'] == PACKAGE_NAME ) except StopIteration: raise Exception(f"Could not find provider.yaml file for package: {PACKAGE_NAME}") PACKAGE_DIR = CURRENT_PROVIDER['package-dir'] PACKAGE_VERSION = 'devel' elif PACKAGE_NAME == 'helm-chart': PACKAGE_DIR = os.path.join(ROOT_DIR, 'chart') PACKAGE_VERSION = 'devel' # TODO do we care? probably else: PACKAGE_DIR = None PACKAGE_VERSION = 'devel' # Adds to environment variables for easy access from other plugins like airflow_intersphinx. os.environ['AIRFLOW_PACKAGE_NAME'] = PACKAGE_NAME if PACKAGE_DIR: os.environ['AIRFLOW_PACKAGE_DIR'] = PACKAGE_DIR os.environ['AIRFLOW_PACKAGE_VERSION'] = PACKAGE_VERSION # Hack to allow changing for piece of the code to behave differently while # the docs are being built. The main objective was to alter the # behavior of the utils.apply_default that was hiding function headers os.environ['BUILDING_AIRFLOW_DOCS'] = 'TRUE' # == Sphinx configuration ====================================================== # -- Project information ------------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html#project-information # General information about the project. project = PACKAGE_NAME # # The version info for the project you're documenting version = PACKAGE_VERSION # The full version, including alpha/beta/rc tags. release = PACKAGE_VERSION rst_epilog = f""" .. |version| replace:: {version} """ # -- General configuration ----------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'provider_init_hack', 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinxarg.ext', 'sphinx.ext.intersphinx', 'exampleinclude', 'docroles', 'removemarktransform', 'sphinx_copybutton', 'airflow_intersphinx', "sphinxcontrib.spelling", 'sphinx_airflow_theme', 'redirects', 'substitution_extensions', ] if PACKAGE_NAME == 'apache-airflow': extensions.extend( [ 'sphinxcontrib.jinja', 'sphinx.ext.graphviz', 'sphinxcontrib.httpdomain', 'sphinxcontrib.httpdomain', 'extra_files_with_substitutions', # First, generate redoc 'sphinxcontrib.redoc', # Second, update redoc script "sphinx_script_update", ] ) if PACKAGE_NAME == "apache-airflow-providers": extensions.extend( [ 'operators_and_hooks_ref', 'providers_packages_ref', ] ) elif PACKAGE_NAME == "helm-chart": extensions.append("sphinxcontrib.jinja") elif PACKAGE_NAME == "docker-stack": # No extra extensions pass else: extensions.append('autoapi.extension') # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns: List[str] if PACKAGE_NAME == 'apache-airflow': exclude_patterns = [ # We only link to selected subpackages. '_api/airflow/index.rst', 'README.rst', ] elif PACKAGE_NAME.startswith('apache-airflow-providers-'): exclude_patterns = ['operators/_partials'] else: exclude_patterns = [] def _get_rst_filepath_from_path(filepath: str): if os.path.isdir(filepath): result = filepath elif os.path.isfile(filepath) and filepath.endswith('/__init__.py'): result = filepath.rpartition("/")[0] else: result = filepath.rpartition(".")[0] result += "/index.rst" result = f"_api/{os.path.relpath(result, ROOT_DIR)}" return result if PACKAGE_NAME == 'apache-airflow': # Exclude top-level packages # do not exclude these top-level modules from the doc build: _allowed_top_level = ("exceptions.py",) for path in glob.glob(f"{ROOT_DIR}/airflow/*"): name = os.path.basename(path) if os.path.isfile(path) and not path.endswith(_allowed_top_level): exclude_patterns.append(f"_api/airflow/{name.rpartition('.')[0]}") browsable_packages = ["operators", "hooks", "sensors", "providers", "executors", "models", "secrets"] if os.path.isdir(path) and name not in browsable_packages: exclude_patterns.append(f"_api/airflow/{name}") else: exclude_patterns.extend( _get_rst_filepath_from_path(f) for f in glob.glob(f"{PACKAGE_DIR}/**/example_dags/**/*.py") ) # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # If true, keep warnings as "system message" paragraphs in the built documents. keep_warnings = True # -- Options for HTML output --------------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/configuration.html#options-for-html-output # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_airflow_theme' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". if PACKAGE_NAME == 'apache-airflow': html_title = "Airflow Documentation" else: html_title = f"{PACKAGE_NAME} Documentation" # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = "" # given, this must be the name of an image file (path relative to the # configuration directory) that is the favicon of the docs. Modern browsers # use this as the icon for tabs, windows and bookmarks. It should be a # Windows-style icon file (.ico), which is 16x16 or 32x32 pixels large. html_favicon = "../airflow/www/static/pin_32.png" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". if PACKAGE_NAME == 'apache-airflow': html_static_path = ['apache-airflow/static'] else: html_static_path = [] # A list of JavaScript filename. The entry must be a filename string or a # tuple containing the filename string and the attributes dictionary. The # filename must be relative to the html_static_path, or a full URI with # scheme like http://example.org/script.js. if PACKAGE_NAME == 'apache-airflow': html_js_files = ['jira-links.js'] else: html_js_files = [] if PACKAGE_NAME == 'apache-airflow': html_extra_path = [ f"{ROOT_DIR}/docs/apache-airflow/start/airflow.sh", ] html_extra_with_substitutions = [ f"{ROOT_DIR}/docs/apache-airflow/start/docker-compose.yaml", ] manual_substitutions_in_generated_html = [ "installation.html", ] # -- Theme configuration ------------------------------------------------------- # Custom sidebar templates, maps document names to template names. html_sidebars = { '**': [ 'version-selector.html', 'searchbox.html', 'globaltoc.html', ] if FOR_PRODUCTION else [ 'searchbox.html', 'globaltoc.html', ] } # If false, no index is generated. html_use_index = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. html_show_copyright = False # Theme configuration html_theme_options: Dict[str, Any] = { 'hide_website_buttons': True, } if FOR_PRODUCTION: html_theme_options['navbar_links'] = [ {'href': '/community/', 'text': 'Community'}, {'href': '/meetups/', 'text': 'Meetups'}, {'href': '/docs/', 'text': 'Documentation'}, {'href': '/use-cases/', 'text': 'Use-cases'}, {'href': '/announcements/', 'text': 'Announcements'}, {'href': '/blog/', 'text': 'Blog'}, {'href': '/ecosystem/', 'text': 'Ecosystem'}, ] # A dictionary of values to pass into the template engine’s context for all pages. html_context = { # Google Analytics ID. # For more information look at: # https://github.com/readthedocs/sphinx_rtd_theme/blob/master/sphinx_rtd_theme/layout.html#L222-L232 'theme_analytics_id': 'UA-140539454-1', # Variables used to build a button for editing the source code # # The path is created according to the following template: # # https://{{ github_host|default("github.com") }}/{{ github_user }}/{{ github_repo }}/ # {{ theme_vcs_pageview_mode|default("blob") }}/{{ github_version }}{{ conf_py_path }} # {{ pagename }}{{ suffix }} # # More information: # https://github.com/readthedocs/readthedocs.org/blob/master/readthedocs/doc_builder/templates/doc_builder/conf.py.tmpl#L100-L103 # https://github.com/readthedocs/sphinx_rtd_theme/blob/master/sphinx_rtd_theme/breadcrumbs.html#L45 # https://github.com/apache/airflow-site/blob/91f760c/sphinx_airflow_theme/sphinx_airflow_theme/suggest_change_button.html#L36-L40 # 'theme_vcs_pageview_mode': 'edit', 'conf_py_path': f'/docs/{PACKAGE_NAME}/', 'github_user': 'apache', 'github_repo': 'airflow', 'github_version': 'devel', 'display_github': 'devel', 'suffix': '.rst', } # == Extensions configuration ================================================== # -- Options for sphinxcontrib.jinjac ------------------------------------------ # See: https://github.com/tardyp/sphinx-jinja # Jinja context if PACKAGE_NAME == 'apache-airflow': deprecated_options: Dict[str, Dict[str, Tuple[str, str, str]]] = defaultdict(dict) for (section, key), ( (deprecated_section, deprecated_key, since_version) ) in AirflowConfigParser.deprecated_options.items(): deprecated_options[deprecated_section][deprecated_key] = section, key, since_version jinja_contexts = { 'config_ctx': {"configs": default_config_yaml(), "deprecated_options": deprecated_options}, 'quick_start_ctx': { 'doc_root_url': f'https://airflow.apache.org/docs/apache-airflow/{PACKAGE_VERSION}/' if FOR_PRODUCTION else ( 'http://apache-airflow-docs.s3-website.eu-central-1.amazonaws.com/docs/apache-airflow/latest/' ) }, } elif PACKAGE_NAME.startswith('apache-airflow-providers-'): def _load_config(): templates_dir = os.path.join(PACKAGE_DIR, 'config_templates') file_path = os.path.join(templates_dir, "config.yml") if not os.path.exists(file_path): return {} with open(file_path) as f: return yaml.load(f, SafeLoader) config = _load_config() if config: jinja_contexts = {'config_ctx': {"configs": config}} extensions.append('sphinxcontrib.jinja') elif PACKAGE_NAME == 'helm-chart': def _str_representer(dumper, data): style = "|" if "\n" in data else None # show as a block scalar if we have more than 1 line return dumper.represent_scalar("tag:yaml.org,2002:str", data, style) yaml.add_representer(str, _str_representer) def _format_default(value: Any) -> str: if value == "": return '""' if value is None: return '~' return str(value) def _format_examples(param_name: str, schema: dict) -> Optional[str]: if not schema.get("examples"): return None # Nicer to have the parameter name shown as well out = "" for ex in schema["examples"]: if schema["type"] == "array": ex = [ex] out += yaml.dump({param_name: ex}) return out def _get_params(root_schema: dict, prefix: str = "", default_section: str = "") -> List[dict]: """ Given an jsonschema objects properties dict, return a flattened list of all parameters from that object and any nested objects """ # TODO: handle arrays? probably missing more cases too out = [] for param_name, schema in root_schema.items(): prefixed_name = f"{prefix}.{param_name}" if prefix else param_name section_name = schema["x-docsSection"] if "x-docsSection" in schema else default_section if section_name and schema["description"] and "default" in schema: out.append( { "section": section_name, "name": prefixed_name, "description": schema["description"], "default": _format_default(schema["default"]), "examples": _format_examples(param_name, schema), } ) if schema.get("properties"): out += _get_params(schema["properties"], prefixed_name, section_name) return out schema_file = os.path.join(PACKAGE_DIR, "values.schema.json") # type: ignore with open(schema_file) as config_file: chart_schema = json.load(config_file) params = _get_params(chart_schema["properties"]) # Now, split into sections sections: Dict[str, List[Dict[str, str]]] = {} for param in params: if param["section"] not in sections: sections[param["section"]] = [] sections[param["section"]].append(param) # and order each section for section in sections.values(): # type: ignore section.sort(key=lambda i: i["name"]) # type: ignore # and finally order the sections! ordered_sections = [] for name in chart_schema["x-docsSectionOrder"]: if name not in sections: raise ValueError(f"Unable to find any parameters for section: {name}") ordered_sections.append({"name": name, "params": sections.pop(name)}) if sections: raise ValueError(f"Found section(s) which were not in `section_order`: {list(sections.keys())}") jinja_contexts = {"params_ctx": {"sections": ordered_sections}} # -- Options for sphinx.ext.autodoc -------------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/extensions/autodoc.html # This value contains a list of modules to be mocked up. This is useful when some external dependencies # are not met at build time and break the building process. autodoc_mock_imports = [ 'MySQLdb', 'adal', 'analytics', 'azure', 'azure.cosmos', 'azure.datalake', 'azure.kusto', 'azure.mgmt', 'boto3', 'botocore', 'bson', 'cassandra', 'celery', 'cloudant', 'cryptography', 'cx_Oracle', 'datadog', 'distributed', 'docker', 'google', 'google_auth_httplib2', 'googleapiclient', 'grpc', 'hdfs', 'httplib2', 'jaydebeapi', 'jenkins', 'jira', 'kubernetes', 'msrestazure', 'pandas', 'pandas_gbq', 'paramiko', 'pinotdb', 'psycopg2', 'pydruid', 'pyhive', 'pyhive', 'pymongo', 'pymssql', 'pysftp', 'qds_sdk', 'redis', 'simple_salesforce', 'slack_sdk', 'smbclient', 'snowflake', 'sshtunnel', 'telegram', 'tenacity', 'vertica_python', 'winrm', 'zdesk', ] # The default options for autodoc directives. They are applied to all autodoc directives automatically. autodoc_default_options = {'show-inheritance': True, 'members': True} # -- Options for sphinx.ext.intersphinx ---------------------------------------- # See: https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html # This config value contains names of other projects that should # be linked to in this documentation. # Inventories are only downloaded once by docs/exts/docs_build/fetch_inventories.py. intersphinx_mapping = { pkg_name: (f"{THIRD_PARTY_INDEXES[pkg_name]}/", (f'{INVENTORY_CACHE_DIR}/{pkg_name}/objects.inv',)) for pkg_name in [ 'boto3', 'celery', 'docker', 'hdfs', 'jinja2', 'mongodb', 'pandas', 'python', 'requests', 'sqlalchemy', ] } if PACKAGE_NAME in ('apache-airflow-providers-google', 'apache-airflow'): intersphinx_mapping.update( { pkg_name: ( f"{THIRD_PARTY_INDEXES[pkg_name]}/", (f'{INVENTORY_CACHE_DIR}/{pkg_name}/objects.inv',), ) for pkg_name in [ 'google-api-core', 'google-cloud-automl', 'google-cloud-bigquery', 'google-cloud-bigquery-datatransfer', 'google-cloud-bigquery-storage', 'google-cloud-bigtable', 'google-cloud-container', 'google-cloud-core', 'google-cloud-datacatalog', 'google-cloud-datastore', 'google-cloud-dlp', 'google-cloud-kms', 'google-cloud-language', 'google-cloud-monitoring', 'google-cloud-pubsub', 'google-cloud-redis', 'google-cloud-spanner', 'google-cloud-speech', 'google-cloud-storage', 'google-cloud-tasks', 'google-cloud-texttospeech', 'google-cloud-translate', 'google-cloud-videointelligence', 'google-cloud-vision', ] } ) # -- Options for sphinx.ext.viewcode ------------------------------------------- # See: https://www.sphinx-doc.org/es/master/usage/extensions/viewcode.html # If this is True, viewcode extension will emit viewcode-follow-imported event to resolve the name of # the module by other extensions. The default is True. viewcode_follow_imported_members = True # -- Options for sphinx-autoapi ------------------------------------------------ # See: https://sphinx-autoapi.readthedocs.io/en/latest/config.html # Paths (relative or absolute) to the source code that you wish to generate # your API documentation from. autoapi_dirs = [ PACKAGE_DIR, ] # A directory that has user-defined templates to override our default templates. if PACKAGE_NAME == 'apache-airflow': autoapi_template_dir = 'autoapi_templates' # A list of patterns to ignore when finding files autoapi_ignore = [ 'airflow/configuration/', '*/example_dags/*', '*/_internal*', '*/node_modules/*', '*/migrations/*', '*/contrib/*', ] if PACKAGE_NAME == 'apache-airflow': autoapi_ignore.append('*/airflow/providers/*') # Keep the AutoAPI generated files on the filesystem after the run. # Useful for debugging. autoapi_keep_files = True # Relative path to output the AutoAPI files into. This can also be used to place the generated documentation # anywhere in your documentation hierarchy. autoapi_root = '_api' # Whether to insert the generated documentation into the TOC tree. If this is False, the default AutoAPI # index page is not generated and you will need to include the generated documentation in a # TOC tree entry yourself. autoapi_add_toctree_entry = False # -- Options for ext.exampleinclude -------------------------------------------- exampleinclude_sourceroot = os.path.abspath('..') # -- Options for ext.redirects ------------------------------------------------- redirects_file = 'redirects.txt' # -- Options for sphinxcontrib-spelling ---------------------------------------- spelling_word_list_filename = [os.path.join(CONF_DIR, 'spelling_wordlist.txt')] # -- Options for sphinxcontrib.redoc ------------------------------------------- # See: https://sphinxcontrib-redoc.readthedocs.io/en/stable/ if PACKAGE_NAME == 'apache-airflow': OPENAPI_FILE = os.path.join( os.path.dirname(__file__), "..", "airflow", "api_connexion", "openapi", "v1.yaml" ) redoc = [ { 'name': 'Airflow REST API', 'page': 'stable-rest-api-ref', 'spec': OPENAPI_FILE, 'opts': { 'hide-hostname': True, 'no-auto-auth': True, }, }, ] # Options for script updater redoc_script_url = "https://cdn.jsdelivr.net/npm/[email protected]/bundles/redoc.standalone.js"
apache-2.0
kalvdans/scipy
scipy/interpolate/_cubic.py
37
29281
"""Interpolation algorithms using piecewise cubic polynomials.""" from __future__ import division, print_function, absolute_import import numpy as np from scipy._lib.six import string_types from . import BPoly, PPoly from .polyint import _isscalar from scipy._lib._util import _asarray_validated from scipy.linalg import solve_banded, solve __all__ = ["PchipInterpolator", "pchip_interpolate", "pchip", "Akima1DInterpolator", "CubicSpline"] class PchipInterpolator(BPoly): r"""PCHIP 1-d monotonic cubic interpolation. `x` and `y` are arrays of values used to approximate some function f, with ``y = f(x)``. The interpolant uses monotonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating Polynomial). Parameters ---------- x : ndarray A 1-D array of monotonically increasing real values. `x` cannot include duplicate values (otherwise f is overspecified) y : ndarray A 1-D array of real values. `y`'s length along the interpolation axis must be equal to the length of `x`. If N-D array, use `axis` parameter to select correct axis. axis : int, optional Axis in the y array corresponding to the x-coordinate values. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Methods ------- __call__ derivative antiderivative roots See Also -------- Akima1DInterpolator CubicSpline BPoly Notes ----- The interpolator preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth. The first derivatives are guaranteed to be continuous, but the second derivatives may jump at :math:`x_k`. Determines the derivatives at the points :math:`x_k`, :math:`f'_k`, by using PCHIP algorithm [1]_. Let :math:`h_k = x_{k+1} - x_k`, and :math:`d_k = (y_{k+1} - y_k) / h_k` are the slopes at internal points :math:`x_k`. If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the weighted harmonic mean .. math:: \frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k} where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`. The end slopes are set using a one-sided scheme [2]_. References ---------- .. [1] F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation, SIAM J. Numer. Anal., 17(2), 238 (1980). :doi:`10.1137/0717021`. .. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004. :doi:`10.1137/1.9780898717952` """ def __init__(self, x, y, axis=0, extrapolate=None): x = _asarray_validated(x, check_finite=False, as_inexact=True) y = _asarray_validated(y, check_finite=False, as_inexact=True) axis = axis % y.ndim xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1)) yp = np.rollaxis(y, axis) dk = self._find_derivatives(xp, yp) data = np.hstack((yp[:, None, ...], dk[:, None, ...])) _b = BPoly.from_derivatives(x, data, orders=None) super(PchipInterpolator, self).__init__(_b.c, _b.x, extrapolate=extrapolate) self.axis = axis def roots(self): """ Return the roots of the interpolated function. """ return (PPoly.from_bernstein_basis(self)).roots() @staticmethod def _edge_case(h0, h1, m0, m1): # one-sided three-point estimate for the derivative d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1) # try to preserve shape mask = np.sign(d) != np.sign(m0) mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0)) mmm = (~mask) & mask2 d[mask] = 0. d[mmm] = 3.*m0[mmm] return d @staticmethod def _find_derivatives(x, y): # Determine the derivatives at the points y_k, d_k, by using # PCHIP algorithm is: # We choose the derivatives at the point x_k by # Let m_k be the slope of the kth segment (between k and k+1) # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 # else use weighted harmonic mean: # w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} # 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1}) # where h_k is the spacing between x_k and x_{k+1} y_shape = y.shape if y.ndim == 1: # So that _edge_case doesn't end up assigning to scalars x = x[:, None] y = y[:, None] hk = x[1:] - x[:-1] mk = (y[1:] - y[:-1]) / hk if y.shape[0] == 2: # edge case: only have two points, use linear interpolation dk = np.zeros_like(y) dk[0] = mk dk[1] = mk return dk.reshape(y_shape) smk = np.sign(mk) condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0) w1 = 2*hk[1:] + hk[:-1] w2 = hk[1:] + 2*hk[:-1] # values where division by zero occurs will be excluded # by 'condition' afterwards with np.errstate(divide='ignore'): whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2) dk = np.zeros_like(y) dk[1:-1][condition] = 0.0 dk[1:-1][~condition] = 1.0 / whmean[~condition] # special case endpoints, as suggested in # Cleve Moler, Numerical Computing with MATLAB, Chap 3.4 dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1]) dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2]) return dk.reshape(y_shape) def pchip_interpolate(xi, yi, x, der=0, axis=0): """ Convenience function for pchip interpolation. xi and yi are arrays of values used to approximate some function f, with ``yi = f(xi)``. The interpolant uses monotonic cubic splines to find the value of new points x and the derivatives there. See `PchipInterpolator` for details. Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : array_like A 1-D array of real values. `yi`'s length along the interpolation axis must be equal to the length of `xi`. If N-D array, use axis parameter to select correct axis. x : scalar or array_like Of length M. der : int or list, optional Derivatives to extract. The 0-th derivative can be included to return the function value. axis : int, optional Axis in the yi array corresponding to the x-coordinate values. See Also -------- PchipInterpolator Returns ------- y : scalar or array_like The result, of length R or length M or M by R, """ P = PchipInterpolator(xi, yi, axis=axis) if der == 0: return P(x) elif _isscalar(der): return P.derivative(der)(x) else: return [P.derivative(nu)(x) for nu in der] # Backwards compatibility pchip = PchipInterpolator class Akima1DInterpolator(PPoly): """ Akima interpolator Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given data points and will appear smooth and natural. Parameters ---------- x : ndarray, shape (m, ) 1-D array of monotonically increasing real values. y : ndarray, shape (m, ...) N-D array of real values. The length of `y` along the first axis must be equal to the length of `x`. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the first axis of `y`. Methods ------- __call__ derivative antiderivative roots See Also -------- PchipInterpolator CubicSpline PPoly Notes ----- .. versionadded:: 0.14 Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for plotting a pleasingly smooth curve through a few given points for purposes of plotting. References ---------- [1] A new method of interpolation and smooth curve fitting based on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602. """ def __init__(self, x, y, axis=0): # Original implementation in MATLAB by N. Shamsundar (BSD licensed), see # http://www.mathworks.de/matlabcentral/fileexchange/1814-akima-interpolation x, y = map(np.asarray, (x, y)) axis = axis % y.ndim if np.any(np.diff(x) < 0.): raise ValueError("x must be strictly ascending") if x.ndim != 1: raise ValueError("x must be 1-dimensional") if x.size < 2: raise ValueError("at least 2 breakpoints are needed") if x.size != y.shape[axis]: raise ValueError("x.shape must equal y.shape[%s]" % axis) # move interpolation axis to front y = np.rollaxis(y, axis) # determine slopes between breakpoints m = np.empty((x.size + 3, ) + y.shape[1:]) dx = np.diff(x) dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)] m[2:-2] = np.diff(y, axis=0) / dx # add two additional points on the left ... m[1] = 2. * m[2] - m[3] m[0] = 2. * m[1] - m[2] # ... and on the right m[-2] = 2. * m[-3] - m[-4] m[-1] = 2. * m[-2] - m[-3] # if m1 == m2 != m3 == m4, the slope at the breakpoint is not defined. # This is the fill value: t = .5 * (m[3:] + m[:-3]) # get the denominator of the slope t dm = np.abs(np.diff(m, axis=0)) f1 = dm[2:] f2 = dm[:-2] f12 = f1 + f2 # These are the mask of where the the slope at breakpoint is defined: ind = np.nonzero(f12 > 1e-9 * np.max(f12)) x_ind, y_ind = ind[0], ind[1:] # Set the slope at breakpoint t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] + f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind] # calculate the higher order coefficients c = (3. * m[2:-2] - 2. * t[:-1] - t[1:]) / dx d = (t[:-1] + t[1:] - 2. * m[2:-2]) / dx ** 2 coeff = np.zeros((4, x.size - 1) + y.shape[1:]) coeff[3] = y[:-1] coeff[2] = t[:-1] coeff[1] = c coeff[0] = d super(Akima1DInterpolator, self).__init__(coeff, x, extrapolate=False) self.axis = axis def extend(self, c, x, right=True): raise NotImplementedError("Extending a 1D Akima interpolator is not " "yet implemented") # These are inherited from PPoly, but they do not produce an Akima # interpolator. Hence stub them out. @classmethod def from_spline(cls, tck, extrapolate=None): raise NotImplementedError("This method does not make sense for " "an Akima interpolator.") @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): raise NotImplementedError("This method does not make sense for " "an Akima interpolator.") class CubicSpline(PPoly): """Cubic spline data interpolator. Interpolate data with a piecewise cubic polynomial which is twice continuously differentiable [1]_. The result is represented as a `PPoly` instance with breakpoints matching the given data. Parameters ---------- x : array_like, shape (n,) 1-d array containing values of the independent variable. Values must be real, finite and in strictly increasing order. y : array_like Array containing values of the dependent variable. It can have arbitrary number of dimensions, but the length along `axis` (see below) must match the length of `x`. Values must be finite. axis : int, optional Axis along which `y` is assumed to be varying. Meaning that for ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``. Default is 0. bc_type : string or 2-tuple, optional Boundary condition type. Two additional equations, given by the boundary conditions, are required to determine all coefficients of polynomials on each segment [2]_. If `bc_type` is a string, then the specified condition will be applied at both ends of a spline. Available conditions are: * 'not-a-knot' (default): The first and second segment at a curve end are the same polynomial. It is a good default when there is no information on boundary conditions. * 'periodic': The interpolated functions is assumed to be periodic of period ``x[-1] - x[0]``. The first and last value of `y` must be identical: ``y[0] == y[-1]``. This boundary condition will result in ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``. * 'clamped': The first derivative at curves ends are zero. Assuming a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition. * 'natural': The second derivative at curve ends are zero. Assuming a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition. If `bc_type` is a 2-tuple, the first and the second value will be applied at the curve start and end respectively. The tuple values can be one of the previously mentioned strings (except 'periodic') or a tuple `(order, deriv_values)` allowing to specify arbitrary derivatives at curve ends: * `order`: the derivative order, 1 or 2. * `deriv_value`: array_like containing derivative values, shape must be the same as `y`, excluding `axis` dimension. For example, if `y` is 1D, then `deriv_value` must be a scalar. If `y` is 3D with the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2D and have the shape (n0, n1). extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), `extrapolate` is set to 'periodic' for ``bc_type='periodic'`` and to True otherwise. Attributes ---------- x : ndarray, shape (n,) Breakpoints. The same `x` which was passed to the constructor. c : ndarray, shape (4, n-1, ...) Coefficients of the polynomials on each segment. The trailing dimensions match the dimensions of `y`, excluding `axis`. For example, if `y` is 1-d, then ``c[k, i]`` is a coefficient for ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``. axis : int Interpolation axis. The same `axis` which was passed to the constructor. Methods ------- __call__ derivative antiderivative integrate roots See Also -------- Akima1DInterpolator PchipInterpolator PPoly Notes ----- Parameters `bc_type` and `interpolate` work independently, i.e. the former controls only construction of a spline, and the latter only evaluation. When a boundary condition is 'not-a-knot' and n = 2, it is replaced by a condition that the first derivative is equal to the linear interpolant slope. When both boundary conditions are 'not-a-knot' and n = 3, the solution is sought as a parabola passing through given points. When 'not-a-knot' boundary conditions is applied to both ends, the resulting spline will be the same as returned by `splrep` (with ``s=0``) and `InterpolatedUnivariateSpline`, but these two methods use a representation in B-spline basis. .. versionadded:: 0.18.0 Examples -------- In this example the cubic spline is used to interpolate a sampled sinusoid. You can see that the spline continuity property holds for the first and second derivatives and violates only for the third derivative. >>> from scipy.interpolate import CubicSpline >>> import matplotlib.pyplot as plt >>> x = np.arange(10) >>> y = np.sin(x) >>> cs = CubicSpline(x, y) >>> xs = np.arange(-0.5, 9.6, 0.1) >>> plt.figure(figsize=(6.5, 4)) >>> plt.plot(x, y, 'o', label='data') >>> plt.plot(xs, np.sin(xs), label='true') >>> plt.plot(xs, cs(xs), label="S") >>> plt.plot(xs, cs(xs, 1), label="S'") >>> plt.plot(xs, cs(xs, 2), label="S''") >>> plt.plot(xs, cs(xs, 3), label="S'''") >>> plt.xlim(-0.5, 9.5) >>> plt.legend(loc='lower left', ncol=2) >>> plt.show() In the second example, the unit circle is interpolated with a spline. A periodic boundary condition is used. You can see that the first derivative values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly computed. Note that a circle cannot be exactly represented by a cubic spline. To increase precision, more breakpoints would be required. >>> theta = 2 * np.pi * np.linspace(0, 1, 5) >>> y = np.c_[np.cos(theta), np.sin(theta)] >>> cs = CubicSpline(theta, y, bc_type='periodic') >>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1])) ds/dx=0.0 ds/dy=1.0 >>> xs = 2 * np.pi * np.linspace(0, 1, 100) >>> plt.figure(figsize=(6.5, 4)) >>> plt.plot(y[:, 0], y[:, 1], 'o', label='data') >>> plt.plot(np.cos(xs), np.sin(xs), label='true') >>> plt.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline') >>> plt.axes().set_aspect('equal') >>> plt.legend(loc='center') >>> plt.show() The third example is the interpolation of a polynomial y = x**3 on the interval 0 <= x<= 1. A cubic spline can represent this function exactly. To achieve that we need to specify values and first derivatives at endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and y'(1) = 3. >>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3))) >>> x = np.linspace(0, 1) >>> np.allclose(x**3, cs(x)) True References ---------- .. [1] `Cubic Spline Interpolation <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_ on Wikiversity. .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978. """ def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None): x, y = map(np.asarray, (x, y)) if np.issubdtype(x.dtype, np.complexfloating): raise ValueError("`x` must contain real values.") if np.issubdtype(y.dtype, np.complexfloating): dtype = complex else: dtype = float y = y.astype(dtype, copy=False) axis = axis % y.ndim if x.ndim != 1: raise ValueError("`x` must be 1-dimensional.") if x.shape[0] < 2: raise ValueError("`x` must contain at least 2 elements.") if x.shape[0] != y.shape[axis]: raise ValueError("The length of `y` along `axis`={0} doesn't " "match the length of `x`".format(axis)) if not np.all(np.isfinite(x)): raise ValueError("`x` must contain only finite values.") if not np.all(np.isfinite(y)): raise ValueError("`y` must contain only finite values.") dx = np.diff(x) if np.any(dx <= 0): raise ValueError("`x` must be strictly increasing sequence.") n = x.shape[0] y = np.rollaxis(y, axis) bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis) if extrapolate is None: if bc[0] == 'periodic': extrapolate = 'periodic' else: extrapolate = True dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1)) slope = np.diff(y, axis=0) / dxr # If bc is 'not-a-knot' this change is just a convention. # If bc is 'periodic' then we already checked that y[0] == y[-1], # and the spline is just a constant, we handle this case in the same # way by setting the first derivatives to slope, which is 0. if n == 2: if bc[0] in ['not-a-knot', 'periodic']: bc[0] = (1, slope[0]) if bc[1] in ['not-a-knot', 'periodic']: bc[1] = (1, slope[0]) # This is a very special case, when both conditions are 'not-a-knot' # and n == 3. In this case 'not-a-knot' can't be handled regularly # as the both conditions are identical. We handle this case by # constructing a parabola passing through given points. if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot': A = np.zeros((3, 3)) # This is a standard matrix. b = np.empty((3,) + y.shape[1:], dtype=y.dtype) A[0, 0] = 1 A[0, 1] = 1 A[1, 0] = dx[1] A[1, 1] = 2 * (dx[0] + dx[1]) A[1, 2] = dx[0] A[2, 1] = 1 A[2, 2] = 1 b[0] = 2 * slope[0] b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0]) b[2] = 2 * slope[1] s = solve(A, b, overwrite_a=True, overwrite_b=True, check_finite=False) else: # Find derivative values at each x[i] by solving a tridiagonal # system. A = np.zeros((3, n)) # This is a banded matrix representation. b = np.empty((n,) + y.shape[1:], dtype=y.dtype) # Filling the system for i=1..n-2 # (x[i-1] - x[i]) * s[i-1] +\ # 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i] +\ # (x[i] - x[i-1]) * s[i+1] =\ # 3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\ # (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i])) A[1, 1:-1] = 2 * (dx[:-1] + dx[1:]) # The diagonal A[0, 2:] = dx[:-1] # The upper diagonal A[-1, :-2] = dx[1:] # The lower diagonal b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:]) bc_start, bc_end = bc if bc_start == 'periodic': # Due to the periodicity, and because y[-1] = y[0], the linear # system has (n-1) unknowns/equations instead of n: A = A[:, 0:-1] A[1, 0] = 2 * (dx[-1] + dx[0]) A[0, 1] = dx[-1] b = b[:-1] # Also, due to the periodicity, the system is not tri-diagonal. # We need to compute a "condensed" matrix of shape (n-2, n-2). # See http://www.cfm.brown.edu/people/gk/chap6/node14.html for # more explanations. # The condensed matrix is obtained by removing the last column # and last row of the (n-1, n-1) system matrix. The removed # values are saved in scalar variables with the (n-1, n-1) # system matrix indices forming their names: a_m1_0 = dx[-2] # lower left corner value: A[-1, 0] a_m1_m2 = dx[-1] a_m1_m1 = 2 * (dx[-1] + dx[-2]) a_m2_m1 = dx[-2] a_0_m1 = dx[0] b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0]) b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1]) Ac = A[:, :-1] b1 = b[:-1] b2 = np.zeros_like(b1) b2[0] = -a_0_m1 b2[-1] = -a_m2_m1 # s1 and s2 are the solutions of (n-2, n-2) system s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False, overwrite_b=False, check_finite=False) s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False, overwrite_b=False, check_finite=False) # computing the s[n-2] solution: s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) / (a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1])) # s is the solution of the (n, n) system: s = np.empty((n,) + y.shape[1:], dtype=y.dtype) s[:-2] = s1 + s_m1 * s2 s[-2] = s_m1 s[-1] = s[0] else: if bc_start == 'not-a-knot': A[1, 0] = dx[1] A[0, 1] = x[2] - x[0] d = x[2] - x[0] b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] + dxr[0]**2 * slope[1]) / d elif bc_start[0] == 1: A[1, 0] = 1 A[0, 1] = 0 b[0] = bc_start[1] elif bc_start[0] == 2: A[1, 0] = 2 * dx[0] A[0, 1] = dx[0] b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0]) if bc_end == 'not-a-knot': A[1, -1] = dx[-2] A[-1, -2] = x[-1] - x[-3] d = x[-1] - x[-3] b[-1] = ((dxr[-1]**2*slope[-2] + (2*d + dxr[-1])*dxr[-2]*slope[-1]) / d) elif bc_end[0] == 1: A[1, -1] = 1 A[-1, -2] = 0 b[-1] = bc_end[1] elif bc_end[0] == 2: A[1, -1] = 2 * dx[-1] A[-1, -2] = dx[-1] b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2]) s = solve_banded((1, 1), A, b, overwrite_ab=True, overwrite_b=True, check_finite=False) # Compute coefficients in PPoly form. t = (s[:-1] + s[1:] - 2 * slope) / dxr c = np.empty((4, n - 1) + y.shape[1:], dtype=t.dtype) c[0] = t / dxr c[1] = (slope - s[:-1]) / dxr - t c[2] = s[:-1] c[3] = y[:-1] super(CubicSpline, self).__init__(c, x, extrapolate=extrapolate) self.axis = axis @staticmethod def _validate_bc(bc_type, y, expected_deriv_shape, axis): """Validate and prepare boundary conditions. Returns ------- validated_bc : 2-tuple Boundary conditions for a curve start and end. y : ndarray y casted to complex dtype if one of the boundary conditions has complex dtype. """ if isinstance(bc_type, string_types): if bc_type == 'periodic': if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15): raise ValueError( "The first and last `y` point along axis {} must " "be identical (within machine precision) when " "bc_type='periodic'.".format(axis)) bc_type = (bc_type, bc_type) else: if len(bc_type) != 2: raise ValueError("`bc_type` must contain 2 elements to " "specify start and end conditions.") if 'periodic' in bc_type: raise ValueError("'periodic' `bc_type` is defined for both " "curve ends and cannot be used with other " "boundary conditions.") validated_bc = [] for bc in bc_type: if isinstance(bc, string_types): if bc == 'clamped': validated_bc.append((1, np.zeros(expected_deriv_shape))) elif bc == 'natural': validated_bc.append((2, np.zeros(expected_deriv_shape))) elif bc in ['not-a-knot', 'periodic']: validated_bc.append(bc) else: raise ValueError("bc_type={} is not allowed.".format(bc)) else: try: deriv_order, deriv_value = bc except Exception: raise ValueError("A specified derivative value must be " "given in the form (order, value).") if deriv_order not in [1, 2]: raise ValueError("The specified derivative order must " "be 1 or 2.") deriv_value = np.asarray(deriv_value) if deriv_value.shape != expected_deriv_shape: raise ValueError( "`deriv_value` shape {} is not the expected one {}." .format(deriv_value.shape, expected_deriv_shape)) if np.issubdtype(deriv_value.dtype, np.complexfloating): y = y.astype(complex, copy=False) validated_bc.append((deriv_order, deriv_value)) return validated_bc, y
bsd-3-clause
shangwuhencc/scikit-learn
benchmarks/bench_20newsgroups.py
377
3555
from __future__ import print_function, division from time import time import argparse import numpy as np from sklearn.dummy import DummyClassifier from sklearn.datasets import fetch_20newsgroups_vectorized from sklearn.metrics import accuracy_score from sklearn.utils.validation import check_array from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB ESTIMATORS = { "dummy": DummyClassifier(), "random_forest": RandomForestClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "extra_trees": ExtraTreesClassifier(n_estimators=100, max_features="sqrt", min_samples_split=10), "logistic_regression": LogisticRegression(), "naive_bayes": MultinomialNB(), "adaboost": AdaBoostClassifier(n_estimators=10), } ############################################################################### # Data if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-e', '--estimators', nargs="+", required=True, choices=ESTIMATORS) args = vars(parser.parse_args()) data_train = fetch_20newsgroups_vectorized(subset="train") data_test = fetch_20newsgroups_vectorized(subset="test") X_train = check_array(data_train.data, dtype=np.float32, accept_sparse="csc") X_test = check_array(data_test.data, dtype=np.float32, accept_sparse="csr") y_train = data_train.target y_test = data_test.target print("20 newsgroups") print("=============") print("X_train.shape = {0}".format(X_train.shape)) print("X_train.format = {0}".format(X_train.format)) print("X_train.dtype = {0}".format(X_train.dtype)) print("X_train density = {0}" "".format(X_train.nnz / np.product(X_train.shape))) print("y_train {0}".format(y_train.shape)) print("X_test {0}".format(X_test.shape)) print("X_test.format = {0}".format(X_test.format)) print("X_test.dtype = {0}".format(X_test.dtype)) print("y_test {0}".format(y_test.shape)) print() print("Classifier Training") print("===================") accuracy, train_time, test_time = {}, {}, {} for name in sorted(args["estimators"]): clf = ESTIMATORS[name] try: clf.set_params(random_state=0) except (TypeError, ValueError): pass print("Training %s ... " % name, end="") t0 = time() clf.fit(X_train, y_train) train_time[name] = time() - t0 t0 = time() y_pred = clf.predict(X_test) test_time[name] = time() - t0 accuracy[name] = accuracy_score(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print() print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "Accuracy")) print("-" * 44) for name in sorted(accuracy, key=accuracy.get): print("%s %s %s %s" % (name.ljust(16), ("%.4fs" % train_time[name]).center(10), ("%.4fs" % test_time[name]).center(10), ("%.4f" % accuracy[name]).center(10))) print()
bsd-3-clause
sonnyhu/scikit-learn
examples/cluster/plot_dbscan.py
346
2479
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
bsd-3-clause
CanisMajoris/ThinkStats2
code/thinkstats2.py
68
68825
"""This file contains code for use with "Think Stats" and "Think Bayes", both by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division """This file contains class definitions for: Hist: represents a histogram (map from values to integer frequencies). Pmf: represents a probability mass function (map from values to probs). _DictWrapper: private parent class for Hist and Pmf. Cdf: represents a discrete cumulative distribution function Pdf: represents a continuous probability density function """ import bisect import copy import logging import math import random import re from collections import Counter from operator import itemgetter import thinkplot import numpy as np import pandas import scipy from scipy import stats from scipy import special from scipy import ndimage from io import open ROOT2 = math.sqrt(2) def RandomSeed(x): """Initialize the random and np.random generators. x: int seed """ random.seed(x) np.random.seed(x) def Odds(p): """Computes odds for a given probability. Example: p=0.75 means 75 for and 25 against, or 3:1 odds in favor. Note: when p=1, the formula for odds divides by zero, which is normally undefined. But I think it is reasonable to define Odds(1) to be infinity, so that's what this function does. p: float 0-1 Returns: float odds """ if p == 1: return float('inf') return p / (1 - p) def Probability(o): """Computes the probability corresponding to given odds. Example: o=2 means 2:1 odds in favor, or 2/3 probability o: float odds, strictly positive Returns: float probability """ return o / (o + 1) def Probability2(yes, no): """Computes the probability corresponding to given odds. Example: yes=2, no=1 means 2:1 odds in favor, or 2/3 probability. yes, no: int or float odds in favor """ return yes / (yes + no) class Interpolator(object): """Represents a mapping between sorted sequences; performs linear interp. Attributes: xs: sorted list ys: sorted list """ def __init__(self, xs, ys): self.xs = xs self.ys = ys def Lookup(self, x): """Looks up x and returns the corresponding value of y.""" return self._Bisect(x, self.xs, self.ys) def Reverse(self, y): """Looks up y and returns the corresponding value of x.""" return self._Bisect(y, self.ys, self.xs) def _Bisect(self, x, xs, ys): """Helper function.""" if x <= xs[0]: return ys[0] if x >= xs[-1]: return ys[-1] i = bisect.bisect(xs, x) frac = 1.0 * (x - xs[i - 1]) / (xs[i] - xs[i - 1]) y = ys[i - 1] + frac * 1.0 * (ys[i] - ys[i - 1]) return y class _DictWrapper(object): """An object that contains a dictionary.""" def __init__(self, obj=None, label=None): """Initializes the distribution. obj: Hist, Pmf, Cdf, Pdf, dict, pandas Series, list of pairs label: string label """ self.label = label if label is not None else '_nolegend_' self.d = {} # flag whether the distribution is under a log transform self.log = False if obj is None: return if isinstance(obj, (_DictWrapper, Cdf, Pdf)): self.label = label if label is not None else obj.label if isinstance(obj, dict): self.d.update(obj.items()) elif isinstance(obj, (_DictWrapper, Cdf, Pdf)): self.d.update(obj.Items()) elif isinstance(obj, pandas.Series): self.d.update(obj.value_counts().iteritems()) else: # finally, treat it like a list self.d.update(Counter(obj)) if len(self) > 0 and isinstance(self, Pmf): self.Normalize() def __hash__(self): return id(self) def __str__(self): cls = self.__class__.__name__ return '%s(%s)' % (cls, str(self.d)) __repr__ = __str__ def __eq__(self, other): return self.d == other.d def __len__(self): return len(self.d) def __iter__(self): return iter(self.d) def iterkeys(self): """Returns an iterator over keys.""" return iter(self.d) def __contains__(self, value): return value in self.d def __getitem__(self, value): return self.d.get(value, 0) def __setitem__(self, value, prob): self.d[value] = prob def __delitem__(self, value): del self.d[value] def Copy(self, label=None): """Returns a copy. Make a shallow copy of d. If you want a deep copy of d, use copy.deepcopy on the whole object. label: string label for the new Hist returns: new _DictWrapper with the same type """ new = copy.copy(self) new.d = copy.copy(self.d) new.label = label if label is not None else self.label return new def Scale(self, factor): """Multiplies the values by a factor. factor: what to multiply by Returns: new object """ new = self.Copy() new.d.clear() for val, prob in self.Items(): new.Set(val * factor, prob) return new def Log(self, m=None): """Log transforms the probabilities. Removes values with probability 0. Normalizes so that the largest logprob is 0. """ if self.log: raise ValueError("Pmf/Hist already under a log transform") self.log = True if m is None: m = self.MaxLike() for x, p in self.d.items(): if p: self.Set(x, math.log(p / m)) else: self.Remove(x) def Exp(self, m=None): """Exponentiates the probabilities. m: how much to shift the ps before exponentiating If m is None, normalizes so that the largest prob is 1. """ if not self.log: raise ValueError("Pmf/Hist not under a log transform") self.log = False if m is None: m = self.MaxLike() for x, p in self.d.items(): self.Set(x, math.exp(p - m)) def GetDict(self): """Gets the dictionary.""" return self.d def SetDict(self, d): """Sets the dictionary.""" self.d = d def Values(self): """Gets an unsorted sequence of values. Note: one source of confusion is that the keys of this dictionary are the values of the Hist/Pmf, and the values of the dictionary are frequencies/probabilities. """ return self.d.keys() def Items(self): """Gets an unsorted sequence of (value, freq/prob) pairs.""" return self.d.items() def Render(self, **options): """Generates a sequence of points suitable for plotting. Note: options are ignored Returns: tuple of (sorted value sequence, freq/prob sequence) """ if min(self.d.keys()) is np.nan: logging.warning('Hist: contains NaN, may not render correctly.') return zip(*sorted(self.Items())) def MakeCdf(self, label=None): """Makes a Cdf.""" label = label if label is not None else self.label return Cdf(self, label=label) def Print(self): """Prints the values and freqs/probs in ascending order.""" for val, prob in sorted(self.d.items()): print(val, prob) def Set(self, x, y=0): """Sets the freq/prob associated with the value x. Args: x: number value y: number freq or prob """ self.d[x] = y def Incr(self, x, term=1): """Increments the freq/prob associated with the value x. Args: x: number value term: how much to increment by """ self.d[x] = self.d.get(x, 0) + term def Mult(self, x, factor): """Scales the freq/prob associated with the value x. Args: x: number value factor: how much to multiply by """ self.d[x] = self.d.get(x, 0) * factor def Remove(self, x): """Removes a value. Throws an exception if the value is not there. Args: x: value to remove """ del self.d[x] def Total(self): """Returns the total of the frequencies/probabilities in the map.""" total = sum(self.d.values()) return total def MaxLike(self): """Returns the largest frequency/probability in the map.""" return max(self.d.values()) def Largest(self, n=10): """Returns the largest n values, with frequency/probability. n: number of items to return """ return sorted(self.d.items(), reverse=True)[:n] def Smallest(self, n=10): """Returns the smallest n values, with frequency/probability. n: number of items to return """ return sorted(self.d.items(), reverse=False)[:n] class Hist(_DictWrapper): """Represents a histogram, which is a map from values to frequencies. Values can be any hashable type; frequencies are integer counters. """ def Freq(self, x): """Gets the frequency associated with the value x. Args: x: number value Returns: int frequency """ return self.d.get(x, 0) def Freqs(self, xs): """Gets frequencies for a sequence of values.""" return [self.Freq(x) for x in xs] def IsSubset(self, other): """Checks whether the values in this histogram are a subset of the values in the given histogram.""" for val, freq in self.Items(): if freq > other.Freq(val): return False return True def Subtract(self, other): """Subtracts the values in the given histogram from this histogram.""" for val, freq in other.Items(): self.Incr(val, -freq) class Pmf(_DictWrapper): """Represents a probability mass function. Values can be any hashable type; probabilities are floating-point. Pmfs are not necessarily normalized. """ def Prob(self, x, default=0): """Gets the probability associated with the value x. Args: x: number value default: value to return if the key is not there Returns: float probability """ return self.d.get(x, default) def Probs(self, xs): """Gets probabilities for a sequence of values.""" return [self.Prob(x) for x in xs] def Percentile(self, percentage): """Computes a percentile of a given Pmf. Note: this is not super efficient. If you are planning to compute more than a few percentiles, compute the Cdf. percentage: float 0-100 returns: value from the Pmf """ p = percentage / 100.0 total = 0 for val, prob in sorted(self.Items()): total += prob if total >= p: return val def ProbGreater(self, x): """Probability that a sample from this Pmf exceeds x. x: number returns: float probability """ if isinstance(x, _DictWrapper): return PmfProbGreater(self, x) else: t = [prob for (val, prob) in self.d.items() if val > x] return sum(t) def ProbLess(self, x): """Probability that a sample from this Pmf is less than x. x: number returns: float probability """ if isinstance(x, _DictWrapper): return PmfProbLess(self, x) else: t = [prob for (val, prob) in self.d.items() if val < x] return sum(t) def __lt__(self, obj): """Less than. obj: number or _DictWrapper returns: float probability """ return self.ProbLess(obj) def __gt__(self, obj): """Greater than. obj: number or _DictWrapper returns: float probability """ return self.ProbGreater(obj) def __ge__(self, obj): """Greater than or equal. obj: number or _DictWrapper returns: float probability """ return 1 - (self < obj) def __le__(self, obj): """Less than or equal. obj: number or _DictWrapper returns: float probability """ return 1 - (self > obj) def Normalize(self, fraction=1.0): """Normalizes this PMF so the sum of all probs is fraction. Args: fraction: what the total should be after normalization Returns: the total probability before normalizing """ if self.log: raise ValueError("Normalize: Pmf is under a log transform") total = self.Total() if total == 0.0: raise ValueError('Normalize: total probability is zero.') #logging.warning('Normalize: total probability is zero.') #return total factor = fraction / total for x in self.d: self.d[x] *= factor return total def Random(self): """Chooses a random element from this PMF. Note: this is not very efficient. If you plan to call this more than a few times, consider converting to a CDF. Returns: float value from the Pmf """ target = random.random() total = 0.0 for x, p in self.d.items(): total += p if total >= target: return x # we shouldn't get here raise ValueError('Random: Pmf might not be normalized.') def Mean(self): """Computes the mean of a PMF. Returns: float mean """ mean = 0.0 for x, p in self.d.items(): mean += p * x return mean def Var(self, mu=None): """Computes the variance of a PMF. mu: the point around which the variance is computed; if omitted, computes the mean returns: float variance """ if mu is None: mu = self.Mean() var = 0.0 for x, p in self.d.items(): var += p * (x - mu) ** 2 return var def Std(self, mu=None): """Computes the standard deviation of a PMF. mu: the point around which the variance is computed; if omitted, computes the mean returns: float standard deviation """ var = self.Var(mu) return math.sqrt(var) def MaximumLikelihood(self): """Returns the value with the highest probability. Returns: float probability """ _, val = max((prob, val) for val, prob in self.Items()) return val def CredibleInterval(self, percentage=90): """Computes the central credible interval. If percentage=90, computes the 90% CI. Args: percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ cdf = self.MakeCdf() return cdf.CredibleInterval(percentage) def __add__(self, other): """Computes the Pmf of the sum of values drawn from self and other. other: another Pmf or a scalar returns: new Pmf """ try: return self.AddPmf(other) except AttributeError: return self.AddConstant(other) def AddPmf(self, other): """Computes the Pmf of the sum of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 + v2, p1 * p2) return pmf def AddConstant(self, other): """Computes the Pmf of the sum a constant and values from self. other: a number returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): pmf.Set(v1 + other, p1) return pmf def __sub__(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.SubPmf(other) except AttributeError: return self.AddConstant(-other) def SubPmf(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 - v2, p1 * p2) return pmf def __mul__(self, other): """Computes the Pmf of the product of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.MulPmf(other) except AttributeError: return self.MulConstant(other) def MulPmf(self, other): """Computes the Pmf of the diff of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 * v2, p1 * p2) return pmf def MulConstant(self, other): """Computes the Pmf of the product of a constant and values from self. other: a number returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): pmf.Set(v1 * other, p1) return pmf def __div__(self, other): """Computes the Pmf of the ratio of values drawn from self and other. other: another Pmf returns: new Pmf """ try: return self.DivPmf(other) except AttributeError: return self.MulConstant(1/other) __truediv__ = __div__ def DivPmf(self, other): """Computes the Pmf of the ratio of values drawn from self and other. other: another Pmf returns: new Pmf """ pmf = Pmf() for v1, p1 in self.Items(): for v2, p2 in other.Items(): pmf.Incr(v1 / v2, p1 * p2) return pmf def Max(self, k): """Computes the CDF of the maximum of k selections from this dist. k: int returns: new Cdf """ cdf = self.MakeCdf() return cdf.Max(k) class Joint(Pmf): """Represents a joint distribution. The values are sequences (usually tuples) """ def Marginal(self, i, label=None): """Gets the marginal distribution of the indicated variable. i: index of the variable we want Returns: Pmf """ pmf = Pmf(label=label) for vs, prob in self.Items(): pmf.Incr(vs[i], prob) return pmf def Conditional(self, i, j, val, label=None): """Gets the conditional distribution of the indicated variable. Distribution of vs[i], conditioned on vs[j] = val. i: index of the variable we want j: which variable is conditioned on val: the value the jth variable has to have Returns: Pmf """ pmf = Pmf(label=label) for vs, prob in self.Items(): if vs[j] != val: continue pmf.Incr(vs[i], prob) pmf.Normalize() return pmf def MaxLikeInterval(self, percentage=90): """Returns the maximum-likelihood credible interval. If percentage=90, computes a 90% CI containing the values with the highest likelihoods. percentage: float between 0 and 100 Returns: list of values from the suite """ interval = [] total = 0 t = [(prob, val) for val, prob in self.Items()] t.sort(reverse=True) for prob, val in t: interval.append(val) total += prob if total >= percentage / 100.0: break return interval def MakeJoint(pmf1, pmf2): """Joint distribution of values from pmf1 and pmf2. Assumes that the PMFs represent independent random variables. Args: pmf1: Pmf object pmf2: Pmf object Returns: Joint pmf of value pairs """ joint = Joint() for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): joint.Set((v1, v2), p1 * p2) return joint def MakeHistFromList(t, label=None): """Makes a histogram from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this histogram Returns: Hist object """ return Hist(t, label=label) def MakeHistFromDict(d, label=None): """Makes a histogram from a map from values to frequencies. Args: d: dictionary that maps values to frequencies label: string label for this histogram Returns: Hist object """ return Hist(d, label) def MakePmfFromList(t, label=None): """Makes a PMF from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this PMF Returns: Pmf object """ return Pmf(t, label=label) def MakePmfFromDict(d, label=None): """Makes a PMF from a map from values to probabilities. Args: d: dictionary that maps values to probabilities label: string label for this PMF Returns: Pmf object """ return Pmf(d, label=label) def MakePmfFromItems(t, label=None): """Makes a PMF from a sequence of value-probability pairs Args: t: sequence of value-probability pairs label: string label for this PMF Returns: Pmf object """ return Pmf(dict(t), label=label) def MakePmfFromHist(hist, label=None): """Makes a normalized PMF from a Hist object. Args: hist: Hist object label: string label Returns: Pmf object """ if label is None: label = hist.label return Pmf(hist, label=label) def MakeMixture(metapmf, label='mix'): """Make a mixture distribution. Args: metapmf: Pmf that maps from Pmfs to probs. label: string label for the new Pmf. Returns: Pmf object. """ mix = Pmf(label=label) for pmf, p1 in metapmf.Items(): for x, p2 in pmf.Items(): mix.Incr(x, p1 * p2) return mix def MakeUniformPmf(low, high, n): """Make a uniform Pmf. low: lowest value (inclusive) high: highest value (inclusize) n: number of values """ pmf = Pmf() for x in np.linspace(low, high, n): pmf.Set(x, 1) pmf.Normalize() return pmf class Cdf(object): """Represents a cumulative distribution function. Attributes: xs: sequence of values ps: sequence of probabilities label: string used as a graph label. """ def __init__(self, obj=None, ps=None, label=None): """Initializes. If ps is provided, obj must be the corresponding list of values. obj: Hist, Pmf, Cdf, Pdf, dict, pandas Series, list of pairs ps: list of cumulative probabilities label: string label """ self.label = label if label is not None else '_nolegend_' if isinstance(obj, (_DictWrapper, Cdf, Pdf)): if not label: self.label = label if label is not None else obj.label if obj is None: # caller does not provide obj, make an empty Cdf self.xs = np.asarray([]) self.ps = np.asarray([]) if ps is not None: logging.warning("Cdf: can't pass ps without also passing xs.") return else: # if the caller provides xs and ps, just store them if ps is not None: if isinstance(ps, str): logging.warning("Cdf: ps can't be a string") self.xs = np.asarray(obj) self.ps = np.asarray(ps) return # caller has provided just obj, not ps if isinstance(obj, Cdf): self.xs = copy.copy(obj.xs) self.ps = copy.copy(obj.ps) return if isinstance(obj, _DictWrapper): dw = obj else: dw = Hist(obj) if len(dw) == 0: self.xs = np.asarray([]) self.ps = np.asarray([]) return xs, freqs = zip(*sorted(dw.Items())) self.xs = np.asarray(xs) self.ps = np.cumsum(freqs, dtype=np.float) self.ps /= self.ps[-1] def __str__(self): return 'Cdf(%s, %s)' % (str(self.xs), str(self.ps)) __repr__ = __str__ def __len__(self): return len(self.xs) def __getitem__(self, x): return self.Prob(x) def __setitem__(self): raise UnimplementedMethodException() def __delitem__(self): raise UnimplementedMethodException() def __eq__(self, other): return np.all(self.xs == other.xs) and np.all(self.ps == other.ps) def Copy(self, label=None): """Returns a copy of this Cdf. label: string label for the new Cdf """ if label is None: label = self.label return Cdf(list(self.xs), list(self.ps), label=label) def MakePmf(self, label=None): """Makes a Pmf.""" if label is None: label = self.label return Pmf(self, label=label) def Values(self): """Returns a sorted list of values. """ return self.xs def Items(self): """Returns a sorted sequence of (value, probability) pairs. Note: in Python3, returns an iterator. """ a = self.ps b = np.roll(a, 1) b[0] = 0 return zip(self.xs, a-b) def Shift(self, term): """Adds a term to the xs. term: how much to add """ new = self.Copy() # don't use +=, or else an int array + float yields int array new.xs = new.xs + term return new def Scale(self, factor): """Multiplies the xs by a factor. factor: what to multiply by """ new = self.Copy() # don't use *=, or else an int array * float yields int array new.xs = new.xs * factor return new def Prob(self, x): """Returns CDF(x), the probability that corresponds to value x. Args: x: number Returns: float probability """ if x < self.xs[0]: return 0.0 index = bisect.bisect(self.xs, x) p = self.ps[index-1] return p def Probs(self, xs): """Gets probabilities for a sequence of values. xs: any sequence that can be converted to NumPy array returns: NumPy array of cumulative probabilities """ xs = np.asarray(xs) index = np.searchsorted(self.xs, xs, side='right') ps = self.ps[index-1] ps[xs < self.xs[0]] = 0.0 return ps ProbArray = Probs def Value(self, p): """Returns InverseCDF(p), the value that corresponds to probability p. Args: p: number in the range [0, 1] Returns: number value """ if p < 0 or p > 1: raise ValueError('Probability p must be in range [0, 1]') index = bisect.bisect_left(self.ps, p) return self.xs[index] def ValueArray(self, ps): """Returns InverseCDF(p), the value that corresponds to probability p. Args: ps: NumPy array of numbers in the range [0, 1] Returns: NumPy array of values """ ps = np.asarray(ps) if np.any(ps < 0) or np.any(ps > 1): raise ValueError('Probability p must be in range [0, 1]') index = np.searchsorted(self.ps, ps, side='left') return self.xs[index] def Percentile(self, p): """Returns the value that corresponds to percentile p. Args: p: number in the range [0, 100] Returns: number value """ return self.Value(p / 100.0) def PercentileRank(self, x): """Returns the percentile rank of the value x. x: potential value in the CDF returns: percentile rank in the range 0 to 100 """ return self.Prob(x) * 100.0 def Random(self): """Chooses a random value from this distribution.""" return self.Value(random.random()) def Sample(self, n): """Generates a random sample from this distribution. n: int length of the sample returns: NumPy array """ ps = np.random.random(n) return self.ValueArray(ps) def Mean(self): """Computes the mean of a CDF. Returns: float mean """ old_p = 0 total = 0.0 for x, new_p in zip(self.xs, self.ps): p = new_p - old_p total += p * x old_p = new_p return total def CredibleInterval(self, percentage=90): """Computes the central credible interval. If percentage=90, computes the 90% CI. Args: percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ prob = (1 - percentage / 100.0) / 2 interval = self.Value(prob), self.Value(1 - prob) return interval ConfidenceInterval = CredibleInterval def _Round(self, multiplier=1000.0): """ An entry is added to the cdf only if the percentile differs from the previous value in a significant digit, where the number of significant digits is determined by multiplier. The default is 1000, which keeps log10(1000) = 3 significant digits. """ # TODO(write this method) raise UnimplementedMethodException() def Render(self, **options): """Generates a sequence of points suitable for plotting. An empirical CDF is a step function; linear interpolation can be misleading. Note: options are ignored Returns: tuple of (xs, ps) """ def interleave(a, b): c = np.empty(a.shape[0] + b.shape[0]) c[::2] = a c[1::2] = b return c a = np.array(self.xs) xs = interleave(a, a) shift_ps = np.roll(self.ps, 1) shift_ps[0] = 0 ps = interleave(shift_ps, self.ps) return xs, ps def Max(self, k): """Computes the CDF of the maximum of k selections from this dist. k: int returns: new Cdf """ cdf = self.Copy() cdf.ps **= k return cdf def MakeCdfFromItems(items, label=None): """Makes a cdf from an unsorted sequence of (value, frequency) pairs. Args: items: unsorted sequence of (value, frequency) pairs label: string label for this CDF Returns: cdf: list of (value, fraction) pairs """ return Cdf(dict(items), label=label) def MakeCdfFromDict(d, label=None): """Makes a CDF from a dictionary that maps values to frequencies. Args: d: dictionary that maps values to frequencies. label: string label for the data. Returns: Cdf object """ return Cdf(d, label=label) def MakeCdfFromList(seq, label=None): """Creates a CDF from an unsorted sequence. Args: seq: unsorted sequence of sortable values label: string label for the cdf Returns: Cdf object """ return Cdf(seq, label=label) def MakeCdfFromHist(hist, label=None): """Makes a CDF from a Hist object. Args: hist: Pmf.Hist object label: string label for the data. Returns: Cdf object """ if label is None: label = hist.label return Cdf(hist, label=label) def MakeCdfFromPmf(pmf, label=None): """Makes a CDF from a Pmf object. Args: pmf: Pmf.Pmf object label: string label for the data. Returns: Cdf object """ if label is None: label = pmf.label return Cdf(pmf, label=label) class UnimplementedMethodException(Exception): """Exception if someone calls a method that should be overridden.""" class Suite(Pmf): """Represents a suite of hypotheses and their probabilities.""" def Update(self, data): """Updates each hypothesis based on the data. data: any representation of the data returns: the normalizing constant """ for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) return self.Normalize() def LogUpdate(self, data): """Updates a suite of hypotheses based on new data. Modifies the suite directly; if you want to keep the original, make a copy. Note: unlike Update, LogUpdate does not normalize. Args: data: any representation of the data """ for hypo in self.Values(): like = self.LogLikelihood(data, hypo) self.Incr(hypo, like) def UpdateSet(self, dataset): """Updates each hypothesis based on the dataset. This is more efficient than calling Update repeatedly because it waits until the end to Normalize. Modifies the suite directly; if you want to keep the original, make a copy. dataset: a sequence of data returns: the normalizing constant """ for data in dataset: for hypo in self.Values(): like = self.Likelihood(data, hypo) self.Mult(hypo, like) return self.Normalize() def LogUpdateSet(self, dataset): """Updates each hypothesis based on the dataset. Modifies the suite directly; if you want to keep the original, make a copy. dataset: a sequence of data returns: None """ for data in dataset: self.LogUpdate(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under the hypothesis. hypo: some representation of the hypothesis data: some representation of the data """ raise UnimplementedMethodException() def LogLikelihood(self, data, hypo): """Computes the log likelihood of the data under the hypothesis. hypo: some representation of the hypothesis data: some representation of the data """ raise UnimplementedMethodException() def Print(self): """Prints the hypotheses and their probabilities.""" for hypo, prob in sorted(self.Items()): print(hypo, prob) def MakeOdds(self): """Transforms from probabilities to odds. Values with prob=0 are removed. """ for hypo, prob in self.Items(): if prob: self.Set(hypo, Odds(prob)) else: self.Remove(hypo) def MakeProbs(self): """Transforms from odds to probabilities.""" for hypo, odds in self.Items(): self.Set(hypo, Probability(odds)) def MakeSuiteFromList(t, label=None): """Makes a suite from an unsorted sequence of values. Args: t: sequence of numbers label: string label for this suite Returns: Suite object """ hist = MakeHistFromList(t, label=label) d = hist.GetDict() return MakeSuiteFromDict(d) def MakeSuiteFromHist(hist, label=None): """Makes a normalized suite from a Hist object. Args: hist: Hist object label: string label Returns: Suite object """ if label is None: label = hist.label # make a copy of the dictionary d = dict(hist.GetDict()) return MakeSuiteFromDict(d, label) def MakeSuiteFromDict(d, label=None): """Makes a suite from a map from values to probabilities. Args: d: dictionary that maps values to probabilities label: string label for this suite Returns: Suite object """ suite = Suite(label=label) suite.SetDict(d) suite.Normalize() return suite class Pdf(object): """Represents a probability density function (PDF).""" def Density(self, x): """Evaluates this Pdf at x. Returns: float or NumPy array of probability density """ raise UnimplementedMethodException() def GetLinspace(self): """Get a linspace for plotting. Not all subclasses of Pdf implement this. Returns: numpy array """ raise UnimplementedMethodException() def MakePmf(self, **options): """Makes a discrete version of this Pdf. options can include label: string low: low end of range high: high end of range n: number of places to evaluate Returns: new Pmf """ label = options.pop('label', '') xs, ds = self.Render(**options) return Pmf(dict(zip(xs, ds)), label=label) def Render(self, **options): """Generates a sequence of points suitable for plotting. If options includes low and high, it must also include n; in that case the density is evaluated an n locations between low and high, including both. If options includes xs, the density is evaluate at those location. Otherwise, self.GetLinspace is invoked to provide the locations. Returns: tuple of (xs, densities) """ low, high = options.pop('low', None), options.pop('high', None) if low is not None and high is not None: n = options.pop('n', 101) xs = np.linspace(low, high, n) else: xs = options.pop('xs', None) if xs is None: xs = self.GetLinspace() ds = self.Density(xs) return xs, ds def Items(self): """Generates a sequence of (value, probability) pairs. """ return zip(*self.Render()) class NormalPdf(Pdf): """Represents the PDF of a Normal distribution.""" def __init__(self, mu=0, sigma=1, label=None): """Constructs a Normal Pdf with given mu and sigma. mu: mean sigma: standard deviation label: string """ self.mu = mu self.sigma = sigma self.label = label if label is not None else '_nolegend_' def __str__(self): return 'NormalPdf(%f, %f)' % (self.mu, self.sigma) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ low, high = self.mu-3*self.sigma, self.mu+3*self.sigma return np.linspace(low, high, 101) def Density(self, xs): """Evaluates this Pdf at xs. xs: scalar or sequence of floats returns: float or NumPy array of probability density """ return stats.norm.pdf(xs, self.mu, self.sigma) class ExponentialPdf(Pdf): """Represents the PDF of an exponential distribution.""" def __init__(self, lam=1, label=None): """Constructs an exponential Pdf with given parameter. lam: rate parameter label: string """ self.lam = lam self.label = label if label is not None else '_nolegend_' def __str__(self): return 'ExponentialPdf(%f)' % (self.lam) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ low, high = 0, 5.0/self.lam return np.linspace(low, high, 101) def Density(self, xs): """Evaluates this Pdf at xs. xs: scalar or sequence of floats returns: float or NumPy array of probability density """ return stats.expon.pdf(xs, scale=1.0/self.lam) class EstimatedPdf(Pdf): """Represents a PDF estimated by KDE.""" def __init__(self, sample, label=None): """Estimates the density function based on a sample. sample: sequence of data label: string """ self.label = label if label is not None else '_nolegend_' self.kde = stats.gaussian_kde(sample) low = min(sample) high = max(sample) self.linspace = np.linspace(low, high, 101) def __str__(self): return 'EstimatedPdf(label=%s)' % str(self.label) def GetLinspace(self): """Get a linspace for plotting. Returns: numpy array """ return self.linspace def Density(self, xs): """Evaluates this Pdf at xs. returns: float or NumPy array of probability density """ return self.kde.evaluate(xs) def CredibleInterval(pmf, percentage=90): """Computes a credible interval for a given distribution. If percentage=90, computes the 90% CI. Args: pmf: Pmf object representing a posterior distribution percentage: float between 0 and 100 Returns: sequence of two floats, low and high """ cdf = pmf.MakeCdf() prob = (1 - percentage / 100.0) / 2 interval = cdf.Value(prob), cdf.Value(1 - prob) return interval def PmfProbLess(pmf1, pmf2): """Probability that a value from pmf1 is less than a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 < v2: total += p1 * p2 return total def PmfProbGreater(pmf1, pmf2): """Probability that a value from pmf1 is less than a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 > v2: total += p1 * p2 return total def PmfProbEqual(pmf1, pmf2): """Probability that a value from pmf1 equals a value from pmf2. Args: pmf1: Pmf object pmf2: Pmf object Returns: float probability """ total = 0.0 for v1, p1 in pmf1.Items(): for v2, p2 in pmf2.Items(): if v1 == v2: total += p1 * p2 return total def RandomSum(dists): """Chooses a random value from each dist and returns the sum. dists: sequence of Pmf or Cdf objects returns: numerical sum """ total = sum(dist.Random() for dist in dists) return total def SampleSum(dists, n): """Draws a sample of sums from a list of distributions. dists: sequence of Pmf or Cdf objects n: sample size returns: new Pmf of sums """ pmf = Pmf(RandomSum(dists) for i in range(n)) return pmf def EvalNormalPdf(x, mu, sigma): """Computes the unnormalized PDF of the normal distribution. x: value mu: mean sigma: standard deviation returns: float probability density """ return stats.norm.pdf(x, mu, sigma) def MakeNormalPmf(mu, sigma, num_sigmas, n=201): """Makes a PMF discrete approx to a Normal distribution. mu: float mean sigma: float standard deviation num_sigmas: how many sigmas to extend in each direction n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() low = mu - num_sigmas * sigma high = mu + num_sigmas * sigma for x in np.linspace(low, high, n): p = EvalNormalPdf(x, mu, sigma) pmf.Set(x, p) pmf.Normalize() return pmf def EvalBinomialPmf(k, n, p): """Evaluates the binomial PMF. Returns the probabily of k successes in n trials with probability p. """ return stats.binom.pmf(k, n, p) def EvalHypergeomPmf(k, N, K, n): """Evaluates the hypergeometric PMF. Returns the probabily of k successes in n trials from a population N with K successes in it. """ return stats.hypergeom.pmf(k, N, K, n) def EvalPoissonPmf(k, lam): """Computes the Poisson PMF. k: number of events lam: parameter lambda in events per unit time returns: float probability """ # don't use the scipy function (yet). for lam=0 it returns NaN; # should be 0.0 # return stats.poisson.pmf(k, lam) return lam ** k * math.exp(-lam) / special.gamma(k+1) def MakePoissonPmf(lam, high, step=1): """Makes a PMF discrete approx to a Poisson distribution. lam: parameter lambda in events per unit time high: upper bound of the Pmf returns: normalized Pmf """ pmf = Pmf() for k in range(0, high + 1, step): p = EvalPoissonPmf(k, lam) pmf.Set(k, p) pmf.Normalize() return pmf def EvalExponentialPdf(x, lam): """Computes the exponential PDF. x: value lam: parameter lambda in events per unit time returns: float probability density """ return lam * math.exp(-lam * x) def EvalExponentialCdf(x, lam): """Evaluates CDF of the exponential distribution with parameter lam.""" return 1 - math.exp(-lam * x) def MakeExponentialPmf(lam, high, n=200): """Makes a PMF discrete approx to an exponential distribution. lam: parameter lambda in events per unit time high: upper bound n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() for x in np.linspace(0, high, n): p = EvalExponentialPdf(x, lam) pmf.Set(x, p) pmf.Normalize() return pmf def StandardNormalCdf(x): """Evaluates the CDF of the standard Normal distribution. See http://en.wikipedia.org/wiki/Normal_distribution #Cumulative_distribution_function Args: x: float Returns: float """ return (math.erf(x / ROOT2) + 1) / 2 def EvalNormalCdf(x, mu=0, sigma=1): """Evaluates the CDF of the normal distribution. Args: x: float mu: mean parameter sigma: standard deviation parameter Returns: float """ return stats.norm.cdf(x, loc=mu, scale=sigma) def EvalNormalCdfInverse(p, mu=0, sigma=1): """Evaluates the inverse CDF of the normal distribution. See http://en.wikipedia.org/wiki/Normal_distribution#Quantile_function Args: p: float mu: mean parameter sigma: standard deviation parameter Returns: float """ return stats.norm.ppf(p, loc=mu, scale=sigma) def EvalLognormalCdf(x, mu=0, sigma=1): """Evaluates the CDF of the lognormal distribution. x: float or sequence mu: mean parameter sigma: standard deviation parameter Returns: float or sequence """ return stats.lognorm.cdf(x, loc=mu, scale=sigma) def RenderExpoCdf(lam, low, high, n=101): """Generates sequences of xs and ps for an exponential CDF. lam: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ xs = np.linspace(low, high, n) ps = 1 - np.exp(-lam * xs) #ps = stats.expon.cdf(xs, scale=1.0/lam) return xs, ps def RenderNormalCdf(mu, sigma, low, high, n=101): """Generates sequences of xs and ps for a Normal CDF. mu: parameter sigma: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ xs = np.linspace(low, high, n) ps = stats.norm.cdf(xs, mu, sigma) return xs, ps def RenderParetoCdf(xmin, alpha, low, high, n=50): """Generates sequences of xs and ps for a Pareto CDF. xmin: parameter alpha: parameter low: float high: float n: number of points to render returns: numpy arrays (xs, ps) """ if low < xmin: low = xmin xs = np.linspace(low, high, n) ps = 1 - (xs / xmin) ** -alpha #ps = stats.pareto.cdf(xs, scale=xmin, b=alpha) return xs, ps class Beta(object): """Represents a Beta distribution. See http://en.wikipedia.org/wiki/Beta_distribution """ def __init__(self, alpha=1, beta=1, label=None): """Initializes a Beta distribution.""" self.alpha = alpha self.beta = beta self.label = label if label is not None else '_nolegend_' def Update(self, data): """Updates a Beta distribution. data: pair of int (heads, tails) """ heads, tails = data self.alpha += heads self.beta += tails def Mean(self): """Computes the mean of this distribution.""" return self.alpha / (self.alpha + self.beta) def Random(self): """Generates a random variate from this distribution.""" return random.betavariate(self.alpha, self.beta) def Sample(self, n): """Generates a random sample from this distribution. n: int sample size """ size = n, return np.random.beta(self.alpha, self.beta, size) def EvalPdf(self, x): """Evaluates the PDF at x.""" return x ** (self.alpha - 1) * (1 - x) ** (self.beta - 1) def MakePmf(self, steps=101, label=None): """Returns a Pmf of this distribution. Note: Normally, we just evaluate the PDF at a sequence of points and treat the probability density as a probability mass. But if alpha or beta is less than one, we have to be more careful because the PDF goes to infinity at x=0 and x=1. In that case we evaluate the CDF and compute differences. """ if self.alpha < 1 or self.beta < 1: cdf = self.MakeCdf() pmf = cdf.MakePmf() return pmf xs = [i / (steps - 1.0) for i in range(steps)] probs = [self.EvalPdf(x) for x in xs] pmf = Pmf(dict(zip(xs, probs)), label=label) return pmf def MakeCdf(self, steps=101): """Returns the CDF of this distribution.""" xs = [i / (steps - 1.0) for i in range(steps)] ps = [special.betainc(self.alpha, self.beta, x) for x in xs] cdf = Cdf(xs, ps) return cdf class Dirichlet(object): """Represents a Dirichlet distribution. See http://en.wikipedia.org/wiki/Dirichlet_distribution """ def __init__(self, n, conc=1, label=None): """Initializes a Dirichlet distribution. n: number of dimensions conc: concentration parameter (smaller yields more concentration) label: string label """ if n < 2: raise ValueError('A Dirichlet distribution with ' 'n<2 makes no sense') self.n = n self.params = np.ones(n, dtype=np.float) * conc self.label = label if label is not None else '_nolegend_' def Update(self, data): """Updates a Dirichlet distribution. data: sequence of observations, in order corresponding to params """ m = len(data) self.params[:m] += data def Random(self): """Generates a random variate from this distribution. Returns: normalized vector of fractions """ p = np.random.gamma(self.params) return p / p.sum() def Likelihood(self, data): """Computes the likelihood of the data. Selects a random vector of probabilities from this distribution. Returns: float probability """ m = len(data) if self.n < m: return 0 x = data p = self.Random() q = p[:m] ** x return q.prod() def LogLikelihood(self, data): """Computes the log likelihood of the data. Selects a random vector of probabilities from this distribution. Returns: float log probability """ m = len(data) if self.n < m: return float('-inf') x = self.Random() y = np.log(x[:m]) * data return y.sum() def MarginalBeta(self, i): """Computes the marginal distribution of the ith element. See http://en.wikipedia.org/wiki/Dirichlet_distribution #Marginal_distributions i: int Returns: Beta object """ alpha0 = self.params.sum() alpha = self.params[i] return Beta(alpha, alpha0 - alpha) def PredictivePmf(self, xs, label=None): """Makes a predictive distribution. xs: values to go into the Pmf Returns: Pmf that maps from x to the mean prevalence of x """ alpha0 = self.params.sum() ps = self.params / alpha0 return Pmf(zip(xs, ps), label=label) def BinomialCoef(n, k): """Compute the binomial coefficient "n choose k". n: number of trials k: number of successes Returns: float """ return scipy.misc.comb(n, k) def LogBinomialCoef(n, k): """Computes the log of the binomial coefficient. http://math.stackexchange.com/questions/64716/ approximating-the-logarithm-of-the-binomial-coefficient n: number of trials k: number of successes Returns: float """ return n * math.log(n) - k * math.log(k) - (n - k) * math.log(n - k) def NormalProbability(ys, jitter=0.0): """Generates data for a normal probability plot. ys: sequence of values jitter: float magnitude of jitter added to the ys returns: numpy arrays xs, ys """ n = len(ys) xs = np.random.normal(0, 1, n) xs.sort() if jitter: ys = Jitter(ys, jitter) else: ys = np.array(ys) ys.sort() return xs, ys def Jitter(values, jitter=0.5): """Jitters the values by adding a uniform variate in (-jitter, jitter). values: sequence jitter: scalar magnitude of jitter returns: new numpy array """ n = len(values) return np.random.uniform(-jitter, +jitter, n) + values def NormalProbabilityPlot(sample, fit_color='0.8', **options): """Makes a normal probability plot with a fitted line. sample: sequence of numbers fit_color: color string for the fitted line options: passed along to Plot """ xs, ys = NormalProbability(sample) mean, var = MeanVar(sample) std = math.sqrt(var) fit = FitLine(xs, mean, std) thinkplot.Plot(*fit, color=fit_color, label='model') xs, ys = NormalProbability(sample) thinkplot.Plot(xs, ys, **options) def Mean(xs): """Computes mean. xs: sequence of values returns: float mean """ return np.mean(xs) def Var(xs, mu=None, ddof=0): """Computes variance. xs: sequence of values mu: option known mean ddof: delta degrees of freedom returns: float """ xs = np.asarray(xs) if mu is None: mu = xs.mean() ds = xs - mu return np.dot(ds, ds) / (len(xs) - ddof) def Std(xs, mu=None, ddof=0): """Computes standard deviation. xs: sequence of values mu: option known mean ddof: delta degrees of freedom returns: float """ var = Var(xs, mu, ddof) return math.sqrt(var) def MeanVar(xs, ddof=0): """Computes mean and variance. Based on http://stackoverflow.com/questions/19391149/ numpy-mean-and-variance-from-single-function xs: sequence of values ddof: delta degrees of freedom returns: pair of float, mean and var """ xs = np.asarray(xs) mean = xs.mean() s2 = Var(xs, mean, ddof) return mean, s2 def Trim(t, p=0.01): """Trims the largest and smallest elements of t. