repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
cmdunkers/DeeperMind
PythonEnv/lib/python2.7/site-packages/scipy/cluster/tests/test_hierarchy.py
26
35159
#! /usr/bin/env python # # Author: Damian Eads # Date: April 17, 2008 # # Copyright (C) 2008 Damian Eads # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # 3. The name of the author may not be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS # OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE # GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (TestCase, run_module_suite, dec, assert_raises, assert_allclose, assert_equal, assert_) from scipy._lib.six import xrange, u import scipy.cluster.hierarchy from scipy.cluster.hierarchy import ( linkage, from_mlab_linkage, to_mlab_linkage, num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, is_isomorphic, single, leaders, correspond, is_monotonic, maxdists, maxinconsts, maxRstat, is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, set_link_color_palette) from scipy.spatial.distance import pdist import hierarchy_test_data # Matplotlib is not a scipy dependency but is optionally used in dendrogram, so # check if it's available try: import matplotlib # and set the backend to be Agg (no gui) matplotlib.use('Agg') # before importing pyplot import matplotlib.pyplot as plt have_matplotlib = True except: have_matplotlib = False class TestLinkage(object): def test_linkage_empty_distance_matrix(self): # Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. y = np.zeros((0,)) assert_raises(ValueError, linkage, y) def test_linkage_tdist(self): for method in ['single', 'complete', 'average', 'weighted', u('single')]: yield self.check_linkage_tdist, method def check_linkage_tdist(self, method): # Tests linkage(Y, method) on the tdist data set. Z = linkage(hierarchy_test_data.ytdist, method) expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) assert_allclose(Z, expectedZ, atol=1e-10) def test_linkage_X(self): for method in ['centroid', 'median', 'ward']: yield self.check_linkage_q, method def check_linkage_q(self, method): # Tests linkage(Y, method) on the Q data set. Z = linkage(hierarchy_test_data.X, method) expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) assert_allclose(Z, expectedZ, atol=1e-06) class TestInconsistent(object): def test_inconsistent_tdist(self): for depth in hierarchy_test_data.inconsistent_ytdist: yield self.check_inconsistent_tdist, depth def check_inconsistent_tdist(self, depth): Z = hierarchy_test_data.linkage_ytdist_single assert_allclose(inconsistent(Z, depth), hierarchy_test_data.inconsistent_ytdist[depth]) class TestCopheneticDistance(object): def test_linkage_cophenet_tdist_Z(self): # Tests cophenet(Z) on tdist data set. expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) Z = hierarchy_test_data.linkage_ytdist_single M = cophenet(Z) assert_allclose(M, expectedM, atol=1e-10) def test_linkage_cophenet_tdist_Z_Y(self): # Tests cophenet(Z, Y) on tdist data set. Z = hierarchy_test_data.linkage_ytdist_single (c, M) = cophenet(Z, hierarchy_test_data.ytdist) expectedM = np.array([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, 295, 138, 219, 295, 295]) expectedc = 0.639931296433393415057366837573 assert_allclose(c, expectedc, atol=1e-10) assert_allclose(M, expectedM, atol=1e-10) class TestMLabLinkageConversion(object): def test_mlab_linkage_conversion_empty(self): # Tests from/to_mlab_linkage on empty linkage array. X = np.asarray([]) assert_equal(from_mlab_linkage([]), X) assert_equal(to_mlab_linkage([]), X) def test_mlab_linkage_conversion_single_row(self): # Tests from/to_mlab_linkage on linkage array with single row. Z = np.asarray([[0., 1., 3., 2.]]) Zm = [[1, 2, 3]] assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) def test_mlab_linkage_conversion_multiple_rows(self): # Tests from/to_mlab_linkage on linkage array with multiple rows. Zm = np.asarray([[3, 6, 138], [4, 5, 219], [1, 8, 255], [2, 9, 268], [7, 10, 295]]) Z = np.array([[2., 5., 138., 2.], [3., 4., 219., 2.], [0., 7., 255., 3.], [1., 8., 268., 4.], [6., 9., 295., 6.]], dtype=np.double) assert_equal(from_mlab_linkage(Zm), Z) assert_equal(to_mlab_linkage(Z), Zm) class TestFcluster(object): def test_fclusterdata(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fclusterdata, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fclusterdata, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fclusterdata, t, 'maxclust' def check_fclusterdata(self, t, criterion): # Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] X = hierarchy_test_data.Q_X T = fclusterdata(X, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster(self): for t in hierarchy_test_data.fcluster_inconsistent: yield self.check_fcluster, t, 'inconsistent' for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster, t, 'distance' for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster, t, 'maxclust' def check_fcluster(self, t, criterion): # Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. expectedT = getattr(hierarchy_test_data, 'fcluster_' + criterion)[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, criterion=criterion, t=t) assert_(is_isomorphic(T, expectedT)) def test_fcluster_monocrit(self): for t in hierarchy_test_data.fcluster_distance: yield self.check_fcluster_monocrit, t for t in hierarchy_test_data.fcluster_maxclust: yield self.check_fcluster_maxclust_monocrit, t def check_fcluster_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_distance[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) def check_fcluster_maxclust_monocrit(self, t): expectedT = hierarchy_test_data.fcluster_maxclust[t] Z = single(hierarchy_test_data.Q_X) T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) assert_(is_isomorphic(T, expectedT)) class TestLeaders(object): def test_leaders_single(self): # Tests leaders using a flat clustering generated by single linkage. X = hierarchy_test_data.Q_X Y = pdist(X) Z = linkage(Y) T = fcluster(Z, criterion='maxclust', t=3) Lright = (np.array([53, 55, 56]), np.array([2, 3, 1])) L = leaders(Z, T) assert_equal(L, Lright) class TestIsIsomorphic(object): def test_is_isomorphic_1(self): # Tests is_isomorphic on test case #1 (one flat cluster, different labellings) a = [1, 1, 1] b = [2, 2, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_2(self): # Tests is_isomorphic on test case #2 (two flat clusters, different labelings) a = [1, 7, 1] b = [2, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_3(self): # Tests is_isomorphic on test case #3 (no flat clusters) a = [] b = [] assert_(is_isomorphic(a, b)) def test_is_isomorphic_4A(self): # Tests is_isomorphic on test case #4A (3 flat clusters, different labelings, isomorphic) a = [1, 2, 3] b = [1, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_4B(self): # Tests is_isomorphic on test case #4B (3 flat clusters, different labelings, nonisomorphic) a = [1, 2, 3, 3] b = [1, 3, 2, 3] assert_(is_isomorphic(a, b) == False) assert_(is_isomorphic(b, a) == False) def test_is_isomorphic_4C(self): # Tests is_isomorphic on test case #4C (3 flat clusters, different labelings, isomorphic) a = [7, 2, 3] b = [6, 3, 2] assert_(is_isomorphic(a, b)) assert_(is_isomorphic(b, a)) def test_is_isomorphic_5(self): # Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random # clusters, random permutation of the labeling). for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc def test_is_isomorphic_6(self): # Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random # clusters, random permutation of the labeling, slightly # nonisomorphic.) for nc in [2, 3, 5]: yield self.help_is_isomorphic_randperm, 1000, nc, True, 5 def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0): for k in range(3): a = np.int_(np.random.rand(nobs) * nclusters) b = np.zeros(a.size, dtype=np.int_) P = np.random.permutation(nclusters) for i in xrange(0, a.shape[0]): b[i] = P[a[i]] if noniso: Q = np.random.permutation(nobs) b[Q[0:nerrors]] += 1 b[Q[0:nerrors]] %= nclusters assert_(is_isomorphic(a, b) == (not noniso)) assert_(is_isomorphic(b, a) == (not noniso)) class TestIsValidLinkage(object): def test_is_valid_linkage_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_linkage_various_size, nrow, ncol, valid def check_is_valid_linkage_various_size(self, nrow, ncol, valid): # Tests is_valid_linkage(Z) with linkage matrics of various sizes Z = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) Z = Z[:nrow, :ncol] assert_(is_valid_linkage(Z) == valid) if not valid: assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_int_type(self): # Tests is_valid_linkage(Z) with integer type. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_linkage(Z) == False) assert_raises(TypeError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_empty(self): # Tests is_valid_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(is_valid_linkage(Z) == True) def test_is_valid_linkage_4_and_up_neg_index_left(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (left). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,0] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_index_right(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative indices (right). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,1] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_dist(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative distances. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,2] = -0.5 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) def test_is_valid_linkage_4_and_up_neg_counts(self): # Tests is_valid_linkage(Z) on linkage on observation sets between # sizes 4 and 15 (step size 3) with negative counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) Z[i//2,3] = -2 assert_(is_valid_linkage(Z) == False) assert_raises(ValueError, is_valid_linkage, Z, throw=True) class TestIsValidInconsistent(object): def test_is_valid_im_int_type(self): # Tests is_valid_im(R) with integer type. R = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.int) assert_(is_valid_im(R) == False) assert_raises(TypeError, is_valid_im, R, throw=True) def test_is_valid_im_various_size(self): for nrow, ncol, valid in [(2, 5, False), (2, 3, False), (1, 4, True), (2, 4, True)]: yield self.check_is_valid_im_various_size, nrow, ncol, valid def check_is_valid_im_various_size(self, nrow, ncol, valid): # Tests is_valid_im(R) with linkage matrics of various sizes R = np.asarray([[0, 1, 3.0, 2, 5], [3, 2, 4.0, 3, 3]], dtype=np.double) R = R[:nrow, :ncol] assert_(is_valid_im(R) == valid) if not valid: assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_empty(self): # Tests is_valid_im(R) with empty inconsistency matrix. R = np.zeros((0, 4), dtype=np.double) assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) assert_(is_valid_im(R) == True) def test_is_valid_im_4_and_up_neg_index_left(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height means. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,0] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_index_right(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link height standard deviations. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,1] = -2.0 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) def test_is_valid_im_4_and_up_neg_dist(self): # Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 # (step size 3) with negative link counts. for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) R = inconsistent(Z) R[i//2,2] = -0.5 assert_(is_valid_im(R) == False) assert_raises(ValueError, is_valid_im, R, throw=True) class TestNumObsLinkage(TestCase): def test_num_obs_linkage_empty(self): # Tests num_obs_linkage(Z) with empty linkage. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, num_obs_linkage, Z) def test_num_obs_linkage_1x4(self): # Tests num_obs_linkage(Z) on linkage over 2 observations. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) assert_equal(num_obs_linkage(Z), 2) def test_num_obs_linkage_2x4(self): # Tests num_obs_linkage(Z) on linkage over 3 observations. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) assert_equal(num_obs_linkage(Z), 3) def test_num_obs_linkage_4_and_up(self): # Tests num_obs_linkage(Z) on linkage on observation sets between sizes # 4 and 15 (step size 3). for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_equal(num_obs_linkage(Z), i) class TestLeavesList(object): def test_leaves_list_1x4(self): # Tests leaves_list(Z) on a 1x4 linkage. Z = np.asarray([[0, 1, 3.0, 2]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1]) def test_leaves_list_2x4(self): # Tests leaves_list(Z) on a 2x4 linkage. Z = np.asarray([[0, 1, 3.0, 2], [3, 2, 4.0, 3]], dtype=np.double) to_tree(Z) assert_equal(leaves_list(Z), [0, 1, 2]) def test_leaves_list_Q(self): for method in ['single', 'complete', 'average', 'weighted', 'centroid', 'median', 'ward']: yield self.check_leaves_list_Q, method def check_leaves_list_Q(self, method): # Tests leaves_list(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) node = to_tree(Z) assert_equal(node.pre_order(), leaves_list(Z)) def test_Q_subtree_pre_order(self): # Tests that pre_order() works when called on sub-trees. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') node = to_tree(Z) assert_equal(node.pre_order(), (node.get_left().pre_order() + node.get_right().pre_order())) class TestCorrespond(TestCase): def test_correspond_empty(self): # Tests correspond(Z, y) with empty linkage and condensed distance matrix. y = np.zeros((0,)) Z = np.zeros((0,4)) assert_raises(ValueError, correspond, Z, y) def test_correspond_2_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. for i in xrange(2, 4): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) for i in xrange(4, 15, 3): y = np.random.rand(i*(i-1)//2) Z = linkage(y) assert_(correspond(Z, y)) def test_correspond_4_and_up(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + list(zip(list(range(3, 5)), list(range(2, 4))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_correspond_4_and_up_2(self): # Tests correspond(Z, y) on linkage and CDMs over observation sets of # different sizes. Correspondance should be false. for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + list(zip(list(range(2, 7)), list(range(16, 21))))): y = np.random.rand(i*(i-1)//2) y2 = np.random.rand(j*(j-1)//2) Z = linkage(y) Z2 = linkage(y2) assert_equal(correspond(Z, y2), False) assert_equal(correspond(Z2, y), False) def test_num_obs_linkage_multi_matrix(self): # Tests num_obs_linkage with observation matrices of multiple sizes. for n in xrange(2, 10): X = np.random.rand(n, 4) Y = pdist(X) Z = linkage(Y) assert_equal(num_obs_linkage(Z), n) class TestIsMonotonic(TestCase): def test_is_monotonic_empty(self): # Tests is_monotonic(Z) on an empty linkage. Z = np.zeros((0, 4)) assert_raises(ValueError, is_monotonic, Z) def test_is_monotonic_1x4(self): # Tests is_monotonic(Z) on 1x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_T(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 3]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_2x4_F(self): # Tests is_monotonic(Z) on 2x4 linkage. Expecting False. Z = np.asarray([[0, 1, 0.4, 2], [2, 3, 0.3, 3]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_T(self): # Tests is_monotonic(Z) on 3x4 linkage. Expecting True. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), True) def test_is_monotonic_3x4_F1(self): # Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.2, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F2(self): # Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. Z = np.asarray([[0, 1, 0.8, 2], [2, 3, 0.4, 2], [4, 5, 0.6, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_3x4_F3(self): # Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False Z = np.asarray([[0, 1, 0.3, 2], [2, 3, 0.4, 2], [4, 5, 0.2, 4]], dtype=np.double) assert_equal(is_monotonic(Z), False) def test_is_monotonic_tdist_linkage1(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Expecting True. Z = linkage(hierarchy_test_data.ytdist, 'single') assert_equal(is_monotonic(Z), True) def test_is_monotonic_tdist_linkage2(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # tdist data set. Perturbing. Expecting False. Z = linkage(hierarchy_test_data.ytdist, 'single') Z[2,2] = 0.0 assert_equal(is_monotonic(Z), False) def test_is_monotonic_Q_linkage(self): # Tests is_monotonic(Z) on clustering generated by single linkage on # Q data set. Expecting True. X = hierarchy_test_data.Q_X Z = linkage(X, 'single') assert_equal(is_monotonic(Z), True) class TestMaxDists(object): def test_maxdists_empty_linkage(self): # Tests maxdists(Z) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxdists, Z) def test_maxdists_one_cluster_linkage(self): # Tests maxdists(Z) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxdists_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxdists_Q_linkage, method def check_maxdists_Q_linkage(self, method): # Tests maxdists(Z) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) MD = maxdists(Z) expectedMD = calculate_maximum_distances(Z) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxInconsts(object): def test_maxinconsts_empty_linkage(self): # Tests maxinconsts(Z, R) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_difrow_linkage(self): # Tests maxinconsts(Z, R) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxinconsts, Z, R) def test_maxinconsts_one_cluster_linkage(self): # Tests maxinconsts(Z, R) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxinconsts_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: yield self.check_maxinconsts_Q_linkage, method def check_maxinconsts_Q_linkage(self, method): # Tests maxinconsts(Z, R) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxinconsts(Z, R) expectedMD = calculate_maximum_inconsistencies(Z, R) assert_allclose(MD, expectedMD, atol=1e-15) class TestMaxRStat(object): def test_maxRstat_invalid_index(self): for i in [3.3, -1, 4]: yield self.check_maxRstat_invalid_index, i def check_maxRstat_invalid_index(self, i): # Tests maxRstat(Z, R, i). Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) if isinstance(i, int): assert_raises(ValueError, maxRstat, Z, R, i) else: assert_raises(TypeError, maxRstat, Z, R, i) def test_maxRstat_empty_linkage(self): for i in range(4): yield self.check_maxRstat_empty_linkage, i def check_maxRstat_empty_linkage(self, i): # Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. Z = np.zeros((0, 4), dtype=np.double) R = np.zeros((0, 4), dtype=np.double) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_difrow_linkage(self): for i in range(4): yield self.check_maxRstat_difrow_linkage, i def check_maxRstat_difrow_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with # different numbers of clusters. Expecting exception. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.random.rand(2, 4) assert_raises(ValueError, maxRstat, Z, R, i) def test_maxRstat_one_cluster_linkage(self): for i in range(4): yield self.check_maxRstat_one_cluster_linkage, i def check_maxRstat_one_cluster_linkage(self, i): # Tests maxRstat(Z, R, i) on linkage with one cluster. Z = np.asarray([[0, 1, 0.3, 4]], dtype=np.double) R = np.asarray([[0, 0, 0, 0.3]], dtype=np.double) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) def test_maxRstat_Q_linkage(self): for method in ['single', 'complete', 'ward', 'centroid', 'median']: for i in range(4): yield self.check_maxRstat_Q_linkage, method, i def check_maxRstat_Q_linkage(self, method, i): # Tests maxRstat(Z, R, i) on the Q data set X = hierarchy_test_data.Q_X Z = linkage(X, method) R = inconsistent(Z) MD = maxRstat(Z, R, 1) expectedMD = calculate_maximum_inconsistencies(Z, R, 1) assert_allclose(MD, expectedMD, atol=1e-15) class TestDendrogram(object): def test_dendrogram_single_linkage_tdist(self): # Tests dendrogram calculation on single linkage of the tdist data set. Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, no_plot=True) leaves = R["leaves"] assert_equal(leaves, [2, 5, 1, 0, 3, 4]) def test_valid_orientation(self): Z = linkage(hierarchy_test_data.ytdist, 'single') assert_raises(ValueError, dendrogram, Z, orientation="foo") @dec.skipif(not have_matplotlib) def test_dendrogram_plot(self): for orientation in ['top', 'bottom', 'left', 'right']: yield self.check_dendrogram_plot, orientation def check_dendrogram_plot(self, orientation): # Tests dendrogram plotting. Z = linkage(hierarchy_test_data.ytdist, 'single') expected = {'color_list': ['g', 'b', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 219.0, 219.0, 0.0], [0.0, 255.0, 255.0, 219.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [45.0, 45.0, 55.0, 55.0], [35.0, 35.0, 50.0, 50.0], [25.0, 25.0, 42.5, 42.5], [10.0, 10.0, 33.75, 33.75]], 'ivl': ['2', '5', '1', '0', '3', '4'], 'leaves': [2, 5, 1, 0, 3, 4]} fig = plt.figure() ax = fig.add_subplot(111) # test that dendrogram accepts ax keyword R1 = dendrogram(Z, ax=ax, orientation=orientation) plt.close() assert_equal(R1, expected) # test plotting to gca (will import pylab) R2 = dendrogram(Z, orientation=orientation) plt.close() assert_equal(R2, expected) @dec.skipif(not have_matplotlib) def test_dendrogram_truncate_mode(self): Z = linkage(hierarchy_test_data.ytdist, 'single') R = dendrogram(Z, 2, 'lastp', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['b'], 'dcoord': [[0.0, 295.0, 295.0, 0.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0]], 'ivl': ['(2)', '(4)'], 'leaves': [6, 9]}) R = dendrogram(Z, 2, 'mtica', show_contracted=True) plt.close() assert_equal(R, {'color_list': ['g', 'b', 'b', 'b'], 'dcoord': [[0.0, 138.0, 138.0, 0.0], [0.0, 255.0, 255.0, 0.0], [0.0, 268.0, 268.0, 255.0], [138.0, 295.0, 295.0, 268.0]], 'icoord': [[5.0, 5.0, 15.0, 15.0], [35.0, 35.0, 45.0, 45.0], [25.0, 25.0, 40.0, 40.0], [10.0, 10.0, 32.5, 32.5]], 'ivl': ['2', '5', '1', '0', '(2)'], 'leaves': [2, 5, 1, 0, 7]}) def test_dendrogram_colors(self): # Tests dendrogram plots with alternate colors Z = linkage(hierarchy_test_data.ytdist, 'single') set_link_color_palette(['c', 'm', 'y', 'k']) R = dendrogram(Z, no_plot=True, above_threshold_color='g', color_threshold=250) set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) color_list = R['color_list'] assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) def calculate_maximum_distances(Z): # Used for testing correctness of maxdists. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = Z[i, 2] B[i] = q.max() return B def calculate_maximum_inconsistencies(Z, R, k=3): # Used for testing correctness of maxinconsts. n = Z.shape[0] + 1 B = np.zeros((n-1,)) q = np.zeros((3,)) for i in xrange(0, n - 1): q[:] = 0.0 left = Z[i, 0] right = Z[i, 1] if left >= n: q[0] = B[int(left) - n] if right >= n: q[1] = B[int(right) - n] q[2] = R[i, k] B[i] = q.max() return B def test_euclidean_linkage_value_error(): for method in scipy.cluster.hierarchy._cpy_euclid_methods: assert_raises(ValueError, linkage, [[1, 1], [1, 1]], method=method, metric='cityblock') def test_2x2_linkage(): Z1 = linkage([1], method='single', metric='euclidean') Z2 = linkage([[0, 1], [0, 0]], method='single', metric='euclidean') assert_allclose(Z1, Z2) if __name__ == "__main__": run_module_suite()
bsd-3-clause
Titan-C/scikit-learn
examples/text/document_clustering.py
1
8526
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. Additionally, latent semantic analysis can also be used to reduce dimensionality and discover latent patterns in the data. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <[email protected]> # Lars Buitinck # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() def is_interactive(): return not hasattr(sys.modules['__main__'], '__file__') # work-around for Jupyter notebook and IPython console argv = [] if is_interactive() else sys.argv[1:] (opts, args) = op.parse_args(argv) if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) # ############################################################################# # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories # categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) normalizer = Normalizer(copy=False) lsa = make_pipeline(svd, normalizer) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() # ############################################################################# # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not opts.use_hashing: print("Top terms per cluster:") if opts.n_components: original_space_centroids = svd.inverse_transform(km.cluster_centers_) order_centroids = original_space_centroids.argsort()[:, ::-1] else: order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
Viktor-Evst/luigi
examples/pyspark_wc.py
56
3361
# -*- coding: utf-8 -*- # # Copyright 2012-2015 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import luigi from luigi.s3 import S3Target from luigi.contrib.spark import SparkSubmitTask, PySparkTask class InlinePySparkWordCount(PySparkTask): """ This task runs a :py:class:`luigi.contrib.spark.PySparkTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.PySparkTask.main`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 # py-packages: numpy, pandas """ driver_memory = '2g' executor_memory = '3g' def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') def main(self, sc, *args): sc.textFile(self.input().path) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(self.output().path) class PySparkWordCount(SparkSubmitTask): """ This task is the same as :py:class:`InlinePySparkWordCount` above but uses an external python driver file specified in :py:meth:`app` It runs a :py:class:`luigi.contrib.spark.SparkSubmitTask` task over the target data in :py:meth:`wordcount.input` (a file in S3) and writes the result into its :py:meth:`wordcount.output` target (a file in S3). This class uses :py:meth:`luigi.contrib.spark.SparkSubmitTask.run`. Example luigi configuration:: [spark] spark-submit: /usr/local/spark/bin/spark-submit master: spark://spark.example.org:7077 deploy-mode: client """ driver_memory = '2g' executor_memory = '3g' total_executor_cores = luigi.IntParameter(default=100) name = "PySpark Word Count" app = 'wordcount.py' def app_options(self): # These are passed to the Spark main args in the defined order. return [self.input().path, self.output().path] def input(self): return S3Target("s3n://bucket.example.org/wordcount.input") def output(self): return S3Target('s3n://bucket.example.org/wordcount.output') ''' // Corresponding example Spark Job, running Word count with Spark's Python API // This file would have to be saved into wordcount.py import sys from pyspark import SparkContext if __name__ == "__main__": sc = SparkContext() sc.textFile(sys.argv[1]) \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b) \ .saveAsTextFile(sys.argv[2]) '''
apache-2.0
BubuLK/sfepy
probe.py
5
9831
#!/usr/bin/env python # 12.01.2007, c """ Probe finite element solutions in points defined by various geometrical probes. Generation mode --------------- python probe.py [generation options] <input file> <results file> Probe the data in the results file corresponding to the problem defined in the input file. The input file options must contain 'gen_probes' and 'probe_hook' keys, pointing to proper functions accessible from the input file scope. For each probe returned by `gen_probes()` a data plot figure and a text file with the data plotted are saved, see the options below. Generation options ------------------ -o, --auto-dir, --same-dir, -f, --only-names, -s Postprocessing mode ------------------- python probe.py [postprocessing options] <probe file> <figure file> Read a previously probed data from the probe text file, re-plot them, and integrate them along the probe. Postprocessing options ---------------------- --postprocess, --radial, --only-names Notes ----- For extremely thin hexahedral elements the Newton's iteration for finding the reference element coordinates might converge to a spurious solution outside of the element. To obtain some values even in this case, try increasing the --close-limit option value. """ from __future__ import absolute_import import os from argparse import ArgumentParser, RawDescriptionHelpFormatter import numpy as nm import sfepy from sfepy.base.base import output, assert_ from sfepy.base.ioutils import edit_filename from sfepy.base.conf import ProblemConf, get_standard_keywords from sfepy.discrete import Problem from sfepy.discrete.fem import MeshIO from sfepy.discrete.probes import write_results, read_results import six helps = { 'debug': 'automatically start debugger when an exception is raised', 'filename' : 'basename of output file(s) [default: <basename of input file>]', 'output_format' : 'output figure file format (supported by the matplotlib backend used) '\ '[default: %(default)s]', 'auto_dir' : 'the directory of the results file is determined automatically using the '\ '"output_dir" option in input file options', 'same_dir' : 'store the probe figures/data in the directory of the results file', 'only_names' : 'probe only named data', 'step' : 'probe the given time step', 'close_limit' : 'maximum limit distance of a point from the closest element allowed' ' for extrapolation. [default: %(default)s]', 'postprocess' : 'postprocessing mode', 'radial' : 'assume radial integration', } def generate_probes(filename_input, filename_results, options, conf=None, problem=None, probes=None, labels=None, probe_hooks=None): """ Generate probe figures and data files. """ if conf is None: required, other = get_standard_keywords() conf = ProblemConf.from_file(filename_input, required, other) opts = conf.options if options.auto_dir: output_dir = opts.get_('output_dir', '.') filename_results = os.path.join(output_dir, filename_results) output('results in: %s' % filename_results) io = MeshIO.any_from_filename(filename_results) step = options.step if options.step >= 0 else io.read_last_step() all_data = io.read_data(step) output('loaded:', list(all_data.keys())) output('from step:', step) if options.only_names is None: data = all_data else: data = {} for key, val in six.iteritems(all_data): if key in options.only_names: data[key] = val if problem is None: problem = Problem.from_conf(conf, init_equations=False, init_solvers=False) if probes is None: gen_probes = conf.get_function(conf.options.gen_probes) probes, labels = gen_probes(problem) if probe_hooks is None: probe_hooks = {None : conf.get_function(conf.options.probe_hook)} if options.output_filename_trunk is None: options.output_filename_trunk = problem.ofn_trunk filename_template = options.output_filename_trunk \ + ('_%%d.%s' % options.output_format) if options.same_dir: filename_template = os.path.join(os.path.dirname(filename_results), filename_template) output_dir = os.path.dirname(filename_results) for ip, probe in enumerate(probes): output(ip, probe.name) probe.set_options(close_limit=options.close_limit) for key, probe_hook in six.iteritems(probe_hooks): out = probe_hook(data, probe, labels[ip], problem) if out is None: continue if isinstance(out, tuple): fig, results = out else: fig = out if key is not None: filename = filename_template % (key, ip) else: filename = filename_template % ip if fig is not None: if isinstance(fig, dict): for fig_name, fig_fig in six.iteritems(fig): fig_filename = edit_filename(filename, suffix='_' + fig_name) fig_fig.savefig(fig_filename) output('figure ->', os.path.normpath(fig_filename)) else: fig.savefig(filename) output('figure ->', os.path.normpath(filename)) if results is not None: txt_filename = edit_filename(filename, new_ext='.txt') write_results(txt_filename, probe, results) output('data ->', os.path.normpath(txt_filename)) def integrate_along_line(x, y, is_radial=False): """ Integrate numerically (trapezoidal rule) a function :math:`y=y(x)`. If is_radial is True, multiply each :math:`y` by :math:`4 \pi x^2`. """ dx = nm.diff(x) ay = 0.5 * (y[:-1] + y[1:]) if is_radial: ax = 0.5 * (x[:-1] + x[1:]) val = 4.0 * nm.pi * nm.sum(ay * dx * (ax**2)) else: val = nm.sum(ay * dx) return val def postprocess(filename_input, filename_results, options): """ Postprocess probe data files - replot, integrate data. """ from matplotlib import pyplot as plt header, results = read_results(filename_input, only_names=options.only_names) output(header) fig = plt.figure() for name, result in six.iteritems(results): pars, vals = result[:, 0], result[:, 1] ii = nm.where(nm.isfinite(vals))[0] # Nans only at the edges. assert_(nm.diff(ii).sum() == (len(ii)-1)) val = integrate_along_line(pars[ii], vals[ii], options.radial) label = r'%s: $\int\ %s' % (name, name) if options.radial: label += ' (r)' label += '$ = %.5e'% val plt.plot(pars, vals, label=label, lw=0.2, marker='+', ms=1) plt.ylabel('probed data') plt.xlabel('probe coordinate') output(label) plt.legend() fig.savefig(filename_results) def main(): parser = ArgumentParser(description=__doc__, formatter_class=RawDescriptionHelpFormatter) parser.add_argument('--version', action='version', version='%(prog)s ' + sfepy.__version__) parser.add_argument('--debug', action='store_true', dest='debug', default=False, help=helps['debug']) parser.add_argument('-o', metavar='filename', action='store', dest='output_filename_trunk', default=None, help=helps['filename']) parser.add_argument('--auto-dir', action='store_true', dest='auto_dir', default=False, help=helps['auto_dir']) parser.add_argument('--same-dir', action='store_true', dest='same_dir', default=False, help=helps['same_dir']) parser.add_argument('-f', '--format', metavar='format', action='store', dest='output_format', default='png', help=helps['output_format']) parser.add_argument('--only-names', metavar='list of names', action='store', dest='only_names', default=None, help=helps['only_names']) parser.add_argument('-s', '--step', type=int, metavar='step', action='store', dest='step', default=0, help=helps['step']) parser.add_argument('-c', '--close-limit', type=float, metavar='distance', action='store', dest='close_limit', default=0.1, help=helps['close_limit']) parser.add_argument('-p', '--postprocess', action='store_true', dest='postprocess', default=False, help=helps['postprocess']) parser.add_argument('--radial', action='store_true', dest='radial', default=False, help=helps['radial']) parser.add_argument('filename_in') parser.add_argument('filename_out') options = parser.parse_args() if options.debug: from sfepy.base.base import debug_on_error; debug_on_error() filename_input = options.filename_in filename_results = options.filename_out if options.only_names is not None: options.only_names = options.only_names.split(',') output.prefix = 'probe:' if options.postprocess: postprocess(filename_input, filename_results, options) else: generate_probes(filename_input, filename_results, options) if __name__ == '__main__': main()
bsd-3-clause
DSLituiev/scikit-learn
benchmarks/bench_mnist.py
44
6801