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: sequence of values """ n = int(p * len(t)) t = sorted(t)[n:-n] return t def TrimmedMean(t, p=0.01): """Computes the trimmed mean of a sequence of numbers. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: float """ t = Trim(t, p) return Mean(t) def TrimmedMeanVar(t, p=0.01): """Computes the trimmed mean and variance of a sequence of numbers. Side effect: sorts the list. Args: t: sequence of numbers p: fraction of values to trim off each end Returns: float """ t = Trim(t, p) mu, var = MeanVar(t) return mu, var def CohenEffectSize(group1, group2): """Compute Cohen's d. group1: Series or NumPy array group2: Series or NumPy array returns: float """ diff = group1.mean() - group2.mean() n1, n2 = len(group1), len(group2) var1 = group1.var() var2 = group2.var() pooled_var = (n1 * var1 + n2 * var2) / (n1 + n2) d = diff / math.sqrt(pooled_var) return d def Cov(xs, ys, meanx=None, meany=None): """Computes Cov(X, Y). Args: xs: sequence of values ys: sequence of values meanx: optional float mean of xs meany: optional float mean of ys Returns: Cov(X, Y) """ xs = np.asarray(xs) ys = np.asarray(ys) if meanx is None: meanx = np.mean(xs) if meany is None: meany = np.mean(ys) cov = np.dot(xs-meanx, ys-meany) / len(xs) return cov def Corr(xs, ys): """Computes Corr(X, Y). Args: xs: sequence of values ys: sequence of values Returns: Corr(X, Y) """ xs = np.asarray(xs) ys = np.asarray(ys) meanx, varx = MeanVar(xs) meany, vary = MeanVar(ys) corr = Cov(xs, ys, meanx, meany) / math.sqrt(varx * vary) return corr def SerialCorr(series, lag=1): """Computes the serial correlation of a series. series: Series lag: integer number of intervals to shift returns: float correlation """ xs = series[lag:] ys = series.shift(lag)[lag:] corr = Corr(xs, ys) return corr def SpearmanCorr(xs, ys): """Computes Spearman's rank correlation. Args: xs: sequence of values ys: sequence of values Returns: float Spearman's correlation """ xranks = pandas.Series(xs).rank() yranks = pandas.Series(ys).rank() return Corr(xranks, yranks) def MapToRanks(t): """Returns a list of ranks corresponding to the elements in t. Args: t: sequence of numbers Returns: list of integer ranks, starting at 1 """ # pair up each value with its index pairs = enumerate(t) # sort by value sorted_pairs = sorted(pairs, key=itemgetter(1)) # pair up each pair with its rank ranked = enumerate(sorted_pairs) # sort by index resorted = sorted(ranked, key=lambda trip: trip[1][0]) # extract the ranks ranks = [trip[0]+1 for trip in resorted] return ranks def LeastSquares(xs, ys): """Computes a linear least squares fit for ys as a function of xs. Args: xs: sequence of values ys: sequence of values Returns: tuple of (intercept, slope) """ meanx, varx = MeanVar(xs) meany = Mean(ys) slope = Cov(xs, ys, meanx, meany) / varx inter = meany - slope * meanx return inter, slope def FitLine(xs, inter, slope): """Fits a line to the given data. xs: sequence of x returns: tuple of numpy arrays (sorted xs, fit ys) """ fit_xs = np.sort(xs) fit_ys = inter + slope * fit_xs return fit_xs, fit_ys def Residuals(xs, ys, inter, slope): """Computes residuals for a linear fit with parameters inter and slope. Args: xs: independent variable ys: dependent variable inter: float intercept slope: float slope Returns: list of residuals """ xs = np.asarray(xs) ys = np.asarray(ys) res = ys - (inter + slope * xs) return res def CoefDetermination(ys, res): """Computes the coefficient of determination (R^2) for given residuals. Args: ys: dependent variable res: residuals Returns: float coefficient of determination """ return 1 - Var(res) / Var(ys) def CorrelatedGenerator(rho): """Generates standard normal variates with serial correlation. rho: target coefficient of correlation Returns: iterable """ x = random.gauss(0, 1) yield x sigma = math.sqrt(1 - rho**2) while True: x = random.gauss(x * rho, sigma) yield x def CorrelatedNormalGenerator(mu, sigma, rho): """Generates normal variates with serial correlation. mu: mean of variate sigma: standard deviation of variate rho: target coefficient of correlation Returns: iterable """ for x in CorrelatedGenerator(rho): yield x * sigma + mu def RawMoment(xs, k): """Computes the kth raw moment of xs. """ return sum(x**k for x in xs) / len(xs) def CentralMoment(xs, k): """Computes the kth central moment of xs. """ mean = RawMoment(xs, 1) return sum((x - mean)**k for x in xs) / len(xs) def StandardizedMoment(xs, k): """Computes the kth standardized moment of xs. """ var = CentralMoment(xs, 2) std = math.sqrt(var) return CentralMoment(xs, k) / std**k def Skewness(xs): """Computes skewness. """ return StandardizedMoment(xs, 3) def Median(xs): """Computes the median (50th percentile) of a sequence. xs: sequence or anything else that can initialize a Cdf returns: float """ cdf = Cdf(xs) return cdf.Value(0.5) def IQR(xs): """Computes the interquartile of a sequence. xs: sequence or anything else that can initialize a Cdf returns: pair of floats """ cdf = Cdf(xs) return cdf.Value(0.25), cdf.Value(0.75) def PearsonMedianSkewness(xs): """Computes the Pearson median skewness. """ median = Median(xs) mean = RawMoment(xs, 1) var = CentralMoment(xs, 2) std = math.sqrt(var) gp = 3 * (mean - median) / std return gp class FixedWidthVariables(object): """Represents a set of variables in a fixed width file.""" def __init__(self, variables, index_base=0): """Initializes. variables: DataFrame index_base: are the indices 0 or 1 based? Attributes: colspecs: list of (start, end) index tuples names: list of string variable names """ self.variables = variables # note: by default, subtract 1 from colspecs self.colspecs = variables[['start', 'end']] - index_base # convert colspecs to a list of pair of int self.colspecs = self.colspecs.astype(np.int).values.tolist() self.names = variables['name'] def ReadFixedWidth(self, filename, **options): """Reads a fixed width ASCII file. filename: string filename returns: DataFrame """ df = pandas.read_fwf(filename, colspecs=self.colspecs, names=self.names, **options) return df def ReadStataDct(dct_file, **options): """Reads a Stata dictionary file. dct_file: string filename options: dict of options passed to open() returns: FixedWidthVariables object """ type_map = dict(byte=int, int=int, long=int, float=float, double=float) var_info = [] for line in open(dct_file, **options): match = re.search( r'_column\(([^)]*)\)', line) if match: start = int(match.group(1)) t = line.split() vtype, name, fstring = t[1:4] name = name.lower() if vtype.startswith('str'): vtype = str else: vtype = type_map[vtype] long_desc = ' '.join(t[4:]).strip('"') var_info.append((start, vtype, name, fstring, long_desc)) columns = ['start', 'type', 'name', 'fstring', 'desc'] variables = pandas.DataFrame(var_info, columns=columns) # fill in the end column by shifting the start column variables['end'] = variables.start.shift(-1) variables.loc[len(variables)-1, 'end'] = 0 dct = FixedWidthVariables(variables, index_base=1) return dct def Resample(xs, n=None): """Draw a sample from xs with the same length as xs. xs: sequence n: sample size (default: len(xs)) returns: NumPy array """ if n is None: n = len(xs) return np.random.choice(xs, n, replace=True) def SampleRows(df, nrows, replace=False): """Choose a sample of rows from a DataFrame. df: DataFrame nrows: number of rows replace: whether to sample with replacement returns: DataDf """ indices = np.random.choice(df.index, nrows, replace=replace) sample = df.loc[indices] return sample def ResampleRows(df): """Resamples rows from a DataFrame. df: DataFrame returns: DataFrame """ return SampleRows(df, len(df), replace=True) def ResampleRowsWeighted(df, column='finalwgt'): """Resamples a DataFrame using probabilities proportional to given column. df: DataFrame column: string column name to use as weights returns: DataFrame """ weights = df[column] cdf = Cdf(dict(weights)) indices = cdf.Sample(len(weights)) sample = df.loc[indices] return sample def PercentileRow(array, p): """Selects the row from a sorted array that maps to percentile p. p: float 0--100 returns: NumPy array (one row) """ rows, cols = array.shape index = int(rows * p / 100) return array[index,] def PercentileRows(ys_seq, percents): """Given a collection of lines, selects percentiles along vertical axis. For example, if ys_seq contains simulation results like ys as a function of time, and percents contains (5, 95), the result would be a 90% CI for each vertical slice of the simulation results. ys_seq: sequence of lines (y values) percents: list of percentiles (0-100) to select returns: list of NumPy arrays, one for each percentile """ nrows = len(ys_seq) ncols = len(ys_seq[0]) array = np.zeros((nrows, ncols)) for i, ys in enumerate(ys_seq): array[i,] = ys array = np.sort(array, axis=0) rows = [PercentileRow(array, p) for p in percents] return rows def Smooth(xs, sigma=2, **options): """Smooths a NumPy array with a Gaussian filter. xs: sequence sigma: standard deviation of the filter """ return ndimage.filters.gaussian_filter1d(xs, sigma, **options) class HypothesisTest(object): """Represents a hypothesis test.""" def __init__(self, data): """Initializes. data: data in whatever form is relevant """ self.data = data self.MakeModel() self.actual = self.TestStatistic(data) self.test_stats = None self.test_cdf = None def PValue(self, iters=1000): """Computes the distribution of the test statistic and p-value. iters: number of iterations returns: float p-value """ self.test_stats = [self.TestStatistic(self.RunModel()) for _ in range(iters)] self.test_cdf = Cdf(self.test_stats) count = sum(1 for x in self.test_stats if x >= self.actual) return count / iters def MaxTestStat(self): """Returns the largest test statistic seen during simulations. """ return max(self.test_stats) def PlotCdf(self, label=None): """Draws a Cdf with vertical lines at the observed test stat. """ def VertLine(x): """Draws a vertical line at x.""" thinkplot.Plot([x, x], [0, 1], color='0.8') VertLine(self.actual) thinkplot.Cdf(self.test_cdf, label=label) def TestStatistic(self, data): """Computes the test statistic. data: data in whatever form is relevant """ raise UnimplementedMethodException() def MakeModel(self): """Build a model of the null hypothesis. """ pass def RunModel(self): """Run the model of the null hypothesis. returns: simulated data """ raise UnimplementedMethodException() def main(): pass if __name__ == '__main__': main()
gpl-3.0
yuruofeifei/mxnet
example/ssd/dataset/pycocotools/coco.py
29
19564
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. __author__ = 'tylin' __version__ = '2.0' # Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection, # segmentation, and caption generation. pycocotools is a Python API that # assists in loading, parsing and visualizing the annotations in COCO. # Please visit http://mscoco.org/ for more information on COCO, including # for the data, paper, and tutorials. The exact format of the annotations # is also described on the COCO website. For example usage of the pycocotools # please see pycocotools_demo.ipynb. In addition to this API, please download both # the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly # into Python dictionary # Using the API provides additional utility functions. Note that this API # supports both *instance* and *caption* annotations. In the case of # captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined: # COCO - COCO api class that loads COCO annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # annToMask - Convert segmentation in an annotation to binary mask. # showAnns - Display the specified annotations. # loadRes - Load algorithm results and create API for accessing them. # download - Download COCO images from mscoco.org server. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. # Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask, # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, # COCO>loadImgs, COCO>annToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np import copy import itertools # from . import mask as maskUtils import os from collections import defaultdict import sys PYTHON_VERSION = sys.version_info[0] if PYTHON_VERSION == 2: from urllib import urlretrieve elif PYTHON_VERSION == 3: from urllib.request import urlretrieve class COCO: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex() def createIndex(self): # create index print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print('{}: {}'.format(key, value)) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if type(catNms) == list else [catNms] supNms = supNms if type(supNms) == list else [supNms] catIds = catIds if type(catIds) == list else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if type(ids) == list: return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if type(ids) == list: return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if type(ids) == list: return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]] def showAnns(self, anns): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception('datasetType not supported') if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((int(len(seg)/2), 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann['image_id']] if type(ann['segmentation']['counts']) == list: # rle = maskUtils.frPyObjects([ann['segmentation']], t['height'], t['width']) raise NotImplementedError("maskUtils disabled!") else: rle = [ann['segmentation']] # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") img = np.ones( (m.shape[0], m.shape[1], 3) ) if ann['iscrowd'] == 1: color_mask = np.array([2.0,166.0,101.0])/255 if ann['iscrowd'] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack( (img, m*0.5) )) if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor='none', edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print(ann['caption']) def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print('Loading and preparing results...') tic = time.time() if type(resFile) == str or type(resFile) == unicode: anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results # ann['area'] = maskUtils.area(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") if not 'bbox' in ann: # ann['bbox'] = maskUtils.toBbox(ann['segmentation']) raise NotImplementedError("maskUtils disabled!") ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print('DONE (t={:0.2f}s)'.format(time.time()- tic)) res.dataset['annotations'] = anns res.createIndex() return res def download(self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print('Please specify target directory') return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urlretrieve(img['coco_url'], fname) print('downloaded {}/{} images (t={:0.1f}s)'.format(i, N, time.time()- tic)) def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print('Converting ndarray to lists...') assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print('{}/{}'.format(i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann def annToRLE(self, ann): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ t = self.imgs[ann['image_id']] h, w = t['height'], t['width'] segm = ann['segmentation'] if type(segm) == list: # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code # rles = maskUtils.frPyObjects(segm, h, w) # rle = maskUtils.merge(rles) raise NotImplementedError("maskUtils disabled!") elif type(segm['counts']) == list: # uncompressed RLE # rle = maskUtils.frPyObjects(segm, h, w) raise NotImplementedError("maskUtils disabled!") else: # rle rle = ann['segmentation'] return rle def annToMask(self, ann): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ rle = self.annToRLE(ann) # m = maskUtils.decode(rle) raise NotImplementedError("maskUtils disabled!") return m
apache-2.0
jstoxrocky/statsmodels
statsmodels/tools/data.py
23
3369
""" Compatibility tools for various data structure inputs """ from statsmodels.compat.python import range import numpy as np import pandas as pd def _check_period_index(x, freq="M"): from pandas import PeriodIndex, DatetimeIndex if not isinstance(x.index, (DatetimeIndex, PeriodIndex)): raise ValueError("The index must be a DatetimeIndex or PeriodIndex") from statsmodels.tsa.base.datetools import _infer_freq inferred_freq = _infer_freq(x.index) if not inferred_freq.startswith(freq): raise ValueError("Expected frequency {}. Got {}".format(inferred_freq, freq)) def is_data_frame(obj): return isinstance(obj, pd.DataFrame) def is_design_matrix(obj): from patsy import DesignMatrix return isinstance(obj, DesignMatrix) def _is_structured_ndarray(obj): return isinstance(obj, np.ndarray) and obj.dtype.names is not None def interpret_data(data, colnames=None, rownames=None): """ Convert passed data structure to form required by estimation classes Parameters ---------- data : ndarray-like colnames : sequence or None May be part of data structure rownames : sequence or None Returns ------- (values, colnames, rownames) : (homogeneous ndarray, list) """ if isinstance(data, np.ndarray): if _is_structured_ndarray(data): if colnames is None: colnames = data.dtype.names values = struct_to_ndarray(data) else: values = data if colnames is None: colnames = ['Y_%d' % i for i in range(values.shape[1])] elif is_data_frame(data): # XXX: hack data = data.dropna() values = data.values colnames = data.columns rownames = data.index else: # pragma: no cover raise Exception('cannot handle other input types at the moment') if not isinstance(colnames, list): colnames = list(colnames) # sanity check if len(colnames) != values.shape[1]: raise ValueError('length of colnames does not match number ' 'of columns in data') if rownames is not None and len(rownames) != len(values): raise ValueError('length of rownames does not match number ' 'of rows in data') return values, colnames, rownames def struct_to_ndarray(arr): return arr.view((float, len(arr.dtype.names))) def _is_using_ndarray_type(endog, exog): return (type(endog) is np.ndarray and (type(exog) is np.ndarray or exog is None)) def _is_using_ndarray(endog, exog): return (isinstance(endog, np.ndarray) and (isinstance(exog, np.ndarray) or exog is None)) def _is_using_pandas(endog, exog): klasses = (pd.Series, pd.DataFrame, pd.WidePanel) return (isinstance(endog, klasses) or isinstance(exog, klasses)) def _is_array_like(endog, exog): try: # do it like this in case of mixed types, ie., ndarray and list endog = np.asarray(endog) exog = np.asarray(exog) return True except: return False def _is_using_patsy(endog, exog): # we get this when a structured array is passed through a formula return (is_design_matrix(endog) and (is_design_matrix(exog) or exog is None))
bsd-3-clause
dvro/UnbalancedDataset
imblearn/ensemble/tests/test_balance_cascade.py
2
29514
"""Test the module balance cascade.""" from __future__ import print_function import os import numpy as np from numpy.testing import assert_raises from numpy.testing import assert_equal from numpy.testing import assert_array_equal from numpy.testing import assert_warns from sklearn.datasets import make_classification from sklearn.utils.estimator_checks import check_estimator from imblearn.ensemble import BalanceCascade # Generate a global dataset to use RND_SEED = 0 X = np.array([[0.11622591, -0.0317206], [0.77481731, 0.60935141], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [-0.28162401, -2.10400981], [0.83680821, 1.72827342], [0.3084254, 0.33299982], [0.70472253, -0.73309052], [0.28893132, -0.38761769], [1.15514042, 0.0129463], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-1.11515198, -0.93689695], [-0.18410027, -0.45194484], [0.9281014, 0.53085498], [-0.14374509, 0.27370049], [-0.41635887, -0.38299653], [0.08711622, 0.93259929], [1.70580611, -0.11219234]]) Y = np.array([0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0]) def test_bc_sk_estimator(): """Test the sklearn estimator compatibility""" check_estimator(BalanceCascade) def test_bc_bad_ratio(): """Test either if an error is raised with a wrong decimal value for the ratio""" # Define a negative ratio ratio = -1.0 bc = BalanceCascade(ratio=ratio) assert_raises(ValueError, bc.fit, X, Y) # Define a ratio greater than 1 ratio = 100.0 bc = BalanceCascade(ratio=ratio) assert_raises(ValueError, bc.fit, X, Y) # Define ratio as an unknown string ratio = 'rnd' bc = BalanceCascade(ratio=ratio) assert_raises(ValueError, bc.fit, X, Y) # Define ratio as a list which is not supported ratio = [.5, .5] bc = BalanceCascade(ratio=ratio) assert_raises(ValueError, bc.fit, X, Y) def test_bc_init(): """Test the initialisation of the object""" # Define a ratio ratio = 1. bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) assert_equal(bc.ratio, ratio) assert_equal(bc.bootstrap, True) assert_equal(bc.n_max_subset, None) assert_equal(bc.random_state, RND_SEED) def test_bc_fit_single_class(): """Test either if an error when there is a single class""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) # Resample the data # Create a wrong y y_single_class = np.zeros((X.shape[0], )) assert_warns(RuntimeWarning, bc.fit, X, y_single_class) def test_bc_fit_invalid_ratio(): """Test either if an error is raised when the balancing ratio to fit is smaller than the one of the data""" # Create the object ratio = 1. / 10000. bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) # Fit the data assert_raises(RuntimeError, bc.fit_sample, X, Y) def test_bc_fit(): """Test the fitting method""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) # Fit the data bc.fit(X, Y) # Check if the data information have been computed assert_equal(bc.min_c_, 0) assert_equal(bc.maj_c_, 1) assert_equal(bc.stats_c_[0], 8) assert_equal(bc.stats_c_[1], 12) def test_sample_wt_fit(): """Test either if an error is raised when sample is called before fitting""" # Define the parameter for the under-sampling ratio = 'auto' # Create the object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) assert_raises(RuntimeError, bc.sample, X, Y) def test_fit_sample_auto(): """Test the fit and sample routine with auto ratio.""" # Define the ratio parameter ratio = 'auto' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) currdir = os.path.dirname(os.path.abspath(__file__)) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.70472253, -0.73309052], [-0.18410027, -0.45194484], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 4, 8, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_fit_sample_half(): """Test the fit and sample routine with 0.5 ratio.""" # Define the ratio parameter ratio = 0.8 # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED) # Get the different subset X_resampled, y_resampled = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695], [0.9281014, 0.53085498], [0.3084254, 0.33299982]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.70472253, -0.73309052], [-0.18410027, -0.45194484], [0.77481731, 0.60935141], [0.28893132, -0.38761769]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) def test_fit_sample_auto_decision_tree(): """Test the fit and sample routine with auto ratio with a decision tree.""" # Define the ratio parameter ratio = 'auto' classifier = 'decision-tree' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, classifier=classifier) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [-1.11515198, -0.93689695], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 7, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_fit_sample_auto_random_forest(): """Test the fit and sample routine with auto ratio with a random forest.""" # Define the ratio parameter ratio = 'auto' classifier = 'random-forest' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, classifier=classifier) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [-0.14374509, 0.27370049], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 10, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_fit_sample_auto_adaboost(): """Test the fit and sample routine with auto ratio with a adaboost.""" # Define the ratio parameter ratio = 'auto' classifier = 'adaboost' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, classifier=classifier) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [-0.14374509, 0.27370049], [-1.11515198, -0.93689695], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 10, 7, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_fit_sample_auto_gradient_boosting(): """Test the fit and sample routine with auto ratio with a gradient boosting.""" # Define the ratio parameter ratio = 'auto' classifier = 'gradient-boosting' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, classifier=classifier) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [-0.14374509, 0.27370049], [-1.11515198, -0.93689695], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 10, 7, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_fit_sample_auto_linear_svm(): """Test the fit and sample routine with auto ratio with a linear svm.""" # Define the ratio parameter ratio = 'auto' classifier = 'linear-svm' # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, classifier=classifier) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.70472253, -0.73309052], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 4, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_init_wrong_classifier(): """Test either if an error is raised the classifier provided is unknown.""" # Define the ratio parameter classifier = 'rnd' bc = BalanceCascade(classifier=classifier) assert_raises(NotImplementedError, bc.fit_sample, X, Y) def test_fit_sample_auto_early_stop(): """Test the fit and sample routine with auto ratio with 1 subset.""" # Define the ratio parameter ratio = 'auto' n_subset = 1 # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, n_max_subset=n_subset) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([[[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]]) y_gt = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]]) idx_gt = np.array([[0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]]) # Check each array assert_array_equal(X_resampled, X_gt) assert_array_equal(y_resampled, y_gt) assert_array_equal(idx_under, idx_gt) def test_fit_sample_auto_early_stop_2(): """Test the fit and sample routine with auto ratio with a 2 subsets.""" # Define the ratio parameter ratio = 'auto' n_subset = 2 # Create the sampling object bc = BalanceCascade(ratio=ratio, random_state=RND_SEED, return_indices=True, n_max_subset=n_subset) # Get the different subset X_resampled, y_resampled, idx_under = bc.fit_sample(X, Y) X_gt = np.array([np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.08711622, 0.93259929], [0.70472253, -0.73309052], [-0.14374509, 0.27370049], [0.83680821, 1.72827342], [-0.18410027, -0.45194484], [-0.28162401, -2.10400981], [-1.11515198, -0.93689695]]), np.array([[0.11622591, -0.0317206], [1.25192108, -0.22367336], [0.53366841, -0.30312976], [1.52091956, -0.49283504], [0.88407872, 0.35454207], [1.31301027, -0.92648734], [-0.41635887, -0.38299653], [1.70580611, -0.11219234], [1.15514042, 0.0129463], [0.70472253, -0.73309052], [-0.18410027, -0.45194484], [0.77481731, 0.60935141], [0.3084254, 0.33299982], [0.28893132, -0.38761769], [0.9281014, 0.53085498]])], dtype=object) y_gt = np.array([np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1])], dtype=object) idx_gt = np.array([np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 11, 4, 10, 2, 8, 1, 7]), np.array([0, 2, 3, 4, 11, 12, 17, 19, 6, 4, 8, 0, 3, 5, 9])], dtype=object) # Check each array for idx in range(X_gt.size): assert_array_equal(X_resampled[idx], X_gt[idx]) assert_array_equal(y_resampled[idx], y_gt[idx]) assert_array_equal(idx_under[idx], idx_gt[idx]) def test_sample_wrong_X(): """Test either if an error is raised when X is different at fitting and sampling""" # Create the object bc = BalanceCascade(random_state=RND_SEED) bc.fit(X, Y) assert_raises(RuntimeError, bc.sample, np.random.random((100, 40)), np.array([0] * 50 + [1] * 50)) def test_multiclass_error(): """ Test either if an error is raised when the target are not binary type. """ # continuous case y = np.linspace(0, 1, 20) bc = BalanceCascade(random_state=RND_SEED) assert_warns(UserWarning, bc.fit, X, y) # multiclass case y = np.array([0] * 3 + [1] * 2 + [2] * 15) bc = BalanceCascade(random_state=RND_SEED) assert_warns(UserWarning, bc.fit, X, y)
mit
hmendozap/auto-sklearn
autosklearn/pipeline/components/classification/adaboost.py
1
3362
from autosklearn.pipeline.implementations.MultilabelClassifier import \ MultilabelClassifier from HPOlibConfigSpace.configuration_space import ConfigurationSpace from HPOlibConfigSpace.hyperparameters import UniformFloatHyperparameter, \ UniformIntegerHyperparameter, CategoricalHyperparameter from autosklearn.pipeline.components.base import AutoSklearnClassificationAlgorithm from autosklearn.pipeline.constants import * class AdaboostClassifier(AutoSklearnClassificationAlgorithm): def __init__(self, n_estimators, learning_rate, algorithm, max_depth, random_state=None): self.n_estimators = int(n_estimators) self.learning_rate = float(learning_rate) self.algorithm = algorithm self.random_state = random_state self.max_depth = max_depth self.estimator = None def fit(self, X, Y, sample_weight=None): import sklearn.ensemble import sklearn.tree self.n_estimators = int(self.n_estimators) self.learning_rate = float(self.learning_rate) self.max_depth = int(self.max_depth) base_estimator = sklearn.tree.DecisionTreeClassifier(max_depth=self.max_depth) estimator = sklearn.ensemble.AdaBoostClassifier( base_estimator=base_estimator, n_estimators=self.n_estimators, learning_rate=self.learning_rate, algorithm=self.algorithm, random_state=self.random_state ) if len(Y.shape) == 2 and Y.shape[1] > 1: estimator = MultilabelClassifier(estimator, n_jobs=1) estimator.fit(X, Y, sample_weight=sample_weight) else: estimator.fit(X, Y, sample_weight=sample_weight) self.estimator = estimator return self def predict(self, X): if self.estimator is None: raise NotImplementedError return self.estimator.predict(X) def predict_proba(self, X): if self.estimator is None: raise NotImplementedError() return self.estimator.predict_proba(X) @staticmethod def get_properties(dataset_properties=None): return {'shortname': 'AB', 'name': 'AdaBoost Classifier', 'handles_regression': False, 'handles_classification': True, 'handles_multiclass': True, 'handles_multilabel': True, 'is_deterministic': True, 'input': (DENSE, SPARSE, UNSIGNED_DATA), 'output': (PREDICTIONS,)} @staticmethod def get_hyperparameter_search_space(dataset_properties=None): cs = ConfigurationSpace() # base_estimator = Constant(name="base_estimator", value="None") n_estimators = cs.add_hyperparameter(UniformIntegerHyperparameter( name="n_estimators", lower=50, upper=500, default=50, log=False)) learning_rate = cs.add_hyperparameter(UniformFloatHyperparameter( name="learning_rate", lower=0.0001, upper=2, default=0.1, log=True)) algorithm = cs.add_hyperparameter(CategoricalHyperparameter( name="algorithm", choices=["SAMME.R", "SAMME"], default="SAMME.R")) max_depth = cs.add_hyperparameter(UniformIntegerHyperparameter( name="max_depth", lower=1, upper=10, default=1, log=False)) return cs
bsd-3-clause
deepakantony/sms-tools
software/models_interface/sineModel_function.py
21
2749
# function to call the main analysis/synthesis functions in software/models/sineModel.py import numpy as np import matplotlib.pyplot as plt from scipy.signal import get_window import os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import sineModel as SM def main(inputFile='../../sounds/bendir.wav', window='hamming', M=2001, N=2048, t=-80, minSineDur=0.02, maxnSines=150, freqDevOffset=10, freqDevSlope=0.001): """ Perform analysis/synthesis using the sinusoidal model inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size; N: fft size (power of two, bigger or equal than M) t: magnitude threshold of spectral peaks; minSineDur: minimum duration of sinusoidal tracks maxnSines: maximum number of parallel sinusoids freqDevOffset: frequency deviation allowed in the sinusoids from frame to frame at frequency 0 freqDevSlope: slope of the frequency deviation, higher frequencies have bigger deviation """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # read input sound fs, x = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # analyze the sound with the sinusoidal model tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) # synthesize the output sound from the sinusoidal representation y = SM.sineModelSynth(tfreq, tmag, tphase, Ns, H, fs) # output sound file name outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_sineModel.wav' # write the synthesized sound obtained from the sinusoidal synthesis UF.wavwrite(y, fs, outputFile) # create figure to show plots plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot the sinusoidal frequencies plt.subplot(3,1,2) if (tfreq.shape[1] > 0): numFrames = tfreq.shape[0] frmTime = H*np.arange(numFrames)/float(fs) tfreq[tfreq<=0] = np.nan plt.plot(frmTime, tfreq) plt.axis([0, x.size/float(fs), 0, maxplotfreq]) plt.title('frequencies of sinusoidal tracks') # plot the output sound plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": main()
agpl-3.0
AlexanderFabisch/scikit-learn
examples/text/document_classification_20newsgroups.py
27
10521
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='navy') plt.barh(indices + .3, training_time, .2, label="training time", color='c') plt.barh(indices + .6, test_time, .2, label="test time", color='darkorange') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
rajat1994/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
marcocaccin/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
abgoswam/data-science-from-scratch
code-python3/nearest_neighbors.py
4
7323
from collections import Counter from linear_algebra import distance from statistics import mean import math, random import matplotlib.pyplot as plt def raw_majority_vote(labels): votes = Counter(labels) winner, _ = votes.most_common(1)[0] return winner def majority_vote(labels): """assumes that labels are ordered from nearest to farthest""" vote_counts = Counter(labels) winner, winner_count = vote_counts.most_common(1)[0] num_winners = len([count for count in vote_counts.values() if count == winner_count]) if num_winners == 1: return winner # unique winner, so return it else: return majority_vote(labels[:-1]) # try again without the farthest def knn_classify(k, labeled_points, new_point): """each labeled point should be a pair (point, label)""" # order the labeled points from nearest to farthest by_distance = sorted(labeled_points, key=lambda point_label: distance(point_label[0], new_point)) # find the labels for the k closest k_nearest_labels = [label for _, label in by_distance[:k]] # and let them vote return majority_vote(k_nearest_labels) cities = [(-86.75,33.5666666666667,'Python'),(-88.25,30.6833333333333,'Python'),(-112.016666666667,33.4333333333333,'Java'),(-110.933333333333,32.1166666666667,'Java'),(-92.2333333333333,34.7333333333333,'R'),(-121.95,37.7,'R'),(-118.15,33.8166666666667,'Python'),(-118.233333333333,34.05,'Java'),(-122.316666666667,37.8166666666667,'R'),(-117.6,34.05,'Python'),(-116.533333333333,33.8166666666667,'Python'),(-121.5,38.5166666666667,'R'),(-117.166666666667,32.7333333333333,'R'),(-122.383333333333,37.6166666666667,'R'),(-121.933333333333,37.3666666666667,'R'),(-122.016666666667,36.9833333333333,'Python'),(-104.716666666667,38.8166666666667,'Python'),(-104.866666666667,39.75,'Python'),(-72.65,41.7333333333333,'R'),(-75.6,39.6666666666667,'Python'),(-77.0333333333333,38.85,'Python'),(-80.2666666666667,25.8,'Java'),(-81.3833333333333,28.55,'Java'),(-82.5333333333333,27.9666666666667,'Java'),(-84.4333333333333,33.65,'Python'),(-116.216666666667,43.5666666666667,'Python'),(-87.75,41.7833333333333,'Java'),(-86.2833333333333,39.7333333333333,'Java'),(-93.65,41.5333333333333,'Java'),(-97.4166666666667,37.65,'Java'),(-85.7333333333333,38.1833333333333,'Python'),(-90.25,29.9833333333333,'Java'),(-70.3166666666667,43.65,'R'),(-76.6666666666667,39.1833333333333,'R'),(-71.0333333333333,42.3666666666667,'R'),(-72.5333333333333,42.2,'R'),(-83.0166666666667,42.4166666666667,'Python'),(-84.6,42.7833333333333,'Python'),(-93.2166666666667,44.8833333333333,'Python'),(-90.0833333333333,32.3166666666667,'Java'),(-94.5833333333333,39.1166666666667,'Java'),(-90.3833333333333,38.75,'Python'),(-108.533333333333,45.8,'Python'),(-95.9,41.3,'Python'),(-115.166666666667,36.0833333333333,'Java'),(-71.4333333333333,42.9333333333333,'R'),(-74.1666666666667,40.7,'R'),(-106.616666666667,35.05,'Python'),(-78.7333333333333,42.9333333333333,'R'),(-73.9666666666667,40.7833333333333,'R'),(-80.9333333333333,35.2166666666667,'Python'),(-78.7833333333333,35.8666666666667,'Python'),(-100.75,46.7666666666667,'Java'),(-84.5166666666667,39.15,'Java'),(-81.85,41.4,'Java'),(-82.8833333333333,40,'Java'),(-97.6,35.4,'Python'),(-122.666666666667,45.5333333333333,'Python'),(-75.25,39.8833333333333,'Python'),(-80.2166666666667,40.5,'Python'),(-71.4333333333333,41.7333333333333,'R'),(-81.1166666666667,33.95,'R'),(-96.7333333333333,43.5666666666667,'Python'),(-90,35.05,'R'),(-86.6833333333333,36.1166666666667,'R'),(-97.7,30.3,'Python'),(-96.85,32.85,'Java'),(-95.35,29.9666666666667,'Java'),(-98.4666666666667,29.5333333333333,'Java'),(-111.966666666667,40.7666666666667,'Python'),(-73.15,44.4666666666667,'R'),(-77.3333333333333,37.5,'Python'),(-122.3,47.5333333333333,'Python'),(-89.3333333333333,43.1333333333333,'R'),(-104.816666666667,41.15,'Java')] cities = [([longitude, latitude], language) for longitude, latitude, language in cities] def plot_state_borders(plt, color='0.8'): pass def plot_cities(): # key is language, value is pair (longitudes, latitudes) plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) } # we want each language to have a different marker and color markers = { "Java" : "o", "Python" : "s", "R" : "^" } colors = { "Java" : "r", "Python" : "b", "R" : "g" } for (longitude, latitude), language in cities: plots[language][0].append(longitude) plots[language][1].append(latitude) # create a scatter series for each language for language, (x, y) in plots.items(): plt.scatter(x, y, color=colors[language], marker=markers[language], label=language, zorder=10) plot_state_borders(plt) # assume we have a function that does this plt.legend(loc=0) # let matplotlib choose the location plt.axis([-130,-60,20,55]) # set the axes plt.title("Favorite Programming Languages") plt.show() def classify_and_plot_grid(k=1): plots = { "Java" : ([], []), "Python" : ([], []), "R" : ([], []) } markers = { "Java" : "o", "Python" : "s", "R" : "^" } colors = { "Java" : "r", "Python" : "b", "R" : "g" } for longitude in range(-130, -60): for latitude in range(20, 55): predicted_language = knn_classify(k, cities, [longitude, latitude]) plots[predicted_language][0].append(longitude) plots[predicted_language][1].append(latitude) # create a scatter series for each language for language, (x, y) in plots.items(): plt.scatter(x, y, color=colors[language], marker=markers[language], label=language, zorder=0) plot_state_borders(plt, color='black') # assume we have a function that does this plt.legend(loc=0) # let matplotlib choose the location plt.axis([-130,-60,20,55]) # set the axes plt.title(str(k) + "-Nearest Neighbor Programming Languages") plt.show() # # the curse of dimensionality # def random_point(dim): return [random.random() for _ in range(dim)] def random_distances(dim, num_pairs): return [distance(random_point(dim), random_point(dim)) for _ in range(num_pairs)] if __name__ == "__main__": # try several different values for k for k in [1, 3, 5, 7]: num_correct = 0 for location, actual_language in cities: other_cities = [other_city for other_city in cities if other_city != (location, actual_language)] predicted_language = knn_classify(k, other_cities, location) if predicted_language == actual_language: num_correct += 1 print(k, "neighbor[s]:", num_correct, "correct out of", len(cities)) dimensions = range(1, 101, 5) avg_distances = [] min_distances = [] random.seed(0) for dim in dimensions: distances = random_distances(dim, 10000) # 10,000 random pairs avg_distances.append(mean(distances)) # track the average min_distances.append(min(distances)) # track the minimum print(dim, min(distances), mean(distances), min(distances) / mean(distances))
unlicense
jerkos/cobrapy
setup.py
1
7289
from os.path import isfile, abspath, dirname, join from sys import argv, path # To temporarily modify sys.path SETUP_DIR = abspath(dirname(__file__)) try: from setuptools import setup, find_packages except ImportError: path.insert(0, SETUP_DIR) import ez_setup path.pop(0) ez_setup.use_setuptools() from setuptools import setup, find_packages # for running parallel tests due to a bug in python 2.7.3 # http://bugs.python.org/issue15881#msg170215 try: import multiprocessing except: None # import version to get the version string path.insert(0, join(SETUP_DIR, "cobra")) from version import get_version, update_release_version path.pop(0) version = get_version(pep440=True) # If building something for distribution, ensure the VERSION # file is up to date if "sdist" in argv or "bdist_wheel" in argv: update_release_version() # cython is optional for building. The c file can be used directly. However, # for certain functions, the c file must be generated, which requires cython. try: from Cython.Build import cythonize from distutils.version import StrictVersion import Cython try: cython_version = StrictVersion(Cython.__version__) except ValueError: raise ImportError("Cython version not parseable") else: if cython_version < StrictVersion("0.21"): raise ImportError("Cython version too old to use") except ImportError: cythonize = None for k in ["sdist", "develop"]: if k in argv: raise Exception("Cython >= 0.21 required for " + k) # Begin constructing arguments for building setup_kwargs = {} # for building the cglpk solver try: from distutils.extension import Extension from distutils.command.build_ext import build_ext from os import name from platform import system class FailBuild(build_ext): """allow building of the C extension to fail""" def run(self): try: build_ext.run(self) except Exception as e: warn(e) def build_extension(self, ext): try: build_ext.build_extension(self, ext) except: None build_args = {} setup_kwargs["cmdclass"] = {"build_ext": FailBuild} # MAC OS X needs some additional configuration tweaks # Build should be run with the python.org python # Cython will output C which could generate warnings in clang # due to the addition of additional unneeded functions. Because # this is a known phenomenon, these warnings are silenced to # make other potential warnings which do signal errors stand # out. if system() == "Darwin": build_args["extra_compile_args"] = ["-Wno-unused-function"] build_args["libraries"] = ["glpk"] # It is possible to statically link libglpk to the built extension. This # allows for simplified installation without the need to install libglpk to # the system, and is also usueful when installing a particular version of # glpk which conflicts with thesystem version. A static libglpk.a can be # built by running configure with the export CLFAGS="-fPIC" and copying the # file from src/.libs to either the default lib directory or to the build # directory. For an example script, see # https://gist.github.com/aebrahim/94a2b231d86821f7f225 include_dirs = [] library_dirs = [] if isfile("libglpk.a"): library_dirs.append(abspath(".")) if isfile("glpk.h"): include_dirs.append(abspath(".")) if name == "posix": from subprocess import check_output try: glpksol_path = check_output(["which", "glpsol"]).strip() glpk_path = abspath(join(dirname(glpksol_path), "..")) include_dirs.append(join(glpk_path, "include")) library_dirs.append(join(glpk_path, "lib")) except: None if len(include_dirs) > 0: build_args["include_dirs"] = include_dirs if len(library_dirs) > 0: build_args["library_dirs"] = library_dirs # use cython if present, otherwise use c file if cythonize: ext_modules = cythonize([Extension("cobra.solvers.cglpk", ["cobra/solvers/cglpk.pyx"], **build_args)], force=True) else: ext_modules = [Extension("cobra.solvers.cglpk", ["cobra/solvers/cglpk.c"], **build_args)] except: ext_modules = None extras = { 'matlab': ["pymatbridge"], 'sbml': ["python-libsbml", "lxml"], 'array': ["numpy>=1.6", "scipy>=11.0"], 'display': ["matplotlib", "brewer2mpl", "pandas"] } all_extras = {'Cython>=0.21'} for extra in extras.values(): all_extras.update(extra) extras["all"] = list(all_extras) # If using bdist_wininst, the installer will not get dependencies like # a setuptools installation does. Therefore, for the one external dependency, # which is six.py, we can just download it here and include it in the # installer. # The file six.py will need to be manually downloaded and placed in the # same directory as setup.py. if "bdist_wininst" in argv: setup_kwargs["py_modules"] = ["six"] try: import pypandoc readme = pypandoc.convert("README.md", "rst") install = pypandoc.convert("INSTALL.md", "rst") setup_kwargs["long_description"] = readme + "\n\n" + install except: with open("README.md", "r") as infile: setup_kwargs["long_description"] = infile.read() setup( name="cobra", version=version, packages=find_packages(exclude=['cobra.oven', 'cobra.oven*']), setup_requires=[], install_requires=["six"], tests_require=["jsonschema > 2.5"], extras_require=extras, ext_modules=ext_modules, package_data={ '': ['test/data/*', 'VERSION', 'mlab/matlab_scripts/*m']}, author="Daniel Robert Hyduke <[email protected]>, " "Ali Ebrahim <[email protected]>", author_email="[email protected]", description="COBRApy is a package for constraints-based modeling of " "biological networks", license="LGPL/GPL v2+", keywords="metabolism biology linear programming optimization flux" " balance analysis fba", url="https://opencobra.github.io/cobrapy", test_suite="cobra.test.suite", download_url='https://pypi.python.org/pypi/cobra', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU Lesser General Public License v2' ' or later (LGPLv2+)', 'License :: OSI Approved :: GNU General Public License v2' ' or later (GPLv2+)', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Cython', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Bio-Informatics' ], platforms="GNU/Linux, Mac OS X >= 10.7, Microsoft Windows >= 7", **setup_kwargs)
lgpl-2.1
seagoat/mining
mining/controllers/stream.py
2
4185
# -*- coding: utf-8 -*- from gevent import monkey monkey.patch_all() import json import gc from bottle import Bottle, abort, request from bottle.ext.websocket import websocket from bottle.ext.mongo import MongoPlugin from pandas import DataFrame from mining.utils import conf from mining.utils._pandas import df_generate, DataFrameSearchColumn from mining.db import DataWarehouse stream_app = Bottle() mongo = MongoPlugin( uri=conf("mongodb")["uri"], db=conf("mongodb")["db"], json_mongo=True) stream_app.install(mongo) @stream_app.route('/data/<slug>', apply=[websocket]) def data(ws, mongodb, slug): if not ws: abort(400, 'Expected WebSocket request.') DW = DataWarehouse() element = mongodb['element'].find_one({'slug': slug}) element['page_limit'] = 50 if request.GET.get('limit', True) is False: element['page_limit'] = 9999999999 if element['type'] == 'grid': page = int(request.GET.get('page', 1)) page_start = 0 page_end = element['page_limit'] if page >= 2: page_end = element['page_limit'] * page page_start = page_end - element['page_limit'] else: page = 1 page_start = None page_end = None filters = [i[0] for i in request.GET.iteritems() if len(i[0].split('filter__')) > 1] if not DW.search: data = DW.get(element.get('cube'), page=page) else: data = DW.get(element.get('cube'), filters=filters, page=page) columns = data.get('columns') or [] fields = columns if request.GET.get('fields', None): fields = request.GET.get('fields').split(',') cube_last_update = mongodb['cube'].find_one({'slug': element.get('cube')}) ws.send(json.dumps({'type': 'last_update', 'data': str(cube_last_update.get('lastupdate', ''))})) ws.send(json.dumps({'type': 'columns', 'data': fields})) df = DataFrame(data.get('data') or {}, columns=fields) if len(filters) >= 1: for f in filters: s = f.split('__') field = s[1] operator = s[2] value = request.GET.get(f) if operator == 'like': df = df[df[field].str.contains(value)] elif operator == 'regex': df = DataFrameSearchColumn(df, field, value, operator) else: df = df.query(df_generate(df, value, f)) groupby = [] if request.GET.get('groupby', None): groupby = request.GET.get('groupby', "").split(',') if len(groupby) >= 1: df = DataFrame(df.groupby(groupby).grouper.get_group_levels()) if request.GET.get('orderby', element.get('orderby', None)) and request.GET.get( 'orderby', element.get('orderby', None)) in fields: orderby = request.GET.get('orderby', element.get('orderby', '')) if type(orderby) == str: orderby = orderby.split(',') orderby__order = request.GET.get('orderby__order', element.get('orderby__order', '')) if type(orderby__order) == str: orderby__order = orderby__order.split(',') ind = 0 for orde in orderby__order: if orde == '0': orderby__order[ind] = False else: orderby__order[ind] = True ind += 1 df = df.sort(orderby, ascending=orderby__order) ws.send(json.dumps({'type': 'max_page', 'data': data.get('count', len(df))})) # CLEAN MEMORY del filters, fields, columns gc.collect() categories = [] records = df.to_dict(orient='records') if not DW.search: records = records[page_start:page_end] for i in records: if element.get('categories', None): categories.append(i[element.get('categories')]) ws.send(json.dumps({'type': 'data', 'data': i})) # CLEAN MEMORY del df gc.collect() ws.send(json.dumps({'type': 'categories', 'data': categories})) ws.send(json.dumps({'type': 'close'})) # CLEAN MEMORY del categories gc.collect()
mit
billy-inn/scikit-learn
examples/model_selection/plot_validation_curve.py
229
1823
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.learning_curve import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) plt.semilogx(param_range, train_scores_mean, label="Training score", color="r") plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="g") plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") plt.legend(loc="best") plt.show()
bsd-3-clause
kalvdans/scipy
scipy/special/basic.py
2
71090
# # Author: Travis Oliphant, 2002 # from __future__ import division, print_function, absolute_import import warnings import numpy as np import math from scipy._lib.six import xrange from numpy import (pi, asarray, floor, isscalar, iscomplex, real, imag, sqrt, where, mgrid, sin, place, issubdtype, extract, less, inexact, nan, zeros, sinc) from ._ufuncs import (ellipkm1, mathieu_a, mathieu_b, iv, jv, gamma, psi, _zeta, hankel1, hankel2, yv, kv, _gammaln, ndtri, errprint, poch, binom, hyp0f1) from . import specfun from . import orthogonal from ._comb import _comb_int __all__ = ['agm', 'ai_zeros', 'assoc_laguerre', 'bei_zeros', 'beip_zeros', 'ber_zeros', 'bernoulli', 'berp_zeros', 'bessel_diff_formula', 'bi_zeros', 'clpmn', 'comb', 'digamma', 'diric', 'ellipk', 'erf_zeros', 'erfcinv', 'erfinv', 'errprint', 'euler', 'factorial', 'factorialk', 'factorial2', 'fresnel_zeros', 'fresnelc_zeros', 'fresnels_zeros', 'gamma', 'gammaln', 'h1vp', 'h2vp', 'hankel1', 'hankel2', 'hyp0f1', 'iv', 'ivp', 'jn_zeros', 'jnjnp_zeros', 'jnp_zeros', 'jnyn_zeros', 'jv', 'jvp', 'kei_zeros', 'keip_zeros', 'kelvin_zeros', 'ker_zeros', 'kerp_zeros', 'kv', 'kvp', 'lmbda', 'lpmn', 'lpn', 'lqmn', 'lqn', 'mathieu_a', 'mathieu_b', 'mathieu_even_coef', 'mathieu_odd_coef', 'ndtri', 'obl_cv_seq', 'pbdn_seq', 'pbdv_seq', 'pbvv_seq', 'perm', 'polygamma', 'pro_cv_seq', 'psi', 'riccati_jn', 'riccati_yn', 'sinc', 'sph_in', 'sph_inkn', 'sph_jn', 'sph_jnyn', 'sph_kn', 'sph_yn', 'y0_zeros', 'y1_zeros', 'y1p_zeros', 'yn_zeros', 'ynp_zeros', 'yv', 'yvp', 'zeta', 'SpecialFunctionWarning'] class SpecialFunctionWarning(Warning): """Warning that can be issued with ``errprint(True)``""" pass warnings.simplefilter("always", category=SpecialFunctionWarning) def diric(x, n): """Periodic sinc function, also called the Dirichlet function. The Dirichlet function is defined as:: diric(x) = sin(x * n/2) / (n * sin(x / 2)), where `n` is a positive integer. Parameters ---------- x : array_like Input data n : int Integer defining the periodicity. Returns ------- diric : ndarray Examples -------- >>> from scipy import special >>> import matplotlib.pyplot as plt >>> x = np.linspace(-8*np.pi, 8*np.pi, num=201) >>> plt.figure(figsize=(8, 8)); >>> for idx, n in enumerate([2, 3, 4, 9]): ... plt.subplot(2, 2, idx+1) ... plt.plot(x, special.diric(x, n)) ... plt.title('diric, n={}'.format(n)) >>> plt.show() The following example demonstrates that `diric` gives the magnitudes (modulo the sign and scaling) of the Fourier coefficients of a rectangular pulse. Suppress output of values that are effectively 0: >>> np.set_printoptions(suppress=True) Create a signal `x` of length `m` with `k` ones: >>> m = 8 >>> k = 3 >>> x = np.zeros(m) >>> x[:k] = 1 Use the FFT to compute the Fourier transform of `x`, and inspect the magnitudes of the coefficients: >>> np.abs(np.fft.fft(x)) array([ 3. , 2.41421356, 1. , 0.41421356, 1. , 0.41421356, 1. , 2.41421356]) Now find the same values (up to sign) using `diric`. We multiply by `k` to account for the different scaling conventions of `numpy.fft.fft` and `diric`: >>> theta = np.linspace(0, 2*np.pi, m, endpoint=False) >>> k * special.diric(theta, k) array([ 3. , 2.41421356, 1. , -0.41421356, -1. , -0.41421356, 1. , 2.41421356]) """ x, n = asarray(x), asarray(n) n = asarray(n + (x-x)) x = asarray(x + (n-n)) if issubdtype(x.dtype, inexact): ytype = x.dtype else: ytype = float y = zeros(x.shape, ytype) # empirical minval for 32, 64 or 128 bit float computations # where sin(x/2) < minval, result is fixed at +1 or -1 if np.finfo(ytype).eps < 1e-18: minval = 1e-11 elif np.finfo(ytype).eps < 1e-15: minval = 1e-7 else: minval = 1e-3 mask1 = (n <= 0) | (n != floor(n)) place(y, mask1, nan) x = x / 2 denom = sin(x) mask2 = (1-mask1) & (abs(denom) < minval) xsub = extract(mask2, x) nsub = extract(mask2, n) zsub = xsub / pi place(y, mask2, pow(-1, np.round(zsub)*(nsub-1))) mask = (1-mask1) & (1-mask2) xsub = extract(mask, x) nsub = extract(mask, n) dsub = extract(mask, denom) place(y, mask, sin(nsub*xsub)/(nsub*dsub)) return y def gammaln(x): """ Logarithm of the absolute value of the Gamma function for real inputs. Parameters ---------- x : array-like Values on the real line at which to compute ``gammaln`` Returns ------- gammaln : ndarray Values of ``gammaln`` at x. See Also -------- gammasgn : sign of the gamma function loggamma : principal branch of the logarithm of the gamma function Notes ----- When used in conjunction with `gammasgn`, this function is useful for working in logspace on the real axis without having to deal with complex numbers, via the relation ``exp(gammaln(x)) = gammasgn(x)*gamma(x)``. Note that `gammaln` currently accepts complex-valued inputs, but it is not the same function as for real-valued inputs, and the branch is not well-defined --- using `gammaln` with complex is deprecated and will be disallowed in future Scipy versions. For complex-valued log-gamma, use `loggamma` instead of `gammaln`. """ if np.iscomplexobj(x): warnings.warn(("Use of gammaln for complex arguments is " "deprecated as of scipy 0.18.0. Use " "scipy.special.loggamma instead."), DeprecationWarning) return _gammaln(x) def jnjnp_zeros(nt): """Compute zeros of integer-order Bessel functions Jn and Jn'. Results are arranged in order of the magnitudes of the zeros. Parameters ---------- nt : int Number (<=1200) of zeros to compute Returns ------- zo[l-1] : ndarray Value of the lth zero of Jn(x) and Jn'(x). Of length `nt`. n[l-1] : ndarray Order of the Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. m[l-1] : ndarray Serial number of the zeros of Jn(x) or Jn'(x) associated with lth zero. Of length `nt`. t[l-1] : ndarray 0 if lth zero in zo is zero of Jn(x), 1 if it is a zero of Jn'(x). Of length `nt`. See Also -------- jn_zeros, jnp_zeros : to get separated arrays of zeros. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt > 1200): raise ValueError("Number must be integer <= 1200.") nt = int(nt) n, m, t, zo = specfun.jdzo(nt) return zo[1:nt+1], n[:nt], m[:nt], t[:nt] def jnyn_zeros(n, nt): """Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x). Returns 4 arrays of length `nt`, corresponding to the first `nt` zeros of Jn(x), Jn'(x), Yn(x), and Yn'(x), respectively. Parameters ---------- n : int Order of the Bessel functions nt : int Number (<=1200) of zeros to compute See jn_zeros, jnp_zeros, yn_zeros, ynp_zeros to get separate arrays. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(nt) and isscalar(n)): raise ValueError("Arguments must be scalars.") if (floor(n) != n) or (floor(nt) != nt): raise ValueError("Arguments must be integers.") if (nt <= 0): raise ValueError("nt > 0") return specfun.jyzo(abs(n), nt) def jn_zeros(n, nt): """Compute zeros of integer-order Bessel function Jn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[0] def jnp_zeros(n, nt): """Compute zeros of integer-order Bessel function derivative Jn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[1] def yn_zeros(n, nt): """Compute zeros of integer-order Bessel function Yn(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[2] def ynp_zeros(n, nt): """Compute zeros of integer-order Bessel function derivative Yn'(x). Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ return jnyn_zeros(n, nt)[3] def y0_zeros(nt, complex=False): """Compute nt zeros of Bessel function Y0(z), and derivative at each zero. The derivatives are given by Y0'(z0) = -Y1(z0) at each zero z0. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z0n : ndarray Location of nth zero of Y0(z) y0pz0n : ndarray Value of derivative Y0'(z0) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 0 kc = not complex return specfun.cyzo(nt, kf, kc) def y1_zeros(nt, complex=False): """Compute nt zeros of Bessel function Y1(z), and derivative at each zero. The derivatives are given by Y1'(z1) = Y0(z1) at each zero z1. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1n : ndarray Location of nth zero of Y1(z) y1pz1n : ndarray Value of derivative Y1'(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 1 kc = not complex return specfun.cyzo(nt, kf, kc) def y1p_zeros(nt, complex=False): """Compute nt zeros of Bessel derivative Y1'(z), and value at each zero. The values are given by Y1(z1) at each z1 where Y1'(z1)=0. Parameters ---------- nt : int Number of zeros to return complex : bool, default False Set to False to return only the real zeros; set to True to return only the complex zeros with negative real part and positive imaginary part. Note that the complex conjugates of the latter are also zeros of the function, but are not returned by this routine. Returns ------- z1pn : ndarray Location of nth zero of Y1'(z) y1z1pn : ndarray Value of derivative Y1(z1) for nth zero References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("Arguments must be scalar positive integer.") kf = 2 kc = not complex return specfun.cyzo(nt, kf, kc) def _bessel_diff_formula(v, z, n, L, phase): # from AMS55. # L(v, z) = J(v, z), Y(v, z), H1(v, z), H2(v, z), phase = -1 # L(v, z) = I(v, z) or exp(v*pi*i)K(v, z), phase = 1 # For K, you can pull out the exp((v-k)*pi*i) into the caller v = asarray(v) p = 1.0 s = L(v-n, z) for i in xrange(1, n+1): p = phase * (p * (n-i+1)) / i # = choose(k, i) s += p*L(v-n + i*2, z) return s / (2.**n) bessel_diff_formula = np.deprecate(_bessel_diff_formula, message="bessel_diff_formula is a private function, do not use it!") def jvp(v, z, n=1): """Compute nth derivative of Bessel function Jv(z) with respect to `z`. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative Notes ----- The derivative is computed using the relation DLFM 10.6.7 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.6.E7 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return jv(v, z) else: return _bessel_diff_formula(v, z, n, jv, -1) def yvp(v, z, n=1): """Compute nth derivative of Bessel function Yv(z) with respect to `z`. Parameters ---------- v : float Order of Bessel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative Notes ----- The derivative is computed using the relation DLFM 10.6.7 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.6.E7 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return yv(v, z) else: return _bessel_diff_formula(v, z, n, yv, -1) def kvp(v, z, n=1): """Compute nth derivative of real-order modified Bessel function Kv(z) Kv(z) is the modified Bessel function of the second kind. Derivative is calculated with respect to `z`. Parameters ---------- v : array_like of float Order of Bessel function z : array_like of complex Argument at which to evaluate the derivative n : int Order of derivative. Default is first derivative. Returns ------- out : ndarray The results Examples -------- Calculate multiple values at order 5: >>> from scipy.special import kvp >>> kvp(5, (1, 2, 3+5j)) array([-1849.0354+0.j , -25.7735+0.j , -0.0307+0.0875j]) Calculate for a single value at multiple orders: >>> kvp((4, 4.5, 5), 1) array([ -184.0309, -568.9585, -1849.0354]) Notes ----- The derivative is computed using the relation DLFM 10.29.5 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.29.E5 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return kv(v, z) else: return (-1)**n * _bessel_diff_formula(v, z, n, kv, 1) def ivp(v, z, n=1): """Compute nth derivative of modified Bessel function Iv(z) with respect to `z`. Parameters ---------- v : array_like of float Order of Bessel function z : array_like of complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative Notes ----- The derivative is computed using the relation DLFM 10.29.5 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 6. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.29.E5 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return iv(v, z) else: return _bessel_diff_formula(v, z, n, iv, 1) def h1vp(v, z, n=1): """Compute nth derivative of Hankel function H1v(z) with respect to `z`. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative Notes ----- The derivative is computed using the relation DLFM 10.6.7 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.6.E7 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel1(v, z) else: return _bessel_diff_formula(v, z, n, hankel1, -1) def h2vp(v, z, n=1): """Compute nth derivative of Hankel function H2v(z) with respect to `z`. Parameters ---------- v : float Order of Hankel function z : complex Argument at which to evaluate the derivative n : int, default 1 Order of derivative Notes ----- The derivative is computed using the relation DLFM 10.6.7 [2]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.6.E7 """ if not isinstance(n, int) or (n < 0): raise ValueError("n must be a non-negative integer.") if n == 0: return hankel2(v, z) else: return _bessel_diff_formula(v, z, n, hankel2, -1) @np.deprecate(message="scipy.special.sph_jn is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_jn instead. " "Note that the new function has a different signature.") def sph_jn(n, z): """Compute spherical Bessel function jn(z) and derivative. This function computes the value and first derivative of jn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) See also -------- spherical_jn References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)] @np.deprecate(message="scipy.special.sph_yn is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_yn instead. " "Note that the new function has a different signature.") def sph_yn(n, z): """Compute spherical Bessel function yn(z) and derivative. This function computes the value and first derivative of yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of yn to compute z : complex Argument at which to evaluate Returns ------- yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) See also -------- spherical_yn References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) return yn[:(n+1)], ynp[:(n+1)] @np.deprecate(message="scipy.special.sph_jnyn is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_jn and " "scipy.special.spherical_yn instead. " "Note that the new function has a different signature.") def sph_jnyn(n, z): """Compute spherical Bessel functions jn(z) and yn(z) and derivatives. This function computes the value and first derivative of jn(z) and yn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of jn and yn to compute z : complex Argument at which to evaluate Returns ------- jn : ndarray Value of j0(z), ..., jn(z) jnp : ndarray First derivative j0'(z), ..., jn'(z) yn : ndarray Value of y0(z), ..., yn(z) ynp : ndarray First derivative y0'(z), ..., yn'(z) See also -------- spherical_jn spherical_yn References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, jn, jnp, yn, ynp = specfun.csphjy(n1, z) else: nm, yn, ynp = specfun.sphy(n1, z) nm, jn, jnp = specfun.sphj(n1, z) return jn[:(n+1)], jnp[:(n+1)], yn[:(n+1)], ynp[:(n+1)] @np.deprecate(message="scipy.special.sph_in is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_in instead. " "Note that the new function has a different signature.") def sph_in(n, z): """Compute spherical Bessel function in(z) and derivative. This function computes the value and first derivative of in(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) See also -------- spherical_in References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) return In[:(n+1)], Inp[:(n+1)] @np.deprecate(message="scipy.special.sph_kn is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_kn instead. " "Note that the new function has a different signature.") def sph_kn(n, z): """Compute spherical Bessel function kn(z) and derivative. This function computes the value and first derivative of kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of kn to compute z : complex Argument at which to evaluate Returns ------- kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) See also -------- spherical_kn References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, kn, knp = specfun.sphk(n1, z) return kn[:(n+1)], knp[:(n+1)] @np.deprecate(message="scipy.special.sph_inkn is deprecated in scipy 0.18.0. " "Use scipy.special.spherical_in and " "scipy.special.spherical_kn instead. " "Note that the new function has a different signature.") def sph_inkn(n, z): """Compute spherical Bessel functions in(z), kn(z), and derivatives. This function computes the value and first derivative of in(z) and kn(z) for all orders up to and including n. Parameters ---------- n : int Maximum order of in and kn to compute z : complex Argument at which to evaluate Returns ------- in : ndarray Value of i0(z), ..., in(z) inp : ndarray First derivative i0'(z), ..., in'(z) kn : ndarray Value of k0(z), ..., kn(z) knp : ndarray First derivative k0'(z), ..., kn'(z) See also -------- spherical_in spherical_kn References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 8. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z) or less(z, 0): nm, In, Inp, kn, knp = specfun.csphik(n1, z) else: nm, In, Inp = specfun.sphi(n1, z) nm, kn, knp = specfun.sphk(n1, z) return In[:(n+1)], Inp[:(n+1)], kn[:(n+1)], knp[:(n+1)] def riccati_jn(n, x): r"""Compute Ricatti-Bessel function of the first kind and its derivative. The Ricatti-Bessel function of the first kind is defined as :math:`x j_n(x)`, where :math:`j_n` is the spherical Bessel function of the first kind of order :math:`n`. This function computes the value and first derivative of the Ricatti-Bessel function for all orders up to and including `n`. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- jn : ndarray Value of j0(x), ..., jn(x) jnp : ndarray First derivative j0'(x), ..., jn'(x) Notes ----- The computation is carried out via backward recurrence, using the relation DLMF 10.51.1 [2]_. Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.51.E1 """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rctj(n1, x) return jn[:(n+1)], jnp[:(n+1)] def riccati_yn(n, x): """Compute Ricatti-Bessel function of the second kind and its derivative. The Ricatti-Bessel function of the second kind is defined as :math:`x y_n(x)`, where :math:`y_n` is the spherical Bessel function of the second kind of order :math:`n`. This function computes the value and first derivative of the function for all orders up to and including `n`. Parameters ---------- n : int Maximum order of function to compute x : float Argument at which to evaluate Returns ------- yn : ndarray Value of y0(x), ..., yn(x) ynp : ndarray First derivative y0'(x), ..., yn'(x) Notes ----- The computation is carried out via ascending recurrence, using the relation DLMF 10.51.1 [2]_. Wrapper for a Fortran routine created by Shanjie Zhang and Jianming Jin [1]_. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/10.51.E1 """ if not (isscalar(n) and isscalar(x)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n == 0): n1 = 1 else: n1 = n nm, jn, jnp = specfun.rcty(n1, x) return jn[:(n+1)], jnp[:(n+1)] def erfinv(y): """Inverse function for erf. """ return ndtri((y+1)/2.0)/sqrt(2) def erfcinv(y): """Inverse function for erfc. """ return -ndtri(0.5*y)/sqrt(2) def erf_zeros(nt): """Compute nt complex zeros of error function erf(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.cerzo(nt) def fresnelc_zeros(nt): """Compute nt complex zeros of cosine Fresnel integral C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(1, nt) def fresnels_zeros(nt): """Compute nt complex zeros of sine Fresnel integral S(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt) def fresnel_zeros(nt): """Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if (floor(nt) != nt) or (nt <= 0) or not isscalar(nt): raise ValueError("Argument must be positive scalar integer.") return specfun.fcszo(2, nt), specfun.fcszo(1, nt) def assoc_laguerre(x, n, k=0.0): """Compute the generalized (associated) Laguerre polynomial of degree n and order k. The polynomial :math:`L^{(k)}_n(x)` is orthogonal over ``[0, inf)``, with weighting function ``exp(-x) * x**k`` with ``k > -1``. Notes ----- `assoc_laguerre` is a simple wrapper around `eval_genlaguerre`, with reversed argument order ``(x, n, k=0.0) --> (n, k, x)``. """ return orthogonal.eval_genlaguerre(n, k, x) digamma = psi def polygamma(n, x): """Polygamma function n. This is the nth derivative of the digamma (psi) function. Parameters ---------- n : array_like of int The order of the derivative of `psi`. x : array_like Where to evaluate the polygamma function. Returns ------- polygamma : ndarray The result. Examples -------- >>> from scipy import special >>> x = [2, 3, 25.5] >>> special.polygamma(1, x) array([ 0.64493407, 0.39493407, 0.03999467]) >>> special.polygamma(0, x) == special.psi(x) array([ True, True, True], dtype=bool) """ n, x = asarray(n), asarray(x) fac2 = (-1.0)**(n+1) * gamma(n+1.0) * zeta(n+1, x) return where(n == 0, psi(x), fac2) def mathieu_even_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the even solutions of the Mathieu differential equation are of the form .. math:: \mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz .. math:: \mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z This function returns the coefficients :math:`A_{(2n)}^{(2k)}` for even input m=2n, and the coefficients :math:`A_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Ak : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/28.4#i """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m < 0): raise ValueError("m must be an integer >=0.") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 1 m = int(floor(m)) if m % 2: kd = 2 a = mathieu_a(m, q) fc = specfun.fcoef(kd, m, q, a) return fc[:km] def mathieu_odd_coef(m, q): r"""Fourier coefficients for even Mathieu and modified Mathieu functions. The Fourier series of the odd solutions of the Mathieu differential equation are of the form .. math:: \mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z .. math:: \mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z This function returns the coefficients :math:`B_{(2n+2)}^{(2k+2)}` for even input m=2n+2, and the coefficients :math:`B_{(2n+1)}^{(2k+1)}` for odd input m=2n+1. Parameters ---------- m : int Order of Mathieu functions. Must be non-negative. q : float (>=0) Parameter of Mathieu functions. Must be non-negative. Returns ------- Bk : ndarray Even or odd Fourier coefficients, corresponding to even or odd m. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(q)): raise ValueError("m and q must be scalars.") if (q < 0): raise ValueError("q >=0") if (m != floor(m)) or (m <= 0): raise ValueError("m must be an integer > 0") if (q <= 1): qm = 7.5 + 56.1*sqrt(q) - 134.7*q + 90.7*sqrt(q)*q else: qm = 17.0 + 3.1*sqrt(q) - .126*q + .0037*sqrt(q)*q km = int(qm + 0.5*m) if km > 251: print("Warning, too many predicted coefficients.") kd = 4 m = int(floor(m)) if m % 2: kd = 3 b = mathieu_b(m, q) fc = specfun.fcoef(kd, m, q, b) return fc[:km] def lpmn(m, n, z): """Sequence of associated Legendre functions of the first kind. Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. This function takes a real argument ``z``. For complex arguments ``z`` use clpmn instead. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float Input value. Returns ------- Pmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Pmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n See Also -------- clpmn: associated Legendre functions of the first kind for complex z Notes ----- In the interval (-1, 1), Ferrer's function of the first kind is returned. The phase convention used for the intervals (1, inf) and (-inf, -1) is such that the result is always real. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.3 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if iscomplex(z): raise ValueError("Argument must be real. Use clpmn instead.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if abs(z) < 1: # Ferrer function; DLMF 14.9.3 fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: # Match to clpmn; DLMF 14.9.13 fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.lpmn(mp, n, z) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def clpmn(m, n, z, type=3): """Associated Legendre function of the first kind for complex arguments. Computes the associated Legendre function of the first kind of order m and degree n, ``Pmn(z)`` = :math:`P_n^m(z)`, and its derivative, ``Pmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Pmn(z)`` and ``Pmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : float or complex Input value. type : int, optional takes values 2 or 3 2: cut on the real axis ``|x| > 1`` 3: cut on the real axis ``-1 < x < 1`` (default) Returns ------- Pmn_z : (m+1, n+1) array Values for all orders ``0..m`` and degrees ``0..n`` Pmn_d_z : (m+1, n+1) array Derivatives for all orders ``0..m`` and degrees ``0..n`` See Also -------- lpmn: associated Legendre functions of the first kind for real z Notes ----- By default, i.e. for ``type=3``, phase conventions are chosen according to [1]_ such that the function is analytic. The cut lies on the interval (-1, 1). Approaching the cut from above or below in general yields a phase factor with respect to Ferrer's function of the first kind (cf. `lpmn`). For ``type=2`` a cut at ``|x| > 1`` is chosen. Approaching the real values on the interval (-1, 1) in the complex plane yields Ferrer's function of the first kind. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/14.21 """ if not isscalar(m) or (abs(m) > n): raise ValueError("m must be <= n.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") if not(type == 2 or type == 3): raise ValueError("type must be either 2 or 3.") if (m < 0): mp = -m mf, nf = mgrid[0:mp+1, 0:n+1] sv = errprint(0) if type == 2: fixarr = where(mf > nf, 0.0, (-1)**mf * gamma(nf-mf+1) / gamma(nf+mf+1)) else: fixarr = where(mf > nf, 0.0, gamma(nf-mf+1) / gamma(nf+mf+1)) sv = errprint(sv) else: mp = m p, pd = specfun.clpmn(mp, n, real(z), imag(z), type) if (m < 0): p = p * fixarr pd = pd * fixarr return p, pd def lqmn(m, n, z): """Sequence of associated Legendre functions of the second kind. Computes the associated Legendre function of the second kind of order m and degree n, ``Qmn(z)`` = :math:`Q_n^m(z)`, and its derivative, ``Qmn'(z)``. Returns two arrays of size ``(m+1, n+1)`` containing ``Qmn(z)`` and ``Qmn'(z)`` for all orders from ``0..m`` and degrees from ``0..n``. Parameters ---------- m : int ``|m| <= n``; the order of the Legendre function. n : int where ``n >= 0``; the degree of the Legendre function. Often called ``l`` (lower case L) in descriptions of the associated Legendre function z : complex Input value. Returns ------- Qmn_z : (m+1, n+1) array Values for all orders 0..m and degrees 0..n Qmn_d_z : (m+1, n+1) array Derivatives for all orders 0..m and degrees 0..n References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(m) or (m < 0): raise ValueError("m must be a non-negative integer.") if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") if not isscalar(z): raise ValueError("z must be scalar.") m = int(m) n = int(n) # Ensure neither m nor n == 0 mm = max(1, m) nn = max(1, n) if iscomplex(z): q, qd = specfun.clqmn(mm, nn, z) else: q, qd = specfun.lqmn(mm, nn, z) return q[:(m+1), :(n+1)], qd[:(m+1), :(n+1)] def bernoulli(n): """Bernoulli numbers B0..Bn (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.bernob(int(n1))[:(n+1)] def euler(n): """Euler numbers E0..En (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(n) or (n < 0): raise ValueError("n must be a non-negative integer.") n = int(n) if (n < 2): n1 = 2 else: n1 = n return specfun.eulerb(n1)[:(n+1)] def lpn(n, z): """Legendre function of the first kind. Compute sequence of Legendre functions of the first kind (polynomials), Pn(z) and derivatives for all degrees from 0 to n (inclusive). See also special.legendre for polynomial class. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): pn, pd = specfun.clpn(n1, z) else: pn, pd = specfun.lpn(n1, z) return pn[:(n+1)], pd[:(n+1)] def lqn(n, z): """Legendre function of the second kind. Compute sequence of Legendre functions of the second kind, Qn(z) and derivatives for all degrees from 0 to n (inclusive). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (n != floor(n)) or (n < 0): raise ValueError("n must be a non-negative integer.") if (n < 1): n1 = 1 else: n1 = n if iscomplex(z): qn, qd = specfun.clqn(n1, z) else: qn, qd = specfun.lqnb(n1, z) return qn[:(n+1)], qd[:(n+1)] def ai_zeros(nt): """ Compute `nt` zeros and values of the Airy function Ai and its derivative. Computes the first `nt` zeros, `a`, of the Airy function Ai(x); first `nt` zeros, `ap`, of the derivative of the Airy function Ai'(x); the corresponding values Ai(a'); and the corresponding values Ai'(a). Parameters ---------- nt : int Number of zeros to compute Returns ------- a : ndarray First `nt` zeros of Ai(x) ap : ndarray First `nt` zeros of Ai'(x) ai : ndarray Values of Ai(x) evaluated at first `nt` zeros of Ai'(x) aip : ndarray Values of Ai'(x) evaluated at first `nt` zeros of Ai(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 1 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def bi_zeros(nt): """ Compute `nt` zeros and values of the Airy function Bi and its derivative. Computes the first `nt` zeros, b, of the Airy function Bi(x); first `nt` zeros, b', of the derivative of the Airy function Bi'(x); the corresponding values Bi(b'); and the corresponding values Bi'(b). Parameters ---------- nt : int Number of zeros to compute Returns ------- b : ndarray First `nt` zeros of Bi(x) bp : ndarray First `nt` zeros of Bi'(x) bi : ndarray Values of Bi(x) evaluated at first `nt` zeros of Bi'(x) bip : ndarray Values of Bi'(x) evaluated at first `nt` zeros of Bi(x) References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ kf = 2 if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be a positive integer scalar.") return specfun.airyzo(nt, kf) def lmbda(v, x): r"""Jahnke-Emden Lambda function, Lambdav(x). This function is defined as [2]_, .. math:: \Lambda_v(x) = \Gamma(v+1) \frac{J_v(x)}{(x/2)^v}, where :math:`\Gamma` is the gamma function and :math:`J_v` is the Bessel function of the first kind. Parameters ---------- v : float Order of the Lambda function x : float Value at which to evaluate the function and derivatives Returns ------- vl : ndarray Values of Lambda_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dl : ndarray Derivatives Lambda_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html .. [2] Jahnke, E. and Emde, F. "Tables of Functions with Formulae and Curves" (4th ed.), Dover, 1945 """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") if (v < 0): raise ValueError("argument must be > 0.") n = int(v) v0 = v - n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 if (v != floor(v)): vm, vl, dl = specfun.lamv(v1, x) else: vm, vl, dl = specfun.lamn(v1, x) return vl[:(n+1)], dl[:(n+1)] def pbdv_seq(v, x): """Parabolic cylinder functions Dv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives D_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n < 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbdv(v1, x) return dv[:n1+1], dp[:n1+1] def pbvv_seq(v, x): """Parabolic cylinder functions Vv(x) and derivatives. Parameters ---------- v : float Order of the parabolic cylinder function x : float Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of V_vi(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. dp : ndarray Derivatives V_vi'(x), for vi=v-int(v), vi=1+v-int(v), ..., vi=v. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(v) and isscalar(x)): raise ValueError("arguments must be scalars.") n = int(v) v0 = v-n if (n <= 1): n1 = 1 else: n1 = n v1 = n1 + v0 dv, dp, pdf, pdd = specfun.pbvv(v1, x) return dv[:n1+1], dp[:n1+1] def pbdn_seq(n, z): """Parabolic cylinder functions Dn(z) and derivatives. Parameters ---------- n : int Order of the parabolic cylinder function z : complex Value at which to evaluate the function and derivatives Returns ------- dv : ndarray Values of D_i(z), for i=0, ..., i=n. dp : ndarray Derivatives D_i'(z), for i=0, ..., i=n. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 13. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(n) and isscalar(z)): raise ValueError("arguments must be scalars.") if (floor(n) != n): raise ValueError("n must be an integer.") if (abs(n) <= 1): n1 = 1 else: n1 = n cpb, cpd = specfun.cpbdn(n1, z) return cpb[:n1+1], cpd[:n1+1] def ber_zeros(nt): """Compute nt zeros of the Kelvin function ber(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 1) def bei_zeros(nt): """Compute nt zeros of the Kelvin function bei(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 2) def ker_zeros(nt): """Compute nt zeros of the Kelvin function ker(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 3) def kei_zeros(nt): """Compute nt zeros of the Kelvin function kei(x). """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 4) def berp_zeros(nt): """Compute nt zeros of the Kelvin function ber'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 5) def beip_zeros(nt): """Compute nt zeros of the Kelvin function bei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 6) def kerp_zeros(nt): """Compute nt zeros of the Kelvin function ker'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 7) def keip_zeros(nt): """Compute nt zeros of the Kelvin function kei'(x). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return specfun.klvnzo(nt, 8) def kelvin_zeros(nt): """Compute nt zeros of all Kelvin functions. Returned in a length-8 tuple of arrays of length nt. The tuple contains the arrays of zeros of (ber, bei, ker, kei, ber', bei', ker', kei'). References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not isscalar(nt) or (floor(nt) != nt) or (nt <= 0): raise ValueError("nt must be positive integer scalar.") return (specfun.klvnzo(nt, 1), specfun.klvnzo(nt, 2), specfun.klvnzo(nt, 3), specfun.klvnzo(nt, 4), specfun.klvnzo(nt, 5), specfun.klvnzo(nt, 6), specfun.klvnzo(nt, 7), specfun.klvnzo(nt, 8)) def pro_cv_seq(m, n, c): """Characteristic values for prolate spheroidal wave functions. Compute a sequence of characteristic values for the prolate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, 1)[1][:maxL] def obl_cv_seq(m, n, c): """Characteristic values for oblate spheroidal wave functions. Compute a sequence of characteristic values for the oblate spheroidal wave functions for mode m and n'=m..n and spheroidal parameter c. References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html """ if not (isscalar(m) and isscalar(n) and isscalar(c)): raise ValueError("Arguments must be scalars.") if (n != floor(n)) or (m != floor(m)): raise ValueError("Modes must be integers.") if (n-m > 199): raise ValueError("Difference between n and m is too large.") maxL = n-m+1 return specfun.segv(m, n, c, -1)[1][:maxL] def ellipk(m): """Complete elliptic integral of the first kind. This function is defined as .. math:: K(m) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt Parameters ---------- m : array_like The parameter of the elliptic integral. Returns ------- K : array_like Value of the elliptic integral. Notes ----- For more precision around point m = 1, use `ellipkm1`, which this function calls. See Also -------- ellipkm1 : Complete elliptic integral of the first kind around m = 1 ellipkinc : Incomplete elliptic integral of the first kind ellipe : Complete elliptic integral of the second kind ellipeinc : Incomplete elliptic integral of the second kind """ return ellipkm1(1 - asarray(m)) def agm(a, b): """Arithmetic, Geometric Mean. Start with a_0=a and b_0=b and iteratively compute a_{n+1} = (a_n+b_n)/2 b_{n+1} = sqrt(a_n*b_n) until a_n=b_n. The result is agm(a, b) agm(a, b)=agm(b, a) agm(a, a) = a min(a, b) < agm(a, b) < max(a, b) """ s = a + b + 0.0 return (pi / 4) * s / ellipkm1(4 * a * b / s ** 2) def comb(N, k, exact=False, repetition=False): """The number of combinations of N things taken k at a time. This is often expressed as "N choose k". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. repetition : bool, optional If `repetition` is True, then the number of combinations with repetition is computed. Returns ------- val : int, ndarray The total number of combinations. See Also -------- binom : Binomial coefficient ufunc Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import comb >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> comb(n, k, exact=False) array([ 120., 210.]) >>> comb(10, 3, exact=True) 120L >>> comb(10, 3, exact=True, repetition=True) 220L """ if repetition: return comb(N + k - 1, k, exact) if exact: return _comb_int(N, k) else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = binom(N, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals def perm(N, k, exact=False): """Permutations of N things taken k at a time, i.e., k-permutations of N. It's also known as "partial permutations". Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. Returns ------- val : int, ndarray The number of k-permutations of N. Notes ----- - Array arguments accepted only for exact=False case. - If k > N, N < 0, or k < 0, then a 0 is returned. Examples -------- >>> from scipy.special import perm >>> k = np.array([3, 4]) >>> n = np.array([10, 10]) >>> perm(n, k) array([ 720., 5040.]) >>> perm(10, 3, exact=True) 720 """ if exact: if (k > N) or (N < 0) or (k < 0): return 0 val = 1 for i in xrange(N - k + 1, N + 1): val *= i return val else: k, N = asarray(k), asarray(N) cond = (k <= N) & (N >= 0) & (k >= 0) vals = poch(N - k + 1, k) if isinstance(vals, np.ndarray): vals[~cond] = 0 elif not cond: vals = np.float64(0) return vals # http://stackoverflow.com/a/16327037/125507 def _range_prod(lo, hi): """ Product of a range of numbers. Returns the product of lo * (lo+1) * (lo+2) * ... * (hi-2) * (hi-1) * hi = hi! / (lo-1)! Breaks into smaller products first for speed: _range_prod(2, 9) = ((2*3)*(4*5))*((6*7)*(8*9)) """ if lo + 1 < hi: mid = (hi + lo) // 2 return _range_prod(lo, mid) * _range_prod(mid + 1, hi) if lo == hi: return lo return lo * hi def factorial(n, exact=False): """ The factorial of a number or array of numbers. The factorial of non-negative integer `n` is the product of all positive integers less than or equal to `n`:: n! = n * (n - 1) * (n - 2) * ... * 1 Parameters ---------- n : int or array_like of ints Input values. If ``n < 0``, the return value is 0. exact : bool, optional If True, calculate the answer exactly using long integer arithmetic. If False, result is approximated in floating point rapidly using the `gamma` function. Default is False. Returns ------- nf : float or int or ndarray Factorial of `n`, as integer or float depending on `exact`. Notes ----- For arrays with ``exact=True``, the factorial is computed only once, for the largest input, with each other result computed in the process. The output dtype is increased to ``int64`` or ``object`` if necessary. With ``exact=False`` the factorial is approximated using the gamma function: .. math:: n! = \\Gamma(n+1) Examples -------- >>> from scipy.special import factorial >>> arr = np.array([3, 4, 5]) >>> factorial(arr, exact=False) array([ 6., 24., 120.]) >>> factorial(arr, exact=True) array([ 6, 24, 120]) >>> factorial(5, exact=True) 120L """ if exact: if np.ndim(n) == 0: return 0 if n < 0 else math.factorial(n) else: n = asarray(n) un = np.unique(n).astype(object) # Convert to object array of long ints if np.int can't handle size if un[-1] > 20: dt = object elif un[-1] > 12: dt = np.int64 else: dt = np.int out = np.empty_like(n, dtype=dt) # Handle invalid/trivial values un = un[un > 1] out[n < 2] = 1 out[n < 0] = 0 # Calculate products of each range of numbers if un.size: val = math.factorial(un[0]) out[n == un[0]] = val for i in xrange(len(un) - 1): prev = un[i] + 1 current = un[i + 1] val *= _range_prod(prev, current) out[n == current] = val return out else: n = asarray(n) vals = gamma(n + 1) return where(n >= 0, vals, 0) def factorial2(n, exact=False): """Double factorial. This is the factorial with every second value skipped. E.g., ``7!! = 7 * 5 * 3 * 1``. It can be approximated numerically as:: n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd = 2**(n/2) * (n/2)! n even Parameters ---------- n : int or array_like Calculate ``n!!``. Arrays are only supported with `exact` set to False. If ``n < 0``, the return value is 0. exact : bool, optional The result can be approximated rapidly using the gamma-formula above (default). If `exact` is set to True, calculate the answer exactly using integer arithmetic. Returns ------- nff : float or int Double factorial of `n`, as an int or a float depending on `exact`. Examples -------- >>> from scipy.special import factorial2 >>> factorial2(7, exact=False) array(105.00000000000001) >>> factorial2(7, exact=True) 105L """ if exact: if n < -1: return 0 if n <= 0: return 1 val = 1 for k in xrange(n, 0, -2): val *= k return val else: n = asarray(n) vals = zeros(n.shape, 'd') cond1 = (n % 2) & (n >= -1) cond2 = (1-(n % 2)) & (n >= -1) oddn = extract(cond1, n) evenn = extract(cond2, n) nd2o = oddn / 2.0 nd2e = evenn / 2.0 place(vals, cond1, gamma(nd2o + 1) / sqrt(pi) * pow(2.0, nd2o + 0.5)) place(vals, cond2, gamma(nd2e + 1) * pow(2.0, nd2e)) return vals def factorialk(n, k, exact=True): """Multifactorial of n of order k, n(!!...!). This is the multifactorial of n skipping k values. For example, factorialk(17, 4) = 17!!!! = 17 * 13 * 9 * 5 * 1 In particular, for any integer ``n``, we have factorialk(n, 1) = factorial(n) factorialk(n, 2) = factorial2(n) Parameters ---------- n : int Calculate multifactorial. If `n` < 0, the return value is 0. k : int Order of multifactorial. exact : bool, optional If exact is set to True, calculate the answer exactly using integer arithmetic. Returns ------- val : int Multifactorial of `n`. Raises ------ NotImplementedError Raises when exact is False Examples -------- >>> from scipy.special import factorialk >>> factorialk(5, 1, exact=True) 120L >>> factorialk(5, 3, exact=True) 10L """ if exact: if n < 1-k: return 0 if n <= 0: return 1 val = 1 for j in xrange(n, 0, -k): val = val*j return val else: raise NotImplementedError def zeta(x, q=None, out=None): r""" Riemann zeta function. The two-argument version is the Hurwitz zeta function: .. math:: \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x}, Riemann zeta function corresponds to ``q = 1``. See also -------- zetac """ if q is None: q = 1 return _zeta(x, q, out)
bsd-3-clause
terkkila/scikit-learn
examples/linear_model/plot_ols_ridge_variance.py
387
2060
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Ordinary Least Squares and Ridge Regression Variance ========================================================= Due to the few points in each dimension and the straight line that linear regression uses to follow these points as well as it can, noise on the observations will cause great variance as shown in the first plot. Every line's slope can vary quite a bit for each prediction due to the noise induced in the observations. Ridge regression is basically minimizing a penalised version of the least-squared function. The penalising `shrinks` the value of the regression coefficients. Despite the few data points in each dimension, the slope of the prediction is much more stable and the variance in the line itself is greatly reduced, in comparison to that of the standard linear regression """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model X_train = np.c_[.5, 1].T y_train = [.5, 1] X_test = np.c_[0, 2].T np.random.seed(0) classifiers = dict(ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=.1)) fignum = 1 for name, clf in classifiers.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.title(name) ax = plt.axes([.12, .12, .8, .8]) for _ in range(6): this_X = .1 * np.random.normal(size=(2, 1)) + X_train clf.fit(this_X, y_train) ax.plot(X_test, clf.predict(X_test), color='.5') ax.scatter(this_X, y_train, s=3, c='.5', marker='o', zorder=10) clf.fit(X_train, y_train) ax.plot(X_test, clf.predict(X_test), linewidth=2, color='blue') ax.scatter(X_train, y_train, s=30, c='r', marker='+', zorder=10) ax.set_xticks(()) ax.set_yticks(()) ax.set_ylim((0, 1.6)) ax.set_xlabel('X') ax.set_ylabel('y') ax.set_xlim(0, 2) fignum += 1 plt.show()
bsd-3-clause
robin-lai/scikit-learn
sklearn/utils/tests/test_fixes.py
281
1829
# Authors: Gael Varoquaux <[email protected]> # Justin Vincent # Lars Buitinck # License: BSD 3 clause import numpy as np from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_true from numpy.testing import (assert_almost_equal, assert_array_almost_equal) from sklearn.utils.fixes import divide, expit from sklearn.utils.fixes import astype def test_expit(): # Check numerical stability of expit (logistic function). # Simulate our previous Cython implementation, based on #http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression assert_almost_equal(expit(1000.), 1. / (1. + np.exp(-1000.)), decimal=16) assert_almost_equal(expit(-1000.), np.exp(-1000.) / (1. + np.exp(-1000.)), decimal=16) x = np.arange(10) out = np.zeros_like(x, dtype=np.float32) assert_array_almost_equal(expit(x), expit(x, out=out)) def test_divide(): assert_equal(divide(.6, 1), .600000000000) def test_astype_copy_memory(): a_int32 = np.ones(3, np.int32) # Check that dtype conversion works b_float32 = astype(a_int32, dtype=np.float32, copy=False) assert_equal(b_float32.dtype, np.float32) # Changing dtype forces a copy even if copy=False assert_false(np.may_share_memory(b_float32, a_int32)) # Check that copy can be skipped if requested dtype match c_int32 = astype(a_int32, dtype=np.int32, copy=False) assert_true(c_int32 is a_int32) # Check that copy can be forced, and is the case by default: d_int32 = astype(a_int32, dtype=np.int32, copy=True) assert_false(np.may_share_memory(d_int32, a_int32)) e_int32 = astype(a_int32, dtype=np.int32) assert_false(np.may_share_memory(e_int32, a_int32))
bsd-3-clause
NMTHydro/Recharge
zobs/orecharge/Point_Analysis/ETRM_Point_SAUA_spider_only.py
1
9527
# =============================================================================== # Copyright 2016 dgketchum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance # with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # =================================IMPORTS======================================= from datetime import datetime import matplotlib.pyplot as plt from matplotlib import rc from osgeo import ogr import etrm_daily_SA_2MAY16 import extract_readIn import numpy as np import pandas rc('mathtext', default='regular') save_path = 'C:\\Users\\David\\Documents\\ArcGIS\\results\\Sensitivity_analysis\\data' pandas.set_option('display.max_rows', 3000) pandas.set_option('display.max_columns', 3000) pandas.set_option('display.width', 10000) pandas.set_option('display.precision', 3) pandas.options.display.float_format = '${:,.2f}'.format np.set_printoptions(threshold=3000, edgeitems=5000, precision=3) pandas.set_option('display.height', 5000) pandas.set_option('display.max_rows', 5000) startTime = datetime.now() print startTime def print_full(x): pandas.set_option('display.max_rows', len(x)) print(x) pandas.reset_option('display.max_rows') print (x) def round_to_value(number, roundto): return round(number / roundto) * roundto def dfv(begin_ind, end_ind): return df.iloc[begin_ind, end_ind] def save_df(df, save_path): df.to_csv('{}\\data1.csv'.format(save_path), sep=',') np.set_printoptions(linewidth=700, precision=2, threshold=2500) # Set start datetime object start, end = datetime(2000, 1, 1), datetime(2013, 12, 31) # Define winter and summer for SNOW algorithm sWin, eWin = datetime(start.year, 11, 1), datetime(end.year, 3, 30) # Define monsoon for Ksat, presumed storm intensity sMon, eMon = datetime(start.year, 6, 1), datetime(start.year, 10, 1) temps = range(-5, 6) all_pct = [x * 0.1 for x in range(5, 16)] ndvi_range = np.linspace(0.9, 1.7, 11) ndvi_range = np.array([round_to_value(x, 0.05) for x in ndvi_range]) var_arrs = [] y = 0 for x in range(0, 6): ones = np.ones((5, 11), dtype=float) zeros = [x * 0.0 for x in range(5, 16)] norm_ndvi = np.array([1.25 for x in zeros]) if y == 0: arr = np.insert(ones, y, temps, axis=0) arr = np.insert(arr, 4, norm_ndvi, axis=0) arr = arr[0:6] var_arrs.append(arr) arr = [] elif y == 4: arr = np.insert(ones, 0, zeros, axis=0) arr = np.insert(arr, y, ndvi_range, axis=0) arr = arr[0:6] var_arrs.append(arr) arr = [] elif y == 5: arr = np.insert(ones, 0, zeros, axis=0) arr = np.insert(arr, 4, norm_ndvi, axis=0) arr = arr[0:5] arr = np.insert(arr, y, all_pct, axis=0) var_arrs.append(arr) arr = [] else: arr = np.insert(ones, 0, zeros, axis=0) arr = np.insert(arr, y, all_pct, axis=0) arr = np.insert(arr, 4, norm_ndvi, axis=0) arr = arr[0:6] var_arrs.append(arr) arr = [] y += 1 factors = ['Temperature', 'Precipitation', 'Reference ET', 'Total Water Storage (TAW)', 'Vegetation Density (NDVI)', 'Soil Evaporation Depth'] normalize_list = [2, 0.20, 0.20, 2, 0.20, 0.50] normalize_list = [1 for x in range(0, len(normalize_list) + 1)] site_list = ['Bateman', 'Navajo_Whiskey_Ck', 'Quemazon', 'Sierra_Blanca', 'SB_1', 'SB_2', 'SB_4', 'SB_5', 'VC_1', 'VC_2', 'VC_3', 'CH_1', 'CH_3', 'MG_1', 'MG_2', 'WHLR_PK', 'LP', 'South_Baldy', 'Water_Canyon', 'La_Jencia', 'Socorro'] df = pandas.DataFrame(columns=factors, index=site_list) df_norm = pandas.DataFrame(columns=factors, index=site_list) yy = 0 for var_arr in var_arrs: factor = factors[yy] print factor print '' shp_filename = 'C:\\Recharge_GIS\\qgis_layers\\sensitivity_points\\SA_pnts29APR16_UTM.shp' ds = ogr.Open(shp_filename) lyr = ds.GetLayer() defs = lyr.GetLayerDefn() for feat in lyr: name = feat.GetField("Name") name = name.replace(' ', '_') geom = feat.GetGeometryRef() mx, my = geom.GetX(), geom.GetY() path = 'C:\Users\David\Documents\Recharge\Sensitivity_analysis\SA_extracts' file_name = '{}\\{}_extract.csv'.format(path, name) print file_name extract_data = extract_readIn.read_std_extract_csv(file_name) rslts = [] for col in var_arr.T: pt_data, tot_data, mass_data = etrm_daily_SA_2MAY16.run_daily_etrm(start, end, extract_data, sMon, eMon, col) rech = np.sum(pt_data[:, 9]) rslts.append(rech) df.iloc[site_list.index(name), factors.index(factor)] = np.divide(np.array(rslts), 14.0) # tot_data : precip, et, tot_transp, tot_evap, infil, runoff, snow_fall, cum_mass, end_mass yy += 1 # "SI = [Q(Po + delP] -Q(Po - delP] / (2 * delP)" # where SI = Sensitivity Index, Q = recharge, Po = base value of input parameter, delP = change in value of input var # find sensitivity index xx = 0 for param in df.iteritems(): data_cube = param[1] var_arr = var_arrs[xx] yy = 0 for site in data_cube: print site site_name = site_list[yy] normal = normalize_list[xx] site_obj = [x for x in site] sens_list = [] zz = 0 for var in var_arr[xx]: if var != var_arr[xx][5]: base = var_arr[xx][5] deltaP = var - base obj = site_obj[zz] sen = ((obj * (base + deltaP) - obj * (base - deltaP)) / (2 * deltaP)) * normal sens_list.append(sen) zz += 1 else: sens_list.append(site_obj[zz]) zz += 1 sens_list = np.array(sens_list) df_norm.iloc[site_list.index(site_name), factors.index(param[0])] = sens_list if yy == 20: print 'done' break yy += 1 xx += 1 fig_path = 'C:\\Users\\David\\Documents\\ArcGIS\\results\\Sensitivity_analysis\\normalized' disp_pct = [(int(x)) for x in np.add(np.multiply(all_pct, 100.0), -100)] # disp_pct.remove(0) temps = range(-5, 6) # temps.remove(0) all_pct = [x * 0.1 for x in range(5, 16)] # all_pct.remove(1.0) ndvi_range = np.linspace(0.9, 1.7, 11) ndvi_range = [round_to_value(x, 0.05) for x in ndvi_range] # ndvi_range.remove(1.3) ndvi_range = np.array(ndvi_range) for index, row in df_norm.iterrows(): if row.name == 'La_Jencia': # ['South_Baldy', 'Water_Canyon', 'La_Jencia', 'Socorro']: print index, row fig = plt.figure(xx, figsize=(20, 10)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() ax3 = ax1.twiny() fig.subplots_adjust(bottom=0.2) ax2.plot(temps, row[0], 'k', marker='x', label='Temperature (+/- 5 deg C)') ax1.plot(disp_pct, row[1], 'blue', marker='o', label='Precipitation (+/- 50%)') ax1.plot(disp_pct, row[2], 'purple', marker='^', label='Reference Evapotranspiration (+/- 50%)') ax1.plot(disp_pct, row[3], 'brown', marker='h', label='Total Available Water (+/- 50%)') ax3.plot(ndvi_range, row[4], 'green', marker='s', linestyle='-.', label='Normalized Density Vegetation\n' ' Index Conversion Factor (0.9 - 1.8)') ax1.plot(disp_pct, row[5], 'red', marker='*', label='Soil Evaporation Layer Thickness (+/- 50%)') ax1.set_xlabel(r"Parameter Change (%)", fontsize=16) ax1.set_ylabel(r"Total Recharge per Year (mm)", fontsize=16) ax2.set_xlabel(r"Temperature Change (C)", fontsize=16) ax2.xaxis.set_ticks_position("bottom") ax2.xaxis.set_label_position("bottom") ax2.spines["bottom"].set_position(("axes", -0.15)) ax2.set_frame_on(True) ax2.patch.set_visible(False) for sp in ax2.spines.itervalues(): sp.set_visible(False) ax2.spines['bottom'].set_visible(True) ax3.set_xlabel(r"NDVI to Crop Coefficient Conversion Factor", fontsize=16) ax3.xaxis.set_ticks_position("bottom") ax3.xaxis.set_label_position("bottom") ax3.spines["bottom"].set_position(("axes", -0.3)) ax3.set_frame_on(True) ax3.patch.set_visible(False) for sp in ax3.spines.itervalues(): sp.set_visible(False) ax3.spines['bottom'].set_visible(True) plt.title('Variation of ETRM Physical Parameters at {}'.format(index.replace('_', ' ')), y=1.08, fontsize=20) handle1, label1 = ax1.get_legend_handles_labels() handle2, label2 = ax2.get_legend_handles_labels() handle3, label3 = ax3.get_legend_handles_labels() handles, labels = handle1 + handle2 + handle3, label1 + label2 + label3 ax1.legend(handles, labels, loc=0) plt.show() plt.savefig('{}\\{}_spider_10JUL16_2'.format(fig_path, index), ext='png', figsize=(20, 10)) plt.close(fig)
apache-2.0
FrancoisRheaultUS/dipy
doc/examples/reconst_qtdmri.py
4
18834
# -*- coding: utf-8 -*- """ ================================================================= Estimating diffusion time dependent q-space indices using qt-dMRI ================================================================= Effective representation of the four-dimensional diffusion MRI signal -- varying over three-dimensional q-space and diffusion time -- is a sought-after and still unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this qtau-space [Fick2017]_. Following recent terminology, we refer to our qtau-functional basis as :math:`q\tau`-dMRI. We use GraphNet regularization -- imposing both signal smoothness and sparsity -- to drastically reduce the number of diffusion-weighted images (DWIs) that is needed to represent the dMRI signal in the qtau-space. As the main contribution, :math:`q\tau`-dMRI provides the framework to -- without making biophysical assumptions -- represent the :math:`q\tau`-space signal and estimate time-dependent q-space indices (:math:`q\tau`-indices), providing a new means for studying diffusion in nervous tissue. :math:`q\tau`-dMRI is the first of its kind in being specifically designed to provide open interpretation of the :math:`q\tau`-diffusion signal. :math:`q\tau`-dMRI can be seen as a time-dependent extension of the MAP-MRI functional basis [Ozarslan2013]_, and all the previously proposed q-space can be estimated for any diffusion time. These include rotationally invariant quantities such as the Mean Squared Displacement (MSD), Q-space Inverse Variance (QIV) and Return-To-Origin Probability (RTOP). Also directional indices such as the Return To the Axis Probability (RTAP) and Return To the Plane Probability (RTPP) are available, as well as the Orientation Distribution Function (ODF). In this example we illustrate how to use the :math:`q\tau`-dMRI to estimate time-dependent q-space indices from a :math:`q\tau`-acquisition of a mouse. First import the necessary modules: """ from dipy.data.fetcher import (fetch_qtdMRI_test_retest_2subjects, read_qtdMRI_test_retest_2subjects) from dipy.reconst import qtdmri, dti import matplotlib.pyplot as plt import numpy as np """ Download and read the data for this tutorial. :math:`q\tau`-dMRI requires data with multiple gradient directions, gradient strength and diffusion times. We will use the test-retest acquisitions of two mice that were used in the test-retest study by [Fick2017]_. The data itself is freely available and citeable at [Wassermann2017]_. """ fetch_qtdMRI_test_retest_2subjects() data, cc_masks, gtabs = read_qtdMRI_test_retest_2subjects() """ data contains 4 qt-dMRI datasets of size [80, 160, 5, 515]. The first two are the test-retest datasets of the first mouse and the second two are those of the second mouse. cc_masks contains 4 corresponding binary masks for the corpus callosum voxels in the middle slice that were used in the test-retest study. Finally, gtab contains the qt-dMRI gradient tables for the DWIs in the dataset. The data consists of 515 DWIs, divided over 35 shells, with 7 "gradient strength shells" up to 491 mT/m, 5 equally spaced "pulse separation shells" (big_delta) between [10.8-20] ms and a pulse duration (small_delta) of 5ms. To visualize qt-dMRI acquisition schemes in an intuitive way, the qtdmri module provides a visualization function to illustrate the relationship between gradient strength (G), pulse separation (big_delta) and b-value: """ plt.figure() qtdmri.visualise_gradient_table_G_Delta_rainbow(gtabs[0]) plt.savefig('qt-dMRI_acquisition_scheme.png') """ .. figure:: qt-dMRI_acquisition_scheme.png :align: center In the figure the dots represent measured DWIs in any direction, for a given gradient strength and pulse separation. The background isolines represent the corresponding b-values for different combinations of G and big_delta. Next, we visualize the middle slices of the test-retest data sets with their corresponding masks. To better illustrate the white matter architecture in the data, we calculate DTI's fractional anisotropy (FA) over the whole slice and project the corpus callosum mask on the FA image.: """ subplot_titles = ["Subject1 Test", "Subject1 Retest", "Subject2 Test", "Subject2 Tetest"] fig = plt.figure() plt.subplots(nrows=2, ncols=2) for i, (data_, mask_, gtab_) in enumerate(zip(data, cc_masks, gtabs)): # take the middle slice data_middle_slice = data_[:, :, 2] mask_middle_slice = mask_[:, :, 2] # estimate fractional anisotropy (FA) for this slice tenmod = dti.TensorModel(gtab_) tenfit = tenmod.fit(data_middle_slice, data_middle_slice[..., 0] > 0) fa = tenfit.fa # set mask color to green with 0.5 opacity as overlay mask_template = np.zeros(np.r_[mask_middle_slice.shape, 4]) mask_template[mask_middle_slice == 1] = np.r_[0., 1., 0., .5] # produce the FA images with corpus callosum masks. plt.subplot(2, 2, 1 + i) plt.title(subplot_titles[i], fontsize=15) plt.imshow(fa, cmap='Greys_r', origin=True, interpolation='nearest') plt.imshow(mask_template, origin=True, interpolation='nearest') plt.axis('off') plt.tight_layout() plt.savefig('qt-dMRI_datasets_fa_with_ccmasks.png') """ .. figure:: qt-dMRI_datasets_fa_with_ccmasks.png :align: center Next, we use qt-dMRI to estimate of time-dependent q-space indices (q$\tau$-indices) for the masked voxels in the corpus callosum of each dataset. In particular, we estimate the Return-to-Original, Return-to-Axis and Return-to-Plane Probability (RTOP, RTAP and RTPP), as well as the Mean Squared Displacement (MSD). In this example we don't extrapolate the data beyond the maximum diffusion time, so we estimate :math:`q\tau` indices between the minimum and maximum diffusion times of the data at 5 equally spaced points. However, it should the noted that qt-dMRI's combined smoothness and sparsity regularization allows for smooth interpolation at any :math:`q\tau` position. In other words, once the basis is fitted to the data, its coefficients describe the the entire :math:`q\tau`-space, and any :math:`q\tau`-position can be freely recovered. This including points beyond the dataset's maximum :math:`q\tau` value (although this should be done with caution). """ tau_min = gtabs[0].tau.min() tau_max = gtabs[0].tau.max() taus = np.linspace(tau_min, tau_max, 5) qtdmri_fits = [] msds = [] rtops = [] rtaps = [] rtpps = [] for i, (data_, mask_, gtab_) in enumerate(zip(data, cc_masks, gtabs)): # select the corpus callsoum voxel for every dataset cc_voxels = data_[mask_ == 1] # initialize the qt-dMRI model. # recommended basis orders are radial_order=6 and time_order=2. # The combined Laplacian and l1-regularization using Generalized # Cross-Validation (GCV) and Cross-Validation (CV) settings is most robust, # but can be used separately and with weightings preset to any positive # value to optimize for speed. qtdmri_mod = qtdmri.QtdmriModel( gtab_, radial_order=6, time_order=2, laplacian_regularization=True, laplacian_weighting='GCV', l1_regularization=True, l1_weighting='CV' ) # fit the model. # Here we take every 5th voxel for speed, but of course all voxels can be # fit for a more robust result later on. qtdmri_fit = qtdmri_mod.fit(cc_voxels[::5]) qtdmri_fits.append(qtdmri_fit) # We estimate MSD, RTOP, RTAP and RTPP for the chosen diffusion times. msds.append(np.array(list(map(qtdmri_fit.msd, taus)))) rtops.append(np.array(list(map(qtdmri_fit.rtop, taus)))) rtaps.append(np.array(list(map(qtdmri_fit.rtap, taus)))) rtpps.append(np.array(list(map(qtdmri_fit.rtpp, taus)))) """ The estimated :math:`q\tau`-indices, for the chosen diffusion times, are now stored in msds, rtops, rtaps and rtpps. The trends of these :math:`q\tau`-indices over time say something about the restriction of diffusing particles over time, which is currently a hot topic in the dMRI community. We evaluate the test-retest reproducibility for the two subjects by plotting the :math:`q\tau`-indices for each subject together. This example will produce similar results as Fig. 10 in [Fick2017]_. We first define a small function to plot the mean and standard deviation of the :math:`q\tau`-index trends in a subject. """ def plot_mean_with_std(ax, time, ind1, plotcolor, ls='-', std_mult=1, label=''): means = np.mean(ind1, axis=1) stds = np.std(ind1, axis=1) ax.plot(time, means, c=plotcolor, lw=3, label=label, ls=ls) ax.fill_between(time, means + std_mult * stds, means - std_mult * stds, alpha=0.15, color=plotcolor) ax.plot(time, means + std_mult * stds, alpha=0.25, color=plotcolor) ax.plot(time, means - std_mult * stds, alpha=0.25, color=plotcolor) """ We start by showing the test-retest MSD of both subjects over time. We plot the :math:`q\tau`-indices together with :math:`q\tau`-index trends of free diffusion with different diffusivities as background. """ # we first generate the data to produce the background index isolines. Delta_ = np.linspace(0.005, 0.02, 100) MSD_ = np.linspace(4e-5, 10e-5, 100) Delta_grid, MSD_grid = np.meshgrid(Delta_, MSD_) D_grid = MSD_grid / (6 * Delta_grid) D_levels = np.r_[1, 5, 7, 10, 14, 23, 30] * 1e-4 fig = plt.figure(figsize=(10, 3)) # start with the plot of subject 1. ax = plt.subplot(1, 2, 1) # first plot the background plt.contourf(Delta_ * 1e3, 1e5 * MSD_, D_grid, levels=D_levels, cmap='Greys', alpha=.5) # plot the test-retest mean MSD and standard deviation of subject 1. plot_mean_with_std(ax, taus * 1e3, 1e5 * msds[0], 'r', 'dashdot', label='MSD Test') plot_mean_with_std(ax, taus * 1e3, 1e5 * msds[1], 'g', 'dashdot', label='MSD Retest') ax.legend(fontsize=13) # plot some text markers to clarify the background diffusivity lines. ax.text(.0091 * 1e3, 6.33, 'D=14e-4', fontsize=12, rotation=35) ax.text(.0091 * 1e3, 4.55, 'D=10e-4', fontsize=12, rotation=25) ax.set_ylim(4, 9.5) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_title(r'Test-Retest MSD($\tau$) Subject 1', fontsize=15) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_ylabel('MSD ($10^{-5}mm^2$)', fontsize=17) # then do the same thing for subject 2. ax = plt.subplot(1, 2, 2) plt.contourf(Delta_ * 1e3, 1e5 * MSD_, D_grid, levels=D_levels, cmap='Greys', alpha=.5) cb = plt.colorbar() cb.set_label('Free Diffusivity ($mm^2/s$)', fontsize=18) plot_mean_with_std(ax, taus * 1e3, 1e5 * msds[2], 'r', 'dashdot') plot_mean_with_std(ax, taus * 1e3, 1e5 * msds[3], 'g', 'dashdot') ax.set_ylim(4, 9.5) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_title(r'Test-Retest MSD($\tau$) Subject 2', fontsize=15) plt.savefig('qt_indices_msd.png') """ .. figure:: qt_indices_msd.png :align: center You can see that the MSD in both subjects increases over time, but also slowly levels off as time progresses. This makes sense as diffusing particles are becoming more restricted by surrounding tissue as time goes on. You can also see that for Subject 1 the index trends nearly perfectly overlap, but for subject 2 they are slightly off, which is also what we found in the paper. Next, we follow the same procedure to estimate the test-retest RTAP, RTOP and RTPP over diffusion time for both subject. For ease of comparison, we will estimate all three in the same unit [1/mm] by taking the square root of RTAP and the cubed root of RTOP. """ # Again, first we define the data for the background illustration. Delta_ = np.linspace(0.005, 0.02, 100) RTXP_ = np.linspace(1, 200, 100) Delta_grid, RTXP_grid = np.meshgrid(Delta_, RTXP_) D_grid = 1 / (4 * RTXP_grid ** 2 * np.pi * Delta_grid) D_levels = np.r_[1, 2, 3, 4, 6, 9, 15, 30] * 1e-4 D_colors = np.tile(np.linspace(.8, 0, 7), (3, 1)).T # We start with estimating the RTOP illustration. fig = plt.figure(figsize=(10, 3)) ax = plt.subplot(1, 2, 1) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) plot_mean_with_std(ax, taus * 1e3, rtops[0] ** (1 / 3.), 'r', '--', label='RTOP$^{1/3}$ Test') plot_mean_with_std(ax, taus * 1e3, rtops[1] ** (1 / 3.), 'g', '--', label='RTOP$^{1/3}$ Retest') ax.legend(fontsize=13) ax.text(.0091 * 1e3, 162, 'D=3e-4', fontsize=12, rotation=-22) ax.text(.0091 * 1e3, 140, 'D=4e-4', fontsize=12, rotation=-20) ax.text(.0091 * 1e3, 113, 'D=6e-4', fontsize=12, rotation=-16) ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_title(r'Test-Retest RTOP($\tau$) Subject 1', fontsize=15) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_ylabel('RTOP$^{1/3}$ (1/mm)', fontsize=17) ax = plt.subplot(1, 2, 2) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) cb = plt.colorbar() cb.set_label('Free Diffusivity ($mm^2/s$)', fontsize=18) plot_mean_with_std(ax, taus * 1e3, rtops[2] ** (1 / 3.), 'r', '--') plot_mean_with_std(ax, taus * 1e3, rtops[3] ** (1 / 3.), 'g', '--') ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_title(r'Test-Retest RTOP($\tau$) Subject 2', fontsize=15) plt.savefig('qt_indices_rtop.png') """ .. figure:: qt_indices_rtop.png :align: center Similarly as MSD, the RTOP is related to the restriction that particles are experiencing and is also rotationally invariant. RTOP is defined as the probability that particles are found at the same position at the time of both gradient pulses. As time increases, the odds become smaller that a particle will arrive at the same position it left, which is illustrated by all RTOP trends in the figure. Notice that the estimated RTOP trends decrease less fast than free diffusion, meaning that particles experience restriction over time. Also notice that the RTOP trends in both subjects nearly perfectly overlap. Next, we estimate two directional :math:`q\tau`-indices, RTAP and RTPP, describing particle restriction perpendicular and parallel to the orientation of the principal diffusivity in that voxel. If the voxel describes coherent white matter (which it does in our corpus callosum example), then they describe properties related to restriction perpendicular and parallel to the axon bundles. """ # First, we estimate the RTAP trends. fig = plt.figure(figsize=(10, 3)) ax = plt.subplot(1, 2, 1) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) plot_mean_with_std(ax, taus * 1e3, np.sqrt(rtaps[0]), 'r', '-', label='RTAP$^{1/2}$ Test') plot_mean_with_std(ax, taus * 1e3, np.sqrt(rtaps[1]), 'g', '-', label='RTAP$^{1/2}$ Retest') ax.legend(fontsize=13) ax.text(.0091 * 1e3, 162, 'D=3e-4', fontsize=12, rotation=-22) ax.text(.0091 * 1e3, 140, 'D=4e-4', fontsize=12, rotation=-20) ax.text(.0091 * 1e3, 113, 'D=6e-4', fontsize=12, rotation=-16) ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_title(r'Test-Retest RTAP($\tau$) Subject 1', fontsize=15) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_ylabel('RTAP$^{1/2}$ (1/mm)', fontsize=17) ax = plt.subplot(1, 2, 2) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) cb = plt.colorbar() cb.set_label('Free Diffusivity ($mm^2/s$)', fontsize=18) plot_mean_with_std(ax, taus * 1e3, np.sqrt(rtaps[2]), 'r', '-') plot_mean_with_std(ax, taus * 1e3, np.sqrt(rtaps[3]), 'g', '-') ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_title(r'Test-Retest RTAP($\tau$) Subject 2', fontsize=15) plt.savefig('qt_indices_rtap.png') # Finally the last one for RTPP. fig = plt.figure(figsize=(10, 3)) ax = plt.subplot(1, 2, 1) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) plot_mean_with_std(ax, taus * 1e3, rtpps[0], 'r', ':', label='RTPP Test') plot_mean_with_std(ax, taus * 1e3, rtpps[1], 'g', ':', label='RTPP Retest') ax.legend(fontsize=13) ax.text(.0091 * 1e3, 113, 'D=6e-4', fontsize=12, rotation=-16) ax.text(.0091 * 1e3, 91, 'D=9e-4', fontsize=12, rotation=-13) ax.text(.0091 * 1e3, 69, 'D=15e-4', fontsize=12, rotation=-10) ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_title(r'Test-Retest RTPP($\tau$) Subject 1', fontsize=15) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_ylabel('RTPP (1/mm)', fontsize=17) ax = plt.subplot(1, 2, 2) plt.contourf(Delta_ * 1e3, RTXP_, D_grid, colors=D_colors, levels=D_levels, alpha=.5) cb = plt.colorbar() cb.set_label('Free Diffusivity ($mm^2/s$)', fontsize=18) plot_mean_with_std(ax, taus * 1e3, rtpps[2], 'r', ':') plot_mean_with_std(ax, taus * 1e3, rtpps[3], 'g', ':') ax.set_ylim(54, 170) ax.set_xlim(.009 * 1e3, 0.0185 * 1e3) ax.set_xlabel('Diffusion Time (ms)', fontsize=17) ax.set_title(r'Test-Retest RTPP($\tau$) Subject 2', fontsize=15) plt.savefig('qt_indices_rtpp.png') """ .. figure:: qt_indices_rtap.png :align: center .. figure:: qt_indices_rtpp.png :align: center As those of RTOP, the trends in RTAP and RTPP also decrease over time. It can be seen that RTAP$^{1/2}$ is always bigger than RTPP, which makes sense as particles in coherent white matter experience more restriction perpendicular to the white matter orientation than parallel to it. Again, in both subjects the test-retest RTAP and RTPP is nearly perfectly consistent. Aside from the estimation of :math:`q\tau`-space indices, :math:`q\tau`-dMRI also allows for the estimation of time-dependent ODFs. Once the Qtdmri model is fitted it can be simply called by qtdmri_fit.odf(sphere, s=sharpening_factor). This is identical to how the mapmri module functions, and allows to study the time-dependence of ODF directionality. This concludes the example on qt-dMRI. As we showed, approaches such as qt-dMRI can help in studying the (finite-:math:`\tau`) temporal properties of diffusion in biological tissues. Differences in :math:`q\tau`-index trends could be indicative of underlying structural differences that affect the time-dependence of the diffusion process. .. [Fick2017]_ Fick, Rutger HJ, et al. "Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time", Medical Image Analysis, 2017. .. [Wassermann2017]_ Wassermann, Demian, et al. "Test-Retest qt-dMRI datasets for 'Non-Parametric GraphNet-Regularized Representation of dMRI in Space and Time' [Data set]". Zenodo. https://doi.org/10.5281/zenodo.996889, 2017. """
bsd-3-clause
devanshdalal/scikit-learn
examples/tree/plot_tree_regression.py
95
1516
""" =================================================================== Decision Tree Regression =================================================================== A 1D regression with decision tree. The :ref:`decision trees <tree>` is used to fit a sine curve with addition noisy observation. As a result, it learns local linear regressions approximating the sine curve. We can see that if the maximum depth of the tree (controlled by the `max_depth` parameter) is set too high, the decision trees learn too fine details of the training data and learn from the noise, i.e. they overfit. """ print(__doc__) # Import the necessary modules and libraries import numpy as np from sklearn.tree import DecisionTreeRegressor import matplotlib.pyplot as plt # Create a random dataset rng = np.random.RandomState(1) X = np.sort(5 * rng.rand(80, 1), axis=0) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(16)) # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=2) regr_2 = DecisionTreeRegressor(max_depth=5) regr_1.fit(X, y) regr_2.fit(X, y) # Predict X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) # Plot the results plt.figure() plt.scatter(X, y, c="darkorange", label="data") plt.plot(X_test, y_1, color="cornflowerblue", label="max_depth=2", linewidth=2) plt.plot(X_test, y_2, color="yellowgreen", label="max_depth=5", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
iandriver/RNA-sequence-tools
RNA_Seq_analysis/make_monocle_data.py
2
5813
import os import cPickle as pickle import pandas as pd import matplotlib matplotlib.use('QT4Agg') import matplotlib.pyplot as plt import matplotlib.pylab as pl from matplotlib.ticker import LinearLocator import seaborn as sns import numpy as np from operator import itemgetter #the file path where gene list will be and where new list will output path_to_file = '/Volumes/Seq_data/cuffnorm_hu_ht280_norm_a6' #name of file containing genes and GO terms (generated by gene_lookup.py) gene_file_source = 'go_search_genes_lung_all.txt' #File that maps 96 well format (A1-H12) back to capture site info (1-96) for fluidigm output plate_map = 'plate_map_grid.txt' base_name = 'hu_ht280_norm_a6' #file with cell capture information on each cell cell_capture_file = 'Cell_loading_hu_ht280_alpha6_all.txt' #load file gene by_cell = pd.DataFrame.from_csv(os.path.join(path_to_file, base_name+'_outlier_filtered.txt'), sep='\t') by_gene = by_cell.transpose() #create list of genes gene_list = by_cell.index.tolist() #create cell list cell_list = [x for x in list(by_cell.columns.values)] plate_map_df = pd.DataFrame.from_csv(os.path.join(path_to_file, plate_map), sep='\t') def ret_loading_pos(pos, plate_map_df): let_dict = {'A':0, 'B':1, 'C':2, 'D':3, 'E':4, 'F':5, 'G':6, 'H':7} let = pos[0] num = pos[1:] num_col = plate_map_df[num] cnum = num_col.iloc[let_dict[let]] return int(cnum.strip('C')) df_by_gene1 = pd.DataFrame(by_gene, columns=gene_list, index=cell_list) df_by_cell1 = pd.DataFrame(by_cell, columns=cell_list, index=gene_list) def make_new_matrix(org_matrix_by_cell, gene_list_file): split_on='_' gene_df = pd.read_csv(os.path.join(path_to_file, gene_list_file), delimiter= '\t') gene_list = gene_df['GeneID'].tolist() group_list = gene_df['GroupID'].tolist() gmatrix_df = org_matrix_by_cell[gene_list] cmatrix_df = gmatrix_df.transpose() score_df = pd.DataFrame(zip(gene_list, group_list), columns=['GeneID', 'GroupID']) sample_data = pd.read_csv(os.path.join(path_to_file, 'samples.table'), delimiter= '\t', index_col=0) by_sample = sample_data.transpose() map_data = pd.read_csv(os.path.join(path_to_file, 'results_'+base_name+'_align.txt'), delimiter= '\t', index_col=0) by_cell_map = map_data.transpose() loading_data = pd.read_csv(os.path.join(path_to_file, cell_capture_file), delimiter= '\t', index_col=0) l_data = loading_data.transpose() cell_list = gmatrix_df.index.tolist() cell_data = [] cell_label_dict ={'norm':('norm_ht280', 'ctrl', 'norm'), 'scler':('scler_ht280', 'diseased', 'scler'), 'IPF':('hu_IPF_HTII_280','diseased', 'IPF'), 'DK':('DK_ht280','diseased', 'DK'), 'alpha6_norm':('norm_alpha6', 'ctrl', 'norm'), 'alpha6_scler':('scler_alpha6', 'diseased', 'scler')} new_cell_list = [] old_cell_list = [] for cell in cell_list: match = False if cell[0:6] == 'norm_h': k = 'norm' tracking_id = cell match = True num = cell.split('_')[2] old_cell_list.append(cell) new_cell_list.append(tracking_id) elif cell[0:7] == 'scler_h': k='scler' tracking_id = cell num = cell.split('_')[2] match = True old_cell_list.append(cell) new_cell_list.append(tracking_id) elif cell[0:2] == 'hu': k = 'IPF' tracking_id = cell num = cell.split('_')[4] match = True old_cell_list.append(cell) new_cell_list.append(tracking_id) elif cell[0:2] == 'DK': k = 'DK' tracking_id = cell num = cell.split('_')[2] match = True old_cell_list.append(cell) new_cell_list.append(tracking_id) elif cell[0:7] == 'scler_a': k = 'alpha6_scler' tracking_id = cell num = cell.split('_')[2] match = True old_cell_list.append(cell) new_cell_list.append(tracking_id) elif cell[0:6] == 'norm_a': k = 'alpha6_norm' tracking_id = cell num = cell.split('_')[2] match = True old_cell_list.append(cell) new_cell_list.append(tracking_id) if match: condition = cell_label_dict[k][1] disease = cell_label_dict[k][2] loading_df = loading_data[cell_label_dict[k][0]] print ret_loading_pos(num, plate_map_df), num loading = loading_df.iloc[ret_loading_pos(num, plate_map_df)-1] print num, tracking_id if 'single' in loading: single_cell = 'yes' else: single_cell = 'no' print by_cell_map[cell] total_mass = by_sample[cell+'_0'][1] input_mass = by_cell_map[cell][0] per_mapped = by_cell_map[cell][4] c_data_tup = (tracking_id,total_mass,input_mass,per_mapped,condition,disease,single_cell) print c_data_tup cell_data.append(c_data_tup) score_df.to_csv(os.path.join(path_to_file, 'gene_feature_data.txt'), sep = '\t', index=False) new_cmatrix_df = cmatrix_df[old_cell_list] new_cmatrix_df.columns = new_cell_list new_cmatrix_df.to_csv(os.path.join(path_to_file, 'goterms_monocle_count_matrix.txt'), sep = '\t', index_col=0) cell_data_df = pd.DataFrame(cell_data, columns=['tracking_id','total_mass','input_mass','per_mapped','condition','disease','single_cell']) cell_data_df.to_csv(os.path.join(path_to_file, 'cell_feature_data.txt'), sep = '\t', index=False) make_new_matrix(df_by_gene1, gene_file_source)
mit
SkumarAG/aiProject
neural/neural.py
2
4300
# -*- coding: utf-8 -*- """ Created on Mon Oct 31 17:56:47 2016 @author: Ramanuja """ # -*- coding: utf-8 -*- """ Created on Fri Oct 28 15:06:19 2016 @author: Ramanuja """ import sys total = 5000 from ..fileread.TweetRead import importData import numpy as np from ..bagofwords.textToVector import bagofWords from sklearn.feature_extraction.text import CountVectorizer from sklearn.utils import shuffle X, y = importData() X = X[1:] y = y[1:] X, y = shuffle(X, y, random_state=0) #X = np.array(X) #vectorizer = CountVectorizer(min_df=2) #X = vectorizer.fit_transform(X) X = np.array(bagofWords(X)) y = np.array(map(int,list(y))) num_examples =len(X) ratio = .6 # training data X_train = X[1:num_examples*ratio] y_train = y[1:num_examples*ratio] #test data X_test = X[num_examples*ratio:] y_test = y[num_examples*ratio:] barLength = 10 status = "" nn_input_dim = len(X[0])#neural netwoek input dimension nn_output_dim = 2# true or false neuron_number = 6 # in a layer # Gradient descent parameters (I picked these by hand) alpha = 0.001 # learning rate for gradient descent reg_lambda = 0.001 # regularization strength num_passe = 10000 def weight_init(L1,L2): return np.sqrt(6)/np.sqrt(L1 + L2) def calculate_loss(model): W1, W2 = model['W1'], model['W2'] # Forward propagation to calculate our predictions num_ex = len(X_train) z1 = X_train.dot(W1) a1 = np.tanh(z1) z2 = a1.dot(W2) exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Calculating the loss corect_logprobs = -np.log(probs[range(num_ex), y_train]) data_loss = np.sum(corect_logprobs) # Add regulatization term to loss (optional) data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2))) return 1./num_ex * data_loss def status(i,model): progress = (float(i)/num_passe) block = int(round(barLength*progress)) sys.stdout.write('\r') text = "[{0}] {1}% Completed.".format( "#"*block + "-"*(barLength-block), format(progress*100,".2f"),status) sys.stdout.write(text) sys.stdout.write (" Current Loss %.5f." %(calculate_loss(model))) sys.stdout.flush() def predict(model, x): W1, W2 = model['W1'], model['W2'] # Forward propagation z1 = x.dot(W1) a1 = np.tanh(z1) z2 = a1.dot(W2) exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, keepdims=True) return np.argmax(probs) def build_model(nn_hdim, num_passes=num_passe, print_loss=False): #Initilization of weight #L1 number of input in the given layer #L2 number of input in the given layer L1 = nn_input_dim L2 = neuron_number esp_init = weight_init(L1,L2) W1 = np.random.uniform(-esp_init,esp_init,[nn_input_dim,nn_hdim]) L1 = neuron_number L2 = nn_output_dim esp_init = weight_init(L1,L2) W2 = np.random.uniform(-esp_init,esp_init,[nn_hdim, nn_output_dim]) # This is what we return at the end model = {} # Gradient descent. For each batch... for i in xrange(0, num_passes): # Forward propagation z1 = X_train.dot(W1) a1 = np.tanh(z1) z2 = a1.dot(W2) exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) num_ex = len(X_train) # Backpropagation delta3 = probs delta3[range(num_ex), y_train] -= 1 dW2 = (a1.T).dot(delta3) delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))# diff of tanh -- in future i will use gradient desent to calculate this dW1 = np.dot(X_train.T, delta2) # Add regularization terms (b1 and b2 don't have regularization terms) dW2 =dW2 + (reg_lambda * W2) dW1 = dW1 + (reg_lambda * W1) # Gradient descent parameter update W1 = W1 -(alpha * dW1) W2 = W2 -(alpha * dW2) # Assign new parameters to the model model = { 'W1': W1, 'W2': W2} status(i,model) return model # Build a model def test: model = build_model(neuron_number, print_loss=True) test = "Heavy traffic at vest avenue" #predict(model, x)
apache-2.0
css-lucas/GAT
gat/core/sna/SNAcityUpdate.py
1
33078
import tempfile import matplotlib.pyplot as plt import networkx as nx import numpy as np import xlrd from networkx.algorithms import bipartite as bi from networkx.algorithms import centrality from itertools import product from collections import defaultdict import pandas as pd import datetime from gat.core.sna import propensities from gat.core.sna import resilience from gat.core.sna import cliques from gat.core.sna import ergm class SNA(): def __init__(self, excel_file, nodeSheet, attrSheet=None): self.subAttrs = ["W", "SENT", "SZE", "AMT"] self.header, self.list = self.readFile(excel_file, nodeSheet) if attrSheet != None: self.attrHeader, self.attrList = self.readFile(excel_file, attrSheet) self.G = nx.DiGraph() self.nodes = [] self.edges = [] self.nodeSet = [] self.clustering_dict = {} self.latapy_clustering_dict = {} self.closeness_centrality_dict = {} self.betweenness_centrality_dict = {} self.degree_centrality_dict = {} self.eigenvector_centrality_dict = {} self.katz_centraltiy_dict = {} self.load_centrality_dict = {} self.communicability_centrality_dict = {} self.communicability_centrality_exp_dict = {} self.node_attributes_dict = {} self.classList = ['Agent','Organization','Audience','Role','Event','Belief','Symbol','Knowledge','Task','Actor'] self.attrSheet = attrSheet # Read xlsx file and save the header and all the cells, each a dict with value and header label # Input: xlsx file, sheet def readFile(self, excel_file, sheet): workbook = xlrd.open_workbook(excel_file) sh = workbook.sheet_by_name(sheet) header = [str(sh.cell(0, col).value).strip("\n") for col in range(sh.ncols)] New_ncols = sh.ncols - 1 # If any, delete all the empty features in the header while header[New_ncols] == '': header.remove(header[New_ncols]) New_ncols -= 1 # a list of nodes list = [] for row in range(1, sh.nrows): tempList = [] for col in range(New_ncols + 1): feature = str(sh.cell(0, col).value).strip("\n") cell = sh.cell(row, col).value if type(cell) == type(""): val = cell.strip("\n") else: val = str(cell) if val != "": # handle empty cells # Make each node a dict with node name and node header, to assign later tempList.append({'val': val, 'header': feature}) # need to define attributes later list.append(tempList) # remove repeated column titles consolidatedHeader = [] for feature in header: if (feature not in consolidatedHeader) and (feature not in self.subAttrs): consolidatedHeader.append(feature) return consolidatedHeader, list # create set of nodes for multipartite graph # name = names of the node. This is defined by the header. ex: Abbasi-Davani.F: Name or Abbasi-Davani.F: Faction leader # nodeSet = names that define a set of node. For example, we can define Person, Faction Leader, and Party Leader as ".['agent']" # note: len(name) = len(nodeSet), else code fails def createNodeList(self, nodeSet): for row in self.list: for node in row: if node['header'] in nodeSet and node['val'] != "": # strip empty cells self.G.add_node(node['val'], block=node['header']) self.nodeSet = nodeSet self.nodes = nx.nodes(self.G) def loadOntology(self, source, classAssignments): # Creating an edge list and setting its length for the conditional iterations: b = self.attrList y = len(b) # Creating master edge list, and empty lists to fill from each ontology class classLists = defaultdict(list) # creates a dictionary with default list values, no need to initialize - nifty! edgeList = [] # iterating through ontology classes to add them to the network as nodes connected by weighted # edge attributes to other ontological entities for x in range(0, y): for q in range(0, len(b[x])): nodeHeader = b[x][q]['header'] nodeClass = classAssignments.get(nodeHeader) if nodeHeader == source and b[x][q]['val'] is not None: classLists['actor'].append(b[x][q]['val']) if nodeClass == 'Belief' and b[x][q]['val'] is not None: classLists['belief'].append(b[x][q]['val']) if nodeClass == 'Symbols' and b[x][q]['val'] is not None: classLists['symbol'].append(b[x][q]['val']) if nodeClass == 'Resource' and b[x][q]['val'] is not None: classLists['resource'].append(b[x][q]['val']) if nodeClass == 'Agent' and b[x][q]['val'] is not None: classLists['agent'].append(b[x][q]['val']) if nodeClass == 'Organization' and b[x][q]['val'] is not None: classLists['org'].append(b[x][q]['val']) if nodeClass == 'Event' and b[x][q]['val'] is not None: classLists['event'].append(b[x][q]['val']) if nodeClass == 'Audience' and b[x][q]['val'] is not None: classLists['aud'].append(b[x][q]['val']) # removing duplicates from each list # (this does not remove the effect that numerous connections to one node have on the network) classLists = {key: set(val) for key, val in classLists.items()} # dict comprehension method # adding ontological class to each node as node attribute stringDict = { 'actor': 'Actor', 'belief': 'Belief', 'symbol': 'Symbol', 'resource': 'Resource', 'agent': 'Agent', 'org': 'Organization', 'aud': 'Audience', 'event': 'Event', 'role': 'Role', 'know': 'Knowledge', 'taskModel': 'Task Model', 'location': 'Location', 'title': 'Title', 'position': 'position', } for x in nx.nodes(self.G): for key, entityList in classLists.items(): if x in entityList: self.G.node[x]['ontClass'] = stringDict[key] # Input: header list and list of attributes with header label from attribute sheet # Output: updated list of nodes with attributes def loadAttributes(self): for row in self.attrList: nodeID = row[0]['val'] for cell in row[1:]: if cell['val'] != '': if nodeID in self.nodes: attrList = [] node = self.G.node[nodeID] if cell['header'] in self.subAttrs: # handle subattributes, e.g. weight prevCell = row[row.index(cell) - 1] key = {} while prevCell['header'] in self.subAttrs: key[prevCell['header']] = prevCell['val'] prevCell = row[row.index(prevCell) - 1] key[cell['header']] = cell['val'] for value in node[prevCell['header']]: if prevCell['val'] in value: listFlag = True if type(value) is list else False attrList.append([value[0], key] if listFlag else [value, key]) # weighted attributes take the form [value, weight] else: attrList.append(value) attrID = prevCell['header'] else: # if the attribute is not a subattribute if cell['header'] in self.G.node[nodeID]: attrList = (node[cell['header']]) attrList.append(cell['val']) attrID = cell['header'] self.changeAttribute(nodeID, attrList, attrID) # Input: the node set that will serve as the source of all links # Output: updated list of edges connecting nodes in the same row def createEdgeList(self, sourceSet): list = self.list edgeList = [] for row in list: sourceNodes = [] for node in row: if node['header'] in sourceSet: sourceNodes.append(node['val']) for source in sourceNodes: for node in row: if node['val'] != source and node['header'] in self.nodeSet: sourceDict = self.G.node[source] edge = (source, node['val']) edgeList.append(edge) # for ontological elements: add a weighted link if attribute appears in graph for attrs in [val for key,val in sourceDict.items()]: for attr in attrs: if attr[0] == node['val']: avg_w = np.average([float(val) for key, val in attr[1].items()]) self.G.add_edge(source, attr[0], weight=avg_w) self.G.add_edges_from(edgeList) self.edges = edgeList def addEdges(self, pair): # deprecated, needs fixing - doesn't handle new dict structure data = self.list newEdgeList = [] for row in data: first = row[pair[0]]['val'] second = row[pair[1]]['val'] if (first != '' and second != '') and (first != second): newEdgeList.append((first, second)) self.G.add_edges_from(newEdgeList) self.edges.extend(newEdgeList) def calculatePropensities(self, emo=True, role=True): for edge in self.edges: # for every edge, calculate propensities and append as an attribute attributeDict = {} emoPropList = propensities.propCalc(self, edge)[0] if emo else None if len(emoPropList) > 0: attributeDict['Emotion'] = emoPropList attributeDict['emoWeight'] = propensities.aggregateProps(emoPropList) rolePropList = propensities.propCalc(self, edge)[1] if role else None if len(rolePropList) > 0: attributeDict['Role'] = rolePropList attributeDict['roleWeight'] = propensities.aggregateProps(rolePropList) inflPropList = propensities.propCalc(self, edge)[2] if role else None if len(inflPropList) > 0: attributeDict['Influence'] = inflPropList attributeDict['inflWeight'] = propensities.aggregateProps(inflPropList) self.G[edge[0]][edge[1]] = attributeDict self.edges = nx.edges(self.G) def drag_predict(self,node): ## Smart prediction prototype # ERGM generates probability matrix where order is G.nodes() x G.nodes() ergm_prob_mat = ergm.probability(G=self.G) # Assigning propensities probabilities and generating add_node links - TODO: merge this with overall method later for target in self.G.nodes_iter(): emoProps, roleProps, inflProps = propensities.propCalc(self, (node, target)) if len(emoProps) > 0: w = [] for prop in emoProps: w.append(prop[4] * prop[5]) # add the product of the attribute weights to a list for each prop w_avg = np.average(w) # find average propensity product weight prob = np.random.binomial(1, w_avg * 1 / 2) # use w_avg as the probability for a bernoulli distribution if prob: self.G.add_edge(node, target) self.G[node][target]['Emotion'] = emoProps self.G[node][target]['Role'] = roleProps if len(roleProps) > 0 else None self.G[node][target]['Influence'] = inflProps if len(inflProps) > 0 else None self.G[node][target]['Predicted'] = True # iterate through all possible edges for i, j in product(range(len(self.G.nodes())), repeat=2): if i != j: node = self.G.nodes()[i] target = self.G.nodes()[j] prob = ergm_prob_mat[i, j] * 0.05 # check props if self.G[node].get(target) is not None: ## check emo props to modify adjacency prob matrix if present if self.G[node][target].get('Emotion') is not None: w = [] for prop in emoProps: w.append(prop[4] * prop[5]) # add the product of the attribute weights to a list for each prop w_avg = np.average(w) prob = (prob + w_avg * 0.5) / 2 presence = np.random.binomial(1, prob) if prob < 1 else 1 # use adjacency prob mat as the probability for a bernoulli distribution if presence: self.G.add_edge(node, target) self.G[node][target]['Predicted'] = True # input: spreadsheet of bomb attacks # output: updated dict of sentiment changes for each of attack events def event_update(self, event_sheet, max_iter): df = pd.read_excel(event_sheet) bombData = df.to_dict(orient='index') for x in range(0, len(bombData)): bombData[x]['Date'] = datetime.datetime.strptime(str(bombData[x]['Date']), '%Y%m%d') # using datetime to create iterations of flexible length dateList = [bombData[x]['Date'] for x in bombData] dateIter = (max(dateList) - min(dateList)) / 10 for i in range(max_iter): nodeList = [(bombData[x]['Source'], bombData[x]['Target'], bombData[x]['CODE'], bombData['Location']) for x in bombData if min(dateList) + dateIter * i <= bombData[x]['Date'] < min(dateList) + dateIter * (i+1)] # adding attacks to test graph by datetime period and iterating through to change sentiments iterEdgeList = [] for node in nodeList: for others in self.G.nodes_iter(): # rejection of source if self.G.has_edge(node[0], others): for type in ["Agent", "Org"]: sent = self.G.node[node].get(type) if sent is not None and sent[0] == others: print(sent) iterEdgeList.append((node[0], others, (sent[1] * .1) + sent[1])) # sympathy for target if self.G.has_edge(node[1], others): sent = self.G.get_edge_data(node, others) iterEdgeList.append((node[0], others, (sent[node, others] * 1.1) + sent[node, others])) # sympathy for city population if node[0]['Location'][0:5] == 'IRQNAJ' and \ self.G.node(data=True)['Belief'] == "Shi'ism" and \ self.G.node(data=True)['Belief'] + 1 > 0: if node[0]['Location'] == 'IRQANBFAL' and \ self.G.node(data=True)['Belief'] == "Shi'ism" and \ self.G.node(data=True)['Belief'] + 1 > 0: iterEdgeList.append((node[0], others, (sent[node, others] * 1.1) + sent[node, others])) if node[0]['Location'][0:5] == 'IRQKIR' and \ self.G.node(data=True)['Belief'] == 'Kurdish Nationalism' and \ self.G.node(data=True)['Belief'] + 1 > 0: iterEdgeList.append((node[0], others, (sent[node, others] * 1.1) + sent[node, others])) # add an event node event = 'Event '+str(node[2])+': '+node[0]+' to '+node[1] self.G.add_node(event, {'ontClass':'Event', 'Name':['Event '+str(node[2])+': '+node[0]+' to '+node[1]], 'block':'Event', 'Description': 'Conduct suicide, car, or other non-military bombing'}) self.G.add_edge(node[0], event) self.G.add_edge(event, node[1]) self.G.add_weighted_edges_from(iterEdgeList, 'W') self.nodes = nx.nodes(self.G) # update node list self.edges = nx.edges(self.G) # update edge list # copy the original social network graph created with user input data. # this will be later used to reset the modified graph to inital state def copyGraph(self): self.temp = self.G def resetGraph(self): self.G = self.temp # remove edge and node. Note that when we remove a certain node, edges that are # connected to such nodes are also deleted. def removeNode(self, node): if self.G.has_node(node): self.G.remove_node(node) self.nodes = nx.nodes(self.G) for edge in self.edges: if node in edge: self.edges.remove(edge) def addNode(self, node, attrDict={}, connections=[]): self.G.add_node(node, attrDict) for i in connections: self.G.add_edge(node, i) for k in attrDict: # add attributes based on user input self.changeAttribute(node, [attrDict[k]], k) self.changeAttribute(node, True, 'newNode') self.drag_predict(node) self.nodes = nx.nodes(self.G) # update node list self.edges = nx.edges(self.G) # update edge list def removeEdge(self, node1, node2): if self.G.has_edge(node1, node2): self.G.remove_edge(node1, node2) # Change an attribute of a node def changeAttribute(self, node, value, attribute="bipartite"): if self.G.has_node(node): self.G.node[node][attribute] = value self.nodes = nx.nodes(self.G) # Change node name def relabelNode(self, oldNode, newNode): if self.G.has_node(oldNode): self.G.add_node(newNode, self.G.node[oldNode]) self.G.remove_node(oldNode) self.nodes = nx.nodes(self.G) # Check if node exists def is_node(self, node): return self.G.has_node(node) # Getter for nodes and edges def getNodes(self): return self.nodes def getEdges(self): return self.edges def communityDetection(self): undirected = self.G.to_undirected() self.eigenvector_centrality() return cliques.louvain(G = undirected, centralities = self.eigenvector_centrality_dict) def calculateResilience(self,baseline=True,robustness=True): cliques_found = self.communityDetection() simpleRes, baseline = resilience.averagePathRes(cliques_found, iters=5) if baseline is not None else None robustnessRes = resilience.laplacianRes(cliques_found, iters=5) if robustness else None return baseline,simpleRes,robustnessRes ########################## ## System-wide measures ## ########################## # set all the properties with this function. def set_property(self): self.clustering() self.latapy_clustering() self.robins_alexander_clustering() self.closeness_centrality() self.betweenness_centrality() self.degree_centrality() self.katz_centrality() self.eigenvector_centrality() self.load_centrality() self.communicability_centrality() # Not available for directed graphs self.communicability_centrality_exp() self.node_connectivity() self.average_clustering() def center(self): return nx.center(self.G) def diameter(self): return nx.diameter(self.G) def periphery(self): return nx.periphery(self.G) def eigenvector(self): return nx.eigenvector_centrality(self.G) def triadic_census(self): return nx.triadic_census(self.G) def average_degree_connectivity(self): return nx.average_degree_connectivity(self.G) def degree_assortativity_coefficient(self): return nx.degree_assortativity_coefficient(self.G) # node connectivity: def node_connectivity(self): return nx.node_connectivity(self.G) # average clustering coefficient: def average_clustering(self): return nx.average_clustering(self.G.to_undirected()) # attribute assortivity coefficient: def attribute_assortivity(self, attr): return nx.attribute_assortativity_coefficient(self.G, attr) # is strongly connected: def is_strongly_connected(self): return nx.is_strongly_connected(self.G) # is weakly connected: def is_weakly_connected(self): return nx.is_weakly_connected(self.G) ############################# ## Node-dependent measures ## ############################# # Sum sentiment for belief nodes def sentiment(self,types,key): sentiment_dict = {} for type in types: # nodes = [node for node in self.G.nodes_iter() if node.get("ontClass") == type] # for typeNode in nodes: for node in self.G.nodes_iter(): sent = self.G.node[node].get(type) # the belief attribute if sent is not None: for item in [item for item in sent if len(item) == 2]: #TODO better way to do this if sentiment_dict.get(item[0]) is None: sentiment_dict[item[0]] = float(item[1][key]) else: sentiment_dict[item[0]] += float(item[1][key]) self.sentiment_dict = sentiment_dict return sentiment_dict # Find clustering coefficient for each nodes def clustering(self): self.clustering_dict = bi.clustering(self.G) # set lapaty clustering to empty dictionary if there are more then 2 nodesets # else return lapaty clustering coefficients for each nodes def latapy_clustering(self): if len(self.nodeSet) != 2 or len(set(self.nodeSet)) != 2: self.latapy_clustering_dict = {} else: self.latapy_clustering_dict = bi.latapy_clustering(self.G) def robins_alexander_clustering(self): self.robins_alexander_clustering_dict = bi.robins_alexander_clustering(self.G) # Find closeness_centrality coefficient for each nodes def closeness_centrality(self): self.closeness_centrality_dict = bi.closeness_centrality(self.G, self.nodes) # Find degree_centrality coefficient for each nodes def degree_centrality(self): self.degree_centrality_dict = nx.degree_centrality(self.G) # Find betweenness_centrality coefficient for each nodes def betweenness_centrality(self): self.betweenness_centrality_dict = nx.betweenness_centrality(self.G) def eigenvector_centrality(self): self.eigenvector_centrality_dict = nx.eigenvector_centrality(self.G, max_iter=500, tol=1e-01) # self.eigenvector_centrality_dict = nx.eigenvector_centrality(self.G) # self.eigenvector_centrality_dict = nx.eigenvector_centrality_numpy(self.G) def katz_centrality(self): self.katz_centrality_dict = centrality.katz_centrality(self.G) def load_centrality(self): self.load_centrality_dict = nx.load_centrality(self.G) def communicability_centrality(self): self.communicability_centrality_dict = nx.communicability_centrality(self.G) def communicability_centrality_exp(self): self.communicability_centrality_exp_dict = nx.communicability_centrality(self.G) def node_attributes(self): self.node_attributes_dict = self.G.node def get_node_attributes(self, node): return self.G.node[node] def get_eigenvector_centrality(self, lst=[]): if len(lst) == 0: return self.eigenvector_centrality_dict else: sub_dict = {} for key, value in self.clustering_dict: if key in lst: sub_dict[key] = value return sub_dict def get_clustering(self, lst=[]): if len(lst) == 0: return self.clustering_dict else: sub_dict = {} for key, value in self.clustering_dict: if key in lst: sub_dict[key] = value return sub_dict def get_latapy_clustering(self, lst=[]): if len(lst) == 0: return self.latapy_clustering_dict else: sub_dict = {} for key, value in self.latapy_clustering_dict: if key in lst: sub_dict[key] = value return sub_dict def get_robins_alexander_clustering(self, lst=[]): if len(lst) == 0: return self.robins_alexander_clustering_dict else: sub_dict = {} for key, value in self.robins_alexander_clustering_dict: if key in lst: sub_dict[key] = value return sub_dict def get_closeness_centrality(self, lst=[]): if len(lst) == 0: return self.closeness_centrality_dict else: sub_dict = {} for key, value in self.closeness_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_degree_centrality(self, lst=[]): if len(lst) == 0: return self.degree_centrality_dict else: sub_dict = {} for key, value in self.degree_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_betweenness_centrality(self, lst=[]): if len(lst) == 0: return self.betweenness_centrality_dict else: sub_dict = {} for key, value in self.betweenness_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_katz_centrality(self, lst=[]): if len(lst) == 0: return self.katz_centrality_dict else: sub_dict = {} for key, value in self.katz_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_load_centrality(self, lst=[]): if len(lst) == 0: return self.load_centrality_dict else: sub_dict = {} for key, value in self.load_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_communicability_centrality(self, lst=[]): if len(lst) == 0: return self.load_centrality_dict else: sub_dict = {} for key, value in self.load_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict def get_communicability_centrality_exp(self, lst=[]): if len(lst) == 0: return self.communicability_centrality_dict else: sub_dict = {} for key, value in self.communicability_centrality_dict: if key in lst: sub_dict[key] = value return sub_dict # draw 2D graph # attr is a dictionary that has color and size as its value. def graph_2D(self, attr, label=False): block = nx.get_node_attributes(self.G, 'block') Nodes = nx.nodes(self.G) pos = nx.fruchterman_reingold_layout(self.G) labels = {} for node in block: labels[node] = node for node in set(self.nodeSet): nx.draw_networkx_nodes(self.G, pos, with_labels=False, nodelist=[n for n in Nodes if bipartite[n] == node], node_color=attr[node][0], node_size=attr[node][1], alpha=0.8) nx.draw_networkx_edges(self.G, pos, width=1.0, alpha=0.5) for key, value in pos.items(): pos[key][1] += 0.01 if label == True: nx.draw_networkx_labels(self.G, pos, labels, font_size=8) limits = plt.axis('off') plt.show() # draw 3 dimensional verison of the graph (returning html object) def graph_3D(self): n = nx.edges(self.G) removeEdge = [] for i in range(len(n)): if n[i][0] == '' or n[i][1] == '': removeEdge.append(n[i]) for j in range(len(removeEdge)): n.remove(removeEdge[j]) jgraph.draw(nx.edges(self.G), directed="true") # note: this is for Vinay's UI def plot_2D(self, attr, label=False): plt.clf() ontClass = nx.get_node_attributes(self.G, 'ontClass') pos = nx.fruchterman_reingold_layout(self.G) labels = {} for node in ontClass: labels[node] = node for node in set(self.classList): nx.draw_networkx_nodes(self.G, pos, with_labels=False, nodelist=[key for key, val in ontClass.items() if val == node], node_color=attr[node][0], node_size=attr[node][1], alpha=0.8) nx.draw_networkx_edges(self.G, pos, width=1.0, alpha=0.5) for key, value in pos.items(): pos[key][1] += 0.01 if label == True: nx.draw_networkx_labels(self.G, pos, labels, font_size=7) plt.axis('off') f = tempfile.NamedTemporaryFile( dir='out/sna', suffix='.png', delete=False) # save the figure to the temporary file plt.savefig(f, bbox_inches='tight') f.close() # close the file # get the file's name # (the template will need that) plotPng = f.name.split('/')[-1] plotPng = plotPng.split('\\')[-1] return plotPng # create json file for 3 dimensional graph # name ex: {name, institution}, {faction leaders, institution}, etc... # color: {"0xgggggg", "0xaaaaaa"} etc. (Takes a hexadecimal "String"). # returns a json dictionary def create_json(self, classes, color, graph=None): data = {} edges = [] nodes_property = {} if graph is None: graph = self.G for edge in self.G.edges_iter(): if graph[edge[0]][edge[1]].get('Emotion') is not None: # links with propensities can be given hex code colors for arrow, edge; can also change arrow size edges.append( {'source': edge[0], 'target': edge[1], 'name': edge[0] + "," + edge[1], 'arrowColor': '0xE74C3C', 'arrowSize': 2}) if graph[edge[0]][edge[1]].get('Predicted') is not None: edges.append( {'source': edge[0], 'target': edge[1], 'name': edge[0] + "," + edge[1], 'color': '0xE74C3C', 'arrowColor': '0xE74C3C', 'arrowSize': 2}) if graph[edge[0]][edge[1]].get('W') is not None: edges.append( {'source': edge[0], 'target': edge[1], 'name': edge[0] + "," + edge[1], 'arrowColor': '0x32CD32', 'arrowSize': 2}) else: edges.append( {'source': edge[0], 'target': edge[1], 'name': edge[0] + "," + edge[1]}) #TODO clean up repeated code above for node in self.G.nodes_iter(): temp = {} ontClass = self.G.node[node].get('ontClass') if graph.node[node].get('newNode') is True: temp['color'] = '0x8B0000' else: if ontClass is None: temp['color'] = '0xD3D3D3' else: temp['color'] = color[classes.index(ontClass)] if graph.node[node].get('Name') is not None: temp['name'] = graph.node[node].get('Name')[0] nodes_property[node] = temp data['edges'] = edges data['nodes'] = nodes_property return data
mit
abimannans/scikit-learn
sklearn/utils/tests/test_validation.py
133
18339
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( NotFittedError, has_fit_parameter, check_is_fitted, check_consistent_length, DataConversionWarning, ) from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=100, dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, []) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = check_array(42, ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
amanzotti/algorithm_coursera
percolation.py
1
3417
import union_find import numpy as np class Percolation(object): """docstring for Percolation 1==closed 0==open """ def __init__(self, n): super(Percolation, self).__init__() assert n>=0 self.n = n self.matrix = np.ones((n,n),dtype=np.int) self.union_grid = union_find.union_grid_improved(n*n+2) # 2 more to allocate the virtual node at the top and at the bottom. # link bottom and top row to virtual. for x in np.arange(0,n): self.union_grid.connect_slow(x,n*n) for x in np.arange(n*n-n,n*n): self.union_grid.connect_slow(x,n*n+1) def open_site(self,i): assert i < self.n*self.n and i>=0, 'index out of boundary' p,q =np.unravel_index( i, (self.n,self.n)) # print p,q if self.matrix[p,q]==0: # print 'return' return self.matrix[p,q]=0 if 0<=p+1<self.n and self.matrix[p+1,q]==0 : # print np.ravel_multi_index([[p+1],[q]],(self.n,self.n)),p+1,q self.union_grid.connect_slow(i,np.int(np.ravel_multi_index([[p+1],[q]], (self.n,self.n)))) if 0<=p-1<self.n and self.matrix[p-1,q]==0 : # print np.ravel_multi_index([[p-1],[q]],(self.n,self.n)),p-1,q self.union_grid.connect_slow(i,np.int(np.ravel_multi_index([[p-1],[q]], (self.n,self.n)))) if 0<=q+1<self.n and self.matrix[p,q+1]==0: # print np.ravel_multi_index([[p],[q+1]],(self.n,self.n)),p,q+1 self.union_grid.connect_slow(i,np.int(np.ravel_multi_index([[p],[q+1]], (self.n,self.n)))) if 0<=q-1<self.n and self.matrix[p,q-1]==0: # print np.ravel_multi_index([[p],[q-1]],(self.n,self.n)),p,q-1 self.union_grid.connect_slow(i,np.int(np.ravel_multi_index([[p],[q-1]], (self.n,self.n)))) def is_close(self,i): assert i < self.n*self.n and i>=0, 'index out of boundary' p,q =np.unravel_index( i, (self.n,self.n)) return self.matrix[p,q] == 1 def is_open(self,i): assert i < self.n*self.n and i>=0, 'index out of boundary' p,q =np.unravel_index( i, (self.n,self.n)) return self.matrix[p,q] == 0 def is_full(self,i): assert i < self.n*self.n and i>=0, 'index out of boundary' return self.union_grid.is_connected_quick(i,self.n*self.n) def is_percolating(self): return self.union_grid.is_connected_quick(self.n*self.n,self.n*self.n+1) # GRaphic def plot_board(self,fig_n): import matplotlib.pyplot as plt plt.matshow(np.invert(self.matrix), fignum=fig_n, cmap=plt.cm.gray) if __name__ == '__main__': import time import union_find import numpy as np import matplotlib.pyplot as plt import percolation n= 25 ratio = [] for x in np.arange(1,200): indeces = np.random.permutation(n*n) perc = percolation.Percolation(n) i=0 # plt.figure(1) while (not perc.is_percolating()): perc.open_site(indeces[i]) # perc.plot_board(fig_n=1) # plt.show() # time.sleep(3) # print perc.is_percolating() i+=1 print 1-np.sum(perc.matrix)/float(np.size(perc.matrix)) ratio.append(1-np.sum(perc.matrix)/float(np.size(perc.matrix))) # plt.savefig('test{}.pdf'.format(i)) print 'mean' , np.mean(ratio)
gpl-2.0
BasuruK/sGlass
Indoor_Object_Recognition_Engine/IOIM/Indoor_Object_Recognition_System.py
1
8640
import os,cv2 import numpy as np import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.cross_validation import train_test_split from keras import backend as K K.set_image_dim_ordering('tf') from keras.utils import np_utils from keras.models import Sequential from keras.layers.core import Dense,Dropout,Activation,Flatten from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.optimizers import SGD,RMSprop,adam,adadelta import os.path from keras.models import load_model USE_SKLEARN_PREPROCESSING=False from Dialogue_Manager.settings_manager import SettingsManager from config import Configurations from sklearn import preprocessing class Indoor_Object_Recognition_System: img_rows = 128 img_colms = 128 num_channels = 3 num_epoch = 6 img_data_scaled = None img_name = None SettingsController = None ConfigurationsController = None IMPORT_MANAGER = None def __init__(self, import_manager,objectdatasetpath=None): self.objectdatasetpath=objectdatasetpath self.SettingsController = SettingsManager() self.ConfigurationsController = Configurations() self.IMPORT_MANAGER = import_manager def image_to_feature_vector(image,size=(128,128)): # resize the image to a fixed size , then flttern the image into a list of raw pixels intensities return cv2.resize(image,size).flatten() def train_indoorObjectRecognition_CNN(self): if USE_SKLEARN_PREPROCESSING: img_data=self.img_data_scaled PATH = os.getcwd() # Define data path data_path = PATH + self.objectdatasetpath data_dir_list = os.listdir(data_path) img_data_list=[] for dataset in data_dir_list: print(data_dir_list) img_list=os.listdir(data_path+'/'+dataset) print('Loaded the images of dataset-'+'{}\n'.format(dataset)) for img in img_list: input_img=cv2.imread(data_path+'/'+dataset+'/'+img) input_img_flatten = self.image_to_feature_vector(input_img, (128, 128)) img_data_list.append(input_img_flatten) img_data=np.array(img_data_list) img_data=img_data.astype('float') print('Image Data',img_data.shape) if self.num_channels==1: if K.image_dim_ordering()=='th': img_data=np.expand_dims(img_data,axis=1) print('Image Data BnW',img_data.shape) else: img_data=np.expand_dims(img_data,axis=4) print('Image Data BnW',img_data.shape) else: if K.image_dim_ordering()=='th': img_data=np.rollaxis(img_data,3,1) print('Image Data RGB',img_data.shape) image_data_scaled=preprocessing.scale(img_data) print("Image Data Scaled" , image_data_scaled) if K.image_dim_ordering()=='th': image_data_scaled=image_data_scaled.reshape(img_data.shape[0],self.num_channels,self.img_rows,self.img_colms) print('Image Data Scaled BnW',image_data_scaled.shape) else: image_data_scaled=image_data_scaled.reshape(img_data.shape[0],self.img_rows,self.img_colms,self.num_channels) print('Image Data Scaled RGB',image_data_scaled.shape) # Define classes num_classes=2 num_samples=img_data.shape[0] labels=np.ones((num_samples,),dtype='int64') labels[0:33]=0 labels[33:63]=1 names=['bottel','mug'] # convert class labels to on-hot encoding Y = np_utils.to_categorical(labels,num_classes) x, y = shuffle(img_data,Y,random_state=2) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4) X_train = X_train.reshape(X_train.shape[0], self.img_colms, self.img_rows, -1) X_test = X_test.reshape(X_test.shape[0], self.img_colms, self.img_rows, -1) input_shape = (self.img_colms, self.img_rows, 1) # Defining the model input_shape = img_data[0].shape model = Sequential() model.add(Conv2D(32, (3, 3), border_mode='same', input_shape=(128, 128, 3))) model.add(Activation('relu')) model.add(Conv2D(32, ( 3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2),dim_ordering='th')) model.add(Dropout(0.5)) model.add(Conv2D(64, (3, 3),dim_ordering='th')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2),dim_ordering='th')) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(512)) #no of hidden layers model.add(Activation('relu')) model.add(Dropout(0.3)) model.add(Dense(num_classes)) model.add(Activation('softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Viewing model_configuration model.summary() model.get_config() model.layers[0].get_config() model.layers[0].input_shape model.layers[0].output_shape model.layers[0].get_weights() np.shape(model.layers[0].get_weights()[0]) model.layers[0].trainable # Training if os.path.isfile('Indoor_Object_Recognition.h5') == False: hist = model.fit(X_train, y_train, batch_size=150, epochs=self.num_epoch, verbose=1, validation_data=(X_test, y_test)) model.save('Indoor_Object_Recognition.h5') else: hist=load_model('Indoor_Object_Recognition.h5') # Evaluating the model score = model.evaluate(X_test, y_test, batch_size=150 , verbose=0) print('Test Loss:', score[0]) print('Test accuracy:', score[1]) test_image = X_test[0:1] y_test[0:1] return model def capture_IO_image(self): cam=cv2.VideoCapture(0) save = 'C:/Users/Nipuni/AnacondaProjects/Indoor_Object_Identification_System/IOIM/Indoor Objects/Test' cv2.namedWindow("test") img_counter=0 while True: ret, frame=cam.read() cv2.imshow("test",frame) if not ret: break k=cv2.waitKey(1) if k%256 == 27: # ESC pressed print("Escape hit, closing...") break elif k%256 == 32: # SPACE pressed self.img_name="indoor_object_{}.png".format(img_counter) return_value, image = cam.read() cv2.imwrite(os.path.join(save, self.img_name), image) print("{} written!".format(self.img_name)) img_counter +=1 cam.release() cv2.destroyAllWindows() return self.img_name def predict_object_class(self, path): # Predicting the test image test_image = cv2.imread(path) test_image=cv2.resize(test_image,(128,128)) test_image = np.array(test_image) test_image = test_image.astype('float32') test_image /= 255 if self.num_channels == 1: if K.image_dim_ordering()=='th': test_image = np.expand_dims(test_image, axis=1) else: test_image= np.expand_dims(test_image, axis=4) else: if K.image_dim_ordering()=='th': test_image=np.rollaxis(test_image,3,1) else: test_image= np.expand_dims(test_image, axis=0) objectModel = self.IMPORT_MANAGER.load_cnn_model() # Predicting the test image print(objectModel.predict(test_image)) predict_class=objectModel.predict_classes(test_image) return predict_class def predict_singleObject(self): indoor_object = self.capture_IO_image() path = os.path.abspath(indoor_object) predict_class = None prediction = self.predict_object_class( path="Indoor_Object_Recognition_Engine/IOIM/Indoor Objects/Test/indoor_object_0.png") if prediction == [0]: predict_class = 'Bottle' print("This is a Bottle") elif prediction == [1]: predict_class = 'Mug' print("This is a Mug") return predict_class def predict_objects(self, image): classification_model = self.IMPORT_MANAGER.load_cnn_model() prediction = classification_model.predict_classes(image) return prediction
gpl-3.0
cactorium/UCFBrainStuff
old/old_py/brainstuff.py
1
1746
# This is an example of popping a packet from the Emotiv class's packet queue # and printing the gyro x and y values to the console. from emokit.emotiv import Emotiv import platform if platform.system() == "Windows": import socket # Needed to prevent gevent crashing on Windows. (surfly / gevent issue #459) import gevent import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation is_running = True # TODO: is_running is not working as expected. But it DOES work! def evt_main(): global is_running ring_buf = np.zeros(x.size) headset = Emotiv() gevent.spawn(headset.setup) gevent.sleep(0) pos = 0 try: while is_running: packet = headset.dequeue() print packet.gyro_x, packet.gyro_y ring_buf[pos] = packet.sensors["O2"]["value"] pos = (pos + 1) % ring_buf.size if pos % 4 == 0: yield np.concatenate((ring_buf[pos:ring_buf.size:1], ring_buf[0:pos:1])) gevent.sleep(0) except KeyboardInterrupt: headset.close() finally: is_running = False headset.close() x = np.arange(0, 4096) test_buf = np.zeros(x.size) fig, ax = plt.subplots() line, = ax.plot(x, test_buf) plt.axis([0, x.size - 1, -8192, 8191]) def init(): line.set_ydata(np.ma.array(x, mask=True)) return line, def animate(rb): dft = np.fft.fft(rb) line.set_ydata(np.square(np.absolute(dft))) return line, def counter(): global is_running i = 0 while is_running: yield i i = i + 1 ani = animation.FuncAnimation(fig, animate, evt_main, init_func=init, interval=20, blit=True) plt.show() is_running = False while True: gevent.sleep(0)
mit
pv/scikit-learn
sklearn/utils/estimator_checks.py
41
47834
from __future__ import print_function import types import warnings import sys import traceback import inspect import pickle from copy import deepcopy import numpy as np from scipy import sparse import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.base import (clone, ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin, BaseEstimator) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.lda import LDA from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.pipeline import make_pipeline from sklearn.utils.validation import DataConversionWarning from sklearn.cross_validation import train_test_split from sklearn.utils import shuffle from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] def _yield_non_meta_checks(name, Estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, Classifier): # test classfiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in Classifier().get_params().keys(): yield check_class_weight_classifiers def _yield_regressor_checks(name, Regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d if name != 'CCA': # check that the regressor handles int input yield check_regressors_int # Test if NotFittedError is raised yield check_estimators_unfitted def _yield_transformer_checks(name, Transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted def _yield_clustering_checks(name, Clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features def _yield_all_checks(name, Estimator): for check in _yield_non_meta_checks(name, Estimator): yield check if issubclass(Estimator, ClassifierMixin): for check in _yield_classifier_checks(name, Estimator): yield check if issubclass(Estimator, RegressorMixin): for check in _yield_regressor_checks(name, Estimator): yield check if issubclass(Estimator, TransformerMixin): for check in _yield_transformer_checks(name, Estimator): yield check if issubclass(Estimator, ClusterMixin): for check in _yield_clustering_checks(name, Estimator): yield check def check_estimator(Estimator): """Check if estimator adheres to sklearn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. Parameters ---------- Estimator : class Class to check. """ name = Estimator.__class__.__name__ check_parameters_default_constructible(name, Estimator) for check in _yield_all_checks(name, Estimator): check(name, Estimator) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_fast_parameters(estimator): # speed up some estimators params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE"): estimator.set_params(n_iter=5) if "max_iter" in params: # NMF if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR if estimator.__class__.__name__ == 'LinearSVR': estimator.set_params(max_iter=20) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=1) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, Estimator): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) # catch deprecation warnings with warnings.catch_warnings(): if name in ['Scaler', 'StandardScaler']: estimator = Estimator(with_mean=False) else: estimator = Estimator() set_fast_parameters(estimator) # fit and predict try: estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, 'predict_proba'): estimator.predict_proba(X) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise def check_dtype_object(name, Estimator): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) y = multioutput_estimator_convert_y_2d(name, y) with warnings.catch_warnings(): estimator = Estimator() set_fast_parameters(estimator) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) def check_transformer_general(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, Transformer, X, y) _check_transformer(name, Transformer, X.tolist(), y.tolist()) def check_transformer_data_not_an_array(name, Transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, Transformer, this_X, this_y) def check_transformers_unfitted(name, Transformer): X, y = _boston_subset() with warnings.catch_warnings(record=True): transformer = Transformer() assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, Transformer, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape # catch deprecation warnings with warnings.catch_warnings(record=True): transformer = Transformer() set_random_state(transformer) set_fast_parameters(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) X_pred = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_array_almost_equal( x_pred, x_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( x_pred, x_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) else: assert_array_almost_equal( X_pred, X_pred2, 2, "fit_transform and transform outcomes not consistent in %s" % Transformer) assert_array_almost_equal( X_pred, X_pred3, 2, "consecutive fit_transform outcomes not consistent in %s" % Transformer) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, Estimator): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_array_almost_equal(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, Estimator): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(name, y) estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = inspect.getargspec(func).args assert_true(args[2] in ["y", "Y"]) @ignore_warnings def check_estimators_dtypes(name, Estimator): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(name, y) for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): getattr(estimator, method)(X_train) def check_estimators_empty_data_messages(name, Estimator): e = Estimator() set_fast_parameters(e) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(name, np.array([1, 0, 1])) msg = "0 feature(s) (shape=(3, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, e.fit, X_zero_features, y) def check_estimators_nan_inf(name, Estimator): rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(name, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, Estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, Estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, Estimator) # transform if hasattr(estimator, "transform"): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, Estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, Estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, Estimator) def check_estimators_pickle(name, Estimator): """Test that we can pickle all estimators""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(name, y) # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_random_state(estimator) set_fast_parameters(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_array_almost_equal(result[method], unpickled_result) def check_estimators_partial_fit_n_features(name, Alg): # check if number of features changes between calls to partial_fit. if not hasattr(Alg, 'partial_fit'): return X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if isinstance(alg, ClassifierMixin): classes = np.unique(y) alg.partial_fit(X, y, classes=classes) else: alg.partial_fit(X, y) assert_raises(ValueError, alg.partial_fit, X[:, :-1], y) def check_clustering(name, Alg): X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings with warnings.catch_warnings(record=True): alg = Alg() set_fast_parameters(alg) if hasattr(alg, "n_clusters"): alg.set_params(n_clusters=3) set_random_state(alg) if name == 'AffinityPropagation': alg.set_params(preference=-100) alg.set_params(max_iter=100) # fit alg.fit(X) # with lists alg.fit(X.tolist()) assert_equal(alg.labels_.shape, (n_samples,)) pred = alg.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name is 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(alg) with warnings.catch_warnings(record=True): pred2 = alg.fit_predict(X) assert_array_equal(pred, pred2) def check_clusterer_compute_labels_predict(name, Clusterer): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = Clusterer() if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) def check_classifiers_one_label(name, Classifier): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() set_fast_parameters(classifier) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, Classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, Classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, Classifier, exc) raise exc def check_classifiers_train(name, Classifier): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: # catch deprecation warnings classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape with warnings.catch_warnings(record=True): classifier = Classifier() if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_fast_parameters(classifier) set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes is 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes is 3 and not isinstance(classifier, BaseLibSVM)): # 1on1 of LibSVM works differently assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_array_almost_equal(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) def check_estimators_fit_returns_self(name, Estimator): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, Estimator): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() with warnings.catch_warnings(record=True): est = Estimator() msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) def check_supervised_y_2d(name, Estimator): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 # catch deprecation warnings with warnings.catch_warnings(record=True): estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_array_almost_equal(y_pred.ravel(), y_pred_2d.ravel()) def check_classifiers_classes(name, Classifier): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) # catch deprecation warnings with warnings.catch_warnings(record=True): classifier = Classifier() if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_fast_parameters(classifier) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) def check_regressors_int(name, Regressor): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds regressor_1 = Regressor() regressor_2 = Regressor() set_fast_parameters(regressor_1) set_fast_parameters(regressor_2) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_regressors_train(name, Regressor): X, y = _boston_subset() y = StandardScaler().fit_transform(y) # X is already scaled y = multioutput_estimator_convert_y_2d(name, y) rnd = np.random.RandomState(0) # catch deprecation warnings with warnings.catch_warnings(record=True): regressor = Regressor() set_fast_parameters(regressor) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): print(regressor) assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, Regressor): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) y = multioutput_estimator_convert_y_2d(name, X[:, 0]) regressor = Regressor() set_fast_parameters(regressor) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) def check_class_weight_classifiers(name, Classifier): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} with warnings.catch_warnings(record=True): classifier = Classifier(class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) assert_greater(np.mean(y_pred == 0), 0.89) def check_class_weight_balanced_classifiers(name, Classifier, X_train, y_train, X_test, y_test, weights): with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) with warnings.catch_warnings(record=True): classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_array_almost_equal(coef_balanced, coef_manual) def check_estimators_overwrite_params(name, Estimator): X, y = make_blobs(random_state=0, n_samples=9) y = multioutput_estimator_convert_y_2d(name, y) # some want non-negative input X -= X.min() with warnings.catch_warnings(record=True): # catch deprecation warnings estimator = Estimator() set_fast_parameters(estimator) set_random_state(estimator) # Make a physical copy of the orginal estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) def check_sparsify_coefficients(name, Estimator): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = Estimator() est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) def check_classifier_data_not_an_array(name, Estimator): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_regressor_data_not_an_array(name, Estimator): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(name, y) check_estimators_data_not_an_array(name, Estimator, X, y) def check_estimators_data_not_an_array(name, Estimator, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # catch deprecation warnings with warnings.catch_warnings(record=True): # separate estimators to control random seeds estimator_1 = Estimator() estimator_2 = Estimator() set_fast_parameters(estimator_1) set_fast_parameters(estimator_2) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_array_almost_equal(pred1, pred2, 2, name) def check_parameters_default_constructible(name, Estimator): classifier = LDA() # test default-constructibility # get rid of deprecation warnings with warnings.catch_warnings(record=True): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: args, varargs, kws, defaults = inspect.getargspec(init) except TypeError: # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they need a non-default argument args = args[2:] else: args = args[1:] if args: # non-empty list assert_equal(len(args), len(defaults)) else: return for arg, default in zip(args, defaults): assert_in(type(default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if arg not in params.keys(): # deprecated parameter, not in get_params assert_true(default is None) continue if isinstance(params[arg], np.ndarray): assert_array_equal(params[arg], default) else: assert_equal(params[arg], default) def multioutput_estimator_convert_y_2d(name, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if name in (['MultiTaskElasticNetCV', 'MultiTaskLassoCV', 'MultiTaskLasso', 'MultiTaskElasticNet']): return y[:, np.newaxis] return y def check_non_transformer_estimators_n_iter(name, estimator, multi_output=False): # Check if all iterative solvers, run for more than one iteratiom iris = load_iris() X, y_ = iris.data, iris.target if multi_output: y_ = y_[:, np.newaxis] set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) assert_greater(estimator.n_iter_, 0) def check_transformer_n_iter(name, estimator): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater(iter_, 1) else: assert_greater(estimator.n_iter_, 1) def check_get_params_invariance(name, estimator): class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self if name in ('FeatureUnion', 'Pipeline'): e = estimator([('clf', T())]) elif name in ('GridSearchCV' 'RandomizedSearchCV'): return else: e = estimator() shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items()))
bsd-3-clause
vimilimiv/weibo-popularity_judge-and-content_optimization
分类和回归/newcla.py
1
2399
#------------------------------------------------------------------------------- # coding=utf8 # Name: 模块1 # Purpose: # # Author: zhx # # Created: 19/05/2016 # Copyright: (c) zhx 2016 # Licence: <your licence> #------------------------------------------------------------------------------- import numpy as np from sklearn import svm from sklearn.svm import LinearSVC from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier def fun(a): if a==1: return 1 else: return -1 def main(): traindata = open("trainnew.txt") testdata = open("testnew.txt") traindata.readline() # 跳过第一行 testdata.readline() train = np.loadtxt(traindata) test = np.loadtxt(testdata) X = train[0:4628,0:27] y = train[0:4628,27] test_x = test[0:1437,0:27] test_y = test[0:1437,27] model1 = LinearSVC() model2 = LogisticRegression() model3 = GaussianNB() model4 = RandomForestClassifier() model5 = KNeighborsClassifier() model1.fit(X,y) model2.fit(X,y) model3.fit(X,y) model4.fit(X,y) model5.fit(X,y) predicted1 = model1.predict(test_x) predicted2 = model2.predict(test_x) predicted3 = model3.predict(test_x) predicted4 = model4.predict(test_x) predicted5 = model5.predict(test_x) mypredict = predicted1 for i in xrange(1437): p1 = predicted1[i] p2 = predicted2[i] p3 = predicted3[i] p4 = predicted4[i] p5 = predicted5[i] if (p1+p2+p4)==3: mypredict[i]=1 elif (p1+p2+p4)==2: if p3+p5>=1: mypredict[i]=1 else: mypredict[i]=0 else: mypredict[i]=0 classname = ['popular','not_popular'] print "1 Svm-linear" print(classification_report(test_y,predicted1))#,classname)) print "2 Logistci regression" print(classification_report(test_y,predicted2))#,classname)) print "3 NB - gaussian" print(classification_report(test_y,predicted3))#,classname)) print "4 Random Forest" print(classification_report(test_y,predicted4))#,classname)) print "5 KNN" print(classification_report(test_y,predicted5))#,classname)) print "6 Com" print(classification_report(test_y,mypredict))#,classname)) main()
mit
zplab/zplib
zplib/image/sample_texture.py
2
2094
import numpy from sklearn import cluster from . import _sample_texture sample_texture = _sample_texture.sample_texture sample_ar_texture = _sample_texture.sample_ar_texture def subsample_mask(mask, max_points): """Return a mask containing at most max_points 'True' values, each of which is located somewhere within the original mask. This is useful for sampling textures where it is neither necessary nor practical to sample EVERY pixel of potential interest. Instead, a random subset of the pixels of interest is selected. """ mask = numpy.asarray(mask) > 0 num_points = mask.sum() if num_points > max_points: z = numpy.zeros(num_points, dtype=bool) z[:max_points] = 1 mask = mask.copy() mask[mask] = numpy.random.permutation(z) return mask def bin_by_texture_class(image, num_classes, mask=None, size=3): """Return an image where pixels are replaced by the "texture class" that that pixel belongs to. Textures are sampled using sample_ar_texture and then clustered with k-means clustering. An image is returned where each pixel represents the label of its texture cluster. Parameters: image: 2-dimensional numpy array of type uint8, uint16, or float32 num_classes: number of clusters to identify with k-means mask: optional mask for which pixels to examine size: size of the ar feature window (see sample_ar_texture) """ texture_samples = sample_ar_texture(image, mask, size) kmeans = cluster.MiniBatchKMeans(n_clusters=64, max_iter=300) kmeans.fit(texture_samples) dtype = numpy.uint16 if num_classes > 256 else numpy.uint8 labeled_image = numpy.zeros(image.shape, dtype) # if not image.flags.fortran: # labeled_image = labeled_image.T # if mask is not None: # mask = mask.T if mask is not None: labeled_image[mask] = kmeans.labels_ else: labeled_image.flat = kmeans.labels_ # if not image.flags.fortran: # labeled_image = labeled_image.T return labeled_image
mit
mayavanand/RMMAFinalProject
build/lib/azimuth/predict.py
1
21618
import numpy as np import sklearn from sklearn.metrics import roc_curve, auc import sklearn.metrics import sklearn.cross_validation import copy import util import time import metrics as ranking_metrics import azimuth.models.regression import azimuth.models.ensembles import azimuth.models.DNN import azimuth.models.baselines import multiprocessing def fill_in_truth_and_predictions(truth, predictions, fold, y_all, y_pred, learn_options, test): truth[fold]['ranks'] = np.hstack((truth[fold]['ranks'], y_all[learn_options['rank-transformed target name']].values[test].flatten())) truth[fold]['thrs'] = np.hstack((truth[fold]['thrs'], y_all[learn_options['binary target name']].values[test].flatten())) if 'raw_target_name' in learn_options.keys(): truth[fold]['raw'] = np.hstack((truth[fold]['raw'], y_all[learn_options['raw target name']].values[test].flatten())) predictions[fold] = np.hstack((predictions[fold], y_pred.flatten())) return truth, predictions def construct_filename(learn_options, TEST): if learn_options.has_key("V"): filename = "V%s" % learn_options["V"] else: filename = "offV1" if TEST: filename = "TEST." filename += learn_options["method"] filename += '.order%d' % learn_options["order"] # try: # learn_options["target_name"] = ".%s" % learn_options["target_name"].split(" ")[1] # except: # pass filename += learn_options["target_name"] if learn_options["method"] == "GPy": pass # filename += ".R%d" % opt_options['num_restarts'] # filename += ".K%s" % learn_options['kerntype'] # if learn_options.has_key('degree'): # filename += "d%d" % learn_options['degree'] # if learn_options['warped']: # filename += ".Warp" elif learn_options["method"] == "linreg": filename += "." + learn_options["penalty"] filename += "." + learn_options["cv"] if learn_options["training_metric"] == "NDCG": filename += ".NDGC_%d" % learn_options["NDGC_k"] elif learn_options["training_metric"] == "AUC": filename += ".AUC" elif learn_options["training_metric"] == 'spearmanr': filename += ".spearman" print "filename = %s" % filename return filename def print_summary(global_metric, results, learn_options, feature_sets, flags): print "\nSummary:" print learn_options print "\t\tglobal %s=%.2f" % (learn_options['metric'], global_metric) print "\t\tmedian %s across folds=%.2f" % (learn_options['metric'], np.median(results[0])) print "\t\torder=%d" % learn_options["order"] if learn_options.has_key('kerntype'): "\t\tkern type = %s" % learn_options['kerntype'] if learn_options.has_key('degree'): print "\t\tdegree=%d" % learn_options['degree'] print "\t\ttarget_name=%s" % learn_options["target_name"] for k in flags.keys(): print '\t\t' + k + '=' + str(learn_options[k]) print "\t\tfeature set:" for set in feature_sets.keys(): print "\t\t\t%s" % set print "\t\ttotal # features=%d" % results[4] def extract_fpr_tpr_for_fold(aucs, fold, i, predictions, truth, y_binary, test, y_pred): assert len(np.unique(y_binary))<=2, "if using AUC need binary targets" fpr, tpr, _ = roc_curve(y_binary[test], y_pred) roc_auc = auc(fpr, tpr) aucs.append(roc_auc) def extract_NDCG_for_fold(metrics, fold, i, predictions, truth, y_ground_truth, test, y_pred, learn_options): NDCG_fold = ranking_metrics.ndcg_at_k_ties(y_ground_truth[test].flatten(), y_pred.flatten(), learn_options["NDGC_k"]) metrics.append(NDCG_fold) def extract_spearman_for_fold(metrics, fold, i, predictions, truth, y_ground_truth, test, y_pred, learn_options): spearman = util.spearmanr_nonan(y_ground_truth[test].flatten(), y_pred.flatten())[0] assert not np.isnan(spearman), "found nan spearman" metrics.append(spearman) def get_train_test(test_gene, y_all, train_genes=None): # this is a bit convoluted because the train_genes+test_genes may not add up to all genes # for e.g. when we load up V3, but then use only V2, etc. is_off_target = 'MutatedSequence' in y_all.index.names if is_off_target: train = (y_all.index.get_level_values('MutatedSequence').values != test_gene) test = None return train, test not_test = (y_all.index.get_level_values('Target gene').values != test_gene) if train_genes is not None: in_train_genes = np.zeros(not_test.shape, dtype=bool) for t_gene in train_genes: in_train_genes = np.logical_or(in_train_genes, (y_all.index.get_level_values('Target gene').values == t_gene)) train = np.logical_and(not_test, in_train_genes) else: train = not_test #y_all['test'] as to do with extra pairs in V2 test = (y_all.index.get_level_values('Target gene').values== test_gene) * (y_all['test'].values == 1.) # convert to indices test = np.where(test == True)[0] train = np.where(train == True)[0] return train, test def cross_validate(y_all, feature_sets, learn_options=None, TEST=False, train_genes=None, CV=True): ''' feature_sets is a dictionary of "set name" to pandas.DataFrame one set might be single-nucleotide, position-independent features of order X, for e.g. Method: "GPy" or "linreg" Metric: NDCG (learning to rank metric, Normalized Discounted Cumulative Gain); AUC Output: cv_score_median, gene_rocs When CV=False, it trains on everything (and tests on everything, just to fit the code) ''' print "range of y_all is [%f, %f]" % (np.min(y_all[learn_options['target_name']].values), np.max(y_all[learn_options['target_name']].values)) allowed_methods = ["GPy", "linreg", "AdaBoostRegressor", "AdaBoostClassifier", "DecisionTreeRegressor", "RandomForestRegressor", "ARDRegression", "GPy_fs", "mean", "random", "DNN", "lasso_ensemble", "doench", "logregL1", "sgrna_from_doench", 'SVC', 'xu_et_al'] assert learn_options["method"] in allowed_methods,"invalid method: %s" % learn_options["method"] assert learn_options["method"] == "linreg" and learn_options['penalty'] == 'L2' or learn_options["weighted"] is None, "weighted only works with linreg L2 right now" # construct filename from options filename = construct_filename(learn_options, TEST) print "Cross-validating genes..." t2 = time.time() y = np.array(y_all[learn_options["target_name"]].values[:,None],dtype=np.float64) # concatenate feature sets in to one nparray, and get dimension of each inputs, dim, dimsum, feature_names = util.concatenate_feature_sets(feature_sets) if not CV: assert learn_options['cv'] == 'gene', 'Must use gene-CV when CV is False (I need to use all of the genes and stratified complicates that)' # set-up for cross-validation ## for outer loop, the one Doench et al use genes for if learn_options["cv"] == "stratified": assert not learn_options.has_key("extra_pairs") or learn_options['extra pairs'], "can't use extra pairs with stratified CV, need to figure out how to properly account for genes affected by two drugs" label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(y_all['Target gene'].values) gene_classes = label_encoder.transform(y_all['Target gene'].values) if 'n_folds' in learn_options.keys(): n_folds = learn_options['n_folds'] elif learn_options['train_genes'] is not None and learn_options["test_genes"] is not None: n_folds = len(learn_options["test_genes"]) else: n_folds = len(learn_options['all_genes']) cv = sklearn.cross_validation.StratifiedKFold(gene_classes, n_folds=n_folds, shuffle=True) fold_labels = ["fold%d" % i for i in range(1,n_folds+1)] if learn_options['num_genes_remove_train'] is not None: raise NotImplementedException() elif learn_options["cv"]=="gene": cv = [] if not CV: train_test_tmp = get_train_test('dummy', y_all) # get train, test split using a dummy gene train_tmp, test_tmp = train_test_tmp # not a typo, using training set to test on as well, just for this case. Test set is not used # for internal cross-val, etc. anyway. train_test_tmp = (train_tmp, train_tmp) cv.append(train_test_tmp) fold_labels = learn_options['all_genes'] elif learn_options['train_genes'] is not None and learn_options["test_genes"] is not None: assert learn_options['train_genes'] is not None and learn_options['test_genes'] is not None, "use both or neither" for i, gene in enumerate(learn_options['test_genes']): cv.append(get_train_test(gene, y_all, learn_options['train_genes'])) fold_labels = learn_options["test_genes"] # if train and test genes are seperate, there should be only one fold train_test_disjoint = set.isdisjoint(set(learn_options["train_genes"].tolist()), set(learn_options["test_genes"].tolist())) else: for i, gene in enumerate(learn_options['all_genes']): train_test_tmp = get_train_test(gene, y_all) cv.append(train_test_tmp) fold_labels = learn_options['all_genes'] if learn_options['num_genes_remove_train'] is not None: for i, (train,test) in enumerate(cv): unique_genes = np.random.permutation(np.unique(np.unique(y_all['Target gene'][train]))) genes_to_keep = unique_genes[0:len(unique_genes) - learn_options['num_genes_remove_train']] guides_to_keep = [] filtered_train = [] for j, gene in enumerate(y_all['Target gene']): if j in train and gene in genes_to_keep: filtered_train.append(j) cv_i_orig = copy.deepcopy(cv[i]) cv[i] = (filtered_train, test) if learn_options['num_genes_remove_train']==0: assert np.all(cv_i_orig[0]==cv[i][0]) assert np.all(cv_i_orig[1]==cv[i][1]) print "# train/train after/before is %s, %s" % (len(cv[i][0]), len(cv_i_orig[0])) print "# test/test after/before is %s, %s" % (len(cv[i][1]), len(cv_i_orig[1])) else: raise Exception("invalid cv options given: %s" % learn_options["cv"]) cv = [c for c in cv] #make list from generator, so can subset for TEST case if TEST: ind_to_use = [0]#[0,1] cv = [cv[i] for i in ind_to_use] fold_labels = [fold_labels[i] for i in ind_to_use] truth = dict([(t, dict([(m, np.array([])) for m in ['raw', 'ranks', 'thrs']])) for t in fold_labels]) predictions = dict([(t, np.array([])) for t in fold_labels]) m = {} metrics = [] #do the cross-validation num_proc = learn_options["num_proc"] if num_proc > 1: num_proc = np.min([num_proc,len(cv)]) print "using multiprocessing with %d procs--one for each fold" % num_proc jobs = [] pool = multiprocessing.Pool(processes=num_proc) for i,fold in enumerate(cv): train,test = fold print "working on fold %d of %d, with %d train and %d test" % (i, len(cv), len(train), len(test)) if learn_options["method"]=="GPy": job = pool.apply_async(azimuth.models.GP.gp_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"]=="linreg": job = pool.apply_async(azimuth.models.regression.linreg_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"]=="logregL1": job = pool.apply_async(azimuth.models.regression.logreg_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"]=="AdaBoostRegressor": job = pool.apply_async(azimuth.models.ensembles.adaboost_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options, False)) elif learn_options["method"]=="AdaBoostClassifier": job = pool.apply_async(azimuth.models.ensembles.adaboost_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options, True)) elif learn_options["method"]=="DecisionTreeRegressor": job = pool.apply_async(azimuth.models.ensembles.decisiontree_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"]=="RandomForestRegressor": job = pool.apply_async(azimuth.models.ensembles.randomforest_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"]=="ARDRegression": job = pool.apply_async(azimuth.models.regression.ARDRegression_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "random": job = pool.apply_async(azimuth.models.baselines.random_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "mean": job = pool.apply_async(azimuth.models.baselines.mean_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "SVC": job = pool.apply_async(azimuth.models.baselines.SVC_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "DNN": job = pool.apply_async(azimuth.models.DNN.DNN_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "lasso_ensemble": job = pool.apply_async(azimuth.models.ensembles.LASSOs_ensemble_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "doench": job = pool.apply_async(azimuth.models.baselines.doench_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "sgrna_from_doench": job = pool.apply_async(azimuth.models.baselines.sgrna_from_doench_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) elif learn_options["method"] == "xu_et_al": job = pool.apply_async(azimuth.models.baselines.xu_et_al_on_fold, args=(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options)) else: raise Exception("did not find method=%s" % learn_options["method"]) jobs.append(job) pool.close() pool.join() for i,fold in enumerate(cv):#i in range(0,len(jobs)): y_pred, m[i] = jobs[i].get() train,test = fold if learn_options["training_metric"]=="AUC": extract_fpr_tpr_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options["ground_truth_label"]].values, test, y_pred) elif learn_options["training_metric"]=="NDCG": extract_NDCG_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options["ground_truth_label"]].values, test, y_pred, learn_options) elif learn_options["training_metric"] == 'spearmanr': extract_spearman_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options["ground_truth_label"]].values, test, y_pred, learn_options) else: raise Exception("invalid 'training_metric' in learn_options: %s" % learn_options["training_metric"]) truth, predictions = fill_in_truth_and_predictions(truth, predictions, fold_labels[i], y_all, y_pred, learn_options, test) pool.terminate() else: # non parallel version for i,fold in enumerate(cv): train,test = fold if learn_options["method"]=="GPy": y_pred, m[i] = gp_on_fold(azimuth.models.GP.feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="linreg": y_pred, m[i] = azimuth.models.regression.linreg_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="logregL1": y_pred, m[i] = azimuth.models.regression.logreg_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="AdaBoostRegressor": y_pred, m[i] = azimuth.models.ensembles.adaboost_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options, classification=False) elif learn_options["method"]=="AdaBoostClassifier": y_pred, m[i] = azimuth.models.ensembles.adaboost_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options, classification=True) elif learn_options["method"]=="DecisionTreeRegressor": y_pred, m[i] = azimuth.models.ensembles.decisiontree_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="RandomForestRegressor": y_pred, m[i] = azimuth.models.ensembles.randomforest_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="ARDRegression": y_pred, m[i] = azimuth.models.regression.ARDRegression_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"]=="GPy_fs": y_pred, m[i] = azimuth.models.GP.gp_with_fs_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "random": y_pred, m[i] = azimuth.models.baselines.random_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "mean": y_pred, m[i] = azimuth.models.baselines.mean_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "SVC": y_pred, m[i] = azimuth.models.baselines.SVC_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "DNN": y_pred, m[i] = azimuth.models.DNN.DNN_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "lasso_ensemble": y_pred, m[i] = azimuth.models.ensembles.LASSOs_ensemble_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "doench": y_pred, m[i] = azimuth.models.baselines.doench_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "sgrna_from_doench": y_pred, m[i] = azimuth.models.baselines.sgrna_from_doench_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) elif learn_options["method"] == "xu_et_al": y_pred, m[i] = azimuth.models.baselines.xu_et_al_on_fold(feature_sets, train, test, y, y_all, inputs, dim, dimsum, learn_options) else: raise Exception("invalid method found: %s" % learn_options["method"]) if learn_options["training_metric"]=="AUC": # fills in truth and predictions extract_fpr_tpr_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options['ground_truth_label']].values, test, y_pred) elif learn_options["training_metric"]=="NDCG": extract_NDCG_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options["ground_truth_label"]].values, test, y_pred, learn_options) elif learn_options["training_metric"] == 'spearmanr': extract_spearman_for_fold(metrics, fold_labels[i], i, predictions, truth, y_all[learn_options["ground_truth_label"]].values, test, y_pred, learn_options) truth, predictions = fill_in_truth_and_predictions(truth, predictions, fold_labels[i], y_all, y_pred, learn_options, test) print "\t\tRMSE: ", np.sqrt(((y_pred - y[test])**2).mean()) print "\t\tSpearman correlation: ", util.spearmanr_nonan(y[test], y_pred)[0] print "\t\tfinished fold/gene %i of %i" % (i, len(fold_labels)) cv_median_metric =[np.median(metrics)] gene_pred = [(truth, predictions)] print "\t\tmedian %s across gene folds: %.3f" % (learn_options["training_metric"], cv_median_metric[-1]) t3 = time.time() print "\t\tElapsed time for cv is %.2f seconds" % (t3-t2) return metrics, gene_pred, fold_labels, m, dimsum, filename, feature_names
bsd-3-clause
Mazecreator/tensorflow
tensorflow/examples/learn/iris_custom_decay_dnn.py
37
3774
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with exponential decay.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn import datasets from sklearn import metrics from sklearn import model_selection import tensorflow as tf X_FEATURE = 'x' # Name of the input feature. def my_model(features, labels, mode): """DNN with three hidden layers.""" # Create three fully connected layers respectively of size 10, 20, and 10. net = features[X_FEATURE] for units in [10, 20, 10]: net = tf.layers.dense(net, units=units, activation=tf.nn.relu) # Compute logits (1 per class). logits = tf.layers.dense(net, 3, activation=None) # Compute predictions. predicted_classes = tf.argmax(logits, 1) if mode == tf.estimator.ModeKeys.PREDICT: predictions = { 'class': predicted_classes, 'prob': tf.nn.softmax(logits) } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # Convert the labels to a one-hot tensor of shape (length of features, 3) and # with a on-value of 1 for each one-hot vector of length 3. onehot_labels = tf.one_hot(labels, 3, 1, 0) # Compute loss. loss = tf.losses.softmax_cross_entropy( onehot_labels=onehot_labels, logits=logits) # Create training op with exponentially decaying learning rate. if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_global_step() learning_rate = tf.train.exponential_decay( learning_rate=0.1, global_step=global_step, decay_steps=100, decay_rate=0.001) optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(loss, global_step=global_step) return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op) # Compute evaluation metrics. eval_metric_ops = { 'accuracy': tf.metrics.accuracy( labels=labels, predictions=predicted_classes) } return tf.estimator.EstimatorSpec( mode, loss=loss, eval_metric_ops=eval_metric_ops) def main(unused_argv): iris = datasets.load_iris() x_train, x_test, y_train, y_test = model_selection.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) classifier = tf.estimator.Estimator(model_fn=my_model) # Train. train_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_train}, y=y_train, num_epochs=None, shuffle=True) classifier.train(input_fn=train_input_fn, steps=1000) # Predict. test_input_fn = tf.estimator.inputs.numpy_input_fn( x={X_FEATURE: x_test}, y=y_test, num_epochs=1, shuffle=False) predictions = classifier.predict(input_fn=test_input_fn) y_predicted = np.array(list(p['class'] for p in predictions)) y_predicted = y_predicted.reshape(np.array(y_test).shape) # Score with sklearn. score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy (sklearn): {0:f}'.format(score)) # Score with tensorflow. scores = classifier.evaluate(input_fn=test_input_fn) print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy'])) if __name__ == '__main__': tf.app.run()
apache-2.0
krez13/scikit-learn
examples/ensemble/plot_forest_importances.py
168
1793
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show()
bsd-3-clause
boada/desCluster
legacy/analysis/dstest.py
2
4702
import numpy as np from sklearn.neighbors import NearestNeighbors from astLib import astStats def DSmetric(localData, v, sigma): """ Calculates the delta squared values as given in equation 1 of Dressler et al. 1988. This uses both the position and velocities to give a measure of substructure by identifying galaxies with do not follow the cluster velocity distribution. @type localData: list @param localData: The velocities of the target galaxy and its N nearest neighbors. @type v: float @param v: The global mean velocity of the cluster @type sigma: float @param sigma: The global velocity dispersion of the cluster @rtype: list @return: a list of delta squared values """ if 3 <= localData.shape[0] < 15: sigmaLocal = astStats.gapperEstimator(localData) #sigmaLocal = np.std(localData['LOSV']) elif 15 <= localData.shape[0]: sigmaLocal = astStats.biweightScale(localData, tuningConstant=9.0) #sigmaLocal = np.std(localData['LOSV']) try: vLocal = astStats.biweightLocation(localData, tuningConstant=6.0) #vLocal = localData.mean() if vLocal == None: vLocal = localData.mean() except ZeroDivisionError: print 'exception' vLocal = localData.mean() Nnn = localData.shape[0] delta2 = (Nnn + 1)/ sigma**2 * ((vLocal - v)**2 + (sigmaLocal - sigma)**2) return delta2 def DStest(data, LOSV, LOSVD, method='shuffle', shuffles=1e4): """ Computes the delta deviation for an entire cluster. See Dressler et al. 1988 for a complete description. A result close to the number of galaxies present in the cluster indicates no substructure. @type data: array @param data: The 2D (3D) array of RA, DEC, (z) galaxy positions. @type LOSV: array @param LOSV: Array of line of sight velocities (LOSV) for each galaxy in cluster @type LOSVD: float @param LOSVD: Global line of sight velocity dispersion for the cluster. @type method: string @param method: The method used for the determination of substructure. Should either be 'shuffle' (default) or 'threshold'. 'Shuffle' shuffles the velocities and computes the probability of substructure. 'threshold' uses a simple threshold and is generally considered not as reliable as the shuffle method. @type shuffles: float @param shuffles: The number of times to shuffle the velocities. @rtype: float @rparam: The significance of substructure. For method='shuffle' this is the probability of substructure, and for method='threshold' a value greater than 1 indicates the presence of substructure. """ try: data.shape[1] except IndexError: raise IndexError('data must be at least 2D') nbrs = NearestNeighbors(n_neighbors=int(np.sqrt(len(data))), algorithm='ball_tree').fit(data) distances, indices = nbrs.kneighbors(data) ds2 = [DSmetric(LOSV[inds], LOSV.mean(), LOSVD) for inds in indices] ds = np.sqrt(ds2) delta = np.sum(ds) if method == 'threshold': return delta/data.shape[0] elif method == 'shuffle': deltaShuffled = np.zeros(shuffles) for i in range(int(shuffles)): np.random.shuffle(LOSV) ds2 = [DSmetric(LOSV[inds], LOSV.mean(), LOSVD) for inds in indices] ds = np.sqrt(ds2) deltaShuffled[i] = np.sum(ds) mask = deltaShuffled > delta return deltaShuffled[mask].shape[0]/float(shuffles) else: raise NameError("method must be either 'threshold' or 'shuffle'") def findLOSV(data, CLUSZ): ''' Finds the line of sight velocity for each of the galaxies and puts it in the LOSV column of the data array. ''' c = 2.99e5 # speed of light in km/s losv = c * (data - CLUSZ)/(1 + CLUSZ) return losv def main(): N = 100 N2 = 1 # make some data ra1 = 0 + np.random.rand(N) * 0.5 dec1 = -1 - np.random.rand(N) * 0.5 z1 = 0.2 + np.random.rand(N) * 0.01 # add another little cluster ra2 = 0.4 + np.random.rand(N2) * 0.1 dec2 = -1.1 - np.random.rand(N2) * 0.1 z2 = 0.21 + np.random.rand(N2) * 0.01 ra = np.append(ra1, ra2) dec = np.append(dec1, dec2) z = np.append(z1, z2) #calculate things we would have normally CLUSZ = astStats.biweightLocation(z, tuningConstant=6.0) LOSV = findLOSV(z, CLUSZ) LOSVD = astStats.biweightScale_test(LOSV, tuningConstant=9.0) data = np.column_stack([ra,dec]) s = DStest(data, LOSV, LOSVD, shuffles=1000) return s if __name__ == "__main__": main()
mit
fedebarabas/tormenta
tormenta/control/guitools.py
1
6414
# -*- coding: utf-8 -*- """ Created on Fri Feb 6 13:20:02 2015 @author: Federico Barabas """ import os import numpy as np import configparser from ast import literal_eval from tkinter import Tk, simpledialog from lantz import Q_ from PIL import Image import matplotlib.cm as cm from scipy.misc import imresize import tifffile as tiff import tormenta.utils as utils # Check for same name conflict def getUniqueName(name): n = 1 while os.path.exists(name): if n > 1: name = name.replace('_{}.'.format(n - 1), '_{}.'.format(n)) else: name = utils.insertSuffix(name, '_{}'.format(n)) n += 1 return name def attrsToTxt(filename, attrs): fp = open(filename + '.txt', 'w') fp.write('\n'.join('{}= {}'.format(x[0], x[1]) for x in attrs)) fp.close() def fileSizeGB(shape): # self.nPixels() * self.nExpositions * 16 / (8 * 1024**3) return shape[0]*shape[1]*shape[2] / 2**29 def nFramesPerChunk(shape): return int(1.8 * 2**29 / (shape[1] * shape[2])) # Preset tools def savePreset(main, filename=None): if filename is None: root = Tk() root.withdraw() filename = simpledialog.askstring(title='Save preset', prompt='Save config file as...') root.destroy() if filename is None: return config = configparser.ConfigParser() fov = 'Field of view' config['Camera'] = { 'Frame Start': main.frameStart, 'Shape': main.shape, 'Shape name': main.tree.p.param(fov).param('Shape').value(), 'Horizontal readout rate': str(main.HRRatePar.value()), 'Vertical shift speed': str(main.vertShiftSpeedPar.value()), 'Clock voltage amplitude': str(main.vertShiftAmpPar.value()), 'Frame Transfer Mode': str(main.FTMPar.value()), 'Cropped sensor mode': str(main.cropParam.value()), 'Set exposure time': str(main.expPar.value()), 'Pre-amp gain': str(main.PreGainPar.value()), 'EM gain': str(main.GainPar.value())} with open(os.path.join(main.presetDir, filename), 'w') as configfile: config.write(configfile) main.presetsMenu.addItem(filename) def loadPreset(main, filename=None): tree = main.tree.p timings = tree.param('Timings') if filename is None: preset = main.presetsMenu.currentText() config = configparser.ConfigParser() config.read(os.path.join(main.presetDir, preset)) configCam = config['Camera'] shape = configCam['Shape'] main.shape = literal_eval(shape) main.frameStart = literal_eval(configCam['Frame Start']) # Frame size handling shapeName = configCam['Shape Name'] if shapeName == 'Custom': main.customFrameLoaded = True tree.param('Field of view').param('Shape').setValue(shapeName) main.frameStart = literal_eval(configCam['Frame Start']) main.adjustFrame() main.customFrameLoaded = False else: tree.param('Field of view').param('Shape').setValue(shapeName) vps = timings.param('Vertical pixel shift') vps.param('Speed').setValue(Q_(configCam['Vertical shift speed'])) cva = 'Clock voltage amplitude' vps.param(cva).setValue(configCam[cva]) ftm = 'Frame Transfer Mode' timings.param(ftm).setValue(configCam.getboolean(ftm)) csm = 'Cropped sensor mode' if literal_eval(configCam[csm]) is not(None): main.cropLoaded = True timings.param(csm).param('Enable').setValue(configCam.getboolean(csm)) main.cropLoaded = False hrr = 'Horizontal readout rate' timings.param(hrr).setValue(Q_(configCam[hrr])) expt = 'Set exposure time' timings.param(expt).setValue(float(configCam[expt])) pag = 'Pre-amp gain' tree.param('Gain').param(pag).setValue(float(configCam[pag])) tree.param('Gain').param('EM gain').setValue(int(configCam['EM gain'])) def hideColumn(main): if main.hideColumnButton.isChecked(): main.presetsMenu.hide() main.loadPresetButton.hide() main.cameraWidget.hide() main.viewCtrl.hide() main.recWidget.hide() main.layout.setColumnMinimumWidth(0, 0) else: main.presetsMenu.show() main.loadPresetButton.show() main.cameraWidget.show() main.viewCtrl.show() main.recWidget.show() main.layout.setColumnMinimumWidth(0, 350) def mouseMoved(main, pos): if main.vb.sceneBoundingRect().contains(pos): mousePoint = main.vb.mapSceneToView(pos) x, y = int(mousePoint.x()), int(main.shape[1] - mousePoint.y()) main.cursorPos.setText('{}, {}'.format(x, y)) countsStr = '{} counts'.format(main.image[x, int(mousePoint.y())]) main.cursorPosInt.setText(countsStr) def tiff2png(main, filenames=None): if filenames is None: filenames = utils.getFilenames('Load TIFF files', [('Tiff files', '.tiff'), ('Tif files', '.tif')], main.recWidget.folderEdit.text()) for filename in filenames: with tiff.TiffFile(filename) as tt: arr = tt.asarray() cmin, cmax = bestLimits(arr) arr[arr > cmax] = cmax arr[arr < cmin] = cmin arr -= arr.min() arr = arr/arr.max() arr = imresize(arr, (1000, 1000), 'nearest') im = Image.fromarray(cm.cubehelix(arr, bytes=True)) im.save(os.path.splitext(filename)[0] + '.png') def bestLimits(arr): # Best cmin, cmax algorithm taken from ImageJ routine: # http://cmci.embl.de/documents/120206pyip_cooking/ # python_imagej_cookbook#automatic_brightnesscontrast_button pixelCount = arr.size limit = pixelCount/10 threshold = pixelCount/5000 hist, bin_edges = np.histogram(arr, 256) i = 0 found = False count = 0 while True: i += 1 count = hist[i] if count > limit: count = 0 found = count > threshold if found or i >= 255: break hmin = i i = 256 while True: i -= 1 count = hist[i] if count > limit: count = 0 found = count > threshold if found or i < 1: break hmax = i return bin_edges[hmin], bin_edges[hmax]
gpl-3.0