""" ======================= MNIST dataset benchmark ======================= Benchmark on the MNIST dataset. The dataset comprises 70,000 samples and 784 features. Here, we consider the task of predicting 10 classes - digits from 0 to 9 from their raw images. By contrast to the covertype dataset, the feature space is homogenous. Example of output : [..] Classification performance: =========================== Classifier train-time test-time error-rate ------------------------------------------------------------ MLP_adam 53.46s 0.11s 0.0224 Nystroem-SVM 112.97s 0.92s 0.0228 MultilayerPerceptron 24.33s 0.14s 0.0287 ExtraTrees 42.99s 0.57s 0.0294 RandomForest 42.70s 0.49s 0.0318 SampledRBF-SVM 135.81s 0.56s 0.0486 LinearRegression-SAG 16.67s 0.06s 0.0824 CART 20.69s 0.02s 0.1219 dummy 0.00s 0.01s 0.8973 """ from __future__ import division, print_function # Author: Issam H. Laradji # Arnaud Joly <[email protected]> # License: BSD 3 clause import os from time import time import argparse import numpy as np from sklearn.datasets import fetch_mldata from sklearn.datasets import get_data_home from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.dummy import DummyClassifier from sklearn.externals.joblib import Memory from sklearn.kernel_approximation import Nystroem from sklearn.kernel_approximation import RBFSampler from sklearn.metrics import zero_one_loss from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC from sklearn.tree import DecisionTreeClassifier from sklearn.utils import check_array from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier # Memoize the data extraction and memory map the resulting # train / test splits in readonly mode memory = Memory(os.path.join(get_data_home(), 'mnist_benchmark_data'), mmap_mode='r') @memory.cache def load_data(dtype=np.float32, order='F'): """Load the data, then cache and memmap the train/test split""" ###################################################################### ## Load dataset print("Loading dataset...") data = fetch_mldata('MNIST original') X = check_array(data['data'], dtype=dtype, order=order) y = data["target"] # Normalize features X = X / 255 ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") n_train = 60000 X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] return X_train, X_test, y_train, y_test ESTIMATORS = { "dummy": DummyClassifier(), 'CART': DecisionTreeClassifier(), 'ExtraTrees': ExtraTreesClassifier(n_estimators=100), 'RandomForest': RandomForestClassifier(n_estimators=100), 'Nystroem-SVM': make_pipeline( Nystroem(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'SampledRBF-SVM': make_pipeline( RBFSampler(gamma=0.015, n_components=1000), LinearSVC(C=100)), 'LinearRegression-SAG': LogisticRegression(solver='sag', tol=1e-1, C=1e4), 'MultilayerPerceptron': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='sgd', learning_rate_init=0.2, momentum=0.9, verbose=1, tol=1e-4, random_state=1), 'MLP-adam': MLPClassifier( hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, algorithm='adam', learning_rate_init=0.001, verbose=1, tol=1e-4, random_state=1) } if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--classifiers', nargs="+", choices=ESTIMATORS, type=str, default=['ExtraTrees', 'Nystroem-SVM'], help="list of classifiers to benchmark.") parser.add_argument('--n-jobs', nargs="?", default=1, type=int, help="Number of concurrently running workers for " "models that support parallelism.") parser.add_argument('--order', nargs="?", default="C", type=str, choices=["F", "C"], help="Allow to choose between fortran and C ordered " "data") parser.add_argument('--random-seed', nargs="?", default=0, type=int, help="Common seed used by random number generator.") args = vars(parser.parse_args()) print(__doc__) X_train, X_test, y_train, y_test = load_data(order=args["order"]) print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).size)) print("%s %s" % ("data type:".ljust(25), X_train.dtype)) print("%s %d (size=%dMB)" % ("number of train samples:".ljust(25), X_train.shape[0], int(X_train.nbytes / 1e6))) print("%s %d (size=%dMB)" % ("number of test samples:".ljust(25), X_test.shape[0], int(X_test.nbytes / 1e6))) print() print("Training Classifiers") print("====================") error, train_time, test_time = {}, {}, {} for name in sorted(args["classifiers"]): print("Training %s ... " % name, end="") estimator = ESTIMATORS[name] estimator_params = estimator.get_params() estimator.set_params(**{p: args["random_seed"] for p in estimator_params if p.endswith("random_state")}) if "n_jobs" in estimator_params: estimator.set_params(n_jobs=args["n_jobs"]) time_start = time() estimator.fit(X_train, y_train) train_time[name] = time() - time_start time_start = time() y_pred = estimator.predict(X_test) test_time[name] = time() - time_start error[name] = zero_one_loss(y_test, y_pred) print("done") print() print("Classification performance:") print("===========================") print("{0: <24} {1: >10} {2: >11} {3: >12}" "".format("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 60) for name in sorted(args["classifiers"], key=error.get): print("{0: <23} {1: >10.2f}s {2: >10.2f}s {3: >12.4f}" "".format(name, train_time[name], test_time[name], error[name])) print()
bsd-3-clause
xguse/bokeh
examples/plotting/server/elements.py
42
1532
# The plot server must be running # Go to http://localhost:5006/bokeh to view this plot import pandas as pd from bokeh.plotting import figure, show, output_server from bokeh.sampledata import periodic_table elements = periodic_table.elements elements = elements[elements["atomic number"] <= 82] elements = elements[~pd.isnull(elements["melting point"])] mass = [float(x.strip("[]")) for x in elements["atomic mass"]] elements["atomic mass"] = mass palette = list(reversed([ "#67001f","#b2182b","#d6604d","#f4a582","#fddbc7","#f7f7f7","#d1e5f0","#92c5de","#4393c3","#2166ac","#053061" ])) melting_points = elements["melting point"] low = min(melting_points) high= max(melting_points) melting_point_inds = [int(10*(x-low)/(high-low)) for x in melting_points] #gives items in colors a value from 0-10 meltingpointcolors = [palette[i] for i in melting_point_inds] output_server("elements") TOOLS = "pan,wheel_zoom,box_zoom,reset,resize,save" p = figure(tools=TOOLS, toolbar_location="left", plot_width=1200) p.title = "Density vs Atomic Weight of Elements (colored by melting point)" p.background_fill= "#cccccc" p.circle(elements["atomic mass"], elements["density"], size=12, color=meltingpointcolors, line_color="black", fill_alpha=0.8) p.text(elements["atomic mass"], elements["density"]+0.3, text=elements["symbol"], text_color="#333333", text_align="center", text_font_size="10pt") p.xaxis.axis_label="atomic weight (amu)" p.yaxis.axis_label="density (g/cm^3)" p.grid.grid_line_color="white" show(p)
bsd-3-clause
dsullivan7/scikit-learn
sklearn/decomposition/tests/test_pca.py
14
11028
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): # PCA on dense arrays pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaingin 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 3) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0)) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by RandomizedPCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by RandomizedPCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that RandomizedPCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
yyjiang/scikit-learn
sklearn/feature_extraction/dict_vectorizer.py
234
12267
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from array import array from collections import Mapping from operator import itemgetter import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..externals.six.moves import xrange from ..utils import check_array, tosequence from ..utils.fixes import frombuffer_empty def _tosequence(X): """Turn X into a sequence or ndarray, avoiding a copy if possible.""" if isinstance(X, Mapping): # single sample return [X] else: return tosequence(X) class DictVectorizer(BaseEstimator, TransformerMixin): """Transforms lists of feature-value mappings to vectors. This transformer turns lists of mappings (dict-like objects) of feature names to feature values into Numpy arrays or scipy.sparse matrices for use with scikit-learn estimators. When feature values are strings, this transformer will do a binary one-hot (aka one-of-K) coding: one boolean-valued feature is constructed for each of the possible string values that the feature can take on. For instance, a feature "f" that can take on the values "ham" and "spam" will become two features in the output, one signifying "f=ham", the other "f=spam". Features that do not occur in a sample (mapping) will have a zero value in the resulting array/matrix. Read more in the :ref:`User Guide <dict_feature_extraction>`. Parameters ---------- dtype : callable, optional The type of feature values. Passed to Numpy array/scipy.sparse matrix constructors as the dtype argument. separator: string, optional Separator string used when constructing new features for one-hot coding. sparse: boolean, optional. Whether transform should produce scipy.sparse matrices. True by default. sort: boolean, optional. Whether ``feature_names_`` and ``vocabulary_`` should be sorted when fitting. True by default. Attributes ---------- vocabulary_ : dict A dictionary mapping feature names to feature indices. feature_names_ : list A list of length n_features containing the feature names (e.g., "f=ham" and "f=spam"). Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> v = DictVectorizer(sparse=False) >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> X array([[ 2., 0., 1.], [ 0., 1., 3.]]) >>> v.inverse_transform(X) == \ [{'bar': 2.0, 'foo': 1.0}, {'baz': 1.0, 'foo': 3.0}] True >>> v.transform({'foo': 4, 'unseen_feature': 3}) array([[ 0., 0., 4.]]) See also -------- FeatureHasher : performs vectorization using only a hash function. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, dtype=np.float64, separator="=", sparse=True, sort=True): self.dtype = dtype self.separator = separator self.sparse = sparse self.sort = sort def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- self """ feature_names = [] vocab = {} for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) if f not in vocab: feature_names.append(f) vocab[f] = len(vocab) if self.sort: feature_names.sort() vocab = dict((f, i) for i, f in enumerate(feature_names)) self.feature_names_ = feature_names self.vocabulary_ = vocab return self def _transform(self, X, fitting): # Sanity check: Python's array has no way of explicitly requesting the # signed 32-bit integers that scipy.sparse needs, so we use the next # best thing: typecode "i" (int). However, if that gives larger or # smaller integers than 32-bit ones, np.frombuffer screws up. assert array("i").itemsize == 4, ( "sizeof(int) != 4 on your platform; please report this at" " https://github.com/scikit-learn/scikit-learn/issues and" " include the output from platform.platform() in your bug report") dtype = self.dtype if fitting: feature_names = [] vocab = {} else: feature_names = self.feature_names_ vocab = self.vocabulary_ # Process everything as sparse regardless of setting X = [X] if isinstance(X, Mapping) else X indices = array("i") indptr = array("i", [0]) # XXX we could change values to an array.array as well, but it # would require (heuristic) conversion of dtype to typecode... values = [] # collect all the possible feature names and build sparse matrix at # same time for x in X: for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 if f in vocab: indices.append(vocab[f]) values.append(dtype(v)) else: if fitting: feature_names.append(f) vocab[f] = len(vocab) indices.append(vocab[f]) values.append(dtype(v)) indptr.append(len(indices)) if len(indptr) == 1: raise ValueError("Sample sequence X is empty.") indices = frombuffer_empty(indices, dtype=np.intc) indptr = np.frombuffer(indptr, dtype=np.intc) shape = (len(indptr) - 1, len(vocab)) result_matrix = sp.csr_matrix((values, indices, indptr), shape=shape, dtype=dtype) # Sort everything if asked if fitting and self.sort: feature_names.sort() map_index = np.empty(len(feature_names), dtype=np.int32) for new_val, f in enumerate(feature_names): map_index[new_val] = vocab[f] vocab[f] = new_val result_matrix = result_matrix[:, map_index] if self.sparse: result_matrix.sort_indices() else: result_matrix = result_matrix.toarray() if fitting: self.feature_names_ = feature_names self.vocabulary_ = vocab return result_matrix def fit_transform(self, X, y=None): """Learn a list of feature name -> indices mappings and transform X. Like fit(X) followed by transform(X), but does not require materializing X in memory. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ return self._transform(X, fitting=True) def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Sample matrix. dict_type : callable, optional Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- D : list of dict_type objects, length = n_samples Feature mappings for the samples in X. """ # COO matrix is not subscriptable X = check_array(X, accept_sparse=['csr', 'csc']) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in xrange(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts def transform(self, X, y=None): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings, length = n_samples Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). y : (ignored) Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ if self.sparse: return self._transform(X, fitting=False) else: dtype = self.dtype vocab = self.vocabulary_ X = _tosequence(X) Xa = np.zeros((len(X), len(vocab)), dtype=dtype) for i, x in enumerate(X): for f, v in six.iteritems(x): if isinstance(v, six.string_types): f = "%s%s%s" % (f, self.separator, v) v = 1 try: Xa[i, vocab[f]] = dtype(v) except KeyError: pass return Xa def get_feature_names(self): """Returns a list of feature names, ordered by their indices. If one-of-K coding is applied to categorical features, this will include the constructed feature names but not the original ones. """ return self.feature_names_ def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : boolean, optional Whether support is a list of indices. Returns ------- self Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names() ['bar', 'baz', 'foo'] >>> v.restrict(support.get_support()) # doctest: +ELLIPSIS DictVectorizer(dtype=..., separator='=', sort=True, sparse=True) >>> v.get_feature_names() ['bar', 'foo'] """ if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [f for f, i in sorted(six.iteritems(new_vocab), key=itemgetter(1))] return self
bsd-3-clause
buenrostrolab/proatac
proatac/bin/python/py3_makeVvec.py
1
4227
#!/usr/bin/env python # Author: Jason Buenrostro, Stanford University # modified from plotV_vC.py (Alicia) # Will make a V-plot from bed regions ##### IMPORT MODULES ##### # import necessary for python import os import sys import numpy as np import pysam import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from multiprocessing import Pool from optparse import OptionParser import random #### OPTIONS #### # read options from command line opts = OptionParser() usage = "usage: %prog [options] [inputs]" opts = OptionParser(usage=usage) opts.add_option("-a", help="<Reads> Accepts sorted BAM file") opts.add_option("-b", help="<Bed> Accepts bed file") opts.add_option("-o",help="OutputFile") opts.add_option("-e",default="1000", help="number of bases to extend to each side, default=1000") opts.add_option("-p",default="center", help="options:center,ends, default=center") opts.add_option("-q",help = "Outputplot") opts.add_option("-c",default="4",help="number of threads to use, default=20") opts.add_option("-s",default='4',help="column in which strand information is located (1 being first), default=4") opts.add_option("--window",default='20',help="window size for ploting") options, arguments = opts.parse_args() # return usage information if no argvs given if len(sys.argv)==1: os.system(sys.argv[0]+" --help") sys.exit() ##### DEFINE FUNCTIONS ##### # assign mat def asn_mat(val,mat,s_int,e_int,t,i,weight): if float(val)>=s_int and float(val)<e_int-1 and t<rows: # -1 correct? base = val-s_int if len(p1_ints[0]) == 3: mat[t][base] += weight elif p1_ints[i][int(options.s)-1] == "-": mat[t][len(mat[0])-base-1] += weight else: mat[t][base] += weight return mat #compute Vplot Matrix for a particular chunk def sub_Mat(start): # initialize data matrix mat = np.zeros([rows,cols]) # loop through the intervals and get relevent info bamfile = pysam.Samfile(options.a, "rb") end=min(start+chunksize,len(p1_ints)) for i in range(start,end): # get interval as num center = int(p1_ints[i][1])+(int(p1_ints[i][2])-int(p1_ints[i][1]))//2 s_int=center-int(options.e) e_int=center+int(options.e) # loop through rds for p2_rds in bamfile.fetch(str(p1_ints[i][0]), max(0,s_int-2000), e_int+2000): #check mapping quality if p2_rds.mapq<30:# or p2_rds.is_proper_pair==False: continue # get read positions if p2_rds.is_reverse: continue else: l_pos = p2_rds.pos+4 # calculate center point ilen = abs(p2_rds.tlen)-9 #ilen = 1 r_pos=l_pos+ilen c_pos=l_pos+ilen//2 if ilen%2==1 and options.p=='center': mat=asn_mat(c_pos,mat,s_int,e_int,ilen,i,0.5) mat=asn_mat(c_pos+1,mat,s_int,e_int,ilen,i,0.5) elif ilen%2!=1 and options.p=='center': mat=asn_mat(c_pos,mat,s_int,e_int,ilen,i,1) # save ends or read centers to v-plot elif options.p == 'ends': mat = asn_mat(l_pos,mat,s_int,e_int,ilen,i,1) mat = asn_mat(r_pos,mat,s_int,e_int,ilen,i,1) else: sys.exit('Error, check parameters') return mat ##### INPUTS AND OUTPUTS ##### # get intervals p1_ints = np.loadtxt(options.b, dtype=bytes).astype(str) ##### SCRIPT ##### # open and read BAM file # determine number of rows and columns for matrix rows = 1000 cols = int(options.e)*2 #cols = int(p1_ints[0][2])-int(p1_ints[0][1])+int(options.e)*2 # split bedfile into chunks maxi=len(p1_ints) chunksize=maxi//int(options.c) starts=range(0,int(chunksize)*int(options.c)-1,int(chunksize)) # parallel processed computation of matrix for each chunk if __name__ == "__main__": pool = Pool(processes=int(options.c)) sub_mats=pool.map(sub_Mat, starts, 1) # sum up matrices for each chunk into matrix for all mat = np.zeros([rows,cols]) for i in range(len(starts)): mat=mat+sub_mats[i] mat = np.sum(mat,0) np.savetxt(options.o, np.column_stack((np.arange(-2000,2000),np.array(mat))),delimiter=',',fmt='%s') fig=plt.figure(figsize=(8.0, 5.0)) xran=min(500,int(options.e)) yran=min(500,rows) plt.plot(mat/np.mean(mat[1:200]),'k.') plt.plot(np.convolve(mat,np.ones(int(options.window)),'same')/int(options.window)/np.mean(mat[1:200]),'r') plt.xlabel('Position to TSS') plt.ylabel('Insertions') fig.savefig(options.q) plt.close(fig)
mit
davidgbe/scikit-learn
examples/model_selection/plot_train_error_vs_test_error.py
349
2577
""" ========================= Train error vs Test error ========================= Illustration of how the performance of an estimator on unseen data (test data) is not the same as the performance on training data. As the regularization increases the performance on train decreases while the performance on test is optimal within a range of values of the regularization parameter. The example with an Elastic-Net regression model and the performance is measured using the explained variance a.k.a. R^2. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np from sklearn import linear_model ############################################################################### # Generate sample data n_samples_train, n_samples_test, n_features = 75, 150, 500 np.random.seed(0) coef = np.random.randn(n_features) coef[50:] = 0.0 # only the top 10 features are impacting the model X = np.random.randn(n_samples_train + n_samples_test, n_features) y = np.dot(X, coef) # Split train and test data X_train, X_test = X[:n_samples_train], X[n_samples_train:] y_train, y_test = y[:n_samples_train], y[n_samples_train:] ############################################################################### # Compute train and test errors alphas = np.logspace(-5, 1, 60) enet = linear_model.ElasticNet(l1_ratio=0.7) train_errors = list() test_errors = list() for alpha in alphas: enet.set_params(alpha=alpha) enet.fit(X_train, y_train) train_errors.append(enet.score(X_train, y_train)) test_errors.append(enet.score(X_test, y_test)) i_alpha_optim = np.argmax(test_errors) alpha_optim = alphas[i_alpha_optim] print("Optimal regularization parameter : %s" % alpha_optim) # Estimate the coef_ on full data with optimal regularization parameter enet.set_params(alpha=alpha_optim) coef_ = enet.fit(X, y).coef_ ############################################################################### # Plot results functions import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.semilogx(alphas, train_errors, label='Train') plt.semilogx(alphas, test_errors, label='Test') plt.vlines(alpha_optim, plt.ylim()[0], np.max(test_errors), color='k', linewidth=3, label='Optimum on test') plt.legend(loc='lower left') plt.ylim([0, 1.2]) plt.xlabel('Regularization parameter') plt.ylabel('Performance') # Show estimated coef_ vs true coef plt.subplot(2, 1, 2) plt.plot(coef, label='True coef') plt.plot(coef_, label='Estimated coef') plt.legend() plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.26) plt.show()
bsd-3-clause
ammarkhann/FinalSeniorCode
lib/python2.7/site-packages/matplotlib/finance.py
10
42914
""" A collection of functions for collecting, analyzing and plotting financial data. This module is deprecated in 2.0 and has been moved to a module called `mpl_finance`. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import contextlib import os import warnings from six.moves.urllib.request import urlopen import datetime import numpy as np from matplotlib import colors as mcolors, verbose, get_cachedir from matplotlib.dates import date2num from matplotlib.cbook import iterable, mkdirs, warn_deprecated from matplotlib.collections import LineCollection, PolyCollection from matplotlib.lines import Line2D, TICKLEFT, TICKRIGHT from matplotlib.patches import Rectangle from matplotlib.transforms import Affine2D warn_deprecated( since=2.0, message=("The finance module has been deprecated in mpl 2.0 and will " "be removed in mpl 2.2. Please use the module mpl_finance " "instead.")) if six.PY3: import hashlib def md5(x): return hashlib.md5(x.encode()) else: from hashlib import md5 cachedir = get_cachedir() # cachedir will be None if there is no writable directory. if cachedir is not None: cachedir = os.path.join(cachedir, 'finance.cache') else: # Should only happen in a restricted environment (such as Google App # Engine). Deal with this gracefully by not caching finance data. cachedir = None stock_dt_ohlc = np.dtype([ (str('date'), object), (str('year'), np.int16), (str('month'), np.int8), (str('day'), np.int8), (str('d'), np.float), # mpl datenum (str('open'), np.float), (str('high'), np.float), (str('low'), np.float), (str('close'), np.float), (str('volume'), np.float), (str('aclose'), np.float)]) stock_dt_ochl = np.dtype( [(str('date'), object), (str('year'), np.int16), (str('month'), np.int8), (str('day'), np.int8), (str('d'), np.float), # mpl datenum (str('open'), np.float), (str('close'), np.float), (str('high'), np.float), (str('low'), np.float), (str('volume'), np.float), (str('aclose'), np.float)]) def parse_yahoo_historical_ochl(fh, adjusted=True, asobject=False): """Parse the historical data in file handle fh from yahoo finance. Parameters ---------- adjusted : bool If True (default) replace open, close, high, low prices with their adjusted values. The adjustment is by a scale factor, S = adjusted_close/close. Adjusted prices are actual prices multiplied by S. Volume is not adjusted as it is already backward split adjusted by Yahoo. If you want to compute dollars traded, multiply volume by the adjusted close, regardless of whether you choose adjusted = True|False. asobject : bool or None If False (default for compatibility with earlier versions) return a list of tuples containing d, open, close, high, low, volume If None (preferred alternative to False), return a 2-D ndarray corresponding to the list of tuples. Otherwise return a numpy recarray with date, year, month, day, d, open, close, high, low, volume, adjusted_close where d is a floating poing representation of date, as returned by date2num, and date is a python standard library datetime.date instance. The name of this kwarg is a historical artifact. Formerly, True returned a cbook Bunch holding 1-D ndarrays. The behavior of a numpy recarray is very similar to the Bunch. """ return _parse_yahoo_historical(fh, adjusted=adjusted, asobject=asobject, ochl=True) def parse_yahoo_historical_ohlc(fh, adjusted=True, asobject=False): """Parse the historical data in file handle fh from yahoo finance. Parameters ---------- adjusted : bool If True (default) replace open, high, low, close prices with their adjusted values. The adjustment is by a scale factor, S = adjusted_close/close. Adjusted prices are actual prices multiplied by S. Volume is not adjusted as it is already backward split adjusted by Yahoo. If you want to compute dollars traded, multiply volume by the adjusted close, regardless of whether you choose adjusted = True|False. asobject : bool or None If False (default for compatibility with earlier versions) return a list of tuples containing d, open, high, low, close, volume If None (preferred alternative to False), return a 2-D ndarray corresponding to the list of tuples. Otherwise return a numpy recarray with date, year, month, day, d, open, high, low, close, volume, adjusted_close where d is a floating poing representation of date, as returned by date2num, and date is a python standard library datetime.date instance. The name of this kwarg is a historical artifact. Formerly, True returned a cbook Bunch holding 1-D ndarrays. The behavior of a numpy recarray is very similar to the Bunch. """ return _parse_yahoo_historical(fh, adjusted=adjusted, asobject=asobject, ochl=False) def _parse_yahoo_historical(fh, adjusted=True, asobject=False, ochl=True): """Parse the historical data in file handle fh from yahoo finance. Parameters ---------- adjusted : bool If True (default) replace open, high, low, close prices with their adjusted values. The adjustment is by a scale factor, S = adjusted_close/close. Adjusted prices are actual prices multiplied by S. Volume is not adjusted as it is already backward split adjusted by Yahoo. If you want to compute dollars traded, multiply volume by the adjusted close, regardless of whether you choose adjusted = True|False. asobject : bool or None If False (default for compatibility with earlier versions) return a list of tuples containing d, open, high, low, close, volume or d, open, close, high, low, volume depending on `ochl` If None (preferred alternative to False), return a 2-D ndarray corresponding to the list of tuples. Otherwise return a numpy recarray with date, year, month, day, d, open, high, low, close, volume, adjusted_close where d is a floating poing representation of date, as returned by date2num, and date is a python standard library datetime.date instance. The name of this kwarg is a historical artifact. Formerly, True returned a cbook Bunch holding 1-D ndarrays. The behavior of a numpy recarray is very similar to the Bunch. ochl : bool Selects between ochl and ohlc ordering. Defaults to True to preserve original functionality. """ if ochl: stock_dt = stock_dt_ochl else: stock_dt = stock_dt_ohlc results = [] # datefmt = '%Y-%m-%d' fh.readline() # discard heading for line in fh: vals = line.split(',') if len(vals) != 7: continue # add warning? datestr = vals[0] #dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) # Using strptime doubles the runtime. With the present # format, we don't need it. dt = datetime.date(*[int(val) for val in datestr.split('-')]) dnum = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = float(vals[5]) aclose = float(vals[6]) if ochl: results.append((dt, dt.year, dt.month, dt.day, dnum, open, close, high, low, volume, aclose)) else: results.append((dt, dt.year, dt.month, dt.day, dnum, open, high, low, close, volume, aclose)) results.reverse() d = np.array(results, dtype=stock_dt) if adjusted: scale = d['aclose'] / d['close'] scale[np.isinf(scale)] = np.nan d['open'] *= scale d['high'] *= scale d['low'] *= scale d['close'] *= scale if not asobject: # 2-D sequence; formerly list of tuples, now ndarray ret = np.zeros((len(d), 6), dtype=np.float) ret[:, 0] = d['d'] if ochl: ret[:, 1] = d['open'] ret[:, 2] = d['close'] ret[:, 3] = d['high'] ret[:, 4] = d['low'] else: ret[:, 1] = d['open'] ret[:, 2] = d['high'] ret[:, 3] = d['low'] ret[:, 4] = d['close'] ret[:, 5] = d['volume'] if asobject is None: return ret return [tuple(row) for row in ret] return d.view(np.recarray) # Close enough to former Bunch return def fetch_historical_yahoo(ticker, date1, date2, cachename=None, dividends=False): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are date or datetime instances, or (year, month, day) sequences. Parameters ---------- ticker : str ticker date1 : sequence of form (year, month, day), `datetime`, or `date` start date date2 : sequence of form (year, month, day), `datetime`, or `date` end date cachename : str cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) dividends : bool set dividends=True to return dividends instead of price data. With this option set, parse functions will not work Returns ------- file_handle : file handle a file handle is returned Examples -------- >>> fh = fetch_historical_yahoo('^GSPC', (2000, 1, 1), (2001, 12, 31)) """ ticker = ticker.upper() if iterable(date1): d1 = (date1[1] - 1, date1[2], date1[0]) else: d1 = (date1.month - 1, date1.day, date1.year) if iterable(date2): d2 = (date2[1] - 1, date2[2], date2[0]) else: d2 = (date2.month - 1, date2.day, date2.year) if dividends: g = 'v' verbose.report('Retrieving dividends instead of prices') else: g = 'd' urlFmt = ('http://ichart.yahoo.com/table.csv?a=%d&b=%d&' + 'c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=%s&ignore=.csv') url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker, g) # Cache the finance data if cachename is supplied, or there is a writable # cache directory. if cachename is None and cachedir is not None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if cachename is not None: if os.path.exists(cachename): fh = open(cachename) verbose.report('Using cachefile %s for ' '%s' % (cachename, ticker)) else: mkdirs(os.path.abspath(os.path.dirname(cachename))) with contextlib.closing(urlopen(url)) as urlfh: with open(cachename, 'wb') as fh: fh.write(urlfh.read()) verbose.report('Saved %s data to cache file ' '%s' % (ticker, cachename)) fh = open(cachename, 'r') return fh else: return urlopen(url) def quotes_historical_yahoo_ochl(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. See :func:`parse_yahoo_historical` for explanation of output formats and the *asobject* and *adjusted* kwargs. Parameters ---------- ticker : str stock ticker date1 : sequence of form (year, month, day), `datetime`, or `date` start date date2 : sequence of form (year, month, day), `datetime`, or `date` end date cachename : str or `None` is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) Examples -------- >>> sp = f.quotes_historical_yahoo_ochl('^GSPC', d1, d2, asobject=True, adjusted=True) >>> returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] >>> [n,bins,patches] = hist(returns, 100) >>> mu = mean(returns) >>> sigma = std(returns) >>> x = normpdf(bins, mu, sigma) >>> plot(bins, x, color='red', lw=2) """ return _quotes_historical_yahoo(ticker, date1, date2, asobject=asobject, adjusted=adjusted, cachename=cachename, ochl=True) def quotes_historical_yahoo_ohlc(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. See :func:`parse_yahoo_historical` for explanation of output formats and the *asobject* and *adjusted* kwargs. Parameters ---------- ticker : str stock ticker date1 : sequence of form (year, month, day), `datetime`, or `date` start date date2 : sequence of form (year, month, day), `datetime`, or `date` end date cachename : str or `None` is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) Examples -------- >>> sp = f.quotes_historical_yahoo_ohlc('^GSPC', d1, d2, asobject=True, adjusted=True) >>> returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] >>> [n,bins,patches] = hist(returns, 100) >>> mu = mean(returns) >>> sigma = std(returns) >>> x = normpdf(bins, mu, sigma) >>> plot(bins, x, color='red', lw=2) """ return _quotes_historical_yahoo(ticker, date1, date2, asobject=asobject, adjusted=adjusted, cachename=cachename, ochl=False) def _quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None, ochl=True): """ Get historical data for ticker between date1 and date2. See :func:`parse_yahoo_historical` for explanation of output formats and the *asobject* and *adjusted* kwargs. Parameters ---------- ticker : str stock ticker date1 : sequence of form (year, month, day), `datetime`, or `date` start date date2 : sequence of form (year, month, day), `datetime`, or `date` end date cachename : str or `None` is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) ochl: bool temporary argument to select between ochl and ohlc ordering Examples -------- >>> sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) >>> returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] >>> [n,bins,patches] = hist(returns, 100) >>> mu = mean(returns) >>> sigma = std(returns) >>> x = normpdf(bins, mu, sigma) >>> plot(bins, x, color='red', lw=2) """ # Maybe enable a warning later as part of a slow transition # to using None instead of False. #if asobject is False: # warnings.warn("Recommend changing to asobject=None") fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = _parse_yahoo_historical(fh, asobject=asobject, adjusted=adjusted, ochl=ochl) if len(ret) == 0: return None except IOError as exc: warnings.warn('fh failure\n%s' % (exc.strerror[1])) return None return ret def plot_day_summary_oclh(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """Plots day summary Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. Parameters ---------- ax : `Axes` an `Axes` instance to plot to quotes : sequence of (time, open, close, high, low, ...) sequences data to plot. time must be in float date format - see date2num ticksize : int open/close tick marker in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open Returns ------- lines : list list of tuples of the lines added (one tuple per quote) """ return _plot_day_summary(ax, quotes, ticksize=ticksize, colorup=colorup, colordown=colordown, ochl=True) def plot_day_summary_ohlc(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """Plots day summary Represent the time, open, high, low, close as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. Parameters ---------- ax : `Axes` an `Axes` instance to plot to quotes : sequence of (time, open, high, low, close, ...) sequences data to plot. time must be in float date format - see date2num ticksize : int open/close tick marker in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open Returns ------- lines : list list of tuples of the lines added (one tuple per quote) """ return _plot_day_summary(ax, quotes, ticksize=ticksize, colorup=colorup, colordown=colordown, ochl=False) def _plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ochl=True ): """Plots day summary Represent the time, open, high, low, close as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. Parameters ---------- ax : `Axes` an `Axes` instance to plot to quotes : sequence of quote sequences data to plot. time must be in float date format - see date2num (time, open, high, low, close, ...) vs (time, open, close, high, low, ...) set by `ochl` ticksize : int open/close tick marker in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open ochl: bool argument to select between ochl and ohlc ordering of quotes Returns ------- lines : list list of tuples of the lines added (one tuple per quote) """ # unfortunately this has a different return type than plot_day_summary2_* lines = [] for q in quotes: if ochl: t, open, close, high, low = q[:5] else: t, open, high, low, close = q[:5] if close >= open: color = colorup else: color = colordown vline = Line2D(xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D(xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D(xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick_ochl(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown Parameters ---------- ax : `Axes` an Axes instance to plot to quotes : sequence of (time, open, close, high, low, ...) sequences As long as the first 5 elements are these values, the record can be as long as you want (e.g., it may store volume). time must be in float days format - see date2num width : float fraction of a day for the rectangle width colorup : color the color of the rectangle where close >= open colordown : color the color of the rectangle where close < open alpha : float the rectangle alpha level Returns ------- ret : tuple returns (lines, patches) where lines is a list of lines added and patches is a list of the rectangle patches added """ return _candlestick(ax, quotes, width=width, colorup=colorup, colordown=colordown, alpha=alpha, ochl=True) def candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ Plot the time, open, high, low, close as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown Parameters ---------- ax : `Axes` an Axes instance to plot to quotes : sequence of (time, open, high, low, close, ...) sequences As long as the first 5 elements are these values, the record can be as long as you want (e.g., it may store volume). time must be in float days format - see date2num width : float fraction of a day for the rectangle width colorup : color the color of the rectangle where close >= open colordown : color the color of the rectangle where close < open alpha : float the rectangle alpha level Returns ------- ret : tuple returns (lines, patches) where lines is a list of lines added and patches is a list of the rectangle patches added """ return _candlestick(ax, quotes, width=width, colorup=colorup, colordown=colordown, alpha=alpha, ochl=False) def _candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0, ochl=True): """ Plot the time, open, high, low, close as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown Parameters ---------- ax : `Axes` an Axes instance to plot to quotes : sequence of quote sequences data to plot. time must be in float date format - see date2num (time, open, high, low, close, ...) vs (time, open, close, high, low, ...) set by `ochl` width : float fraction of a day for the rectangle width colorup : color the color of the rectangle where close >= open colordown : color the color of the rectangle where close < open alpha : float the rectangle alpha level ochl: bool argument to select between ochl and ohlc ordering of quotes Returns ------- ret : tuple returns (lines, patches) where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width / 2.0 lines = [] patches = [] for q in quotes: if ochl: t, open, close, high, low = q[:5] else: t, open, high, low, close = q[:5] if close >= open: color = colorup lower = open height = close - open else: color = colordown lower = close height = open - close vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, linewidth=0.5, antialiased=True, ) rect = Rectangle( xy=(t - OFFSET, lower), width=width, height=height, facecolor=color, edgecolor=color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def _check_input(opens, closes, highs, lows, miss=-1): """Checks that *opens*, *highs*, *lows* and *closes* have the same length. NOTE: this code assumes if any value open, high, low, close is missing (*-1*) they all are missing Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence sequence of opening values highs : sequence sequence of high values lows : sequence sequence of low values closes : sequence sequence of closing values miss : int identifier of the missing data Raises ------ ValueError if the input sequences don't have the same length """ def _missing(sequence, miss=-1): """Returns the index in *sequence* of the missing data, identified by *miss* Parameters ---------- sequence : sequence to evaluate miss : identifier of the missing data Returns ------- where_miss: numpy.ndarray indices of the missing data """ return np.where(np.array(sequence) == miss)[0] same_length = len(opens) == len(highs) == len(lows) == len(closes) _missopens = _missing(opens) same_missing = ((_missopens == _missing(highs)).all() and (_missopens == _missing(lows)).all() and (_missopens == _missing(closes)).all()) if not (same_length and same_missing): msg = ("*opens*, *highs*, *lows* and *closes* must have the same" " length. NOTE: this code assumes if any value open, high," " low, close is missing (*-1*) they all must be missing.") raise ValueError(msg) def plot_day_summary2_ochl(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """Represent the time, open, close, high, low, as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence sequence of opening values closes : sequence sequence of closing values highs : sequence sequence of high values lows : sequence sequence of low values ticksize : int size of open and close ticks in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open Returns ------- ret : list a list of lines added to the axes """ return plot_day_summary2_ohlc(ax, opens, highs, lows, closes, ticksize, colorup, colordown) def plot_day_summary2_ohlc(ax, opens, highs, lows, closes, ticksize=4, colorup='k', colordown='r', ): """Represent the time, open, high, low, close as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. *opens*, *highs*, *lows* and *closes* must have the same length. NOTE: this code assumes if any value open, high, low, close is missing (*-1*) they all are missing Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence sequence of opening values highs : sequence sequence of high values lows : sequence sequence of low values closes : sequence sequence of closing values ticksize : int size of open and close ticks in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open Returns ------- ret : list a list of lines added to the axes """ _check_input(opens, highs, lows, closes) rangeSegments = [((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [((-ticksize, 0), (0, 0))] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [((0, 0), (ticksize, 0))] offsetsOpen = [(i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1] offsetsClose = [(i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1] scale = ax.figure.dpi * (1.0 / 72.0) tickTransform = Affine2D().scale(scale, 0.0) colorup = mcolors.to_rgba(colorup) colordown = mcolors.to_rgba(colordown) colord = {True: colorup, False: colordown} colors = [colord[open < close] for open, close in zip(opens, closes) if open != -1 and close != -1] useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors=colors, linewidths=lw, antialiaseds=useAA, ) openCollection = LineCollection(openSegments, colors=colors, antialiaseds=useAA, linewidths=lw, offsets=offsetsOpen, transOffset=ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors=colors, antialiaseds=useAA, linewidths=lw, offsets=offsetsClose, transOffset=ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low != -1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2_ochl(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """Represent the open, close as a bar line and high low range as a vertical line. Preserves the original argument order. Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence sequence of opening values closes : sequence sequence of closing values highs : sequence sequence of high values lows : sequence sequence of low values ticksize : int size of open and close ticks in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open alpha : float bar transparency Returns ------- ret : tuple (lineCollection, barCollection) """ candlestick2_ohlc(ax, opens, highs, lows, closes, width=width, colorup=colorup, colordown=colordown, alpha=alpha) def candlestick2_ohlc(ax, opens, highs, lows, closes, width=4, colorup='k', colordown='r', alpha=0.75, ): """Represent the open, close as a bar line and high low range as a vertical line. NOTE: this code assumes if any value open, low, high, close is missing they all are missing Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence sequence of opening values highs : sequence sequence of high values lows : sequence sequence of low values closes : sequence sequence of closing values ticksize : int size of open and close ticks in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open alpha : float bar transparency Returns ------- ret : tuple (lineCollection, barCollection) """ _check_input(opens, highs, lows, closes) delta = width / 2. barVerts = [((i - delta, open), (i - delta, close), (i + delta, close), (i + delta, open)) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close != -1] rangeSegments = [((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1] colorup = mcolors.to_rgba(colorup, alpha) colordown = mcolors.to_rgba(colordown, alpha) colord = {True: colorup, False: colordown} colors = [colord[open < close] for open, close in zip(opens, closes) if open != -1 and close != -1] useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors=((0, 0, 0, 1), ), linewidths=lw, antialiaseds=useAA, ) barCollection = PolyCollection(barVerts, facecolors=colors, edgecolors=((0, 0, 0, 1), ), antialiaseds=useAA, linewidths=lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low != -1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(barCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all Parameters ---------- ax : `Axes` an Axes instance to plot to opens : sequence a sequence of opens closes : sequence a sequence of closes volumes : sequence a sequence of volumes width : int the bar width in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open alpha : float bar transparency Returns ------- ret : `barCollection` The `barrCollection` added to the axes """ colorup = mcolors.to_rgba(colorup, alpha) colordown = mcolors.to_rgba(colordown, alpha) colord = {True: colorup, False: colordown} colors = [colord[open < close] for open, close in zip(opens, closes) if open != -1 and close != -1] delta = width / 2. bars = [((i - delta, 0), (i - delta, v), (i + delta, v), (i + delta, 0)) for i, v in enumerate(volumes) if v != -1] barCollection = PolyCollection(bars, facecolors=colors, edgecolors=((0, 0, 0, 1), ), antialiaseds=(0,), linewidths=(0.5,), ) ax.add_collection(barCollection) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all nb: first point is not displayed - it is used only for choosing the right color Parameters ---------- ax : `Axes` an Axes instance to plot to closes : sequence a sequence of closes volumes : sequence a sequence of volumes width : int the bar width in points colorup : color the color of the lines where close >= open colordown : color the color of the lines where close < open alpha : float bar transparency Returns ------- ret : `barCollection` The `barrCollection` added to the axes """ return volume_overlay(ax, closes[:-1], closes[1:], volumes[1:], colorup, colordown, width, alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """Add a volume overlay to the current axes. quotes is a list of (d, open, high, low, close, volume) and close-open is used to determine the color of the bar Parameters ---------- ax : `Axes` an Axes instance to plot to quotes : sequence of (time, open, high, low, close, ...) sequences data to plot. time must be in float date format - see date2num width : int the bar width in points colorup : color the color of the lines where close1 >= close0 colordown : color the color of the lines where close1 < close0 alpha : float bar transparency Returns ------- ret : `barCollection` The `barrCollection` added to the axes """ colorup = mcolors.to_rgba(colorup, alpha) colordown = mcolors.to_rgba(colordown, alpha) colord = {True: colorup, False: colordown} dates, opens, highs, lows, closes, volumes = list(zip(*quotes)) colors = [colord[close1 >= close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0 != -1 and close1 != -1] colors.insert(0, colord[closes[0] >= opens[0]]) right = width / 2.0 left = -width / 2.0 bars = [((left, 0), (left, volume), (right, volume), (right, 0)) for d, open, high, low, close, volume in quotes] sx = ax.figure.dpi * (1.0 / 72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx, sy) dates = [d for d, open, high, low, close, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors=colors, edgecolors=((0, 0, 0, 1),), antialiaseds=useAA, linewidths=lw, offsets=offsetsBars, transOffset=ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, high, low, close, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.bounds #print 'viewlim', ax.viewLim.bounds ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """Add a bar collection graph with height vals (-1 is missing). Parameters ---------- ax : `Axes` an Axes instance to plot to vals : sequence a sequence of values facecolor : color the color of the bar face edgecolor : color the color of the bar edges width : int the bar width in points alpha : float bar transparency Returns ------- ret : `barCollection` The `barrCollection` added to the axes """ facecolors = (mcolors.to_rgba(facecolor, alpha),) edgecolors = (mcolors.to_rgba(edgecolor, alpha),) right = width / 2.0 left = -width / 2.0 bars = [((left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1] sx = ax.figure.dpi * (1.0 / 72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx, sy) offsetsBars = [(i, 0) for i, v in enumerate(vals) if v != -1] barCollection = PolyCollection(bars, facecolors=facecolors, edgecolors=edgecolors, antialiaseds=(0,), linewidths=(0.5,), offsets=offsetsBars, transOffset=ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection
mit
sho-87/python-machine-learning
CNN/mw/2_eeg_mw_sd.py
1
11487
from __future__ import print_function import os import time import numpy as np import theano import theano.tensor as T import lasagne import matplotlib.pyplot as plt from tqdm import tqdm from lasagne.layers import InputLayer, Conv2DLayer, Pool2DLayer VERBOSE = False def bootstrap(data, labels, boot_type="downsample"): print("Bootstrapping data...") ot_class = 0 mw_class = 1 ot_idx = np.where(labels == ot_class) mw_idx = np.where(labels == mw_class) # Get OT examples ot_data = data[ot_idx] ot_labels = labels[ot_idx] print(" - OT (class: {}) | Data: {} | Labels: {}".format(ot_class, ot_data.shape, ot_labels.shape)) # Get MW examples mw_data = data[mw_idx] mw_labels = labels[mw_idx] print(" - MW (class: {}) | Data: {} | Labels: {}".format(mw_class, mw_data.shape, mw_labels.shape)) # Set majority and minority classes if ot_data.shape[0] > mw_data.shape[0]: maj_class, maj_data, maj_labels = ot_class, ot_data, ot_labels min_class, min_data, min_labels = mw_class, mw_data, mw_labels else: maj_class, maj_data, maj_labels = mw_class, mw_data, mw_labels min_class, min_data, min_labels = ot_class, ot_data, ot_labels print(" - Majority class: {} (N = {}) | Minority class: {} (N = {})".format(maj_class, maj_data.shape[0], min_class, min_data.shape[0])) # Upsample minority class if boot_type == "upsample": print("Upsampling minority class...") num_to_boot = maj_data.shape[0] - min_data.shape[0] print(" - Number to upsample: {}".format(num_to_boot)) bootstrap_idx = np.random.randint(min_data.shape[0], size=num_to_boot) min_data_boot = min_data[bootstrap_idx] min_labels_boot = min_labels[bootstrap_idx] final_data = np.concatenate((data, min_data_boot), axis=0) final_labels = np.concatenate((labels, min_labels_boot), axis=0) elif boot_type == "downsample": print("Downsampling majority class...") # Resample N = number of minority examples num_to_boot = min_data.shape[0] bootstrap_idx = np.random.randint(maj_data.shape[0], size=num_to_boot) maj_data_boot = maj_data[bootstrap_idx] maj_labels_boot = maj_labels[bootstrap_idx] final_data = np.concatenate((maj_data_boot, min_data), axis=0) final_labels = np.concatenate((maj_labels_boot, min_labels), axis=0) print("Final class balance: {} ({}) - {} ({})".format( maj_class, len(np.where(final_labels==maj_class)[0]), min_class, len(np.where(final_labels==min_class)[0]))) return final_data, final_labels # Load EEG data base_dir = os.path.abspath(os.path.join(os.path.join(os.path.dirname(__file__), os.pardir), os.pardir)) data_dir = os.path.join(base_dir, "data") data = np.load(os.path.join(data_dir, 'all_data_6_2d_full.npy')) data = data.reshape(-1, 1, 64, 512) data_labels = np.load(os.path.join(data_dir, 'all_data_6_2d_full_labels.npy')) data_labels = data_labels[:,1] # Standardize data per trial # Significantly improves gradient descent data = (data - data.mean(axis=(2,3),keepdims=1)) / data.std(axis=(2,3),keepdims=1) # Up/downsample the data to balance classes data, data_labels = bootstrap(data, data_labels, "downsample") # Create train, validation, test sets indices = np.random.permutation(data.shape[0]) split_train, split_val, split_test = .6, .2, .2 split_train = int(round(data.shape[0]*split_train)) split_val = split_train + int(round(data.shape[0]*split_val)) train_idx = indices[:split_train] val_idx = indices[split_train:split_val] test_idx = indices[split_val:] train_data = data[train_idx,:] train_labels = data_labels[train_idx] val_data = data[val_idx,:] val_labels = data_labels[val_idx] test_data = data[test_idx,:] test_labels = data_labels[test_idx] def build_cnn(input_var=None): # Input layer, as usual: l_in = InputLayer(shape=(None, 1, 64, 512), input_var=input_var) l_conv1 = Conv2DLayer(incoming = l_in, num_filters = 8, filter_size = (3,3), stride = 1, pad = 'same', W = lasagne.init.Normal(std = 0.02), nonlinearity = lasagne.nonlinearities.very_leaky_rectify) l_pool1 = Pool2DLayer(incoming = l_conv1, pool_size = 2, stride = 2) # A fully-connected layer l_fc = lasagne.layers.DenseLayer( l_pool1, num_units=512, nonlinearity=lasagne.nonlinearities.rectify) l_out = lasagne.layers.DenseLayer( l_fc, num_units=2, nonlinearity=lasagne.nonlinearities.softmax) return l_out # ############################# Batch iterator ############################### # This is just a simple helper function iterating over training data in # mini-batches of a particular size, optionally in random order. It assumes # data is available as numpy arrays. For big datasets, you could load numpy # arrays as memory-mapped files (np.load(..., mmap_mode='r')), or write your # own custom data iteration function. For small datasets, you can also copy # them to GPU at once for slightly improved performance. This would involve # several changes in the main program, though, and is not demonstrated here. # Notice that this function returns only mini-batches of size `batchsize`. # If the size of the data is not a multiple of `batchsize`, it will not # return the last (remaining) mini-batch. def iterate_minibatches(inputs, targets, batchsize, shuffle=False): assert len(inputs) == len(targets) if shuffle: indices = np.arange(len(inputs)) np.random.shuffle(indices) # tqdm() can be removed if no visual progress bar is needed for start_idx in tqdm(range(0, len(inputs) - batchsize + 1, batchsize)): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt], targets[excerpt] def main(model='cnn', batch_size=500, num_epochs=500): # Prepare Theano variables for inputs and targets input_var = T.tensor4('inputs') target_var = T.ivector('targets') network = build_cnn(input_var) # Create a loss expression for training, i.e., a scalar objective we want # to minimize (for our multi-class problem, it is the cross-entropy loss): prediction = lasagne.layers.get_output(network) loss = lasagne.objectives.categorical_crossentropy(prediction, target_var) loss = loss.mean() # We could add some weight decay as well here, see lasagne.regularization. train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), target_var), dtype=theano.config.floatX) # Create update expressions for training params = lasagne.layers.get_all_params(network, trainable=True) updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.001) #updates = lasagne.updates.adam(loss, params, learning_rate=0.1) # Create a loss expression for validation/testing. The crucial difference # here is that we do a deterministic forward pass through the network, # disabling dropout layers. test_prediction = lasagne.layers.get_output(network, deterministic=True) test_loss = lasagne.objectives.categorical_crossentropy(test_prediction, target_var) test_loss = test_loss.mean() # As a bonus, also create an expression for the classification accuracy: test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), target_var), dtype=theano.config.floatX) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_fn = theano.function([input_var, target_var], [loss, train_acc], updates=updates) # Compile a second function computing the validation loss and accuracy: val_fn = theano.function([input_var, target_var], [test_loss, test_acc]) training_hist = [] val_hist = [] print("Starting training...") # We iterate over epochs: for epoch in range(num_epochs): # In each epoch, we do a full pass over the training data: print("Training epoch {}...".format(epoch+1)) train_err = 0 train_acc = 0 train_batches = 0 start_time = time.time() for batch in iterate_minibatches(train_data, train_labels, batch_size, shuffle=True): inputs, targets = batch err, acc = train_fn(inputs, targets) train_err += err train_acc += acc train_batches += 1 if VERBOSE: print("Epoch: {} | Mini-batch: {}/{} | Elapsed time: {:.2f}s".format( epoch+1, train_batches, train_data.shape[0]/batch_size, time.time()-start_time)) training_hist.append(train_err / train_batches) # And a full pass over the validation data: print("Validating epoch...") val_err = 0 val_acc = 0 val_batches = 0 for batch in iterate_minibatches(val_data, val_labels, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) val_err += err val_acc += acc val_batches += 1 val_hist.append(val_err / val_batches) # Then we print the results for this epoch: print("Epoch {} of {} took {:.3f}s".format( epoch + 1, num_epochs, time.time() - start_time)) print(" training loss:\t\t{:.6f}".format(train_err / train_batches)) print(" training accuracy:\t\t{:.2f} %".format( train_acc / train_batches * 100)) print(" validation loss:\t\t{:.6f}".format(val_err / val_batches)) print(" validation accuracy:\t\t{:.2f} %".format( val_acc / val_batches * 100)) # After training, we compute and print the test predictions/error: test_err = 0 test_acc = 0 test_batches = 0 for batch in iterate_minibatches(test_data, test_labels, batch_size, shuffle=False): inputs, targets = batch err, acc = val_fn(inputs, targets) test_err += err test_acc += acc test_batches += 1 print("Final results:") print(" test loss:\t\t\t{:.6f}".format(test_err / test_batches)) print(" test accuracy:\t\t{:.2f} %".format( test_acc / test_batches * 100)) # Plot learning plt.plot(range(1, num_epochs+1), training_hist, label="Training") plt.plot(range(1, num_epochs+1), val_hist, label="Validation") plt.grid(True) plt.title("Training Curve") plt.xlim(1, num_epochs+1) plt.xlabel("Epoch #") plt.ylabel("Loss") plt.legend(loc='best') plt.show() # Optionally, you could now dump the network weights to a file like this: # np.savez('model.npz', *lasagne.layers.get_all_param_values(network)) # # And load them again later on like this: # with np.load('model.npz') as f: # param_values = [f['arr_%d' % i] for i in range(len(f.files))] # lasagne.layers.set_all_param_values(network, param_values) # Run the model main(batch_size=100, num_epochs=50) # 66.56%
mit
rahul-c1/scikit-learn
sklearn/externals/joblib/__init__.py
10
4382
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://packages.python.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ __version__ = '0.8.3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
rishikksh20/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting.py
19
40613
""" Testing for the gradient boosting module (sklearn.ensemble.gradient_boosting). """ import warnings import numpy as np from itertools import product from scipy.sparse import csr_matrix from scipy.sparse import csc_matrix from scipy.sparse import coo_matrix from sklearn import datasets from sklearn.base import clone from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.gradient_boosting import ZeroEstimator from sklearn.metrics import mean_squared_error from sklearn.utils import check_random_state, tosequence from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import skip_if_32bit from sklearn.exceptions import DataConversionWarning from sklearn.exceptions import NotFittedError # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] rng = np.random.RandomState(0) # also load the boston dataset # and randomly permute it boston = datasets.load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] # also load the iris dataset # and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def check_classification_toy(presort, loss): # Check classification on a toy dataset. clf = GradientBoostingClassifier(loss=loss, n_estimators=10, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(10, len(clf.estimators_)) deviance_decrease = (clf.train_score_[:-1] - clf.train_score_[1:]) assert_true(np.any(deviance_decrease >= 0.0)) leaves = clf.apply(X) assert_equal(leaves.shape, (6, 10, 1)) def test_classification_toy(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_toy, presort, loss def test_parameter_checks(): # Check input parameter validation. assert_raises(ValueError, GradientBoostingClassifier(n_estimators=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(n_estimators=-1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(learning_rate=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='foobar').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_split=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_samples_leaf=-1.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=-1.).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(min_weight_fraction_leaf=0.6).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=0.0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=1.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(subsample=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=-0.1).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(max_depth=0).fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(init={}).fit, X, y) # test fit before feature importance assert_raises(ValueError, lambda: GradientBoostingClassifier().feature_importances_) # deviance requires ``n_classes >= 2``. assert_raises(ValueError, lambda X, y: GradientBoostingClassifier( loss='deviance').fit(X, y), X, [0, 0, 0, 0]) def test_loss_function(): assert_raises(ValueError, GradientBoostingClassifier(loss='ls').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='lad').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='quantile').fit, X, y) assert_raises(ValueError, GradientBoostingClassifier(loss='huber').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='deviance').fit, X, y) assert_raises(ValueError, GradientBoostingRegressor(loss='exponential').fit, X, y) def check_classification_synthetic(presort, loss): # Test GradientBoostingClassifier on synthetic dataset used by # Hastie et al. in ESLII Example 12.7. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=2, max_depth=1, loss=loss, learning_rate=1.0, random_state=0) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.09) gbrt = GradientBoostingClassifier(n_estimators=200, min_samples_split=2, max_depth=1, loss=loss, learning_rate=1.0, subsample=0.5, random_state=0, presort=presort) gbrt.fit(X_train, y_train) error_rate = (1.0 - gbrt.score(X_test, y_test)) assert_less(error_rate, 0.08) def test_classification_synthetic(): for presort, loss in product(('auto', True, False), ('deviance', 'exponential')): yield check_classification_synthetic, presort, loss def check_boston(presort, loss, subsample): # Check consistency on dataset boston house prices with least squares # and least absolute deviation. ones = np.ones(len(boston.target)) last_y_pred = None for sample_weight in None, ones, 2 * ones: clf = GradientBoostingRegressor(n_estimators=100, loss=loss, max_depth=4, subsample=subsample, min_samples_split=2, random_state=1, presort=presort) assert_raises(ValueError, clf.predict, boston.data) clf.fit(boston.data, boston.target, sample_weight=sample_weight) leaves = clf.apply(boston.data) assert_equal(leaves.shape, (506, 100)) y_pred = clf.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_less(mse, 6.0) if last_y_pred is not None: assert_array_almost_equal(last_y_pred, y_pred) last_y_pred = y_pred def test_boston(): for presort, loss, subsample in product(('auto', True, False), ('ls', 'lad', 'huber'), (1.0, 0.5)): yield check_boston, presort, loss, subsample def check_iris(presort, subsample, sample_weight): # Check consistency on dataset iris. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=subsample, presort=presort) clf.fit(iris.data, iris.target, sample_weight=sample_weight) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) leaves = clf.apply(iris.data) assert_equal(leaves.shape, (150, 100, 3)) def test_iris(): ones = np.ones(len(iris.target)) for presort, subsample, sample_weight in product(('auto', True, False), (1.0, 0.5), (None, ones)): yield check_iris, presort, subsample, sample_weight def test_regression_synthetic(): # Test on synthetic regression datasets used in Leo Breiman, # `Bagging Predictors?. Machine Learning 24(2): 123-140 (1996). random_state = check_random_state(1) regression_params = {'n_estimators': 100, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.1, 'loss': 'ls'} # Friedman1 X, y = datasets.make_friedman1(n_samples=1200, random_state=random_state, noise=1.0) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: clf = GradientBoostingRegressor(presort=presort) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 5.0) # Friedman2 X, y = datasets.make_friedman2(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 1700.0) # Friedman3 X, y = datasets.make_friedman3(n_samples=1200, random_state=random_state) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] for presort in True, False: regression_params['presort'] = presort clf = GradientBoostingRegressor(**regression_params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) assert_less(mse, 0.015) def test_feature_importances(): X = np.array(boston.data, dtype=np.float32) y = np.array(boston.target, dtype=np.float32) for presort in True, False: clf = GradientBoostingRegressor(n_estimators=100, max_depth=5, min_samples_split=2, random_state=1, presort=presort) clf.fit(X, y) assert_true(hasattr(clf, 'feature_importances_')) def test_probability_log(): # Predict probabilities. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_check_inputs(): # Test input checks (shape and type of X and y). clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y + [0, 1]) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) assert_raises(ValueError, clf.fit, X, y, sample_weight=([1] * len(y)) + [0, 1]) def test_check_inputs_predict(): # X has wrong shape clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, rng.rand(len(X))) x = np.array([1.0, 2.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) x = np.array([[]]) assert_raises(ValueError, clf.predict, x) x = np.array([1.0, 2.0, 3.0])[:, np.newaxis] assert_raises(ValueError, clf.predict, x) def test_check_max_features(): # test if max_features is valid. clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=0) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=(len(X[0]) + 1)) assert_raises(ValueError, clf.fit, X, y) clf = GradientBoostingRegressor(n_estimators=100, random_state=1, max_features=-0.1) assert_raises(ValueError, clf.fit, X, y) def test_max_feature_regression(): # Test to make sure random state is set properly. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] gbrt = GradientBoostingClassifier(n_estimators=100, min_samples_split=5, max_depth=2, learning_rate=.1, max_features=2, random_state=1) gbrt.fit(X_train, y_train) deviance = gbrt.loss_(y_test, gbrt.decision_function(X_test)) assert_true(deviance < 0.5, "GB failed with deviance %.4f" % deviance) def test_max_feature_auto(): # Test if max features is set properly for floats and str. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) _, n_features = X.shape X_train = X[:2000] y_train = y[:2000] gbrt = GradientBoostingClassifier(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='auto') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, n_features) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.3) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(n_features * 0.3)) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='sqrt') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.sqrt(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features='log2') gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, int(np.log2(n_features))) gbrt = GradientBoostingRegressor(n_estimators=1, max_features=0.01 / X.shape[1]) gbrt.fit(X_train, y_train) assert_equal(gbrt.max_features_, 1) def test_staged_predict(): # Test whether staged decision function eventually gives # the same prediction. X, y = datasets.make_friedman1(n_samples=1200, random_state=1, noise=1.0) X_train, y_train = X[:200], y[:200] X_test = X[200:] clf = GradientBoostingRegressor() # test raise ValueError if not fitted assert_raises(ValueError, lambda X: np.fromiter( clf.staged_predict(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # test if prediction for last stage equals ``predict`` for y in clf.staged_predict(X_test): assert_equal(y.shape, y_pred.shape) assert_array_equal(y_pred, y) def test_staged_predict_proba(): # Test whether staged predict proba eventually gives # the same prediction. X, y = datasets.make_hastie_10_2(n_samples=1200, random_state=1) X_train, y_train = X[:200], y[:200] X_test, y_test = X[200:], y[200:] clf = GradientBoostingClassifier(n_estimators=20) # test raise NotFittedError if not fitted assert_raises(NotFittedError, lambda X: np.fromiter( clf.staged_predict_proba(X), dtype=np.float64), X_test) clf.fit(X_train, y_train) # test if prediction for last stage equals ``predict`` for y_pred in clf.staged_predict(X_test): assert_equal(y_test.shape, y_pred.shape) assert_array_equal(clf.predict(X_test), y_pred) # test if prediction for last stage equals ``predict_proba`` for staged_proba in clf.staged_predict_proba(X_test): assert_equal(y_test.shape[0], staged_proba.shape[0]) assert_equal(2, staged_proba.shape[1]) assert_array_equal(clf.predict_proba(X_test), staged_proba) def test_staged_functions_defensive(): # test that staged_functions make defensive copies rng = np.random.RandomState(0) X = rng.uniform(size=(10, 3)) y = (4 * X[:, 0]).astype(np.int) + 1 # don't predict zeros for estimator in [GradientBoostingRegressor(), GradientBoostingClassifier()]: estimator.fit(X, y) for func in ['predict', 'decision_function', 'predict_proba']: staged_func = getattr(estimator, "staged_" + func, None) if staged_func is None: # regressor has no staged_predict_proba continue with warnings.catch_warnings(record=True): staged_result = list(staged_func(X)) staged_result[1][:] = 0 assert_true(np.all(staged_result[0] != 0)) def test_serialization(): # Check model serialization. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) try: import cPickle as pickle except ImportError: import pickle serialized_clf = pickle.dumps(clf, protocol=pickle.HIGHEST_PROTOCOL) clf = None clf = pickle.loads(serialized_clf) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_degenerate_targets(): # Check if we can fit even though all targets are equal. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) # classifier should raise exception assert_raises(ValueError, clf.fit, X, np.ones(len(X))) clf = GradientBoostingRegressor(n_estimators=100, random_state=1) clf.fit(X, np.ones(len(X))) clf.predict([rng.rand(2)]) assert_array_equal(np.ones((1,), dtype=np.float64), clf.predict([rng.rand(2)])) def test_quantile_loss(): # Check if quantile loss with alpha=0.5 equals lad. clf_quantile = GradientBoostingRegressor(n_estimators=100, loss='quantile', max_depth=4, alpha=0.5, random_state=7) clf_quantile.fit(boston.data, boston.target) y_quantile = clf_quantile.predict(boston.data) clf_lad = GradientBoostingRegressor(n_estimators=100, loss='lad', max_depth=4, random_state=7) clf_lad.fit(boston.data, boston.target) y_lad = clf_lad.predict(boston.data) assert_array_almost_equal(y_quantile, y_lad, decimal=4) def test_symbol_labels(): # Test with non-integer class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) symbol_y = tosequence(map(str, y)) clf.fit(X, symbol_y) assert_array_equal(clf.predict(T), tosequence(map(str, true_result))) assert_equal(100, len(clf.estimators_)) def test_float_class_labels(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) float_y = np.asarray(y, dtype=np.float32) clf.fit(X, float_y) assert_array_equal(clf.predict(T), np.asarray(true_result, dtype=np.float32)) assert_equal(100, len(clf.estimators_)) def test_shape_y(): # Test with float class labels. clf = GradientBoostingClassifier(n_estimators=100, random_state=1) y_ = np.asarray(y, dtype=np.int32) y_ = y_[:, np.newaxis] # This will raise a DataConversionWarning that we want to # "always" raise, elsewhere the warnings gets ignored in the # later tests, and the tests that check for this warning fail assert_warns(DataConversionWarning, clf.fit, X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_mem_layout(): # Test with different memory layouts of X and y X_ = np.asfortranarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) X_ = np.ascontiguousarray(X) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X_, y) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.ascontiguousarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) y_ = np.asarray(y, dtype=np.int32) y_ = np.asfortranarray(y_) clf = GradientBoostingClassifier(n_estimators=100, random_state=1) clf.fit(X, y_) assert_array_equal(clf.predict(T), true_result) assert_equal(100, len(clf.estimators_)) def test_oob_improvement(): # Test if oob improvement has correct shape and regression test. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=0.5) clf.fit(X, y) assert_equal(clf.oob_improvement_.shape[0], 100) # hard-coded regression test - change if modification in OOB computation assert_array_almost_equal(clf.oob_improvement_[:5], np.array([0.19, 0.15, 0.12, -0.12, -0.11]), decimal=2) def test_oob_improvement_raise(): # Test if oob improvement has correct shape. clf = GradientBoostingClassifier(n_estimators=100, random_state=1, subsample=1.0) clf.fit(X, y) assert_raises(AttributeError, lambda: clf.oob_improvement_) def test_oob_multilcass_iris(): # Check OOB improvement on multi-class dataset. clf = GradientBoostingClassifier(n_estimators=100, loss='deviance', random_state=1, subsample=0.5) clf.fit(iris.data, iris.target) score = clf.score(iris.data, iris.target) assert_greater(score, 0.9) assert_equal(clf.oob_improvement_.shape[0], clf.n_estimators) # hard-coded regression test - change if modification in OOB computation # FIXME: the following snippet does not yield the same results on 32 bits # assert_array_almost_equal(clf.oob_improvement_[:5], # np.array([12.68, 10.45, 8.18, 6.43, 5.13]), # decimal=2) def test_verbose_output(): # Check verbose=1 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=1, subsample=0.8) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # with OOB true_header = ' '.join(['%10s'] + ['%16s'] * 3) % ( 'Iter', 'Train Loss', 'OOB Improve', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # one for 1-10 and then 9 for 20-100 assert_equal(10 + 9, n_lines) def test_more_verbose_output(): # Check verbose=2 does not cause error. from sklearn.externals.six.moves import cStringIO as StringIO import sys old_stdout = sys.stdout sys.stdout = StringIO() clf = GradientBoostingClassifier(n_estimators=100, random_state=1, verbose=2) clf.fit(X, y) verbose_output = sys.stdout sys.stdout = old_stdout # check output verbose_output.seek(0) header = verbose_output.readline().rstrip() # no OOB true_header = ' '.join(['%10s'] + ['%16s'] * 2) % ( 'Iter', 'Train Loss', 'Remaining Time') assert_equal(true_header, header) n_lines = sum(1 for l in verbose_output.readlines()) # 100 lines for n_estimators==100 assert_equal(100, n_lines) def test_warm_start(): # Test if warm start equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_n_estimators(): # Test if warm start equals fit - set n_estimators. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=300, max_depth=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=300) est_ws.fit(X, y) assert_array_almost_equal(est_ws.predict(X), est.predict(X)) def test_warm_start_max_depth(): # Test if possible to fit trees of different depth in ensemble. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, max_depth=2) est.fit(X, y) # last 10 trees have different depth assert_equal(est.estimators_[0, 0].max_depth, 1) for i in range(1, 11): assert_equal(est.estimators_[-i, 0].max_depth, 2) def test_warm_start_clear(): # Test if fit clears state. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est_2 = Cls(n_estimators=100, max_depth=1, warm_start=True) est_2.fit(X, y) # inits state est_2.set_params(warm_start=False) est_2.fit(X, y) # clears old state and equals est assert_array_almost_equal(est_2.predict(X), est.predict(X)) def test_warm_start_zero_n_estimators(): # Test if warm start with zero n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=0) assert_raises(ValueError, est.fit, X, y) def test_warm_start_smaller_n_estimators(): # Test if warm start with smaller n_estimators raises error X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=99) assert_raises(ValueError, est.fit, X, y) def test_warm_start_equal_n_estimators(): # Test if warm start with equal n_estimators does nothing X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1) est.fit(X, y) est2 = clone(est) est2.set_params(n_estimators=est.n_estimators, warm_start=True) est2.fit(X, y) assert_array_almost_equal(est2.predict(X), est.predict(X)) def test_warm_start_oob_switch(): # Test if oob can be turned on during warm start. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=100, max_depth=1, warm_start=True) est.fit(X, y) est.set_params(n_estimators=110, subsample=0.5) est.fit(X, y) assert_array_equal(est.oob_improvement_[:100], np.zeros(100)) # the last 10 are not zeros assert_array_equal(est.oob_improvement_[-10:] == 0.0, np.zeros(10, dtype=np.bool)) def test_warm_start_oob(): # Test if warm start OOB equals fit. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=200, max_depth=1, subsample=0.5, random_state=1) est.fit(X, y) est_ws = Cls(n_estimators=100, max_depth=1, subsample=0.5, random_state=1, warm_start=True) est_ws.fit(X, y) est_ws.set_params(n_estimators=200) est_ws.fit(X, y) assert_array_almost_equal(est_ws.oob_improvement_[:100], est.oob_improvement_[:100]) def early_stopping_monitor(i, est, locals): """Returns True on the 10th iteration. """ if i == 9: return True else: return False def test_monitor_early_stopping(): # Test if monitor return value works. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) for Cls in [GradientBoostingRegressor, GradientBoostingClassifier]: est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) # this is not altered assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.train_score_.shape[0], 30) est = Cls(n_estimators=20, max_depth=1, random_state=1, subsample=0.5, warm_start=True) est.fit(X, y, monitor=early_stopping_monitor) assert_equal(est.n_estimators, 20) assert_equal(est.estimators_.shape[0], 10) assert_equal(est.train_score_.shape[0], 10) assert_equal(est.oob_improvement_.shape[0], 10) # try refit est.set_params(n_estimators=30, warm_start=False) est.fit(X, y) assert_equal(est.n_estimators, 30) assert_equal(est.train_score_.shape[0], 30) assert_equal(est.estimators_.shape[0], 30) assert_equal(est.oob_improvement_.shape[0], 30) def test_complete_classification(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) k = 4 est = GradientBoostingClassifier(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, k) assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_complete_regression(): # Test greedy trees with max_depth + 1 leafs. from sklearn.tree._tree import TREE_LEAF k = 4 est = GradientBoostingRegressor(n_estimators=20, max_depth=None, random_state=1, max_leaf_nodes=k + 1) est.fit(boston.data, boston.target) tree = est.estimators_[-1, 0].tree_ assert_equal(tree.children_left[tree.children_left == TREE_LEAF].shape[0], k + 1) def test_zero_estimator_reg(): # Test if ZeroEstimator works for regression. est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(boston.data, boston.target) y_pred = est.predict(boston.data) mse = mean_squared_error(boston.target, y_pred) assert_almost_equal(mse, 33.0, decimal=0) est = GradientBoostingRegressor(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, boston.data, boston.target) def test_zero_estimator_clf(): # Test if ZeroEstimator works for classification. X = iris.data y = np.array(iris.target) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init=ZeroEstimator()) est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) # binary clf mask = y != 0 y[mask] = 1 y[~mask] = 0 est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='zero') est.fit(X, y) assert_greater(est.score(X, y), 0.96) est = GradientBoostingClassifier(n_estimators=20, max_depth=1, random_state=1, init='foobar') assert_raises(ValueError, est.fit, X, y) def test_max_leaf_nodes_max_depth(): # Test precedence of max_leaf_nodes over max_depth. X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] k = 4 for GBEstimator in all_estimators: est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_greater(tree.max_depth, 1) est = GBEstimator(max_depth=1).fit(X, y) tree = est.estimators_[0, 0].tree_ assert_equal(tree.max_depth, 1) def test_min_impurity_split(): # Test if min_impurity_split of base estimators is set # Regression test for #8006 X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1) all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier] for GBEstimator in all_estimators: est = GBEstimator(min_impurity_split=0.1).fit(X, y) for tree in est.estimators_.flat: assert_equal(tree.min_impurity_split, 0.1) def test_warm_start_wo_nestimators_change(): # Test if warm_start does nothing if n_estimators is not changed. # Regression test for #3513. clf = GradientBoostingClassifier(n_estimators=10, warm_start=True) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) clf.fit([[0, 1], [2, 3]], [0, 1]) assert_equal(clf.estimators_.shape[0], 10) def test_probability_exponential(): # Predict probabilities. clf = GradientBoostingClassifier(loss='exponential', n_estimators=100, random_state=1) assert_raises(ValueError, clf.predict_proba, T) clf.fit(X, y) assert_array_equal(clf.predict(T), true_result) # check if probabilities are in [0, 1]. y_proba = clf.predict_proba(T) assert_true(np.all(y_proba >= 0.0)) assert_true(np.all(y_proba <= 1.0)) score = clf.decision_function(T).ravel() assert_array_almost_equal(y_proba[:, 1], 1.0 / (1.0 + np.exp(-2 * score))) # derive predictions from probabilities y_pred = clf.classes_.take(y_proba.argmax(axis=1), axis=0) assert_array_equal(y_pred, true_result) def test_non_uniform_weights_toy_edge_case_reg(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('huber', 'ls', 'lad', 'quantile'): gb = GradientBoostingRegressor(learning_rate=1.0, n_estimators=2, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_greater(gb.predict([[1, 0]])[0], 0.5) def test_non_uniform_weights_toy_edge_case_clf(): X = [[1, 0], [1, 0], [1, 0], [0, 1]] y = [0, 0, 1, 0] # ignore the first 2 training samples by setting their weight to 0 sample_weight = [0, 0, 1, 1] for loss in ('deviance', 'exponential'): gb = GradientBoostingClassifier(n_estimators=5, loss=loss) gb.fit(X, y, sample_weight=sample_weight) assert_array_equal(gb.predict([[1, 0]]), [1]) def check_sparse_input(EstimatorClass, X, X_sparse, y): dense = EstimatorClass(n_estimators=10, random_state=0, max_depth=2).fit(X, y) sparse = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort=False).fit(X_sparse, y) auto = EstimatorClass(n_estimators=10, random_state=0, max_depth=2, presort='auto').fit(X_sparse, y) assert_array_almost_equal(sparse.apply(X), dense.apply(X)) assert_array_almost_equal(sparse.predict(X), dense.predict(X)) assert_array_almost_equal(sparse.feature_importances_, dense.feature_importances_) assert_array_almost_equal(sparse.apply(X), auto.apply(X)) assert_array_almost_equal(sparse.predict(X), auto.predict(X)) assert_array_almost_equal(sparse.feature_importances_, auto.feature_importances_) assert_array_almost_equal(sparse.predict(X_sparse), dense.predict(X)) assert_array_almost_equal(dense.predict(X_sparse), sparse.predict(X)) if isinstance(EstimatorClass, GradientBoostingClassifier): assert_array_almost_equal(sparse.predict_proba(X), dense.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), dense.predict_log_proba(X)) assert_array_almost_equal(sparse.predict_proba(X), auto.predict_proba(X)) assert_array_almost_equal(sparse.predict_log_proba(X), auto.predict_log_proba(X)) assert_array_almost_equal(sparse.decision_function(X_sparse), sparse.decision_function(X)) assert_array_almost_equal(dense.decision_function(X_sparse), sparse.decision_function(X)) assert_array_almost_equal( np.array(sparse.staged_decision_function(X_sparse)), np.array(sparse.staged_decision_function(X))) @skip_if_32bit def test_sparse_input(): ests = (GradientBoostingClassifier, GradientBoostingRegressor) sparse_matrices = (csr_matrix, csc_matrix, coo_matrix) y, X = datasets.make_multilabel_classification(random_state=0, n_samples=50, n_features=1, n_classes=20) y = y[:, 0] for EstimatorClass, sparse_matrix in product(ests, sparse_matrices): yield check_sparse_input, EstimatorClass, X, sparse_matrix(X), y
bsd-3-clause
jayhetee/auto-sklearn
autosklearn/data/competition_data_manager.py
5
16248
# Functions performing various input/output operations for the ChaLearn AutoML challenge # Main contributor: Arthur Pesah, August 2014 # Edits: Isabelle Guyon, October 2014 # ALL INFORMATION, SOFTWARE, DOCUMENTATION, AND DATA ARE PROVIDED "AS-IS". # ISABELLE GUYON, CHALEARN, AND/OR OTHER ORGANIZERS OR CODE AUTHORS DISCLAIM # ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE, AND THE # WARRANTY OF NON-INFRIGEMENT OF ANY THIRD PARTY'S INTELLECTUAL PROPERTY RIGHTS. # IN NO EVENT SHALL ISABELLE GUYON AND/OR OTHER ORGANIZERS BE LIABLE FOR ANY SPECIAL, # INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN # CONNECTION WITH THE USE OR PERFORMANCE OF SOFTWARE, DOCUMENTS, MATERIALS, # PUBLICATIONS, OR INFORMATION MADE AVAILABLE FOR THE CHALLENGE. import numpy as np import os import re import time import scipy.sparse try: import autosklearn.data.competition_c_functions as competition_c_functions competition_c_functions_is_there = True except: competition_c_functions_is_there = False pass from autosklearn.data import util as data_util from autosklearn.data.data_manager import DataManager from autosklearn.constants import * def data_dense(filename, feat_type=None, verbose=False): # The 2nd parameter makes possible a using of the 3 functions of data # reading (data, data_sparse, data_binary_sparse) without changing # parameters # This code is based on scipy.io.arff.arff_load r_comment = re.compile(r'^%') # Match an empty line r_empty = re.compile(r'^\s+$') descr = [(str(i), np.float32) for i in range(len(feat_type))] def generator(row_iter, delim=','): # Copied from scipy.io.arff.arffread raw = next(row_iter) while r_empty.match(raw) or r_comment.match(raw): raw = next(row_iter) # 'compiling' the range since it does not change # Note, I have already tried zipping the converters and # row elements and got slightly worse performance. elems = list(range(len(feat_type))) row = raw.split(delim) # yield tuple([np.float64(row[i]) for i in elems]) yield tuple([row[i] for i in elems]) for raw in row_iter: while r_comment.match(raw) or r_empty.match(raw): raw = next(row_iter) row = raw.split(delim) # yield tuple([np.float64(row[i]) for i in elems]) yield tuple([row[i] for i in elems]) with open(filename) as fh: a = generator(fh, delim=" ") # No error should happen here: it is a bug otherwise data = np.fromiter(a, descr) data = data.view(np.float32).reshape((len(data), -1)) return data def data_sparse(filename, feat_type): # This function takes as argument a file representing a sparse matrix # sparse_matrix[i][j] = "a:b" means matrix[i][a] = b # It converts it into a numpy array, using sparse_list_to_array function, # and returns this array sparse_list = sparse_file_to_sparse_list(filename) return sparse_list_to_csr_sparse(sparse_list, len(feat_type)) def data_binary_sparse(filename, feat_type): # This function takes as an argument a file representing a binary sparse # matrix # binary_sparse_matrix[i][j] = a means matrix[i][j] = 1 # It converts it into a numpy array an returns this array. inner_data = file_to_array(filename) nbr_samples = len(inner_data) # the construction is easier w/ dok_sparse dok_sparse = scipy.sparse.dok_matrix((nbr_samples, len(feat_type))) print ("Converting {} to dok sparse matrix".format(filename)) for row in range(nbr_samples): for feature in inner_data[row]: dok_sparse[row, int(feature) - 1] = 1 print ("Converting {} to csr sparse matrix".format(filename)) return dok_sparse.tocsr() def file_to_array(filename, verbose=False): # Converts a file to a list of list of STRING; It differs from # np.genfromtxt in that the number of columns doesn't need to be constant data = [] with open(filename, "r") as data_file: if verbose: print ("Reading {}...".format(filename)) lines = data_file.readlines() if verbose: print ("Converting {} to correct array...".format(filename)) data = [lines[i].strip().split() for i in range(len(lines))] return data def read_first_line(filename): # Read fist line of file data = [] with open(filename, "r") as data_file: line = data_file.readline() data = line.strip().split() return data def sparse_file_to_sparse_list(filename, verbose=True): # Converts a sparse data file to a sparse list, so that: # sparse_list[i][j] = (a,b) means matrix[i][a]=b data_file = open(filename, "r") if verbose: print ("Reading {}...".format(filename)) lines = data_file.readlines() if verbose: print ("Converting {} to correct array") data = [lines[i].split(' ') for i in range(len(lines))] if verbose: print ("Converting {} to sparse list".format(filename)) _converter = lambda a_: (int(a_[0]), np.float32(float(a_[1]))) return [[_converter(data[i][j].rstrip().split(':')) for j in range(len(data[i])) if data[i][j] != '\n'] for i in range(len(data))] def sparse_list_to_csr_sparse(sparse_list, nbr_features, verbose=True): # This function takes as argument a matrix of tuple representing a sparse # matrix and the number of features. # sparse_list[i][j] = (a,b) means matrix[i][a]=b # It converts it into a scipy csr sparse matrix nbr_samples = len(sparse_list) # construction easier w/ dok_sparse... dok_sparse = scipy.sparse.dok_matrix((nbr_samples, nbr_features), dtype=np.float32) if verbose: print ("\tConverting sparse list to dok sparse matrix") for row in range(nbr_samples): for column in range(len(sparse_list[row])): (feature, value) = sparse_list[row][column] dok_sparse[row, feature - 1] = value if verbose: print ("\tConverting dok sparse matrix to csr sparse matrix") # but csr better for shuffling data or other tricks return dok_sparse.tocsr() class CompetitionDataManager(DataManager): ''' This class aims at loading and saving data easily with a cache and at generating a dictionary (self.info) in which each key is a feature (e.g. : name, format, feat_num,...). Methods defined here are : __init__ (...) x.__init__([(feature, value)]) -> void Initialize the info dictionary with the tuples (feature, value) given as argument. It recognizes the type of value (int, string) and assign value to info[feature]. An unlimited number of tuple can be sent. getInfo (...) x.getInfo (filename) -> void Fill the dictionary with an info file. Each line of the info file must have this format 'feature' : value The information is obtained from the public.info file if it exists, or inferred from the data files getInfoFromFile (...) x.getInfoFromFile (filename) -> void Fill the dictionary with an info file. Each line of the info file must have this format 'feature' : value ''' def __init__(self, basename, input_dir, verbose=False, encode_labels=True): super(CompetitionDataManager, self).__init__() self.basename = basename if basename in input_dir: self.input_dir = input_dir else: self.input_dir = input_dir + "/" + basename + "/" info_file = os.path.join(self.input_dir, basename + '_public.info') self.getInfo(info_file) self.feat_type = self.loadType(os.path.join(self.input_dir, basename + '_feat.type'), verbose=verbose) Xtr = self.loadData(os.path.join(self.input_dir, basename + '_train.data'), self.info['train_num'], verbose=verbose) Ytr = self.loadLabel(os.path.join(self.input_dir, basename + '_train.solution'), self.info['train_num'], verbose=verbose) Xva = self.loadData(os.path.join(self.input_dir, basename + '_valid.data'), self.info['valid_num'], verbose=verbose) Xte = self.loadData(os.path.join(self.input_dir, basename + '_test.data'), self.info['test_num'], verbose=verbose) self._data['X_train'] = Xtr self._data['Y_train'] = Ytr self._data['X_valid'] = Xva self._data['X_test'] = Xte p = os.path.join(self.input_dir, basename + '_valid.solution') if os.path.exists(p): try: self._data['Y_valid'] = self.loadLabel(p, self.info['valid_num'], verbose=verbose) except (IOError, OSError): pass p = os.path.join(self.input_dir, basename + '_test.solution') if os.path.exists(p): try: self.data['Y_test'] = self.loadLabel(p, self.info['test_num'], verbose=verbose) except (IOError, OSError) as e: pass if encode_labels: self.perform1HotEncoding() def loadData (self, filename, num_points, verbose=True): ''' Get the data from a text file in one of 3 formats: matrix, sparse, binary_sparse''' if verbose: print("========= Reading " + filename) start = time.time() if 'format' not in self.info: self.getFormatData(filename) if competition_c_functions_is_there: data_func = {'dense': competition_c_functions.read_dense_file, 'sparse': competition_c_functions.read_sparse_file, 'sparse_binary': competition_c_functions.read_sparse_binary_file} data = data_func[self.info['format']](filename, num_points, self.info['feat_num']) if scipy.sparse.issparse(data): if not np.all(data.indices >= 0): raise ValueError("Sparse data must be 1-indexed, " "not 0-indexed.") else: data_func = {'dense': data_dense, 'sparse': data_sparse, 'sparse_binary': data_binary_sparse} data = data_func[self.info['format']](filename, self.feat_type) end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return data def loadLabel (self, filename, num_points, verbose=True): ''' Get the solution/truth values''' if verbose: print("========= Reading " + filename) start = time.time() # IG: Here change to accommodate the new multiclass label format if competition_c_functions_is_there: if self.info['task'] == MULTILABEL_CLASSIFICATION: # cast into ints label = (competition_c_functions.read_dense_file_unknown_width( filename, num_points)).astype(np.int) elif self.info['task'] == MULTICLASS_CLASSIFICATION: label = competition_c_functions.read_dense_file_unknown_width( filename, num_points) # read the class from the only non zero entry in each line! # should be ints right away label = np.where(label != 0)[1]; else: label = competition_c_functions.read_dense_file_unknown_width( filename, num_points) else: if self.info['task'] == MULTILABEL_CLASSIFICATION: label = self._data(filename) elif self.info['task'] == MULTICLASS_CLASSIFICATION: label = data_util.convert_to_num(self._data(filename)) else: label = np.ravel(data_util.data(filename)) # get a column vector end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return label def loadType (self, filename, verbose=True): ''' Get the variable types''' if verbose: print("========= Reading " + filename) start = time.time() type_list = [] if os.path.isfile(filename): if competition_c_functions_is_there: type_list = competition_c_functions.file_to_array(filename, verbose=False) else: type_list = file_to_array(filename, verbose=False) else: n=self.info['feat_num'] type_list = [self.info['feat_type']]*n type_list = np.array(type_list).ravel() end = time.time() if verbose: print( "[+] Success in %5.2f sec" % (end - start)) return type_list def getInfo (self, filename, verbose=True): ''' Get all information {attribute = value} pairs from the filename (public.info file), if it exists, otherwise, output default values''' if filename==None: basename = self.basename input_dir = self.input_dir else: # Split away the _public.info (anyway, I don't know why its # there... the dataset name is known from the call) basename = "_".join(os.path.basename(filename).split('_')[:-1]) input_dir = os.path.dirname(filename) if os.path.exists(filename): self.getInfoFromFile (filename) print "Info file found : " + os.path.abspath(filename) # Finds the data format ('dense', 'sparse', or 'sparse_binary') self.getFormatData(os.path.join(input_dir, basename + '_train.data')) else: raise NotImplementedError("The user must always provide an info " "file.") self.info['task'] = STRING_TO_TASK_TYPES[self.info['task']] return self.info def getInfoFromFile (self, filename): ''' Get all information {attribute = value} pairs from the public.info file''' with open (filename, "r") as info_file: lines = info_file.readlines() features_list = list(map(lambda x: tuple(x.strip("\'").split(" = ")), lines)) for (key, value) in features_list: self.info[key] = value.rstrip().strip("'").strip(' ') if self.info[key].isdigit(): # if we have a number, we want it to be an integer self.info[key] = int(self.info[key]) return self.info def getFormatData(self,filename): ''' Get the data format directly from the data file (in case we do not have an info file)''' if 'format' in self.info.keys(): return self.info['format'] if 'is_sparse' in self.info.keys(): if self.info['is_sparse'] == 0: self.info['format'] = 'dense' else: if competition_c_functions_is_there: data = competition_c_functions.read_first_line(filename) else: data = data_util.read_first_line(filename) if ':' in data[0]: self.info['format'] = 'sparse' else: self.info['format'] = 'sparse_binary' else: if competition_c_functions_is_there: data = competition_c_functions.file_to_array(filename) else: data = data_util.file_to_array(filename) if ':' in data[0][0]: self.info['is_sparse'] = 1 self.info['format'] = 'sparse' else: nbr_columns = len(data[0]) for row in range (len(data)): if len(data[row]) != nbr_columns: self.info['format'] = 'sparse_binary' if 'format' not in self.info.keys(): self.info['format'] = 'dense' self.info['is_sparse'] = 0 return self.info['format']
bsd-3-clause
tensorflow/lingvo
lingvo/core/metrics.py
1
17161
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper classes for computing performance metrics.""" import collections import lingvo.compat as tf from lingvo.core import hyperparams from lingvo.core import plot from lingvo.core import py_utils from lingvo.core import scorers import numpy as np try: import sklearn.metrics # pylint: disable=g-import-not-at-top HAS_SKLEARN = True except ImportError: HAS_SKLEARN = False try: import scipy.stats # pylint: disable=g-import-not-at-top HAS_SCIPY_STATS = True except ImportError: HAS_SCIPY_STATS = False def CreateScalarSummary(name, simple_value): return tf.Summary( value=[tf.Summary.Value(tag=name, simple_value=simple_value)]) class BaseMetric: """Base class for aggregating statistics to compute a performance metric.""" def Update(self, *args, **kwargs): """Updates this metric (e.g. accumulates statistics) from the arguments.""" pass @property def value(self): """Current value of this metric.""" return None def Summary(self, name): """Converts the current state of this metric to a `tf.Summary`. Args: name: A string to use as the summary value tag. Returns: A `tf.Summary` proto. """ return CreateScalarSummary(name, self.value) class ConfigurableMetric(BaseMetric): """A Metric class with configurable params.""" @classmethod def Params(cls): p = hyperparams.InstantiableParams(cls) return p def __init__(self, params): self.params = params class AverageMetric(BaseMetric): """Class to compute a weighted (arithmetic) average value metric.""" def __init__(self): self._total_value = 0.0 self._total_weight = 0.0 def Update(self, value, weight=1.0): if weight < 0.0: raise ValueError('weight must be non-negative. Got: %f' % weight) self._total_value += value * weight self._total_weight += weight # We may want both a getter and a setter method for total_value and # total_weight, respectively. def GetTotalValue(self): return self._total_value def SetTotalValue(self, val): self._total_value = val total_value = property(GetTotalValue, SetTotalValue) def GetTotalWeight(self): return self._total_weight def SetTotalWeight(self, val): self._total_weight = val total_weight = property(GetTotalWeight, SetTotalWeight) @property def value(self): return (self._total_value / self._total_weight if self._total_weight > 0 else 0) class F1Metric(BaseMetric): """Class to compute F1 metrics.""" def __init__(self): self._true_pos = 0.0 self._false_pos = 0.0 self._false_neg = 0.0 def UpdateTruePositive(self, count=1.0): self._true_pos += count def UpdateFalsePositive(self, count=1.0): self._false_pos += count def UpdateFalseNegative(self, count=1.0): self._false_neg += count @property def value(self): if (self._true_pos + self._false_pos) > 0: precision = self._true_pos / (self._true_pos + self._false_pos) else: precision = 0.0 if (self._true_pos + self._false_neg) > 0: recall = self._true_pos / (self._true_pos + self._false_neg) else: recall = 0.0 if (precision + recall) > 0: return 2.0 * precision * recall / (precision + recall) else: return 0.0 class MCCMetric(F1Metric): """Class to compute Matthews correlation coefficient metric.""" def __init__(self): super().