eg-zhang/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
ryfeus/lambda-packs
Sklearn_scipy_numpy/source/numpy/linalg/linalg.py
32
75738
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, transpose, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, ravel, all, Inf, dot, add, multiply, sqrt, maximum, fastCopyAndTranspose, sum, isfinite, size, finfo, errstate, geterrobj, longdouble, rollaxis, amin, amax, product, abs, broadcast, atleast_2d, intp, asanyarray, isscalar ) from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes # For Python2/3 compatibility _N = asbytes('N') _V = asbytes('V') _A = asbytes('A') _S = asbytes('S') _L = asbytes('L') fortran_int = intc # Error object class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ pass # Dealing with errors in _umath_linalg _linalg_error_extobj = None def _determine_error_states(): global _linalg_error_extobj errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] _linalg_error_extobj = [bufsize, invalid_call_errmask, None] _determine_error_states() def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if len(a.shape) != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % len(a.shape)) def _assertRankAtLeast2(*arrays): for a in arrays: if len(a.shape) < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % len(a.shape)) def _assertSquareness(*arrays): for a in arrays: if max(a.shape) != min(a.shape): raise LinAlgError('Array must be square') def _assertNdSquareness(*arrays): for a in arrays: if max(a.shape[-2:]) != min(a.shape[-2:]): raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _assertNoEmpty2d(*arrays): for a in arrays: if a.size == 0 and product(a.shape[-2:]) == 0: raise LinAlgError("Arrays cannot be empty") # Linear equations def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=len(b.shape))``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorinv, einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine _gesv `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([ 2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: if a.shape[-1] == 0 and b.shape[-1] == 0: # Legal, but the ufunc cannot handle the 0-sized inner dims # let the ufunc handle all wrong cases. a = a.reshape(a.shape[:-1]) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve1 else: if b.size == 0: if (a.shape[-1] == 0 and b.shape[-2] == 0) or b.shape[-1] == 0: a = a[:,:1].reshape(a.shape[:-1] + (1,)) bc = broadcast(a, b) return wrap(empty(bc.shape, dtype=result_t)) gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5, -0.5]], [[-5. , 2. ], [ 3. , -1. ]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) if a.shape[-1] == 0: # The inner array is 0x0, the ufunc cannot handle this case return wrap(empty_like(a, dtype=result_t)) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) # Cholesky decomposition def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> LA.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw', 'full', 'economic'}, optional If K = min(M, N), then 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) 'complete' : returns q, r with dimensions (M, M), (M, N) 'r' : returns r only with dimensions (K, N) 'raw' : returns h, tau with dimensions (N, M), (K,) 'full' : alias of 'reduced', deprecated 'economic' : returns h from 'raw', deprecated. The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced' and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr. For more information on the qr factorization, see for example: http://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in Numpy 1.8 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> r3 = np.linalg.qr(a, mode='economic') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True >>> # But only triu parts are guaranteed equal when mode='economic' >>> np.allclose(r, np.triu(r3[:6,:6], k=0)) True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = LA.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(LA.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated.", warnings.warn(msg, DeprecationWarning) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) _assertNoEmpty2d(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, n, a, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = int(abs(work[0])) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, m, tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of symmetric or Hermitian arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by Q on one side and by Q.T on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Same as `lower`, with 'L' for lower and 'U' for upper triangular. Deprecated. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines _syevd, _heevd Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a symmetric or Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a symmetric or Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the _geev LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([ 1., 2., 3.]) array([[ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([ 1. + 1.j, 1. - 1.j]) array([[ 0.70710678+0.j , 0.70710678+0.j ], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that a.conj().T = a, i.e., a is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([ 2.00000000e+00+0.j, 5.98651912e-36+0.j]) # i.e., {2, 0} array([[ 0.00000000+0.70710678j, 0.70710678+0.j ], [ 0.70710678+0.j , 0.00000000+0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([ 1., 1.]) array([[ 1., 0.], [ 0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a Hermitian or symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian/Symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines _syevd, _heevd The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([ 0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([2.77555756e-17 + 0.j, 0. + 1.38777878e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([ 0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, 0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([ 0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], [ 0.00000000+0.38268343j, 0.00000000-0.92387953j]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def svd(a, full_matrices=1, compute_uv=1): """ Singular Value Decomposition. Factors the matrix `a` as ``u * np.diag(s) * v``, where `u` and `v` are unitary and `s` is a 1-d array of `a`'s singular values. Parameters ---------- a : (..., M, N) array_like A real or complex matrix of shape (`M`, `N`) . full_matrices : bool, optional If True (default), `u` and `v` have the shapes (`M`, `M`) and (`N`, `N`), respectively. Otherwise, the shapes are (`M`, `K`) and (`K`, `N`), respectively, where `K` = min(`M`, `N`). compute_uv : bool, optional Whether or not to compute `u` and `v` in addition to `s`. True by default. Returns ------- u : { (..., M, M), (..., M, K) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. s : (..., K) array The singular values for every matrix, sorted in descending order. v : { (..., N, N), (..., K, N) } array Unitary matrices. The actual shape depends on the value of ``full_matrices``. Only returned when ``compute_uv`` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine _gesdd The SVD is commonly written as ``a = U S V.H``. The `v` returned by this function is ``V.H`` and ``u = U``. If ``U`` is a unitary matrix, it means that it satisfies ``U.H = inv(U)``. The rows of `v` are the eigenvectors of ``a.H a``. The columns of `u` are the eigenvectors of ``a a.H``. For row ``i`` in `v` and column ``i`` in `u`, the corresponding eigenvalue is ``s[i]**2``. If `a` is a `matrix` object (as opposed to an `ndarray`), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) Reconstruction based on full SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=True) >>> U.shape, V.shape, s.shape ((9, 9), (6, 6), (6,)) >>> S = np.zeros((9, 6), dtype=complex) >>> S[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True Reconstruction based on reduced SVD: >>> U, s, V = np.linalg.svd(a, full_matrices=False) >>> U.shape, V.shape, s.shape ((9, 6), (6, 6), (6,)) >>> S = np.diag(s) >>> np.allclose(a, np.dot(U, np.dot(S, V))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m = a.shape[-2] n = a.shape[-1] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vt = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return wrap(u), s, wrap(vt) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 >>> min(LA.svd(a, compute_uv=0))*min(LA.svd(LA.inv(a), compute_uv=0)) 0.70710678118654746 """ x = asarray(x) # in case we have a matrix if p is None: s = svd(x, compute_uv=False) return s[..., 0]/s[..., -1] else: return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1)) def matrix_rank(M, tol=None): """ Return matrix rank of array using SVD method Rank of the array is the number of SVD singular values of the array that are greater than `tol`. Parameters ---------- M : {(M,), (M, N)} array_like array of <=2 dimensions tol : {None, float}, optional threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" http://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim > 2: raise TypeError('array should have 2 or fewer dimensions') if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False) if tol is None: tol = S.max() * max(M.shape) * finfo(S.dtype).eps return sum(S > tol) # Generalized inverse def pinv(a, rcond=1e-15 ): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. rcond : float Cutoff for small singular values. Singular values smaller (in modulus) than `rcond` * largest_singular_value (again, in modulus) are set to zero. Returns ------- B : (N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) _assertNoEmpty2d(a) a = a.conjugate() u, s, vt = svd(a, 0) m = u.shape[0] n = vt.shape[1] cutoff = rcond*maximum.reduce(s) for i in range(min(n, m)): if s[i] > cutoff: s[i] = 1./s[i] else: s[i] = 0.; res = dot(transpose(vt), multiply(s[:, newaxis], transpose(u))) return wrap(res) # Determinant def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) if isscalar(sign): sign = sign.astype(result_t) else: sign = sign.astype(result_t, copy=False) if isscalar(logdet): logdet = logdet.astype(real_t) else: logdet = logdet.astype(real_t, copy=False) return sign, logdet def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to representing the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine z/dgetrf. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertNoEmpty2d(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) if isscalar(r): r = r.astype(result_t) else: r = r.astype(result_t, copy=False) return r # Linear Least Squares def lstsq(a, b, rcond=-1): """ Return the least-squares solution to a linear matrix equation. Solves the equation `a x = b` by computing a vector `x` that minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may be under-, well-, or over- determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. Singular values are set to zero if they are smaller than `rcond` times the largest singular value of `a`. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(), (1,), (K,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y)[0] >>> print m, c 1.0 -0.95 Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o', label='Original data', markersize=10) >>> plt.plot(x, m*x + c, 'r', label='Fitted line') >>> plt.legend() >>> plt.show() """ import math a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = len(b.shape) == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m = a.shape[0] n = a.shape[1] n_rhs = b.shape[1] ldb = max(n, m) if m != b.shape[0]: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) result_real_t = _realType(result_t) real_t = _linalgRealType(t) bstar = zeros((ldb, n_rhs), t) bstar[:b.shape[0], :n_rhs] = b.copy() a, bstar = _fastCopyAndTranspose(t, a, bstar) a, bstar = _to_native_byte_order(a, bstar) s = zeros((min(m, n),), real_t) nlvl = max( 0, int( math.log( float(min(m, n))/2. ) ) + 1 ) iwork = zeros((3*min(m, n)*nlvl+11*min(m, n),), fortran_int) if isComplexType(t): lapack_routine = lapack_lite.zgelsd lwork = 1 rwork = zeros((lwork,), real_t) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, rwork, iwork, 0) lwork = int(abs(work[0])) rwork = zeros((lwork,), real_t) a_real = zeros((m, n), real_t) bstar_real = zeros((ldb, n_rhs,), real_t) results = lapack_lite.dgelsd(m, n, n_rhs, a_real, m, bstar_real, ldb, s, rcond, 0, rwork, -1, iwork, 0) lrwork = int(rwork[0]) work = zeros((lwork,), t) rwork = zeros((lrwork,), real_t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, rwork, iwork, 0) else: lapack_routine = lapack_lite.dgelsd lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, -1, iwork, 0) lwork = int(work[0]) work = zeros((lwork,), t) results = lapack_routine(m, n, n_rhs, a, m, bstar, ldb, s, rcond, 0, work, lwork, iwork, 0) if results['info'] > 0: raise LinAlgError('SVD did not converge in Linear Least Squares') resids = array([], result_real_t) if is_1d: x = array(ravel(bstar)[:n], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = array([sum(abs(ravel(bstar)[n:])**2)], dtype=result_real_t) else: resids = array([sum((ravel(bstar)[n:])**2)], dtype=result_real_t) else: x = array(transpose(bstar)[:n,:], dtype=result_t, copy=True) if results['rank'] == n and m > n: if isComplexType(t): resids = sum(abs(transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) else: resids = sum((transpose(bstar)[n:,:])**2, axis=0).astype( result_real_t, copy=False) st = s[:min(n, m)].astype(result_real_t, copy=True) return wrap(x), wrap(resids), results['rank'], st def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by numpy.linalg.norm(). Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or numpy.amax or numpy.sum. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ if row_axis > col_axis: row_axis -= 1 y = rollaxis(rollaxis(x, col_axis, x.ndim), row_axis, -1) result = op(svd(y, compute_uv=0), axis=-1) return result def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4 >>> LA.norm(b, np.inf) 9 >>> LA.norm(a, -np.inf) 0 >>> LA.norm(b, -np.inf) 2 >>> LA.norm(a, 1) 20 >>> LA.norm(b, 1) 7 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([6, 6]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") if x.dtype.type is longdouble: # Convert to a float type, so integer arrays give # float results. Don't apply asfarray to longdouble arrays, # because it will downcast to float64. absx = abs(x) else: absx = x if isComplexType(x.dtype.type) else asfarray(x) if absx.dtype is x.dtype: absx = abs(absx) else: # if the type changed, we can safely overwrite absx abs(absx, out=absx) absx **= ord return add.reduce(absx, axis=axis, keepdims=keepdims) ** (1.0 / ord) elif len(axis) == 2: row_axis, col_axis = axis if row_axis < 0: row_axis += nd if col_axis < 0: col_axis += nd if not (0 <= row_axis < nd and 0 <= col_axis < nd): raise ValueError('Invalid axis %r for an array with shape %r' % (axis, x.shape)) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] http://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random(10000, 100) >>> B = np.random.random(100, 1000) >>> C = np.random.random(1000, 5) >>> D = np.random.random(5, 333) >>> # the actual dot multiplication >>> multi_dot([A, B, C, D]) instead of:: >>> np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> A.dot(B).dot(C).dot(D) Example: multiplication costs of different parenthesizations ------------------------------------------------------------ The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Let's assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}$`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ # cost1 = cost((AB)C) cost1 = (A.shape[0] * A.shape[1] * B.shape[1] + # (AB) A.shape[0] * B.shape[1] * C.shape[1]) # (--)C # cost2 = cost((AB)C) cost2 = (B.shape[0] * B.shape[1] * C.shape[1] + # (BC) A.shape[0] * A.shape[1] * C.shape[1]) # A(--) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
mit
ChristinaZografou/sympy
sympy/external/importtools.py
85
7294
"""Tools to assist importing optional external modules.""" from __future__ import print_function, division import sys # Override these in the module to change the default warning behavior. # For example, you might set both to False before running the tests so that # warnings are not printed to the console, or set both to True for debugging. WARN_NOT_INSTALLED = None # Default is False WARN_OLD_VERSION = None # Default is True def __sympy_debug(): # helper function from sympy/__init__.py # We don't just import SYMPY_DEBUG from that file because we don't want to # import all of sympy just to use this module. import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) if __sympy_debug(): WARN_OLD_VERSION = True WARN_NOT_INSTALLED = True def import_module(module, min_module_version=None, min_python_version=None, warn_not_installed=None, warn_old_version=None, module_version_attr='__version__', module_version_attr_call_args=None, __import__kwargs={}, catch=()): """ Import and return a module if it is installed. If the module is not installed, it returns None. A minimum version for the module can be given as the keyword argument min_module_version. This should be comparable against the module version. By default, module.__version__ is used to get the module version. To override this, set the module_version_attr keyword argument. If the attribute of the module to get the version should be called (e.g., module.version()), then set module_version_attr_call_args to the args such that module.module_version_attr(*module_version_attr_call_args) returns the module's version. If the module version is less than min_module_version using the Python < comparison, None will be returned, even if the module is installed. You can use this to keep from importing an incompatible older version of a module. You can also specify a minimum Python version by using the min_python_version keyword argument. This should be comparable against sys.version_info. If the keyword argument warn_not_installed is set to True, the function will emit a UserWarning when the module is not installed. If the keyword argument warn_old_version is set to True, the function will emit a UserWarning when the library is installed, but cannot be imported because of the min_module_version or min_python_version options. Note that because of the way warnings are handled, a warning will be emitted for each module only once. You can change the default warning behavior by overriding the values of WARN_NOT_INSTALLED and WARN_OLD_VERSION in sympy.external.importtools. By default, WARN_NOT_INSTALLED is False and WARN_OLD_VERSION is True. This function uses __import__() to import the module. To pass additional options to __import__(), use the __import__kwargs keyword argument. For example, to import a submodule A.B, you must pass a nonempty fromlist option to __import__. See the docstring of __import__(). This catches ImportError to determine if the module is not installed. To catch additional errors, pass them as a tuple to the catch keyword argument. Examples ======== >>> from sympy.external import import_module >>> numpy = import_module('numpy') >>> numpy = import_module('numpy', min_python_version=(2, 7), ... warn_old_version=False) >>> numpy = import_module('numpy', min_module_version='1.5', ... warn_old_version=False) # numpy.__version__ is a string >>> # gmpy does not have __version__, but it does have gmpy.version() >>> gmpy = import_module('gmpy', min_module_version='1.14', ... module_version_attr='version', module_version_attr_call_args=(), ... warn_old_version=False) >>> # To import a submodule, you must pass a nonempty fromlist to >>> # __import__(). The values do not matter. >>> p3 = import_module('mpl_toolkits.mplot3d', ... __import__kwargs={'fromlist':['something']}) >>> # matplotlib.pyplot can raise RuntimeError when the display cannot be opened >>> matplotlib = import_module('matplotlib', ... __import__kwargs={'fromlist':['pyplot']}, catch=(RuntimeError,)) """ # keyword argument overrides default, and global variable overrides # keyword argument. warn_old_version = (WARN_OLD_VERSION if WARN_OLD_VERSION is not None else warn_old_version or True) warn_not_installed = (WARN_NOT_INSTALLED if WARN_NOT_INSTALLED is not None else warn_not_installed or False) import warnings # Check Python first so we don't waste time importing a module we can't use if min_python_version: if sys.version_info < min_python_version: if warn_old_version: warnings.warn("Python version is too old to use %s " "(%s or newer required)" % ( module, '.'.join(map(str, min_python_version))), UserWarning) return # PyPy 1.6 has rudimentary NumPy support and importing it produces errors, so skip it if module == 'numpy' and '__pypy__' in sys.builtin_module_names: return try: mod = __import__(module, **__import__kwargs) ## there's something funny about imports with matplotlib and py3k. doing ## from matplotlib import collections ## gives python's stdlib collections module. explicitly re-importing ## the module fixes this. from_list = __import__kwargs.get('fromlist', tuple()) for submod in from_list: if submod == 'collections' and mod.__name__ == 'matplotlib': __import__(module + '.' + submod) except ImportError: if warn_not_installed: warnings.warn("%s module is not installed" % module, UserWarning) return except catch as e: if warn_not_installed: warnings.warn( "%s module could not be used (%s)" % (module, repr(e))) return if min_module_version: modversion = getattr(mod, module_version_attr) if module_version_attr_call_args is not None: modversion = modversion(*module_version_attr_call_args) if modversion < min_module_version: if warn_old_version: # Attempt to create a pretty string version of the version if isinstance(min_module_version, basestring): verstr = min_module_version elif isinstance(min_module_version, (tuple, list)): verstr = '.'.join(map(str, min_module_version)) else: # Either don't know what this is. Hopefully # it's something that has a nice str version, like an int. verstr = str(min_module_version) warnings.warn("%s version is too old to use " "(%s or newer required)" % (module, verstr), UserWarning) return return mod
bsd-3-clause
cwu2011/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
rs2/bokeh
bokeh/sampledata/tests/test_airport_routes.py
2
2480
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2017, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import pytest ; pytest from bokeh.util.api import INTERNAL, PUBLIC ; INTERNAL, PUBLIC from bokeh.util.testing import verify_api ; verify_api #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports import pandas as pd # Bokeh imports from bokeh.util.testing import verify_all # Module under test #import bokeh.sampledata.airport_routes as bsa #----------------------------------------------------------------------------- # API Definition #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- ALL = ( 'airports', 'routes', ) #----------------------------------------------------------------------------- # Public API #----------------------------------------------------------------------------- Test___all__ = pytest.mark.sampledata(verify_all("bokeh.sampledata.airport_routes", ALL)) @pytest.mark.sampledata def test_airports(): import bokeh.sampledata.airport_routes as bsa assert isinstance(bsa.airports, pd.DataFrame) # don't check detail for external data @pytest.mark.sampledata def test_routes(): import bokeh.sampledata.airport_routes as bsa assert isinstance(bsa.routes, pd.DataFrame) # don't check detail for external data #----------------------------------------------------------------------------- # Internal API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #-----------------------------------------------------------------------------
bsd-3-clause
wkfwkf/statsmodels
statsmodels/miscmodels/try_mlecov.py
33
7414
'''Multivariate Normal Model with full covariance matrix toeplitz structure is not exploited, need cholesky or inv for toeplitz Author: josef-pktd ''' from __future__ import print_function import numpy as np #from scipy import special #, stats from scipy import linalg from scipy.linalg import norm, toeplitz import statsmodels.api as sm from statsmodels.base.model import (GenericLikelihoodModel, LikelihoodModel) from statsmodels.tsa.arima_process import arma_acovf, arma_generate_sample def mvn_loglike_sum(x, sigma): '''loglike multivariate normal copied from GLS and adjusted names not sure why this differes from mvn_loglike ''' nobs = len(x) nobs2 = nobs / 2.0 SSR = (x**2).sum() llf = -np.log(SSR) * nobs2 # concentrated likelihood llf -= (1+np.log(np.pi/nobs2))*nobs2 # with likelihood constant if np.any(sigma) and sigma.ndim == 2: #FIXME: robust-enough check? unneeded if _det_sigma gets defined llf -= .5*np.log(np.linalg.det(sigma)) return llf def mvn_loglike(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) sigmainv = linalg.inv(sigma) logdetsigma = np.log(np.linalg.det(sigma)) nobs = len(x) llf = - np.dot(x, np.dot(sigmainv, x)) llf -= nobs * np.log(2 * np.pi) llf -= logdetsigma llf *= 0.5 return llf def mvn_loglike_chol(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) sigmainv = np.linalg.inv(sigma) cholsigmainv = np.linalg.cholesky(sigmainv).T x_whitened = np.dot(cholsigmainv, x) logdetsigma = np.log(np.linalg.det(sigma)) nobs = len(x) from scipy import stats print('scipy.stats') print(np.log(stats.norm.pdf(x_whitened)).sum()) llf = - np.dot(x_whitened.T, x_whitened) llf -= nobs * np.log(2 * np.pi) llf -= logdetsigma llf *= 0.5 return llf, logdetsigma, 2 * np.sum(np.log(np.diagonal(cholsigmainv))) #0.5 * np.dot(x_whitened.T, x_whitened) + nobs * np.log(2 * np.pi) + logdetsigma) def mvn_nloglike_obs(x, sigma): '''loglike multivariate normal assumes x is 1d, (nobs,) and sigma is 2d (nobs, nobs) brute force from formula no checking of correct inputs use of inv and log-det should be replace with something more efficient ''' #see numpy thread #Sturla: sqmahal = (cx*cho_solve(cho_factor(S),cx.T).T).sum(axis=1) #Still wasteful to calculate pinv first sigmainv = np.linalg.inv(sigma) cholsigmainv = np.linalg.cholesky(sigmainv).T #2 * np.sum(np.log(np.diagonal(np.linalg.cholesky(A)))) #Dag mailinglist # logdet not needed ??? #logdetsigma = 2 * np.sum(np.log(np.diagonal(cholsigmainv))) x_whitened = np.dot(cholsigmainv, x) #sigmainv = linalg.cholesky(sigma) logdetsigma = np.log(np.linalg.det(sigma)) sigma2 = 1. # error variance is included in sigma llike = 0.5 * (np.log(sigma2) - 2.* np.log(np.diagonal(cholsigmainv)) + (x_whitened**2)/sigma2 + np.log(2*np.pi)) return llike def invertibleroots(ma): import numpy.polynomial as poly pr = poly.polyroots(ma) insideroots = np.abs(pr)<1 if insideroots.any(): pr[np.abs(pr)<1] = 1./pr[np.abs(pr)<1] pnew = poly.Polynomial.fromroots(pr) mainv = pn.coef/pnew.coef[0] wasinvertible = False else: mainv = ma wasinvertible = True return mainv, wasinvertible def getpoly(self, params): ar = np.r_[[1], -params[:self.nar]] ma = np.r_[[1], params[-self.nma:]] import numpy.polynomial as poly return poly.Polynomial(ar), poly.Polynomial(ma) class MLEGLS(GenericLikelihoodModel): '''ARMA model with exact loglikelhood for short time series Inverts (nobs, nobs) matrix, use only for nobs <= 200 or so. This class is a pattern for small sample GLS-like models. Intended use for loglikelihood of initial observations for ARMA. TODO: This might be missing the error variance. Does it assume error is distributed N(0,1) Maybe extend to mean handling, or assume it is already removed. ''' def _params2cov(self, params, nobs): '''get autocovariance matrix from ARMA regression parameter ar parameters are assumed to have rhs parameterization ''' ar = np.r_[[1], -params[:self.nar]] ma = np.r_[[1], params[-self.nma:]] #print('ar', ar #print('ma', ma #print('nobs', nobs autocov = arma_acovf(ar, ma, nobs=nobs) #print('arma_acovf(%r, %r, nobs=%d)' % (ar, ma, nobs) #print(autocov.shape #something is strange fixed in aram_acovf autocov = autocov[:nobs] sigma = toeplitz(autocov) return sigma def loglike(self, params): sig = self._params2cov(params[:-1], self.nobs) sig = sig * params[-1]**2 loglik = mvn_loglike(self.endog, sig) return loglik def fit_invertible(self, *args, **kwds): res = self.fit(*args, **kwds) ma = np.r_[[1], res.params[self.nar: self.nar+self.nma]] mainv, wasinvertible = invertibleroots(ma) if not wasinvertible: start_params = res.params.copy() start_params[self.nar: self.nar+self.nma] = mainv[1:] #need to add args kwds res = self.fit(start_params=start_params) return res if __name__ == '__main__': nobs = 50 ar = [1.0, -0.8, 0.1] ma = [1.0, 0.1, 0.2] #ma = [1] np.random.seed(9875789) y = arma_generate_sample(ar,ma,nobs,2) y -= y.mean() #I haven't checked treatment of mean yet, so remove mod = MLEGLS(y) mod.nar, mod.nma = 2, 2 #needs to be added, no init method mod.nobs = len(y) res = mod.fit(start_params=[0.1, -0.8, 0.2, 0.1, 1.]) print('DGP', ar, ma) print(res.params) from statsmodels.regression import yule_walker print(yule_walker(y, 2)) #resi = mod.fit_invertible(start_params=[0.1,0,0.2,0, 0.5]) #print(resi.params arpoly, mapoly = getpoly(mod, res.params[:-1]) data = sm.datasets.sunspots.load() #ys = data.endog[-100:] ## ys = data.endog[12:]-data.endog[:-12] ## ys -= ys.mean() ## mods = MLEGLS(ys) ## mods.nar, mods.nma = 13, 1 #needs to be added, no init method ## mods.nobs = len(ys) ## ress = mods.fit(start_params=np.r_[0.4, np.zeros(12), [0.2, 5.]],maxiter=200) ## print(ress.params ## #from statsmodels.sandbox.tsa import arima as tsaa ## #tsaa ## import matplotlib.pyplot as plt ## plt.plot(data.endog[1]) ## #plt.show() sigma = mod._params2cov(res.params[:-1], nobs) * res.params[-1]**2 print(mvn_loglike(y, sigma)) llo = mvn_nloglike_obs(y, sigma) print(llo.sum(), llo.shape) print(mvn_loglike_chol(y, sigma)) print(mvn_loglike_sum(y, sigma))
bsd-3-clause
mwil/wanikani-userscripts
wanikani-simulator/plot.py
1
1661
import argparse import json import matplotlib.pyplot as plt import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser( description="Plot the results of the WK Simulator") parser.add_argument("json_file") args = parser.parse_args() with open(args.json_file, "r") as infile: sim_data = json.load(infile) days = np.array(sim_data["day"]) daily_reviews = np.array(sim_data["review_cnt"])[:-1] daily_levels = np.array(sim_data["level"]) fig, ax1 = plt.subplots() # ax1.plot(days, daily_reviews, "g-") # ax1.fill_between(days, 0, daily_reviews, # where=daily_reviews > 0, # facecolor="b", # interpolate=True) N = 7 # averaging period in days avg = np.convolve(daily_reviews, np.ones((N,))/N, mode="full") avg_days = np.arange(min(days), max(days)+(2*N-N)) ax1.plot(avg_days, avg, "b-") # ax1.fill_between(avg_days, 0, avg, # where=avg > 0, # facecolor="b", # interpolate=True) ax1.set_xlabel("Time (days)") ax1.set_ylabel("Daily Reviews") ax2 = ax1.twinx() ax2.plot(days, daily_levels, "r-", lw=4) ax2.grid() ax2.set_ylabel("WK Level", color="r") ax2.yaxis.set_ticks(np.arange(0, 61, 5)) ax2.tick_params('y', colors='r') # plt.title("3-Day Average Reviews per Day (Twice Daily 8h/20h, 100%)") plt.title("Reviews per Day (8h/20h, r=100%/m=100%, 20 les/d)") # fig.tight_layout() plt.savefig("test.png", dpi=150, bbox_inches="tight")
gpl-3.0
eclee25/flu-SDI-exploratory-age
scripts/create_fluseverity_figs/Supp_zOR_benchmark_altbaseline.py
1
6055
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 9/3/14 ###Function: mean peak-based retro zOR metric vs. CDC benchmark index, where sensitivity of zOR metric is examined. Given that 7 week fall baseline is what we used in our study, the 7 week summer baseline, 10 week fall baseline, and 10 week summer baseline plots are examined. ###Import data: CDC_Source/Import_Data/cdc_severity_index.csv, Py_export/SDI_national_classifications_summer-7.csv, Py_export/SDI_national_classifications_10.csv, Py_export/SDI_national_classifications_summer-10.csv ###Command Line: python Supp_zOR_benchmark_altbaseline.py ############################################## ### notes ### ### packages/modules ### import csv import matplotlib.pyplot as plt import numpy as np ## local modules ## import functions as fxn ### data structures ### ### functions ### ### data files ### # benchmark data ixin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/cdc_severity_index.csv','r') ixin.readline() ix = csv.reader(ixin, delimiter=',') # 10 week fall BL index f10in = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_national_classifications_10.csv','r') f10in.readline() f10 = csv.reader(f10in, delimiter=',') # 7 week summer BL index s7in = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_national_classifications_summer-7.csv','r') s7in.readline() s7 = csv.reader(s7in, delimiter=',') # 10 week summer BL index s10in = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_national_classifications_summer-10.csv','r') s10in.readline() s10 = csv.reader(s10in, delimiter=',') ### called/local plotting parameters ### ps = fxn.pseasons sl = fxn.gp_seasonlabels fs = 24 fssml = 16 ### program ### ## import data ## # d_benchmark[seasonnum] = CDC benchmark index value d_benchmark = fxn.benchmark_import(ix, 8) # no ILINet # d_nat_classif[season] = (mean retro zOR, mean early zOR) d_f10 = fxn.readNationalClassifFile(f10) d_s7 = fxn.readNationalClassifFile(s7) d_s10 = fxn.readNationalClassifFile(s10) ## plot values ## benchmark = [d_benchmark[s] for s in ps] f10r = [d_f10[s][0] for s in ps] s7r = [d_s7[s][0] for s in ps] s10r = [d_s10[s][0] for s in ps] print '10 week fall corr coef', np.corrcoef(benchmark, f10r) print '7 week summer corr coef', np.corrcoef(benchmark, s7r) print '10 week summer corr coef', np.corrcoef(benchmark, s10r) # draw plots fig1 = plt.figure() ax1 = fig1.add_subplot(1,1,1) # 10 week fall BL mean retro zOR vs. benchmark index ax1.plot(benchmark, f10r, marker = 'o', color = 'black', linestyle = 'None') ax1.vlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax1.hlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax1.fill([-5, -1, -1, -5], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax1.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax1.fill([1, 5, 5, 1], [-1, -1, -10, -10], facecolor='red', alpha=0.4) ax1.annotate('Mild', xy=(-4.75,19), fontsize=fssml) ax1.annotate('Severe', xy=(1.25,-8), fontsize=fssml) for s, x, y in zip(sl, benchmark, f10r): ax1.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax1.set_ylabel(fxn.gp_sigma_r, fontsize=fs) ax1.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax1.tick_params(axis='both', labelsize=fssml) ax1.set_xlim([-5,5]) ax1.set_ylim([-10,20]) ax1.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/Supp/baseline_sensitivity/zOR-fall10_benchmark.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # plt.show() fig2 = plt.figure() ax2 = fig2.add_subplot(1,1,1) # 7 week summer BL mean retro zOR vs. benchmark index ax2.plot(benchmark, s7r, marker = 'o', color = 'black', linestyle = 'None') ax2.vlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax2.hlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax2.fill([-5, -1, -1, -5], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax2.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax2.fill([1, 5, 5, 1], [-1, -1, -10, -10], facecolor='red', alpha=0.4) ax2.annotate('Mild', xy=(-4.75,19), fontsize=fssml) ax2.annotate('Severe', xy=(1.25,-8), fontsize=fssml) for s, x, y in zip(sl, benchmark, s7r): ax2.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax2.set_ylabel(fxn.gp_sigma_r, fontsize=fs) ax2.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax2.tick_params(axis='both', labelsize=fssml) ax2.set_xlim([-5,5]) ax2.set_ylim([-10,20]) ax2.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/Supp/baseline_sensitivity/zOR-summer7_benchmark.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # plt.show() fig3 = plt.figure() ax3 = fig3.add_subplot(1,1,1) # 10 week summer BL mean retro zOR vs. benchmark index ax3.plot(benchmark, s10r, marker = 'o', color = 'black', linestyle = 'None') ax3.vlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax3.hlines([-1, 1], -10, 20, colors='k', linestyles='solid') ax3.fill([-5, -1, -1, -5], [1, 1, 20, 20], facecolor='blue', alpha=0.4) ax3.fill([-1, 1, 1, -1], [-1, -1, 1, 1], facecolor='yellow', alpha=0.4) ax3.fill([1, 5, 5, 1], [-1, -1, -10, -10], facecolor='red', alpha=0.4) ax3.annotate('Mild', xy=(-4.75,19), fontsize=fssml) ax3.annotate('Severe', xy=(1.25,-8), fontsize=fssml) for s, x, y in zip(sl, benchmark, s10r): ax3.annotate(s, xy=(x,y), xytext=(-10,5), textcoords='offset points', fontsize=fssml) ax3.set_ylabel(fxn.gp_sigma_r, fontsize=fs) ax3.set_xlabel(fxn.gp_benchmark, fontsize=fs) ax3.tick_params(axis='both', labelsize=fssml) ax3.set_xlim([-5,5]) ax3.set_ylim([-10,20]) ax3.invert_yaxis() plt.savefig('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Manuscripts/Age_Severity/fluseverity_figs/Supp/baseline_sensitivity/zOR-summer10_benchmark.png', transparent=False, bbox_inches='tight', pad_inches=0) plt.close() # plt.show()
mit
RomainBrault/scikit-learn
examples/linear_model/plot_logistic_l1_l2_sparsity.py
384
2601
""" ============================================== L1 Penalty and Sparsity in Logistic Regression ============================================== Comparison of the sparsity (percentage of zero coefficients) of solutions when L1 and L2 penalty are used for different values of C. We can see that large values of C give more freedom to the model. Conversely, smaller values of C constrain the model more. In the L1 penalty case, this leads to sparser solutions. We classify 8x8 images of digits into two classes: 0-4 against 5-9. The visualization shows coefficients of the models for varying C. """ print(__doc__) # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Andreas Mueller <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.preprocessing import StandardScaler digits = datasets.load_digits() X, y = digits.data, digits.target X = StandardScaler().fit_transform(X) # classify small against large digits y = (y > 4).astype(np.int) # Set regularization parameter for i, C in enumerate((100, 1, 0.01)): # turn down tolerance for short training time clf_l1_LR = LogisticRegression(C=C, penalty='l1', tol=0.01) clf_l2_LR = LogisticRegression(C=C, penalty='l2', tol=0.01) clf_l1_LR.fit(X, y) clf_l2_LR.fit(X, y) coef_l1_LR = clf_l1_LR.coef_.ravel() coef_l2_LR = clf_l2_LR.coef_.ravel() # coef_l1_LR contains zeros due to the # L1 sparsity inducing norm sparsity_l1_LR = np.mean(coef_l1_LR == 0) * 100 sparsity_l2_LR = np.mean(coef_l2_LR == 0) * 100 print("C=%.2f" % C) print("Sparsity with L1 penalty: %.2f%%" % sparsity_l1_LR) print("score with L1 penalty: %.4f" % clf_l1_LR.score(X, y)) print("Sparsity with L2 penalty: %.2f%%" % sparsity_l2_LR) print("score with L2 penalty: %.4f" % clf_l2_LR.score(X, y)) l1_plot = plt.subplot(3, 2, 2 * i + 1) l2_plot = plt.subplot(3, 2, 2 * (i + 1)) if i == 0: l1_plot.set_title("L1 penalty") l2_plot.set_title("L2 penalty") l1_plot.imshow(np.abs(coef_l1_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) l2_plot.imshow(np.abs(coef_l2_LR.reshape(8, 8)), interpolation='nearest', cmap='binary', vmax=1, vmin=0) plt.text(-8, 3, "C = %.2f" % C) l1_plot.set_xticks(()) l1_plot.set_yticks(()) l2_plot.set_xticks(()) l2_plot.set_yticks(()) plt.show()
bsd-3-clause
QLaboratory/QlabChallengerRepo
ai_challenger_scene/classification_statistics/classification_statistics.py
1
8128
# -*- coding: utf-8 -*- import os import json import numpy as np import matplotlib.pyplot as plt import matplotlib # matplotlib.use('qt4agg') # 指定默认字体 matplotlib.rcParams['font.sans-serif'] = ['SimHei'] matplotlib.rcParams['font.family'] = 'sans-serif' # 解决负号'-'显示为方块的问题 matplotlib.rcParams['axes.unicode_minus'] = False # zhfont = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simkai.ttf') OFFICIAL_CLASSIFICATION_RAW_FILE_PATH = r"D:\QlabChallengerRepo\ai_challenger_scene\classification_statistics\scene_validation_dictionaries.json" PREDICTION_CLASSIFICATION_FILE_PATH = r"D:\QlabChallengerRepo\ai_challenger_scene\classification_statistics\ResNet152_predict_validation.json" SCENE_CLASSES_RAW_FILE_PATH = r"D:\QlabChallengerRepo\ai_challenger_scene\classification_statistics\scene_classes.json" # OFFICIAL_CLASSIFICATION_RAW_FILE_PATH = r"C:\Users\Air\Desktop\classification_statistics\scene_validation_dictionaries.json" # PREDICTION_CLASSIFICATION_FILE_PATH = r"C:\Users\Air\Desktop\ALL\ResNet152_predict_validation.json" # SCENE_CLASSES_RAW_FILE_PATH = r"C:\Users\Air\Desktop\classification_statistics\scene_classes.json" sceneClassesFile = open(SCENE_CLASSES_RAW_FILE_PATH, 'r', encoding='UTF-8') sceneClassesJSON = json.load(sceneClassesFile) officialClassificationFile = open(OFFICIAL_CLASSIFICATION_RAW_FILE_PATH, 'r', encoding='UTF-8') officialClassificationDICT = json.load(officialClassificationFile) predictionClassificationFile = open(PREDICTION_CLASSIFICATION_FILE_PATH, 'r', encoding='UTF-8') predictionClassificationLIST = json.load(predictionClassificationFile) # 存储场景分类错误单张影像的详细信息 ClassificationErrorDetailDictionary = [] # 存储场景分类错误统计信息 ClassificationErrorStatisticsMatrix = np.zeros((80, 84)) # 遍历预测的JSON文件 for i in range(len(predictionClassificationLIST)): # 获取当前场景的正确分类ID image_id_temp = predictionClassificationLIST[i]['image_id'] officail_label_id_temp = officialClassificationDICT[image_id_temp] ClassificationErrorStatisticsMatrix[int(officail_label_id_temp), 1] += 1 # 获取当前场景的预测分类ID predict_label_id_temp = predictionClassificationLIST[i]['label_id'] prediction_bool_temp = False predict_label_id_sort = np.asarray(predict_label_id_temp).argsort()[-3:][::-1].tolist() if int(officail_label_id_temp) in predict_label_id_sort: prediction_bool_temp = True classification_error_temp = {} if prediction_bool_temp is False: # 统计分类错误场景信息 ClassificationErrorStatisticsMatrix[int(officail_label_id_temp), 2] += 1 # 格式化输出分类错误场景信息 classification_error_temp['image_id'] = image_id_temp classification_error_temp['label_id'] = officail_label_id_temp classification_error_temp['label_id_name'] = sceneClassesJSON[officail_label_id_temp] # 太长,暂不输出预测概率 # classification_error_temp['label_id_predict'] = officail_label_id_temp label_id_predict_name_temp = [] for k in predict_label_id_sort: label_id_predict_name_temp.append(sceneClassesJSON[str(k)]) ClassificationErrorStatisticsMatrix[int(officail_label_id_temp), k+4] += 1 classification_error_temp['label_id_predict_name'] = label_id_predict_name_temp # print(classification_error_temp) ClassificationErrorDetailDictionary.append(classification_error_temp) # 存储场景分类错误统计输出信息 ClassificationErrorStatisticDictionary = [] for i in range(80): ClassificationErrorStatisticsMatrix[i, 0] = i ClassificationErrorStatisticsMatrix[i, 3] = np.true_divide(ClassificationErrorStatisticsMatrix[i, 2], ClassificationErrorStatisticsMatrix[i, 1]) * 100 classification_error_statistic_temp = {} classification_error_statistic_temp['label_id'] = i classification_error_statistic_temp['label_id_name'] = sceneClassesJSON[str(i)] classification_error_statistic_temp['total_number'] = ClassificationErrorStatisticsMatrix[i, 1] classification_error_statistic_temp['classification_error_number'] = ClassificationErrorStatisticsMatrix[i, 2] classification_error_statistic_temp['classification_error_percentage'] = ClassificationErrorStatisticsMatrix[i, 3] classification_error_statistic_temp_list = ClassificationErrorStatisticsMatrix[i, 4:len(ClassificationErrorStatisticsMatrix[0])] classification_error_statistic_temp_list_sort = classification_error_statistic_temp_list.argsort()[-3:][::-1].tolist() classification_error_statistic_temp['classification_error_statistic_label_id'] = classification_error_statistic_temp_list_sort classification_error_statistic_name_temp = [] for k in classification_error_statistic_temp_list_sort: classification_error_statistic_name_temp.append(sceneClassesJSON[str(k)]) classification_error_statistic_temp['classification_error_statistic_label_name'] = classification_error_statistic_name_temp ClassificationErrorStatisticDictionary.append(classification_error_statistic_temp) # print(classification_error_statistic_temp) # 输出场景分类错误,单张图片的详细信息 (filepath, tempfilename) = os.path.split(PREDICTION_CLASSIFICATION_FILE_PATH) (shotname, extension) = os.path.splitext(tempfilename) CLASSIFICATION_ERROR_DETAIL_STATISTICS_FILE_PATH = shotname + "_classification_error_detail_statistics" + ".json" CLASSIFICATION_ERROR_STATISTICS_FILE = open(CLASSIFICATION_ERROR_DETAIL_STATISTICS_FILE_PATH, "w", encoding='UTF-8') # print(len(ClassificationErrorDetailDictionary)) json.dump(ClassificationErrorDetailDictionary, CLASSIFICATION_ERROR_STATISTICS_FILE, indent=2, ensure_ascii=False) # 输出场景分类错误,每个场景的统计信息 CLASSIFICATION_ERROR_TOTAL_STATISTICS_FILE_PATH = shotname + "_classification_error_total_statistics" + ".json" CLASSIFICATION_ERROR_TOTAL_STATISTICS_FILE = open(CLASSIFICATION_ERROR_TOTAL_STATISTICS_FILE_PATH, "w", encoding='UTF-8') json.dump(ClassificationErrorStatisticDictionary, CLASSIFICATION_ERROR_TOTAL_STATISTICS_FILE, indent=2, ensure_ascii=False) # 输出场景分类错误统计矩阵信息 CLASSIFICATION_ERROR_STATISTICS_MATRIX_FILE_PATH = shotname + "_classification_error_statistics" + ".txt" # print(ClassificationErrorStatisticsMatrix) # np.savetxt(CLASSIFICATION_ERROR_STATISTICS_MATRIX_FILE_PATH, ClassificationErrorStatisticsMatrix, fmt='%d', delimiter='\t', newline='\r\n') ClassificationErrorStatisticsMatrixSort = ClassificationErrorStatisticsMatrix[ClassificationErrorStatisticsMatrix[:,3].argsort()] np.savetxt(CLASSIFICATION_ERROR_STATISTICS_MATRIX_FILE_PATH, ClassificationErrorStatisticsMatrixSort, fmt='%d', delimiter='\t', newline='\r\n') alphabetX = [] alphabetY = [] count = 0 for i in ClassificationErrorStatisticsMatrixSort: alphabetX.append(str(count)) alphabetY.append(sceneClassesJSON[str(int(i[0]))]) count += 1 def ConfusionMatrixPng(cm, ): norm_conf = [] for i in cm: a = 0 tmp_arr = [] a = sum(i) # print(a) for j in i: tmp_arr.append(float(j) / (float(a) + 1.1e-5)) norm_conf.append(tmp_arr) fig = plt.figure() plt.clf() ax = fig.add_subplot(111) ax.set_aspect(1) res = ax.imshow(np.array(norm_conf), cmap=plt.cm.gray_r, interpolation='nearest') height = len(cm) width = len(cm[0]) cb = fig.colorbar(res) # locs, labels = plt.xticks(range(width), alphabet[:width]) # for t in labels: # t.set_rotation(90) # plt.xticks('orientation', 'vertical') # locs, labels = xticks([1,2,3,4], ['Frogs', 'Hogs', 'Bogs', 'Slogs']) # setp(alphabet, 'rotation', 'vertical') plt.xticks(range(width), alphabetX[:width]) plt.yticks(range(height), alphabetY[:height]) plt.savefig('confusion_matrix.png', format='png') plt.show() ConfusionMatrixPng(ClassificationErrorStatisticsMatrix[:, 4:len(ClassificationErrorStatisticsMatrixSort[0])])
mit
ysasaki6023/NeuralNetworkStudy
cifar02/Output/Ksize211_L4_0/train.py
24
10142
#!/usr/bin/env python import argparse import time import numpy as np import six import os import shutil import chainer from chainer import computational_graph from chainer import cuda import chainer.links as L import chainer.functions as F from chainer import optimizers from chainer import serializers from chainer.utils import conv import cPickle as pickle import matplotlib.pyplot as plt import matplotlib.cm class ImageProcessNetwork(chainer.Chain): def __init__(self, I_colors, I_Xunit, I_Yunit, F_unit, N_PLayers = 5, P0C_feature = 3, P1C_feature = 3, P2C_feature = 3, P0C_filter = 3, P1C_filter = 3, P2C_filter = 3, P0P_ksize = 2, P1P_ksize = 2, P2P_ksize = 2, L1_dropout = 0.5, L2_dropout = 0.5, L2_unit = 256, ): super(ImageProcessNetwork, self).__init__() self.IsTrain = True self.NPLayers = N_PLayers self.NFeatures = [I_colors] self.NFilter = [1] self.NKsize = [1] self.NImgPix = [(I_Xunit,I_Yunit)] self.L1_dropout = L1_dropout self.L2_dropout = L2_dropout self.L2_unit = L2_unit for iL in range(self.NPLayers): ## Set Variables self.NFeatures.append(self.gradualVariable(iL,self.NPLayers,P0C_feature,P1C_feature,P2C_feature)) self.NFilter.append( self.gradualVariable(iL,self.NPLayers,P0C_filter ,P1C_filter ,P2C_filter )) self.NKsize.append( self.gradualVariable(iL,self.NPLayers,P0P_ksize ,P1P_ksize ,P2P_ksize )) ## Update layers self.NImgPix.append( ( conv.get_conv_outsize( self.NImgPix[-1][0], self.NKsize[-1], self.NKsize[-1], 0, cover_all = True), conv.get_conv_outsize( self.NImgPix[-1][1], self.NKsize[-1], self.NKsize[-1], 0, cover_all = True))) self.add_link("P%d"%iL,L.Convolution2D( self.NFeatures[-2], self.NFeatures[-1], self.NFilter[-1] , pad=int(self.NFilter[-1]/2.))) self.add_link("L1",L.Linear( self.NImgPix[-1][0] * self.NImgPix[-1][1] * self.NFeatures[-1] , L2_unit)) self.add_link("L2",L.Linear( L2_unit, F_unit)) return def gradualVariable(self, cLayer, tLayer, val0, val1, val2): pos = 0.5 if cLayer <= int(pos*tLayer): v0, v1, p0, p1, pc = val0, val1, 0, int(pos*tLayer), int( cLayer - 0 ) else : v0, v1, p0, p1, pc = val1, val2, int(pos*tLayer), tLayer-1, int( cLayer - int(pos*tLayer)) return int(float(v0) + (float(v1)-float(v0))/(float(p1)-float(p0))*float(pc)) def setTrainMode(self, IsTrain): self.IsTrain = IsTrain return def __call__(self, x): h = x for iL in range(self.NPLayers): h = self.__dict__["P%d"%iL](h) h = F.local_response_normalization(h) h = F.max_pooling_2d(F.relu(h), ksize=self.NKsize[iL+1], cover_all=True) h = F.dropout(F.relu(self.L1(h)),ratio=self.L1_dropout,train=self.IsTrain) h = F.dropout(F.relu(self.L2(h)),ratio=self.L2_dropout,train=self.IsTrain) y = h return y def CifarAnalysis(folderName=None,n_epoch=1,batchsize = 1000, **kwd): id_gpu = 0 OutStr = "" OutStr += 'GPU: {}\n'.format(id_gpu) OutStr += 'Minibatch-size: {}\n'.format(batchsize) OutStr += 'epoch: {}\n'.format(n_epoch) OutStr += 'kwd: {}\n'.format(kwd) OutStr += '' print OutStr fOutput = None fInfo = None if folderName: if not os.path.exists(folderName): os.makedirs(folderName) fOutput = open(os.path.join(folderName,"output.dat"),"w") fInfo = open(os.path.join(folderName,"info.dat"),"w") shutil.copyfile(__file__,os.path.join(folderName,os.path.basename(__file__))) if fInfo: fInfo.write(OutStr) # Prepare dataset InDataBatch = [] data_tr = np.zeros((50000,3*32*32),dtype=np.float32) data_ev = np.zeros((10000,3*32*32),dtype=np.float32) label_tr = np.zeros((50000),dtype=np.int32) label_ev = np.zeros((10000),dtype=np.int32) for i in range(1,5+1): with open("data_cifar10/data_batch_%d"%i,"r") as f: tmp = pickle.load(f) data_tr [(i-1)*10000:i*10000] = tmp["data"] label_tr[(i-1)*10000:i*10000] = tmp["labels"] with open("data_cifar10/test_batch","r") as f: tmp = pickle.load(f) data_ev [:] = tmp["data"] label_ev [:] = tmp["labels"] ## Prep print "Normalizing data ..." def Normalize(x): avg = np.average(x,axis=1).reshape((len(x),1)) std = np.sqrt(np.sum(x*x,axis=1) - np.sum(x,axis=1)).reshape((len(x),1)) y = (x - avg) / std return y data_tr = Normalize(data_tr) data_ev = Normalize(data_ev) x_tr = data_tr.reshape((len(data_tr),3,32,32)) x_ev = data_ev.reshape((len(data_ev),3,32,32)) y_tr = label_tr y_ev = label_ev N_tr = len(data_tr) # 50000 N_ev = len(data_ev) # 10000 ## Define analisis Resume = None if "Resume" in kwd: Resume = kwd["Resume"] del kwd["Resume"] model = L.Classifier(ImageProcessNetwork(I_colors=3, I_Xunit=32, I_Yunit=32, F_unit = 10, **kwd)) if id_gpu >= 0: cuda.get_device(id_gpu).use() model.to_gpu() xp = np if id_gpu < 0 else cuda.cupy # Setup optimizer optimizer = optimizers.Adam() optimizer.setup(model) # Init/Resume if Resume: print('Load optimizer state from', Resume) serializers.load_hdf5(Resume+".state", optimizer) serializers.load_hdf5(Resume+".model", model) # Learning loop if fOutput: fOutput.write("epoch,mode,loss,accuracy\n") for epoch in six.moves.range(1, n_epoch + 1): print 'epoch %d'%epoch # training perm = np.random.permutation(N_tr) sum_accuracy = 0 sum_loss = 0 start = time.time() for i in six.moves.range(0, N_tr, batchsize): x = chainer.Variable(xp.asarray(x_tr[perm[i:i + batchsize]])) t = chainer.Variable(xp.asarray(y_tr[perm[i:i + batchsize]])) # Pass the loss function (Classifier defines it) and its arguments model.predictor.setTrainMode(True) optimizer.update(model, x, t) if (epoch == 1 and i == 0) and folderName: with open(os.path.join(folderName,'graph.dot'), 'w') as o: g = computational_graph.build_computational_graph( (model.loss, )) o.write(g.dump()) print 'graph generated' sum_loss += float(model.loss.data) * len(t.data) sum_accuracy += float(model.accuracy.data) * len(t.data) end = time.time() elapsed_time = end - start throughput = N_tr / elapsed_time print 'train mean loss=%.3f, accuracy=%.1f%%, throughput=%.0f images/sec'%(sum_loss / N_tr, sum_accuracy / N_tr * 100., throughput) if fOutput: fOutput.write("%d,Train,%e,%e\n"%(epoch,sum_loss/N_tr,sum_accuracy/N_tr)) # evaluation perm = np.random.permutation(N_ev) sum_accuracy = 0 sum_loss = 0 for i in six.moves.range(0, N_ev, batchsize): x = chainer.Variable(xp.asarray(x_ev[perm[i:i + batchsize]]),volatile='on') t = chainer.Variable(xp.asarray(y_ev[perm[i:i + batchsize]]),volatile='on') model.predictor.setTrainMode(False) loss = model(x, t) sum_loss += float(loss.data) * len(t.data) sum_accuracy += float(model.accuracy.data) * len(t.data) print 'test mean loss=%.3f, accuracy=%.1f%%'%(sum_loss / N_ev, sum_accuracy / N_ev * 100, ) if fOutput: fOutput.write("%d,Test,%e,%e\n"%(epoch,sum_loss/N_ev,sum_accuracy/N_ev)) if folderName and (epoch%10 == 0 or epoch==n_epoch): # Save the model and the optimizer if epoch == n_epoch: myFname = os.path.join(folderName,'mlp_final') else: myFname = os.path.join(folderName,'mlp_%d'%n_epoch) #print 'save the model' serializers.save_hdf5(myFname+".model", model) serializers.save_hdf5(myFname+".state", optimizer) if fOutput: fOutput.close() if fInfo : fInfo.close() if __name__=="__main__": n_epoch = 200 for i in range(10): for l in [6,5,4,3]: CifarAnalysis("Output/Ksize222_L%d_%d"%(l,i), n_epoch=n_epoch, batchsize = 1000, N_PLayers = l, P0C_feature = 32, P1C_feature = 16, P2C_feature = 16, P0C_filter = 3, P1C_filter = 3, P2C_filter = 3, P0P_ksize = 2, P1P_ksize = 2, P2P_ksize = 2, L1_dropout = 0.5, L2_dropout = 0.0, L2_unit = 100) CifarAnalysis("Output/Ksize211_L%d_%d"%(l,i), n_epoch=n_epoch, batchsize = 1000, N_PLayers = l, P0C_feature = 32, P1C_feature = 16, P2C_feature = 16, P0C_filter = 3, P1C_filter = 3, P2C_filter = 3, P0P_ksize = 2, P1P_ksize = 1, P2P_ksize = 1, L1_dropout = 0.5, L2_dropout = 0.0, L2_unit = 100)
mit
PeterSchichtel/hepstore
hepstore/core/school/books/classification/lda.py
1
1928
#!/usr/bin/env python # from general import sklearn.discriminant_analysis import numpy as np import time import os # from hepstore from hepstore.core.utility import * from hepstore.core.statistic.distribution import Log10Flat as Log10Flat # from local import tuning # out own LDA interface class LinearDiscriminantAnalysis(sklearn.discriminant_analysis.LinearDiscriminantAnalysis): # constructor def __init__(self, solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001, path=os.getcwd(), random_state=None, jobs=1 ): if solver=='svd' and shrinkage is not None: print "--LDA: warning setting 'shrinkage' to 'None', for SVD" shrinkage=None pass sklearn.discriminant_analysis.LinearDiscriminantAnalysis.__init__( self,solver=solver, shrinkage=shrinkage, priors=priors, n_components=n_components, store_covariance=store_covariance, tol=tol ) self.path = path self.random_state = random_state self.jobs = jobs pass # explore parameters of this algorithm def explore( self, X, y ): # generate unique path dependent on core algorithm path = os.path.join(self.path,self.solver) print "--LDA: explore" # specify parameters for exploration if self.solver == 'svd': param_dist = { 'tol' : Log10Flat(-10,-0.001) } pass else: param_dist = { 'shrinkage': Log10Flat(-10,-0.001), } pass # tune classifier tuning.tune( self, X, y, param_dist, path = path, jobs = self.jobs, random_state = self.random_state ) pass pass
gpl-3.0
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/utils/estimator_checks.py
3
66863
from __future__ import print_function import types import warnings import sys import traceback import pickle from copy import deepcopy import numpy as np from scipy import sparse from scipy.stats import rankdata import struct from sklearn.externals.six.moves import zip from sklearn.externals.joblib import hash, Memory from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_allclose from sklearn.utils.testing import assert_allclose_dense_sparse from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import META_ESTIMATORS from sklearn.utils.testing import set_random_state from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_dict_equal from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.base import (clone, TransformerMixin, ClusterMixin, BaseEstimator, is_classifier, is_regressor) from sklearn.metrics import accuracy_score, adjusted_rand_score, f1_score from sklearn.random_projection import BaseRandomProjection from sklearn.feature_selection import SelectKBest from sklearn.svm.base import BaseLibSVM from sklearn.linear_model.stochastic_gradient import BaseSGD from sklearn.pipeline import make_pipeline from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import DataConversionWarning from sklearn.exceptions import SkipTestWarning from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from sklearn.utils.fixes import signature from sklearn.utils.validation import has_fit_parameter, _num_samples from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_iris, load_boston, make_blobs BOSTON = None CROSS_DECOMPOSITION = ['PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD'] MULTI_OUTPUT = ['CCA', 'DecisionTreeRegressor', 'ElasticNet', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GaussianProcess', 'GaussianProcessRegressor', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'Lasso', 'LassoLars', 'LinearRegression', 'MultiTaskElasticNet', 'MultiTaskElasticNetCV', 'MultiTaskLasso', 'MultiTaskLassoCV', 'OrthogonalMatchingPursuit', 'PLSCanonical', 'PLSRegression', 'RANSACRegressor', 'RadiusNeighborsRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV'] def _yield_non_meta_checks(name, estimator): yield check_estimators_dtypes yield check_fit_score_takes_y yield check_dtype_object yield check_sample_weights_pandas_series yield check_sample_weights_list yield check_estimators_fit_returns_self # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 # cross-decomposition's "transform" returns X and Y yield check_pipeline_consistency if name not in ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf if name not in ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params if hasattr(estimator, 'sparsify'): yield check_sparsify_coefficients yield check_estimator_sparse_data # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_estimators_pickle def _yield_classifier_checks(name, classifier): # test classifiers can handle non-array data yield check_classifier_data_not_an_array # test classifiers trained on a single label always return this label yield check_classifiers_one_label yield check_classifiers_classes yield check_estimators_partial_fit_n_features # basic consistency testing yield check_classifiers_train yield check_classifiers_regression_target if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] and # TODO some complication with -1 label name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. yield check_supervised_y_2d # test if NotFittedError is raised yield check_estimators_unfitted if 'class_weight' in classifier.get_params().keys(): yield check_class_weight_classifiers yield check_non_transformer_estimators_n_iter # test if predict_proba is a monotonic transformation of decision_function yield check_decision_proba_consistency @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_supervised_y_no_nan(name, estimator_orig): # Checks that the Estimator targets are not NaN. estimator = clone(estimator_orig) rng = np.random.RandomState(888) X = rng.randn(10, 5) y = np.ones(10) * np.inf y = multioutput_estimator_convert_y_2d(estimator, y) errmsg = "Input contains NaN, infinity or a value too large for " \ "dtype('float64')." try: estimator.fit(X, y) except ValueError as e: if str(e) != errmsg: raise ValueError("Estimator {0} raised error as expected, but " "does not match expected error message" .format(name)) else: raise ValueError("Estimator {0} should have raised error on fitting " "array y with NaN value.".format(name)) def _yield_regressor_checks(name, regressor): # TODO: test with intercept # TODO: test with multiple responses # basic testing yield check_regressors_train yield check_regressor_data_not_an_array yield check_estimators_partial_fit_n_features yield check_regressors_no_decision_function yield check_supervised_y_2d yield check_supervised_y_no_nan if name != 'CCA': # check that the regressor handles int input yield check_regressors_int if name != "GaussianProcessRegressor": # Test if NotFittedError is raised yield check_estimators_unfitted yield check_non_transformer_estimators_n_iter def _yield_transformer_checks(name, transformer): # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'FunctionTransformer', 'Normalizer']: # basic tests yield check_transformer_general yield check_transformers_unfitted # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if name not in external_solver: yield check_transformer_n_iter def _yield_clustering_checks(name, clusterer): yield check_clusterer_compute_labels_predict if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering yield check_estimators_partial_fit_n_features yield check_non_transformer_estimators_n_iter def _yield_all_checks(name, estimator): for check in _yield_non_meta_checks(name, estimator): yield check if is_classifier(estimator): for check in _yield_classifier_checks(name, estimator): yield check if is_regressor(estimator): for check in _yield_regressor_checks(name, estimator): yield check if isinstance(estimator, TransformerMixin): for check in _yield_transformer_checks(name, estimator): yield check if isinstance(estimator, ClusterMixin): for check in _yield_clustering_checks(name, estimator): yield check yield check_fit2d_predict1d yield check_fit2d_1sample yield check_fit2d_1feature yield check_fit1d_1feature yield check_fit1d_1sample yield check_get_params_invariance yield check_dict_unchanged yield check_dont_overwrite_parameters def check_estimator(Estimator): """Check if estimator adheres to scikit-learn conventions. This estimator will run an extensive test-suite for input validation, shapes, etc. Additional tests for classifiers, regressors, clustering or transformers will be run if the Estimator class inherits from the corresponding mixin from sklearn.base. This test can be applied to classes or instances. Classes currently have some additional tests that related to construction, while passing instances allows the testing of multiple options. Parameters ---------- estimator : estimator object or class Estimator to check. Estimator is a class object or instance. """ if isinstance(Estimator, type): # got a class name = Estimator.__name__ check_parameters_default_constructible(name, Estimator) check_no_fit_attributes_set_in_init(name, Estimator) estimator = Estimator() else: # got an instance estimator = Estimator name = type(estimator).__name__ for check in _yield_all_checks(name, estimator): try: check(name, estimator) except SkipTest as message: # the only SkipTest thrown currently results from not # being able to import pandas. warnings.warn(message, SkipTestWarning) def _boston_subset(n_samples=200): global BOSTON if BOSTON is None: boston = load_boston() X, y = boston.data, boston.target X, y = shuffle(X, y, random_state=0) X, y = X[:n_samples], y[:n_samples] X = StandardScaler().fit_transform(X) BOSTON = X, y return BOSTON def set_checking_parameters(estimator): # set parameters to speed up some estimators and # avoid deprecated behaviour params = estimator.get_params() if ("n_iter" in params and estimator.__class__.__name__ != "TSNE" and not isinstance(estimator, BaseSGD)): estimator.set_params(n_iter=5) if "max_iter" in params: warnings.simplefilter("ignore", ConvergenceWarning) if estimator.max_iter is not None: estimator.set_params(max_iter=min(5, estimator.max_iter)) # LinearSVR, LinearSVC if estimator.__class__.__name__ in ['LinearSVR', 'LinearSVC']: estimator.set_params(max_iter=20) # NMF if estimator.__class__.__name__ == 'NMF': estimator.set_params(max_iter=100) # MLP if estimator.__class__.__name__ in ['MLPClassifier', 'MLPRegressor']: estimator.set_params(max_iter=100) if "n_resampling" in params: # randomized lasso estimator.set_params(n_resampling=5) if "n_estimators" in params: # especially gradient boosting with default 100 estimator.set_params(n_estimators=min(5, estimator.n_estimators)) if "max_trials" in params: # RANSAC estimator.set_params(max_trials=10) if "n_init" in params: # K-Means estimator.set_params(n_init=2) if "decision_function_shape" in params: # SVC estimator.set_params(decision_function_shape='ovo') if estimator.__class__.__name__ == "SelectFdr": # be tolerant of noisy datasets (not actually speed) estimator.set_params(alpha=.5) if estimator.__class__.__name__ == "TheilSenRegressor": estimator.max_subpopulation = 100 if isinstance(estimator, BaseRandomProjection): # Due to the jl lemma and often very few samples, the number # of components of the random matrix projection will be probably # greater than the number of features. # So we impose a smaller number (avoid "auto" mode) estimator.set_params(n_components=2) if isinstance(estimator, SelectKBest): # SelectKBest has a default of k=10 # which is more feature than we have in most case. estimator.set_params(k=1) class NotAnArray(object): " An object that is convertable to an array" def __init__(self, data): self.data = data def __array__(self, dtype=None): return self.data def _is_32bit(): """Detect if process is 32bit Python.""" return struct.calcsize('P') * 8 == 32 def check_estimator_sparse_data(name, estimator_orig): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 X_csr = sparse.csr_matrix(X) y = (4 * rng.rand(40)).astype(np.int) # catch deprecation warnings with ignore_warnings(category=DeprecationWarning): estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) for sparse_format in ['csr', 'csc', 'dok', 'lil', 'coo', 'dia', 'bsr']: X = X_csr.asformat(sparse_format) # catch deprecation warnings with ignore_warnings(category=(DeprecationWarning, FutureWarning)): if name in ['Scaler', 'StandardScaler']: estimator = clone(estimator).set_params(with_mean=False) else: estimator = clone(estimator) # fit and predict try: with ignore_warnings(category=(DeprecationWarning, FutureWarning)): estimator.fit(X, y) if hasattr(estimator, "predict"): pred = estimator.predict(X) assert_equal(pred.shape, (X.shape[0],)) if hasattr(estimator, 'predict_proba'): probs = estimator.predict_proba(X) assert_equal(probs.shape, (X.shape[0], 4)) except TypeError as e: if 'sparse' not in repr(e): print("Estimator %s doesn't seem to fail gracefully on " "sparse data: error message state explicitly that " "sparse input is not supported if this is not the case." % name) raise except Exception: print("Estimator %s doesn't seem to fail gracefully on " "sparse data: it should raise a TypeError if sparse input " "is explicitly not supported." % name) raise @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_sample_weights_pandas_series(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type pandas.Series in the 'fit' function. estimator = clone(estimator_orig) if has_fit_parameter(estimator, "sample_weight"): try: import pandas as pd X = pd.DataFrame([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]]) y = pd.Series([1, 1, 1, 2, 2, 2]) weights = pd.Series([1] * 6) try: estimator.fit(X, y, sample_weight=weights) except ValueError: raise ValueError("Estimator {0} raises error if " "'sample_weight' parameter is of " "type pandas.Series".format(name)) except ImportError: raise SkipTest("pandas is not installed: not testing for " "input of type pandas.Series to class weight.") @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_sample_weights_list(name, estimator_orig): # check that estimators will accept a 'sample_weight' parameter of # type list in the 'fit' function. if has_fit_parameter(estimator_orig, "sample_weight"): estimator = clone(estimator_orig) rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 y = multioutput_estimator_convert_y_2d(estimator, y) sample_weight = [3] * 10 # Test that estimators don't raise any exception estimator.fit(X, y, sample_weight=sample_weight) @ignore_warnings(category=(DeprecationWarning, FutureWarning, UserWarning)) def check_dtype_object(name, estimator_orig): # check that estimators treat dtype object as numeric if possible rng = np.random.RandomState(0) X = rng.rand(40, 10).astype(object) y = (X[:, 0] * 4).astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) estimator.fit(X, y) if hasattr(estimator, "predict"): estimator.predict(X) if hasattr(estimator, "transform"): estimator.transform(X) try: estimator.fit(X, y.astype(object)) except Exception as e: if "Unknown label type" not in str(e): raise X[0, 0] = {'foo': 'bar'} msg = "argument must be a string or a number" assert_raises_regex(TypeError, msg, estimator.fit, X, y) @ignore_warnings def check_dict_unchanged(name, estimator_orig): # this estimator raises # ValueError: Found array with 0 feature(s) (shape=(23, 0)) # while a minimum of 1 is required. # error if name in ['SpectralCoclustering']: return rnd = np.random.RandomState(0) if name in ['RANSACRegressor']: X = 3 * rnd.uniform(size=(20, 3)) else: X = 2 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 if hasattr(estimator, "n_best"): estimator.n_best = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): dict_before = estimator.__dict__.copy() getattr(estimator, method)(X) assert_dict_equal(estimator.__dict__, dict_before, 'Estimator changes __dict__ during %s' % method) def is_public_parameter(attr): return not (attr.startswith('_') or attr.endswith('_')) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_dont_overwrite_parameters(name, estimator_orig): # check that fit method only changes or sets private attributes if hasattr(estimator_orig.__init__, "deprecated_original"): # to not check deprecated classes return estimator = clone(estimator_orig) rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) dict_before_fit = estimator.__dict__.copy() estimator.fit(X, y) dict_after_fit = estimator.__dict__ public_keys_after_fit = [key for key in dict_after_fit.keys() if is_public_parameter(key)] attrs_added_by_fit = [key for key in public_keys_after_fit if key not in dict_before_fit.keys()] # check that fit doesn't add any public attribute assert_true(not attrs_added_by_fit, ('Estimator adds public attribute(s) during' ' the fit method.' ' Estimators are only allowed to add private attributes' ' either started with _ or ended' ' with _ but %s added' % ', '.join(attrs_added_by_fit))) # check that fit doesn't change any public attribute attrs_changed_by_fit = [key for key in public_keys_after_fit if (dict_before_fit[key] is not dict_after_fit[key])] assert_true(not attrs_changed_by_fit, ('Estimator changes public attribute(s) during' ' the fit method. Estimators are only allowed' ' to change attributes started' ' or ended with _, but' ' %s changed' % ', '.join(attrs_changed_by_fit))) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_fit2d_predict1d(name, estimator_orig): # check by fitting a 2d array and predicting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20, 3)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) estimator.fit(X, y) for method in ["predict", "transform", "decision_function", "predict_proba"]: if hasattr(estimator, method): assert_raise_message(ValueError, "Reshape your data", getattr(estimator, method), X[0]) @ignore_warnings def check_fit2d_1sample(name, estimator_orig): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(1, 10)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit2d_1feature(name, estimator_orig): # check by fitting a 2d array and prediting with a 1d array rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(10, 1)) y = X[:, 0].astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1feature(name, estimator_orig): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = X.astype(np.int) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings def check_fit1d_1sample(name, estimator_orig): # check fitting 1d array with 1 feature rnd = np.random.RandomState(0) X = 3 * rnd.uniform(size=(20)) y = np.array([1]) estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) if hasattr(estimator, "n_components"): estimator.n_components = 1 if hasattr(estimator, "n_clusters"): estimator.n_clusters = 1 set_random_state(estimator, 1) try: estimator.fit(X, y) except ValueError: pass @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_transformer_general(name, transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) X -= X.min() _check_transformer(name, transformer, X, y) _check_transformer(name, transformer, X.tolist(), y.tolist()) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_transformer_data_not_an_array(name, transformer): X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 this_X = NotAnArray(X) this_y = NotAnArray(np.asarray(y)) _check_transformer(name, transformer, this_X, this_y) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_transformers_unfitted(name, transformer): X, y = _boston_subset() transformer = clone(transformer) assert_raises((AttributeError, ValueError), transformer.transform, X) def _check_transformer(name, transformer_orig, X, y): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # on numpy & scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) n_samples, n_features = np.asarray(X).shape transformer = clone(transformer_orig) set_random_state(transformer) # fit if name in CROSS_DECOMPOSITION: y_ = np.c_[y, y] y_[::2, 1] *= 2 else: y_ = y transformer.fit(X, y_) # fit_transform method should work on non fitted estimator transformer_clone = clone(transformer) X_pred = transformer_clone.fit_transform(X, y=y_) if isinstance(X_pred, tuple): for x_pred in X_pred: assert_equal(x_pred.shape[0], n_samples) else: # check for consistent n_samples assert_equal(X_pred.shape[0], n_samples) if hasattr(transformer, 'transform'): if name in CROSS_DECOMPOSITION: X_pred2 = transformer.transform(X, y_) X_pred3 = transformer.fit_transform(X, y=y_) else: X_pred2 = transformer.transform(X) X_pred3 = transformer.fit_transform(X, y=y_) if isinstance(X_pred, tuple) and isinstance(X_pred2, tuple): for x_pred, x_pred2, x_pred3 in zip(X_pred, X_pred2, X_pred3): assert_allclose_dense_sparse( x_pred, x_pred2, atol=1e-2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer) assert_allclose_dense_sparse( x_pred, x_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) else: assert_allclose_dense_sparse( X_pred, X_pred2, err_msg="fit_transform and transform outcomes " "not consistent in %s" % transformer, atol=1e-2) assert_allclose_dense_sparse( X_pred, X_pred3, atol=1e-2, err_msg="consecutive fit_transform outcomes " "not consistent in %s" % transformer) assert_equal(_num_samples(X_pred2), n_samples) assert_equal(_num_samples(X_pred3), n_samples) # raises error on malformed input for transform if hasattr(X, 'T'): # If it's not an array, it does not have a 'T' property assert_raises(ValueError, transformer.transform, X.T) @ignore_warnings def check_pipeline_consistency(name, estimator_orig): if name in ('CCA', 'LocallyLinearEmbedding', 'KernelPCA') and _is_32bit(): # Those transformers yield non-deterministic output when executed on # a 32bit Python. The same transformers are stable on 64bit Python. # FIXME: try to isolate a minimalistic reproduction case only depending # scipy and/or maybe generate a test dataset that does not # cause such unstable behaviors. msg = name + ' is non deterministic on 32bit Python' raise SkipTest(msg) # check that make_pipeline(est) gives same score as est X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) pipeline = make_pipeline(estimator) estimator.fit(X, y) pipeline.fit(X, y) funcs = ["score", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func_pipeline = getattr(pipeline, func_name) result = func(X, y) result_pipe = func_pipeline(X, y) assert_allclose_dense_sparse(result, result_pipe) @ignore_warnings def check_fit_score_takes_y(name, estimator_orig): # check that all estimators accept an optional y # in fit and score so they can be used in pipelines rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) funcs = ["fit", "score", "partial_fit", "fit_predict", "fit_transform"] for func_name in funcs: func = getattr(estimator, func_name, None) if func is not None: func(X, y) args = [p.name for p in signature(func).parameters.values()] if args[0] == "self": # if_delegate_has_method makes methods into functions # with an explicit "self", so need to shift arguments args = args[1:] assert_true(args[1] in ["y", "Y"], "Expected y or Y as second argument for method " "%s of %s. Got arguments: %r." % (func_name, type(estimator).__name__, args)) @ignore_warnings def check_estimators_dtypes(name, estimator_orig): rnd = np.random.RandomState(0) X_train_32 = 3 * rnd.uniform(size=(20, 5)).astype(np.float32) X_train_64 = X_train_32.astype(np.float64) X_train_int_64 = X_train_32.astype(np.int64) X_train_int_32 = X_train_32.astype(np.int32) y = X_train_int_64[:, 0] y = multioutput_estimator_convert_y_2d(estimator_orig, y) methods = ["predict", "transform", "decision_function", "predict_proba"] for X_train in [X_train_32, X_train_64, X_train_int_64, X_train_int_32]: estimator = clone(estimator_orig) set_random_state(estimator, 1) estimator.fit(X_train, y) for method in methods: if hasattr(estimator, method): getattr(estimator, method)(X_train) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_estimators_empty_data_messages(name, estimator_orig): e = clone(estimator_orig) set_random_state(e, 1) X_zero_samples = np.empty(0).reshape(0, 3) # The precise message can change depending on whether X or y is # validated first. Let us test the type of exception only: assert_raises(ValueError, e.fit, X_zero_samples, []) X_zero_features = np.empty(0).reshape(3, 0) # the following y should be accepted by both classifiers and regressors # and ignored by unsupervised models y = multioutput_estimator_convert_y_2d(e, np.array([1, 0, 1])) msg = ("0 feature\(s\) \(shape=\(3, 0\)\) while a minimum of \d* " "is required.") assert_raises_regex(ValueError, msg, e.fit, X_zero_features, y) @ignore_warnings(category=DeprecationWarning) def check_estimators_nan_inf(name, estimator_orig): # Checks that Estimator X's do not contain NaN or inf. rnd = np.random.RandomState(0) X_train_finite = rnd.uniform(size=(10, 3)) X_train_nan = rnd.uniform(size=(10, 3)) X_train_nan[0, 0] = np.nan X_train_inf = rnd.uniform(size=(10, 3)) X_train_inf[0, 0] = np.inf y = np.ones(10) y[:5] = 0 y = multioutput_estimator_convert_y_2d(estimator_orig, y) error_string_fit = "Estimator doesn't check for NaN and inf in fit." error_string_predict = ("Estimator doesn't check for NaN and inf in" " predict.") error_string_transform = ("Estimator doesn't check for NaN and inf in" " transform.") for X_train in [X_train_nan, X_train_inf]: # catch deprecation warnings with ignore_warnings(category=(DeprecationWarning, FutureWarning)): estimator = clone(estimator_orig) set_random_state(estimator, 1) # try to fit try: estimator.fit(X_train, y) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_fit, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_fit, estimator, exc) traceback.print_exc(file=sys.stdout) raise exc else: raise AssertionError(error_string_fit, estimator) # actually fit estimator.fit(X_train_finite, y) # predict if hasattr(estimator, "predict"): try: estimator.predict(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_predict, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_predict, estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_predict, estimator) # transform if hasattr(estimator, "transform"): try: estimator.transform(X_train) except ValueError as e: if 'inf' not in repr(e) and 'NaN' not in repr(e): print(error_string_transform, estimator, e) traceback.print_exc(file=sys.stdout) raise e except Exception as exc: print(error_string_transform, estimator, exc) traceback.print_exc(file=sys.stdout) else: raise AssertionError(error_string_transform, estimator) @ignore_warnings def check_estimators_pickle(name, estimator_orig): """Test that we can pickle all estimators""" check_methods = ["predict", "transform", "decision_function", "predict_proba"] X, y = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) # some estimators can't do features less than 0 X -= X.min() estimator = clone(estimator_orig) # some estimators only take multioutputs y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) estimator.fit(X, y) result = dict() for method in check_methods: if hasattr(estimator, method): result[method] = getattr(estimator, method)(X) # pickle and unpickle! pickled_estimator = pickle.dumps(estimator) if estimator.__module__.startswith('sklearn.'): assert_true(b"version" in pickled_estimator) unpickled_estimator = pickle.loads(pickled_estimator) for method in result: unpickled_result = getattr(unpickled_estimator, method)(X) assert_allclose_dense_sparse(result[method], unpickled_result) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_estimators_partial_fit_n_features(name, estimator_orig): # check if number of features changes between calls to partial_fit. if not hasattr(estimator_orig, 'partial_fit'): return estimator = clone(estimator_orig) X, y = make_blobs(n_samples=50, random_state=1) X -= X.min() try: if is_classifier(estimator): classes = np.unique(y) estimator.partial_fit(X, y, classes=classes) else: estimator.partial_fit(X, y) except NotImplementedError: return assert_raises(ValueError, estimator.partial_fit, X[:, :-1], y) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_clustering(name, clusterer_orig): clusterer = clone(clusterer_orig) X, y = make_blobs(n_samples=50, random_state=1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) n_samples, n_features = X.shape # catch deprecation and neighbors warnings if hasattr(clusterer, "n_clusters"): clusterer.set_params(n_clusters=3) set_random_state(clusterer) if name == 'AffinityPropagation': clusterer.set_params(preference=-100) clusterer.set_params(max_iter=100) # fit clusterer.fit(X) # with lists clusterer.fit(X.tolist()) assert_equal(clusterer.labels_.shape, (n_samples,)) pred = clusterer.labels_ assert_greater(adjusted_rand_score(pred, y), 0.4) # fit another time with ``fit_predict`` and compare results if name == 'SpectralClustering': # there is no way to make Spectral clustering deterministic :( return set_random_state(clusterer) with warnings.catch_warnings(record=True): pred2 = clusterer.fit_predict(X) assert_array_equal(pred, pred2) @ignore_warnings(category=DeprecationWarning) def check_clusterer_compute_labels_predict(name, clusterer_orig): """Check that predict is invariant of compute_labels""" X, y = make_blobs(n_samples=20, random_state=0) clusterer = clone(clusterer_orig) if hasattr(clusterer, "compute_labels"): # MiniBatchKMeans if hasattr(clusterer, "random_state"): clusterer.set_params(random_state=0) X_pred1 = clusterer.fit(X).predict(X) clusterer.set_params(compute_labels=False) X_pred2 = clusterer.fit(X).predict(X) assert_array_equal(X_pred1, X_pred2) @ignore_warnings(category=DeprecationWarning) def check_classifiers_one_label(name, classifier_orig): error_string_fit = "Classifier can't train when only one class is present." error_string_predict = ("Classifier can't predict when only one class is " "present.") rnd = np.random.RandomState(0) X_train = rnd.uniform(size=(10, 3)) X_test = rnd.uniform(size=(10, 3)) y = np.ones(10) # catch deprecation warnings with ignore_warnings(category=(DeprecationWarning, FutureWarning)): classifier = clone(classifier_orig) # try to fit try: classifier.fit(X_train, y) except ValueError as e: if 'class' not in repr(e): print(error_string_fit, classifier, e) traceback.print_exc(file=sys.stdout) raise e else: return except Exception as exc: print(error_string_fit, classifier, exc) traceback.print_exc(file=sys.stdout) raise exc # predict try: assert_array_equal(classifier.predict(X_test), y) except Exception as exc: print(error_string_predict, classifier, exc) raise exc @ignore_warnings # Warnings are raised by decision function def check_classifiers_train(name, classifier_orig): X_m, y_m = make_blobs(n_samples=300, random_state=0) X_m, y_m = shuffle(X_m, y_m, random_state=7) X_m = StandardScaler().fit_transform(X_m) # generate binary problem from multi-class one y_b = y_m[y_m != 2] X_b = X_m[y_m != 2] for (X, y) in [(X_m, y_m), (X_b, y_b)]: classes = np.unique(y) n_classes = len(classes) n_samples, n_features = X.shape classifier = clone(classifier_orig) if name in ['BernoulliNB', 'MultinomialNB']: X -= X.min() set_random_state(classifier) # raises error on malformed input for fit assert_raises(ValueError, classifier.fit, X, y[:-1]) # fit classifier.fit(X, y) # with lists classifier.fit(X.tolist(), y.tolist()) assert_true(hasattr(classifier, "classes_")) y_pred = classifier.predict(X) assert_equal(y_pred.shape, (n_samples,)) # training set performance if name not in ['BernoulliNB', 'MultinomialNB']: assert_greater(accuracy_score(y, y_pred), 0.83) # raises error on malformed input for predict assert_raises(ValueError, classifier.predict, X.T) if hasattr(classifier, "decision_function"): try: # decision_function agrees with predict decision = classifier.decision_function(X) if n_classes == 2: assert_equal(decision.shape, (n_samples,)) dec_pred = (decision.ravel() > 0).astype(np.int) assert_array_equal(dec_pred, y_pred) if (n_classes == 3 and # 1on1 of LibSVM works differently not isinstance(classifier, BaseLibSVM)): assert_equal(decision.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(decision, axis=1), y_pred) # raises error on malformed input assert_raises(ValueError, classifier.decision_function, X.T) # raises error on malformed input for decision_function assert_raises(ValueError, classifier.decision_function, X.T) except NotImplementedError: pass if hasattr(classifier, "predict_proba"): # predict_proba agrees with predict y_prob = classifier.predict_proba(X) assert_equal(y_prob.shape, (n_samples, n_classes)) assert_array_equal(np.argmax(y_prob, axis=1), y_pred) # check that probas for all classes sum to one assert_allclose(np.sum(y_prob, axis=1), np.ones(n_samples)) # raises error on malformed input assert_raises(ValueError, classifier.predict_proba, X.T) # raises error on malformed input for predict_proba assert_raises(ValueError, classifier.predict_proba, X.T) if hasattr(classifier, "predict_log_proba"): # predict_log_proba is a transformation of predict_proba y_log_prob = classifier.predict_log_proba(X) assert_allclose(y_log_prob, np.log(y_prob), 8, atol=1e-9) assert_array_equal(np.argsort(y_log_prob), np.argsort(y_prob)) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_estimators_fit_returns_self(name, estimator_orig): """Check if self is returned when calling fit""" X, y = make_blobs(random_state=0, n_samples=9, n_features=4) # some want non-negative input X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) assert_true(estimator.fit(X, y) is estimator) @ignore_warnings def check_estimators_unfitted(name, estimator_orig): """Check that predict raises an exception in an unfitted estimator. Unfitted estimators should raise either AttributeError or ValueError. The specific exception type NotFittedError inherits from both and can therefore be adequately raised for that purpose. """ # Common test for Regressors as well as Classifiers X, y = _boston_subset() est = clone(estimator_orig) msg = "fit" if hasattr(est, 'predict'): assert_raise_message((AttributeError, ValueError), msg, est.predict, X) if hasattr(est, 'decision_function'): assert_raise_message((AttributeError, ValueError), msg, est.decision_function, X) if hasattr(est, 'predict_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_proba, X) if hasattr(est, 'predict_log_proba'): assert_raise_message((AttributeError, ValueError), msg, est.predict_log_proba, X) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_supervised_y_2d(name, estimator_orig): if "MultiTask" in name: # These only work on 2d, so this test makes no sense return rnd = np.random.RandomState(0) X = rnd.uniform(size=(10, 3)) y = np.arange(10) % 3 estimator = clone(estimator_orig) set_random_state(estimator) # fit estimator.fit(X, y) y_pred = estimator.predict(X) set_random_state(estimator) # Check that when a 2D y is given, a DataConversionWarning is # raised with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", DataConversionWarning) warnings.simplefilter("ignore", RuntimeWarning) estimator.fit(X, y[:, np.newaxis]) y_pred_2d = estimator.predict(X) msg = "expected 1 DataConversionWarning, got: %s" % ( ", ".join([str(w_x) for w_x in w])) if name not in MULTI_OUTPUT: # check that we warned if we don't support multi-output assert_greater(len(w), 0, msg) assert_true("DataConversionWarning('A column-vector y" " was passed when a 1d array was expected" in msg) assert_allclose(y_pred.ravel(), y_pred_2d.ravel()) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_classifiers_classes(name, classifier_orig): X, y = make_blobs(n_samples=30, random_state=0, cluster_std=0.1) X, y = shuffle(X, y, random_state=7) X = StandardScaler().fit_transform(X) # We need to make sure that we have non negative data, for things # like NMF X -= X.min() - .1 y_names = np.array(["one", "two", "three"])[y] for y_names in [y_names, y_names.astype('O')]: if name in ["LabelPropagation", "LabelSpreading"]: # TODO some complication with -1 label y_ = y else: y_ = y_names classes = np.unique(y_) classifier = clone(classifier_orig) if name == 'BernoulliNB': classifier.set_params(binarize=X.mean()) set_random_state(classifier) # fit classifier.fit(X, y_) y_pred = classifier.predict(X) # training set performance assert_array_equal(np.unique(y_), np.unique(y_pred)) if np.any(classifier.classes_ != classes): print("Unexpected classes_ attribute for %r: " "expected %s, got %s" % (classifier, classes, classifier.classes_)) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_regressors_int(name, regressor_orig): X, _ = _boston_subset() X = X[:50] rnd = np.random.RandomState(0) y = rnd.randint(3, size=X.shape[0]) y = multioutput_estimator_convert_y_2d(regressor_orig, y) rnd = np.random.RandomState(0) # separate estimators to control random seeds regressor_1 = clone(regressor_orig) regressor_2 = clone(regressor_orig) set_random_state(regressor_1) set_random_state(regressor_2) if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y # fit regressor_1.fit(X, y_) pred1 = regressor_1.predict(X) regressor_2.fit(X, y_.astype(np.float)) pred2 = regressor_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_regressors_train(name, regressor_orig): X, y = _boston_subset() y = StandardScaler().fit_transform(y.reshape(-1, 1)) # X is already scaled y = y.ravel() regressor = clone(regressor_orig) y = multioutput_estimator_convert_y_2d(regressor, y) rnd = np.random.RandomState(0) if not hasattr(regressor, 'alphas') and hasattr(regressor, 'alpha'): # linear regressors need to set alpha, but not generalized CV ones regressor.alpha = 0.01 if name == 'PassiveAggressiveRegressor': regressor.C = 0.01 # raises error on malformed input for fit assert_raises(ValueError, regressor.fit, X, y[:-1]) # fit if name in CROSS_DECOMPOSITION: y_ = np.vstack([y, 2 * y + rnd.randint(2, size=len(y))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) # TODO: find out why PLS and CCA fail. RANSAC is random # and furthermore assumes the presence of outliers, hence # skipped if name not in ('PLSCanonical', 'CCA', 'RANSACRegressor'): assert_greater(regressor.score(X, y_), 0.5) @ignore_warnings def check_regressors_no_decision_function(name, regressor_orig): # checks whether regressors have decision_function or predict_proba rng = np.random.RandomState(0) X = rng.normal(size=(10, 4)) regressor = clone(regressor_orig) y = multioutput_estimator_convert_y_2d(regressor, X[:, 0]) if hasattr(regressor, "n_components"): # FIXME CCA, PLS is not robust to rank 1 effects regressor.n_components = 1 regressor.fit(X, y) funcs = ["decision_function", "predict_proba", "predict_log_proba"] for func_name in funcs: func = getattr(regressor, func_name, None) if func is None: # doesn't have function continue # has function. Should raise deprecation warning msg = func_name assert_warns_message(DeprecationWarning, msg, func, X) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_class_weight_classifiers(name, classifier_orig): if name == "NuSVC": # the sparse version has a parameter that doesn't do anything raise SkipTest if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! raise SkipTest for n_centers in [2, 3]: # create a very noisy dataset X, y = make_blobs(centers=n_centers, random_state=0, cluster_std=20) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) n_centers = len(np.unique(y_train)) if n_centers == 2: class_weight = {0: 1000, 1: 0.0001} else: class_weight = {0: 1000, 1: 0.0001, 2: 0.0001} classifier = clone(classifier_orig).set_params( class_weight=class_weight) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) if hasattr(classifier, "min_weight_fraction_leaf"): classifier.set_params(min_weight_fraction_leaf=0.01) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) # XXX: Generally can use 0.89 here. On Windows, LinearSVC gets # 0.88 (Issue #9111) assert_greater(np.mean(y_pred == 0), 0.87) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_class_weight_balanced_classifiers(name, classifier_orig, X_train, y_train, X_test, y_test, weights): classifier = clone(classifier_orig) if hasattr(classifier, "n_iter"): classifier.set_params(n_iter=100) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) set_random_state(classifier) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) classifier.set_params(class_weight='balanced') classifier.fit(X_train, y_train) y_pred_balanced = classifier.predict(X_test) assert_greater(f1_score(y_test, y_pred_balanced, average='weighted'), f1_score(y_test, y_pred, average='weighted')) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_class_weight_balanced_linear_classifier(name, Classifier): """Test class weights with non-contiguous class labels.""" # this is run on classes, not instances, though this should be changed X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = np.array([1, 1, 1, -1, -1]) classifier = Classifier() if hasattr(classifier, "n_iter"): # This is a very small dataset, default n_iter are likely to prevent # convergence classifier.set_params(n_iter=1000) if hasattr(classifier, "max_iter"): classifier.set_params(max_iter=1000) set_random_state(classifier) # Let the model compute the class frequencies classifier.set_params(class_weight='balanced') coef_balanced = classifier.fit(X, y).coef_.copy() # Count each label occurrence to reweight manually n_samples = len(y) n_classes = float(len(np.unique(y))) class_weight = {1: n_samples / (np.sum(y == 1) * n_classes), -1: n_samples / (np.sum(y == -1) * n_classes)} classifier.set_params(class_weight=class_weight) coef_manual = classifier.fit(X, y).coef_.copy() assert_allclose(coef_balanced, coef_manual) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_estimators_overwrite_params(name, estimator_orig): X, y = make_blobs(random_state=0, n_samples=9) # some want non-negative input X -= X.min() estimator = clone(estimator_orig) y = multioutput_estimator_convert_y_2d(estimator, y) set_random_state(estimator) # Make a physical copy of the original estimator parameters before fitting. params = estimator.get_params() original_params = deepcopy(params) # Fit the model estimator.fit(X, y) # Compare the state of the model parameters with the original parameters new_params = estimator.get_params() for param_name, original_value in original_params.items(): new_value = new_params[param_name] # We should never change or mutate the internal state of input # parameters by default. To check this we use the joblib.hash function # that introspects recursively any subobjects to compute a checksum. # The only exception to this rule of immutable constructor parameters # is possible RandomState instance but in this check we explicitly # fixed the random_state params recursively to be integer seeds. assert_equal(hash(new_value), hash(original_value), "Estimator %s should not change or mutate " " the parameter %s from %s to %s during fit." % (name, param_name, original_value, new_value)) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_no_fit_attributes_set_in_init(name, Estimator): """Check that Estimator.__init__ doesn't set trailing-_ attributes.""" # this check works on classes, not instances estimator = Estimator() for attr in dir(estimator): if attr.endswith("_") and not attr.startswith("__"): # This check is for properties, they can be listed in dir # while at the same time have hasattr return False as long # as the property getter raises an AttributeError assert_false( hasattr(estimator, attr), "By convention, attributes ending with '_' are " 'estimated from data in scikit-learn. Consequently they ' 'should not be initialized in the constructor of an ' 'estimator but in the fit method. Attribute {!r} ' 'was found in estimator {}'.format(attr, name)) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_sparsify_coefficients(name, estimator_orig): X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [-1, -2], [2, 2], [-2, -2]]) y = [1, 1, 1, 2, 2, 2, 3, 3, 3] est = clone(estimator_orig) est.fit(X, y) pred_orig = est.predict(X) # test sparsify with dense inputs est.sparsify() assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) # pickle and unpickle with sparse coef_ est = pickle.loads(pickle.dumps(est)) assert_true(sparse.issparse(est.coef_)) pred = est.predict(X) assert_array_equal(pred, pred_orig) @ignore_warnings(category=DeprecationWarning) def check_classifier_data_not_an_array(name, estimator_orig): X = np.array([[3, 0], [0, 1], [0, 2], [1, 1], [1, 2], [2, 1]]) y = [1, 1, 1, 2, 2, 2] y = multioutput_estimator_convert_y_2d(estimator_orig, y) check_estimators_data_not_an_array(name, estimator_orig, X, y) @ignore_warnings(category=DeprecationWarning) def check_regressor_data_not_an_array(name, estimator_orig): X, y = _boston_subset(n_samples=50) y = multioutput_estimator_convert_y_2d(estimator_orig, y) check_estimators_data_not_an_array(name, estimator_orig, X, y) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_estimators_data_not_an_array(name, estimator_orig, X, y): if name in CROSS_DECOMPOSITION: raise SkipTest # separate estimators to control random seeds estimator_1 = clone(estimator_orig) estimator_2 = clone(estimator_orig) set_random_state(estimator_1) set_random_state(estimator_2) y_ = NotAnArray(np.asarray(y)) X_ = NotAnArray(np.asarray(X)) # fit estimator_1.fit(X_, y_) pred1 = estimator_1.predict(X_) estimator_2.fit(X, y) pred2 = estimator_2.predict(X) assert_allclose(pred1, pred2, atol=1e-2, err_msg=name) def check_parameters_default_constructible(name, Estimator): # this check works on classes, not instances classifier = LinearDiscriminantAnalysis() # test default-constructibility # get rid of deprecation warnings with ignore_warnings(category=(DeprecationWarning, FutureWarning)): if name in META_ESTIMATORS: estimator = Estimator(classifier) else: estimator = Estimator() # test cloning clone(estimator) # test __repr__ repr(estimator) # test that set_params returns self assert_true(estimator.set_params() is estimator) # test if init does nothing but set parameters # this is important for grid_search etc. # We get the default parameters from init and then # compare these against the actual values of the attributes. # this comes from getattr. Gets rid of deprecation decorator. init = getattr(estimator.__init__, 'deprecated_original', estimator.__init__) try: def param_filter(p): """Identify hyper parameters of an estimator""" return (p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL) init_params = [p for p in signature(init).parameters.values() if param_filter(p)] except (TypeError, ValueError): # init is not a python function. # true for mixins return params = estimator.get_params() if name in META_ESTIMATORS: # they can need a non-default argument init_params = init_params[1:] for init_param in init_params: assert_not_equal(init_param.default, init_param.empty, "parameter %s for %s has no default value" % (init_param.name, type(estimator).__name__)) assert_in(type(init_param.default), [str, int, float, bool, tuple, type(None), np.float64, types.FunctionType, Memory]) if init_param.name not in params.keys(): # deprecated parameter, not in get_params assert_true(init_param.default is None) continue if (issubclass(Estimator, BaseSGD) and init_param.name in ['tol', 'max_iter']): # To remove in 0.21, when they get their future default values continue param_value = params[init_param.name] if isinstance(param_value, np.ndarray): assert_array_equal(param_value, init_param.default) else: assert_equal(param_value, init_param.default, init_param.name) def multioutput_estimator_convert_y_2d(estimator, y): # Estimators in mono_output_task_error raise ValueError if y is of 1-D # Convert into a 2-D y for those estimators. if "MultiTask" in estimator.__class__.__name__: return np.reshape(y, (-1, 1)) return y @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_non_transformer_estimators_n_iter(name, estimator_orig): # Test that estimators that are not transformers with a parameter # max_iter, return the attribute of n_iter_ at least 1. # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. not_run_check_n_iter = ['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV', 'LinearSVC', 'LogisticRegression'] # Tested in test_transformer_n_iter not_run_check_n_iter += CROSS_DECOMPOSITION if name in not_run_check_n_iter: return # LassoLars stops early for the default alpha=1.0 the iris dataset. if name == 'LassoLars': estimator = clone(estimator_orig).set_params(alpha=0.) else: estimator = clone(estimator_orig) if hasattr(estimator, 'max_iter'): iris = load_iris() X, y_ = iris.data, iris.target y_ = multioutput_estimator_convert_y_2d(estimator, y_) set_random_state(estimator, 0) if name == 'AffinityPropagation': estimator.fit(X) else: estimator.fit(X, y_) # HuberRegressor depends on scipy.optimize.fmin_l_bfgs_b # which doesn't return a n_iter for old versions of SciPy. if not (name == 'HuberRegressor' and estimator.n_iter_ is None): assert_greater_equal(estimator.n_iter_, 1) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_transformer_n_iter(name, estimator_orig): # Test that transformers with a parameter max_iter, return the # attribute of n_iter_ at least 1. estimator = clone(estimator_orig) if hasattr(estimator, "max_iter"): if name in CROSS_DECOMPOSITION: # Check using default data X = [[0., 0., 1.], [1., 0., 0.], [2., 2., 2.], [2., 5., 4.]] y_ = [[0.1, -0.2], [0.9, 1.1], [0.1, -0.5], [0.3, -0.2]] else: X, y_ = make_blobs(n_samples=30, centers=[[0, 0, 0], [1, 1, 1]], random_state=0, n_features=2, cluster_std=0.1) X -= X.min() - 0.1 set_random_state(estimator, 0) estimator.fit(X, y_) # These return a n_iter per component. if name in CROSS_DECOMPOSITION: for iter_ in estimator.n_iter_: assert_greater_equal(iter_, 1) else: assert_greater_equal(estimator.n_iter_, 1) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_get_params_invariance(name, estimator_orig): # Checks if get_params(deep=False) is a subset of get_params(deep=True) class T(BaseEstimator): """Mock classifier """ def __init__(self): pass def fit(self, X, y): return self def transform(self, X): return X e = clone(estimator_orig) shallow_params = e.get_params(deep=False) deep_params = e.get_params(deep=True) assert_true(all(item in deep_params.items() for item in shallow_params.items())) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_classifiers_regression_target(name, estimator_orig): # Check if classifier throws an exception when fed regression targets boston = load_boston() X, y = boston.data, boston.target e = clone(estimator_orig) msg = 'Unknown label type: ' assert_raises_regex(ValueError, msg, e.fit, X, y) @ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_decision_proba_consistency(name, estimator_orig): # Check whether an estimator having both decision_function and # predict_proba methods has outputs with perfect rank correlation. centers = [(2, 2), (4, 4)] X, y = make_blobs(n_samples=100, random_state=0, n_features=4, centers=centers, cluster_std=1.0, shuffle=True) X_test = np.random.randn(20, 2) + 4 estimator = clone(estimator_orig) if (hasattr(estimator, "decision_function") and hasattr(estimator, "predict_proba")): estimator.fit(X, y) a = estimator.predict_proba(X_test)[:, 1] b = estimator.decision_function(X_test) assert_array_equal(rankdata(a), rankdata(b))
mit
xwolf12/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
233
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest compenents of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
Achuth17/scikit-bio
skbio/util/_testing.py
1
5213
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import os import inspect import pandas.util.testing as pdt from nose import core from nose.tools import nottest from future.utils import PY3 from ._decorator import experimental @nottest class TestRunner(object): """Simple wrapper class around nosetests functionality. Parameters ---------- filename : str __file__ attribute passed in from the caller. This tells the tester where to start looking for tests. Notes ----- The primary purpose of this class is to create an interface which users of scikit-bio can use to run all of the built in tests. Normally this would be done by invoking nosetests directly from the command line, but scikit-bio needs several additional options which make the command long and ugly. This class invokes nose with the required options. """ @experimental(as_of="0.4.0") def __init__(self, filename): self._filename = filename self._test_dir = os.path.dirname(filename) @experimental(as_of="0.4.0") def test(self, verbose=False): """Performs the actual running of the tests. Parameters ---------- verbose : bool flag for running in verbose mode. Returns ------- bool test run success status """ # NOTE: it doesn't seem to matter what the first element of the argv # list is, there just needs to be something there. argv = [self._filename, '-I DO_NOT_IGNORE_ANYTHING'] if not PY3: argv.extend(['--with-doctest', '--doctest-tests']) if verbose: argv.append('-v') return core.run(argv=argv, defaultTest=self._test_dir) @experimental(as_of="0.4.0") def get_data_path(fn, subfolder='data'): """Return path to filename ``fn`` in the data folder. During testing it is often necessary to load data files. This function returns the full path to files in the ``data`` subfolder by default. Parameters ---------- fn : str File name. subfolder : str, defaults to ``data`` Name of the subfolder that contains the data. Returns ------- str Inferred absolute path to the test data for the module where ``get_data_path(fn)`` is called. Notes ----- The requested path may not point to an existing file, as its existence is not checked. """ # getouterframes returns a list of tuples: the second tuple # contains info about the caller, and the second element is its # filename callers_filename = inspect.getouterframes(inspect.currentframe())[1][1] path = os.path.dirname(os.path.abspath(callers_filename)) data_path = os.path.join(path, subfolder, fn) return data_path @experimental(as_of="0.4.0") def assert_data_frame_almost_equal(left, right): """Raise AssertionError if ``pd.DataFrame`` objects are not "almost equal". Wrapper of ``pd.util.testing.assert_frame_equal``. Floating point values are considered "almost equal" if they are within a threshold defined by ``assert_frame_equal``. This wrapper uses a number of checks that are turned off by default in ``assert_frame_equal`` in order to perform stricter comparisons (for example, ensuring the index and column types are the same). It also does not consider empty ``pd.DataFrame`` objects equal if they have a different index. Other notes: * Index (row) and column ordering must be the same for objects to be equal. * NaNs (``np.nan``) in the same locations are considered equal. This is a helper function intended to be used in unit tests that need to compare ``pd.DataFrame`` objects. Parameters ---------- left, right : pd.DataFrame ``pd.DataFrame`` objects to compare. Raises ------ AssertionError If `left` and `right` are not "almost equal". See Also -------- pandas.util.testing.assert_frame_equal """ # pass all kwargs to ensure this function has consistent behavior even if # `assert_frame_equal`'s defaults change pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) # this check ensures that empty DataFrames with different indices do not # compare equal. exact=True specifies that the type of the indices must be # exactly the same pdt.assert_index_equal(left.index, right.index, exact=True, check_names=True)
bsd-3-clause
rafwiewiora/msmbuilder
msmbuilder/project_templates/cluster/sample-clusters-plot.py
9
2612
"""Plot the result of sampling clusters {{header}} """ # ? include "plot_header.template" # ? from "plot_macros.template" import xdg_open with context import numpy as np import seaborn as sns from matplotlib import pyplot as plt from msmbuilder.io import load_trajs, load_generic sns.set_style('ticks') colors = sns.color_palette() ## Load meta, ttrajs = load_trajs('ttrajs') txx = np.concatenate(list(ttrajs.values())) kmeans = load_generic('kmeans.pickl') inds = load_generic("cluster-sample-inds.pickl") coordinates = [ np.asarray([ttrajs[traj_i][frame_i, :] for traj_i, frame_i in state_inds]) for state_inds in inds ] ## Overlay sampled states on histogram def plot_sampled_states(ax): ax.hexbin(txx[:, 0], txx[:, 1], cmap='magma_r', mincnt=1, bins='log', alpha=0.8, ) # Show sampled points as scatter # Annotate cluster index for i, coo in enumerate(coordinates): plt.scatter(coo[:, 0], coo[:, 1], c=colors[i % 6], s=40) ax.text(kmeans.cluster_centers_[i, 0], kmeans.cluster_centers_[i, 1], "{}".format(i), ha='center', va='center', size=16, bbox=dict( boxstyle='round', fc='w', ec="0.5", alpha=0.9, ), zorder=10, ) ax.set_xlabel("tIC 1", fontsize=16) ax.set_ylabel("tIC 2", fontsize=16) ## Render a script for loading in vmd def load_in_vmd(dirname='cluster_samples'): k = len(inds[0]) templ = [ '# autogenerated by msmbuilder', '# open with `vmd -e load-cluster-samples.tcl`', '', '# Defaults', 'mol default material Transparent', 'mol default representation NewCartoon', '', ] for i in range(len(inds)): templ += [ '# State {}'.format(i), 'mol new top.pdb', 'mol addfile {}/{}.xtc waitfor all'.format(dirname, i), 'animate delete beg 0 end 0 top', 'mol rename top State-{}'.format(i), 'mol modcolor 0 top ColorID {}'.format(i), 'mol drawframes top 0 0:{k}'.format(k=k), '', ] return '\n'.join(templ) ## Plot fig, ax = plt.subplots(figsize=(7, 5)) plot_sampled_states(ax) fig.tight_layout() fig.savefig('cluster-samples.pdf') # {{xdg_open('cluster-samples.pdf')}} ## Render vmd with open('load-cluster-samples.tcl', 'w') as f: f.write(load_in_vmd())
lgpl-2.1
sawenzel/AliceO2
Detectors/MUON/MCH/Raw/ElecMap/src/elecmap.py
3
8911
#!/usr/bin/env python from subprocess import call import os import argparse from oauth2client.service_account import ServiceAccountCredentials import gspread import numpy as np import pandas as pd def gencode_clang_format(filename): """ Run clang-format on file """ clang_format = ["clang-format", "-i", filename] return call(clang_format) def gencode_open_generated(filename): """ Open a new file and add a Copyright on it """ out = open(filename, "w") gencode_generated_code(out) return out def gencode_close_generated(out): """ Format and close """ out.close() gencode_clang_format(out.name) def gencode_generated_code(out): """ Add full O2 Copyright to out""" out.write('''// Copyright CERN and copyright holders of ALICE O2. This software is // distributed under the terms of the GNU General Public License v3 (GPL // Version 3), copied verbatim in the file "COPYING". // // See http://alice-o2.web.cern.ch/license for full licensing information. // // In applying this license CERN does not waive the privileges and immunities // granted to it by virtue of its status as an Intergovernmental Organization // or submit itself to any jurisdiction. /// /// GENERATED CODE ! DO NOT EDIT ! /// ''') def gencode_insert_row_in_map(out, row): def insert_in_map(dsid, index): out.write("add(e2d,{},{},{},{},{});\n" .format(row.de_id, dsid, row.solar_id, row.group_id, index)) insert_in_map(row.ds_id_0, 0) insert_in_map(row.ds_id_1, 1) if row.ds_id_2: insert_in_map(row.ds_id_2, 2) if row.ds_id_3: insert_in_map(row.ds_id_3, 3) if row.ds_id_4: insert_in_map(row.ds_id_4, 4) def gencode_do(df, df_cru, solar_map, chamber): """ Generate code for one chamber Information from the dataframe df is used to create c++ code that builds a couple of std::map """ out = gencode_open_generated(chamber + ".cxx") out.write(''' #include "CH.cxx" ''') out.write( "void fillElec2Det{}(std::map<uint32_t,uint32_t>& e2d){{".format(chamber)) for row in df.itertuples(): gencode_insert_row_in_map(out, row) out.write("}") out.write( "void fillSolar2FeeLink{}(std::map<uint16_t, uint32_t>& s2f){{".format(chamber)) for row in df_cru.itertuples(): if len(row.solar_id) > 0: out.write("add_cru(s2f,{},{},{});\n".format( row.fee_id, int(row.link_id)%12, row.solar_id)) out.write("}") gencode_close_generated(out) def gs_read_sheet(credential_file, workbook, sheet_name): """ Read a Google Spreadsheet """ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_name( credential_file, scope) # Your json file here gc = gspread.authorize(credentials) wks = gc.open(workbook).worksheet(sheet_name) data = wks.get_all_values() cols = np.array([0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) df = pd.DataFrame(np.asarray(data)[:, cols], columns=["cru", "fiber", "crate", "solar", "solar_local_id", "j", "solar_id", "flat_cable_name", "length", "de", "ds1", "ds2", "ds3", "ds4", "ds5"]) return df.iloc[3:] def gs_read_sheet_cru(credential_file, workbook, sheet_name): """ Read a Google Spreadsheet """ scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_name( credential_file, scope) # Your json file here gc = gspread.authorize(credentials) wks = gc.open(workbook).worksheet(sheet_name) data = wks.get_all_values() # LINK ID CRU ID CRU LINK DWP CRU ADDR DW ADDR FEE ID cols = np.array([0, 1, 2, 3, 4, 5,6,7]) df = pd.DataFrame(np.asarray(data)[:, cols], columns=["solar_id", "cru_id", "link_id", "cru_sn", "dwp", "cru_address_0", "cru_address_1", "fee_id"]) return df.iloc[1:] def excel_get_dataframe(filename, sheet): """ Read a dataframe from an excel file """ f = pd.read_excel(filename, sheet_name=sheet, names=["cru", "fiber", "crate", "solar", "solar_local_id", "j", "slat", "length", "de", "ds1", "ds2", "ds3", "ds4", "ds5"], usecols="A:N", na_values=[" "], na_filter=True) return f def excel_is_valid_file(excel_parser, arg, sheet): print(arg, sheet) if not os.path.isfile(arg): return excel_parser.error("The file %s does not exist!" % arg) return excel_get_dataframe(arg, sheet) def _simplify_dataframe(df): """ Do some cleanup on the dataframe """ # remove lines where only the "CRATE #" column is # different from NaN df = df[df.crate != ""] # row_list is a dictionary where we'll put only the information we need # from the input DataFrame (df) row_list = [] solar_map = {} for row in df.itertuples(): # print(row) crate = int(str(row.crate).strip('C ')) solar_pos = int(row.solar.split('-')[2].strip('S '))-1 group_id = int(row.solar.split('-')[3].strip('J '))-1 solar_id = crate*8 + solar_pos de_id = int(row.de) d = dict({ 'cru_id': row.cru, 'solar_id': solar_id, 'group_id': group_id, 'de_id': de_id, 'ds_id_0': int(row.ds1) }) d['ds_id_1'] = int(row.ds2) if pd.notna( row.ds2) and len(row.ds2) > 0 else 0 d['ds_id_2'] = int(row.ds3) if pd.notna( row.ds3) and len(row.ds3) > 0 else 0 d['ds_id_3'] = int(row.ds4) if pd.notna( row.ds4) and len(row.ds4) > 0 else 0 d['ds_id_4'] = int(row.ds5) if pd.notna( row.ds5) and len(row.ds5) > 0 else 0 solar_map[solar_id] = de_id row_list.append(d) # create the output DataFrame (sf) from the row_list dict sf = pd.DataFrame(row_list, dtype=np.int16) print("solar_map", solar_map) return sf, solar_map parser = argparse.ArgumentParser() parser.add_argument('--excel', '-e', dest="excel_filename", action="append", help="input excel filename(s)") parser.add_argument('--google_sheet', '-gs', dest="gs_name", help="input google sheet name") parser.add_argument('-s', '--sheet', dest="sheet", required=True, help="name of the excel sheet to consider in the excel file") parser.add_argument('-c', '--chamber', dest="chamber", help="output c++ code for chamber") parser.add_argument('--verbose', '-v', dest="verbose", default=False, action="store_true", help="verbose") parser.add_argument('--credentials', dest="credentials", help="json credential file for Google Sheet API access") parser.add_argument("--fec_map", "-f", dest="fecmapfile", help="fec.map output filename") args = parser.parse_args() df = pd.DataFrame() df_cru = pd.DataFrame() if args.excel_filename: for ifile in args.excel_filename: df = df.append(excel_is_valid_file(parser, ifile, args.sheet)) if args.gs_name: df = df.append(gs_read_sheet(args.credentials, args.gs_name, args.sheet)) df, solar_map = _simplify_dataframe(df) df_cru = df_cru.append(gs_read_sheet_cru(args.credentials, args.gs_name, args.sheet+" CRU map")) if args.verbose: print(df.to_string()) if args.chamber: gencode_do(df, df_cru, solar_map, args.chamber) if args.fecmapfile: fec_string = df.to_string( columns=["solar_id", "group_id", "de_id", "ds_id_0", "ds_id_1", "ds_id_2", "ds_id_3", "ds_id_4"], header=False, index=False, formatters={ "solar_id": lambda x: "%-6s" % x, "group_id": lambda x: "%2s" % x, "de_id": lambda x: "%9s " % x, "ds_id_0": lambda x: " %-6s" % x, "ds_id_1": lambda x: " %-6s" % x, "ds_id_2": lambda x: " %-6s" % x, "ds_id_3": lambda x: " %-6s" % x, "ds_id_4": lambda x: " %-6s" % x, }) fec_file = open(args.fecmapfile, "w") fec_file.write(fec_string)
gpl-3.0
petosegan/scikit-learn
sklearn/linear_model/tests/test_least_angle.py
57
16523
from nose.tools import assert_equal import numpy as np from scipy import linalg from sklearn.cross_validation import train_test_split from sklearn.externals import joblib from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_no_warnings, assert_warns from sklearn.utils.testing import TempMemmap from sklearn.utils import ConvergenceWarning from sklearn import linear_model, datasets from sklearn.linear_model.least_angle import _lars_path_residues diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target # TODO: use another dataset that has multiple drops def test_simple(): # Principle of Lars is to keep covariances tied and decreasing # also test verbose output from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout try: sys.stdout = StringIO() alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", verbose=10) sys.stdout = old_stdout for (i, coef_) in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) finally: sys.stdout = old_stdout def test_simple_precomputed(): # The same, with precomputed Gram matrix G = np.dot(diabetes.data.T, diabetes.data) alphas_, active, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, Gram=G, method="lar") for i, coef_ in enumerate(coef_path_.T): res = y - np.dot(X, coef_) cov = np.dot(X.T, res) C = np.max(abs(cov)) eps = 1e-3 ocur = len(cov[C - eps < abs(cov)]) if i < X.shape[1]: assert_true(ocur == i + 1) else: # no more than max_pred variables can go into the active set assert_true(ocur == X.shape[1]) def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': output = linear_model.lars_path(X, y, method=method) output_pre = linear_model.lars_path(X, y, Gram=G, Xy=Xy, method=method) for expected, got in zip(output, output_pre): assert_array_almost_equal(expected, got) def test_lars_lstsq(): # Test that Lars gives least square solution at the end # of the path X1 = 3 * diabetes.data # use un-normalized dataset clf = linear_model.LassoLars(alpha=0.) clf.fit(X1, y) coef_lstsq = np.linalg.lstsq(X1, y)[0] assert_array_almost_equal(clf.coef_, coef_lstsq) def test_lasso_gives_lstsq_solution(): # Test that Lars Lasso gives least square solution at the end # of the path alphas_, active, coef_path_ = linear_model.lars_path(X, y, method="lasso") coef_lstsq = np.linalg.lstsq(X, y)[0] assert_array_almost_equal(coef_lstsq, coef_path_[:, -1]) def test_collinearity(): # Check that lars_path is robust to collinearity in input X = np.array([[3., 3., 1.], [2., 2., 0.], [1., 1., 0]]) y = np.array([1., 0., 0]) f = ignore_warnings _, _, coef_path_ = f(linear_model.lars_path)(X, y, alpha_min=0.01) assert_true(not np.isnan(coef_path_).any()) residual = np.dot(X, coef_path_[:, -1]) - y assert_less((residual ** 2).sum(), 1.) # just make sure it's bounded n_samples = 10 X = np.random.rand(n_samples, 5) y = np.zeros(n_samples) _, _, coef_path_ = linear_model.lars_path(X, y, Gram='auto', copy_X=False, copy_Gram=False, alpha_min=0., method='lasso', verbose=0, max_iter=500) assert_array_almost_equal(coef_path_, np.zeros_like(coef_path_)) def test_no_path(): # Test that the ``return_path=False`` option returns the correct output alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar") alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_precomputed(): # Test that the ``return_path=False`` option with Gram remains correct G = np.dot(diabetes.data.T, diabetes.data) alphas_, active_, coef_path_ = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G) alpha_, active, coef = linear_model.lars_path( diabetes.data, diabetes.target, method="lar", Gram=G, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_no_path_all_precomputed(): # Test that the ``return_path=False`` option with Gram and Xy remains correct X, y = 3 * diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) alphas_, active_, coef_path_ = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9) print("---") alpha_, active, coef = linear_model.lars_path( X, y, method="lasso", Gram=G, Xy=Xy, alpha_min=0.9, return_path=False) assert_array_almost_equal(coef, coef_path_[:, -1]) assert_true(alpha_ == alphas_[-1]) def test_singular_matrix(): # Test when input is a singular matrix X1 = np.array([[1, 1.], [1., 1.]]) y1 = np.array([1, 1]) alphas, active, coef_path = linear_model.lars_path(X1, y1) assert_array_almost_equal(coef_path.T, [[0, 0], [1, 0]]) def test_rank_deficient_design(): # consistency test that checks that LARS Lasso is handling rank # deficient input data (with n_features < rank) in the same way # as coordinate descent Lasso y = [5, 0, 5] for X in ([[5, 0], [0, 5], [10, 10]], [[10, 10, 0], [1e-32, 0, 0], [0, 0, 1]], ): # To be able to use the coefs to compute the objective function, # we need to turn off normalization lars = linear_model.LassoLars(.1, normalize=False) coef_lars_ = lars.fit(X, y).coef_ obj_lars = (1. / (2. * 3.) * linalg.norm(y - np.dot(X, coef_lars_)) ** 2 + .1 * linalg.norm(coef_lars_, 1)) coord_descent = linear_model.Lasso(.1, tol=1e-6, normalize=False) coef_cd_ = coord_descent.fit(X, y).coef_ obj_cd = ((1. / (2. * 3.)) * linalg.norm(y - np.dot(X, coef_cd_)) ** 2 + .1 * linalg.norm(coef_cd_, 1)) assert_less(obj_lars, obj_cd * (1. + 1e-8)) def test_lasso_lars_vs_lasso_cd(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results. X = 3 * diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) # similar test, with the classifiers for alpha in np.linspace(1e-2, 1 - 1e-2, 20): clf1 = linear_model.LassoLars(alpha=alpha, normalize=False).fit(X, y) clf2 = linear_model.Lasso(alpha=alpha, tol=1e-8, normalize=False).fit(X, y) err = linalg.norm(clf1.coef_ - clf2.coef_) assert_less(err, 1e-3) # same test, with normalized data X = diabetes.data alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso') lasso_cd = linear_model.Lasso(fit_intercept=False, normalize=True, tol=1e-8) for c, a in zip(lasso_path.T, alphas): if a == 0: continue lasso_cd.alpha = a lasso_cd.fit(X, y) error = linalg.norm(c - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_vs_lasso_cd_early_stopping(verbose=False): # Test that LassoLars and Lasso using coordinate descent give the # same results when early stopping is used. # (test : before, in the middle, and in the last part of the path) alphas_min = [10, 0.9, 1e-4] for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=False, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) alphas_min = [10, 0.9, 1e-4] # same test, with normalization for alphas_min in alphas_min: alphas, _, lasso_path = linear_model.lars_path(X, y, method='lasso', alpha_min=0.9) lasso_cd = linear_model.Lasso(fit_intercept=True, normalize=True, tol=1e-8) lasso_cd.alpha = alphas[-1] lasso_cd.fit(X, y) error = linalg.norm(lasso_path[:, -1] - lasso_cd.coef_) assert_less(error, 0.01) def test_lasso_lars_path_length(): # Test that the path length of the LassoLars is right lasso = linear_model.LassoLars() lasso.fit(X, y) lasso2 = linear_model.LassoLars(alpha=lasso.alphas_[2]) lasso2.fit(X, y) assert_array_almost_equal(lasso.alphas_[:3], lasso2.alphas_) # Also check that the sequence of alphas is always decreasing assert_true(np.all(np.diff(lasso.alphas_) < 0)) def test_lasso_lars_vs_lasso_cd_ill_conditioned(): # Test lasso lars on a very ill-conditioned design, and check that # it does not blow up, and stays somewhat close to a solution given # by the coordinate descent solver # Also test that lasso_path (using lars_path output style) gives # the same result as lars_path and previous lasso output style # under these conditions. rng = np.random.RandomState(42) # Generate data n, m = 70, 100 k = 5 X = rng.randn(n, m) w = np.zeros((m, 1)) i = np.arange(0, m) rng.shuffle(i) supp = i[:k] w[supp] = np.sign(rng.randn(k, 1)) * (rng.rand(k, 1) + 1) y = np.dot(X, w) sigma = 0.2 y += sigma * rng.rand(*y.shape) y = y.squeeze() lars_alphas, _, lars_coef = linear_model.lars_path(X, y, method='lasso') _, lasso_coef2, _ = linear_model.lasso_path(X, y, alphas=lars_alphas, tol=1e-6, fit_intercept=False) assert_array_almost_equal(lars_coef, lasso_coef2, decimal=1) def test_lasso_lars_vs_lasso_cd_ill_conditioned2(): # Create an ill-conditioned situation in which the LARS has to go # far in the path to converge, and check that LARS and coordinate # descent give the same answers # Note it used to be the case that Lars had to use the drop for good # strategy for this but this is no longer the case with the # equality_tolerance checks X = [[1e20, 1e20, 0], [-1e-32, 0, 0], [1, 1, 1]] y = [10, 10, 1] alpha = .0001 def objective_function(coef): return (1. / (2. * len(X)) * linalg.norm(y - np.dot(X, coef)) ** 2 + alpha * linalg.norm(coef, 1)) lars = linear_model.LassoLars(alpha=alpha, normalize=False) assert_warns(ConvergenceWarning, lars.fit, X, y) lars_coef_ = lars.coef_ lars_obj = objective_function(lars_coef_) coord_descent = linear_model.Lasso(alpha=alpha, tol=1e-10, normalize=False) cd_coef_ = coord_descent.fit(X, y).coef_ cd_obj = objective_function(cd_coef_) assert_less(lars_obj, cd_obj * (1. + 1e-8)) def test_lars_add_features(): # assure that at least some features get added if necessary # test for 6d2b4c # Hilbert matrix n = 5 H = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) clf = linear_model.Lars(fit_intercept=False).fit( H, np.arange(n)) assert_true(np.all(np.isfinite(clf.coef_))) def test_lars_n_nonzero_coefs(verbose=False): lars = linear_model.Lars(n_nonzero_coefs=6, verbose=verbose) lars.fit(X, y) assert_equal(len(lars.coef_.nonzero()[0]), 6) # The path should be of length 6 + 1 in a Lars going down to 6 # non-zero coefs assert_equal(len(lars.alphas_), 7) def test_multitarget(): # Assure that estimators receiving multidimensional y do the right thing X = diabetes.data Y = np.vstack([diabetes.target, diabetes.target ** 2]).T n_targets = Y.shape[1] for estimator in (linear_model.LassoLars(), linear_model.Lars()): estimator.fit(X, Y) Y_pred = estimator.predict(X) Y_dec = estimator.decision_function(X) assert_array_almost_equal(Y_pred, Y_dec) alphas, active, coef, path = (estimator.alphas_, estimator.active_, estimator.coef_, estimator.coef_path_) for k in range(n_targets): estimator.fit(X, Y[:, k]) y_pred = estimator.predict(X) assert_array_almost_equal(alphas[k], estimator.alphas_) assert_array_almost_equal(active[k], estimator.active_) assert_array_almost_equal(coef[k], estimator.coef_) assert_array_almost_equal(path[k], estimator.coef_path_) assert_array_almost_equal(Y_pred[:, k], y_pred) def test_lars_cv(): # Test the LassoLarsCV object by checking that the optimal alpha # increases as the number of samples increases. # This property is not actually garantied in general and is just a # property of the given dataset, with the given steps chosen. old_alpha = 0 lars_cv = linear_model.LassoLarsCV() for length in (400, 200, 100): X = diabetes.data[:length] y = diabetes.target[:length] lars_cv.fit(X, y) np.testing.assert_array_less(old_alpha, lars_cv.alpha_) old_alpha = lars_cv.alpha_ def test_lasso_lars_ic(): # Test the LassoLarsIC object by checking that # - some good features are selected. # - alpha_bic > alpha_aic # - n_nonzero_bic < n_nonzero_aic lars_bic = linear_model.LassoLarsIC('bic') lars_aic = linear_model.LassoLarsIC('aic') rng = np.random.RandomState(42) X = diabetes.data y = diabetes.target X = np.c_[X, rng.randn(X.shape[0], 4)] # add 4 bad features lars_bic.fit(X, y) lars_aic.fit(X, y) nonzero_bic = np.where(lars_bic.coef_)[0] nonzero_aic = np.where(lars_aic.coef_)[0] assert_greater(lars_bic.alpha_, lars_aic.alpha_) assert_less(len(nonzero_bic), len(nonzero_aic)) assert_less(np.max(nonzero_bic), diabetes.data.shape[1]) # test error on unknown IC lars_broken = linear_model.LassoLarsIC('<unknown>') assert_raises(ValueError, lars_broken.fit, X, y) def test_no_warning_for_zero_mse(): # LassoLarsIC should not warn for log of zero MSE. y = np.arange(10, dtype=float) X = y.reshape(-1, 1) lars = linear_model.LassoLarsIC(normalize=False) assert_no_warnings(lars.fit, X, y) assert_true(np.any(np.isinf(lars.criterion_))) def test_lars_path_readonly_data(): # When using automated memory mapping on large input, the # fold data is in read-only mode # This is a non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/4597 splitted_data = train_test_split(X, y, random_state=42) with TempMemmap(splitted_data) as (X_train, X_test, y_train, y_test): # The following should not fail despite copy=False _lars_path_residues(X_train, y_train, X_test, y_test, copy=False)
bsd-3-clause
tetherless-world/ecoop
pyecoop/lib/ecoop/cf.py
1
36336
# /usr/bin/env python # -*- coding: utf-8 -*- # ############################################################################## # # # Project: ECOOP, sponsored by The National Science Foundation # Purpose: this code is part of the Cyberinfrastructure developed for the ECOOP project # http://tw.rpi.edu/web/project/ECOOP # from the TWC - Tetherless World Constellation # at RPI - Rensselaer Polytechnic Institute # founded by NSF # # Author: Massimo Di Stefano , [email protected] - # http://tw.rpi.edu/web/person/MassimoDiStefano # ############################################################################### # Copyright (c) 2008-2014 Tetherless World Constellation at Rensselaer Polytechnic Institute # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### from __future__ import print_function import os import envoy from datetime import datetime import numpy as np import scipy.stats as sts import statsmodels.api as sm from scipy.interpolate import interp1d import pandas as pd import matplotlib.pyplot as plt from ecoop.ecooputil import shareUtil as EU lowess = sm.nonparametric.lowess try: from IPython.core.display import display except: print('you need to run this code from inside an IPython notebook in order to save provenance') eu = EU() from bokeh import pyplot class cfData(): def __init__(self): self.x = '' def nao_get(self, url="https://climatedataguide.ucar.edu/sites/default/files/climate_index_files/nao_station_djfm.txt", save=None, csvout='nao.csv', prov=False): """ read NAO data from url and return a pandas dataframe :param str url: url to data online default is set to : https://climatedataguide.ucar.edu/sites/default/files/climate_index_files/nao_station_djfm.txt :param str save: directory where to save raw data as csv :return: naodata as pandas dataframe :rtype: pandas dataframe """ #source_code_link = "http://epinux.com/shared/pyecoop_doc/ecoop.html#ecoop.cf.cfData.nao_get" try: naodata = pd.read_csv(url, sep=' ', header=0, skiprows=0, index_col=0, parse_dates=True, skip_footer=1) print('dataset used: %s' % url) if save: eu.ensure_dir(save) output = os.path.join(save, csvout) naodata.to_csv(output, sep=',', header=True, index=True, index_label='Date') print('nao data saved in : ' + output) if prov: jsonld = { "@id": "ex:NAO_dataset", "@type": ["prov:Entity", "ecoop:Dataset"], "ecoop_ext:hasCode": { "@id": "http://epinux.com/shared/pyecoop_doc/ecoop.html#ecoop.cf.cfData.nao_get", "@type": "ecoop_ext:Code", "ecoop_ext:hasFunction_src_code_link": url, "ecoop_ext:hasParameter": [ { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "csvout", "ecoop_ext:parameter_value": csvout }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "save", "ecoop_ext:parameter_value": save }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "url", "ecoop_ext:parameter_value": url } ] } } display('cell-output metadata saved', metadata={'ecoop_prov': jsonld}) return naodata except IOError: print( 'unable to fetch the data, check if %s is a valid address and data is conform to AMO spec, for info about data spec. see [1]' % url) # try cached version / history-linked-uri def nin_get(self, url='http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices', save=None, csvout='nin.csv', prov=False): """ read NIN data from url and return a pandas dataframe :param str url: url to data online default is set to : http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices :param str save: directory where to save raw data as csv :return: nindata as pandas dataframe :rtype: pandas dataframe """ try: ts_raw = pd.read_table(url, sep=' ', header=0, skiprows=0, parse_dates=[['YR', 'MON']], skipinitialspace=True, index_col=0, date_parser=parse) print('dataset used: %s' % url) ts_year_group = ts_raw.groupby(lambda x: x.year).apply(lambda sdf: sdf if len(sdf) > 11 else None) ts_range = pd.date_range(ts_year_group.index[0][1], ts_year_group.index[-1][1] + pd.DateOffset(months=1), freq="M") ts = pd.DataFrame(ts_year_group.values, index=ts_range, columns=ts_year_group.keys()) ts_fullyears_group = ts.groupby(lambda x: x.year) nin_anomalies = (ts_fullyears_group.mean()['ANOM.3'] - sts.nanmean( ts_fullyears_group.mean()['ANOM.3'])) / sts.nanstd(ts_fullyears_group.mean()['ANOM.3']) nin_anomalies = pd.DataFrame(nin_anomalies.values, index=pd.to_datetime([str(x) for x in nin_anomalies.index])) nin_anomalies = nin_anomalies.rename(columns={'0': 'nin'}) nin_anomalies.columns = ['nin'] if save: eu.ensure_dir(save) output = os.path.join(save, csvout) nin_anomalies.to_csv(output, sep=',', header=True, index=True, index_label='Date') print('data saved as %s ' % output) if prov: function = {} function['name'] = 'nin_get' function['parameters'] = {} function['parameters']['url'] = url function['parameters']['save'] = save function['parameters']['csvout'] = csvout display('cell-output metadata saved', metadata={'nin_get': function}) jsonld = { "@id": "ex:NIN_dataset", "@type": ["prov:Entity", "ecoop:Dataset"], "ecoop_ext:hasCode": { "@id": "http://epinux.com/shared/pyecoop_doc/ecoop.html#ecoop.cf.cfData.nin_get", "@type": "ecoop_ext:Code", "ecoop_ext:hasFunction_src_code_link": url, "ecoop_ext:hasParameter": [ { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "csvout", "ecoop_ext:parameter_value": csvout }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "save", "ecoop_ext:parameter_value": save }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "url", "ecoop_ext:parameter_value": url } ] } } display('cell-output metadata saved', metadata={'ecoop_prov': jsonld}) return nin_anomalies except IOError: print( 'unable to fetch the data, check if %s is a valid address and data is conform to AMO spec, for info about data spec. see [1]' % url) # try cached version / history-linked-uri def parse(self, yr, mon): """ Convert year and month to a datatime object, day hardcoded to 2nd day of each month :param yr: year date integer or string :param mon: month date integer or string :return: datatime object (time stamp) :rtype: datatime """ date = datetime(year=int(yr), day=2, month=int(mon)) return date def amo_get(self, url='http://www.cdc.noaa.gov/Correlation/amon.us.long.data', save=None, csvout='amo.csv', prov=False): """ read AMO data from url and return a pandas dataframe :param str url: url to data online default is set to : http://www.cdc.noaa.gov/Correlation/amon.us.long.data :param str save: directory where to save raw data as csv :return: amodata as pandas dataframe :rtype: pandas dataframe """ try: ts_raw = pd.read_table(url, sep=' ', skiprows=1, names=['year', 'jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], skipinitialspace=True, parse_dates=True, skipfooter=4, index_col=0) print('dataset used: %s' % url) ts_raw.replace(-9.99900000e+01, np.NAN, inplace=True) amodata = ts_raw.mean(axis=1) amodata.name = "amo" amodata = pd.DataFrame(amodata) if save: eu.ensure_dir(save) output = os.path.join(save, csvout) amodata.to_csv(output, sep=',', header=True, index=True, index_label='Date') print('data saved as %s ' % output) if prov: function = {} function['name'] = 'amo_get' function['parameters'] = {} function['parameters']['url'] = url function['parameters']['save'] = save function['parameters']['csvout'] = csvout jsonld = { "@id": "ex:AMO_dataset", "@type": ["prov:Entity", "ecoop:Dataset"], "ecoop_ext:hasCode": { "@id": "http://epinux.com/shared/pyecoop_doc/ecoop.html#ecoop.cf.cfData.amo_get", "@type": "ecoop_ext:Code", "ecoop_ext:hasFunction_src_code_link": "http://epinux.com/shared/pyecoop_doc/ecoop.html#ecoop.cf.cfData.amo_get", "ecoop_ext:hasParameter": [ { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "csvout", "ecoop_ext:parameter_value": csvout }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "save", "ecoop_ext:parameter_value": save }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "url", "ecoop_ext:parameter_value": url } ] } } display('cell-output metadata saved', metadata={'ecoop_prov': jsonld}) return amodata except: print( 'unable to fetch the data, check if %s is a valid address and data is conform to AMO spec, for info about data spec. see [1]' % url) # try cached version / history-linked-uri class cfPlot(): def plot_index(self, data, name='Index', nb=True, datarange=None, xticks=10, xticks_fontsize=10, dateformat=False, figsize=(10, 8), xmargin=True, ymargin=True, legend=True, smoother=None, output=None, dpi=300, grid=True, xlabel='Year', ylabel='', title='', win_size=10, win_type='boxcar', center=False, std=0.1, beta=0.1, power=1, width=1, min_periods=None, freq=None, scategory=None, frac=1. / 3, it=3, figsave=None, prov=False): """ Function to plot the Climate Forcing indicator for the ESR 2013, it follow graphic guidlines from the past ESR adding functionalities like : several kind of smoothline with different :param data: pandas dataframe - input data :param name: string - name used as dataframe index :param nb: bolean if True the function is optimized to render the png inside a notebook :param datarange: list of 2 integer for mak min year :param xticks: integer xtick spacing default=10 :param xticks_fontsize: integer xticks fontsize default=10 :param dateformat: boolean if True set the xticks labels in date format :param figsize: tuple figure size default (10, 8) :param xmargin: bolean default True :param ymargin: bolean default True :param legend: bolean default True :param smoother: tuple (f,i) :param output: directory where to save output default None :param dpi: integer :param grid: bolean default True :param xlabel: string default 'Year' :param ylabel: string default '' :param title: string default '' :param win_size: integer default 10 :param win_type: string default 'boxcar' :param center: bolean default False :param std: float default 0.1 :param beta: float default 0.1 :param power: integer default 1 :param width: integer default 1 :param min_periods: None :param freq: None :param str scategory: default 'rolling' :param float frac: default 0.6666666666666666 Between 0 and 1. The fraction of the data used when estimating each y-value., :param int it: default 3 The number of residual-based reweightings to perform. """ try: assert type(data) == pd.core.frame.DataFrame #x = data.index.year #y = data.values if datarange: #if datarange != None : mind = np.datetime64(str(datarange[0])) maxd = np.datetime64(str(datarange[1])) newdata = data.ix[mind:maxd] x = newdata.index.year y = newdata.values else: x = data.index.year y = data.values x_p = x[np.where(y >= 0)[0]] y_p = y[np.where(y >= 0)[0]] x_n = x[np.where(y < 0)[0]] y_n = y[np.where(y < 0)[0]] fig = plt.figure(figsize=figsize) ax1 = fig.add_subplot(111) ax1.bar(x_n, y_n, 0.8, facecolor='b', label=name + ' < 0') ax1.bar(x_p, y_p, 0.8, facecolor='r', label=name + ' > 0') ax1.grid(grid) if ylabel != '': ax1.set_ylabel(ylabel) else: ax1.set_ylabel(name) if xlabel != '': ax1.set_xlabel(xlabel) else: ax1.set_xlabel(xlabel) if title == '': ax1.set_title(name) else: ax1.set_title(title) ax1.axhline(0, color='black', lw=1.5) if xmargin: ax1.set_xmargin(0.1) if ymargin: ax1.set_xmargin(0.1) if legend: ax1.legend() if not figsave: figsave = name + '.png' if scategory == 'rolling': newy = self.rolling_smoother(data, stype=smoother, win_size=win_size, win_type=win_type, center=center, std=std, beta=beta, power=power, width=width) ax1.plot(newy.index.year, newy.values, lw=3, color='g') if scategory == 'expanding': newy = self.expanding_smoother(data, stype=smoother, min_periods=min_periods, freq=freq) ax1.plot(newy.index.year, newy.values, lw=3, color='g') if scategory == 'lowess': x = np.array(range(0, len(data.index.values))).T newy = pd.Series(lowess(data.values.flatten(), x, frac=frac, it=it).T[1], index=data.index) ax1.plot(newy.index.year, newy, lw=3, color='g') ## interp 1D attempt xx = np.linspace(min(data.index.year), max(data.index.year), len(newy)) f = interp1d(xx, newy) xnew = np.linspace(min(data.index.year), max(data.index.year), len(newy) * 4) f2 = interp1d(xx, newy, kind='cubic') #xnew = np.linspace(min(data.index.values), max(data.index.values), len(newy)*2) ax1.plot(xx, newy, 'o', xnew, f(xnew), '-', xnew, f2(xnew), '--') ## if scategory == 'ewma': print('todo') plt.xticks(data.index.year[::xticks].astype('int'), data.index.year[::xticks].astype('int'), fontsize=xticks_fontsize) plt.autoscale(enable=True, axis='both', tight=True) if dateformat: fig.autofmt_xdate(bottom=0.2, rotation=75, ha='right') if output: eu.ensure_dir(output) ffigsave = os.path.join(output, figsave) plt.savefig(ffigsave, dpi=dpi) print('graph saved in: %s ' % ffigsave) if scategory: smoutput = name + '_' + scategory + '.csv' if smoother: smoutput = name + '_' + scategory + '_' + smoother + '.csv' smoutput = os.path.join(output, smoutput) if scategory == 'lowess': newdataframe = data.copy(deep=True) newdataframe['smooth'] = pd.Series(newy, index=data.index) newdataframe.to_csv(smoutput, sep=',', header=True, index=True, index_label='Year') else: newy.to_csv(smoutput, sep=',', header=True, index=True, index_label='Year') print(name + ' smoothed data saved in : %s ' % smoutput) if nb: fig.subplots_adjust(left=-1.0) fig.subplots_adjust(right=1.0) #plt.show() if prov: function = {} function['name'] = 'plot_index' function['parameters'] = {} function['parameters']['data'] = data function['parameters']['name'] = name function['parameters']['nb'] = nb function['parameters']['datarange'] = datarange function['parameters']['xticks'] = xticks function['parameters']['xticks_fontsize'] = xticks_fontsize function['parameters']['dateformat'] = dateformat function['parameters']['figsize'] = figsize function['parameters']['xmargin'] = xmargin function['parameters']['ymargin'] = ymargin function['parameters']['legend'] = legend function['parameters']['smoother'] = smoother function['parameters']['output'] = output function['parameters']['dpi'] = dpi function['parameters']['grid'] = grid function['parameters']['xlabel'] = xlabel function['parameters']['ylabel'] = ylabel function['parameters']['title'] = title function['parameters']['win_size'] = win_size function['parameters']['win_type'] = win_type function['parameters']['center'] = center function['parameters']['std'] = std function['parameters']['beta'] = beta function['parameters']['power'] = power function['parameters']['width'] = width function['parameters']['min_periods'] = min_periods function['parameters']['freq'] = freq function['parameters']['scategory'] = scategory function['parameters']['frac'] = frac function['parameters']['it'] = it function['parameters']['figsave'] = figsave jsonld = { "@id": "ex:NAO_figure", "@type": ["prov:Entity", "ecoop:Figure"], "ecoop_ext:hasData": "ecoop_data['NAO']", "ecoop_ext:hasCode": { "@type": "ecoop_ext:Code", "ecoop_ext:hasFunction_src_code_link": "", "ecoop_ext:hasParameter": [ { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "beta", "ecoop_ext:parameter_value": beta }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "center", "ecoop_ext:parameter_value": center }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "data", "ecoop_ext:parameter_value": data }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "datarange", "ecoop_ext:parameter_value": datarange }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "dateformat", "ecoop_ext:parameter_value": dateformat }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "dpi", "ecoop_ext:parameter_value": dpi }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "figsave", "ecoop_ext:parameter_value": figsave }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "figsize", "ecoop_ext:parameter_value": figsize }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "frac", "ecoop_ext:parameter_value": frac }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "freq", "ecoop_ext:parameter_value": freq }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "grid", "ecoop_ext:parameter_value": grid }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "it", "ecoop_ext:parameter_value": it }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "legend", "ecoop_ext:parameter_value": legend }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "min_periods", "ecoop_ext:parameter_value": min_periods }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "name", "ecoop_ext:parameter_value": name }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "nb", "ecoop_ext:parameter_value": nb }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "output", "ecoop_ext:parameter_value": output }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "power", "ecoop_ext:parameter_value": power }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "scategory", "ecoop_ext:parameter_value": scategory }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "smoother", "ecoop_ext:parameter_value": smoother }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "std", "ecoop_ext:parameter_value": std }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "title", "ecoop_ext:parameter_value": title }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "width", "ecoop_ext:parameter_value": width }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "win_size", "ecoop_ext:parameter_value": win_size }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "win_type", "ecoop_ext:parameter_value": win_type }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "xlabel", "ecoop_ext:parameter_value": xlabel }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "xmargin", "ecoop_ext:parameter_value": xmargin }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "xticks", "ecoop_ext:parameter_value": xticks }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "xticks_fontsize", "ecoop_ext:parameter_value": xticks_fontsize }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "ylabel", "ecoop_ext:parameter_value": ylabel }, { "@type": "ecoop_ext:Parameter", "ecoop_ext:parameter_name": "ymargin", "ecoop_ext:parameter_value": ymargin } ] }, "ecoop_ext:usedSoftware": [{"@id": "ex:ecoop_software"}, {"@id": "ex:ipython_software"}] } display('cell-output metadata saved', metadata={'ecoop_prov': jsonld}) pyplot.show_bokeh(plt.gcf(), filename="subplots.html") except AssertionError: if type(data) != pd.core.frame.DataFrame: print('input data not compatible, it has to be of type : pandas.core.frame.DataFrame') print('data not loaded correctly') def rolling_smoother(self, data, stype='rolling_mean', win_size=10, win_type='boxcar', center=False, std=0.1, beta=0.1, power=1, width=1): """ Perform a espanding smooting on the data for a complete help refer to http://pandas.pydata.org/pandas-docs/dev/computation.html :param data: :param stype: :param win_size: :param win_type: :param center: :param std: :param beta: :param power: :param width: :moothing types: ROLLING : rolling_count Number of non-null observations rolling_sum Sum of values rolling_mean Mean of values rolling_median Arithmetic median of values rolling_min Minimum rolling_max Maximum rolling_std Unbiased standard deviation rolling_var Unbiased variance rolling_skew Unbiased skewness (3rd moment) rolling_kurt Unbiased kurtosis (4th moment) rolling_window Moving window function window types: boxcar triang blackman hamming bartlett parzen bohman blackmanharris nuttall barthann kaiser (needs beta) gaussian (needs std) general_gaussian (needs power, width) slepian (needs width) """ if stype == 'count': newy = pd.rolling_count(data, win_size) if stype == 'sum': newy = pd.rolling_sum(data, win_size) if stype == 'mean': newy = pd.rolling_mean(data, win_size) if stype == 'median': newy = pd.rolling_median(data, win_size) if stype == 'min': newy = pd.rolling_min(data, win_size) if stype == 'max': newy = pd.rolling_max(data, win_size) if stype == 'std': newy = pd.rolling_std(data, win_size) if stype == 'var': newy = pd.rolling_var(data, win_size) if stype == 'skew': newy = pd.rolling_skew(data, win_size) if stype == 'kurt': newy = pd.rolling_kurt(data, win_size) if stype == 'window': if win_type == 'kaiser': newy = pd.rolling_window(data, win_size, win_type, center=center, beta=beta) if win_type == 'gaussian': newy = pd.rolling_window(data, win_size, win_type, center=center, std=std) if win_type == 'general_gaussian': newy = pd.rolling_window(data, win_size, win_type, center=center, power=power, width=width) else: newy = pd.rolling_window(data, win_size, win_type, center=center) return newy def expanding_smoother(self, data, stype='rolling_mean', min_periods=None, freq=None): """ Perform a expanding smooting on the data for a complete help refer to http://pandas.pydata.org/pandas-docs/dev/computation.html :param data: pandas dataframe input data :param stype: soothing type :param min_periods: periods :param freq: frequence smoothing types: expanding_count Number of non-null observations expanding_sum Sum of values expanding_mean Mean of values expanding_median Arithmetic median of values expanding_min Minimum expanding_max Maximum expandingg_std Unbiased standard deviation expanding_var Unbiased variance expanding_skew Unbiased skewness (3rd moment) expanding_kurt Unbiased kurtosis (4th moment) """ if stype == 'count': newy = pd.expanding_count(data, min_periods=min_periods, freq=freq) if stype == 'sum': newy = pd.expanding_sum(data, min_periods=min_periods, freq=freq) if stype == 'mean': newy = pd.expanding_mean(data, min_periods=min_periods, freq=freq) if stype == 'median': newy = pd.expanding_median(data, min_periods=min_periods, freq=freq) if stype == 'min': newy = pd.expanding_min(data, min_periods=min_periods, freq=freq) if stype == 'max': newy = pd.expanding_max(data, min_periods=min_periods, freq=freq) if stype == 'std': newy = pd.expanding_std(data, min_periods=min_periods, freq=freq) if stype == 'var': newy = pd.expanding_var(data, min_periods=min_periods, freq=freq) if stype == 'skew': newy = pd.expanding_skew(data, min_periods=min_periods, freq=freq) if stype == 'kurt': newy = pd.expanding_kurt(data, min_periods=min_periods, freq=freq) return newy
apache-2.0