__init__() self._true_neg = 0.0 def UpdateTrueNegative(self, count=1.0): self._true_neg += count @property def value(self): tp = self._true_pos tn = self._true_neg fp = self._false_pos fn = self._false_neg denominator = (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn) if denominator > 0.0: return (tp * tn - fp * fn) / denominator**0.5 else: return 0.0 class CorpusBleuMetric(BaseMetric): """Metric class to compute the corpus-level BLEU score.""" def __init__(self, **kwargs): self._scorer = scorers.BleuScorer(**kwargs) def Update(self, ref_str, hyp_str): self._scorer.AddSentence(ref_str, hyp_str) @property def unsegmenter(self): return self._scorer.unsegmenter @property def value(self): return self._scorer.ComputeOverallScore() class TpuEvalMetrics: """Manages computation of metrics during TPU execution. TPU execution runs a training loop on device. To get eval metrics out of this, metric values and weights must be carried through the loop. This requires passing initial values to the loop setup, updated the values during the loop, and doing a final aggregation after the loop. This class wraps the metrics dictionary so that the needed ops can be built at the right time as the training loop is built. Note that because the model is not constructed until the loop body function is called, the initial values must be known statically. This is done currently by hardcoding a limit on the number of metrics and casting each metric and value count to float32, regardless of the number of actual metrics the model produced. Note that this implementation computes the metrics over all replicas, for the last step of the loop only (could be changed to average over all loop steps instead). """ def __init__(self, max_metrics=256): self._metrics = None self._max_metrics = max_metrics # Loop-carried values alternate value and weight; all values are scalars. self._initial_values = (2 * self._max_metrics) * [tf.constant(0, tf.float32)] def SetMetrics(self, metric_dict, step_args): """Sets the metrics to evaluate and the per-step output tensors. Args: metric_dict: dict of (name -> (tensor of values, tensor of weights)) step_args: the tensors being passed to the training loop body. These share the same structure of alternating value and weight scalars as the initial values and the output of this function. Returns: The tensors to return from the training loop body. For entries that are for metrics in self._metrics, returns the value computed within the loop (the step_args value passed in); for all others, the value will never be used at the end and so the step_args value is passed through (which has the effect of passing the initial values through every iteration of the loop). """ num_metrics = len(metric_dict) assert num_metrics <= self._max_metrics, ('Increase max_metrics to >= %d' % num_metrics) self._metrics = metric_dict # self._metrics contains a map of (metric_value, # metric_weight). We convert it into [metric_value * # metric_weight, metric_weight] to make it easier to aggregate # metric values across steps and TPU replicas. ret = [] for _, (value, weight) in sorted(self._metrics.items()): assert value.shape.is_fully_defined(), ('%s' % value) assert weight.shape.is_fully_defined(), ('%s' % weight) weight = tf.cast(weight, tf.float32) value = tf.cast(value, tf.float32) * weight ret += [value, weight] # Each metric has two tensors: value and weight. assert len(ret) == 2 * num_metrics ret += list(step_args)[len(ret):] return ret @property def initial_values(self): """Returns the initial loop values.""" return self._initial_values @property def metrics(self): return self._metrics def _Zip(self, values): assert isinstance(values, list) return list(zip(values[::2], values[1::2])) def FinalizeMetrics(self, loop_result): """Compute final average of the metrics, given loop_result tensors. To be called outside the training loop body , but still in the scope of tpu.batch_parallel. Args: loop_result: Result of the training loop. Returns: The tensors of the final avg values and total weights. """ # Each metric has two tensors in the loop carrying result. metrics = loop_result[:2 * len(self._metrics.items())] # Aggregate across tpu replicas. metrics = [tf.tpu.cross_replica_sum(x) for x in metrics] ret = [] for (value, weight) in self._Zip(metrics): value, weight = py_utils.WeightedAvg( tf.math.divide_no_nan(value, weight), weight) ret += [value, weight] return ret def PackMetricsValues(self, values): """Packs numpy values into a dict of metrics.""" for k, v in zip(sorted(self._metrics.keys()), self._Zip(values)): self._metrics[k] = v def ToAverageMetrics(self): """Wrap the final metric values into AverageMetric objects. Returns: A dict that maps metric names to AverageMetric objects. """ ret = {} for name, (value, weight) in self._metrics.items(): avg_metric = AverageMetric() avg_metric.total_weight = weight avg_metric.total_value = weight * value ret[name] = avg_metric return ret class AUCMetric(BaseMetric): """Class to compute the AUC score for binary classification.""" def __init__(self, mode='roc', samples=-1): """Constructor of the class. Args: mode: Possible values: 'roc' or 'pr'. samples: The number of sample points to compute the AUC. If -1, include all points seen thus far. Raises: ImportError: If user has not installed sklearn, raise an ImportError. """ if not HAS_SKLEARN: raise ImportError('AUCMetric depends on sklearn.') self._mode = mode self._samples = samples self._label = [] self._prob = [] self._weight = [] if self._mode == 'roc': self._curve_fn = sklearn.metrics.roc_curve self._score_fn = sklearn.metrics.roc_auc_score self._plot_labels = ['False Positive Rate', 'True Positive Rate'] elif self._mode == 'pr': self._curve_fn = sklearn.metrics.precision_recall_curve self._score_fn = sklearn.metrics.average_precision_score self._plot_labels = ['Recall', 'Precision'] else: raise ValueError('mode in AUCMetric must be one of "roc" or "pr".') def Update(self, label, prob, weight=None): """Updates the metrics. Args: label: An array to specify the groundtruth binary labels. Values must be either 0 or 1. prob: An array to specify the prediction probabilities. Values must be within [0, 1.0]. weight: An array to specify the sample weight for the auc computation. """ self._label += label self._prob += prob if weight: self._weight += weight else: self._weight += [1 for _ in range(len(label))] if self._samples > 0: self._label = self._label[-self._samples:] self._prob = self._prob[-self._samples:] self._weight = self._weight[-self._samples:] @property def value(self): try: return self._score_fn(self._label, self._prob, sample_weight=self._weight) except ValueError as exception: # In case self._label still has just 1 type of label, e.g. all(labels==0). if 'Only one class present in y_true.' in str(exception): return 0.0 else: raise def Summary(self, name): def _Setter(fig, axes): # 20 ticks betweein 0 and 1. ticks = np.arange(0, 1.05, 0.05) axes.grid(b=True) axes.set_xlabel(self._plot_labels[0]) axes.set_xticks(ticks) axes.set_ylabel(self._plot_labels[1]) axes.set_yticks(ticks) fig.tight_layout() xs, ys, _ = self._curve_fn( self._label, self._prob, sample_weight=self._weight) if self._mode == 'pr': # Swap because sklearn returns <'precision', 'recall'>. xs, ys = ys, xs ret = plot.Curve(name=name, figsize=(12, 12), xs=xs, ys=ys, setter=_Setter) ret.value.add(tag=name, simple_value=self.value) return ret class CorrelationMetric(BaseMetric): """Class to compute correlation.""" def __init__(self, mode='pearson', samples=-1): """Constructor of the class. Args: mode: Possible values: 'pearson', 'spearman', 'kendalltau'. samples: The number of sample points to compute the correlation. If -1, include all points seen thus far. Raises: ImportError: If user has not installed scipy.stats, raise an ImportError. """ if not HAS_SCIPY_STATS: raise ImportError('CorrelationMetric depends on scipy.stats.') assert mode in ['pearson', 'spearman', 'kendalltau'] self._mode = mode self._samples = samples self._target = [] self._pred = [] def Update(self, target, pred): """Updates the metrics. Args: target: An array to specify the groundtruth float target. pred: An array to specify the prediction. """ self._target += target self._pred += pred if self._samples > 0: self._target = self._target[-self._samples:] self._pred = self._pred[-self._samples:] @property def value(self): # only use the correlation, p-value is ignored. if self._mode == 'pearson': return scipy.stats.pearsonr(self._target, self._pred)[0] elif self._mode == 'spearman': return scipy.stats.spearmanr(self._target, self._pred)[0] else: return scipy.stats.kendalltau(self._target, self._pred)[0] class AverageKeyedCorrelationMetric(BaseMetric): """Class to compute correlation per key, then report average across all keys.""" def __init__(self, mode='pearson', bypass_nan=True): """Constructor of the class. Args: mode: Possible values: 'pearson', 'spearman', 'kendalltau'. bypass_nan: for keys that has only 1 example, the metric will be NaN, turn on this flag to skip those keys. Depending on the scipy library, it may raise ValueException instead of produce NaN. In this case, the Exception will be suppressed and the key is skipped during calculation. Raises: ImportError: If user has not installed scipy.stats, raise an ImportError. """ if not HAS_SCIPY_STATS: raise ImportError('CorrelationMetric depends on scipy.stats.') assert mode in ['pearson', 'spearman', 'kendalltau'] self._mode = mode self._bypass_nan = bypass_nan self._target = collections.defaultdict(list) self._pred = collections.defaultdict(list) def Update(self, key, target, pred): """Updates the metrics. Args: key: The key this (target, pred) pair belongs to. target: An array to specify the groundtruth float target. pred: An array to specify the prediction. """ self._target[key] += target self._pred[key] += pred @property def value(self): # only use the correlation, p-value is ignored. if self._mode == 'pearson': corr_f = scipy.stats.pearsonr elif self._mode == 'spearman': corr_f = scipy.stats.spearmanr else: corr_f = scipy.stats.kendalltau results = [] for k in self._target: target = self._target[k] pred = self._pred[k] try: raw_corr = corr_f(target, pred)[0] if not self._bypass_nan or not np.isnan(raw_corr): results.append(raw_corr) except ValueError: continue if not self._bypass_nan or results: return np.mean(results) else: return 0.0 class SamplingMetric(ConfigurableMetric): """Sampling metric base class. Subclasses must implement _CreateSummary(); sampling will be handled by this base class. """ @classmethod def Params(cls): p = super().Params() p.Define('num_samples', 8, 'The number of samples to store uniformly.') return p def __init__(self, params): super().__init__(params) p = self.params self._sampler = py_utils.UniformSampler(num_samples=p.num_samples) self._summary = None @property def samples(self): """Returns an iterable of sampled decoded outputs to compute Summaries.""" return self._sampler.samples def Update(self, decoded_outputs): """Samples the input decoded_outputs NestedMap. Args: decoded_outputs: A `.NestedMap`. """ self._sampler.Add(decoded_outputs) # Invalidate cache. self._summary = None def Summary(self, name): if self._summary is None: self._summary = self._CreateSummary(name) self._sampler = py_utils.UniformSampler( num_samples=self.params.num_samples) return self._summary def _CreateSummary(self, name): """Returns a tf.Summary for this metric.""" raise NotImplementedError()
apache-2.0
ProjectPyRhO/PyRhO
setup.py
1
8313
"""The PyRhO package setup script""" #from __future__ import print_function # Added for Python 2.x support from setuptools import setup, find_packages # Prefer setuptools over distutils from codecs import open # To use a consistent encoding import os # Download and install setuptools if not installed #from ez_setup import use_setuptools #use_setuptools() #python -m ensurepip --upgrade #from setuptools import setup #from distutils import setup here = os.path.abspath(os.path.dirname(__file__)) home = os.path.expanduser("~") print(home) prwd = os.path.join(home, 'pyrho') # pyrho working directory # TODO: Test changes to package_data and include notebooks and license without MANIFEST # TODO: Fix this to remove redundant long_description text # Get the long description from the relevant file #with open(os.path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: #with open('DESCRIPTION.rst', encoding='utf-8') as f: # long_description = f.read() long_description = """ PyRhO - A Virtual Optogenetics Laboratory ========================================= A Python module to fit and characterise rhodopsin photocurrents. Background ---------- Optogenetics has become a key tool for understanding the function of neural circuits and controlling their behaviour. An array of directly light driven opsins have been genetically isolated from several families of organisms, with a wide range of temporal and spectral properties. In order to characterize, understand and apply these rhodopsins, we present an integrated suite of open-source, multi-scale computational tools called PyRhO. PyRhO enables users to: (i) characterize new (and existing) rhodopsins by automatically fitting a minimal set of experimental data to three, four or six-state kinetic models, (ii) simulate these models at the channel, neuron & network levels and (iii) gain functional insights through model selection and virtual experiments *in silico*. The module is written in Python with an additional IPython/Jupyter notebook based GUI, allowing models to be fit, simulations to be run and results to be shared through simply interacting with a webpage. The seamless integration of model fitting algorithms with simulation environments for these virtual opsins will enable (neuro)scientists to gain a comprehensive understanding of their behaviour and rapidly identify the most suitable variant for application in a particular biological system. This process may thereby guide not only experimental design and opsin choice but also alterations of the rhodopsin genetic code in a neuro-engineering feed-back loop. In this way, we hope PyRhO will help to significantly improve optogenetics as a tool for transforming biological sciences. Further Information ------------------- If you use PyRhO please cite our paper: Evans, B. D., Jarvis, S., Schultz, S. R. & Nikolic K. (2016) "PyRhO: A Multiscale Optogenetics Simulation Platform", *Frontiers in Neuroinformatics, 10* (8). `doi:10.3389/fninf.2016.00008 <https://dx.doi.org/10.3389/fninf.2016.00008>`_ The PyRhO project website with additional documentation may be found here: `www.imperial.ac.uk/bio-modelling/pyrho <http://www.imperial.ac.uk/a-z-research/bio-modelling/pyrho>`_ Finally, don't forget to follow us on twitter for updates: `@ProjectPyRhO <https://twitter.com/ProjectPyRhO>`_! """ setup( name='PyRhO', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.9.5', description='Fit and characterise rhodopsin photocurrents', long_description=long_description, # The project's main homepage. url='https://github.com/ProjectPyRhO/PyRhO/', # download_url='https://github.com/ProjectPyRhO/PyRhO/archive/master.zip', # download_url='https://github.com/ProjectPyRhO/PyRhO/tarball/' + version, # Author details author='Benjamin D. Evans', author_email='[email protected]', license='BSD', platforms=['Linux', 'Mac OS X', 'Windows'], # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'Intended Audience :: Education', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Medical Science Apps.', 'Topic :: Scientific/Engineering :: Bio-Informatics', 'Topic :: Scientific/Engineering :: Artificial Life', 'Topic :: Scientific/Engineering :: Human Machine Interfaces', # The license should match "license" above 'License :: OSI Approved :: BSD License', # Supported Python versions 'Programming Language :: Python', 'Programming Language :: Python :: 3', # 3.5 EOL: 13/09/20 'Programming Language :: Python :: 3.5', # 3.6 EOL: 23/12/21 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Framework :: IPython', 'Natural Language :: English', 'Operating System :: OS Independent', ], #keywords='optogenetics rhodopsin opsin brain neuroscience neuron brian jupyter', keywords=['optogenetics', 'rhodopsin', 'opsin', 'brain', 'neuroscience', 'neuron', 'brian', 'jupyter'], # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests*']), # package_dir = {'':'.'}, # package_dir = {'pyrho': 'pyrho'}, # Relative to this script # List run-time dependencies here. These will be installed by pip when your # project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html # ipython is used for latex repr - remove from requirements and have a fallback repr? install_requires=['numpy>=1.8', 'scipy>=0.15', 'matplotlib>=1.3', 'lmfit>=0.9.3', 'brian2>=2.0'], # 'ipython>=4.1' # List additional groups of dependencies here (e.g. development dependencies). # You can install these using the following syntax, for example: # $ pip install -e .[dev,test] extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # 'brian' : ['brian2'], # 'docs' : ['sphinx>=1.3'], 'extras': ['seaborn>=0.7', 'pandas>=0.17'], # 'cython>=0.23' # traitlets is a dependency of ipywidgets and can be removed if 4.1 entails traitlets>=4.1 'GUI' : ['jupyter>=1.0', 'notebook>=4.1', 'ipywidgets>=4.1,<5', 'seaborn>=0.7'], # , 'traitlets>=4.1,<5' 'full': ['jupyter>=1.0', 'notebook>=4.1', 'ipywidgets>=4.1,<5', 'seaborn>=0.7', 'pandas>=0.17'], # 'cython>=0.23' }, include_package_data=True, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. package_data={ # TODO: Try this without MANIFEST 'NEURON' : ['*.mod', '*.hoc', '*.sh'], 'gui' : ['*.png'], 'datasets': ['*.pkl'], }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. # see http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' #data_files=[('my_data', ['data/data_file'])], #data_files=[#(prwd, []), # (prwd, [os.path.join(prwd, 'gui/*.png'), ])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. #entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], #}, )
bsd-3-clause
labcem/EIRP
EIRP.py
1
5119
# -*- coding: utf-8 -*- """ Created on Thu Nov 26 2015 Full EIRP Measurement with the anechoic room, EDF Lab bât D16, 3 cutting planes and 2 polarisations. [email protected] """ from __future__ import division import time import visa import scipy import os from numpy import * import matplotlib.pyplot as plt #Instruments modules import Spectrum from FC06 import * #classe du mât et de la table tournante de la CA nom=raw_input('Enter the name of the equipment: ') if (os.path.isdir('Results_'+nom)==False): os.mkdir('Results_'+nom) #Calibration files Correction_H=loadtxt('Cal_Pol_H.txt') Correction_V=loadtxt('Cal_Pol_V.txt') os.chdir('Results_'+nom) f=Correction_V[:,0] ############################################### ########## Testing parameters ############## ############################################### fstart=f[0] #Start frequency fstop=f[-1] #Stop frequency fcenter=0.5*(fstart+fstop) #Center frequency fspan=fstop-fstart #Span RBW=1e6 #RBW size in Hz VBW=100e3 #VBW size in Hz SwpPt=len(f) #Number of points N=37 #Number of incident angles Angles=linspace(0,360,N)-180 Pol=2 #Number of polarisations Exp=1 #Number of cutting planes Tmes=15 #dwell time ###Stop criterion ###channels center frequencies (european wifi) ##f0=2.412e9 ##fn=2.472e9 ##n=13 #number of channels ##fc=linspace(f0,fn,n) ###channel center frequencies indexes ##peaksindx=zeros(len(fc)) ##for i in range(len(fc)): # peaksindx[i]=argmin(abs(f-fc[i])) Level_criterion=-60 print '\nInstruments initialisations\n' print '\nSpectrum analyser:' Spectre=Spectrum.FSV30() Spectre.reset() Spectre.startFreq(fstart) Spectre.stopFreq(fstop) Spectre.RBW(RBW) Spectre.SweepPoint(SwpPt) Spectre.MaxHold() Spectre.UnitDBM() print u'\nFC-06 Mast and TurnTable Controller' FC=FC06() FC.reset() FC.AngleVel(20) #FC.hVel(20) FC.setAngle(0) print 'Full anechoic chamber, height=1.1 m' FC.setHauteur(1100) print '\nMeasurement...\n' raw_input (u"Place your EUT, first cutting plane, angle 0°, Presse Enter ") Measurement=ones([Pol,Exp,N,2])*-Inf #Measurement is logarithmic to get 0 after linearisation Raw_Traces=zeros([Pol,Exp,N,2,SwpPt]) for k in range(Exp): if k!=0: print (u"\nBack to 0°") FC.setAngle(0) raw_input ("Place your object according to cutting plane %s, Presse Enter " %(k+1)) for l in range (0,Pol): if l==0: Polarisation='V' else: Polarisation='H' FC.setPolar(l) while FC.busy()=="1": #print("NOK") time.sleep(0.2) print("OK") print("Cutting plane : %i, antenna polarisation : %s " %(k+1,Polarisation)) for j in range(0,len(Angles)): #print ("Go to %s deg" %(Angles [j])) FC.setAngle(Angles[j]) Spectre.readwrite() Spectre.MaxHold() time.sleep(Tmes) #raw_input("\n Press Enter to validate the measurement\n") Level = Spectre.getTrace(SwpPt) if Polarisation=='V': cLevel=Level+Correction_V[:,1] else: cLevel=Level+Correction_H[:,1] #criterion automatic stop #while (min(Level[peaksindx])<Level_criterion): #every channel #while (min(Level[peaksindx])<Level_criterion): #one channel #while (mean(Level[peaksindx]<Level_criterion))<p/n: #p channels among n while (max(Level)<Level_criterion): Level = Spectre.getTrace(SwpPt) if Polarisation=='V': cLevel=Level+Correction_V[:,1] else: cLevel=Level+Correction_H[:,1] time.sleep(Tmes) Trace=Level MaxLevel=max(cLevel) MaxIdx =cLevel.argmax() Measurement[l,k,j,:]=array([f[MaxIdx],MaxLevel]) Raw_Traces[l,k,j,:]=Trace print u'%s°, EIRP = %2.2f mW/MHz' %((Angles [j]),10**(MaxLevel/10)) fname = ( '%s_Exp%s.txt') %(Polarisation,k+1) savetxt(fname,Measurement[l,k,:]) r=sum((10**((Measurement[:,k,:,1])/10)),axis=0) print "Printing some figures..." plt.close('all') plt.polar((Angles*pi/180),r) Graphlin= 'Graph_Exp%s' %(k+1) plt.ylabel('PIRE/mW') plt.title("PIRE en mW, plan %s" %(k+1)) plt.savefig(Graphlin+'.pdf',bbox='tight') plt.savefig(Graphlin+'.png',bbox='tight') print (Graphlin+'.pdf') print (Graphlin+'.png') plt.close() print "Raw data saved in file "+nom+'_raw.npz' savez(nom+'_raw.npz',Measurement=Measurement,Raw_Traces=Raw_Traces,f=f) print(u"Back to 0° and vertical polarisation ") FC.setAngle(0) FC.setPolar(0) print("OK")
mit
lbishal/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
58
17158
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. clf = AdaBoostRegressor(random_state=0) clf.fit(boston.data, boston.target) score = clf.score(boston.data, boston.target) assert score > 0.85 def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
alexeyum/scikit-learn
sklearn/datasets/samples_generator.py
26
56554
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Initialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Read more in the :ref:`User Guide <sample_generators>`. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std: float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box: pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state: int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data: array of shape [n_features, n_samples] The encoded signal (Y). dictionary: array of shape [n_features, n_components] The dictionary with normalized components (D). code: array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim: integer, optional (default=1) The size of the random matrix to generate. alpha: float between 0 and 1, optional (default=0.95) The probability that a coefficient is zero (see notes). Larger values enforce more sparsity. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
bsd-3-clause
eramirem/astroML
book_figures/chapter1/fig_S82_hess.py
3
2146
""" SDSS Stripe 82 Hess Diagram --------------------------- Figure 1.10. A Hess diagram of the r-i vs. g-r colors for the entire set of SDSS Stripe 82 standard stars. The pixels are colored with a logarithmic scaling; cf. figures 1.6 and 1.9. """ # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general import numpy as np from matplotlib import pyplot as plt from astroML.datasets import fetch_sdss_S82standards #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the stripe 82 data data = fetch_sdss_S82standards() g = data['mmu_g'] r = data['mmu_r'] i = data['mmu_i'] #------------------------------------------------------------ # Compute and plot the 2D histogram H, xbins, ybins = np.histogram2d(g - r, r - i, bins=(np.linspace(-0.5, 2.5, 50), np.linspace(-0.5, 2.5, 50))) # Create a black and white color map where bad data (NaNs) are white cmap = plt.cm.binary cmap.set_bad('w', 1.) # Use the image display function imshow() to plot the result fig, ax = plt.subplots(figsize=(5, 3.75)) H[H == 0] = 1 # prevent warnings in log10 ax.imshow(np.log10(H).T, origin='lower', extent=[xbins[0], xbins[-1], ybins[0], ybins[-1]], cmap=cmap, interpolation='nearest', aspect='auto') ax.set_xlabel(r'${\rm g - r}$') ax.set_ylabel(r'${\rm r - i}$') ax.set_xlim(-0.6, 2.5) ax.set_ylim(-0.6, 2.5) plt.show()
bsd-2-clause
meteotest/hurray
logo.py
1
2775
""" Create hurray logo """ import numpy as np from scipy.ndimage import zoom import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas def create_logo(): data = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=np.float64) rand = 1 + (np.random.random(data.shape) - 0.5) * 0.1 data = data * rand data = zoom(data, zoom=1.6, order=5, mode="constant") cmap = "YlGnBu" # big logo width, height = 300, 110 DPI = 100 width_inch, height_inch = width / DPI, height / DPI fig = Figure(frameon=False) fig.set_size_inches((width_inch, height_inch)) FigureCanvas(fig) ax = fig.add_axes([0., 0., 1., 1.]) ax.set_axis_off() ax.pcolor(data[::-1], edgecolors='#777777', linewidths=0.6) # extent = (ax.get_window_extent(). # transformed(fig.dpi_scale_trans.inverted())) extent = mpl.transforms.Bbox(((0, 0), (width_inch, height_inch))) fig.savefig("logo.png", dpi=DPI, transparent=True, bbox_inches=extent, format="png") fig.clf() # important to release memory! # create a small logo consisting of only the "h" width, height = 95, 150 width_inch, height_inch = width / DPI, height / DPI fig = Figure(frameon=False) fig.set_size_inches((width_inch, height_inch)) FigureCanvas(fig) ax = fig.add_axes([0., 0., 1., 1.]) ax.set_axis_off() ax.pcolor(data[::-1][1:, 1:9], edgecolors='#888888', linewidths=0.4) extent = mpl.transforms.Bbox(((0, 0), (width_inch, height_inch))) fig.savefig("logo_small.png", dpi=DPI, transparent=True, bbox_inches=extent, format="png") fig.clf() # important to release memory! if __name__ == "__main__": create_logo()
bsd-3-clause
Rambatino/Kruskals
tests/test_kruskals.py
1
7953
""" Testing module for Kruskals """ from setup_tests import Kruskals import numpy as np import pandas as pd import pytest def test_driver_score(): """ Test driver_score is calculated correctly """ ndarr = np.array([ [1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6]) exp_driver_score = np.array([ 0.14721, 0.44398, 0.23979, 0.62493, 0.71898, 0.31662]) driver_score = np.round(Kruskals.Kruskals(ndarr, arr).driver_score(), decimals=5) assert np.array_equal(driver_score, exp_driver_score) def test_from_pandas_df(): """ Test from pandas_df correctly slices the data """ ndarr = np.array([ [1, 2, 3, 4, 5, 6, 1], [6, 5, 4, 3, 8, 1, 2], [1, 1, 9, 1, 1, 1, 3], [9, 2, 2, 2, 2, 2, 4], [3, 3, 3, 9, 3, 3, 5], [1, 2, 2, 9, 1, 4, 6] ]) exp_driver_score = np.array([ 0.14721, 0.44398, 0.23979, 0.62493, 0.71898, 0.31662]) df = pd.DataFrame(ndarr) driver_score = np.round(Kruskals.Kruskals.from_pandas_df(df, list(range(6)), 6).driver_score(), decimals=5) assert np.array_equal(driver_score, exp_driver_score) def test_percentage(): """ Test percentage is calculated correctly """ ndarr = np.array([ [1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6]) exp_driver_score = np.array([ 5.90856, 17.81959, 9.62429, 25.08222, 28.85722, 12.70813]) driver_score = np.round(Kruskals.Kruskals(ndarr, arr).percentage(), decimals=5) assert np.array_equal(driver_score, exp_driver_score) def test_series_output(): """ Test percentage is calculated correctly """ ndarr = np.array([ [1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6]) exp_driver_score = np.array([ 0.14721, 0.44398, 0.23979, 0.62493, 0.71898, 0.31662]) series = Kruskals.Kruskals(ndarr, arr).driver_score_to_series() assert np.array_equal(np.round(series.values, decimals=5), exp_driver_score) assert series.name == 'score' assert series.index.name == 'driver' def test_ivars_sub_into_series(): """ Test that the column names are correctly mapped to the index values of the series """ ndarr = np.array([ [1, 2, 3, 4, 5, 6, 1], [6, 5, 4, 3, 8, 1, 2], [1, 1, 9, 1, 1, 1, 3], [9, 2, 2, 2, 2, 2, 4], [3, 3, 3, 9, 3, 3, 5], [1, 2, 2, 9, 1, 4, 6] ]) df = pd.DataFrame(ndarr) df.columns = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] ind_cols = ['a', 'b', 'c', 'd', 'e', 'f'] series = Kruskals.Kruskals.from_pandas_df(df, ind_cols, 'g').driver_score_to_series() assert (series.index.values == ind_cols).all() def test_that_direction_is_applied_on_directional_drivers_analysis(): """ Test whether some driver scores are negative """ ndarr = np.array([ [10, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) series = Kruskals.Kruskals(ndarr, arr).driver_score_to_series(True) assert (series.values < 0).any() def test_ability_to_handle_all_same_type(): """ Test to make sure that kruskals can handle data when all the values for and independent set are 0 """ ndarr = np.array([ [10, 0, 3, 4, 5, 6], [6, 0, 4, 3, 5, 1], [1, 0, 9, 1, 5, 1], [9, 0, 2, 2, 5, 2], [3, 0, 3, 9, 5, 3], [1, 0, 2, 9, 5, 4], [1, 0, 2, 9, 5, 4], [1, 0, 2, 9, 5, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) series = Kruskals.Kruskals(ndarr, arr).driver_score() assert series[1] == 0.0 assert series[4] == 0.0 def test_can_handle_numpy_arrays_for_col_names(): """ Test that df.columns can be passed into __init__ """ ndarr = np.array([ [1, 2, 3, 4, 5, 6, 1], [6, 5, 4, 3, 8, 1, 2], [1, 1, 9, 1, 1, 1, 3], [9, 2, 2, 2, 2, 2, 4], [3, 3, 3, 9, 3, 3, 5], [1, 2, 2, 9, 1, 4, 6] ]) exp_driver_score = np.array([0.14721, 0.44398, 0.23979, 0.62493, 0.71898, 0.31662]) df = pd.DataFrame(ndarr) df.columns = ['a', 'b', 'c', 'd', 'e', 'f', 'g'] driver_score = Kruskals.Kruskals(ndarr, exp_driver_score, i_vars=df.columns).driver_score_to_series() assert np.array_equal(driver_score.index.values, ['a', 'b', 'c', 'd', 'e', 'f', 'g']) def test_return_error_if_i_vars_not_sufficient(): """ Test that error raised when columns insufficient length """ ndarr = np.array([ [1, 2, 3, 4, 5, 6, 1], [6, 5, 4, 3, 8, 1, 2], [1, 1, 9, 1, 1, 1, 3], [9, 2, 2, 2, 2, 2, 4], [3, 3, 3, 9, 3, 3, 5], [1, 2, 2, 9, 1, 4, 6] ]) exp_driver_score = np.array([0.14721, 0.44398, 0.23979, 0.62493, 0.71898, 0.31662]) i_vars = ['a', 'b', 'c', 'd', 'e', 'f'] with pytest.raises(ValueError) as e: Kruskals.Kruskals(ndarr, exp_driver_score, i_vars=i_vars).driver_score_to_series() assert 'driver labels: {}, not sufficient for ndarray of shape {}'.format(i_vars, ndarr.shape) in str(e.value) def test_percentage_when_non_directional(): """ Test the percentage function behaves as expected """ ndarr = np.array([ [10, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) percentage = Kruskals.Kruskals(ndarr, arr).driver_score(percentage=True) assert (np.round(percentage, decimals=4) == [18.7523, 13.8413, 15.4078, 21.5111, 23.4954, 6.9921]).all() def test_percentage_when_directional(): """ Test the percentage function behaves as expected """ ndarr = np.array([ [10, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) percentage = Kruskals.Kruskals(ndarr, arr).driver_score(directional=True, percentage=True) assert (np.round(percentage, decimals=4) == [-18.7523, -13.8413, -15.4078, 21.5111, -23.4954, 6.9921]).all() def test_dependent_variable_can_be_nan(): ndarr = np.array([ [10, 2, 3, 4, 5, 6], [6, 5, 4, 3, 8, 1], [1, 1, 9, 1, 1, 1], [9, 2, 2, 2, 2, 2], [3, 3, 3, 9, 3, 3], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4], [1, 2, 2, 9, 1, 4] ]) arr = np.array([1, 2, 3, 4, np.nan, 6, 7, 8]) percentage = Kruskals.Kruskals(ndarr, arr).driver_score(directional=True, percentage=True) assert (np.round(percentage, decimals=4) == [-17.2805, -13.5913, -14.5028, 23.0658, -22.5377, 9.0218]).all() def test_independent_1_col(): ndarr = np.array([ [10], [6], [1], [9], [3], [1], [1], [1], ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) percentage = Kruskals.Kruskals(ndarr, arr).driver_score(directional=True, percentage=True) assert (np.isnan(np.round(percentage, decimals=4))).all() def test_independent_2_col(): ndarr = np.array([ [10, 2], [6, 5], [1, 1], [9, 2], [3, 3], [1, 2], [1, 2], [1, 2] ]) arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) percentage = Kruskals.Kruskals(ndarr, arr).driver_score(directional=True, percentage=True) assert (np.isnan(np.round(percentage, decimals=4))).all()
mit
mxOBS/deb-pkg_trusty_chromium-browser
chrome/test/nacl_test_injection/buildbot_nacl_integration.py
94
3083
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys def Main(args): pwd = os.environ.get('PWD', '') is_integration_bot = 'nacl-chrome' in pwd # This environment variable check mimics what # buildbot_chrome_nacl_stage.py does. is_win64 = (sys.platform in ('win32', 'cygwin') and ('64' in os.environ.get('PROCESSOR_ARCHITECTURE', '') or '64' in os.environ.get('PROCESSOR_ARCHITEW6432', ''))) # On the main Chrome waterfall, we may need to control where the tests are # run. # If there is serious skew in the PPAPI interface that causes all of # the NaCl integration tests to fail, you can uncomment the # following block. (Make sure you comment it out when the issues # are resolved.) *However*, it is much preferred to add tests to # the 'tests_to_disable' list below. #if not is_integration_bot: # return tests_to_disable = [] # In general, you should disable tests inside this conditional. This turns # them off on the main Chrome waterfall, but not on NaCl's integration bots. # This makes it easier to see when things have been fixed NaCl side. if not is_integration_bot: # http://code.google.com/p/nativeclient/issues/detail?id=2511 tests_to_disable.append('run_ppapi_ppb_image_data_browser_test') if sys.platform == 'darwin': # TODO(mseaborn) fix # http://code.google.com/p/nativeclient/issues/detail?id=1835 tests_to_disable.append('run_ppapi_crash_browser_test') if sys.platform in ('win32', 'cygwin'): # This one is only failing for nacl_glibc on x64 Windows but it is not # clear how to disable only that limited case. # See http://crbug.com/132395 tests_to_disable.append('run_inbrowser_test_runner') # run_breakpad_browser_process_crash_test is flaky. # See http://crbug.com/317890 tests_to_disable.append('run_breakpad_browser_process_crash_test') # See http://crbug.com/332301 tests_to_disable.append('run_breakpad_crash_in_syscall_test') # It appears that crash_service.exe is not being reliably built by # default in the CQ. See: http://crbug.com/380880 tests_to_disable.append('run_breakpad_untrusted_crash_test') tests_to_disable.append('run_breakpad_trusted_crash_in_startup_test') script_dir = os.path.dirname(os.path.abspath(__file__)) nacl_integration_script = os.path.join(script_dir, 'buildbot_chrome_nacl_stage.py') cmd = [sys.executable, nacl_integration_script, # TODO(ncbray) re-enable. # https://code.google.com/p/chromium/issues/detail?id=133568 '--disable_glibc', '--disable_tests=%s' % ','.join(tests_to_disable)] cmd += args sys.stdout.write('Running %s\n' % ' '.join(cmd)) sys.stdout.flush() return subprocess.call(cmd) if __name__ == '__main__': sys.exit(Main(sys.argv[1:]))
bsd-3-clause
dpinney/omf
omf/scratch/GRIP/grip.py
1
37464
''' Web server exposing HTTP API for GRIP. ''' import os, traceback, tempfile, platform, zipfile, subprocess, time, shutil, sys, datetime, numbers from functools import wraps from multiprocessing import Process import matplotlib.pyplot as plt from flask import Flask, request, send_from_directory, make_response, json, abort, redirect, url_for, jsonify import omf from omf import distNetViz, feeder, milToGridlab, network from omf import cymeToGridlab as cymeToGridlab_ from omf.models import transmission, resilientDist from omf.solvers import gridlabd, nrelsam2013 from omf.scratch.GRIP import grip_config app = Flask(__name__) app.config.from_object(grip_config.Config) # Change the dictionary values to change the output file names. Don't change the keys unless you also update the rest of the dictionary references in # the code filenames = { 'ongl': 'onelinegridlab.png', 'msgl': 'milsofttogridlab.glm', 'cygl': 'cymetogridlab.glm', 'glrun': 'gridlabrun.json', 'glgfm': 'gridlabtogfm.gfm', 'rungfm': 'rungfm.txt', 'samrun': 'samrun.json', 'tmomt': 'transmissionmattoomt.json', 'tmpf': 'transmissionpowerflow.zip', 'tv': 'network-viewer.html', 'dv': 'distnetviz-viewer.html', 'gfl': 'glmforcelayout.glm' } def _get_abs_path(path): '''Return the absolute variant of the path argument.''' if not os.path.isabs(path): path = "/" + path return path def _get_rel_path(path): '''Return the relative variant of the path argument.''' return path.lstrip("/") def _get_elapsed_time(start, end): '''TODO''' elapsed_time = int(end - start) return '{:02}:{:02}:{:02}'.format(elapsed_time // 3600, ((elapsed_time % 3600) // 60), elapsed_time % 60) def _get_created_at(temp_dir): '''TODO''' start_time_path = os.path.join(temp_dir, 'start-time.txt') created_at = os.path.getmtime(start_time_path) return created_at def _get_timestamp(unix_time): '''Return an ISO 8601 timestamp string that is equivalent to a Unix time integer''' return datetime.datetime.utcfromtimestamp(unix_time).isoformat().rsplit('.')[0] + 'Z' def _get_failure_time(temp_dir): '''TODO''' error_path = os.path.join(temp_dir, 'error.txt') if os.path.isfile(error_path): stopped_at = os.path.getmtime(error_path) with open(error_path, 'r') as f: msg = f.readlines() if app.config["DELETE_FAILED_JOBS"]: shutil.rmtree(temp_dir) return (stopped_at, msg) return (None, None) def _validate_input(input_metadata): ''' Validate the incoming request input, given the input_metadata dictionary that specifies: - The name of the form parameter - The Python type of the form parameter - Whether or not the form parameter is required - The permitted range of values of the form parameter ''' name = input_metadata['name'] input_type = input_metadata['type'] input_ = request.files.get(name) if input_type == 'file' else request.form.get(name) if input_ is None or (input_type == 'file' and input_.filename == ''): if input_metadata['required']: return ({ name: None }, "The parameter '{}' of type '{}' is required, but it was not submitted.".format(name, input_type)) return (None, None) elif input_type != 'file': try: if input_type is bool: if input_ != 'True' and input_ != 'False': raise Exception else: input_ = input_type(input_) except: return ({name: input_}, "The parameter '{}' could not be converted into the required type '{}'.".format(name, input_type)) input_range = input_metadata.get('range') if input_range is not None: if input_type == str: if input_ not in input_range: return ({name: input_}, "The parameter '{}' was not one of the allowed values: '{}'.".format(name, input_range)) elif issubclass(input_type, numbers.Number): min_ = input_range.get('min') if min_ is not None and input_ < min_: return ({name: input_}, "The parameter '{}' was less than the minimum bound of '{}'.".format(name, min_)) max_ = input_range.get('max') if max_ is not None and input_ > max_: return ({name: input_}, "The parameter '{}' was greater than the maximum bound of '{}'.".format(name, max_)) return (None, None) def start_process(route_function=None, inputs_metadata=None, custom_validation_functions=None): '''TODO''' def decorator(process_function): @wraps(process_function) def wrapper(*args, **kwargs): '''If the inputs were valid, start the process and return 202 and JSON, else return 4xx and JSON.''' errors = [] if inputs_metadata: for i in inputs_metadata: src, msg = _validate_input(i) if msg: errors.append({ 'http code': 400, 'source': src, 'title': 'Invalid Parameter Value', 'detail': msg }) if len(errors) > 0: r = jsonify(job={'state': 'failed'}, errors=errors) r.status = '400' return r temp_dir = tempfile.mkdtemp() if custom_validation_functions: for func in custom_validation_functions: src, msg = func(temp_dir) if msg: errors.append({ 'http code': 422, 'source': src, 'title': 'Invalid Parameter Value Combination', 'detail': msg }) if len(errors) > 0: r = jsonify(job={'state': 'failed'}, errors=errors) r.status = '422' return r start_time_path = os.path.join(temp_dir, 'start-time.txt') with open(start_time_path, 'w'): pass created_at = _get_created_at(temp_dir) url = process_function(temp_dir) r = jsonify(job={ 'state': 'in-progress', 'status': os.path.join(request.url_root, _get_rel_path(url)), 'created at': _get_timestamp(created_at), 'elapsed time': '00:00:00', }) r.status = '202' return r return wrapper if route_function is None: return decorator else: return decorator(route_function) def try_except(func): @wraps(func) def wrapper(*args, **kwargs): '''Try-except the the function.''' temp_dir = args[0] try: func(temp_dir) except: entries = traceback.format_exception(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2]) with open(os.path.join(temp_dir, 'error.txt'), 'w') as f: f.write(entries[-0]) f.write(entries[-2]) f.write(entries[-1]) return wrapper def get_status(func): @wraps(func) def wrapper(*args, **kwargs): '''Return JSON indicating the status of the background job if it exists, else 404.''' temp_dir = _get_abs_path(kwargs["temp_dir"]) if not os.path.isdir(temp_dir): abort(404) created_at = _get_created_at(temp_dir) failed_at, failure_msg = _get_failure_time(temp_dir) completed_at, status_url, download_url = func(temp_dir) status_url = os.path.join(request.url_root, _get_rel_path(status_url)) download_url = os.path.join(request.url_root, _get_rel_path(download_url)) response_data = {'job': {'created at': _get_timestamp(created_at)}} if failed_at: state = 'failed' elapsed_time = _get_elapsed_time(created_at, failed_at) response_data['job']['stopped at'] = _get_timestamp(failed_at) response_data['errors'] = [{ 'http code': 500, 'source': failure_msg, 'title': 'Job Failed', 'detail': 'The process handling the job raised an exception.' }] elif completed_at: state = 'complete' elapsed_time = _get_elapsed_time(created_at, completed_at) response_data['job']['stopped at'] = _get_timestamp(completed_at) response_data['job']['download'] = download_url else: state = 'in-progress' elapsed_time = _get_elapsed_time(created_at, time.time()) response_data['job']['elapsed time'] = elapsed_time if request.method == 'DELETE': state = 'deleted' if response_data['job'].get('stopped at') is None: response_data['job']['stopped at'] = _get_timestamp(time.time()) del response_data['job']['download'] shutil.rmtree(temp_dir) elif request.method == 'GET': response_data['job']['status'] = status_url response_data['job']['state'] = state r = jsonify(response_data) if failed_at: r.status = '500' return r return wrapper def get_download(func): @wraps(func) def wrapper(*args, **kwargs): '''Return the requested resource if it exists, else 404.''' temp_dir = _get_abs_path(kwargs["temp_dir"]) response = func(temp_dir) if app.config["DELETE_SUCCESSFUL_JOBS"]: shutil.rmtree(temp_dir) return response return wrapper def _validate_oneLineGridlab(temp_dir): '''TODO''' glm_path = os.path.join(temp_dir, 'in.glm') request.files['glm'].save(glm_path) tree = feeder.parse(glm_path) if not distNetViz.contains_valid_coordinates(tree) and request.form['useLatLons'] == 'True': return ( {'useLatLons': 'True'}, ("Since the submitted GLM contained no coordinates, or the coordinates could not be parsed as floats, " "'useLatLons' must be 'False' because artificial coordinates must be used to draw the GLM.") ) return (None, None) @app.route("/oneLineGridlab", methods=["POST"]) @start_process( inputs_metadata=( {'name': 'useLatLons', 'required': True, 'type': bool}, {'name': 'glm', 'required': True, 'type': 'file'} ), custom_validation_functions=(_validate_oneLineGridlab,) ) def oneLineGridlab_start(temp_dir): p = Process(target=oneLineGridlab, args=(temp_dir,)) p.start() return url_for('oneLineGridlab_status', temp_dir=_get_rel_path(temp_dir)) @try_except def oneLineGridlab(temp_dir): ''' Create a one-line diagram of the input GLM and return a PNG of it. Form parameters: :param glm: a GLM file. :param useLatLons: 'True' if the diagram should be drawn with coordinate values taken from within the GLM, 'False' if the diagram should be drawn with artificial coordinates using Graphviz NEATO. Details: :OMF fuction: omf.feeder.latLonNxGraph(). :run-time: about 1 to 30 seconds. ''' glm_path = os.path.join(temp_dir, 'in.glm') feed = feeder.parse(glm_path) graph = feeder.treeToNxGraph(feed) neatoLayout = True if request.form.get('useLatLons') == 'False' else False # Clear old plots. plt.clf() plt.close() # Plot new plot. feeder.latLonNxGraph(graph, labels=False, neatoLayout=neatoLayout, showPlot=False) plt.savefig(os.path.join(temp_dir, filenames["ongl"])) @app.route("/oneLineGridlab/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def oneLineGridlab_status(temp_dir): ongl_path = os.path.join(temp_dir, filenames['ongl']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('oneLineGridlab_status', temp_dir=temp_dir) download_url = url_for("oneLineGridlab_download", temp_dir=temp_dir) if os.path.isfile(ongl_path): return (os.path.getmtime(ongl_path), status_url, download_url) return (None, status_url, download_url) @app.route("/oneLineGridlab/<path:temp_dir>/download") @get_download def oneLineGridlab_download(temp_dir): return send_from_directory(temp_dir, filenames["ongl"]) @app.route('/milsoftToGridlab', methods=['POST']) @start_process( inputs_metadata=( {'name': 'std', 'required': True, 'type': 'file'}, {'name': 'seq', 'required': True, 'type': 'file'} ) ) def milsoftToGridlab_start(temp_dir): p = Process(target=milsoftToGridlab, args=(temp_dir,)) p.start() return url_for('milsoftToGridlab_status', temp_dir=_get_rel_path(temp_dir)) @try_except def milsoftToGridlab(temp_dir): ''' Convert a Milsoft Windmil ASCII export (.std & .seq) in to a GridLAB-D .glm and return the .glm. Form parameters: :param std: an STD file. :param seq: an SEQ file. Details: :OMF function: omf.milToGridlab.convert(). :run-time: up to a few minutes ''' stdPath = os.path.join(temp_dir, 'in.std') request.files['std'].save(stdPath) seqPath = os.path.join(temp_dir, 'in.seq') request.files['seq'].save(seqPath) with open(stdPath) as f: stdFile = f.read() with open(seqPath) as f: seqFile = f.read() tree = milToGridlab.convert(stdFile, seqFile, rescale=True) # Remove '#include "schedules.glm' objects from the tree. Would be faster if this was incorported in sortedWrite() or something tree = {k: v for k, v in tree.items() if v.get('omftype') != '#include'} with open(os.path.join(temp_dir, filenames['msgl']), 'w') as outFile: outFile.write(feeder.sortedWrite(tree)) @app.route('/milsoftToGridlab/<path:temp_dir>', methods=['GET', 'DELETE']) @get_status def milsoftToGridlab_status(temp_dir): msgl_path = os.path.join(temp_dir, filenames['msgl']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('milsoftToGridlab_status', temp_dir=temp_dir) download_url = url_for('milsoftToGridlab_download', temp_dir=temp_dir) if os.path.isfile(msgl_path): return (os.path.getmtime(msgl_path), status_url, download_url) return (None, status_url, download_url) @app.route("/milsoftToGridlab/<path:temp_dir>/download") @get_download def milsoftToGridlab_download(temp_dir): return send_from_directory(temp_dir, filenames["msgl"], mimetype="text/plain") @app.route("/cymeToGridlab", methods=["POST"]) @start_process(inputs_metadata=({'name': 'mdb', 'required': True, 'type': 'file'},)) def cymeToGridlab_start(temp_dir): p = Process(target=cymeToGridlab, args=(temp_dir,)) p.start() return url_for('cymeToGridlab_status', temp_dir=_get_rel_path(temp_dir)) @try_except def cymeToGridlab(temp_dir): ''' Convert an Eaton Cymdist .mdb export in to a GridLAB-D .glm and return the .glm. Form parameters: :param mdb: a MDB file. Details: :OMF function: omf.cymeToGridlab.convertCymeModel(). :run-time: up to a few minutes. ''' mdbPath = os.path.join(temp_dir, "in.mdb") request.files["mdb"].save(mdbPath) import locale locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') tree = cymeToGridlab_.convertCymeModel(mdbPath, temp_dir) # Remove '#include "schedules.glm' objects from the tree. Would be faster if this was incorported in sortedWrite() or something tree = {k: v for k, v in tree.items() if v.get('omftype') != '#include'} with open(os.path.join(temp_dir, filenames["cygl"]), 'w') as outFile: outFile.write(feeder.sortedWrite(tree)) @app.route("/cymeToGridlab/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def cymeToGridlab_status(temp_dir): cygl_path = os.path.join(temp_dir, filenames['cygl']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('cymeToGridlab_status', temp_dir=temp_dir) download_url = url_for("cymeToGridlab_download", temp_dir=temp_dir) if os.path.isfile(cygl_path): return (os.path.getmtime(cygl_path), status_url, download_url) return (None, status_url, download_url) @app.route("/cymeToGridlab/<path:temp_dir>/download") @get_download def cymeToGridlab_download(temp_dir): return send_from_directory(temp_dir, filenames["cygl"], mimetype="text/plain") @app.route("/gridlabRun", methods=["POST"]) @start_process(inputs_metadata=({'name': 'glm', 'required': True, 'type': 'file'},)) def gridlabRun_start(temp_dir): p = Process(target=gridlabRun, args=(temp_dir,)) p.start() return url_for('gridlabRun_status', temp_dir=_get_rel_path(temp_dir)) @try_except def gridlabRun(temp_dir): ''' Run a .glm through GridLAB-D and return the results as JSON. Form parameters: :param glm: a GLM file. Details: :OMF fuction: omf.solvers.gridlabd.runInFileSystem(). :run-time: up to a few hours. TODO: think about attachment support. ''' fName = 'in.glm' f = request.files['glm'] glmOnDisk = os.path.join(temp_dir, fName) f.save(glmOnDisk) feed = feeder.parse(glmOnDisk) outDict = gridlabd.runInFilesystem(feed, attachments=[], keepFiles=True, workDir=temp_dir, glmName='out.glm') with open(os.path.join(temp_dir, filenames["glrun"]), 'w') as f: json.dump(outDict, f) @app.route("/gridlabRun/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def gridlabRun_status(temp_dir): glrun_path = os.path.join(temp_dir, filenames['glrun']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('gridlabRun_status', temp_dir=temp_dir) download_url = url_for('gridlabRun_download', temp_dir=temp_dir) if os.path.isfile(glrun_path): return (os.path.getmtime(glrun_path), status_url, download_url) return (None, status_url, download_url) @app.route("/gridlabRun/<path:temp_dir>/download") @get_download def gridlabRun_download(temp_dir): return send_from_directory(temp_dir, filenames["glrun"], mimetype="application/json") @app.route('/gridlabdToGfm', methods=['POST']) @start_process( inputs_metadata=( {'name': 'glm', 'required': True, 'type': 'file'}, {'name': 'phase_variation', 'required': False, 'type': float, 'range': {'min': 0, 'max': 1}}, {'name': 'chance_constraint', 'required': False, 'type': float, 'range': {'min': 0, 'max': 1}}, {'name': 'critical_load_met', 'required': False, 'type': float, 'range': {'min': 0, 'max': 1}}, {'name': 'total_load_met', 'required': False, 'type': float, 'range': {'min': 0, 'max': 1}}, {'name': 'maxDGPerGenerator', 'required': False, 'type': float}, {'name': 'dgUnitCost', 'required': False, 'type': float}, {'name': 'generatorCandidates', 'required': False, 'type': str}, {'name': 'criticalLoads', 'required': False, 'type': str}, ) ) def gridlabdToGfm_start(temp_dir): p = Process(target=gridlabdToGfm, args=(temp_dir,)) p.start() return url_for("gridlabdToGfm_status", temp_dir=_get_rel_path(temp_dir)) @try_except def gridlabdToGfm(temp_dir): ''' Convert a GridLAB-D model (i.e. .glm file) into a LANL ANSI General Fragility Model and return the GFM model as JSON. Note that this is not the main fragility model for GRIP. Form parameters: :param glm: a GLM file. :param phase_variation: maximum phase unbalance allowed in the optimization model. :param chance_constraint: indicates the percent of damage scenarios where load constraints above must be met. :param critical_load_met: indicates the percent of critical load that must be met in each damage scenario. :param total_load_met: indicates the percent of non-critical load that must be met in each damage scenario. :param maxDGPerGenerator: the maximum DG capacity that a generator supports in MW. :param dgUnitCost: the cost of adding distributed generation to a load in $/MW. :param generatorCandidates: the IDs of nodes on the system where the user wants to consider adding distributed generation. At least one node is required. :type generatorCandidates: one long string delimited with commas. :param criticalLoads: the IDs of loads on the system that the user declares to be critical (must-run). :type criticalLoads: one long string delimited with commas. Details: :OMF function: omf.models.resilientDist.convertToGFM(). :run-time: a few seconds. ''' fName = 'in.glm' f = request.files['glm'] glmPath = os.path.join(temp_dir, fName) f.save(glmPath) gfmInputTemplate = { 'phase_variation': float(request.form.get('phase_variation', 0.15)), 'chance_constraint': float(request.form.get('chance_constraint', 1)), 'critical_load_met': float(request.form.get('critical_load_met', .98)), 'total_load_met': float(request.form.get('total_load_met', .9)), 'maxDGPerGenerator': float(request.form.get('max_dg_per_generator', 1)), 'dgUnitCost': float(request.form.get('dg_unit_cost', 1000000)), 'generatorCandidates': request.form.get('generator_candidates', ''), 'criticalLoads': request.form.get('critical_loads', '') } feederModel = { 'nodes': [], # Don't need these. 'tree': feeder.parse(glmPath) } gfmDict = resilientDist.convertToGFM(gfmInputTemplate, feederModel) with open(os.path.join(temp_dir, filenames["glgfm"]), 'w') as f: json.dump(gfmDict, f) @app.route("/gridlabdToGfm/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def gridlabdToGfm_status(temp_dir): glgfm_path = os.path.join(temp_dir, filenames['glgfm']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('gridlabdToGfm_status', temp_dir=temp_dir) download_url = url_for('gridlabdToGfm_download', temp_dir=temp_dir) if os.path.isfile(glgfm_path): return (os.path.getmtime(glgfm_path), status_url, download_url) return (None, status_url, download_url) @app.route("/gridlabdToGfm/<path:temp_dir>/download") @get_download def gridlabdToGfm_download(temp_dir): return send_from_directory(temp_dir, filenames["glgfm"], mimetype="application/json") @app.route('/runGfm', methods=['POST']) @start_process( inputs_metadata=( {'name': 'gfm', 'required': True, 'type': 'file'}, {'name': 'asc', 'required': True, 'type': 'file'} ) ) def runGfm_start(temp_dir): p = Process(target=runGfm, args=(temp_dir,)) p.start() return url_for('runGfm_status', temp_dir=_get_rel_path(temp_dir)) @try_except def runGfm(temp_dir): ''' Calculate distribution damage using a LANL ANSI General Fragility Model file (i.e. a .gfm) along with a hazard field file (i.e. a .asc file) and return the results as JSON. Note that this is not the main fragility model for GRIP. Form parameters: :param gfm: a GFM file. :param asc: an ASC file. Details: :OMF function: omf.solvers.gfm.run(). :run-time: should be around 1 to 30 seconds. ''' gfm_name = "gfm.json" gfm_path = os.path.join(temp_dir, gfm_name) request.files["gfm"].save(gfm_path) hazard_name = "hazard.asc" hazard_path = os.path.join(temp_dir, hazard_name) request.files["asc"].save(hazard_path) # Run GFM gfmBinaryPath = os.path.join(omf.omfDir, "solvers/gfm/Fragility.jar") if platform.system() == 'Darwin': #HACK: force use of Java8 on MacOS. #javaCmd = '/Library/Java/JavaVirtualMachines/jdk1.8.0_181.jdk/Contents/Home/bin/java' #HACK HACK: use my version of Java 8 for now javaCmd = "/Library/Java/JavaVirtualMachines/jdk1.8.0_202.jdk/Contents/Home/bin/java" else: javaCmd = 'java' outName = 'gfm_out.json' proc = subprocess.Popen( [javaCmd,'-jar', gfmBinaryPath, '-r', gfm_name, '-wf', hazard_name, '-num', '3', '-ro', outName], stdout = subprocess.PIPE, stderr = subprocess.PIPE, cwd = temp_dir ) (stdout,stderr) = proc.communicate() gfmOutPath = os.path.join(temp_dir, outName) try: with open(gfmOutPath) as f: out = json.load(f).decode() except: out = stdout.decode() with open(os.path.join(temp_dir, filenames["rungfm"]), 'w') as f: f.write(out) @app.route("/runGfm/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def runGfm_status(temp_dir): rungfm_path = os.path.join(temp_dir, filenames['rungfm']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('runGfm_status', temp_dir=temp_dir) download_url = url_for('runGfm_download', temp_dir=temp_dir) if os.path.isfile(rungfm_path): return (os.path.getmtime(rungfm_path), status_url, download_url) return (None, status_url, download_url) @app.route("/runGfm/<path:temp_dir>/download") @get_download def runGfm_download(temp_dir): return send_from_directory(temp_dir, filenames["rungfm"]) @app.route('/samRun', methods=['POST']) @start_process( inputs_metadata=( {'name': 'tmy2', 'required': True, 'type': 'file'}, {'name': 'system_size', 'required': False, 'type': int}, {'name': 'derate', 'required': False, 'type': float, 'range': {'min': 0, 'max': 1}}, {'name': 'track_mode', 'required': False, 'type': int, 'range': {'min': 0, 'max': 3}}, {'name': 'azimuth', 'required': False, 'type': float, 'range': {'min': 0, 'max': 360}}, {'name': 'tilt', 'required': False, 'type': float, 'range': {'min': 0, 'max': 90}}, ) ) def samRun_start(temp_dir): p = Process(target=samRun, args=(temp_dir,)) p.start() return url_for("samRun_status", temp_dir=_get_rel_path(temp_dir)) @try_except def samRun(temp_dir): ''' Run NREL's System Advisor Model with the specified parameters and return output vectors and floats in JSON. Form parameters: :param tmy2: a tmy2 file. :param system_size: nameplate capacity. :param derate: system derate value. :param track_mode: tracking mode. :param azimuth: azimuth angle. :param tilt: tilt angle. There are 40 other additional optional input parameters to the pvwattsv1 module of S.A.M. Details: :OMF function: omf.solvers.sam.run(). :run-time: should only be a couple of seconds. See pvwattsv1-variable-info.txt for details on other 40 possible inputs to this route. ''' tmy2_path = os.path.join(temp_dir, "in.tmy2") request.files["tmy2"].save(tmy2_path) # Set up SAM data structures. ssc = nrelsam2013.SSCAPI() dat = ssc.ssc_data_create() # Set the inputs. ssc.ssc_data_set_string(dat, b'file_name', bytes(tmy2_path, 'ascii')) for key in request.form.keys(): ssc.ssc_data_set_number(dat, bytes(key, 'ascii'), float(request.form.get(key))) # Enter required parameters system_size = int(request.form.get('system_size', 4)) ssc.ssc_data_set_number(dat, b'system_size', system_size) derate = float(request.form.get('derate', .77)) ssc.ssc_data_set_number(dat, b'derate', derate) track_mode = int(request.form.get('track_mode', 0)) ssc.ssc_data_set_number(dat, b'track_mode', track_mode) azimuth = float(request.form.get('azimuth', 180)) ssc.ssc_data_set_number(dat, b'azimuth', azimuth) tilt = float(request.form.get('tilt', 30)) ssc.ssc_data_set_number(dat, b'tilt', tilt) # Run PV system simulation. mod = ssc.ssc_module_create(b'pvwattsv1') ssc.ssc_module_exec(mod, dat) # Geodata output. outData = {} outData['city'] = ssc.ssc_data_get_string(dat, b'city').decode() outData['state'] = ssc.ssc_data_get_string(dat, b'state').decode() outData['lat'] = ssc.ssc_data_get_number(dat, b'lat') outData['lon'] = ssc.ssc_data_get_number(dat, b'lon') outData['elev'] = ssc.ssc_data_get_number(dat, b'elev') # Weather output. outData['climate'] = {} outData['climate']['Plane of Array Irradiance (W/m^2)'] = ssc.ssc_data_get_array(dat, b'poa') outData['climate']['Beam Normal Irradiance (W/m^2)'] = ssc.ssc_data_get_array(dat, b'dn') outData['climate']['Diffuse Irradiance (W/m^2)'] = ssc.ssc_data_get_array(dat, b'df') outData['climate']['Ambient Temperature (F)'] = ssc.ssc_data_get_array(dat, b'tamb') outData['climate']['Cell Temperature (F)'] = ssc.ssc_data_get_array(dat, b'tcell') outData['climate']['Wind Speed (m/s)'] = ssc.ssc_data_get_array(dat, b'wspd') # Power generation. outData['Consumption'] = {} outData['Consumption']['Power'] = ssc.ssc_data_get_array(dat, b'ac') outData['Consumption']['Losses'] = ssc.ssc_data_get_array(dat, b'ac') outData['Consumption']['DG'] = ssc.ssc_data_get_array(dat, b'ac') with open(os.path.join(temp_dir, filenames['samrun']), 'w') as f: json.dump(outData, f) @app.route("/samRun/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def samRun_status(temp_dir): samrun_path = os.path.join(temp_dir, filenames['samrun']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('samRun_status', temp_dir=temp_dir) download_url = url_for('samRun_download', temp_dir=temp_dir) if os.path.isfile(samrun_path): return (os.path.getmtime(samrun_path), status_url, download_url) return (None, status_url, download_url) @app.route("/samRun/<path:temp_dir>/download") @get_download def samRun_download(temp_dir): return send_from_directory(temp_dir, filenames["samrun"]) @app.route('/transmissionMatToOmt', methods=['POST']) @start_process(inputs_metadata=({'name': 'matpower', 'required': True, 'type': 'file'},)) def transmissionMatToOmt_start(temp_dir): p = Process(target=transmissionMatToOmt, args=(temp_dir,)) p.start() return url_for('transmissionMatToOmt_status', temp_dir=_get_rel_path(temp_dir)) @try_except def transmissionMatToOmt(temp_dir): ''' Convert a MATPOWER .mat or .m input into a JSON .omt transmission circuit format and return the .omt. Form parameters: :param matpower: a MATPOWER .mat file. Details: :OMF function: omf.network.parse() :run-time: maybe a couple minutes. ''' mat_path = os.path.join(temp_dir, "input.mat") request.files["matpower"].save(mat_path) omt_json = network.parse(mat_path, filePath=True) if omt_json == {"baseMVA":"100.0","mpcVersion":"2.0","bus":{},"gen":{}, "branch":{}}: raise Exception("The submitted .m file was invalid or could not be parsed correctly.") nxG = network.netToNxGraph(omt_json) omt_json = network.latlonToNet(nxG, omt_json) with open(os.path.join(temp_dir, filenames["tmomt"]), 'w') as f: json.dump(omt_json, f) @app.route("/transmissionMatToOmt/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def transmissionMatToOmt_status(temp_dir): tmomt_path = os.path.join(temp_dir, filenames['tmomt']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('transmissionMatToOmt_status', temp_dir=temp_dir) download_url = url_for('transmissionMatToOmt_download', temp_dir=temp_dir) if os.path.isfile(tmomt_path): return (os.path.getmtime(tmomt_path), status_url, download_url) return (None, status_url, download_url) @app.route("/transmissionMatToOmt/<path:temp_dir>/download") @get_download def transmissionMatToOmt_download(temp_dir): return send_from_directory(temp_dir, filenames["tmomt"]) @app.route('/transmissionPowerflow', methods=['POST']) @start_process( inputs_metadata=( {'name': 'algorithm', 'required': False, 'type': str, 'range': ('NR', 'FDXB', 'FDBX', 'GS')}, {'name': 'model', 'required': False, 'type': str, 'range': ('AC', 'DC')}, {'name': 'iteration', 'required': False, 'type': int, 'range': {'min': 1}}, {'name': 'tolerance', 'required': False, 'type': float}, {'name': 'genLimits', 'required': False, 'type': int, 'range': {'min': 0, 'max': 2}} ) ) def transmissionPowerflow_start(temp_dir): p = Process(target=transmissionPowerflow, args=(temp_dir,)) p.start() return url_for("transmissionPowerflow_status", temp_dir=_get_rel_path(temp_dir)) @try_except def transmissionPowerflow(temp_dir): ''' Run ACOPF for a .omt transmission circuit. Form parameters: :param omt: an OMT file. :param algorithm: powerflow solution method. 'NR' = Newton's method, 'FDXB' = Fast-Decoupled (XB version), 'FDBX' = Fast-Decouple (BX version), 'GS' = Gauss-Seidel. :param model: AC vs. DC modeling for power flow and OPF formulation. :param iteration: maximum number of iterations allowed in the attempt to find a powerflow solution. :param tolerance: termination tolerance on per unit P and Q dispatch. :param genLimits: enforce gen reactive power limits at expense of Vm. 0 = do not enforce limits, 1 = enforce limits, simultaneous bus type conversion, 2 = enforce limits, one-at-a-time bus type conversion. Details: :OMF function: omf.models.transmission.new() and omf.models.transmission.work(). :run-time: tens of seconds. ''' algorithm = request.form.get('algorithm', 'NR') model = request.form.get('model', 'AC') iteration = int(request.form.get('iteration', 10)) tolerance = float(request.form.get('tolerance', 10**-8)) genLimits = int(request.form.get('genLimits', 0)) inputDict = { 'algorithm': algorithm, 'model': model, 'tolerance': tolerance, 'iteration': iteration, 'genLimits': genLimits } model_dir = os.path.join(temp_dir, "transmission") if transmission.new(model_dir): omt_path = os.path.join(model_dir, "case9.omt") request.files["omt"].save(omt_path) with open(os.path.join(model_dir, "allInputData.json")) as f: defaults = json.load(f) merged = {key: inputDict.get(key) if inputDict.get(key) is not None else defaults[key] for key in defaults} with open(os.path.join(model_dir, "allInputData.json"), 'w') as f: json.dump(merged, f) outputDict = transmission.work(model_dir, merged) with open(os.path.join(model_dir, "allOutputData.json"), 'w') as f: json.dump(outputDict, f) with zipfile.ZipFile(os.path.join(model_dir, filenames["tmpf"]), 'w', zipfile.ZIP_DEFLATED) as z: z.write(os.path.join(model_dir, "output.png"), "output.png") z.write(os.path.join(model_dir, "allOutputData.json"), "allOutputData.json") else: raise Exception("Couldn't create model directory") @app.route("/transmissionPowerflow/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def transmissionPowerflow_status(temp_dir): tmpf_path = os.path.join(temp_dir, 'transmission', filenames['tmpf']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('transmissionPowerflow_status', temp_dir=temp_dir) download_url = url_for('transmissionPowerflow_download', temp_dir=temp_dir) if os.path.isfile(tmpf_path): return (os.path.getmtime(tmpf_path), status_url, download_url) return (None, status_url, download_url) @app.route("/transmissionPowerflow/<path:temp_dir>/download") @get_download def transmissionPowerflow_download(temp_dir): model_dir = os.path.join(temp_dir, "transmission") return send_from_directory(model_dir, filenames["tmpf"], as_attachment=True) @app.route('/transmissionViz', methods=['POST']) @start_process(inputs_metadata=({'name': 'omt', 'required': True, 'type': 'file'},)) def transmissionViz_start(temp_dir): p = Process(target=transmissionViz, args=(temp_dir,)) p.start() return url_for("transmissionViz_status", temp_dir=_get_rel_path(temp_dir)) @try_except def transmissionViz(temp_dir): ''' Generate an interactive and editable one line diagram of a transmission network and return it as an HTML file. Form parameters: :param omt: an .omt file. Details: :OMF function: omf.network.viz(). :run-time: a couple seconds. ''' omt_path = os.path.join(temp_dir, "in.omt") request.files["omt"].save(omt_path) try: with open(omt_path) as f: json.load(f) except: raise Exception("Could not parse the omt file as json") network.viz(omt_path, output_path=temp_dir, output_name=filenames["tv"], open_file=False) @app.route("/transmissionViz/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def transmissionViz_status(temp_dir): tv_path = os.path.join(temp_dir, filenames['tv']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('transmissionViz_status', temp_dir=temp_dir) download_url = url_for("transmissionViz_download", temp_dir=temp_dir) if os.path.isfile(tv_path): return (os.path.getmtime(tv_path), status_url, download_url) return (None, status_url, download_url) @app.route("/transmissionViz/<path:temp_dir>/download") @get_download def transmissionViz_download(temp_dir): return send_from_directory(temp_dir, filenames["tv"]) @app.route("/distributionViz", methods=["POST"]) @start_process(inputs_metadata=({'name': 'omd', 'required': True, 'type': 'file'},)) def distributionViz_start(temp_dir): p = Process(target=distributionViz, args=(temp_dir,)) p.start() return url_for("distributionViz_status", temp_dir=_get_rel_path(temp_dir)) @try_except def distributionViz(temp_dir): ''' Generate an interactive and editable one line diagram of a distribution network and return it as an HTML file. Form parameters: :param omd: a .omd file. Details: :OMF function: omf.distNetViz.viz(). :run-time: a few seconds. ''' omd_path = os.path.join(temp_dir, "in.omd") request.files["omd"].save(omd_path) try: with open(omd_path) as f: json.load(f) except: raise Exception("Could not parse omd file as json") distNetViz.viz(omd_path, outputPath=temp_dir, outputName=filenames["dv"], open_file=False) @app.route("/distributionViz/<path:temp_dir>", methods=['GET', 'DELETE']) @get_status def distributionViz_status(temp_dir): dv_path = os.path.join(temp_dir, filenames['dv']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('distributionViz_status', temp_dir=temp_dir) download_url = url_for("distributionViz_download", temp_dir=temp_dir) if os.path.isfile(dv_path): return (os.path.getmtime(dv_path), status_url, download_url) return (None, status_url, download_url) @app.route("/distributionViz/<path:temp_dir>/download") @get_download def distributionViz_download(temp_dir): return send_from_directory(temp_dir, filenames["dv"]) @app.route('/glmForceLayout', methods=['POST']) @start_process(inputs_metadata=({'name': 'glm', 'required': True, 'type': 'file'},)) def glmForceLayout_start(temp_dir): p = Process(target=glmForceLayout, args=(temp_dir,)) p.start() return url_for('glmForceLayout_status', temp_dir=_get_rel_path(temp_dir)) @try_except def glmForceLayout(temp_dir): ''' Inject artifical coordinates into a GridLAB-D .glm and return the .glm. Form parameters: :param glm: a GLM file Details: :OMF function: omf.distNetViz.insert_coordinates() :run-time: a few seconds ''' glm_path = os.path.join(temp_dir, 'in.glm') glm_file = request.files['glm'] glm_file.save(glm_path) tree = feeder.parse(glm_path) distNetViz.insert_coordinates(tree) with open(os.path.join(temp_dir, filenames['gfl']), 'w') as f: f.write(feeder.sortedWrite(tree)) @app.route('/glmForceLayout/<path:temp_dir>', methods=['GET', 'DELETE']) @get_status def glmForceLayout_status(temp_dir): glm_path = os.path.join(temp_dir, filenames['gfl']) temp_dir = _get_rel_path(temp_dir) status_url = url_for('glmForceLayout_status', temp_dir=temp_dir) download_url = url_for('glmForceLayout_download', temp_dir=temp_dir) if os.path.isfile(glm_path): return (os.path.getmtime(glm_path), status_url, download_url) return (None, status_url, download_url) @app.route('/glmForceLayout/<path:temp_dir>/download') @get_download def glmForceLayout_download(temp_dir): return send_from_directory(temp_dir, filenames['gfl'], mimetype='text/plain') def serve_production(): ''' - Make sure to run this file with the -m (module) flag - One way to kill gunicorn is with $ ps -ef | awk '/gunicorn/ {print $2}' | xargs kill ''' os.chdir(os.path.dirname(__file__)) subprocess.call(["gunicorn", "-w", "4", "-b", "0.0.0.0:5100", "--preload", "-k sync", "grip:app"]) def serve_development(): '''gevent does NOT work with multiprocessing. Don't use gevent or gunicorn with gevent in this version of the API.''' app.run(debug=False, port=5100) if __name__ == '__main__': serve_production()
gpl-2.0
billy-inn/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
248
6359
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [1]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] P. J. Rousseeuw. Least median of squares regression. J. Am Stat Ass, 79:871, 1984. .. [2] Johanna Hardin, David M Rocke. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [3] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size / 5 + 1)], err_cov_emp_full.mean(1)[:(x_size / 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size / 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size / 5):(x_size / 2 - 1)], err_cov_emp_full.mean(1)[(x_size / 5):(x_size / 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
akrherz/iem
scripts/hads/compute_hads_pday.py
1
3548
"""Attempt at totalling up DCP data Run from `RUN_12Z.sh` for previous day Run from `RUN_20_AFTER.sh` for current day """ import datetime import sys import pytz import numpy as np from pandas.io.sql import read_sql from pyiem.util import get_dbconn, utc, logger LOG = logger() def workflow(date): """Do the necessary work for this date""" pgconn = get_dbconn("hads", user="nobody") iem_pgconn = get_dbconn("iem") icursor = iem_pgconn.cursor() # load up the current obs df = read_sql( f""" WITH dcp as ( SELECT id, iemid, tzname from stations where network ~* 'DCP' and tzname is not null ), obs as ( SELECT iemid, pday from summary_{date.year} WHERE day = %s) SELECT d.id, d.iemid, d.tzname, coalesce(o.pday, 0) as pday from dcp d LEFT JOIN obs o on (d.iemid = o.iemid) """, iem_pgconn, params=(date,), index_col="id", ) bases = {} ts = utc(date.year, date.month, date.day, 12) for tzname in df["tzname"].unique(): base = ts.astimezone(pytz.timezone(tzname)) bases[tzname] = base.replace(hour=0) # retrieve data that is within 12 hours of our bounds sts = datetime.datetime( date.year, date.month, date.day ) - datetime.timedelta(hours=12) ets = sts + datetime.timedelta(hours=48) obsdf = read_sql( f""" SELECT distinct station, valid at time zone 'UTC' as utc_valid, value from raw{date.year} WHERE valid between %s and %s and substr(key, 1, 3) = 'PPH' and value >= 0 """, pgconn, params=(sts, ets), index_col=None, ) if obsdf.empty: LOG.info("%s found no data", date) return obsdf["utc_valid"] = obsdf["utc_valid"].dt.tz_localize(pytz.UTC) precip = np.zeros((24 * 60)) grouped = obsdf.groupby("station") for station in obsdf["station"].unique(): if station not in df.index: continue precip[:] = 0 tz = df.loc[station, "tzname"] current_pday = df.loc[station, "pday"] for _, row in grouped.get_group(station).iterrows(): ts = row["utc_valid"].to_pydatetime() if ts <= bases[tz]: continue t1 = (ts - bases[tz]).total_seconds() / 60.0 t0 = max([0, t1 - 60.0]) precip[int(t0) : int(t1)] = row["value"] / 60.0 pday = np.sum(precip) if pday > 50 or np.allclose([pday], [current_pday]): continue iemid = int(df.loc[station, "iemid"]) icursor.execute( f"UPDATE summary_{date.year} " "SET pday = %s WHERE iemid = %s and day = %s", (pday, iemid, date), ) if icursor.rowcount == 0: LOG.info("Adding record %s[%s] for day %s", station, iemid, date) icursor.execute( f"INSERT into summary_{date.year} " "(iemid, day) VALUES (%s, %s)", (iemid, date), ) icursor.execute( f"UPDATE summary_{date.year} " "SET pday = %s WHERE iemid = %s and day = %s " "and %s > coalesce(pday, 0)", (pday, iemid, date, pday), ) icursor.close() iem_pgconn.commit() def main(argv): """Do Something""" if len(argv) == 4: ts = datetime.date(int(argv[1]), int(argv[2]), int(argv[3])) else: ts = datetime.date.today() workflow(ts) if __name__ == "__main__": main(sys.argv)
mit
saullocastro/pyNastran
pyNastran/op2/tables/oes_stressStrain/oes_nonlinear.py
1
37310
from __future__ import (nested_scopes, generators, division, absolute_import, print_function, unicode_literals) from six import iteritems from six.moves import range from itertools import cycle from math import isnan import numpy as np from numpy import zeros, array_equal from pyNastran.op2.tables.oes_stressStrain.real.oes_objects import StressObject, StrainObject, OES_Object from pyNastran.f06.f06_formatting import write_floats_13e, _eigenvalue_header, write_float_13e try: import pandas as pd except ImportError: pass class RealNonlinearRodArray(OES_Object): # 89-CRODNL, 92-CONRODNL """ :: ELEMENT-ID = 102 N O N L I N E A R S T R E S S E S I N R O D E L E M E N T S ( C R O D ) TIME AXIAL STRESS EQUIVALENT TOTAL STRAIN EFF. STRAIN EFF. CREEP LIN. TORSIONAL STRESS PLASTIC/NLELAST STRAIN STRESS 2.000E-02 1.941367E+01 1.941367E+01 1.941367E-04 0.0 0.0 0.0 3.000E-02 1.941367E+01 1.941367E+01 1.941367E-04 0.0 0.0 0.0 """ def __init__(self, data_code, is_sort1, isubcase, dt): OES_Object.__init__(self, data_code, isubcase, apply_data_code=True) #self.code = [self.format_code, self.sort_code, self.s_code] self.nelements = 0 # result specific def is_real(self): return True def is_complex(self): return False def _reset_indices(self): self.itotal = 0 self.ielement = 0 def _get_msgs(self): raise NotImplementedError() def get_headers(self): headers = ['axial_stress', 'equiv_stress', 'total_strain', 'effective_plastic_creep_strain', 'effective_creep_strain', 'linear_torsional_stress'] return headers def build(self): #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) if self.is_built: return assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] self.nelements //= self.ntimes self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("ntimes=%s nelements=%s ntotal=%s" % (self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, int): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element = zeros(self.nelements, dtype='int32') #[axial_stress, equiv_stress, total_strain, effective_plastic_creep_strain, # effective_creep_strain, linear_torsional_stress] self.data = zeros((self.ntimes, self.nelements, 6), dtype='float32') def build_dataframe(self): headers = self.get_headers() if self.nonlinear_factor is not None: column_names, column_values = self._build_dataframe_transient_header() self.data_frame = pd.Panel(self.data, items=column_values, major_axis=self.element, minor_axis=headers).to_frame() self.data_frame.columns.names = column_names self.data_frame.index.names = ['ElementID', 'Item'] else: df1 = pd.DataFrame(self.element).T df1.columns = ['ElementID'] df2 = pd.DataFrame(self.data[0]) df2.columns = headers self.data_frame = df1.join([df2]) #print(self.data_frame) def __eq__(self, table): self._eq_header(table) assert self.is_sort1() == table.is_sort1() if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) ntimes = self.data.shape[0] i = 0 if self.is_sort1(): for itime in range(ntimes): for ieid, eid, in enumerate(self.element): t1 = self.data[itime, inid, :] t2 = table.data[itime, inid, :] (axial_stress1, equiv_stress1, total_strain1, effective_plastic_creep_strain1, effective_creep_strain1, linear_torsional_stress1) = t1 (axial_stress2, equiv_stress2, total_strain2, effective_plastic_creep_strain2, effective_creep_strain2, linear_torsional_stress2) = t2 if not np.allclose(t1, t2): #if not np.array_equal(t1, t2): msg += '%s\n (%s, %s, %s, %s, %s, %s)\n (%s, %s, %s, %s, %s, %s)\n' % ( eid, axial_stress1, equiv_stress1, total_strain1, effective_plastic_creep_strain1, effective_creep_strain1, linear_torsional_stress1, axial_stress2, equiv_stress2, total_strain2, effective_plastic_creep_strain2, effective_creep_strain2, linear_torsional_stress2) i += 1 if i > 10: print(msg) raise ValueError(msg) else: raise NotImplementedError(self.is_sort2()) if i > 0: print(msg) raise ValueError(msg) return True def add_sort1(self, dt, eid, axial_stress, equiv_stress, total_strain, effective_plastic_creep_strain, effective_creep_strain, linear_torsional_stress): self._times[self.itime] = dt self.element[self.ielement] = eid self.data[self.itime, self.ielement, :] = [ axial_stress, equiv_stress, total_strain, effective_plastic_creep_strain, effective_creep_strain, linear_torsional_stress ] self.ielement += 1 def get_stats(self): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] ntimes, nelements, _ = self.data.shape assert self.ntimes == ntimes, 'ntimes=%s expected=%s' % (self.ntimes, ntimes) assert self.nelements == nelements, 'nelements=%s expected=%s' % (self.nelements, nelements) msg = [] if self.nonlinear_factor is not None: # transient msg.append(' type=%s ntimes=%i nelements=%i\n' % (self.__class__.__name__, ntimes, nelements)) ntimes_word = 'ntimes' else: msg.append(' type=%s nelements=%i\n' % (self.__class__.__name__, nelements)) ntimes_word = '1' msg.append(' eType\n') headers = self.get_headers() n = len(headers) msg.append(' data: [%s, nelements, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape = %s\n' % str(self.data.shape).replace('L', '')) msg.append(' element type: %s\n ' % self.element_name) msg += self.get_data_code() return msg def write_f06(self, f, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] if is_sort1: msg = [ ' N O N L I N E A R S T R E S S E S I N R O D E L E M E N T S ( C R O D )\n', ' \n', ' ELEMENT-ID AXIAL STRESS EQUIVALENT TOTAL STRAIN EFF. STRAIN EFF. CREEP LIN. TORSIONAL\n', ' STRESS PLASTIC/NLELAST STRAIN STRESS\n' ] else: msg = [ ' N O N L I N E A R S T R E S S E S I N R O D E L E M E N T S ( C R O D )\n', ' \n', ' TIME AXIAL STRESS EQUIVALENT TOTAL STRAIN EFF. STRAIN EFF. CREEP LIN. TORSIONAL\n', ' STRESS PLASTIC/NLELAST STRAIN STRESS\n' ] if self.is_sort1(): page_num = self._write_sort1_as_sort1(header, page_stamp, page_num, f, msg) else: raise NotImplementedError('RealNonlinearRodArray') return page_num def _write_sort1_as_sort1(self, header, page_stamp, page_num, f, msg_temp): ntimes = self.data.shape[0] eids = self.element is_odd = False nwrite = len(eids) for itime in range(ntimes): dt = self._times[itime] header = _eigenvalue_header(self, header, itime, ntimes, dt) f.write(''.join(header + msg_temp)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) axial = self.data[itime, :, 0] eqs = self.data[itime, :, 1] total = self.data[itime, :, 2] epcs = self.data[itime, :, 3] ecs = self.data[itime, :, 4] lts = self.data[itime, :, 5] #print "dt=%s axials=%s eqs=%s ts=%s epcs=%s ecs=%s lts=%s" %(dt,axial,eqs,ts,epcs,ecs,lts) #msgE[eid] = ' ELEMENT-ID = %8i\n' % (eid) #if eid not in msgT: #msgT[eid] = [] #msgT[eid].append(' %9.3E %13.6E %13.6E %13.6E %13.6E %13.6E %13.6E\n' % (dt, axial, eqs, ts, epcs, ecs, lts)) for eid, axiali, eqsi, totali, epcsi, ecsi, ltsi in zip(eids, axial, eqs, total, epcs, ecs, lts): ([saxial, seqs, stotal, sepcs, secs, slts]) = write_floats_13e( [axiali, eqsi, totali, epcsi, ecsi, ltsi]) f.write(' %8i %-13s %-13s %-13s %-13s %-13s %s\n' % ( eid, saxial, seqs, stotal, sepcs, secs, slts)) f.write(page_stamp % page_num) page_num += 1 return page_num - 1 class RealNonlinearPlateArray(OES_Object): def __init__(self, data_code, is_sort1, isubcase, dt): OES_Object.__init__(self, data_code, isubcase, apply_data_code=True) #self.code = [self.format_code, self.sort_code, self.s_code] #self.ntimes = 0 # or frequency/mode #self.ntotal = 0 self.ielement = 0 self.nelements = 0 # result specific self.nnodes = None def is_real(self): return True def is_complex(self): return False def _reset_indices(self): self.itotal = 0 self.ielement = 0 def is_stress(self): return True def get_headers(self): headers = [ #[fiber_dist, oxx, oyy, ozz, txy, es, eps, ecs, exx, eyy, ezz, etxy] 'fiber_distance', 'oxx', 'oyy', 'ozz', 'txy', 'eff_plastic_strain', 'eff_plastic_strain', 'eff_creep_strain', 'exx', 'eyy', 'ezz', 'exy', ] return headers #def is_bilinear(self): #if self.element_type in [33, 74]: # CQUAD4, CTRIA3 #return False #elif self.element_type in [144, 64, 82, 70, 75]: # CQUAD4 #return True #else: #raise NotImplementedError('name=%s type=%s' % (self.element_name, self.element_type)) def build(self): #print("self.ielement = %s" % self.ielement) #print('ntimes=%s nelements=%s ntotal=%s' % (self.ntimes, self.nelements, self.ntotal)) if self.is_built: return assert self.ntimes > 0, 'ntimes=%s' % self.ntimes assert self.nelements > 0, 'nelements=%s' % self.nelements assert self.ntotal > 0, 'ntotal=%s' % self.ntotal #self.names = [] #if self.element_type in [33, 74]: #nnodes_per_element = 1 #elif self.element_type == 144: #nnodes_per_element = 5 #elif self.element_type == 64: # CQUAD8 #nnodes_per_element = 5 #elif self.element_type == 82: # CQUADR #nnodes_per_element = 5 #elif self.element_type == 70: # CTRIAR #nnodes_per_element = 4 #elif self.element_type == 75: # CTRIA6 #nnodes_per_element = 4 #else: #raise NotImplementedError('name=%r type=%s' % (self.element_name, self.element_type)) nnodes_per_element = 1 self.nnodes = nnodes_per_element #self.nelements //= nnodes_per_element self.itime = 0 self.ielement = 0 self.itotal = 0 #self.ntimes = 0 #self.nelements = 0 self.is_built = True #print("***name=%s type=%s nnodes_per_element=%s ntimes=%s nelements=%s ntotal=%s" % ( #self.element_name, self.element_type, nnodes_per_element, self.ntimes, self.nelements, self.ntotal)) dtype = 'float32' if isinstance(self.nonlinear_factor, int): dtype = 'int32' self._times = zeros(self.ntimes, dtype=dtype) self.element_node = zeros((self.ntotal, 2), dtype='int32') #[fiber_dist, oxx, oyy, ozz, txy, es, eps, ecs, exx, eyy, ezz, etxy] self.data = zeros((self.ntimes, self.ntotal, 12), dtype='float32') def build_dataframe(self): headers = self.get_headers()[1:] nelements = self.element_node.shape[0] // 2 if self.is_fiber_distance(): fiber_distance = ['Top', 'Bottom'] * nelements else: fiber_distance = ['Mean', 'Curvature'] * nelements fd = np.array(fiber_distance, dtype='unicode') element_node = [self.element_node[:, 0], self.element_node[:, 1], fd] if self.nonlinear_factor is not None: column_names, column_values = self._build_dataframe_transient_header() self.data_frame = pd.Panel(self.data[:, :, 1:], items=column_values, major_axis=element_node, minor_axis=headers).to_frame() self.data_frame.columns.names = column_names self.data_frame.index.names = ['ElementID', 'NodeID', 'Location', 'Item'] else: # option B - nice! df1 = pd.DataFrame(element_node).T df1.columns = ['ElementID', 'NodeID', 'Location'] df2 = pd.DataFrame(self.data[0, :, 1:]) df2.columns = headers self.data_frame = df1.join(df2) self.data_frame = self.data_frame.reset_index().replace({'NodeID': {0:'CEN'}}).set_index(['ElementID', 'NodeID', 'Location']) #print(self.data_frame) def add_new_eid(self, dt, eid, etype, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy): self.add_sort1(dt, eid, etype, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy) def add_new_eid_sort1(self, dt, eid, etype, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy): self.add_sort1(dt, eid, etype, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy) def add_sort1(self, dt, eid, etype, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy): #print(etype, eid) if isnan(fd): fd = 0. if isnan(sz): sz = 0. if isnan(ez): ez = 0. self._times[self.itime] = dt self.element_node[self.ielement, 0] = eid #[fiber_dist, oxx, oyy, ozz, txy, es, eps, ecs, exx, eyy, ezz, etxy] self.data[self.itime, self.ielement, :] = [fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy] self.ielement += 1 self.itotal += 1 def __eq__(self, table): self._eq_header(table) assert self.is_sort1() == table.is_sort1() if not np.array_equal(self.data, table.data): msg = 'table_name=%r class_name=%s\n' % (self.table_name, self.__class__.__name__) msg += '%s\n' % str(self.code_information()) i = 0 for itime in range(self.ntimes): for ie, e in enumerate(self.element_node): (eid, nid) = e t1 = self.data[itime, ie, :] t2 = table.data[itime, ie, :] # TODO: this name order is wrong #[fiber_dist, oxx, oyy, ozz, txy, es, eps, ecs, exx, eyy, ezz, etxy] (fiber_distance1, oxx1, oyy1, ozz1, txy1, exx1, eyy1, ezz1, exy1, es1, eps1, ecs1) = t1 (fiber_distance2, oxx2, oyy2, ozz2, txy2, exx2, eyy2, ezz2, exy2, es2, eps2, ecs2) = t2 # vm stress can be NaN for some reason... if not np.array_equal(t1, t2): msg += ('(%s, %s) (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)\n' '%s (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)\n' % ( eid, nid, fiber_distance1, oxx1, oyy1, ozz1, txy1, exx1, eyy1, ezz1, exy1, es1, eps1, ecs1, ' ' * (len(str(eid)) + len(str(nid)) + 3), fiber_distance2, oxx2, oyy2, ozz2, txy2, exx2, eyy2, ezz2, exy2, es2, eps2, ecs2)) i += 1 if i > 10: print(msg) raise ValueError(msg) #print(msg) if i > 0: raise ValueError(msg) return True def get_stats(self): if not self.is_built: return [ '<%s>\n' % self.__class__.__name__, ' ntimes: %i\n' % self.ntimes, ' ntotal: %i\n' % self.ntotal, ] nelements = self.nelements ntimes = self.ntimes nnodes = self.nnodes ntotal = self.ntotal nlayers = 2 nelements = self.ntotal // self.nnodes // 2 msg = [] if self.nonlinear_factor is not None: # transient msgi = ' type=%s ntimes=%i nelements=%i nnodes_per_element=%i nlayers=%i ntotal=%i\n' % ( self.__class__.__name__, ntimes, nelements, nnodes, nlayers, ntotal) ntimes_word = 'ntimes' else: msgi = ' type=%s nelements=%i nnodes_per_element=%i nlayers=%i ntotal=%i\n' % ( self.__class__.__name__, nelements, nnodes, nlayers, ntotal) ntimes_word = '1' msg.append(msgi) headers = self.get_headers() n = len(headers) msg.append(' data: [%s, ntotal, %i] where %i=[%s]\n' % (ntimes_word, n, n, str(', '.join(headers)))) msg.append(' data.shape=%s\n' % str(self.data.shape)) msg.append(' element type: %s\n ' % self.element_name) msg += self.get_data_code() return msg def write_f06(self, f, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] #msg, nnodes, cen = _get_plate_msg(self) if self.element_type == 88: msg = [ ' N O N L I N E A R S T R E S S E S I N T R I A N G U L A R E L E M E N T S ( T R I A 3 )\n' ' \n' ' ELEMENT FIBER STRESSES/ TOTAL STRAINS EQUIVALENT EFF. STRAIN EFF. CREEP\n' ' ID DISTANCE X Y Z XY STRESS PLASTIC/NLELAST STRAIN\n' ] elif self.element_type == 90: msg = [ ' N O N L I N E A R S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n' ' \n' ' ELEMENT FIBER STRESSES/ TOTAL STRAINS EQUIVALENT EFF. STRAIN EFF. CREEP\n' ' ID DISTANCE X Y Z XY STRESS PLASTIC/NLELAST STRAIN\n' #'0 1 -2.500000E-02 -4.829193E+00 -1.640651E-05 -1.907010E-04 4.829185E+00 0.0 0.0\n' #' -4.829188E-05 1.448741E-05 -4.958226E-09\n' #' 2.500000E-02 4.770547E+00 1.493975E-04 1.907012E-04 4.770473E+00 0.0 0.0\n' #' 4.770502E-05 -1.431015E-05 4.958231E-09\n' ] else: raise NotImplementedError('element_name=%s self.element_type=%s' % (self.element_name, self.element_type)) #msg = [ #' N O N L I N E A R S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n' #' \n' #' ELEMENT FIBER STRESSES/ TOTAL STRAINS EQUIVALENT EFF. STRAIN EFF. CREEP\n' #' ID DISTANCE X Y Z XY STRESS PLASTIC/NLELAST STRAIN\n' ##'0 1 -2.500000E-02 -4.829193E+00 -1.640651E-05 -1.907010E-04 4.829185E+00 0.0 0.0\n' ##' -4.829188E-05 1.448741E-05 -4.958226E-09\n' ##' 2.500000E-02 4.770547E+00 1.493975E-04 1.907012E-04 4.770473E+00 0.0 0.0\n' ##' 4.770502E-05 -1.431015E-05 4.958231E-09\n' #] # write the f06 ntimes = self.data.shape[0] eids = self.element_node[:, 0] nids = self.element_node[:, 1] #cen_word = 'CEN/%i' % nnodes for itime in range(ntimes): dt = self._times[itime] header = _eigenvalue_header(self, header, itime, ntimes, dt) f.write(''.join(header + msg)) #print("self.data.shape=%s itime=%s ieids=%s" % (str(self.data.shape), itime, str(ieids))) #[fiber_dist, oxx, oyy, ozz, txy, es, eps, ecs, exx, eyy, ezz, etxy] fiber_dist = self.data[itime, :, 0] oxx = self.data[itime, :, 1] oyy = self.data[itime, :, 2] ozz = self.data[itime, :, 3] txy = self.data[itime, :, 4] es = self.data[itime, :, 5] eps = self.data[itime, :, 6] ecs = self.data[itime, :, 7] exx = self.data[itime, :, 8] eyy = self.data[itime, :, 9] ezz = self.data[itime, :, 10] exy = self.data[itime, :, 11] for (i, eid, nid, fdi, oxxi, oyyi, ozzi, txyi, exxi, eyyi, ezzi, exyi, esi, epsi, ecsi) in zip( cycle([0, 1]), eids, nids, fiber_dist, oxx, oyy, ozz, txy, exx, eyy, ezz, exy, es, eps, ecs): #[fdi, oxxi, oyyi, txyi, major, minor, ovmi] = write_floats_13e( #[fdi, oxxi, oyyi, txyi, major, minor, ovmi]) #' ELEMENT FIBER STRESSES/ TOTAL STRAINS EQUIVALENT EFF. STRAIN EFF. CREEP\n' #' ID DISTANCE X Y Z XY STRESS PLASTIC/NLELAST STRAIN\n' #'0 1 -2.500000E-02 -4.829193E+00 -1.640651E-05 -1.907010E-04 4.829185E+00 0.0 0.0\n' #' -4.829188E-05 1.448741E-05 -4.958226E-09\n' #' 2.500000E-02 4.770547E+00 1.493975E-04 1.907012E-04 4.770473E+00 0.0 0.0\n' #' 4.770502E-05 -1.431015E-05 4.958231E-09\n' if i == 0: f.write( '0 %8i %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %-13s %-13s %s\n' % ( # A #eid, write_float_13e(fdi), #write_float_13e(oxxi), write_float_13e(oyyi), ##write_float_13e(ozzi), #write_float_13e(txyi), #write_float_13e(esi), write_float_13e(epsi), #write_float_13e(ecsi), #write_float_13e(exxi), write_float_13e(eyyi), ##write_float_13e(ezzi), #write_float_13e(exyi), # ELEMENT FIBER XYZ STRESS EQUIVALENT EFF.STRAIN EFF.CREEP\n' eid, write_float_13e(fdi), write_float_13e(oxxi), write_float_13e(oyyi), #write_float_13e(ozzi), write_float_13e(txyi), write_float_13e(esi), write_float_13e(epsi), write_float_13e(ecsi), write_float_13e(exxi), write_float_13e(eyyi), #write_float_13e(ezzi), write_float_13e(exyi), )) else: f.write( ' %-13s %-13s %-13s %-13s %-13s %-13s %s\n' ' %-13s %-13s %s\n' % ( write_float_13e(fdi), write_float_13e(oxxi), write_float_13e(oyyi), #write_float_13e(ozzi), write_float_13e(txyi), write_float_13e(esi), write_float_13e(epsi), write_float_13e(ecsi), write_float_13e(exxi), write_float_13e(eyyi), #write_float_13e(ezzi), write_float_13e(exyi), )) f.write(page_stamp % page_num) page_num += 1 return page_num - 1 class NonlinearQuad(StressObject): def __init__(self, data_code, is_sort1, isubcase, dt): StressObject.__init__(self, data_code, isubcase) #self.eType = 'QUAD4FD' # or CTRIA3 self.code = [self.format_code, self.sort_code, self.s_code] self.eType = {} self.fiberDistance = {} self.oxx = {} self.oyy = {} self.ozz = {} self.txy = {} self.exx = {} self.eyy = {} self.ezz = {} self.exy = {} self.es = {} self.eps = {} self.ecs = {} self.dt = dt if is_sort1: if dt is not None: self.add = self.add_sort1 self.add_new_eid = self.add_new_eid_sort1 else: assert dt is not None #self.add = self.add_sort2 #self.add_new_eid = self.add_new_eid_sort2 def get_stats(self): nelements = len(self.eType) msg = self.get_data_code() if self.nonlinear_factor is not None: # transient ntimes = len(self.oxx) msg.append(' type=%s ntimes=%s nelements=%s\n' % (self.__class__.__name__, ntimes, nelements)) else: msg.append(' type=%s nelements=%s\n' % (self.__class__.__name__, nelements)) msg.append(' eType, fiberDistance, oxx, oyy, ozz, txy, ' 'exx, eyy, ezz, exy, es, eps, ecs\n') return msg def delete_transient(self, dt): del self.fiberDistance[dt] del self.oxx[dt] del self.oyy[dt] del self.ozz[dt] del self.txy[dt] del self.exx[dt] del self.eyy[dt] del self.ezz[dt] del self.exy[dt] del self.es[dt] del self.eps[dt] del self.ecs[dt] def get_transients(self): k = self.oxx.keys() k.sort() return k def add_new_transient(self, dt): self.fiberDistance[dt] = {} self.oxx[dt] = {} self.oyy[dt] = {} self.ozz[dt] = {} self.txy[dt] = {} self.exx[dt] = {} self.eyy[dt] = {} self.ezz[dt] = {} self.exy[dt] = {} self.es[dt] = {} self.eps[dt] = {} self.ecs[dt] = {} def add_new_eid_sort1(self, dt, eid, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy): if dt not in self.oxx: self.add_new_transient(dt) self.fiberDistance[dt][eid] = [fd] if isnan(sz): sz = 0. if isnan(ez): ez = 0. self.oxx[dt][eid] = [sx] self.oyy[dt][eid] = [sy] self.ozz[dt][eid] = [sz] self.txy[dt][eid] = [txy] self.exx[dt][eid] = [ex] self.eyy[dt][eid] = [ey] self.ezz[dt][eid] = [ez] self.exy[dt][eid] = [exy] self.es[dt][eid] = [es] self.eps[dt][eid] = [eps] self.ecs[dt][eid] = [ecs] def add_sort1(self, dt, eid, fd, sx, sy, sz, txy, es, eps, ecs, ex, ey, ez, exy): self.fiberDistance[dt][eid].append(fd) if isnan(sz): sz = 0. if isnan(ez): ez = 0. self.oxx[dt][eid].append(sx) self.oyy[dt][eid].append(sy) self.ozz[dt][eid].append(sz) self.txy[dt][eid].append(txy) self.exx[dt][eid].append(ex) self.eyy[dt][eid].append(ey) self.ezz[dt][eid].append(ez) self.exy[dt][eid].append(exy) self.es[dt][eid].append(es) self.eps[dt][eid].append(eps) self.ecs[dt][eid].append(ecs) def write_f06(self, f, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): if header is None: header = [] msg_start = [ ' ELEMENT-ID = 129\n' ' N O N L I N E A R S T R E S S E S I N Q U A D R I L A T E R A L E L E M E N T S ( Q U A D 4 )\n' ' \n', ' TIME FIBER STRESSES/ TOTAL STRAINS EQUIVALENT EFF. STRAIN EFF. CREEP\n' ' DISTANCE X Y Z XY STRESS PLASTIC/NLELAST STRAIN\n' ] #0 5.000E-05 -5.000000E-01 -4.484895E+01 -1.561594E+02 -2.008336E-02 1.392609E+02 0.0 0.0 msg_element = {} msg_time = {} for (dt, Oxxs) in sorted(iteritems(self.oxx)): header[1] = ' %s = %10.4E\n' % (self.data_code['name'], dt) for (eid, oxxs) in sorted(iteritems(Oxxs)): msg_element[eid] = header + [' ELEMENT-ID = %8i\n' % (eid)] if eid not in msg_time: msg_time[eid] = [] for i, oxx in enumerate(oxxs): fd = self.fiberDistance[dt][eid][i] oxx = self.oxx[dt][eid][i] oyy = self.oyy[dt][eid][i] ozz = self.ozz[dt][eid][i] txy = self.txy[dt][eid][i] exx = self.exx[dt][eid][i] eyy = self.eyy[dt][eid][i] ezz = self.ezz[dt][eid][i] exy = self.exy[dt][eid][i] es = self.es[dt][eid][i] eps = self.eps[dt][eid][i] ecs = self.ecs[dt][eid][i] [oxx, oyy, ozz, txy, exx, eyy, es, eps, ecs, exx, eyy, ezz, exy] = write_floats_13e([oxx, oyy, ozz, txy, exx, eyy, es, eps, ecs, exx, eyy, ezz, exy]) if i == 0: msg_time[eid].append('0 %9.3E %-13s %-13s %-13s %-13s %-13s %-13s %-13s %s\n' % (dt, fd, oxx, oyy, ozz, txy, es, eps, ecs)) else: msg_time[eid].append(' %9s %-13s %-13s %-13s %-13s %-13s\n' % ('', '', exx, eyy, ezz, exy)) msg = [] for eid, e in sorted(iteritems(msg_element)): msg += header + e + msg_start + msg_time[eid] msg.append(page_stamp % page_num) page_num += 1 f.write(''.join(msg)) return page_num - 1 class HyperelasticQuad(StressObject): def __init__(self, data_code, is_sort1, isubcase, dt): StressObject.__init__(self, data_code, isubcase) self.eType = 'QUAD4FD' self.code = [self.format_code, self.sort_code, self.s_code] self.Type = {} self.IDs = {} self.oxx = {} self.oyy = {} self.txy = {} self.angle = {} self.majorP = {} self.minorP = {} self.dt = dt if is_sort1: if dt is not None: self.add = self.add_sort1 self.add_new_eid = self.add_new_eid_sort1 else: assert dt is not None #self.add = self.add_sort2 #self.add_new_eid = self.add_new_eid_sort2 def get_stats(self): nelements = len(self.eType) msg = self.get_data_code() if self.nonlinear_factor is not None: # transient ntimes = len(self.oxx) msg.append(' type=%s ntimes=%s nelements=%s\n' % (self.__class__.__name__, ntimes, nelements)) else: msg.append(' type=%s nelements=%s\n' % (self.__class__.__name__, nelements)) msg.append(' Type, oxx, oyy, txy, angle, majorP, minorP\n') return msg def delete_transient(self, dt): del self.fiberDistance[dt] del self.oxx[dt] del self.oyy[dt] del self.txy[dt] del self.angle[dt] del self.majorP[dt] del self.minorP[dt] def get_transients(self): k = self.oxx.keys() k.sort() return k def add_new_transient(self, dt): self.oxx[dt] = {} self.oyy[dt] = {} self.txy[dt] = {} self.angle[dt] = {} self.majorP[dt] = {} self.minorP[dt] = {} def add_new_eid_sort1(self, dt, eid, Type, oxx, oyy, txy, angle, majorP, minorP): if dt not in self.oxx: self.add_new_transient(dt) self.Type[eid] = Type self.oxx[dt] = {eid: [oxx]} self.oyy[dt] = {eid: [oyy]} self.txy[dt] = {eid: [txy]} self.angle[dt] = {eid: [angle]} self.majorP[dt] = {eid: [majorP]} self.minorP[dt] = {eid: [minorP]} def add_sort1(self, dt, eid, ID, oxx, oyy, txy, angle, majorP, minorP): self.oxx[dt][eid].append(oxx) self.oyy[dt][eid].append(oyy) self.txy[dt][eid].append(txy) self.angle[dt][eid].append(angle) self.majorP[dt][eid].append(majorP) self.minorP[dt][eid].append(minorP) def write_f06(self, f, header=None, page_stamp='PAGE %s', page_num=1, is_mag_phase=False, is_sort1=True): # .. todo:: doesnt support CTRIA3NL (calls them CQUAD4s) if header is None: header = [] msg = [' S T R E S S E S I N H Y P E R E L A S T I C Q U A D R I L A T E R A L E L E M E N T S ( QUAD4FD )\n', ' ELEMENT GRID/ POINT ---------CAUCHY STRESSES-------- PRINCIPAL STRESSES (ZERO SHEAR)\n', ' ID GAUSS ID NORMAL-X NORMAL-Y SHEAR-XY ANGLE MAJOR MINOR\n', ] #0 1 GAUS 1 7.318995E+00 6.367099E-01 -6.551054E+00 -31.4888 1.133173E+01 -3.376026E+00 # 2 1.097933E+01 4.149028E+00 6.278160E+00 30.7275 1.471111E+01 4.172537E-01 for dt, oxxs in sorted(iteritems(self.oxx)): #header[-1] = ' LOAD STEP = %12.5E' %(dt) msg += header for eid, oxxs in sorted(iteritems(oxxs)): gauss = self.Type[eid] oxx = self.oxx[dt][eid] oyy = self.oyy[dt][eid] txy = self.txy[dt][eid] angle = self.angle[dt][eid] majorP = self.majorP[dt][eid] minorP = self.minorP[dt][eid] for i in range(4): # 1,2,3,4 if i == 0: msg.append('0%8i %8s %8i %13E.6 %13E.6 %13E.6 %13E.6 %13E.6 %13E.6\n' % (eid, gauss, i + 1, oxx[i], oyy[i], txy[i], angle[i], majorP[i], minorP[i])) else: msg.append(' %8s %8s %8i %13E.6 %13E.6 %13E.6 %13E.6 %13E.6 %13E.6\n' % ('', '', i + 1, oxx[i], oyy[i], txy[i], angle[i], majorP[i], minorP[i])) f.write(''.join(msg)) return page_num
lgpl-3.0
teamCarel/EyeTracker
src/capture/recorder.py
1
17948
''' (*)~--------------------------------------------------------------------------- Pupil - eye tracking platform Copyright (C) 2012-2017 Pupil Labs Distributed under the terms of the GNU Lesser General Public License (LGPL v3.0). See COPYING and COPYING.LESSER for license details. ---------------------------------------------------------------------------~(*) ''' import os, errno # import sys, platform, getpass import csv_utils from pyglui import ui import numpy as np # from scipy.interpolate import UnivariateSpline from plugin import Plugin from time import strftime, localtime, time, gmtime from shutil import copy2 from audio import Audio_Input_Dict from file_methods import save_object, load_object from methods import get_system_info from av_writer import JPEG_Writer, AV_Writer, Audio_Capture from calibration_routines.camera_intrinsics_estimation import load_camera_calibration # logging import logging logger = logging.getLogger(__name__) def get_auto_name(): return strftime("%Y_%m_%d", localtime()) # def sanitize_timestamps(ts): # logger.debug("Checking %s timestamps for monotony in direction and smoothness"%ts.shape[0]) # avg_frame_time = (ts[-1] - ts[0])/ts.shape[0] # logger.debug('average_frame_time: %s'%(1./avg_frame_time)) # raw_ts = ts #only needed for visualization # runs = 0 # while True: # #forward check for non monotonic increasing behaviour # clean = np.ones((ts.shape[0]),dtype=np.bool) # damper = 0 # for idx in range(ts.shape[0]-1): # if ts[idx] >= ts[idx+1]: #not monotonically increasing timestamp # damper = 50 # clean[idx] = damper <= 0 # damper -=1 # #backward check to smooth timejumps forward # damper = 0 # for idx in range(ts.shape[0]-1)[::-1]: # if ts[idx+1]-ts[idx]>1: #more than one second forward jump # damper = 50 # clean[idx] &= damper <= 0 # damper -=1 # if clean.all() == True: # if runs >0: # logger.debug("Timestamps were bad but are ok now. Correction runs: %s"%runs) # # from matplotlib import pyplot as plt # # plt.plot(frames,raw_ts) # # plt.plot(frames,ts) # # # plt.scatter(frames[~clean],ts[~clean]) # # plt.show() # else: # logger.debug("Timestamps are clean.") # return ts # runs +=1 # if runs > 4: # logger.error("Timestamps could not be fixed!") # return ts # logger.warning("Timestamps are not sane. We detected non monotitc or jumpy timestamps. Fixing them now") # frames = np.arange(len(ts)) # s = UnivariateSpline(frames[clean],ts[clean],s=0) # ts = s(frames) class Recorder(Plugin): """Capture Recorder""" def __init__(self, g_pool, session_name=get_auto_name(), rec_dir=None, user_info={'name': '', 'additional_field': 'change_me'}, info_menu_conf={}, show_info_menu=False, record_eye=False, audio_src='No Audio', raw_jpeg=True): super().__init__(g_pool) # update name if it was autogenerated. if session_name.startswith('20') and len(session_name) == 10: session_name = get_auto_name() base_dir = self.g_pool.user_dir.rsplit(os.path.sep, 1)[0] default_rec_dir = os.path.join(base_dir, 'recordings') if rec_dir and rec_dir != default_rec_dir and self.verify_path(rec_dir): self.rec_dir = rec_dir else: try: os.makedirs(default_rec_dir) except OSError as e: if e.errno != errno.EEXIST: logger.error("Could not create Rec dir") raise e else: logger.info('Created standard Rec dir at "{}"'.format(default_rec_dir)) self.rec_dir = default_rec_dir self.raw_jpeg = raw_jpeg self.order = .9 self.record_eye = record_eye self.session_name = session_name self.audio_devices_dict = Audio_Input_Dict() if audio_src in list(self.audio_devices_dict.keys()): self.audio_src = audio_src else: self.audio_src = 'No Audio' self.running = False self.menu = None self.button = None self.user_info = user_info self.show_info_menu = show_info_menu self.info_menu = None self.info_menu_conf = info_menu_conf def get_init_dict(self): d = {} d['record_eye'] = self.record_eye d['audio_src'] = self.audio_src d['session_name'] = self.session_name d['user_info'] = self.user_info d['info_menu_conf'] = self.info_menu_conf d['show_info_menu'] = self.show_info_menu d['rec_dir'] = self.rec_dir d['raw_jpeg'] = self.raw_jpeg return d def init_gui(self): self.menu = ui.Growing_Menu('Recorder') self.menu.collapsed = True self.g_pool.sidebar.insert(3, self.menu) self.menu.append(ui.Info_Text('Pupil recordings are saved like this: "path_to_recordings/recording_session_name/nnn" where "nnn" is an increasing number to avoid overwrites. You can use "/" in your session name to create subdirectories.')) self.menu.append(ui.Info_Text('Recordings are saved to "~/pupil_recordings". You can change the path here but note that invalid input will be ignored.')) self.menu.append(ui.Text_Input('rec_dir', self, setter=self.set_rec_dir, label='Path to recordings')) self.menu.append(ui.Text_Input('session_name', self, setter=self.set_session_name, label='Recording session name')) self.menu.append(ui.Switch('show_info_menu', self, on_val=True, off_val=False, label='Request additional user info')) self.menu.append(ui.Selector('raw_jpeg', self, selection=[True, False], labels=["bigger file, less CPU", "smaller file, more CPU"], label='Compression')) self.menu.append(ui.Info_Text('Recording the raw eye video is optional. We use it for debugging.')) self.menu.append(ui.Switch('record_eye', self, on_val=True, off_val=False, label='Record eye')) def audio_dev_getter(): # fetch list of currently available self.audio_devices_dict = Audio_Input_Dict() devices = list(self.audio_devices_dict.keys()) return devices, devices self.menu.append(ui.Selector('audio_src', self, selection_getter=audio_dev_getter, label='Audio Source')) self.button = ui.Thumb('running', self, setter=self.toggle, label='R', hotkey='r') self.button.on_color[:] = (1, .0, .0, .8) self.g_pool.quickbar.insert(1, self.button) def deinit_gui(self): if self.menu: self.g_pool.sidebar.remove(self.menu) self.menu = None if self.button: self.g_pool.quickbar.remove(self.button) self.button = None def toggle(self, _=None): if self.running: self.notify_all({'subject': 'recording.should_stop'}) self.notify_all({'subject': 'recording.should_stop', 'remote_notify': 'all'}) else: self.notify_all({'subject': 'recording.should_start', 'session_name': self.session_name}) self.notify_all({'subject': 'recording.should_start', 'session_name': self.session_name, 'remote_notify': 'all'}) def on_notify(self, notification): """Handles recorder notifications Reacts to notifications: ``recording.should_start``: Starts a new recording session ``recording.should_stop``: Stops current recording session Emits notifications: ``recording.started``: New recording session started ``recording.stopped``: Current recording session stopped Args: notification (dictionary): Notification dictionary """ # notification wants to be recorded if notification.get('record', False) and self.running: if 'timestamp' not in notification: logger.error("Notification without timestamp will not be saved.") else: self.data['notifications'].append(notification) elif notification['subject'] == 'recording.should_start': if self.running: logger.info('Recording already running!') elif not self.g_pool.capture.online: logger.error("Current world capture is offline. Please reconnect or switch to fake capture") else: if notification.get("session_name", ""): self.set_session_name(notification["session_name"]) self.start() elif notification['subject'] == 'recording.should_stop': if self.running: self.stop() else: logger.info('Recording already stopped!') def get_rec_time_str(self): rec_time = gmtime(time()-self.start_time) return strftime("%H:%M:%S", rec_time) def start(self): self.timestamps = [] self.data = {'pupil_positions': [], 'gaze_positions': [], 'notifications': []} self.frame_count = 0 self.running = True self.menu.read_only = True self.start_time = time() session = os.path.join(self.rec_dir, self.session_name) try: os.makedirs(session) logger.debug("Created new recordings session dir {}".format(session)) except: logger.debug("Recordings session dir {} already exists, using it.".format(session)) # set up self incrementing folder within session folder counter = 0 while True: self.rec_path = os.path.join(session, "{:03d}/".format(counter)) try: os.mkdir(self.rec_path) logger.debug("Created new recording dir {}".format(self.rec_path)) break except: logger.debug("We dont want to overwrite data, incrementing counter & trying to make new data folder") counter += 1 self.meta_info_path = os.path.join(self.rec_path, "info.csv") with open(self.meta_info_path, 'w', newline='') as csvfile: csv_utils.write_key_value_file(csvfile, { 'Recording Name': self.session_name, 'Start Date': strftime("%d.%m.%Y", localtime(self.start_time)), 'Start Time': strftime("%H:%M:%S", localtime(self.start_time)) }) if self.audio_src != 'No Audio': audio_path = os.path.join(self.rec_path, "world.wav") self.audio_writer = Audio_Capture(audio_path, self.audio_devices_dict[self.audio_src]) else: self.audio_writer = None if self.raw_jpeg and self.g_pool.capture.jpeg_support: self.video_path = os.path.join(self.rec_path, "world.mp4") self.writer = JPEG_Writer(self.video_path, self.g_pool.capture.frame_rate) else: self.video_path = os.path.join(self.rec_path, "world.mp4") self.writer = AV_Writer(self.video_path, fps=self.g_pool.capture.frame_rate) try: cal_pt_path = os.path.join(self.g_pool.user_dir, "user_calibration_data") cal_data = load_object(cal_pt_path) notification = {'subject': 'calibration.calibration_data', 'record': True} notification.update(cal_data) self.data['notifications'].append(notification) except: pass if self.show_info_menu: self.open_info_menu() logger.info("Started Recording.") self.notify_all({'subject': 'recording.started', 'rec_path': self.rec_path, 'session_name': self.session_name, 'record_eye': self.record_eye, 'compression': self.raw_jpeg}) def open_info_menu(self): self.info_menu = ui.Growing_Menu('additional Recording Info', size=(300, 300), pos=(300, 300)) self.info_menu.configuration = self.info_menu_conf def populate_info_menu(): self.info_menu.elements[:-2] = [] for name in self.user_info.keys(): self.info_menu.insert(0, ui.Text_Input(name, self.user_info)) def set_user_info(new_string): self.user_info = new_string populate_info_menu() populate_info_menu() self.info_menu.append(ui.Info_Text('Use the *user info* field to add/remove additional fields and their values. The format must be a valid Python dictionary. For example -- {"key":"value"}. You can add as many fields as you require. Your custom fields will be saved for your next session.')) self.info_menu.append(ui.Text_Input('user_info', self, setter=set_user_info, label="User info")) self.g_pool.gui.append(self.info_menu) def close_info_menu(self): if self.info_menu: self.info_menu_conf = self.info_menu.configuration self.g_pool.gui.remove(self.info_menu) self.info_menu = None def recent_events(self,events): if self.running: for key, data in events.items(): if key not in ('dt','frame'): try: self.data[key] += data except KeyError: self.data[key] = [] self.data[key] += data if 'frame' in events: frame = events['frame'] self.timestamps.append(frame.timestamp) self.writer.write_video_frame(frame) self.frame_count += 1 # # cv2.putText(frame.img, "Frame %s"%self.frame_count,(200,200), cv2.FONT_HERSHEY_SIMPLEX,1,(255,100,100)) self.button.status_text = self.get_rec_time_str() def stop(self): # explicit release of VideoWriter self.writer.release() self.writer = None save_object(self.data, os.path.join(self.rec_path, "pupil_data")) timestamps_path = os.path.join(self.rec_path, "world_timestamps.npy") # ts = sanitize_timestamps(np.array(self.timestamps)) ts = np.array(self.timestamps) np.save(timestamps_path, ts) try: copy2(os.path.join(self.g_pool.user_dir, "surface_definitions"), os.path.join(self.rec_path, "surface_definitions")) except: logger.info("No surface_definitions data found. You may want this if you do marker tracking.") camera_calibration = load_camera_calibration(self.g_pool) if camera_calibration is not None: save_object(camera_calibration, os.path.join(self.rec_path, "camera_calibration")) else: logger.info("No camera calibration found.") try: with open(self.meta_info_path, 'a', newline='') as csvfile: csv_utils.write_key_value_file(csvfile, { 'Duration Time': self.get_rec_time_str(), 'World Camera Frames': self.frame_count, 'World Camera Resolution': str(self.g_pool.capture.frame_size[0])+"x"+str(self.g_pool.capture.frame_size[1]), 'Capture Software Version': self.g_pool.version, 'Data Format Version': self.g_pool.version, 'System Info': get_system_info() }, append=True) except Exception: logger.exception("Could not save metadata. Please report this bug!") try: with open(os.path.join(self.rec_path, "user_info.csv"), 'w', newline='') as csvfile: csv_utils.write_key_value_file(csvfile, self.user_info) except Exception: logger.exception("Could not save userdata. Please report this bug!") self.close_info_menu() if self.audio_writer: self.audio_writer = None self.running = False self.menu.read_only = False self.button.status_text = '' self.timestamps = [] self.data = {'pupil_positions': [], 'gaze_positions': []} self.pupil_pos_list = [] self.gaze_pos_list = [] logger.info("Saved Recording.") self.notify_all({'subject': 'recording.stopped', 'rec_path': self.rec_path}) def cleanup(self): """gets called when the plugin get terminated. either volunatily or forced. """ if self.running: self.stop() self.deinit_gui() def verify_path(self, val): try: n_path = os.path.expanduser(val) logger.debug("Expanded user path.") except: n_path = val if not n_path: logger.warning("Please specify a path.") return False elif not os.path.isdir(n_path): logger.warning("This is not a valid path.") return False # elif not os.access(n_path, os.W_OK): elif not writable_dir(n_path): logger.warning("Do not have write access to '{}'.".format(n_path)) return False else: return n_path def set_rec_dir(self, val): n_path = self.verify_path(val) if n_path: self.rec_dir = n_path def set_session_name(self, val): if not val: self.session_name = get_auto_name() else: if os.path.sep in val: logger.warning('You session name will create one or more subdirectories') self.session_name = val def writable_dir(n_path): try: open(os.path.join(n_path, 'dummpy_tmp'), 'w') except IOError: return False else: os.remove(os.path.join(n_path, 'dummpy_tmp')) return True
lgpl-3.0
percy-g2/Novathor_xperia_u8500
6.1.1.B.1.54/external/blktrace/btt/btt_plot.py
43
11282
#! /usr/bin/env python # # btt_plot.py: Generate matplotlib plots for BTT generate data files # # (C) Copyright 2009 Hewlett-Packard Development Company, L.P. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # """ btt_plot.py: Generate matplotlib plots for BTT generated data files Files handled: AQD - Average Queue Depth Running average of queue depths BNOS - Block numbers accessed Markers for each block Q2D - Queue to Issue latencies Running averages D2C - Issue to Complete latencies Running averages Q2C - Queue to Complete latencies Running averages Usage: btt_plot_aqd.py equivalent to: btt_plot.py -t aqd <type>=aqd btt_plot_bnos.py equivalent to: btt_plot.py -t bnos <type>=bnos btt_plot_q2d.py equivalent to: btt_plot.py -t q2d <type>=q2d btt_plot_d2c.py equivalent to: btt_plot.py -t d2c <type>=d2c btt_plot_q2c.py equivalent to: btt_plot.py -t q2c <type>=q2c Arguments: [ -A | --generate-all ] Default: False [ -L | --no-legend ] Default: Legend table produced [ -o <file> | --output=<file> ] Default: <type>.png [ -T <string> | --title=<string> ] Default: Based upon <type> [ -v | --verbose ] Default: False <data-files...> The -A (--generate-all) argument is different: when this is specified, an attempt is made to generate default plots for all 5 types (aqd, bnos, q2d, d2c and q2c). It will find files with the appropriate suffix for each type ('aqd.dat' for example). If such files are found, a plot for that type will be made. The output file name will be the default for each type. The -L (--no-legend) option will be obeyed for all plots, but the -o (--output) and -T (--title) options will be ignored. """ __author__ = 'Alan D. Brunelle <[email protected]>' #------------------------------------------------------------------------------ import matplotlib matplotlib.use('Agg') import getopt, glob, os, sys import matplotlib.pyplot as plt plot_size = [10.9, 8.4] # inches... add_legend = True generate_all = False output_file = None title_str = None type = None verbose = False types = [ 'aqd', 'q2d', 'd2c', 'q2c', 'bnos' ] progs = [ 'btt_plot_%s.py' % t for t in types ] get_base = lambda file: file[file.find('_')+1:file.rfind('_')] #------------------------------------------------------------------------------ def fatal(msg): """Generate fatal error message and exit""" print >>sys.stderr, 'FATAL: %s' % msg sys.exit(1) #---------------------------------------------------------------------- def get_data(files): """Retrieve data from files provided. Returns a database containing: 'min_x', 'max_x' - Minimum and maximum X values found 'min_y', 'max_y' - Minimum and maximum Y values found 'x', 'y' - X & Y value arrays 'ax', 'ay' - Running average over X & Y -- if > 10 values provided... """ #-------------------------------------------------------------- def check(mn, mx, v): """Returns new min, max, and float value for those passed in""" v = float(v) if mn == None or v < mn: mn = v if mx == None or v > mx: mx = v return mn, mx, v #-------------------------------------------------------------- def avg(xs, ys): """Computes running average for Xs and Ys""" #------------------------------------------------------ def _avg(vals): """Computes average for array of values passed""" total = 0.0 for val in vals: total += val return total / len(vals) #------------------------------------------------------ if len(xs) < 1000: return xs, ys axs = [xs[0]] ays = [ys[0]] _xs = [xs[0]] _ys = [ys[0]] x_range = (xs[-1] - xs[0]) / 100 for idx in range(1, len(ys)): if (xs[idx] - _xs[0]) > x_range: axs.append(_avg(_xs)) ays.append(_avg(_ys)) del _xs, _ys _xs = [xs[idx]] _ys = [ys[idx]] else: _xs.append(xs[idx]) _ys.append(ys[idx]) if len(_xs) > 1: axs.append(_avg(_xs)) ays.append(_avg(_ys)) return axs, ays #-------------------------------------------------------------- global verbose db = {} min_x = max_x = min_y = max_y = None for file in files: if not os.path.exists(file): fatal('%s not found' % file) elif verbose: print 'Processing %s' % file xs = [] ys = [] for line in open(file, 'r'): f = line.rstrip().split(None) if line.find('#') == 0 or len(f) < 2: continue (min_x, max_x, x) = check(min_x, max_x, f[0]) (min_y, max_y, y) = check(min_y, max_y, f[1]) xs.append(x) ys.append(y) db[file] = {'x':xs, 'y':ys} if len(xs) > 10: db[file]['ax'], db[file]['ay'] = avg(xs, ys) else: db[file]['ax'] = db[file]['ay'] = None db['min_x'] = min_x db['max_x'] = max_x db['min_y'] = min_y db['max_y'] = max_y return db #---------------------------------------------------------------------- def parse_args(args): """Parse command line arguments. Returns list of (data) files that need to be processed -- /unless/ the -A (--generate-all) option is passed, in which case superfluous data files are ignored... """ global add_legend, output_file, title_str, type, verbose global generate_all prog = args[0][args[0].rfind('/')+1:] if prog == 'btt_plot.py': pass elif not prog in progs: fatal('%s not a valid command name' % prog) else: type = prog[prog.rfind('_')+1:prog.rfind('.py')] s_opts = 'ALo:t:T:v' l_opts = [ 'generate-all', 'type', 'no-legend', 'output', 'title', 'verbose' ] try: (opts, args) = getopt.getopt(args[1:], s_opts, l_opts) except getopt.error, msg: print >>sys.stderr, msg fatal(__doc__) for (o, a) in opts: if o in ('-A', '--generate-all'): generate_all = True elif o in ('-L', '--no-legend'): add_legend = False elif o in ('-o', '--output'): output_file = a elif o in ('-t', '--type'): if not a in types: fatal('Type %s not supported' % a) type = a elif o in ('-T', '--title'): title_str = a elif o in ('-v', '--verbose'): verbose = True if type == None and not generate_all: fatal('Need type of data files to process - (-t <type>)') return args #------------------------------------------------------------------------------ def gen_title(fig, type, title_str): """Sets the title for the figure based upon the type /or/ user title""" if title_str != None: pass elif type == 'aqd': title_str = 'Average Queue Depth' elif type == 'bnos': title_str = 'Block Numbers Accessed' elif type == 'q2d': title_str = 'Queue (Q) To Issue (D) Average Latencies' elif type == 'd2c': title_str = 'Issue (D) To Complete (C) Average Latencies' elif type == 'q2c': title_str = 'Queue (Q) To Complete (C) Average Latencies' title = fig.text(.5, .95, title_str, horizontalalignment='center') title.set_fontsize('large') #------------------------------------------------------------------------------ def gen_labels(db, ax, type): """Generate X & Y 'axis'""" #---------------------------------------------------------------------- def gen_ylabel(ax, type): """Set the Y axis label based upon the type""" if type == 'aqd': str = 'Number of Requests Queued' elif type == 'bnos': str = 'Block Number' else: str = 'Seconds' ax.set_ylabel(str) #---------------------------------------------------------------------- xdelta = 0.1 * (db['max_x'] - db['min_x']) ydelta = 0.1 * (db['max_y'] - db['min_y']) ax.set_xlim(db['min_x'] - xdelta, db['max_x'] + xdelta) ax.set_ylim(db['min_y'] - ydelta, db['max_y'] + ydelta) ax.set_xlabel('Runtime (seconds)') ax.grid(True) gen_ylabel(ax, type) #------------------------------------------------------------------------------ def generate_output(type, db): """Generate the output plot based upon the type and database""" #---------------------------------------------------------------------- def color(idx, style): """Returns a color/symbol type based upon the index passed.""" colors = [ 'b', 'g', 'r', 'c', 'm', 'y', 'k' ] l_styles = [ '-', ':', '--', '-.' ] m_styles = [ 'o', '+', '.', ',', 's', 'v', 'x', '<', '>' ] color = colors[idx % len(colors)] if style == 'line': style = l_styles[(idx / len(l_styles)) % len(l_styles)] elif style == 'marker': style = m_styles[(idx / len(m_styles)) % len(m_styles)] return '%s%s' % (color, style) #---------------------------------------------------------------------- def gen_legends(a, legends): leg = ax.legend(legends, 'best', shadow=True) frame = leg.get_frame() frame.set_facecolor('0.80') for t in leg.get_texts(): t.set_fontsize('xx-small') #---------------------------------------------------------------------- global add_legend, output_file, title_str, verbose if output_file != None: ofile = output_file else: ofile = '%s.png' % type if verbose: print 'Generating plot into %s' % ofile fig = plt.figure(figsize=plot_size) ax = fig.add_subplot(111) gen_title(fig, type, title_str) gen_labels(db, ax, type) idx = 0 if add_legend: legends = [] else: legends = None keys = [] for file in db.iterkeys(): if not file in ['min_x', 'max_x', 'min_y', 'max_y']: keys.append(file) keys.sort() for file in keys: dat = db[file] if type == 'bnos': ax.plot(dat['x'], dat['y'], color(idx, 'marker'), markersize=1) elif dat['ax'] == None: continue # Don't add legend else: ax.plot(dat['ax'], dat['ay'], color(idx, 'line'), linewidth=1.0) if add_legend: legends.append(get_base(file)) idx += 1 if add_legend and len(legends) > 0: gen_legends(ax, legends) plt.savefig(ofile) #------------------------------------------------------------------------------ def get_files(type): """Returns the list of files for the -A option based upon type""" if type == 'bnos': files = [] for fn in glob.glob('*c.dat'): for t in [ 'q2q', 'd2d', 'q2c', 'd2c' ]: if fn.find(t) >= 0: break else: files.append(fn) else: files = glob.glob('*%s.dat' % type) return files #------------------------------------------------------------------------------ if __name__ == '__main__': files = parse_args(sys.argv) if generate_all: output_file = title_str = type = None for t in types: files = get_files(t) if len(files) == 0: continue elif t != 'bnos': generate_output(t, get_data(files)) continue for file in files: base = get_base(file) title_str = 'Block Numbers Accessed: %s' % base output_file = 'bnos_%s.png' % base generate_output(t, get_data([file])) elif len(files) < 1: fatal('Need data files to process') else: generate_output(type, get_data(files)) sys.exit(0)
gpl-2.0
dstein64/PyFactorizationMachines
example.py
1
3414
from __future__ import print_function import numpy as np from scipy import sparse from sklearn import datasets from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split import pyfms import pyfms.regularizers # This shows examples of how to use PyFactorizationMachines. The datasets may not be # particularly suitable for using factorization machines. print('pyfms {}'.format(pyfms.__version__)) print() np.random.seed(0) def error_score(y_true, y_pred): return 1.0 - accuracy_score(y_true, y_pred) print('*******************************************') print('* Binary Classification Example') print('* (with sample weighting and sparse data)') print('*******************************************') print() X, y = datasets.load_boston(return_X_y=True) # Binarize target y = y > 30 # Columns 1 and 3 (0-indexed) are sparse. # Slice data to the first 5 columns for a higher sparsity ratio. X = X[:,:5] X = sparse.csr_matrix(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # Re-weight instances so that each class gets equal total weighting. class_count_lookup = dict(zip(*np.unique(y_train, return_counts=True))) sample_weight = np.array([1.0 / class_count_lookup[_y] for _y in y_train]) # Sparsify data X_train = sparse.csr_matrix(X_train) X_test = sparse.csr_matrix(X_test) classifier_dims = X.shape[1] fm_classifier = pyfms.Classifier(classifier_dims, k=2, X_format="csr") fm_classifier.fit(X_train, y_train, sample_weight=sample_weight, nb_epoch=20000) print('Factorization Machine Error: {}'.format( error_score(y_test, fm_classifier.predict(X_test)))) logistic_regression = LogisticRegression() logistic_regression.fit(X_train, y_train, sample_weight=sample_weight) print('Logistic Regression Error: {}'.format( error_score(y_test, logistic_regression.predict(X_test)))) print() print('*******************************************') print('* Regression Example') print('* (with L2 Regularization and verbose output)') print('*******************************************') print() X, y = datasets.load_boston(return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) fm_regressor = pyfms.Regressor(X.shape[1], k=2) reg = pyfms.regularizers.L2(0, 0, .01) fm_regressor.fit(X_train, y_train, nb_epoch=50000, verbosity=5000, regularizer=reg) print() print('Factorization Machine MSE: {}'.format( mean_squared_error(y_test, fm_regressor.predict(X_test)))) linear_regression = LinearRegression() linear_regression.fit(X_train, y_train) print('Linear Regression MSE: {}'.format( mean_squared_error(y_test, linear_regression.predict(X_test)))) print() print('*******************************************') print('* Saving Model Example') print('*******************************************') print() # Save the factorization machine classifier that was trained earlier f = "weights.fm" fm_classifier.save_weights(f) print('Model saved') print() print('*******************************************') print('* Loading a Saved Model Example') print('*******************************************') print() del fm_classifier fm_classifier = pyfms.models.Classifier(classifier_dims) fm_classifier.load_weights(f) print('Model loaded') print()
mit
ctyeong/unitytool
ReadResult.py
2
2095
import copy import math import pylab from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA import matplotlib.pyplot as plt o = open("pathresults.xml") paths = [[]]*2 r = dict() p = -1 t = 0 w = 0 for i, l in enumerate(o.readlines()): if "name=" in l and "Path" in l: p+=1 t=0 w = 0 if "time=" in l: l=l.replace("<results time=\"","") l=l.replace("\">","") l=l.replace("\n","") t+=1 r["Time"] = float(l) if("Crazyness" in l): #clear l=l.replace("<metric name=\"Crazyness\">","") l=l.replace("</metric>","") l=l.replace("\n","") r["Crazyness"] = float(l) if("Danger3\">" in l): #clear l=l.replace("<metric name=\"Danger3\">","") l=l.replace("</metric>","") l=l.replace("\n","") r["Danger3"] = float(l) if("Los3\">" in l): #clear l=l.replace("<metric name=\"Los3\">","") l=l.replace("</metric>","") l=l.replace("\n","") r["Los3"] = float(l) if("</results>" in l): #print w w+=1 #print p paths[p].append(copy.deepcopy(r)) #Plot the restults x = [] ;yD = []; yL = [];yC=[] for i,j in enumerate(paths[0]): #print i x.append(j["Time"]) yD.append(j["Danger3"]) yL.append(j["Los3"]) yC.append(j["Crazyness"]) host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() offset = 70 new_fixed_axis = par2.get_grid_helper().new_fixed_axis par2.axis["right"] = new_fixed_axis(loc="right", axes=par2, offset=(offset, 0)) par2.axis["right"].toggle(all=True) host.set_xlabel("Time") host.set_ylabel("Danger") par1.set_ylabel("Crazyness") par2.set_ylabel("LOS") p1, = host.plot(x,yD, label="Danger") p2, = par1.plot(x,yC, label="Crazy") p3, = par2.plot(x,yL, label="LOS") #host.legend() host.axis["left"].label.set_color(p1.get_color()) par1.axis["right"].label.set_color(p2.get_color()) par2.axis["right"].label.set_color(p3.get_color()) plt.draw() #plt.show() #nameFile = nameFile.replace(".xml","") plt.savefig("Output.svg", format = "svg")
mit
nguy/AWOT
awot/util/write_kmz.py
1
17468
""" awot.util.write_kmz ======================== Functions to save AWOT data into KML/KMZ files. These files may be displayed for example with Google Earth. Some code was directely adapted from the NASA PyAMPR package by Timothy Lang. https://github.com/nasa/PyAMPR/blob/master/pyampr/pyampr.py This present method is proof of concept and is expected to expand over time. """ from __future__ import absolute_import from __future__ import print_function import matplotlib.pyplot as plt import numpy as np import os from ..graph import common as gcommon from . import helper from .google_earth_tools import gearth_fig, make_kml try: import simplekml except: raise ValueError("This module requires installation of simplekml...") def write_track_kmz(awot, field, lat_name=None, lon_name=None, time_name=None, start_time=None, end_time=None, latrange=None, lonrange=None, cmap=None, track_color='k', track_lw=2.5, file_path=None, file_name=None, show_legend=True, legend_label=None): """ This method plots geolocated AWOT track data as a filled color Google Earth kmz. Will produce overlay.png and, if a legend is created, legend.png as temporary image files in the current working directory. Parameters ---------- awot : dict AWOT flight data instance. field : str Name of variable to use for track data. lat_name : str Key in radar instance for latitude variable. None uses AWOT default. lon_name : str Key in radar instance for longitude variable. None uses AWOT default. time_name : str Key in radar instance for time variable. None uses AWOT default. start_time : str UTC time to use as start time for subsetting in datetime format. (e.g. 2014-08-20 12:30:00) end_time : str UTC time to use as an end time for subsetting in datetime format. (e.g. 2014-08-20 16:30:00) latrange : 2-tuple List with lat range defined. lonrange : 2-tuple List with lon range defined. cmap : Matplotlib colormap instance Colormap desired. See http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps and dir(cm) for more. track_color : str If color_by_altitude False, this color (see matplotlib) is used for track. track_lw : float or int Line width to use for track. file_path : str Path to kmz file. Defaults to current working directory. file_name : str Desired file name. If None specified, AWOT attemps to build using dictionary information. show_legend : bool False to suppress the color bar. legend_label : str Label to display in legend. If None, AWOT attempts to build using field dictionary information. """ plt.close() # mpl seems buggy if multiple windows are left open _method_printout() print('Writing AWOT track KMZ file:') # Check to see if field exists gcommon._check_field(awot, field) # Get the field dictionary var = gcommon._get_variable_dict(awot, field) # Get the lat/lon/time dictionaries if lat_name is None: latdict = gcommon._get_variable_dict(awot, 'latitude') else: latdict = gcommon._get_variable_dict(awot, lat_name) if lon_name is None: londict = gcommon._get_variable_dict(awot, 'longitude') else: londict = gcommon._get_variable_dict(awot, lon_name) if time_name is None: timedict = gcommon._get_variable_dict(awot, 'time') else: timedict = gcommon._get_variable_dict(awot, time_name) dt_start = gcommon._get_start_datetime(timedict, start_time) dt_end = gcommon._get_start_datetime(timedict, end_time) datasub = helper.time_subset_awot_dict(timedict, var, start_time, end_time) lonsub = helper.time_subset_awot_dict(timedict, londict, start_time, end_time) latsub = helper.time_subset_awot_dict(timedict, latdict, start_time, end_time) timesub = helper.time_subset_awot_dict(timedict, timedict, start_time, end_time) # Filter any bad geolocation data latd, lond, data, time = _filter_bad_geolocations( latsub['data'], lonsub['data'], timesub['data'], datasub['data']) # Get the lat/lon range latrange, lonrange = _get_latrange_lonrange( latd, lond, latrange, lonrange) # Set the beginning and ending times times = [dt_start, dt_end] # Set file info if file_path is None: file_path = os.getcwd() if file_name is None: file_name = ('awot_' + awot['platform'] + '_' + awot['flight_number'] + '_' + field + '.kmz') longname = os.path.join(file_path, file_name) # Google Earth image production # If no cmap is specified, grab current if cmap is None: cmap = plt.get_cmap() print(lonrange) print(latrange) fig, ax = gearth_fig(np.min(lonrange), np.min(latrange), np.max(lonrange), np.max(latrange)) cs = ax.plot(lond, latd, color=track_color, lw=track_lw) ax.set_axis_off() fig.savefig('overlay.png', transparent=True, format='png') # Now we convert to KMZ if show_legend is True: fig = plt.figure(figsize=(1.0, 4.0), facecolor=None, frameon=False) ax = fig.add_axes([0.0, 0.05, 0.2, 0.9]) cb = fig.colorbar(cs, cax=ax) cbytick_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cbytick_obj, color='w', weight='bold') if legend_label is None: ptitle = var['standard_name'] + ' (' + var['units'] + ')' else: ptitle = legend_label cb.set_label(ptitle, rotation=-90, color='w', labelpad=20, weight='bold') fig.savefig('legend.png', transparent=True, format='png') make_kml(np.min(lonrange), np.min(latrange), np.max(lonrange), np.max(latrange), figs=['overlay.png'], kmzfile=longname, colorbar='legend.png', times=times) os.remove('overlay.png') os.remove('legend.png') else: make_kml(np.min(lonrange), np.min(latrange), np.max(lonrange), np.max(latrange), figs=['overlay.png'], kmzfile=longname, times=times) os.remove('overlay.png') print('Google Earth image saved to: %s' % longname) _method_printout() return def write_line_kml(awot, field, lat_name=None, lon_name=None, time_name=None, start_time=None, end_time=None, latrange=None, lonrange=None, cmap=None, color=None, lw=None, file_path=None, file_name=None, line_name=None, join_to_ground=False): """ Write a field of AWOT track data as a KML file for Google Earth. Parameters ---------- awot : dict AWOT flight data instance. field : str Name of variable to use for track data. lat_name : str Key in radar instance for latitude variable. None uses AWOT default. lon_name : str Key in radar instance for longitude variable. None uses AWOT default. time_name : str Key in radar instance for time variable. None uses AWOT default. start_time : str UTC time to use as start time for subsetting in datetime format. (e.g. 2014-08-20 12:30:00) end_time : str UTC time to use as an end time for subsetting in datetime format. (e.g. 2014-08-20 16:30:00) latrange : 2-tuple List with lat range defined. lonrange : 2-tuple List with lon range defined. cmap : Matplotlib colormap instance Colormap desired. See http://wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps and dir(cm) for more. color : str Hex value color string to use for track. lw : float Line width to use for track. file_path : str Path to kmz file. Defaults to current working directory. file_name : str Desired file name. If None specified, AWOT attemps to build using dictionary information. line_name : str Name of line string to create. join_to_ground : bool True to create a line that is joined to the ground. False does not. """ plt.close() # mpl seems buggy if multiple windows are left open _method_printout() print('Writing AWOT track KML file:') # Check to see if field exists gcommon._check_field(awot, field) # Get the field dictionary var = gcommon._get_variable_dict(awot, field) # Get the lat/lon/time dictionaries if lat_name is None: latdict = gcommon._get_variable_dict(awot, 'latitude') else: latdict = gcommon._get_variable_dict(awot, lat_name) if lon_name is None: londict = gcommon._get_variable_dict(awot, 'longitude') else: londict = gcommon._get_variable_dict(awot, lon_name) if time_name is None: timedict = gcommon._get_variable_dict(awot, 'time') else: timedict = gcommon._get_variable_dict(awot, time_name) dt_start = gcommon._get_start_datetime(timedict, start_time) dt_end = gcommon._get_start_datetime(timedict, end_time) datasub = helper.time_subset_awot_dict(timedict, var, start_time, end_time) lonsub = helper.time_subset_awot_dict(timedict, londict, start_time, end_time) latsub = helper.time_subset_awot_dict(timedict, latdict, start_time, end_time) timesub = helper.time_subset_awot_dict(timedict, timedict, start_time, end_time) # Filter any bad geolocation data latd, lond, data, time = _filter_bad_geolocations( latsub['data'], lonsub['data'], timesub['data'], datasub['data']) # Get the lat/lon range latrange, lonrange = _get_latrange_lonrange( latd, lond, latrange, lonrange) # Set the beginning and ending times times = [dt_start, dt_end] # Set file info if file_path is None: file_path = os.getcwd() if file_name is None: file_name = ('awot_' + awot['platform'] + '_' + awot['flight_number'] + '_' + field + '.kml') longname = os.path.join(file_path, file_name) if line_name is None: line_name = field # Now we convert to KMZ kml = simplekml.Kml() linestr = kml.newlinestring(name=line_name) linestr.coords = zip(lond, latd) # Set properties according to keywords if lw is not None: linestr.style.linestyle.width = lw if color is not None: linestr.style.linestyle.color = color if join_to_ground: linestr.altitudemode = simplekml.AltitudeMode.relativetoground linestr.extrude = 1 # Save the file kml.save(longname) print('KML file saved to: %s' % longname) _method_printout() return def write_poly_kml(name="Polygon", innerboundary=None, outerboundary=None, lw=4, color=None, fill=False, extrude=False, join_to_ground=False, timestamp=False, outputdir=None, filename=None): ''' Write a polygon KML file for Google Earth. Parameters ---------- name : str Name to assign KML polygon instance. innerboundary : tuple or array Longitude/latitude coordinate pairs of inner boundary. outerboundary : tuple or array Longitude/latitude coordinate pairs of outer boundary. lw : int Width of line connecting polygon points. color : str Hex string color of line connection polygon points. fill : bool True to fill in polygon, False (default) for no fill. extrude : bool True to connect line to ground, Fales (default) does not. join_to_ground : bool True to create a line that is joined to the ground. False does not. timestamp : bool True adds UTC time at processing. outputdir : str Directory to save KML file. Defaults to current working directory. filename : str KML filename to save. Defualts to polygon.kml ''' # Create a kml instance kml = simplekml.Kml() # Instantiate a polygon instance pol = kml.newpolygon(name=name) # Set the boundaries if outerboundary is not None: pol.outerboundaryis = outerboundary if innerboundary is not None: pol.innerboundaryis = innerboundary if fill: pol.polystyle.fill = 1 else: pol.polystyle.fill = 0 if extrude: pol.extrude = 1 else: pol.extrude = 0 if join_to_ground: pol.altitudemode = simplekml.AltitudeMode.relativetoground pol.extrude = 1 # Set styling properties according to keywords if lw is not None: pol.linestyle.width = lw if color is not None: pol.linestyle.color = simplekml.Color.hex(color) if timestamp: pol.timestamp.when = datetime.strftime(datetime.utcnow(), '%Y-%m-%d %H:%M:%SZ') # Save the file if outputdir is None: outputdir = os.getcwd() if filename is None: filename = "polygon" outfname = os.path.join(outputdir, filename + ".kml") kml.save(outfname) return def write_kmz(fig, ax, plot, lonrange, latrange, times, file_path=None, file_name=None, show_legend=True, legend_label=None): """ This method plots geolocated AWOT track data as a filled color Google Earth kmz. Will produce overlay.png and, if a legend is created, legend.png as temporary image files in the current working directory. Parameters ---------- latrange : 2-tuple List with lat range defined. lonrange : 2-tuple List with lon range defined. file_path : str Path to kmz file. Defaults to current working directory. file_name : str Desired file name. If None specified, AWOT attemps to build using dictionary information. show_legend : bool False to suppress the color bar. legend_label : str Label to display in legend. If None, AWOT attempts to build using field dictionary information. """ plt.close() # mpl seems buggy if multiple windows are left open _method_printout() print('Writing AWOT track KMZ file:') longname = os.path.join(file_path, file_name) print(lonrange) print(latrange) ax.set_axis_off() fig.savefig('overlay.png', transparent=True, format='png') # Now we convert to KMZ if show_legend is True: fig = plt.figure(figsize=(1.0, 4.0), facecolor=None, frameon=False) ax = fig.add_axes([0.0, 0.05, 0.2, 0.9]) cb = fig.colorbar(plot, cax=ax) cbytick_obj = plt.getp(cb.ax.axes, 'yticklabels') plt.setp(cbytick_obj, color='w', weight='bold') cb.set_label(legend_label, rotation=-90, color='w', labelpad=20, weight='bold') fig.savefig('legend.png', transparent=True, format='png') make_kml(np.min(lonrange), np.min(latrange), np.max(lonrange), np.max(latrange), figs=['overlay.png'], kmzfile=longname, colorbar='legend.png', times=times) os.remove('overlay.png') os.remove('legend.png') else: make_kml(np.min(lonrange), np.min(latrange), np.max(lonrange), np.max(latrange), figs=['overlay.png'], kmzfile=longname, times=times) os.remove('overlay.png') print('Google Earth image saved to: %s' % longname) _method_printout() return ################### # Get methods # ################### def _get_latrange_lonrange(lats=None, lons=None, latrange=None, lonrange=None): """ Determine domain of plot based on what user provided. """ if latrange is None: latrange = [np.min(lats), np.max(lats)] else: latrange = np.sort(latrange) if lonrange is None: lonrange = [np.min(lons), np.max(lons)] else: lonrange = np.sort(lonrange) return latrange, lonrange #################### # Data methods # #################### def _filter_bad_geolocations(lats, lons, data, time): """ Internal method to filter bad geolocation data. """ # Attempt to deal with bad geolocation data # (e.g., Latitude/Longitude=bad_data) cond1 = np.logical_or(lats < -90, lats > 90) cond2 = np.logical_or(lons < -180, lons > 180) condition = np.logical_or(cond1, cond2) indices = np.where(condition) if np.shape(indices)[1] > 0: print("Removing bad data") data = np.delete(data, indices[0], axis=0) lons = np.delete(lons, indices[0], axis=0) lats = np.delete(lats, indices[0], axis=0) time = np.delete(time, indices[0], axis=0) return lats, lons, data, time ###################### # Helper methods # ###################### def _method_printout(): """ Helps clarify text output. """ print('\n********************\n') print('')
gpl-2.0
deepakantony/sms-tools
lectures/05-Sinusoidal-model/plots-code/synthesis-window.py
22
1725
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time from scipy.fftpack import fft, ifft, fftshift sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') M = 601 w = np.blackman(M) N = 1024 hN = N/2 Ns = 512 hNs = Ns/2 