jamesgregson/easy_image_io
example.py
1
1728
import numpy as np import easy_image_io as eiio # return an image stored as planes (default for easy_image_io) as packed pixels # suitable for plotting with matplotlib's imshow def planes_to_packed( img ): # create the output image out = np.zeros( (img.shape[1],img.shape[2],img.shape[0]), dtype=img.dtype ) out[:,:,0] = img[0,:,:] out[:,:,1] = img[1,:,:] out[:,:,2] = img[2,:,:] return out # reverse of plane_to_packed, not needed here but listed for completeness def packed_to_planes( img ): # create the output image out = np.zeros( (img.shape[2],img.shape[0],img.shape[1]), dtype=img.dtype ) out[0,:,:] = img[:,:,0] out[1,:,:] = img[:,:,1] out[2,:,:] = img[:,:,2] return out # make a 4-channel image 512 pixels wide and 256 pixels # high and fill the channels with data height = 1080; width = 1920; x,y = np.meshgrid( np.arange(width), np.arange(height) ) RGB = np.zeros( (3,height,width), dtype=np.uint16 ) RGB[0,:,:] = x*255 RGB[1,:,:] = y*255 RGB[2,:,:] = (x+y)*255 LUM = np.uint16((x+y)*255); # save the 4 channel image as a png eiio.imwrite( RGB, 'RGB.png' ) eiio.imwrite( RGB, 'RGB.tif' ) eiio.imwrite( LUM, 'LUM.png' ) eiio.imwrite( LUM, 'LUM.tif' ) tRGB = eiio.imread( 'RGB.png' ) print( 'Checking RGB PNG, error sum: %d ' % np.sum(np.abs(RGB.flatten()-tRGB.flatten())) ) tRGB = eiio.imread( 'RGB.tif' ) print( 'Checking RGB TIFF, error sum: %d ' % np.sum(np.abs(RGB.flatten()-tRGB.flatten())) ) tLUM = eiio.imread( 'LUM.png' ) print( 'Checking monochrome PNG, error sum: %d ' % np.sum(np.abs(LUM.flatten()-tLUM.flatten())) ) tLUM = eiio.imread( 'LUM.tif' ) print( 'Checking monochrome TIFF, error sum: %d ' % np.sum(np.abs(LUM.flatten()-tLUM.flatten())) )
mit
q1ang/scikit-learn
sklearn/decomposition/base.py
313
5647
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Denis A. Engemann <[email protected]> # Kyle Kastner <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.extmath import fast_dot from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = fast_dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return fast_dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return fast_dot(X, self.components_) + self.mean_
bsd-3-clause
lancezlin/ml_template_py
lib/python2.7/site-packages/sklearn/feature_selection/tests/test_rfe.py
56
11274
""" Testing Recursive feature elimination """ import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from scipy import sparse from sklearn.feature_selection.rfe import RFE, RFECV from sklearn.datasets import load_iris, make_friedman1 from sklearn.metrics import zero_one_loss from sklearn.svm import SVC, SVR from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.utils import check_random_state from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater, assert_equal, assert_true from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer class MockClassifier(object): """ Dummy classifier to test recursive feature elimination """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.coef_ = np.ones(X.shape[1], dtype=np.float64) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=True): return {'foo_param': self.foo_param} def set_params(self, **params): return self def test_rfe_features_importance(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = RandomForestClassifier(n_estimators=20, random_state=generator, max_depth=2) rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) assert_equal(len(rfe.ranking_), X.shape[1]) clf_svc = SVC(kernel="linear") rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1) rfe_svc.fit(X, y) # Check if the supports are equal assert_array_equal(rfe.get_support(), rfe_svc.get_support()) def test_rfe(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] X_sparse = sparse.csr_matrix(X) y = iris.target # dense model clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) # sparse model clf_sparse = SVC(kernel="linear") rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1) rfe_sparse.fit(X_sparse, y) X_r_sparse = rfe_sparse.transform(X_sparse) assert_equal(X_r.shape, iris.data.shape) assert_array_almost_equal(X_r[:10], iris.data[:10]) assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data)) assert_equal(rfe.score(X, y), clf.score(iris.data, iris.target)) assert_array_almost_equal(X_r, X_r_sparse.toarray()) def test_rfe_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target # dense model clf = MockClassifier() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) assert_equal(X_r.shape, iris.data.shape) def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) rfecv.fit(X, y) assert_equal(len(rfecv.grid_scores_), 6) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Verifying that steps < 1 don't blow up. rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=.2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) def test_rfecv_verbose_output(): # Check verbose=1 is producing an output. from sklearn.externals.six.moves import cStringIO as StringIO import sys sys.stdout = StringIO() generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, verbose=1) rfecv.fit(X, y) verbose_output = sys.stdout verbose_output.seek(0) assert_greater(len(verbose_output.readline()), 0) def test_rfe_estimator_tags(): rfe = RFE(SVC(kernel='linear')) assert_equal(rfe._estimator_type, "classifier") # make sure that cross-validation is stratified iris = load_iris() score = cross_val_score(rfe, iris.data, iris.target) assert_greater(score.min(), .7) def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) def test_number_of_subsets_of_features(): # In RFE, 'number_of_subsets_of_features' # = the number of iterations in '_fit' # = max(ranking_) # = 1 + (n_features + step - n_features_to_select - 1) // step # After optimization #4534, this number # = 1 + np.ceil((n_features - n_features_to_select) / float(step)) # This test case is to test their equivalence, refer to #4534 and #3824 def formula1(n_features, n_features_to_select, step): return 1 + ((n_features + step - n_features_to_select - 1) // step) def formula2(n_features, n_features_to_select, step): return 1 + np.ceil((n_features - n_features_to_select) / float(step)) # RFE # Case 1, n_features - n_features_to_select is divisible by step # Case 2, n_features - n_features_to_select is not divisible by step n_features_list = [11, 11] n_features_to_select_list = [3, 3] step_list = [2, 3] for n_features, n_features_to_select, step in zip( n_features_list, n_features_to_select_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfe = RFE(estimator=SVC(kernel="linear"), n_features_to_select=n_features_to_select, step=step) rfe.fit(X, y) # this number also equals to the maximum of ranking_ assert_equal(np.max(rfe.ranking_), formula1(n_features, n_features_to_select, step)) assert_equal(np.max(rfe.ranking_), formula2(n_features, n_features_to_select, step)) # In RFECV, 'fit' calls 'RFE._fit' # 'number_of_subsets_of_features' of RFE # = the size of 'grid_scores' of RFECV # = the number of iterations of the for loop before optimization #4534 # RFECV, n_features_to_select = 1 # Case 1, n_features - 1 is divisible by step # Case 2, n_features - 1 is not divisible by step n_features_to_select = 1 n_features_list = [11, 10] step_list = [2, 2] for n_features, step in zip(n_features_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfecv = RFECV(estimator=SVC(kernel="linear"), step=step, cv=5) rfecv.fit(X, y) assert_equal(rfecv.grid_scores_.shape[0], formula1(n_features, n_features_to_select, step)) assert_equal(rfecv.grid_scores_.shape[0], formula2(n_features, n_features_to_select, step)) def test_rfe_cv_n_jobs(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target rfecv = RFECV(estimator=SVC(kernel='linear')) rfecv.fit(X, y) rfecv_ranking = rfecv.ranking_ rfecv_grid_scores = rfecv.grid_scores_ rfecv.set_params(n_jobs=2) rfecv.fit(X, y) assert_array_almost_equal(rfecv.ranking_, rfecv_ranking) assert_array_almost_equal(rfecv.grid_scores_, rfecv_grid_scores)
mit
Hezi-Resheff/trajectory-aa-move-ecol
metraj/graphics/simple_plots.py
1
4453
import matplotlib.pyplot as plt import numpy as np from matplotlib.collections import PatchCollection, LineCollection from matplotlib.patches import Ellipse, Circle def plot_trajectory_scatter(frame, size_col=1): frame.plot(kind="scatter", x=frame.geo_cols[0], y=frame.geo_cols[1], s=size_col) plt.title(frame.id) plt.show() def plot_trajectory_ellipse(frame, varx="attr_VARX", vary="attr_VARY", covxy="attr_COVXY", opacity_factor=1): """ Draw the trajectory and uncertainty ellipses around teach point. 1) Scatter of points 2) Trajectory lines 3) Ellipses :param frame: Trajectory :param opacity_factor: all opacity values are multiplied by this. Useful when used to plot multiple Trajectories in an overlay plot. :return: axis """ ellipses = [] segments = [] start_point = None for i, pnt in frame.iterrows(): # The ellipse U, s, V = np.linalg.svd(np.array([[pnt[varx], pnt[covxy]], [pnt[covxy], pnt[vary]]]), full_matrices=True) w, h = s**.5 theta = np.arctan(V[1][0]/V[0][0]) # == np.arccos(-V[0][0]) ellipse = {"xy":pnt[list(frame.geo_cols)].values, "width":w, "height":h, "angle":theta} ellipses.append(Ellipse(**ellipse)) # The line segment x, y = pnt[list(frame.geo_cols)][:2] if start_point: segments.append([start_point, (x, y)]) start_point = (x, y) ax = plt.gca() ellipses = PatchCollection(ellipses) ellipses.set_facecolor('none') ellipses.set_color("green") ellipses.set_linewidth(2) ellipses.set_alpha(.4*opacity_factor) ax.add_collection(ellipses) frame.plot(kind="scatter", x=frame.geo_cols[0], y=frame.geo_cols[1], marker=".", ax=plt.gca(), alpha=opacity_factor) lines = LineCollection(segments) lines.set_color("gray") lines.set_linewidth(1) lines.set_alpha(.2*opacity_factor) ax.add_collection(lines) return ax def plot_trajectory_multistage(traj, count, shape, style): for i in range(count): plt.subplot(shape[0], shape[1], i+1) t = traj.get_next(depth=i) plot_trajectory_ellipse(t) plt.title(style["titles"][i]) plt.suptitle(style["suptitle"]) plt.show() def trajectory_overlay_plot(trajectories, opacity): """ Overlay plot multiple trajectories with different opacity. This allows for instance, to plot a processed Trajectory over the raw data, in order to see the change, or two stages in the processing side by side. :param trajectories: list of Trajectory objects :param opacity: list of opacity values, the same length as trajectories :return: axis """ for t, o in zip(trajectories, opacity): ax = plot_trajectory_ellipse(t, opacity_factor=o) plt.show() def plot_sparse_trajectory(trajectory, r=50, opacity_factor=1, plot_text=True, num_col="segment_sparcify_n", min_static=100): """ Plots a sparsified trajectory as circles with the number of points they represent as a number inside. :param trajectory: Trajectory object :param r: the radius of circles :param num_col: where to find the number to put in the circles :param min_static: minimum count to change color of circle :param plot_text: put the text with num of points in the circle? :return: ax """ ax = plt.gca() trajectory.plot(kind="scatter", x=trajectory.geo_cols[0], y=trajectory.geo_cols[1], marker=".", ax=plt.gca(), alpha=0.0*opacity_factor) circles = [] segments = [] start_point = None for i, pnt in trajectory.iterrows(): circles.append(Circle(pnt[list(trajectory.geo_cols)].values, radius=r)) if plot_text: plt.text(*pnt[list(trajectory.geo_cols)], s=str(int(pnt[num_col])), fontsize=12) x, y = pnt[list(trajectory.geo_cols)][:2] if start_point: segments.append([start_point, (x, y)]) start_point = (x, y) circles = PatchCollection(circles) circles.set_facecolor(['none' if cnt < min_static else 'red' for cnt in trajectory[num_col].values]) circles.set_alpha(.5*opacity_factor) ax.add_collection(circles) lines = LineCollection(segments) lines.set_color("gray") lines.set_alpha(.2*opacity_factor) ax.add_collection(lines) return ax
mit
Nyker510/scikit-learn
sklearn/metrics/cluster/tests/test_supervised.py
206
7643
import numpy as np from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import homogeneity_score from sklearn.metrics.cluster import completeness_score from sklearn.metrics.cluster import v_measure_score from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import mutual_info_score from sklearn.metrics.cluster import expected_mutual_information from sklearn.metrics.cluster import contingency_matrix from sklearn.metrics.cluster import entropy from sklearn.utils.testing import assert_raise_message from nose.tools import assert_almost_equal from nose.tools import assert_equal from numpy.testing import assert_array_almost_equal score_funcs = [ adjusted_rand_score, homogeneity_score, completeness_score, v_measure_score, adjusted_mutual_info_score, normalized_mutual_info_score, ] def test_error_messages_on_wrong_input(): for score_func in score_funcs: expected = ('labels_true and labels_pred must have same size,' ' got 2 and 3') assert_raise_message(ValueError, expected, score_func, [0, 1], [1, 1, 1]) expected = "labels_true must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [[0, 1], [1, 0]], [1, 1, 1]) expected = "labels_pred must be 1D: shape is (2" assert_raise_message(ValueError, expected, score_func, [0, 1, 0], [[1, 1], [0, 0]]) def test_perfect_matches(): for score_func in score_funcs: assert_equal(score_func([], []), 1.0) assert_equal(score_func([0], [1]), 1.0) assert_equal(score_func([0, 0, 0], [0, 0, 0]), 1.0) assert_equal(score_func([0, 1, 0], [42, 7, 42]), 1.0) assert_equal(score_func([0., 1., 0.], [42., 7., 42.]), 1.0) assert_equal(score_func([0., 1., 2.], [42., 7., 2.]), 1.0) assert_equal(score_func([0, 1, 2], [42, 7, 2]), 1.0) def test_homogeneous_but_not_complete_labeling(): # homogeneous but not complete clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 2, 2]) assert_almost_equal(h, 1.00, 2) assert_almost_equal(c, 0.69, 2) assert_almost_equal(v, 0.81, 2) def test_complete_but_not_homogeneous_labeling(): # complete but not homogeneous clustering h, c, v = homogeneity_completeness_v_measure( [0, 0, 1, 1, 2, 2], [0, 0, 1, 1, 1, 1]) assert_almost_equal(h, 0.58, 2) assert_almost_equal(c, 1.00, 2) assert_almost_equal(v, 0.73, 2) def test_not_complete_and_not_homogeneous_labeling(): # neither complete nor homogeneous but not so bad either h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) def test_non_consicutive_labels(): # regression tests for labels with gaps h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 2, 2, 2], [0, 1, 0, 1, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) h, c, v = homogeneity_completeness_v_measure( [0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(h, 0.67, 2) assert_almost_equal(c, 0.42, 2) assert_almost_equal(v, 0.52, 2) ari_1 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 2]) ari_2 = adjusted_rand_score([0, 0, 0, 1, 1, 1], [0, 4, 0, 4, 2, 2]) assert_almost_equal(ari_1, 0.24, 2) assert_almost_equal(ari_2, 0.24, 2) def uniform_labelings_scores(score_func, n_samples, k_range, n_runs=10, seed=42): # Compute score for random uniform cluster labelings random_labels = np.random.RandomState(seed).random_integers scores = np.zeros((len(k_range), n_runs)) for i, k in enumerate(k_range): for j in range(n_runs): labels_a = random_labels(low=0, high=k - 1, size=n_samples) labels_b = random_labels(low=0, high=k - 1, size=n_samples) scores[i, j] = score_func(labels_a, labels_b) return scores def test_adjustment_for_chance(): # Check that adjusted scores are almost zero on random labels n_clusters_range = [2, 10, 50, 90] n_samples = 100 n_runs = 10 scores = uniform_labelings_scores( adjusted_rand_score, n_samples, n_clusters_range, n_runs) max_abs_scores = np.abs(scores).max(axis=1) assert_array_almost_equal(max_abs_scores, [0.02, 0.03, 0.03, 0.02], 2) def test_adjusted_mutual_info_score(): # Compute the Adjusted Mutual Information and test against known values labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) # Mutual information mi = mutual_info_score(labels_a, labels_b) assert_almost_equal(mi, 0.41022, 5) # Expected mutual information C = contingency_matrix(labels_a, labels_b) n_samples = np.sum(C) emi = expected_mutual_information(C, n_samples) assert_almost_equal(emi, 0.15042, 5) # Adjusted mutual information ami = adjusted_mutual_info_score(labels_a, labels_b) assert_almost_equal(ami, 0.27502, 5) ami = adjusted_mutual_info_score([1, 1, 2, 2], [2, 2, 3, 3]) assert_equal(ami, 1.0) # Test with a very large array a110 = np.array([list(labels_a) * 110]).flatten() b110 = np.array([list(labels_b) * 110]).flatten() ami = adjusted_mutual_info_score(a110, b110) # This is not accurate to more than 2 places assert_almost_equal(ami, 0.37, 2) def test_entropy(): ent = entropy([0, 0, 42.]) assert_almost_equal(ent, 0.6365141, 5) assert_almost_equal(entropy([]), 1) def test_contingency_matrix(): labels_a = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) labels_b = np.array([1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 3, 3, 2, 2]) C = contingency_matrix(labels_a, labels_b) C2 = np.histogram2d(labels_a, labels_b, bins=(np.arange(1, 5), np.arange(1, 5)))[0] assert_array_almost_equal(C, C2) C = contingency_matrix(labels_a, labels_b, eps=.1) assert_array_almost_equal(C, C2 + .1) def test_exactly_zero_info_score(): # Check numerical stability when information is exactly zero for i in np.logspace(1, 4, 4).astype(np.int): labels_a, labels_b = np.ones(i, dtype=np.int),\ np.arange(i, dtype=np.int) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(v_measure_score(labels_a, labels_b), 0.0) assert_equal(adjusted_mutual_info_score(labels_a, labels_b), 0.0) assert_equal(normalized_mutual_info_score(labels_a, labels_b), 0.0) def test_v_measure_and_mutual_information(seed=36): # Check relation between v_measure, entropy and mutual information for i in np.logspace(1, 4, 4).astype(np.int): random_state = np.random.RandomState(seed) labels_a, labels_b = random_state.random_integers(0, 10, i),\ random_state.random_integers(0, 10, i) assert_almost_equal(v_measure_score(labels_a, labels_b), 2.0 * mutual_info_score(labels_a, labels_b) / (entropy(labels_a) + entropy(labels_b)), 0)
bsd-3-clause
Tong-Chen/scikit-learn
sklearn/datasets/mlcomp.py
8
3731
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load `set_` : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue for line in file(metadata_file): if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') for line in file(metadata_file): if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
mehdidc/scikit-learn
sklearn/neighbors/tests/test_dist_metrics.py
48
4949
import itertools import numpy as np from numpy.testing import assert_array_almost_equal import scipy from scipy.spatial.distance import cdist from sklearn.neighbors.dist_metrics import DistanceMetric from nose import SkipTest def cmp_version(version1, version2): version1 = tuple(map(int, version1.split('.')[:2])) version2 = tuple(map(int, version2.split('.')[:2])) if version1 < version2: return -1 elif version1 > version2: return 1 else: return 0 class TestMetrics: def __init__(self, n1=20, n2=25, d=4, zero_frac=0.5, rseed=0, dtype=np.float64): np.random.seed(rseed) self.X1 = np.random.random((n1, d)).astype(dtype) self.X2 = np.random.random((n2, d)).astype(dtype) # make boolean arrays: ones and zeros self.X1_bool = self.X1.round(0) self.X2_bool = self.X2.round(0) V = np.random.random((d, d)) VI = np.dot(V, V.T) self.metrics = {'euclidean': {}, 'cityblock': {}, 'minkowski': dict(p=(1, 1.5, 2, 3)), 'chebyshev': {}, 'seuclidean': dict(V=(np.random.random(d),)), 'wminkowski': dict(p=(1, 1.5, 3), w=(np.random.random(d),)), 'mahalanobis': dict(VI=(VI,)), 'hamming': {}, 'canberra': {}, 'braycurtis': {}} self.bool_metrics = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def test_cdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X2, metric, **kwargs) yield self.check_cdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X2_bool, metric) yield self.check_cdist_bool, metric, D_true def check_cdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1, self.X2) assert_array_almost_equal(D12, D_true) def check_cdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool, self.X2_bool) assert_array_almost_equal(D12, D_true) def test_pdist(self): for metric, argdict in self.metrics.items(): keys = argdict.keys() for vals in itertools.product(*argdict.values()): kwargs = dict(zip(keys, vals)) D_true = cdist(self.X1, self.X1, metric, **kwargs) yield self.check_pdist, metric, kwargs, D_true for metric in self.bool_metrics: D_true = cdist(self.X1_bool, self.X1_bool, metric) yield self.check_pdist_bool, metric, D_true def check_pdist(self, metric, kwargs, D_true): if metric == 'canberra' and cmp_version(scipy.__version__, '0.9') <= 0: raise SkipTest("Canberra distance incorrect in scipy < 0.9") dm = DistanceMetric.get_metric(metric, **kwargs) D12 = dm.pairwise(self.X1) assert_array_almost_equal(D12, D_true) def check_pdist_bool(self, metric, D_true): dm = DistanceMetric.get_metric(metric) D12 = dm.pairwise(self.X1_bool) assert_array_almost_equal(D12, D_true) def test_haversine_metric(): def haversine_slow(x1, x2): return 2 * np.arcsin(np.sqrt(np.sin(0.5 * (x1[0] - x2[0])) ** 2 + np.cos(x1[0]) * np.cos(x2[0]) * np.sin(0.5 * (x1[1] - x2[1])) ** 2)) X = np.random.random((10, 2)) haversine = DistanceMetric.get_metric("haversine") D1 = haversine.pairwise(X) D2 = np.zeros_like(D1) for i, x1 in enumerate(X): for j, x2 in enumerate(X): D2[i, j] = haversine_slow(x1, x2) assert_array_almost_equal(D1, D2) assert_array_almost_equal(haversine.dist_to_rdist(D1), np.sin(0.5 * D2) ** 2) def test_pyfunc_metric(): def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) X = np.random.random((10, 3)) euclidean = DistanceMetric.get_metric("euclidean") pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2) D1 = euclidean.pairwise(X) D2 = pyfunc.pairwise(X) assert_array_almost_equal(D1, D2) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
fzalkow/scikit-learn
examples/applications/plot_stock_market.py
227
8284
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux [email protected] # License: BSD 3 clause import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib import finance from matplotlib.collections import LineCollection from sklearn import cluster, covariance, manifold ############################################################################### # Retrieve the data from Internet # Choose a time period reasonnably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime.datetime(2003, 1, 1) d2 = datetime.datetime(2008, 1, 1) # kraft symbol has now changed from KFT to MDLZ in yahoo symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'MTU': 'Mitsubishi', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'Mc Donalds', 'PEP': 'Pepsi', 'MDLZ': 'Kraft Foods', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas instruments', 'XRX': 'Xerox', 'LMT': 'Lookheed Martin', 'WMT': 'Wal-Mart', 'WBA': 'Walgreen', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T quotes = [finance.quotes_historical_yahoo(symbol, d1, d2, asobject=True) for symbol in symbols] open = np.array([q.open for q in quotes]).astype(np.float) close = np.array([q.close for q in quotes]).astype(np.float) # The daily variations of the quotes are what carry most information variation = close - open ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
clawpack/seismic
2d/sloping_fault_water/dtopotools_horiz_okada.py
2
80673
#!/usr/bin/env python # encoding: utf-8 r""" GeoClaw dtopotools Module `$CLAW/geoclaw/src/python/geoclaw/dtopotools.py` Module provides several functions for dealing with changes to topography (usually due to earthquakes) including reading sub-fault specifications, writing out dtopo files, and calculating Okada based deformations. :Classes: - DTopography - SubFault - Fault - UCSBFault - CSVFault - SiftFault - SegmentedPlaneFault :Functions: - convert_units - plot_dz_contours - plot_dz_colors - Mw - strike_direction - rise_fraction """ import os import sys import re import numpy import clawpack.geoclaw.topotools as topotools import clawpack.geoclaw.util as util # ============================================================================== # Constants # ============================================================================== from clawpack.geoclaw.data import DEG2RAD, LAT2METER # Poisson ratio for Okada poisson = 0.25 # ============================================================================== # Units dictionaries # ============================================================================== # Dictionary for standard units to be used for all subfault models. # The data might be read in from a file where different units are used, # in which case the *input_units* argument of the *read* method can be used # to indicate these units. The *read* function should then convert to these # standard units: standard_units = {} standard_units['length'] = 'm' standard_units['width'] = 'm' standard_units['depth'] = 'm' standard_units['slip'] = 'm' standard_units['mu'] = 'Pa' # Dictionary for converting input_units specified by user to or from # standard units used internally: # (Conversion is performed by the module function *convert_units*, which # is called by *SubFault.convert_to_standard_units*) unit_conversion_factor = {} # for length, width, depth, slip: (standard units = 'm') unit_conversion_factor['m'] = 1. unit_conversion_factor['cm'] = 0.01 unit_conversion_factor['km'] = 1000. unit_conversion_factor['nm'] = 1852.0 # nautical miles # for rigidity (shear modulus) mu: (standard units = 'Pa') unit_conversion_factor['Pa'] = 1. unit_conversion_factor['GPa'] = 1.e9 unit_conversion_factor['dyne/cm^2'] = 0.1 unit_conversion_factor['dyne/m^2'] = 1.e-5 # for seismic moment Mo: (standard units = 'N-m', Newton-meters) unit_conversion_factor['N-m'] = 1. unit_conversion_factor['dyne-cm'] = 1.e-7 # Check that these are consistent: check = [unit_conversion_factor[standard_units[param]] is 1. for param in \ standard_units.keys()] if not numpy.alltrue(check): raise ValueError("Conversion factors should be 1 for all standard_units") # ============================================================================== # General utility functions # ============================================================================== def convert_units(value, io_units, direction=1, verbose=False): r""" convert *value* to standard units from *io_units* or vice versa. *io_units* (str) refers to the units used in the subfault file read or to be written. The standard units are those used internally in this module. See the comments below for the standard units. If *direction==1*, *value* is in *io_units* and convert to standard. If *direction==2*, *value* is in standard units and convert to *io_units*. """ try: factor = unit_conversion_factor[io_units] except: factor = 1. print "*** Warning: unrecoginized units in convert_units, not converting" #raise ValueError("Unrecognized io_units %s, must be one of %s" \ # % (io_units, unit_conversion_factor.keys())) if direction == 1: converted_value = value * factor elif direction == 2: converted_value = value / factor else: raise ValueError("Unrecognized direction, must be 1 or 2") return converted_value def plot_dZ_contours(x, y, dZ, axes=None, dZ_interval=0.5, verbose=False, fig_kwargs={}): r"""For plotting seafloor deformation dZ""" import matplotlib.pyplot as plt dZ_max = max(dZ.max(), -dZ.min()) + dZ_interval clines1 = numpy.arange(dZ_interval, dZ_max, dZ_interval) clines = list(-numpy.flipud(clines1)) + list(clines1) # Create axes if needed if axes is None: fig = plt.figure(**fig_kwargs) axes = fig.add_subplot(111) if len(clines) > 0: if verbose: print "Plotting contour lines at: ",clines axes.contour(x, y, dZ, clines, colors='k') else: print "No contours to plot" return axes def plot_dZ_colors(x, y, dZ, axes=None, cmax_dZ=None, dZ_interval=None, add_colorbar=True, verbose=False, fig_kwargs={}): r""" Plot sea floor deformation dZ as colormap with contours """ from clawpack.visclaw import colormaps import matplotlib.pyplot as plt if axes is None: fig = plt.figure(**fig_kwargs) axes = fig.add_subplot(1, 1, 1) #print "+++ in plot_dZ_colors, axes = ",axes #print "+++ in plot_dZ_colors, id(axes) = ",id(axes) dZmax = numpy.abs(dZ).max() if cmax_dZ is None: if dZmax < 1.e-12: cmax_dZ = 0.1 else: cmax_dZ = dZmax cmap = colormaps.blue_white_red extent = [x.min(), x.max(), y.min(), y.max()] im = axes.imshow(dZ, extent=extent, cmap=cmap, origin='lower') im.set_clim(-cmax_dZ,cmax_dZ) if add_colorbar: cbar = plt.colorbar(im, ax=axes) cbar.set_label("Deformation (m)") if dZ_interval is None: dZ_interval = cmax_dZ/10. clines1 = numpy.arange(dZ_interval, dZmax + dZ_interval, dZ_interval) clines = list(-numpy.flipud(clines1)) + list(clines1) if len(clines) > 0: if verbose: print "Plotting contour lines at: ",clines axes.contour(x,y,dZ,clines,colors='k',linestyles='solid') elif verbose: print "No contours to plot" y_ave = 0.5 * (y.min() + y.max()) axes.set_aspect(1. / numpy.cos(y_ave * numpy.pi / 180.)) axes.ticklabel_format(format='plain', useOffset=False) axes.set_title('Seafloor deformation') for label in axes.get_xticklabels(): label.set_rotation(20) return axes def Mw(Mo, units="N-m"): """ Calculate moment magnitude based on seismic moment Mo. Follows USGS recommended definition from http://earthquake.usgs.gov/aboutus/docs/020204mag_policy.php The SubFault and Fault classes each have a function Mo to compute the seismic moment for a single subfault or collection respectively. """ if units == "N-m": Mw = 2/3.0 * (numpy.log10(Mo) - 9.05) elif units == "dyne-cm": Mw = 2/3.0 * numpy.log10(Mo) - 10.7 # = 2/3.0 * (numpy.log10(1e-7 * Mo) - 9.05) else: raise ValueError("Unknown unit for Mo: %s." % units) return Mw def strike_direction(x1, y1, x2, y2): """ Calculate strike direction between two points. Actually calculates "initial bearing" from (x1,y1) in direction towards (x2,y2), following http://www.movable-type.co.uk/scripts/latlong.html """ x1 = x1*numpy.pi/180. y1 = y1*numpy.pi/180. x2 = x2*numpy.pi/180. y2 = y2*numpy.pi/180. dx = x2-x1 theta = numpy.arctan2(numpy.sin(dx)*numpy.cos(y2), \ numpy.cos(y1)*numpy.sin(y2) \ - numpy.sin(y1)*numpy.cos(y2)*numpy.cos(dx)) s = theta*180./numpy.pi if s<0: s = 360+s return s def rise_fraction(t, t0, t_rise, t_rise_ending=None): """ A continuously differentiable piecewise quadratic function of t that is * 0 for t <= t0, * 1 for t >= t0 + t_rise + t_rise_ending with maximum slope at t0 + t_rise. For specifying dynamic fault ruptures: Subfault files often contain these parameters for each subfault for an earthquake event. *t* can be a scalar or a numpy array of times and the returned result will have the same type. A list or tuple of times returns a numpy array. """ scalar = (type(t) in [float,int]) t = numpy.array(t) if t_rise_ending is None: t_rise_ending = t_rise t1 = t0+t_rise t2 = t1+t_rise_ending rf = numpy.where(t<=t0, 0., 1.) if t2 != t0: t20 = float(t2-t0) t10 = float(t1-t0) t21 = float(t2-t1) c1 = t21 / (t20*t10*t21) c2 = t10 / (t20*t10*t21) rf = numpy.where((t>t0) & (t<=t1), c1*(t-t0)**2, rf) rf = numpy.where((t>t1) & (t<=t2), 1. - c2*(t-t2)**2, rf) if scalar: rf = float(rf) # return a scalar if input t is scalar return rf # ============================================================================== # DTopography Base Class # ============================================================================== class DTopography(object): r"""Basic object representing moving topography """ def __init__(self, path=None, dtopo_type=None): r"""DTopography initialization routine. See :class:`DTopography` for more info. """ self.dZ = None self.times = [] self.x = None self.y = None self.X = None self.Y = None self.delta = None self.path = path if path: self.read(path, dtopo_type) def read(self, path=None, dtopo_type=None, verbose=False): r""" Read in a dtopo file and use to set attributes of this object. :input: - *path* (path) - Path to existing dtopo file to read in. - *dtopo_type* (int) - Type of topography file to read. Default is 3 if not specified or apparent from file extension. """ if path is not None: self.path = path else: if self.path is None: raise ValueError("Need to specify a path to a file.") else: path = self.path if dtopo_type is None: dtopo_type = topotools.determine_topo_type(path, default=3) if dtopo_type == 1: data = numpy.loadtxt(path) if verbose: print "Loaded file %s with %s lines" %(path,data.shape[0]) t = list(set(data[:,0])) t.sort() if verbose: print "times found: ",t ntimes = len(t) tlast = t[-1] lastlines = data[data[:,0]==tlast] xvals = list(set(lastlines[:,1])) xvals.sort() mx = len(xvals) my = len(lastlines) / mx if verbose: print "Read dtopo: mx=%s and my=%s, at %s times" % (mx,my,ntimes) X = numpy.reshape(lastlines[:,1],(my,mx)) Y = numpy.reshape(lastlines[:,2],(my,mx)) Y = numpy.flipud(Y) if verbose: print "Returning dZ as a list of mx*my arrays" dZ = None for n in range(ntimes): i1 = n*mx*my i2 = (n+1)*mx*my dzt = numpy.reshape(data[i1:i2,3],(my,mx)) dzt = numpy.flipud(dzt) dzt = numpy.array(dzt, ndmin=3) # convert to 3d array if dZ is None: dZ = dzt.copy() else: dZ = numpy.append(dZ, dzt, axis=0) self.X = X self.Y = Y self.x = X[0,:] self.y = Y[:,0] self.times = t self.dZ = dZ elif dtopo_type == 2 or dtopo_type == 3: fid = open(path) mx = int(fid.readline().split()[0]) my = int(fid.readline().split()[0]) mt = int(fid.readline().split()[0]) xlower = float(fid.readline().split()[0]) ylower = float(fid.readline().split()[0]) t0 = float(fid.readline().split()[0]) dx = float(fid.readline().split()[0]) dy = float(fid.readline().split()[0]) dt = float(fid.readline().split()[0]) fid.close() xupper = xlower + (mx-1)*dx yupper = ylower + (my-1)*dy x=numpy.linspace(xlower,xupper,mx) y=numpy.linspace(ylower,yupper,my) times = numpy.linspace(t0, t0+(mt-1)*dt, mt) dZvals = numpy.loadtxt(path, skiprows=9) if dtopo_type==3: # my lines with mx values on each for k,t in enumerate(times): dZk = numpy.reshape(dZvals[k*my:(k+1)*my, :], (my,mx)) dZk = numpy.flipud(dZk) dZk = numpy.array(dZk, ndmin=3) # convert to 3d array if k==0: dZ = dZk.copy() else: dZ = numpy.append(dZ, dZk, axis=0) else: # dtopo_type==2 ==> mx*my lines with 1 values on each for k,t in enumerate(times): dZk = numpy.reshape(dZvals[k*mx*my:(k+1)*mx*my], (my,mx)) dZk = numpy.flipud(dZk) dZk = numpy.array(dZk, ndmin=3) # convert to 3d array if k==0: dZ = dZk.copy() else: dZ = numpy.append(dZ, dZk, axis=0) self.x = x self.y = y self.X, self.Y = numpy.meshgrid(x,y) self.times = times self.dZ = dZ else: raise ValueError("Only topography types 1, 2, and 3 are supported,", " given %s." % dtopo_type) def write(self, path=None, dtopo_type=None): r"""Write out subfault resulting dtopo to file at *path*. :input: - *path* (path) - Path to the output file to written to. - *dtopo_type* (int) - Type of topography file to write out. Default is 3. """ if path is not None: self.path = path if self.path is None: raise IOError("*** need to specify path to file for writing") path = self.path if dtopo_type is None: dtopo_type = topotools.determine_topo_type(path, default=3) x = self.X[0,:] y = self.Y[:,0] dx = x[1] - x[0] dy = y[1] - y[0] if abs(dx - dy) >= 1e-12: raise ValueError("dx = %g not equal to dy = %g" % (dx,dy)) # Construct each interpolating function and evaluate at new grid ## Shouldn't need to interpolate in time. with open(path, 'w') as data_file: if dtopo_type == 0: # Topography file with 3 columns, x, y, dz written from the # upper left corner of the region. Only final time. Y_flipped = numpy.flipud(self.Y) dZ_flipped = numpy.flipud(self.dZ[-1,:,:]) for j in xrange(self.Y.shape[0]): for i in xrange(self.X.shape[1]): data_file.write("%s %s %s\n" % self.X[j,i], Y_flipped[j,i], dZ_flipped[j,i]) elif dtopo_type == 1: # Topography file with 4 columns, t, x, y, dz written from the # upper # left corner of the region Y_flipped = numpy.flipud(self.Y) for (n, time) in enumerate(self.times): #alpha = (time - self.t[0]) / self.t[-1] #dZ_flipped = numpy.flipud(alpha * self.dZ[:,:]) dZ_flipped = numpy.flipud(self.dZ[n,:,:]) for j in xrange(self.Y.shape[0]): for i in xrange(self.X.shape[1]): data_file.write("%s %s %s %s\n" % (self.times[n], self.X[j,i], Y_flipped[j,i], dZ_flipped[j,i])) elif dtopo_type == 2 or dtopo_type == 3: if len(self.times) == 1: dt = 0. else: dt = float(self.times[1] - self.times[0]) # Write out header data_file.write("%7i mx \n" % x.shape[0]) data_file.write("%7i my \n" % y.shape[0]) data_file.write("%7i mt \n" % len(self.times)) data_file.write("%20.14e xlower\n" % x[0]) data_file.write("%20.14e ylower\n" % y[0]) data_file.write("%20.14e t0\n" % self.times[0]) data_file.write("%20.14e dx\n" % dx) data_file.write("%20.14e dy\n" % dy) data_file.write("%20.14e dt\n" % dt) if dtopo_type == 2: raise ValueError("Topography type 2 is not yet supported.") elif dtopo_type == 3: for (n, time) in enumerate(self.times): #alpha = (time - self.t[0]) / (self.t[-1]) for j in range(self.Y.shape[0]-1, -1, -1): data_file.write(self.X.shape[1] * '%012.6e ' % tuple(self.dZ[n,j,:])) data_file.write("\n") else: raise ValueError("Only topography types 1, 2, and 3 are ", "supported, given %s." % dtopo_type) def dZ_at_t(self, t): """ Interpolate dZ to specified time t and return deformation. """ from matplotlib.mlab import find if t <= self.times[0]: return self.dZ[0,:,:] elif t >= self.times[-1]: return self.dZ[-1,:,:] else: n = max(find(self.times <= t)) t1 = self.times[n] t2 = self.times[n+1] dz = (t2-t)/(t2-t1) * self.dZ[n,:,:] + \ (t-t1)/(t2-t1) * self.dZ[n+1,:,:] return dz def dZ_max(self): r"""Return max(abs(dZ)) over all dz in self.dZ, the maximum surface deformation for this dtopo. DEPRECATE? -- it's now a 1-liner """ return abs(self.dZ).max() def plot_dZ_colors(self, t, axes=None, cmax_dZ=None, dZ_interval=None, fig_kwargs={}): """ Interpolate self.dZ to specified time t and then call module function plot_dZ_colors. """ axes = plot_dZ_colors(self.X, self.Y, self.dZ_at_t(t), axes=axes, cmax_dZ=cmax_dZ, dZ_interval=dZ_interval, fig_kwargs=fig_kwargs) return axes def plot_dZ_contours(self, t, dZ_interval=0.5, axes=None, fig_kwargs={}): """ Interpolate self.dZ to specified time t and then call module function plot_dZ_contours. """ axes = plot_dZ_contours(self.X, self.Y, self.dZ_at_t(t), axes=axes, dZ_interval=dZ_interval) return axes # ============================================================================== # Generic Fault Class # ============================================================================== class Fault(object): r"""Base Fault class A class describing a fault possibly composed of subfaults. :Properties: :Initialization: :Examples: """ def __init__(self, subfaults=None, input_units={}, coordinate_specification=None): r"""Fault initialization routine. See :class:`Fault` for more info. """ # Parameters for subfault specification self.rupture_type = 'static' # 'static' or 'dynamic' #self.times = numpy.array([0., 1.]) # or just [0.] ?? self.dtopo = None # Default units of each parameter type self.input_units = standard_units.copy() self.input_units.update(input_units) # Set the coordinate specification, e.g. 'top center': self.coordinate_specification = coordinate_specification if subfaults is not None: if not isinstance(subfaults, list): raise ValueError("Input parameter subfaults must be a list.") self.subfaults = subfaults for subfault in self.subfaults: subfault.convert_to_standard_units(self.input_units) if subfault.coordinate_specification is None: subfault.coordinate_specification = coordinate_specification if subfault.coordinate_specification is None: raise ValueError("Must specify coordinate_specification, " + \ "either for fault or for each subfault") def read(self, path, column_map, coordinate_specification="centroid", rupture_type="static", skiprows=0, delimiter=None, input_units={}, defaults=None): r"""Read in subfault specification at *path*. Creates a list of subfaults from the subfault specification file at *path*. :Inputs: - *path* (str) file to read in, should contain subfaults, one per line - *column_map* (dict) specifies mapping from parameter to the column of the input file that contains values for this parameter, e.g. column_map = {"latitude":0, "longitude":1, "depth":2, "slip":3, "rake":4, "strike":5, "dip":6} - *coordinate_specification* (str) specifies the location on each subfault that corresponds to the (longitude,latitude) and depth of the subfault. See the documentation for *SubFault.calculate_geometry*. - *rupture_type* (str) either "static" or "dynamic" - *skiprows* (int) number of header lines to skip before data - *delimiter* (str) e.g. ',' for csv files - *input_units* (dict) indicating units for length, width, slip, depth, and for rigidity mu as specified in file. These will be converted to "standard units". - *defaults* (dict) default values for all subfaults, for values not included in subfault file on each line. """ # Read in rest of data # (Use genfromtxt to deal with files containing strings, e.g. unit # source name, in some column) data = numpy.genfromtxt(path, skip_header=skiprows, delimiter=delimiter) if len(data.shape) == 1: data = numpy.array([data]) self.coordinate_specification = coordinate_specification self.input_units = standard_units.copy() self.input_units.update(input_units) self.subfaults = [] for n in xrange(data.shape[0]): new_subfault = SubFault() new_subfault.coordinate_specification = coordinate_specification for (var, column) in column_map.iteritems(): if isinstance(column, tuple) or isinstance(column, list): setattr(new_subfault, var, [None for k in column]) for (k, index) in enumerate(column): getattr(new_subfault, var)[k] = data[n, index] else: setattr(new_subfault, var, data[n, column]) if defaults is not None: for param in defaults.iterkeys(): setattr(new_subfault, param, defaults[param]) new_subfault.convert_to_standard_units(self.input_units) self.subfaults.append(new_subfault) def write(self, path, style=None, column_list=None, output_units={}, delimiter=' '): r""" Write subfault format file with one line for each subfault. Can either specify a *style* that determines the columns, or a *column_list*. Must specify one but not both. See below for details. Inputs: - *path* (str) file to write to. - *style* (str) to write in a style that matches standard styles adopted by various groups. One of the following: - "usgs" (Not implemented) - "noaa sift" (Not implemented) - "ucsb" (Not implemented) - *column_list* (list) specifies what order the parameters should be written in the output file, e.g. column_list = ['longitude','latitude','length','width', 'depth','strike','rake','dip','slip'] - *output_units* (dict) specifies units to convert to before writing. Defaults to "standard units". - *delimiter* (str) specifies delimiter between columns, e.g. "," to create a csv file. Defaults to " ". """ self.output_units = standard_units.copy() self.output_units.update(output_units) if style is not None: msg = "style option not yet implemented, use column_list" raise NotImplementedError(msg) if column_list is None: raise Exception("Must specify column_list") format = {} format['longitude'] = '%15.5f' format['latitude'] = '%15.5f' format['strike'] = '%15.5f' format['rake'] = '%15.5f' format['dip'] = '%15.5f' format['depth'] = '%15.8e' format['length'] = '%15.8e' format['width'] = '%15.8e' format['slip'] = '%15.8e' with open(path, 'w') as data_file: c_s_list = set([s.coordinate_specification for s in self.subfaults]) if (len(c_s_list) >= 1) and \ (c_s_list.pop() != self.coordinate_specification): raise ValueError("Subfaults do not have common " + "coordinate_specification that agrees with fault attribute") # write header: data_file.write('Subfaults file with coordinate_specification: ') data_file.write('%s, \n' % self.coordinate_specification) data_file.write('Units: %s, \n' % str(output_units)) s = "" for param in column_list: s = s + param.rjust(15) + delimiter data_file.write(s + '\n') for subfault in self.subfaults: s = "" for param in column_list: value = getattr(subfault,param) if output_units.has_key(param): converted_value = convert_units(value, self.output_units[param], direction=2) s = s + format[param] % value + delimiter data_file.write(s + '\n') def Mo(self): r""" Calculate the seismic moment for a fault composed of subfaults, in units N-m. """ total_Mo = 0.0 for subfault in self.subfaults: total_Mo += subfault.Mo() return total_Mo def Mw(self): r"""Calculate the moment magnitude for a fault composed of subfaults.""" return Mw(self.Mo()) def create_dtopography(self, x, y, times=[0., 1.], y_disp=False, x_disp=False, verbose=False): r"""Compute change in topography and construct a dtopography object. Use subfaults' `okada` routine and add all deformations together. Raises a ValueError exception if the *rupture_type* is an unknown type. returns a :class`DTopography` object. """ dtopo = DTopography() dtopo.x = x dtopo.y = y X, Y = numpy.meshgrid(x,y) dtopo.X = X dtopo.Y = Y dtopo.times = times if verbose: print "Making Okada dz for each of %s subfaults" \ % len(self.subfaults) for k,subfault in enumerate(self.subfaults): if verbose: sys.stdout.write("%s.." % k) sys.stdout.flush() subfault.okada(x,y,y_disp=y_disp,x_disp=x_disp) # sets subfault.dtopo with times=[0] # and subfault.dtopo.dZ.shape[0] == 1 if verbose: sys.stdout.write("\nDone\n") if self.rupture_type == 'static': if len(times) > 2: raise ValueError("For static deformation, need len(times) <= 2") dz = numpy.zeros(X.shape) for subfault in self.subfaults: dz += subfault.dtopo.dZ[0,:,:] if len(times) == 1: # only final deformation stored: dtopo.dZ = numpy.array(dz, ndmin=3) elif len(times) == 2: # store 0 at first time and final deformation at second: dz0 = numpy.zeros(X.shape) dtopo.dZ = numpy.array([dz0, dz]) if dtopo.dZ.shape != (2, dz.shape[0], dz.shape[1]): raise ValueError("dtopo.dZ does not have expected shape") if y_disp: if len(times) > 2: raise ValueError("For static deformation, need len(times) <= 2") dy = numpy.zeros(X.shape) for subfault in self.subfaults: dy += subfault.dtopo.dY[0,:,:] if len(times) == 1: # only final deformation stored: dtopo.dY = numpy.array(dy, ndmin=3) elif len(times) == 2: # store 0 at first time and final deformation at second: dy0 = numpy.zeros(X.shape) dtopo.dY = numpy.array([dy0, dy]) # !!!! need to add dynamic and x_disp !!!! elif self.rupture_type in ['dynamic','kinematic']: t_prev = -1.e99 dzt = numpy.zeros(X.shape) dZ = None for t in times: for k,subfault in enumerate(self.subfaults): t0 = getattr(subfault,'rupture_time',0) t1 = getattr(subfault,'rise_time',0.5) t2 = getattr(subfault,'rise_time_ending',None) rf = rise_fraction([t_prev,t],t0,t1,t2) dfrac = rf[1] - rf[0] if dfrac > 0.: dzt = dzt + dfrac * subfault.dtopo.dZ[0,:,:] dzt = numpy.array(dzt, ndmin=3) # convert to 3d array if dZ is None: dZ = dzt.copy() else: dZ = numpy.append(dZ, dzt, axis=0) t_prev = t dtopo.dZ = dZ else: raise ValueError("Unrecognized rupture_type: %s" % self.rupture_type) # Store for user self.dtopo = dtopo return dtopo def plot_subfaults(self, axes=None, plot_centerline=False, slip_color=False, cmap_slip=None, cmin_slip=None, cmax_slip=None, slip_time=None, plot_rake=False, xylim=None, plot_box=True, colorbar_shrink=1, verbose=False): """ Plot each subfault projected onto the surface. *axes* can be passed in to specify the *matplotlib.axes.AxesSubplot* on which to add this plot. If *axes == None*, a new figure window will be opened. The *axes* on which it is plotted is the return value of this call. If *plot_centerline == True*, plot a line from the centroid to the top center of each subfault to show what direction is up-dip. If *slip_color == True* then use the color map *cmap_slip* (which defaults to *matplotlib.cm.jet*) to color the subplots based on the magnitude of slip, scaled between *cmin_slip* and *cmax_slip*. (If these are *None* then scaled automatically based on range of slip.) If *slip_time == None* then colors are based on the final slip. For dynamic faults, *slip_time* can be set to a time and the dynamic timing of each subfault will be used to compute and plot the slip at this time. If *plot_rake == True*, plot a line from the centroid pointing in the direction of the rake (the direction in which the top block is moving relative to the lower block. The distance it moves is given by the *slip*.) *xylim* can be set to a list or tuple of length 4 of the form [x1,x2,y1,y2] to specify the x- and y-axis limits. If *plot_box == True*, a box will be drawn around each subfault. """ import matplotlib import matplotlib.pyplot as plt if (slip_time is not None) and (self.rupture_type == 'static'): raise Exception("slip_time can only be specified for dynamic faults") if axes is None: fig = plt.figure() axes = fig.add_subplot(1, 1, 1) max_slip = 0. min_slip = 0. for subfault in self.subfaults: slip = subfault.slip max_slip = max(abs(slip), max_slip) min_slip = min(abs(slip), min_slip) if verbose: print "Max slip, Min slip: ",max_slip, min_slip if slip_color: if cmap_slip is None: cmap_slip = matplotlib.cm.jet #white_purple = colormaps.make_colormap({0.:'w', 1.:[.6,0.2,.6]}) #cmap_slip = white_purple if cmax_slip is None: cmax_slip = max_slip if cmin_slip is None: cmin_slip = 0. y_ave = 0. for subfault in self.subfaults: x_top = subfault.centers[0][0] y_top = subfault.centers[0][1] x_centroid = subfault.centers[1][0] y_centroid = subfault.centers[1][1] x_corners = [subfault.corners[2][0], subfault.corners[3][0], subfault.corners[0][0], subfault.corners[1][0], subfault.corners[2][0]] y_corners = [subfault.corners[2][1], subfault.corners[3][1], subfault.corners[0][1], subfault.corners[1][1], subfault.corners[2][1]] y_ave += y_centroid # Plot projection of planes to x-y surface: if plot_centerline: axes.plot([x_top],[y_top],'bo',label="Top center") axes.plot([x_centroid],[y_centroid],'ro',label="Centroid") axes.plot([x_top,x_centroid],[y_top,y_centroid],'r-') if plot_rake: tau = (subfault.rake - 90) * numpy.pi/180. axes.plot([x_centroid],[y_centroid],'go',markersize=5,label="Centroid") dxr = x_top - x_centroid dyr = y_top - y_centroid x_rake = x_centroid + numpy.cos(tau)*dxr - numpy.sin(tau)*dyr y_rake = y_centroid + numpy.sin(tau)*dxr + numpy.cos(tau)*dyr axes.plot([x_rake,x_centroid],[y_rake,y_centroid],'g-',linewidth=1) if slip_color: if slip_time is not None: slip = subfault.dynamic_slip(slip_time) else: slip = subfault.slip s = min(1, max(0, (slip-cmin_slip)/(cmax_slip-cmin_slip))) c = cmap_slip(s*.99) # since 1 does not map properly with jet axes.fill(x_corners,y_corners,color=c,edgecolor='none') if plot_box: axes.plot(x_corners, y_corners, 'k-') slipax = axes y_ave = y_ave / len(self.subfaults) slipax.set_aspect(1./numpy.cos(y_ave*numpy.pi/180.)) if xylim is not None: slipax.set_xlim(xylim[:2]) slipax.set_ylim(xylim[2:]) if slip_color: if slip_time is None: slipax.set_title('Slip on fault') else: slipax.set_title('Slip on fault at time %6.1fs' % slip_time) else: slipax.set_title('Fault planes') slipax.ticklabel_format(format='plain', useOffset=False) for label in slipax.get_xticklabels(): label.set_rotation(20) if slip_color and (colorbar_shrink > 0): cax,kw = matplotlib.colorbar.make_axes(slipax, shrink=colorbar_shrink) norm = matplotlib.colors.Normalize(vmin=cmin_slip,vmax=cmax_slip) cb1 = matplotlib.colorbar.ColorbarBase(cax, cmap=cmap_slip, norm=norm) cb1.set_label("Slip (m)") plt.sca(slipax) # reset the current axis to the main figure return slipax def plot_subfaults_depth(self, axes=None): """ Plot the depth of each subfault vs. x and vs. y in a second plot. """ import matplotlib.pyplot as plt if axes is None: fig, axes = plt.subplots(nrows=2, ncols=1) else: if len(axes) != 2: raise ValueError("The *axes* argument should be a list of ", "axes objects of length == 2.") for subfault in self.subfaults: x_top = subfault.centers[0][0] y_top = subfault.centers[0][1] depth_top = subfault.centers[0][2] x_bottom = subfault.centers[2][0] y_bottom = subfault.centers[2][1] depth_bottom = subfault.centers[2][2] # Plot planes in x-z and y-z to see depths: axes[0].plot([x_top, x_bottom], [-depth_top, -depth_bottom]) axes[1].plot([y_top, y_bottom], [-depth_top, -depth_bottom]) axes[0].set_title('depth vs. x') axes[1].set_title('depth vs. y') return axes def containing_rect(self): r"""Find containing rectangle of fault in x-y plane. Returns tuple of x-limits and y-limits. """ extent = [numpy.infty, -numpy.infty, numpy.infty, -numpy.infty] for subfault in self.subfaults: for corner in subfault.corners: extent[0] = min(corner[0], extent[0]) extent[1] = max(corner[0], extent[1]) extent[2] = min(corner[1], extent[2]) extent[3] = max(corner[1], extent[3]) return extent def create_dtopo_xy(self, rect=None, dx=1/60., buffer_size=0.5): r"""Create coordinate arrays containing fault with a buffer. :Input: - *rect* - if None, use self.containing_rect Otherwise a list [x1,x2,y1,y2] - *dx* (int) - Spatial resolution. Defaults to 1" resolution. - *buffer_size* (float) - Buffer distance around edge of fault in degrees, defaults to 0.5 degrees. :Output: - *x,y* 1-dimensional arrays that cover the desired rect. They start at (x1,y1) and may go a bit beyond (x2,y2) depending on dx """ if rect is None: rect = self.containing_rect() rect[0] -= buffer_size rect[1] += buffer_size rect[2] -= buffer_size rect[3] += buffer_size mx = int(numpy.ceil(rect[1] - rect[0]) / dx) + 1 x1 = rect[0] x2 = x1 + (mx-1)*dx my = int(numpy.ceil(rect[3] - rect[2]) / dx) + 1 y1 = rect[2] y2 = y1 + (my-1)*dx # note dy==dx x = numpy.linspace(x1,x2,mx) y = numpy.linspace(y1,y2,my) return x,y def set_dynamic_slip(self, t): r""" Set *slip_at_dynamic_t* attribute of all subfaults to slip at the requested time *t*. :Input: - *t* (float) - Raises a ValueError exception if this object's rupture_type attribute is set to static. """ if self.rupture_type is 'static': raise ValueError("Rupture type is set to static.") self.dynamic_t = t for subfault in self.subfaults: subfault.slip_at_dynamic_t = subfault.dynamic_slip(t) # ============================================================================== # Sub-Fault Class # ============================================================================== class SubFault(object): r"""Basic sub-fault specification. Locate fault plane in 3D space Note that the coodinate specification is in reference to the fault :Coordinates of Fault Plane: The attributes *centers* and *corners* are described by the figure below. *centers[0,1,2]* refer to the points labeled 0,1,2 below. In particular the centroid is given by *centers[1]*. Each will be a tuple *(x, y, depth)*. *corners[0,1,2,3]* refer to the points labeled a,b,c,d resp. below. Each will be a tuple *(x, y, depth)*. Top edge Bottom edge a ----------- b ^ | | | ^ | | | | | | | | along-strike direction | | | | 0------1------2 | length | | | | | | | | | | | | | d ----------- c v <-------------> width <-- up dip direction """ @property def corners(self): r"""Coordinates of the corners of the fault plane.""" if self._corners is None: self.calculate_geometry() return self._corners @property def centers(self): r"""Coordinates along the center-line of the fault plane.""" if self._centers is None: self.calculate_geometry() return self._centers def __init__(self): r"""SubFault initialization routine. See :class:`SubFault` for more info. """ super(SubFault, self).__init__() self.strike = None r"""Strike direction of subfault in degrees.""" self.length = None r"""Length of subfault in meters.""" self.width = None r"""Width of subfault in meters.""" self.depth = None r"""Depth of subfault based on *coordinate_specification* in meters.""" self.slip = None r"""Slip on subfault in strike direction in meters.""" self.rake = None r"""Rake of subfault movement in degrees.""" self.dip = None r"""Subfault's angle of dip""" self.latitude = None r"""Latitutde of the subfault based on *coordinate_specification*.""" self.longitude = None r"""Longitude of the subfault based on *coordinate_specification*.""" self.coordinate_specification = None r"""Specifies where the latitude, longitude and depth are measured from.""" # default value for rigidity = shear modulus # Note that standard units for mu is now Pascals. # Multiply by 10 to get dyne/cm^2 value. self.mu = 4e10 r"""Rigidity (== shear modulus) in Pascals.""" self._centers = None self._corners = None def convert_to_standard_units(self, input_units, verbose=False): r""" Convert parameters from the units used for input into the standard units used in this module. """ params = input_units.keys() for param in params: value = getattr(self, param) converted_value = convert_units(value, input_units[param], 1) setattr(self,param,converted_value) if verbose: print "%s %s %s converted to %s %s" \ % (param, value, input_units[param], converted_value, \ standard_units[param]) def Mo(self): r"""Calculate the seismic moment for a single subfault Returns in units of N-m and assumes mu is in Pascals. """ total_slip = self.length * self.width * abs(self.slip) Mo = self.mu * total_slip return Mo def __str__(self): output = "Subfault Characteristics:\n" output += " Coordinates: (%s, %s) (%s)\n" % (self.longitude, self.latitude, self.coordinate_specification) output += " Dimensions (L,W): (%s, %s) m\n" % (self.length, self.width) output += " Depth: %s m\n" % (self.depth) output += " Rake, Strike, Dip: %s, %s, %s\n" % (self.rake, self.strike, self.dip) output += " Slip, Moment: %s m, %s N-m\n" % (self.slip, self.Mo()) output += " Fault Centroid: %s\n" % self.centers[1] return output def calculate_geometry(self): r"""Calculate the fault geometry. Routine calculates the class attributes *corners* and *centers* which are the corners of the fault plane and points along the centerline respecitvely in 3D space. **Note:** *self.coordinate_specification* specifies the location on each subfault that corresponds to the (longitude,latitude) and depth of the subfault. Currently must be one of these strings: - "bottom center": (longitude,latitude) and depth at bottom center - "top center": (longitude,latitude) and depth at top center - "centroid": (longitude,latitude) and depth at centroid of plane - "noaa sift": (longitude,latitude) at bottom center, depth at top, This mixed convention is used by the NOAA SIFT database and "unit sources", see: http://nctr.pmel.noaa.gov/propagation-database.html The Okada model is expressed assuming (longitude,latitude) and depth are at the bottom center of the fault plane, so values must be shifted or other specifications. """ # Simple conversion factor of latitude to meters lat2meter = util.dist_latlong2meters(0.0, 1.0)[1] # Setup coordinate arrays self._corners = [[None, None, None], # a [None, None, None], # b [None, None, None], # c [None, None, None]] # d self._centers = [[None, None, None], # 1 [None, None, None], # 2 [None, None, None]] # 3 # Set depths if self.coordinate_specification == 'top center' or \ self.coordinate_specification == 'noaa sift': self._centers[0][2] = self.depth self._centers[1][2] = self.depth \ + 0.5 * self.width * numpy.sin(self.dip * DEG2RAD) self._centers[2][2] = self.depth \ + self.width * numpy.sin(self.dip * DEG2RAD) elif self.coordinate_specification == 'centroid': self._centers[0][2] = self.depth \ - 0.5 * self.width * numpy.sin(self.dip * DEG2RAD) self._centers[1][2] = self.depth self._centers[2][2] = self.depth \ + 0.5 * self.width * numpy.sin(self.dip * DEG2RAD) elif self.coordinate_specification == 'bottom center': self._centers[0][2] = self.depth \ - self.width * numpy.sin(self.dip * DEG2RAD) self._centers[1][2] = self.depth \ - 0.5 * self.width * numpy.sin(self.dip * DEG2RAD) self._centers[2][2] = self.depth else: raise ValueError("Invalid coordinate specification %s." \ % self.coordinate_specification) self._corners[0][2] = self._centers[0][2] self._corners[3][2] = self._centers[0][2] self._corners[1][2] = self._centers[2][2] self._corners[2][2] = self._centers[2][2] # Locate fault plane in 3D space: # See the class docstring for a guide to labeling of corners/centers. # Vector *up_dip* goes from bottom edge to top edge, in meters, # from point 2 to point 0 in the figure in the class docstring. up_dip = (-self.width * numpy.cos(self.dip * DEG2RAD) \ * numpy.cos(self.strike * DEG2RAD) \ / (LAT2METER * numpy.cos(self.latitude * DEG2RAD)), self.width * numpy.cos(self.dip * DEG2RAD) \ * numpy.sin(self.strike * DEG2RAD) / LAT2METER) if self.coordinate_specification == 'top center': self._centers[0][:2] = (self.longitude, self.latitude) self._centers[1][:2] = (self.longitude - 0.5 * up_dip[0], self.latitude - 0.5 * up_dip[1]) self._centers[2][:2] = (self.longitude - up_dip[0], self.latitude - up_dip[1]) elif self.coordinate_specification == 'centroid': self._centers[0][:2] = (self.longitude + 0.5 * up_dip[0], self.latitude + 0.5 * up_dip[1]) self._centers[1][:2] = (self.longitude, self.latitude) self._centers[2][:2] = (self.longitude - 0.5 * up_dip[0], self.latitude - 0.5 * up_dip[1]) elif self.coordinate_specification == 'bottom center' or \ self.coordinate_specification == 'noaa sift': # Non-rotated lcoations of center-line coordinates self._centers[0][:2] = (self.longitude + up_dip[0], self.latitude + up_dip[1]) self._centers[1][:2] = (self.longitude + 0.5 * up_dip[0], self.latitude + 0.5 * up_dip[1]) self._centers[2][:2] = (self.longitude, self.latitude) else: raise ValueError("Unknown coordinate specification '%s'." \ % self.coordinate_specification) # Calculate coordinates of corners: # Vector *strike* goes along the top edge from point 1 to point a # in the figure in the class docstring. up_strike = (0.5 * self.length * numpy.sin(self.strike * DEG2RAD) \ / (lat2meter * numpy.cos(self._centers[2][1] * DEG2RAD)), 0.5 * self.length * numpy.cos(self.strike * DEG2RAD) \ / lat2meter) self._corners[0][:2] = (self._centers[0][0] + up_strike[0], self._centers[0][1] + up_strike[1]) self._corners[1][:2] = (self._centers[2][0] + up_strike[0], self._centers[2][1] + up_strike[1]) self._corners[2][:2] = (self._centers[2][0] - up_strike[0], self._centers[2][1] - up_strike[1]) self._corners[3][:2] = (self._centers[0][0] - up_strike[0], self._centers[0][1] - up_strike[1]) def okada(self, x, y, y_disp=False, x_disp=False): r""" Apply Okada to this subfault and return a DTopography object. :Input: - x,y are 1d arrays - x_disp == True means also return horizontal displacement in dip direction :Output: - DTopography object with dZ array of shape (1,len(x),len(y)) with single static displacement and times = [0.]. - Another DTopography object if x_disp==True Calculates the vertical displacement by default. Okada model is a mapping from several fault parameters to a surface deformation. See Okada 1985 [Okada85]_, or Okada 1992, Bull. Seism. Soc. Am. okadamap function riginally written in Python by Dave George for Clawpack 4.6 okada.py routine, with some routines adapted from fortran routines written by Xiaoming Wang. Rewritten and made more flexible by Randy LeVeque **Note:** *self.coordinate_specification* (str) specifies the location on each subfault that corresponds to the (longitude,latitude) and depth subfault. See the documentation for *SubFault.calculate_geometry* for dicussion of the possible values *self.coordinate_specification* can take. """ # Okada model assumes x,y are at bottom center: x_bottom = self.centers[2][0] y_bottom = self.centers[2][1] depth_bottom = self.centers[2][2] length = self.length width = self.width depth = self.depth slip = self.slip halfL = 0.5*length w = width # convert angles to radians: ang_dip = DEG2RAD * self.dip ang_rake = DEG2RAD * self.rake ang_strike = DEG2RAD * self.strike dtopo = DTopography() dtopo.x = x dtopo.y = y dtopo.times = [0.] X,Y = numpy.meshgrid(x, y) # use convention of upper case for 2d dtopo.X = X dtopo.Y = Y # Convert distance from (X,Y) to (x_bottom,y_bottom) from degrees to # meters: xx = LAT2METER * numpy.cos(DEG2RAD * Y) * (X - x_bottom) yy = LAT2METER * (Y - y_bottom) # Convert to distance along strike (x1) and dip (x2): x1 = xx * numpy.sin(ang_strike) + yy * numpy.cos(ang_strike) x2 = xx * numpy.cos(ang_strike) - yy * numpy.sin(ang_strike) # In Okada's paper, x2 is distance up the fault plane, not down dip: x2 = -x2 p = x2 * numpy.cos(ang_dip) + depth_bottom * numpy.sin(ang_dip) q = x2 * numpy.sin(ang_dip) - depth_bottom * numpy.cos(ang_dip) strike_slips = [self._strike_slip_z] dip_slips = [self._dip_slip_z] dFs = ['z'] dtopo.dY = dtopo.dX = None # if not set below if y_disp: strike_slips.append(self._strike_slip_y) dip_slips.append(self._dip_slip_y) dFs.append('y') if x_disp: strike_slips.append(self._strike_slip_x) dip_slips.append(self._dip_slip_x) dFs.append('x') for strike_slip,dip_slip,dF in zip(strike_slips, dip_slips, dFs): f1 = strike_slip(x1 + halfL, p, ang_dip, q) f2 = strike_slip(x1 + halfL, p - w, ang_dip, q) f3 = strike_slip(x1 - halfL, p, ang_dip, q) f4 = strike_slip(x1 - halfL, p - w, ang_dip, q) g1=dip_slip(x1 + halfL, p, ang_dip, q) g2=dip_slip(x1 + halfL, p - w, ang_dip, q) g3=dip_slip(x1 - halfL, p, ang_dip, q) g4=dip_slip(x1 - halfL, p - w, ang_dip, q) # Displacement in direction of strike and dip: ds = slip * numpy.cos(ang_rake) dd = slip * numpy.sin(ang_rake) us = (f1 - f2 - f3 + f4) * ds ud = (g1 - g2 - g3 + g4) * dd dz = (us+ud) dZ = numpy.array(dz, ndmin=3) if dF=='z': dtopo.dZ = dZ if dF=='y': dtopo.dY = -dZ # since y is up-dip in Okada paper if dF=='x': dtopo.dX = dZ #import pdb; pdb.set_trace() self.dtopo = dtopo return dtopo # Utility functions for okada: def _strike_slip_z(self, y1, y2, ang_dip, q): """ Used for Okada's model Methods from Yoshimitsu Okada (1985) """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) a4 = 2.0*poisson/cs*(numpy.log(r+d_bar) - sn*numpy.log(r+y2)) f = -(d_bar*q/r/(r+y2) + q*sn/(r+y2) + a4*sn)/(2.0*3.14159) return f def _dip_slip_z(self, y1, y2, ang_dip, q): """ Based on Okada's paper (1985) Added by Xiaoming Wang """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs; r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) a5 = 4.*poisson/cs*numpy.arctan((y2*(xx+q*cs)+xx*(r+xx)*sn)/y1/(r+xx)/cs) f = -(d_bar*q/r/(r+y1) + sn*numpy.arctan(y1*y2/q/r) - a5*sn*cs)/(2.0*3.14159) return f def _strike_slip_y(self, y1, y2, ang_dip, q): """ Used for Okada's model Methods from Yoshimitsu Okada (1985) y = down-dip direction """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) y_bar = y2*cs + q*sn a4 = 2.0*poisson/cs*(numpy.log(r+d_bar) - sn*numpy.log(r+y2)) y_bar = y2*cs + q*sn a3 = 2.0*poisson*(y_bar/(cs*(r+d_bar)) - numpy.log(r+y2)) + a4*sn/cs a2 = 2.*poisson*(-numpy.log(r+y2)) - a3 f = -(y_bar*q/r/(r+y2) + q*cs/(r+d_bar) + a2*sn)/(2.0*3.14159) return f def _dip_slip_y(self, y1, y2, ang_dip, q): """ Based on Okada's paper (1985) y = down-dip direction """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs; r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) y_bar = y2*cs + q*sn a5 = 4.*poisson/cs*numpy.arctan((y2*(xx+q*cs)+xx*(r+xx)*sn)/y1/(r+xx)/cs) a1 = 2.0*poisson*(-y1/(cs*(r+d_bar))) - sn/cs * a5 f = -(y_bar*q/r/(r+y1) + cs*numpy.arctan(y1*y2/q/r) - a1*sn*cs)/(2.0*3.14159) return f def _strike_slip_x(self, y1, y2, ang_dip, q): """ Used for Okada's model Methods from Yoshimitsu Okada (1985) """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) a5 = 4.*poisson/cs*numpy.arctan((y2*(xx+q*cs)+xx*(r+xx)*sn)/y1/(r+xx)/cs) a1 = 2.0*poisson*(-y1/(cs*(r+d_bar))) - sn/cs * a5 #a4 = 2.0*poisson/cs*(numpy.log(r+d_bar) - sn*numpy.log(r+y2)) f = -(y1*q/r/(r+y2) + numpy.arctan(y1*y2/q/r) + a1*sn)/(2.0*3.14159) return f def _dip_slip_x(self, y1, y2, ang_dip, q): """ Based on Okada's paper (1985) Added by Xiaoming Wang """ sn = numpy.sin(ang_dip) cs = numpy.cos(ang_dip) d_bar = y2*sn - q*cs; r = numpy.sqrt(y1**2 + y2**2 + q**2) xx = numpy.sqrt(y1**2 + q**2) #a5 = 4.*poisson/cs*numpy.arctan((y2*(xx+q*cs)+xx*(r+xx)*sn)/y1/(r+xx)/cs) a4 = 2.0*poisson/cs*(numpy.log(r+d_bar) - sn*numpy.log(r+y2)) ytilde = y2*cs + q*sn a3 = 2.0*poisson*(ytilde/(cs*(r+d_bar)) - numpy.log(r+y2)) + a4*sn/cs f = -(q/r - a3*sn*cs)/(2.0*3.14159) return f def dynamic_slip(self, t): r""" For a dynamic fault, compute the slip at time t. Assumes the following attributes are set: - *rupture_time* - *rise_time* - *rise_time_ending*: optional, defaults to *rise_time* """ if (self.rupture_time is None) or (self.rise_time is None): raise ValueError("Computing a dynamic slip only works for dynamic ", "rupture types") t0 = self.rupture_time t1 = self.rise_time t2 = getattr(self,'rise_time_ending',None) rf = rise_fraction(t,t0,t1,t2) return rf * self.slip # ============================================================================== # UCSB sub-class of Fault # ============================================================================== class UCSBFault(Fault): r"""Fault subclass for reading in subfault format models from UCSB Read in subfault format models produced by Chen Ji's group at UCSB, downloadable from: http://www.geol.ucsb.edu/faculty/ji/big_earthquakes/home.html """ def __init__(self, path=None, **kwargs): r"""UCSBFault initialization routine. See :class:`UCSBFault` for more info. """ self.num_cells = [None, None] # RJL: Why needed?? # Do not really but the specification # has it. super(UCSBFault, self).__init__() if path is not None: self.read(path, **kwargs) def read(self, path, rupture_type='static'): r"""Read in subfault specification at *path*. Creates a list of subfaults from the subfault specification file at *path*. Subfault format contains info for dynamic rupture, so can specify rupture_type = 'static' or 'dynamic' """ self.rupture_type = rupture_type # Read header of file regexp_dx = re.compile(r"Dx=[ ]*(?P<dx>[^k]*)") regexp_dy = re.compile(r"Dy=[ ]*(?P<dy>[^k]*)") regexp_nx = re.compile(r"nx[^=]*=[ ]*(?P<nx>[^D]*)") regexp_ny = re.compile(r"ny[^=]*=[ ]*(?P<ny>[^D]*)") found_subfault_discretization = False found_subfault_boundary = False header_lines = 0 with open(path, 'r') as subfault_file: # Find fault secgment discretization for (n,line) in enumerate(subfault_file): result_dx = regexp_dx.search(line) result_dy = regexp_dy.search(line) result_nx = regexp_nx.search(line) result_ny = regexp_ny.search(line) if result_dx and result_dy: dx = float(result_dx.group('dx')) dy = float(result_dy.group('dy')) self.num_cells[0] = int(result_nx.group('nx')) self.num_cells[1] = int(result_ny.group('ny')) found_subfault_discretization = True break header_lines += n # Parse boundary in_boundary_block = False boundary_data = [] for (n,line) in enumerate(subfault_file): if line[0].strip() == "#": if in_boundary_block and len(boundary_data) == 5: found_subfault_boundary = True break else: in_boundary_block = True boundary_data.append([float(value) for value in line.split()]) # Assume that there is a column label right underneath the boundary # specification header_lines += n + 2 # Check to make sure last boundary point matches, then throw away if boundary_data[0] != boundary_data[4]: raise ValueError("Boundary specified incomplete: ", "%s" % boundary_data) # Locate fault plane in 3D space - see SubFault `calculate_geometry` # for # These are only useful in sub-faults # a schematic of where these points are # self._corners = [None, # a # None, # b # None, # c # None] # d # self._centers = [[0.0, 0.0, 0.0], # 1 # [0.0, 0.0, 0.0], # 2 # [0.0, 0.0, 0.0]] # 3 # # :TODO: Is the order of this a good assumption? # self._corners[0] = boundary_data[0] # self._corners[3] = boundary_data[1] # self._corners[2] = boundary_data[2] # self._corners[1] = boundary_data[3] # # Calculate center by averaging position of appropriate corners # for (n, corner) in enumerate(self._corners): # for i in xrange(3): # self._centers[1][i] += corner[i] / 4 # if n == 0 or n == 4: # for i in xrange(3): # self._centers[0][i] += corner[i] / 2 # else: # for i in xrange(3): # self._centers[2][i] += corner[i] / 2 if not (found_subfault_boundary and found_subfault_discretization): raise ValueError("Could not find base fault characteristics in ", "subfault specification file at %s." % path) # Calculate center of fault column_map = {"latitude":0, "longitude":1, "depth":2, "slip":3, "rake":4, "strike":5, "dip":6, "rupture_time":7, "rise_time":8, "rise_time_ending":9, "mu":10} defaults = {"length":dx, "width":dy} input_units = {"slip":"cm", "depth":"km", 'mu':"dyne/cm^2", "length":"km", "width":"km"} super(UCSBFault, self).read(path, column_map, skiprows=header_lines, coordinate_specification="centroid", input_units=input_units, defaults=defaults) # ============================================================================== # CSV sub-class of Fault # ============================================================================== class CSVFault(Fault): r"""Fault subclass for reading in CSV formatted files Assumes that the first row gives the column headings """ def read(self, path, input_units={}, coordinate_specification="top center", rupture_type="static", verbose=False): r"""Read in subfault specification at *path*. Creates a list of subfaults from the subfault specification file at *path*. """ possible_column_names = """longitude latitude length width depth strike dip rake slip mu rupture_time rise_time rise_time_ending""".split() param = {} for n in possible_column_names: param[n] = n # alternative names that might appear in csv file: param["rigidity"] = "mu" param["rupture time"] = "rupture_time" param["rise time"] = "rise_time" # Read header of file with open(path, 'r') as subfault_file: header_line = subfault_file.readline().split(",") column_map = {} for (n,column_heading) in enumerate(header_line): if "(" in column_heading: # Strip out units if present unit_start = column_heading.find("(") unit_end = column_heading.find(")") column_name = column_heading[:unit_start].lower() units = column_heading[unit_start+1:unit_end] if verbose and input_units.get(column_name,units) != units: print "*** Warning: input_units[%s] reset to %s" \ % (column_name, units) print " based on file header" input_units[column_name] = units else: column_name = column_heading.lower() column_name = column_name.strip() if column_name in param.keys(): column_key = param[column_name] column_map[column_key] = n else: print "*** Warning: column name not recognized: %s" \ % column_name super(CSVFault, self).read(path, column_map=column_map, skiprows=1, delimiter=",", input_units=input_units, coordinate_specification=coordinate_specification, rupture_type=rupture_type) # ============================================================================== # Sift sub-class of Fault # ============================================================================== class SiftFault(Fault): r""" Define a fault by specifying the slip on a subset of the SIFT unit sources. The database is read in by load_sift_unit_sources. See http://www.pmel.noaa.gov/pubs/PDF/gica2937/gica2937.pdf for a discussion of these unit sources, although the database used is more recent than what is reported in that paper and uses different notation for the subfault names. The subfault database used was downloaded from http://sift.pmel.noaa.gov/ComMIT/compressed/info_sz.dat Example: >>> sift_slip = {'acsza1':2, 'acszb1':3} >>> fault = SiftFault(sift_slip) results in a fault with two specified subfaults with slip of 2 and 3 meters. """ def __init__(self, sift_slip=None): r"""SiftFault initialization routine. See :class:`SiftFault` for more info. """ super(SiftFault, self).__init__() self._load_sift_unit_sources() if sift_slip is not None: self.set_subfaults(sift_slip) def set_subfaults(self,sift_slip): r""" *sift_slip* (dict) is a dictionary with key = name of unit source and value = magnitude of slip to assign (in meters). """ self.subfaults = [] for k,v in sift_slip.iteritems(): subfault = self.sift_subfaults[k] subfault.slip = v self.subfaults.append(subfault) def _load_sift_unit_sources(self): r""" Load SIFT unit source subfault data base. File was downloaded from http://sift.pmel.noaa.gov/ComMIT/compressed/info_sz.dat """ unit_source_file = os.path.join(os.path.dirname(__file__), 'data', 'info_sz.dat.txt') self.input_units = {'length':'km', 'width':'km', 'depth':'km', 'slip':'m', 'mu':"dyne/cm^2"} self.sift_subfaults = {} with open(unit_source_file, 'r') as sift_file: # Skip first two lines sift_file.readline(); sift_file.readline() for line in sift_file: tokens = line.split(',') name = tokens[0] # url = tokens[1] subfault = SubFault() subfault.longitude = float(tokens[2]) subfault.latitude = float(tokens[3]) subfault.slip = float(tokens[4]) subfault.strike = float(tokens[5]) subfault.dip = float(tokens[6]) subfault.depth = float(tokens[7]) subfault.length = float(tokens[8]) subfault.width = float(tokens[9]) subfault.rake = float(tokens[10]) subfault.coordinate_specification = "noaa sift" # subfault.mu = ?? ## currently using SubFault default subfault.convert_to_standard_units(self.input_units) self.sift_subfaults[name] = subfault # ============================================================================== # Subdivided plane sub-class of Fault # ============================================================================== class SubdividedPlaneFault(Fault): r""" Define a fault by starting with a single fault plane (specified as *base_subfault* of class *SubFault*) and subdividing the fault plane into a rectangular array of *nstrike* by *ndip* equally sized subfaults. By default,the slip on each subfault will be initialized to *base_subfault.slip* so that the slip is uniform over the original plane and the seismic moment is independent of the number of subdivisions. Alternatively, the slip distribution can be specified by providing a function *slip_distribution*, which should be a function of *(xi,eta)* with each variable ranging from 0 to 1. *xi* varies from 0 at the top of the fault to 1 at the bottom in the down-dip direction. *eta* varies from one edge of the fault to the other moving in the strike direction. This function will be evaluated at the centroid of each subfault to set the slip. Can also specify a desired seismic moment Mo in which case the slips will be rescaled at the end so the total seismic moment is Mo. In this case the *slip_distribution* function only indicates the relative slip between subfaults. """ def __init__(self, base_subfault, nstrike=1, ndip=1, slip_function=None, Mo=None): r"""SubdivdedPlaneFault initialization routine. See :class:`SubdivdedPlaneFault` for more info. """ super(SubdividedPlaneFault, self).__init__() self.base_subfault = base_subfault self.nstrike = nstrike self.ndip = ndip self.subdivide(nstrike, ndip, slip_function, Mo) def subdivide(self, nstrike=1, ndip=1, slip_function=None, Mo=None): r"""Subdivide the fault plane into nstrike * ndip subfaults.""" # may have changed resolution: self.nstrike = nstrike self.ndip = ndip base_subfault = self.base_subfault strike = base_subfault.strike dip = base_subfault.dip rake = base_subfault.rake slip = base_subfault.slip length = base_subfault.length width = base_subfault.width # unpack corners from fault plane geometry: x_corners = [base_subfault.corners[2][0], base_subfault.corners[3][0], base_subfault.corners[0][0], base_subfault.corners[1][0], base_subfault.corners[2][0]] y_corners = [base_subfault.corners[2][1], base_subfault.corners[3][1], base_subfault.corners[0][1], base_subfault.corners[1][1], base_subfault.corners[2][0]] # set depth at corners: depth_top = base_subfault.centers[0][2] depth_bottom = base_subfault.centers[2][2] d_corners = [depth_bottom, depth_top, depth_top, depth_bottom, depth_bottom] # coefficients for bilinear interpolants: cx = [x_corners[1], x_corners[0] - x_corners[1], x_corners[2] - x_corners[1], x_corners[3] + x_corners[1] - x_corners[2] - x_corners[0]] cy = [y_corners[1], y_corners[0] - y_corners[1], y_corners[2] - y_corners[1], y_corners[3] + y_corners[1] - y_corners[2] - y_corners[0]] cd = [d_corners[1], d_corners[0] - d_corners[1], d_corners[2] - d_corners[1], d_corners[3] + d_corners[1] - d_corners[2] - d_corners[0]] self.subfaults = [] # determine coordinates for each subfault. # note that xi goes from 0 to 1 from top to bottom in dip direction, # eta goes from 0 to 1 in along-strike direction. dxi = 1. / ndip deta = 1. / nstrike for i in range(ndip): xi = numpy.array([i, i+0.5, i+1.]) * dxi # xi at top, center, bottom for j in range(nstrike): eta = (j+0.5)*deta # interpolate longitude,latitude,depth from corners: x_sf = cx[0] + cx[1]*xi + cx[2]*eta + cx[3]*xi*eta y_sf = cy[0] + cy[1]*xi + cy[2]*eta + cy[3]*xi*eta d_sf = cd[0] + cd[1]*xi + cd[2]*eta + cd[3]*xi*eta subfault = SubFault() if base_subfault.coordinate_specification == 'centroid': subfault.longitude = x_sf[1] subfault.latitude = y_sf[1] subfault.depth = d_sf[1] elif base_subfault.coordinate_specification == 'top center': subfault.longitude = x_sf[0] subfault.latitude = y_sf[0] subfault.depth = d_sf[0] elif base_subfault.coordinate_specification == 'noaa sift': subfault.longitude = x_sf[2] subfault.latitude = y_sf[2] subfault.depth = d_sf[0] else: msg = "Unrecognized coordinate_specification: %s" \ % base_subfault.coordinate_specification raise NotImplementedError(msg) subfault.dip = dip subfault.strike = strike subfault.rake = rake subfault.length = length / nstrike subfault.width = width / ndip subfault.slip = slip subfault.coordinate_specification = \ base_subfault.coordinate_specification subfault.mu = base_subfault.mu self.subfaults.append(subfault) if slip_function is not None: self.set_slip(nstrike, ndip, slip_function, Mo) def set_slip(self, nstrike, ndip, slip_function, Mo=None): self.slip_function = slip_function dxi = 1. / ndip deta = 1. / nstrike Mo_0 = 0. k = 0 for i in range(ndip): xi = (i+0.5) * dxi for j in range(nstrike): eta = (j+0.5) * deta subfault = self.subfaults[k] k = k+1 subfault.slip = slip_function(xi,eta) Mo_0 += subfault.Mo() if Mo is not None: # rescale slip on each subfault to achieve desired seismic moment Mo_ratio = Mo / Mo_0 for k in range(len(self.subfaults)): self.subfaults[k].slip *= Mo_ratio # ============================================================================== # Tensor product sub-class of Fault # ============================================================================== class TensorProductFault(SubdividedPlaneFault): r""" Define a fault by starting with a single fault plane (specified as *fault_plane* of class *SubFault*) and subdividing the fault plane into a rectangular array of *nstrike* by *ndip* equally sized subfaults. Then define the slip on each subfault via two one-dimensional functions *slip_along_strike* and *slip_down_dip* that specify the slip as a function of fractional distance in the along-strike and down-dip direction respectively (i.e. the argument of each goes from 0 to 1). Setting either to None defaults to constant function 1. The slip is set by evaluating the tensor product at the centroid of each subfault. Can specify a desired seismic moment Mo in which case the slips will be rescaled at the end. """ def __init__(self, fault_plane, slip_along_strike=None, slip_down_dip=None, nstrike=1, ndip=1, Mo=None): r"""TensorProductFault initialization routine. See :class:`TensorProductFault` for more info. """ # perform the subdivision and set parameters on each subfault: super(TensorProductFault, self).__init__(fault_plane, nstrike, ndip) if slip_along_strike is None: # set to constant in the strike direction if not specified slip_along_strike = lambda eta: 1.0 if slip_down_dip is None: # set to constant in the dip direction if not specified slip_down_dip = lambda xi: 1.0
bsd-2-clause
mikestock/intf-tools
xintf.py
1
41182
#!/usr/bin/python import matplotlib matplotlib.use('WXAgg') from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas from matplotlib.backends.backend_wx import NavigationToolbar2Wx from matplotlib.figure import Figure, SubplotParams from matplotlib.widgets import SpanSelector, RectangleSelector from matplotlib import rc, gridspec, cm, colors import numpy as np import wx, os, gzip, time, glob,sys from wx.lib.masked import NumCtrl import intf_tools as it rc('savefig',dpi=100) #rc('font',**{'family':'serif','serif':['Palatino']}) #rc('text', usetex=True) colorDict = { 'red': ( (0.0, 0.3, 0.3), (0.1, 0.0, 0.0), (0.3, 0.0, 0.0), (0.55, 0.0, 0.0), (0.8, 0.8, 0.8), (1.0, 1.0, 1.0) ), 'green':( (0.0, 0.0, 0.0), (0.1, 0.0, 0.0), (0.3, 1.0, 1.0), (0.55, 1.0, 1.0), (0.8, 1.0, 1.0), (1.0, 0.0, 0.0) ), 'blue':( (0.0, 0.5, 0.5), (0.1, 1.0, 1.0), (0.3, 1.0, 1.0), (0.55, 0.0, 0.0), (0.8, 0.0, 0.0), (1.0, 0.0, 0.0) ) } #gCmap = colors.LinearSegmentedColormap('wjet',colorDict,256) gCmap = it.cmap_mjet class MainTab(wx.Panel): def __init__(self, parent,root): wx.Panel.__init__(self, parent=parent, id=wx.ID_ANY) self.parent = parent self.root = root #### # opening buttons self.btnSave = wx.Button(self, label='Save') self.Bind(wx.EVT_BUTTON, self.OnBtnSave, self.btnSave) self.btnOpen = wx.Button(self, label='Open') self.Bind(wx.EVT_BUTTON, self.OnBtnOpen, self.btnOpen) self.btnNext = wx.Button(self, label='Next') self.Bind(wx.EVT_BUTTON, self.OnBtnNext, self.btnNext) self.btnPrev = wx.Button(self, label='Previous') self.Bind(wx.EVT_BUTTON, self.OnBtnPrev, self.btnPrev) ### # Check box for the time mode self.chkTime = wx.CheckBox(self, label='Time From Second') self.Bind(wx.EVT_CHECKBOX, self.OnChkTime, self.chkTime) #### # the only limit button, reset self.btnReset = wx.Button(self, label='Reset Limits') self.Bind(wx.EVT_BUTTON, self.OnBtnReset, self.btnReset) #### # coloring buttons self.cmbColor = wx.ComboBox(self, choices=['Greyscale','By Time','By Points','By Amplitude'], value='By Time', style=wx.CB_READONLY ) self.lblColor = wx.StaticText(self, label=' Color') self.Bind(wx.EVT_COMBOBOX,self.OnCmbColor,self.cmbColor) self.cmbSize = wx.ComboBox(self, choices=['Small','Medium','Large','Amplitude','Exagerated'], value='Medium', style=wx.CB_READONLY ) self.lblSize = wx.StaticText(self, label=' Marker Size') self.Bind(wx.EVT_COMBOBOX,self.OnCmbSize,self.cmbSize) self.cmbAlpha = wx.ComboBox(self, choices=['None','Some','More'], value='None', style=wx.CB_READONLY ) self.lblAlpha = wx.StaticText(self, label=' Transparency') self.Bind(wx.EVT_COMBOBOX,self.OnCmbAlpha,self.cmbAlpha) ### # Projections self.cmbProjection = wx.ComboBox(self, choices=['Cosine', 'Az-El'], value='Cosine', style=wx.CB_READONLY ) self.lblProjection = wx.StaticText(self, label=' Projection') self.Bind(wx.EVT_COMBOBOX,self.OnCmbProjection,self.cmbProjection) self.topSizer = wx.BoxSizer(wx.HORIZONTAL) self.topSizer.Add(self.btnOpen,0,wx.RIGHT) self.topSizer.AddStretchSpacer(1) self.topSizer.Add(self.btnSave,0,wx.RIGHT) self.topSizer.AddStretchSpacer(1) self.topSizer.Add(self.btnReset,0,wx.RIGHT) self.btmSizer1 = wx.BoxSizer(wx.HORIZONTAL) self.btmSizer1.Add(self.btnPrev,0,wx.RIGHT|wx.BOTTOM) self.btmSizer1.AddStretchSpacer(1) self.btmSizer1.Add(self.btnNext,0,wx.RIGHT|wx.BOTTOM) self.grid = wx.FlexGridSizer(rows=5,cols=2,hgap=5,vgap=5) self.grid.Add(self.lblProjection,1,wx.LEFT) self.grid.Add(self.cmbProjection,1,wx.RIGHT) self.grid.Add(self.lblColor,1,wx.LEFT) self.grid.Add(self.cmbColor,1,wx.RIGHT) self.grid.Add(self.lblAlpha,1,wx.LEFT) self.grid.Add(self.cmbAlpha,1,wx.RIGHT) self.grid.Add(self.lblSize,1,wx.LEFT) self.grid.Add(self.cmbSize,1,wx.RIGHT) self.grid.AddStretchSpacer(1) self.grid.Add(self.chkTime,1,wx.LEFT) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.AddSizer(self.topSizer,0,wx.RIGHT) self.sizer.AddStretchSpacer(1) self.sizer.AddSizer(self.grid,0,wx.RIGHT) self.sizer.AddStretchSpacer(1) self.sizer.AddSizer(self.btmSizer1,0,wx.RIGHT) self.SetSizer(self.sizer) self.Fit() ### #the checkbox def OnChkTime(self,e): if self.chkTime.GetValue(): print 'time from second' offset = self.root.plotPanel.data.time_from_second() #change the title else: print 'time from trigger' offset = self.root.plotPanel.data.time_from_trigger() #update the limits history self.root.plotPanel.OffsetLimits(offset) self.root.plotPanel.UpdatePlot(update_overview=True) ### #the color comboboxes def OnCmbColor(self,e): i = e.GetSelection() print 'changing color option to %i'%i self.root.plotPanel.colorOp = i self.root.plotPanel.UpdatePlot() def OnCmbSize(self,e): i = e.GetSelection() self.root.plotPanel.sizeOp = i self.root.plotPanel.UpdatePlot() def OnCmbAlpha(self,e): i = e.GetSelection() self.root.plotPanel.alphaOp = i self.root.plotPanel.UpdatePlot() ### #the projections combobox def OnCmbProjection(self,e): i = e.GetSelection() if i == 0: print 'Setting Cosine Proj.' self.root.plotPanel.cosine = True else: print 'Setting Az-El Proj.' self.root.plotPanel.cosine = False self.root.plotPanel.UpdatePlot() ### #file operations def OnBtnSave(self,e): defaultFileS = os.path.splitext( self.parent.parent.inFileS )[0] + '.png' saveFileS = None dlg = wx.FileDialog(self, "Choose a File", "",defaultFileS, "*.*", wx.FD_SAVE) if dlg.ShowModal() == wx.ID_OK: saveFileS = dlg.GetPath() dlg.Destroy() #write the file if saveFileS != None: print 'writing file',saveFileS self.root.plotPanel.figure_canvas.print_figure(saveFileS) def OnBtnOpen(self,e): """File Selector Dialog to open a data file""" dlg = wx.FileDialog(self, "Choose a File", "","", "*.*", wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: inFileS = dlg.GetPath() dlg.Destroy() self.root.OpenFile(inFileS) def OnBtnNext(self,e): if self.root.inFileS == None: return inFileS = self.root.inFileS dirS = os.path.split(inFileS)[0] extS = os.path.splitext(inFileS)[1] files_i = glob.glob( '%s/LB*%s'%(dirS,extS)) files_i.sort() index = files_i.index(inFileS)+1 if index >= len(files_i): print 'There are no more files!!' return inFileS = files_i[index] self.root.OpenFile(inFileS) def OnBtnPrev(self,e): if self.root.inFileS == None: return inFileS = self.root.inFileS dirS = os.path.split(inFileS)[0] extS = os.path.splitext(inFileS)[1] files_i = glob.glob( '%s/LB*%s'%(dirS,extS)) files_i.sort() index = files_i.index(inFileS)-1 if index < 0: print 'There are no more files!!' return inFileS = files_i[index] self.root.OpenFile(inFileS) def OnBtnReset(self,e): self.root.plotPanel.mkPlot() class OverlayTab(wx.Panel): def __init__(self, parent,root): wx.Panel.__init__(self, parent=parent, id=wx.ID_ANY) self.parent = parent self.root = root self.font = wx.Font(10, wx.MODERN, wx.NORMAL, wx.NORMAL, False) self.limitsLen = 11 self.filtersLen = 9 boxSize = (50,30) uSecBoxSize = (100,30) #Waveforms self.btnReadWave = wx.Button(self, label='Open Wave') self.Bind(wx.EVT_BUTTON, self.OnBtnReadWave, self.btnReadWave) self.cmbColorWave = wx.ComboBox(self, choices=['Black','Red','Blue','Green'], value='Black', style=wx.CB_READONLY ) self.lblWaveColor = wx.StaticText(self, label=' Color ') self.Bind(wx.EVT_COMBOBOX,self.OnCmbColorWave,self.cmbColorWave) waveColorSz = wx.BoxSizer(wx.HORIZONTAL) waveColorSz.Add(self.lblWaveColor,0,wx.RIGHT|wx.BOTTOM) waveColorSz.AddStretchSpacer(1) waveColorSz.Add(self.cmbColorWave,0,wx.RIGHT|wx.BOTTOM) self.lblWaveLpf1 = wx.StaticText(self, label=' LPF ') self.lblWaveLpf2 = wx.StaticText(self, label='MHz ') self.boxWaveLpf = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.btnLpfSet = wx.Button(self, label='Set') self.Bind(wx.EVT_BUTTON, self.OnBtnLpfSet, self.btnLpfSet) waveLpfSz = wx.BoxSizer(wx.HORIZONTAL) waveLpfSz.Add(self.lblWaveLpf1,0,wx.RIGHT|wx.BOTTOM) waveLpfSz.AddStretchSpacer(1) waveLpfSz.Add(self.boxWaveLpf,0,wx.RIGHT|wx.BOTTOM) waveLpfSz.Add(self.lblWaveLpf2,0,wx.LEFT|wx.BOTTOM) waveLpfSz.AddStretchSpacer(1) waveLpfSz.Add(self.btnLpfSet) #LMA self.btnReadLma = wx.Button(self, label='Open LMA') self.Bind(wx.EVT_BUTTON, self.OnBtnReadLma, self.btnReadLma) self.cmbColorLma = wx.ComboBox(self, choices=['Black','Red','Blue','Green'], value='Black', style=wx.CB_READONLY ) self.lblLmaColor = wx.StaticText(self, label=' Color ') self.Bind(wx.EVT_COMBOBOX,self.OnCmbColorLma,self.cmbColorLma) lmaColorSz = wx.BoxSizer(wx.HORIZONTAL) lmaColorSz.Add(self.lblLmaColor,0,wx.RIGHT|wx.BOTTOM) lmaColorSz.AddStretchSpacer(1) lmaColorSz.Add(self.cmbColorLma,0,wx.RIGHT|wx.BOTTOM) #Timing offset (for use with LMA) self.boxUSec = wx.TextCtrl(self,wx.TE_RIGHT,size=uSecBoxSize) self.btnUSec = wx.Button(self, label='Set uSecond') self.Bind(wx.EVT_BUTTON, self.OnBtnUSec, self.btnUSec) uSecSz = wx.BoxSizer(wx.HORIZONTAL) uSecSz.Add(self.boxUSec, 0,wx.RIGHT|wx.BOTTOM) uSecSz.AddStretchSpacer(1) uSecSz.Add(self.btnUSec, 0,wx.RIGHT|wx.BOTTOM) #~ self.btmSizer2 = wx.BoxSizer(wx.HORIZONTAL) #~ self.btmSizer2.Add(self.btnReadLma,0,wx.RIGHT|wx.BOTTOM) #~ self.btmSizer2.AddStretchSpacer(1) #~ self.btmSizer2.Add(self.btnReadWave,0,wx.RIGHT|wx.BOTTOM) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.btnReadLma,0,wx.RIGHT|wx.BOTTOM) self.sizer.Add(lmaColorSz,0,wx.RIGHT|wx.BOTTOM) self.sizer.Add(self.btnReadWave,0,wx.RIGHT|wx.BOTTOM) self.sizer.Add(waveColorSz,0,wx.RIGHT|wx.BOTTOM) self.sizer.Add(waveLpfSz,0,wx.RIGHT|wx.BOTTOM) self.sizer.Add(uSecSz) self.SetSizer(self.sizer) self.Fit() #file operations def OnBtnReadWave(self,e): """File Selector Dialog to open a data file""" dlg = wx.FileDialog(self, "Choose a File", "","", "*.*", wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: inFileS = dlg.GetPath() dlg.Destroy() self.root.OpenWave(inFileS) if self.root.plotPanel.waveLpf == None: self.boxWaveLpf.SetValue(' None') else: self.boxWaveLpf.SetValue(('%0.1f'%self.root.plotPanel.waveLpf).rjust(5)) def OnBtnReadLma(self,e): """File Selector Dialog to open a data file""" dlg = wx.FileDialog(self, "Choose a File", "","", "*.*", wx.FD_OPEN) if dlg.ShowModal() == wx.ID_OK: inFileS = dlg.GetPath() dlg.Destroy() self.root.OpenLma(inFileS) #usecond def OnBtnUSec(self,e): #get the string in the text box S = self.boxUSec.GetValue().strip() uSec = self.text_parser(S) #if needed, set time from trigger if self.root.ctrlPanel.fileTab.chkTime.GetValue(): print 'time from trigger' self.root.plotPanel.data.time_from_trigger() if uSec == None: print 'no uSecond, geting value' #then we get the uSecond from the header uSec = self.root.plotPanel.data.header.uSecond else: print 'Setting uSecond Value' self.root.plotPanel.data.header.uSecond = uSec #change to time from second self.root.ctrlPanel.fileTab.chkTime.SetValue(True) print 'time from second' offset = self.root.plotPanel.data.time_from_second() print offset #update plots self.root.plotPanel.OffsetLimits(offset) self.root.plotPanel.UpdatePlot(update_overview=True) #finally, set the textbox self.boxUSec.SetValue(('%0.3f'%uSec).rjust(10)) #colors def OnCmbColorWave(self,e): i = e.GetString() print 'changing Waveform color option to %s'%i self.root.plotPanel.waveColor = i self.root.plotPanel.UpdatePlot() def OnCmbColorLma(self,e): i = e.GetString() print 'changing LMA color option to %s'%i self.root.plotPanel.lmaColor = i self.root.plotPanel.UpdatePlot() #filters def OnBtnLpfSet(self,e): if self.root.waveFileS == None: return S = self.boxWaveLpf.GetValue().strip() F = self.text_parser(S) self.root.plotPanel.waveLpf = F #update the value if self.root.plotPanel.waveLpf == None: self.boxWaveLpf.SetValue(' None') else: self.boxWaveLpf.SetValue(('%0.1f'%self.root.plotPanel.waveLpf).rjust(5)) print 'changing Waveform LPF to %s'%repr(F) #update the plot self.root.plotPanel.waveData = None #needed to force it to reload the data self.root.plotPanel.UpdatePlot() def text_parser(self,S): #first see if it's a number try: F = float(S.strip()) except: return None return F class FilterTab(wx.Panel): def __init__(self, parent,root): wx.Panel.__init__(self, parent=parent, id=wx.ID_ANY) self.parent = parent self.root = root self.font = wx.Font(10, wx.MODERN, wx.NORMAL, wx.NORMAL, False) self.limitsLen = 11 self.filtersLen = 9 ### # Limits boxSize = (100,30) lblLimits = wx.StaticText(self, label=' Limits --------------------- ') btnLimits = wx.Button(self, label = 'Set Limits') self.Bind(wx.EVT_BUTTON, self.OnBtnLimits, btnLimits) btnLimBack = wx.Button(self, label = 'Back') self.Bind(wx.EVT_BUTTON, self.OnBtnLimBack, btnLimBack) lbltRange = wx.StaticText(self, label=' Time') self.boxtRange0 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxtRange1 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxtRange0.SetFont(self.font) self.boxtRange1.SetFont(self.font) self.boxtRange0.fmt = '%4.3f' self.boxtRange1.fmt = '%4.3f' lblazRange = wx.StaticText(self, label=' Azimuth') self.boxazRange0 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxazRange1 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxazRange0.SetFont(self.font) self.boxazRange1.SetFont(self.font) self.boxazRange0.fmt = '%3.3f' self.boxazRange1.fmt = '%3.3f' lblelRange = wx.StaticText(self, label=' Elevation') self.boxelRange0 = wx.TextCtrl(self,wx.TE_CENTRE,size=boxSize) self.boxelRange1 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxelRange0.SetFont(self.font) self.boxelRange1.SetFont(self.font) self.boxelRange0.fmt = '%2.3f' self.boxelRange1.fmt = '%2.3f' lblcaRange = wx.StaticText(self, label=' cos(a)') self.boxcaRange0 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxcaRange1 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxcaRange0.SetFont(self.font) self.boxcaRange1.SetFont(self.font) self.boxcaRange0.fmt = '%1.3f' self.boxcaRange1.fmt = '%1.3f' lblcbRange = wx.StaticText(self, label=' cos(b)') self.boxcbRange0 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxcbRange1 = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxcbRange0.SetFont(self.font) self.boxcbRange1.SetFont(self.font) self.boxcbRange0.fmt = '%1.3f' self.boxcbRange1.fmt = '%1.3f' ### # Filters boxSize = (80,30) lblFilters = wx.StaticText(self, label=' Filters --------------------- ') btnFilters = wx.Button(self, label = 'Set Filters') self.Bind(wx.EVT_BUTTON, self.OnBtnFilters, btnFilters) lbleCls = wx.StaticText(self, label=' eCls') self.boxeCls = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxeCls.SetFont(self.font) self.boxeCls.fmt = '%1.3f' lbleStd = wx.StaticText(self, label=' eStd') self.boxeStd = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxeStd.SetFont(self.font) self.boxeStd.fmt = '%1.3f' lbleXpk = wx.StaticText(self, label=' eXpk') self.boxeXpk = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxeXpk.SetFont(self.font) self.boxeXpk.fmt = '%1.3f' lbleMlt = wx.StaticText(self, label=' eMlt') self.boxeMlt = wx.TextCtrl(self,wx.TE_RIGHT,size=boxSize) self.boxeMlt.SetFont(self.font) self.boxeMlt.fmt = '%1.3f' ### # Placement self.size1 = wx.BoxSizer(wx.HORIZONTAL) self.size1.Add(lblLimits,0,wx.LEFT) self.size1.AddStretchSpacer(1) self.size1.Add(btnLimits,0,wx.RIGHT) self.grid1 = wx.FlexGridSizer(rows=5,cols=3,hgap=5,vgap=5) self.grid1.Add(lbltRange, 1,wx.LEFT) self.grid1.Add(self.boxtRange0,1,wx.LEFT) self.grid1.Add(self.boxtRange1,1,wx.LEFT) self.grid1.Add(lblazRange, 1,wx.LEFT) self.grid1.Add(self.boxazRange0,1,wx.LEFT) self.grid1.Add(self.boxazRange1,1,wx.LEFT) self.grid1.Add(lblelRange, 1,wx.LEFT) self.grid1.Add(self.boxelRange0,1,wx.LEFT) self.grid1.Add(self.boxelRange1,1,wx.LEFT) self.grid1.Add(lblcaRange, 1,wx.LEFT) self.grid1.Add(self.boxcaRange0,1,wx.LEFT) self.grid1.Add(self.boxcaRange1,1,wx.LEFT) self.grid1.Add(lblcbRange, 1,wx.LEFT) self.grid1.Add(self.boxcbRange0,1,wx.LEFT) self.grid1.Add(self.boxcbRange1,1,wx.LEFT) self.size2 = wx.BoxSizer(wx.HORIZONTAL) self.size2.Add(lblFilters,1,wx.LEFT) self.size2.Add(btnFilters,0,wx.RIGHT) self.grid2 = wx.FlexGridSizer(rows=2,cols=4,hgap=5,vgap=5) self.grid2.Add(lbleCls,1,wx.LEFT) self.grid2.Add(self.boxeCls,1,wx.LEFT) self.grid2.Add(lbleStd,1,wx.LEFT) self.grid2.Add(self.boxeStd,1,wx.LEFT) self.grid2.Add(lbleXpk,1,wx.LEFT) self.grid2.Add(self.boxeXpk,1,wx.LEFT) self.grid2.Add(lbleMlt,1,wx.LEFT) self.grid2.Add(self.boxeMlt,1,wx.LEFT) self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.AddSizer(self.size1,1) self.sizer.AddSizer(self.grid1,0) self.sizer.AddSizer(self.size2,1) self.sizer.AddSizer(self.grid2,0) self.SetSizer(self.sizer) self.Fit() ### # Text Parser def text_parser(self,S): #first see if it's a number try: F = float(S.strip()) except: return None return F ### # Limits def OnBtnLimBack(self,e): #this goes back in the history #pop off the last set of limits if len( self.root.plotPanel.limitsHistory ) > 0: lims = self.root.plotPanel.limitsHistory.pop() else: return #set these limits self.root.plotPanel.SetLimits(save=False, **lims) #update the plot self.root.plotPanel.UpdatePlot() def OnBtnLimits(self,e): #this is ugly, I'm sure there's a better way to do it, but #this should work data = self.root.plotPanel.data #Time tRange = [] F = self.text_parser(self.boxtRange0.GetValue()) if F == None: tRange.append( data.tRange[0] ) else: tRange.append(F) F = self.text_parser(self.boxtRange1.GetValue()) if F == None: tRange.append( data.tRange[1] ) else: tRange.append(F) #Azimuth azRange = [] F = self.text_parser(self.boxazRange0.GetValue()) if F == None: azRange.append( data.azRange[0] ) else: azRange.append(F) F = self.text_parser(self.boxazRange1.GetValue()) if F == None: azRange.append( data.azRange[1] ) else: azRange.append(F) #Elevation elRange = [] F = self.text_parser(self.boxelRange0.GetValue()) if F == None: elRange.append( data.elRange[0] ) else: elRange.append(F) F = self.text_parser(self.boxelRange1.GetValue()) if F == None: elRange.append( data.elRange[1] ) else: elRange.append(F) #cosa caRange = [] F = self.text_parser(self.boxcaRange0.GetValue()) if F == None: caRange.append( data.caRange[0] ) else: caRange.append(F) F = self.text_parser(self.boxcaRange1.GetValue()) if F == None: caRange.append( data.caRange[1] ) else: caRange.append(F) #cosb cbRange = [] F = self.text_parser(self.boxcbRange0.GetValue()) if F == None: cbRange.append( data.cbRange[0] ) else: cbRange.append(F) F = self.text_parser(self.boxcbRange1.GetValue()) if F == None: cbRange.append( data.cbRange[1] ) else: cbRange.append(F) #set the limits self.root.plotPanel.SetLimits( caRange=caRange, cbRange=cbRange, elRange=elRange, azRange=azRange, tRange=tRange) #make the changes and update the text values self.set_values() self.root.plotPanel.UpdatePlot() ### # Filters def OnBtnFilters(self,e): F = self.text_parser(self.boxeCls.GetValue()) if F != None: self.root.plotPanel.data.tCls = F F = self.text_parser(self.boxeStd.GetValue()) if F != None: self.root.plotPanel.data.tStd = F F = self.text_parser(self.boxeXpk.GetValue()) if F != None: self.root.plotPanel.data.tXpk = F F = self.text_parser(self.boxeMlt.GetValue()) if F != None: self.root.plotPanel.data.tMlt = F #make the changes and update the text values self.set_values() self.root.plotPanel.data.filter() self.root.plotPanel.UpdatePlot() ### # Reset Values def set_values(self): if self.root.plotPanel.data == None: return data = self.root.plotPanel.data self.boxtRange0.SetValue( (self.boxtRange0.fmt%data.tRange[0]).rjust(self.limitsLen) ) self.boxtRange1.SetValue( (self.boxtRange0.fmt%data.tRange[1]).rjust(self.limitsLen) ) self.boxazRange0.SetValue((self.boxazRange0.fmt%data.azRange[0]).rjust(self.limitsLen)) self.boxazRange1.SetValue((self.boxazRange0.fmt%data.azRange[1]).rjust(self.limitsLen)) self.boxelRange0.SetValue((self.boxelRange0.fmt%data.elRange[0]).rjust(self.limitsLen)) self.boxelRange1.SetValue((self.boxelRange0.fmt%data.elRange[1]).rjust(self.limitsLen)) self.boxcaRange0.SetValue((self.boxcaRange0.fmt%data.caRange[0]).rjust(self.limitsLen)) self.boxcaRange1.SetValue((self.boxcaRange0.fmt%data.caRange[1]).rjust(self.limitsLen)) self.boxcbRange0.SetValue((self.boxcbRange0.fmt%data.cbRange[0]).rjust(self.limitsLen)) self.boxcbRange1.SetValue((self.boxcbRange0.fmt%data.cbRange[1]).rjust(self.limitsLen)) self.boxeCls.SetValue((self.boxeCls.fmt%data.tCls).rjust(self.filtersLen)) self.boxeStd.SetValue((self.boxeStd.fmt%data.tStd).rjust(self.filtersLen)) self.boxeXpk.SetValue((self.boxeXpk.fmt%data.tXpk).rjust(self.filtersLen)) self.boxeMlt.SetValue((self.boxeMlt.fmt%data.tMlt).rjust(self.filtersLen)) class CtrlPanel(wx.Notebook): """Control Panel I know, it's a notebook Works largely as a container for the Tabs""" def __init__(self, parent,root): wx.Notebook.__init__(self,parent) #parent is gonna be important for this one self.parent = parent self.root = root #these are the tabs self.fileTab = MainTab(self,self.root) self.AddPage(self.fileTab, "Main") self.filtTab = FilterTab(self,self.root) self.AddPage(self.filtTab, "Limits") self.overlayTab= OverlayTab(self,self.root) self.AddPage(self.overlayTab, "Overlay") class PlotPanel(wx.Panel): """Plot Panel Contains the plot and some plotting based functions""" def __init__(self, parent, root): wx.Panel.__init__(self,parent) self.parent = parent self.root = root #important paramenters self.inFileS = None self.data = None #lma self.lma = None self.lmaColor= 'Black' #waveforms self.waveHead= None self.waveData= None self.waveLpf = 5 #waveform low pass filter self.waveColor= 'Black' #self.mskData = None self.face = 'w' self.txtc = 'k' self.color = 'k' self.colorMap= gCmap self.colorOp = 1 self.colorHL = (0,1,0,.25) self.alphaOp = 0 self.sizeOp = 1 self.markerSz= 6 self.marker = 'D' self.cosine = True self.maxA = np.log10(65000) self.minA = np.log10( 700) #qualities self.eCls = 2.25 self.eXpk = 0.3 self.eMlt = .40 self.eStd = 2.0 self._draw_pending = False self._draw_counter = 0 self.tOffset = 0 self.limitsHistory = [] self.SetBackgroundColour(wx.NamedColour("WHITE")) self.figure = Figure(figsize=(8.0,4.0)) self.figure_canvas = FigureCanvas(self, -1, self.figure) # Note that event is a MplEvent self.figure_canvas.mpl_connect('motion_notify_event', self.UpdateStatusBar) #self.figure_canvas.Bind(wx.EVT_ENTER_WINDOW, self.ChangeCursor) #this status bar is actually part of the main frame self.statusBar = wx.StatusBar(self.root, -1) self.statusBar.SetFieldsCount(1) self.root.SetStatusBar(self.statusBar) self.mkPlot() self.sizer = wx.BoxSizer(wx.VERTICAL) self.sizer.Add(self.figure_canvas, 1, wx.LEFT | wx.TOP | wx.EXPAND) self.sizer.Add(self.statusBar, 0, wx.BOTTOM) self.SetSizer(self.sizer) self.Bind(wx.EVT_SIZE,self.OnSize) ### # Makers def mkPlot(self, lims=None): #clear the figure self.figure.clf() self.ax1Coll = None self.ax2Coll = None self.ax3Coll = None self.ax1Lma = None self.ax3Lma = None self.ax3Wave = None #clear the history self.limitsHistory = [ ] #clear the lma and wave data self.lma = None #waveforms self.waveHead= None self.waveData= None #initialize the plot region gs = gridspec.GridSpec(2, 2) #axis #1, the Az-El (or cosa-cosb) plot self.ax1 = self.figure.add_subplot(gs[:,0],axisbg=self.face) self.ax1.yaxis.set_tick_params(labelcolor=self.txtc) self.ax1.yaxis.set_tick_params(color=self.txtc) self.ax1.xaxis.set_tick_params(labelcolor=self.txtc) self.ax1.xaxis.set_tick_params(color=self.txtc) #axis #2, the time-El plot (overview) self.ax2 = self.figure.add_subplot(gs[0,1],axisbg=self.face) self.ax2.yaxis.set_tick_params(labelcolor=self.txtc) self.ax2.yaxis.set_tick_params(color=self.txtc) self.ax2.xaxis.set_tick_params(labelcolor=self.txtc) self.ax2.xaxis.set_tick_params(color=self.txtc) #self.ax2b = self.figure.add_subplot(gs[0,1],sharex=self.ax2, sharey=self.ax2, frameon=False) #axis #3, the time-El plot (Zoom) self.ax3 = self.figure.add_subplot(gs[1,1],axisbg=self.face) self.ax3.yaxis.set_tick_params(labelcolor=self.txtc) self.ax3.yaxis.set_tick_params(color=self.txtc) self.ax3.xaxis.set_tick_params(labelcolor=self.txtc) self.ax3.xaxis.set_tick_params(color=self.txtc) SelectorColor = self.colorHL self.span_ax1 = RectangleSelector(self.ax1, self.OnSelectAx1, minspanx=0.01, minspany=0.01, rectprops=dict(facecolor=self.colorHL, alpha=0.25),useblit=True) self.span_ax2 = SpanSelector(self.ax2, self.OnSelectAx2, 'horizontal',\ rectprops=dict(facecolor=self.colorHL, alpha=0.25),useblit=True,minspan=0.01) self.span_ax3 = SpanSelector(self.ax3, self.OnSelectAx3, 'horizontal',\ rectprops=dict(facecolor=self.colorHL, alpha=0.25),useblit=True,minspan=0.01) ######## # Make the plot if self.data == None: return #initialize all the ranges self.data.reset_limits() self.data.update() self.mkColorMap() print 'Making New Plot' #make the title self.title = self.figure.suptitle( self.data.TriggerTimeS ) #Main Plot if self.cosine: print 'Cosine Projection' theta = np.linspace(0,2*np.pi,1000) X = np.cos(theta) Y = np.sin(theta) self.ax1Coll = self.ax1.scatter( self.data.cosb, self.data.cosa, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor='None' ) self.ax1.plot(X,Y,'k-', linewidth=2) self.ax1.plot(np.cos(30*np.pi/180)*X,np.cos(30*np.pi/180)*Y,'k--', linewidth=2) self.ax1.plot(np.cos(60*np.pi/180)*X,np.cos(60*np.pi/180)*Y,'k--', linewidth=2) self.ax1.set_xlabel('cos($\\alpha$)') self.ax1.set_ylabel('cos($\\beta$)') self.ax1.set_xlim( self.data.cbRange ) self.ax1.set_ylim( self.data.caRange ) self.ax1.set_aspect('equal') else: print 'Az-El Projection' self.ax1Coll = self.ax1.scatter( self.data.azim, self.data.elev, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor='None' ) self.ax1.set_xlim( self.data.azRange ) self.ax1.set_ylim( self.data.elRange ) self.ax1.set_ylabel('Elevation') self.ax1.set_xlabel('Azimuth') self.ax1.set_aspect('auto') #the zoomed plot self.ax3Coll = self.ax3.scatter( self.data.time, self.data.elev, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor='None' ) self.ax3.set_xlim( self.data.tRange ) self.ax3.set_ylim( self.data.elRange ) self.ax3.set_xlabel('Time (ms)') #the overview plot self.ax2.pcolormesh( self.data.rawDataHist[2], self.data.rawDataHist[1], self.data.rawDataHist[0]**.1, edgecolor='None',cmap=cm.binary) self.ax2Coll = self.ax2.scatter( self.data.time, self.data.elev, s=3, marker=self.marker, facecolor=self.colorHL, edgecolor='None' ) #these limits shouldn't change though self.ax2.set_xlim( self.data.tRange ) self.ax2.set_ylim( self.data.elRange ) self.root.ctrlPanel.filtTab.set_values() self.redraw() def mkColorMap(self): """Makes a colormap""" print 'Color:', #most color maps use static sizing if self.data == None: return if self.colorOp == 0: print 'Greyscale' self.data.sort( self.data.time ) #none self.color = np.zeros( (len(self.data.mask),4) ) elif self.colorOp == 1: #time print 'By time' self.data.sort( self.data.time ) c = self.data.time - self.data.time.min() c /= c.max() self.color = self.colorMap( c ) elif self.colorOp == 2: #points print 'by points' self.data.sort( self.data.time ) c = np.arange( len(self.data.mask), dtype='f' ) c /=max(c) self.color = self.colorMap( c ) elif self.colorOp == 3: #amplitude print 'by Amplitude' self.data.sort( self.data.pkpk ) aMin = np.log10( self.data.a05 ) aMax = np.log10( self.data.a95 ) c = np.log10(self.data.pkpk) c = (c-aMin)/(aMax-aMin) c[c>1] = 1 self.color = self.colorMap( c ) self.mkAlpha() def mkSize(self): print 'MarkerSize:', if self.sizeOp == 0: #small print 'small' self.markerSz = 3 elif self.sizeOp == 1: #medium print 'medium' self.markerSz = 6 elif self.sizeOp == 2: #large print 'large' self.markerSz = 12 elif self.sizeOp == 3: #size by amplitude print 'by Amplitude' s = np.log10( self.data.pkpk ) s = (s-self.minA)/(self.maxA-self.minA) s[s>1] = 1 s = (1+3*s**2) self.markerSz = 6*s elif self.sizeOp == 4: #exagerated size by ampltiude print 'exagerated' s = np.log10( self.data.pkpk ) aMin = np.log10(self.data.aMin) aMax = np.log10(self.data.aMax) s = (s-aMin)/(aMax-aMin) s[s>1] = 1 s = (1+3*s**2)**2 self.markerSz = 6*s def mkAlpha(self): print 'Alpha:', if self.alphaOp == 0: #no alpha print 'None' self.color[:,3] = 1 return elif self.alphaOp == 1: #some alpha print '0.2' alphaEx = .2 elif self.alphaOp == 2: #more alpha print '0.4' alphaEx = .4 else: #don't know this option, don't do anything return a = self.data.pkpk.copy() a -= min(a) a /= max(a) self.color[:,3] = a**alphaEx ### #On Catches def OnSelectAx1(self,click, release): xlims = [click.xdata, release.xdata] xlims.sort() ylims = [click.ydata, release.ydata] ylims.sort() if self.cosine: self.SetLimits(caRange=ylims, cbRange=xlims) else: self.SetLimits(elRange=ylims, azRange=xlims) #update the plots self.UpdatePlot() def OnSelectAx2(self,xmin,xmax): self.figure_canvas.draw() if self.data == None: return self.SetLimits(tRange=[xmin,xmax]) #update the mask and plot self.UpdatePlot() def OnSelectAx3(self,xmin,xmax): #mask the data array if self.data == None: return self.SetLimits(tRange=[xmin,xmax]) #update the mask and plot self.UpdatePlot() def OnSize(self,e): if self.GetAutoLayout(): self.Layout() left = 60 right = 30 top = 30 bottom = 40 wspace = 100 dpi = self.figure.dpi h = self.figure.get_figheight()*dpi w = self.figure.get_figwidth()*dpi #figure out the margins self.figure.subplots_adjust(left=left/w, right=1-right/w, bottom=bottom/h, top=1-top/h, wspace=wspace/w) self.redraw() ### #Updaters def UpdateStatusBar(self, event): if event.inaxes: x, y = event.xdata, event.ydata self.statusBar.SetStatusText(( "x= " + str(x) + " y=" +str(y) ), 0) #~ def UpdateMask(self): #~ if self.data == None: #~ return #~ #~ self.data.mask = np.where( #~ (self.data.time>=self.tRange[ 0])&(self.data.time<=self.tRange[ 1])& #~ (self.data.azim>=self.azRange[0])&(self.data.azim<=self.azRange[1])& #~ (self.data.elev>=self.elRange[0])&(self.data.elev<=self.elRange[1])& #~ (self.data.cosa>=self.caRange[0])&(self.data.cosa<=self.caRange[1])& #~ (self.data.cosb>=self.cbRange[0])&(self.data.cosb<=self.cbRange[1]) )[0] def OffsetLimits(self,offset): """OffsetLimits(self,offset) this comes up because sometimes you want the time from the second, and sometimes you want the time from the trigger. This takes care of updating the time limits history so that things refer to the same section of the flash """ for i in range(len(self.limitsHistory)): if not 'tRange' in self.limitsHistory[i]: #can this even happen? continue self.limitsHistory[i]['tRange'][0] += offset - self.tOffset self.limitsHistory[i]['tRange'][1] += offset - self.tOffset #update the waveform if self.waveData != None: self.waveData[0,:] += offset - self.tOffset self.tOffset = offset def GetLimits(self): if self.data == None: #no nothing return #the limits get stored in a dictionary lims = {} lims['caRange'] = self.data.caRange lims['cbRange'] = self.data.cbRange lims['elRange'] = self.data.elRange lims['azRange'] = self.data.azRange lims['tRange'] = self.data.tRange return lims def SetLimits(self, caRange=None, cbRange=None, elRange=None, azRange=None, tRange=None, save=True ): if self.data == None: #Do Nothing return #append the old limits to the history if self.limitsHistory != None and save: self.limitsHistory.append(self.GetLimits()) #the limits that aren't passed aren't changed, #get them from the data and store in history lims = {} if caRange != None: self.data.caRange=caRange if cbRange != None: self.data.cbRange=cbRange if elRange != None: self.data.elRange=elRange if azRange != None: self.data.azRange=azRange if tRange != None: self.data.tRange=tRange def UpdatePlot(self, update_overview=False): """redraws the main axis if update_overview=True, also redraws the upper righthand plot""" if self.data == None: return self.data.limits() self.data.update() self.mkColorMap() self.mkSize() #Main plot (remake) if self.ax1Coll != None: self.ax1Coll.remove() if self.ax1Lma != None: self.ax1Lma.remove() if self.cosine: print 'Cosine Projection' self.ax1Coll = self.ax1.scatter( self.data.cosb, self.data.cosa, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor='None' ) if self.lma != None: self.ax1Lma = self.ax1.scatter( self.lma.cosb, self.lma.cosa, s=6, marker=self.marker, facecolor=self.lmaColor, edgecolor='None' ) self.ax1.set_ylabel('cosa') self.ax1.set_xlabel('cosb') self.ax1.set_ylim( self.data.caRange ) self.ax1.set_xlim( self.data.cbRange ) self.ax1.set_aspect('equal') else: print 'Az-El Projection' self.ax1Coll = self.ax1.scatter( self.data.azim, self.data.elev, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor='None' ) if self.lma != None: self.ax1Lma = self.ax1.scatter( self.lma.azim, self.lma.elev, s=6, marker=self.marker, facecolor=self.lmaColor, edgecolor='None' ) self.ax1.set_xlim( self.data.azRange ) self.ax1.set_ylim( self.data.elRange ) self.ax1.set_ylabel('Elevation') self.ax1.set_xlabel('Azimuth') self.ax1.set_aspect('auto') #Zoom plot (remake) if self.ax3Coll != None: self.ax3Coll.remove() if self.ax3Lma != None: self.ax3Lma.remove() if self.ax3Wave != None: self.ax3Wave.remove() #plot waveforms? if self.waveHead != None: #this starts with a complicated conditional to determine if #we need to reload the waveform. this should be avoided, as #it takes a while, especially for longer durations if self.waveData == None: self.readWave() elif ( self.waveData[0,0] - self.data.tRange[0] < 0.1 ) and \ ( self.waveData[0,-1]- self.data.tRange[1] > -0.1 ) and \ ( self.waveData[0,-1]-self.waveData[0,0] < 1.5*(self.data.tRange[1]-self.data.tRange[0])): #we don't need to read the data pass else: print self.waveData[0,0], self.data.tRange[0], self.waveData[0,0] - self.data.tRange[0] < 0.1 print self.waveData[0,-1], self.data.tRange[1],self.waveData[0,-1]- self.data.tRange[1] > -0.1 print self.waveData[0,-1]-self.waveData[0,0], 1.5*(self.data.tRange[1]-self.data.tRange[0]), ( self.waveData[0,-1]-self.waveData[0,0] < 1.5*(self.data.tRange[1]-self.data.tRange[0])) self.readWave() #plot the data self.ax3Wave, = self.ax3.plot( self.waveData[0,:], self.waveData[1,:], self.waveColor, zorder=-10 ) #Scatter INTF self.ax3Coll = self.ax3.scatter( self.data.time, self.data.elev, s=self.markerSz, marker=self.marker, facecolor=self.color, edgecolor=(1,1,1,0) ) #plot LMA? if self.lma != None: self.ax3Lma = self.ax3.scatter( self.lma.time, self.lma.elev, s = 6, marker = self.marker, facecolor=self.lmaColor, edgecolor='None' ) self.ax3.set_xlim( self.data.tRange ) self.ax3.set_ylim( self.data.elRange ) self.ax3.set_xlabel('Time (ms)') #overview plot #Remake current stuff only if self.ax2Coll != None: self.ax2Coll.remove() if update_overview: #the overview plot likely just moved to a new location #reset the limits self.ax2.set_xlim( self.data.tStart+self.data.tOffset, self.data.tStop+ self.data.tOffset ) self.ax2.pcolormesh( self.data.rawDataHist[2], self.data.rawDataHist[1], self.data.rawDataHist[0]**.1, edgecolor='None',cmap=cm.binary) self.ax2Coll = self.ax2.scatter( self.data.time, self.data.elev, s=3, marker=self.marker, facecolor=self.colorHL, edgecolor='None' ) print "redrawing figure" self.root.ctrlPanel.filtTab.set_values() self.redraw() def readWave(self): #get the start sample, surprisingly difficult this #t = (iMax-Settings.preTriggerSamples)/1000./Settings.sampleRate #t*sRage*1000+preTrig = iMax sRate = self.data.header.SampleRate pSamp = self.data.header.PreTriggerSamples sSam = int( (self.data.tRange[0]-self.data.tOffset)*sRate/1000+pSamp ) #get the number of samples, not so hard numSam = int( (self.data.tRange[1]-self.data.tRange[0])/1000.*sRate ) #read in wave data and plot it under self.waveData = it.read_raw_waveform_file_data( self.root.waveFileS, self.waveHead, sSam, numSam, lpf=self.waveLpf ) #normalize the wavedata self.waveData[1,:] -= min( self.waveData[1,:] ) self.waveData[1,:] /= max( self.waveData[1,:] ) self.waveData[1,:] *= self.data.elRange[1]-self.data.elRange[0] self.waveData[1,:] += self.data.elRange[0] self.waveData[0,:] += self.data.tOffset def redraw(self): if self._draw_pending: self._draw_counter += 1 return def _draw(): self.figure_canvas.draw() self._draw_pending = False if self._draw_counter > 0: self._draw_counter = 0 self.redraw() wx.CallLater(40, _draw).Start() self._draw_pending = True class MainFrame(wx.Frame): """Main Frame All the things are stored in this""" def __init__(self, ): wx.Frame.__init__(self,None,-1, 'INTF Plot',size=(550,350)) #the only paramenters stored in the frame are about the file self.inFileS = None self.waveFileS = None self.lmaFileS = None self.lmaFile = None #these are the main 2 panels self.plotPanel = PlotPanel(self,self) #self is the parent and root self.ctrlPanel = CtrlPanel(self,self) sizer = wx.BoxSizer(wx.HORIZONTAL) sizer.Add(self.plotPanel,1,wx.LEFT | wx.GROW) sizer.Add(self.ctrlPanel,0,wx.RIGHT) self.SetSizer(sizer) self.Fit() def OpenFile(self,inFileS): print 'reading data',inFileS self.inFileS = inFileS self.lmaFileS = None self.waveFileS = None self.plotPanel.waveHead = None self.plotPanel.waveData = None self.plotPanel.data = it.read_data_file(inFileS) if self.ctrlPanel.fileTab.chkTime.GetValue(): print 't_offset', self.plotPanel.data.time_from_second() print 'making plot' self.plotPanel.mkPlot() #self.plotPanel.UpdatePlot() def OpenLma(self,inFileS): self.lmaFile = inFileS self.plotPanel.lma = it.LmaData(inFileS) self.plotPanel.UpdatePlot() def OpenWave(self,inFileS): self.waveFileS = inFileS self.plotPanel.waveData = None try: self.plotPanel.waveHead = it.RawHeader(inFileS) except: self.plotPanel.waveHead = None self.plotPanel.UpdatePlot() class App(wx.App): def OnInit(self): 'Create the main window and insert the custom frame' frame = MainFrame() self.SetTopWindow(frame) frame.Show(True) return True if __name__=='__main__': app = App(0) app.MainLoop()
gpl-2.0
dchad/malware-detection
vs/generate_elf_header_tokens.py
1
4984
# generate-elf-header-tokens.py # # Parse a bunch of ELF Header dump files generated by objdump and # extract keywords such section names, import libs and functions. # These tokens will be used for feature extraction from the # ELF headers. # # Inputs : list of ELF Header files. # Temp file name for token counts. # File name for combined token counts. # # Outputs: elf-header-tokens.txt # elf-header-token-counts.csv # row format = [token_name, count] # # Author: Derek Chadwick # Date : 17/09/2016 import os from csv import writer import numpy as np import pandas as pd import re elf_header_names = ['Magic:','Class:','Data:','Version:','OS/ABI:','ABI Version:','Type:','Machine:','Version:', 'Entry point address:','Start of program headers:','Start of section headers:','Flags:', 'Size of this header:','Size of program headers:','Number of program headers:', 'Size of section headers:','Number of section headers:','Section header string table index:'] def save_token_counts(token_counter_map, out_file_name): # Output the PE Header token counts. pid = os.getpid() out_file = "data/" + str(pid) + "-" + out_file_name fop = open(out_file, 'w') csv_wouter = writer(fop) outlines = [] sorted_keys = token_counter_map.keys() sorted_keys.sort() counter = 0 for key in sorted_keys: outlines.append([key, token_counter_map[key]]) counter += 1 if (counter % 100) == 0: # write out some lines csv_wouter.writerows(outlines) outlines = [] print("Processed token {:s} -> {:d}.".format(key, token_counter_map[key])) # Finish off. if (len(outlines) > 0): csv_wouter.writerows(outlines) outlines = [] print("Completed writing {:d} tokens.".format(len(sorted_keys))) fop.close() return def get_token_count_map(token_df): # Read in the token count file and create a dict. token_dict = {} type_y = np.array(token_df['token_name']) for idx in range(token_df.shape[0]): # First fill the dict with the token counts token_dict[token_df.iloc[idx,0]] = token_df.iloc[idx,1] return token_dict def generate_elf_tokens(mp_params): # Parse a bunch of ELF headers dumped by objdump and extract # section names and other useful information. file_list = mp_params.file_list out_count_file = mp_params.count_file psections = re.compile('\s+\[\d{1,2}\]\s+(\.\w+|\w+)\s+') # Pattern for section names. pfunctions = re.compile('\s+\w+\s+\d{1,4}\s+(.+)\s*') # Pattern for import function names. token_counter_map = {} counter = 0 pid = os.getpid() for idx, fname in enumerate(file_list): fip = open(fname, 'r') in_lines = fip.readlines() counter += 1 for line in in_lines: line = line.rstrip() # get rid of newlines they are annoying. token_val = "" m = psections.match(line) if m != None: token_val = m.group(1) #print("Section: {:s}".format(token_val)) else: m = pfunctions.match(line) if m != None: token_val = m.group(1) else: continue # Clean the token name, the function name regex is picking up random crap. idx = token_val.find('\t') if idx > 0: token_val = token_val[0:idx] # Count the token type. if token_val in token_counter_map.keys(): token_counter_map[token_val] += 1 else: token_counter_map[token_val] = 1 if (counter % 1000) == 0: print("{:d} Processed {:d} header files.".format(pid, counter)) fip.close() save_token_counts(token_counter_map, out_count_file) return class Multi_Params(object): def __init__(self, tokenfile="", countfile="", filelist=[]): self.token_file = tokenfile self.count_file = countfile self.file_list = filelist # Start of script. #TODO: parse command line options for input/output file names. #token_file = 'elf-header-tokens-vs263.csv' #count_file = 'elf-header-token-counts-vs263.csv' #ext_drive = '/opt/vs/train3hdr/' token_file = 'elf-header-tokens-vs264.txt' count_file = 'elf-header-token-counts-vs264.csv' #ext_drive = '/opt/vs/train4hdr/' ext_drive = '/home/derek/project/temp/' file_list = os.listdir(ext_drive) tfiles = [] for fname in file_list: fname = fname.rstrip() if fname.endswith('.elf.txt'): tfiles.append(ext_drive + fname) print("Files: {:d}".format(len(tfiles))) mp1 = Multi_Params(token_file, count_file, tfiles) generate_elf_tokens(mp1) # End of Script.
gpl-3.0
yavalvas/yav_com
build/matplotlib/lib/matplotlib/tests/test_compare_images.py
15
3854
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import shutil from nose.tools import assert_equal, assert_not_equal, assert_almost_equal from matplotlib.testing.compare import compare_images from matplotlib.testing.decorators import _image_directories baseline_dir, result_dir = _image_directories(lambda: 'dummy func') # Tests of the image comparison algorithm. def image_comparison_expect_rms(im1, im2, tol, expect_rms): """Compare two images, expecting a particular RMS error. im1 and im2 are filenames relative to the baseline_dir directory. tol is the tolerance to pass to compare_images. expect_rms is the expected RMS value, or None. If None, the test will succeed if compare_images succeeds. Otherwise, the test will succeed if compare_images fails and returns an RMS error almost equal to this value. """ im1 = os.path.join(baseline_dir, im1) im2_src = os.path.join(baseline_dir, im2) im2 = os.path.join(result_dir, im2) # Move im2 from baseline_dir to result_dir. This will ensure that # compare_images writes the diff file to result_dir, instead of trying to # write to the (possibly read-only) baseline_dir. shutil.copyfile(im2_src, im2) results = compare_images(im1, im2, tol=tol, in_decorator=True) if expect_rms is None: assert_equal(None, results) else: assert_not_equal(None, results) assert_almost_equal(expect_rms, results['rms'], places=4) def test_image_compare_basic(): #: Test comparison of an image and the same image with minor differences. # This expects the images to compare equal under normal tolerance, and have # a small RMS. im1 = 'basn3p02.png' im2 = 'basn3p02-minorchange.png' image_comparison_expect_rms(im1, im2, tol=10, expect_rms=None) # Now test with no tolerance. image_comparison_expect_rms(im1, im2, tol=0, expect_rms=6.50646) def test_image_compare_1px_offset(): #: Test comparison with an image that is shifted by 1px in the X axis. im1 = 'basn3p02.png' im2 = 'basn3p02-1px-offset.png' image_comparison_expect_rms(im1, im2, tol=0, expect_rms=90.15611) def test_image_compare_half_1px_offset(): #: Test comparison with an image with half the pixels shifted by 1px in #: the X axis. im1 = 'basn3p02.png' im2 = 'basn3p02-half-1px-offset.png' image_comparison_expect_rms(im1, im2, tol=0, expect_rms=63.75) def test_image_compare_scrambled(): #: Test comparison of an image and the same image scrambled. # This expects the images to compare completely different, with a very # large RMS. # Note: The image has been scrambled in a specific way, by having each # color component of each pixel randomly placed somewhere in the image. It # contains exactly the same number of pixels of each color value of R, G # and B, but in a totally different position. im1 = 'basn3p02.png' im2 = 'basn3p02-scrambled.png' # Test with no tolerance to make sure that we pick up even a very small RMS # error. image_comparison_expect_rms(im1, im2, tol=0, expect_rms=172.63582) def test_image_compare_shade_difference(): #: Test comparison of an image and a slightly brighter image. # The two images are solid color, with the second image being exactly 1 # color value brighter. # This expects the images to compare equal under normal tolerance, and have # an RMS of exactly 1. im1 = 'all127.png' im2 = 'all128.png' image_comparison_expect_rms(im1, im2, tol=0, expect_rms=1.0) # Now test the reverse comparison. image_comparison_expect_rms(im2, im1, tol=0, expect_rms=1.0) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
jaidevd/scikit-learn
examples/plot_compare_reduction.py
19
2489
#!/usr/bin/python # -*- coding: utf-8 -*- """ ================================================================= Selecting dimensionality reduction with Pipeline and GridSearchCV ================================================================= This example constructs a pipeline that does dimensionality reduction followed by prediction with a support vector classifier. It demonstrates the use of GridSearchCV and Pipeline to optimize over different classes of estimators in a single CV run -- unsupervised PCA and NMF dimensionality reductions are compared to univariate feature selection during the grid search. """ # Authors: Robert McGibbon, Joel Nothman from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.decomposition import PCA, NMF from sklearn.feature_selection import SelectKBest, chi2 print(__doc__) pipe = Pipeline([ ('reduce_dim', PCA()), ('classify', LinearSVC()) ]) N_FEATURES_OPTIONS = [2, 4, 8] C_OPTIONS = [1, 10, 100, 1000] param_grid = [ { 'reduce_dim': [PCA(iterated_power=7), NMF()], 'reduce_dim__n_components': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, { 'reduce_dim': [SelectKBest(chi2)], 'reduce_dim__k': N_FEATURES_OPTIONS, 'classify__C': C_OPTIONS }, ] reducer_labels = ['PCA', 'NMF', 'KBest(chi2)'] grid = GridSearchCV(pipe, cv=3, n_jobs=2, param_grid=param_grid) digits = load_digits() grid.fit(digits.data, digits.target) mean_scores = np.array(grid.cv_results_['mean_test_score']) # scores are in the order of param_grid iteration, which is alphabetical mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS)) # select score for best C mean_scores = mean_scores.max(axis=0) bar_offsets = (np.arange(len(N_FEATURES_OPTIONS)) * (len(reducer_labels) + 1) + .5) plt.figure() COLORS = 'bgrcmyk' for i, (label, reducer_scores) in enumerate(zip(reducer_labels, mean_scores)): plt.bar(bar_offsets + i, reducer_scores, label=label, color=COLORS[i]) plt.title("Comparing feature reduction techniques") plt.xlabel('Reduced number of features') plt.xticks(bar_offsets + len(reducer_labels) / 2, N_FEATURES_OPTIONS) plt.ylabel('Digit classification accuracy') plt.ylim((0, 1)) plt.legend(loc='upper left') plt.show()
bsd-3-clause
Reagankm/KnockKnock
venv/lib/python3.4/site-packages/matplotlib/testing/jpl_units/EpochConverter.py
23
5479
#=========================================================================== # # EpochConverter # #=========================================================================== """EpochConverter module containing class EpochConverter.""" #=========================================================================== # Place all imports after here. # from __future__ import (absolute_import, division, print_function, unicode_literals) import six import matplotlib.units as units import matplotlib.dates as date_ticker from matplotlib.cbook import iterable # # Place all imports before here. #=========================================================================== __all__ = [ 'EpochConverter' ] #=========================================================================== class EpochConverter( units.ConversionInterface ): """: A matplotlib converter class. Provides matplotlib conversion functionality for Monte Epoch and Duration classes. """ # julian date reference for "Jan 1, 0001" minus 1 day because # matplotlib really wants "Jan 0, 0001" jdRef = 1721425.5 - 1 #------------------------------------------------------------------------ @staticmethod def axisinfo( unit, axis ): """: Returns information on how to handle an axis that has Epoch data. = INPUT VARIABLES - unit The units to use for a axis with Epoch data. = RETURN VALUE - Returns a matplotlib AxisInfo data structure that contains minor/major formatters, major/minor locators, and default label information. """ majloc = date_ticker.AutoDateLocator() majfmt = date_ticker.AutoDateFormatter( majloc ) return units.AxisInfo( majloc = majloc, majfmt = majfmt, label = unit ) #------------------------------------------------------------------------ @staticmethod def float2epoch( value, unit ): """: Convert a matplotlib floating-point date into an Epoch of the specified units. = INPUT VARIABLES - value The matplotlib floating-point date. - unit The unit system to use for the Epoch. = RETURN VALUE - Returns the value converted to an Epoch in the sepcified time system. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U secPastRef = value * 86400.0 * U.UnitDbl( 1.0, 'sec' ) return U.Epoch( unit, secPastRef, EpochConverter.jdRef ) #------------------------------------------------------------------------ @staticmethod def epoch2float( value, unit ): """: Convert an Epoch value to a float suitible for plotting as a python datetime object. = INPUT VARIABLES - value An Epoch or list of Epochs that need to be converted. - unit The units to use for an axis with Epoch data. = RETURN VALUE - Returns the value parameter converted to floats. """ return value.julianDate( unit ) - EpochConverter.jdRef #------------------------------------------------------------------------ @staticmethod def duration2float( value ): """: Convert a Duration value to a float suitible for plotting as a python datetime object. = INPUT VARIABLES - value A Duration or list of Durations that need to be converted. = RETURN VALUE - Returns the value parameter converted to floats. """ return value.days() #------------------------------------------------------------------------ @staticmethod def convert( value, unit, axis ): """: Convert value using unit to a float. If value is a sequence, return the converted sequence. = INPUT VARIABLES - value The value or list of values that need to be converted. - unit The units to use for an axis with Epoch data. = RETURN VALUE - Returns the value parameter converted to floats. """ # Delay-load due to circular dependencies. import matplotlib.testing.jpl_units as U isNotEpoch = True isDuration = False if ( iterable(value) and not isinstance(value, six.string_types) ): if ( len(value) == 0 ): return [] else: return [ EpochConverter.convert( x, unit, axis ) for x in value ] if ( isinstance(value, U.Epoch) ): isNotEpoch = False elif ( isinstance(value, U.Duration) ): isDuration = True if ( isNotEpoch and not isDuration and units.ConversionInterface.is_numlike( value ) ): return value if ( unit == None ): unit = EpochConverter.default_units( value, axis ) if ( isDuration ): return EpochConverter.duration2float( value ) else: return EpochConverter.epoch2float( value, unit ) #------------------------------------------------------------------------ @staticmethod def default_units( value, axis ): """: Return the default unit for value, or None. = INPUT VARIABLES - value The value or list of values that need units. = RETURN VALUE - Returns the default units to use for value. """ frame = None if ( iterable(value) and not isinstance(value, six.string_types) ): return EpochConverter.default_units( value[0], axis ) else: frame = value.frame() return frame
gpl-2.0
larroy/mxnet
example/kaggle-ndsb1/gen_img_list.py
10
6986
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import csv import os import random import numpy as np import argparse parser = argparse.ArgumentParser(description='generate train/test image list files form input directory. If training it will also split into tr and va sets.') parser.add_argument('--image-folder', type=str, default="data/train/", help='the input data directory') parser.add_argument('--out-folder', type=str, default="data/", help='the output folder') parser.add_argument('--out-file', type=str, default="train.lst", help='the output lst file') parser.add_argument('--train', action='store_true', help='if we are generating training list and hence we have to loop over subdirectories') ## These options are only used if we are doing training lst parser.add_argument('--percent-val', type=float, default=0.25, help='the percentage of training list to use as validation') parser.add_argument('--stratified', action='store_true', help='if True it will split train lst into tr and va sets using stratified sampling') args = parser.parse_args() random.seed(888) fo_name=os.path.join(args.out_folder+args.out_file) fo = csv.writer(open(fo_name, "w"), delimiter='\t', lineterminator='\n') if args.train: tr_fo_name=os.path.join(args.out_folder+"tr.lst") va_fo_name=os.path.join(args.out_folder+"va.lst") tr_fo = csv.writer(open(tr_fo_name, "w"), delimiter='\t', lineterminator='\n') va_fo = csv.writer(open(va_fo_name, "w"), delimiter='\t', lineterminator='\n') #check sampleSubmission.csv from kaggle website to view submission format head = "acantharia_protist_big_center,acantharia_protist_halo,acantharia_protist,amphipods,appendicularian_fritillaridae,appendicularian_s_shape,appendicularian_slight_curve,appendicularian_straight,artifacts_edge,artifacts,chaetognath_non_sagitta,chaetognath_other,chaetognath_sagitta,chordate_type1,copepod_calanoid_eggs,copepod_calanoid_eucalanus,copepod_calanoid_flatheads,copepod_calanoid_frillyAntennae,copepod_calanoid_large_side_antennatucked,copepod_calanoid_large,copepod_calanoid_octomoms,copepod_calanoid_small_longantennae,copepod_calanoid,copepod_cyclopoid_copilia,copepod_cyclopoid_oithona_eggs,copepod_cyclopoid_oithona,copepod_other,crustacean_other,ctenophore_cestid,ctenophore_cydippid_no_tentacles,ctenophore_cydippid_tentacles,ctenophore_lobate,decapods,detritus_blob,detritus_filamentous,detritus_other,diatom_chain_string,diatom_chain_tube,echinoderm_larva_pluteus_brittlestar,echinoderm_larva_pluteus_early,echinoderm_larva_pluteus_typeC,echinoderm_larva_pluteus_urchin,echinoderm_larva_seastar_bipinnaria,echinoderm_larva_seastar_brachiolaria,echinoderm_seacucumber_auricularia_larva,echinopluteus,ephyra,euphausiids_young,euphausiids,fecal_pellet,fish_larvae_deep_body,fish_larvae_leptocephali,fish_larvae_medium_body,fish_larvae_myctophids,fish_larvae_thin_body,fish_larvae_very_thin_body,heteropod,hydromedusae_aglaura,hydromedusae_bell_and_tentacles,hydromedusae_h15,hydromedusae_haliscera_small_sideview,hydromedusae_haliscera,hydromedusae_liriope,hydromedusae_narco_dark,hydromedusae_narco_young,hydromedusae_narcomedusae,hydromedusae_other,hydromedusae_partial_dark,hydromedusae_shapeA_sideview_small,hydromedusae_shapeA,hydromedusae_shapeB,hydromedusae_sideview_big,hydromedusae_solmaris,hydromedusae_solmundella,hydromedusae_typeD_bell_and_tentacles,hydromedusae_typeD,hydromedusae_typeE,hydromedusae_typeF,invertebrate_larvae_other_A,invertebrate_larvae_other_B,jellies_tentacles,polychaete,protist_dark_center,protist_fuzzy_olive,protist_noctiluca,protist_other,protist_star,pteropod_butterfly,pteropod_theco_dev_seq,pteropod_triangle,radiolarian_chain,radiolarian_colony,shrimp_caridean,shrimp_sergestidae,shrimp_zoea,shrimp-like_other,siphonophore_calycophoran_abylidae,siphonophore_calycophoran_rocketship_adult,siphonophore_calycophoran_rocketship_young,siphonophore_calycophoran_sphaeronectes_stem,siphonophore_calycophoran_sphaeronectes_young,siphonophore_calycophoran_sphaeronectes,siphonophore_other_parts,siphonophore_partial,siphonophore_physonect_young,siphonophore_physonect,stomatopod,tornaria_acorn_worm_larvae,trichodesmium_bowtie,trichodesmium_multiple,trichodesmium_puff,trichodesmium_tuft,trochophore_larvae,tunicate_doliolid_nurse,tunicate_doliolid,tunicate_partial,tunicate_salp_chains,tunicate_salp,unknown_blobs_and_smudges,unknown_sticks,unknown_unclassified".split(',') # make image list img_lst = [] cnt = 0 if args.train: for i in range(len(head)): path = args.image_folder + head[i] lst = os.listdir(args.image_folder + head[i]) for img in lst: img_lst.append((cnt, i, path + '/' + img)) cnt += 1 else: lst = os.listdir(args.image_folder) for img in lst: img_lst.append((cnt, 0, args.image_folder + img)) cnt += 1 # shuffle random.shuffle(img_lst) #write for item in img_lst: fo.writerow(item) ## If training, split into train and validation lists (tr.lst and va.lst) ## Optional stratified sampling if args.train: img_lst=np.array(img_lst) if args.stratified: from sklearn.cross_validation import StratifiedShuffleSplit ## Stratified sampling to generate train and validation sets labels_train=img_lst[:,1] # unique_train, counts_train = np.unique(labels_train, return_counts=True) # To have a look at the frecuency distribution sss = StratifiedShuffleSplit(labels_train, 1, test_size=args.percent_val, random_state=0) for tr_idx, va_idx in sss: print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") else: (nRows, nCols) = img_lst.shape splitat=int(round(nRows*(1-args.percent_val),0)) tr_idx=range(0,splitat) va_idx=range(splitat,nRows) print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") tr_lst=img_lst[tr_idx,:].tolist() va_lst=img_lst[va_idx,:].tolist() for item in tr_lst: tr_fo.writerow(item) for item in va_lst: va_fo.writerow(item)
apache-2.0
RondaStrauch/landlab
landlab/components/potentiality_flowrouting/examples/test_script_fr.py
6
5520
# -*- coding: utf-8 -*- """ A script of VV's potentiality flow routing method. Created on Fri Feb 20 13:45:52 2015 @author: danhobley """ from __future__ import print_function from six.moves import range #from landlab import RasterModelGrid #from landlab.plot.imshow import imshow_node_grid import numpy as np from pylab import imshow, show, contour, figure, clabel from matplotlib.ticker import MaxNLocator sqrt = np.sqrt n = 50 #mg = RasterModelGrid(n, n, 1.) nt = 20000 width = 1. p_thresh = 0.000001 core = (slice(1,-1),slice(1,-1)) timp=np.zeros((nt, 2), dtype=int) dtwidth = 0.2 hR = np.zeros((n+2,n+2), dtype=float) pR=np.zeros_like(hR) p=pR.view().ravel() qsourceR=np.zeros_like(hR) qsource=qsourceR[core].view().ravel() qspR=np.zeros_like(hR) qsp = qspR[core].view().ravel() qsourceR[core][0,-1]=.9*sqrt(2.)*.33 qsourceR[core][0,0]=.9*sqrt(2.) qsourceR[core][n-1,n//2-1]=1 qspR[core][0,-1]=sqrt(2) qspR[core][0,0]=sqrt(2) qspR[core][n-1,n//2-1]=1 slope=0.1 hgradEx = np.zeros_like(hR) hgradWx = np.zeros_like(hR) hgradNx = np.zeros_like(hR) hgradSx = np.zeros_like(hR) pgradEx = np.zeros_like(hR) pgradWx = np.zeros_like(hR) pgradNx = np.zeros_like(hR) pgradSx = np.zeros_like(hR) hgradEy = np.zeros_like(hR) hgradWy = np.zeros_like(hR) hgradNy = np.zeros_like(hR) hgradSy = np.zeros_like(hR) pgradEy = np.zeros_like(hR) pgradWy = np.zeros_like(hR) pgradNy = np.zeros_like(hR) pgradSy = np.zeros_like(hR) CslopeE = np.zeros_like(hR) CslopeW = np.zeros_like(hR) CslopeN = np.zeros_like(hR) CslopeS = np.zeros_like(hR) thetaE = np.zeros_like(hR) thetaW = np.zeros_like(hR) thetaN = np.zeros_like(hR) thetaS = np.zeros_like(hR) vE = np.zeros_like(hR) vW = np.zeros_like(hR) vN = np.zeros_like(hR) vS = np.zeros_like(hR) #set up slice offsets: Es = (slice(1,-1),slice(2,n+2)) NEs = (slice(2,n+2),slice(2,n+2)) Ns = (slice(2,n+2),slice(1,-1)) NWs = (slice(2,n+2),slice(0,-2)) Ws = (slice(1,-1),slice(0,-2)) SWs = (slice(0,-2),slice(0,-2)) Ss = (slice(0,-2),slice(1,-1)) SEs = (slice(0,-2),slice(2,n+2)) for i in range(nt): if i%100==0: print(i) qE = np.zeros_like(hR) qW = np.zeros_like(hR) qN = np.zeros_like(hR) qS = np.zeros_like(hR) #update the dummy edges of our variables: hR[0,1:-1] = hR[1,1:-1] hR[-1,1:-1] = hR[-2,1:-1] hR[1:-1,0] = hR[1:-1,1] hR[1:-1,-1] = hR[1:-1,-2] pR[0,1:-1] = pR[1,1:-1] pR[-1,1:-1] = pR[-2,1:-1] pR[1:-1,0] = pR[1:-1,1] pR[1:-1,-1] = pR[1:-1,-2] hgradEx[core] = (hR[core]-hR[Es])#/width hgradEy[core] = hR[SEs]-hR[NEs]+hR[Ss]-hR[Ns] hgradEy[core] *= 0.25 CslopeE[core] = sqrt(np.square(hgradEx[core])+np.square(hgradEy[core])) thetaE[core] = np.arctan(np.fabs(hgradEy[core])/(np.fabs(hgradEx[core])+1.e-10)) pgradEx[core] = (pR[core]-pR[Es])#/width pgradEy[core] = pR[SEs]-pR[NEs]+pR[Ss]-pR[Ns] pgradEy[core] *= 0.25 vE[core] = sqrt(np.square(pgradEx[core])+np.square(pgradEy[core])) qE[core] = np.sign(hgradEx[core])*vE[core]*(CslopeE[core]-slope).clip(0.)*np.cos(thetaE[core]) ###the clip should deal with the eastern edge, but return here to check if probs hgradWx[core] = (hR[Ws]-hR[core])#/width hgradWy[core] = hR[SWs]-hR[NWs]+hR[Ss]-hR[Ns] hgradWy[core] *= 0.25 CslopeW[core] = sqrt(np.square(hgradWx[core])+np.square(hgradWy[core])) thetaW[core] = np.arctan(np.fabs(hgradWy[core])/(np.fabs(hgradWx[core])+1.e-10)) pgradWx[core] = (pR[Ws]-pR[core])#/width pgradWy[core] = pR[SWs]-pR[NWs]+pR[Ss]-pR[Ns] pgradWy[core] *= 0.25 vW[core] = sqrt(np.square(pgradWx[core])+np.square(pgradWy[core])) qW[core] = np.sign(hgradWx[core])*vW[core]*(CslopeW[core]-slope).clip(0.)*np.cos(thetaW[core]) hgradNx[core] = hR[NWs]-hR[NEs]+hR[Ws]-hR[Es] hgradNx[core] *= 0.25 hgradNy[core] = (hR[core]-hR[Ns])#/width CslopeN[core] = sqrt(np.square(hgradNx[core])+np.square(hgradNy[core])) thetaN[core] = np.arctan(np.fabs(hgradNy[core])/(np.fabs(hgradNx[core])+1.e-10)) pgradNx[core] = pR[NWs]-pR[NEs]+pR[Ws]-pR[Es] pgradNx[core] *= 0.25 pgradNy[core] = (pR[core]-pR[Ns])#/width vN[core] = sqrt(np.square(pgradNx[core])+np.square(pgradNy[core])) qN[core] = np.sign(hgradNy[core])*vN[core]*(CslopeN[core]-slope).clip(0.)*np.sin(thetaN[core]) hgradSx[core] = hR[SWs]-hR[SEs]+hR[Ws]-hR[Es] hgradSx[core] *= 0.25 hgradSy[core] = (hR[Ss]-hR[core])#/width CslopeS[core] = sqrt(np.square(hgradSx[core])+np.square(hgradSy[core])) thetaS[core] = np.arctan(np.fabs(hgradSy[core])/(np.fabs(hgradSx[core])+1.e-10)) pgradSx[core] = pR[SWs]-pR[SEs]+pR[Ws]-pR[Es] pgradSx[core] *= 0.25 pgradSy[core] = (pR[Ss]-pR[core])#/width vS[core] = sqrt(np.square(pgradSx[core])+np.square(pgradSy[core])) qS[core] = np.sign(hgradSy[core])*vS[core]*(CslopeS[core]-slope).clip(0.)*np.sin(thetaS[core]) hR[core] += dtwidth*(qS[core]+qW[core]-qN[core]-qE[core]+qsourceR[core]) #while 1: #mask for which core nodes get updated: mask = (hR[core]<p_thresh) for j in range(100): pR[core] = pR[Ns]+pR[Ss]+pR[Es]+pR[Ws]+qspR[core] pR[core] *= 0.25 pR[core][mask] = 0. X,Y = np.meshgrid(np.arange(n),np.arange(n)) #imshow_node_grid(mg, h) figure(1) f1 = imshow(hR[core]) figure(2) f2 = contour(X,Y,hR[core], locator=MaxNLocator(nbins=100)) clabel(f2) figure(3) f3 = contour(X,Y,pR[core], locator=MaxNLocator(nbins=100)) clabel(f3) figure(4) contour(X,Y,hR[core], locator=MaxNLocator(nbins=100)) contour(X,Y,pR[core], locator=MaxNLocator(nbins=100))
mit
shahankhatch/scikit-learn
sklearn/linear_model/stochastic_gradient.py
65
50308
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np import scipy.sparse as sp from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights, " "use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the contructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (t + t0) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause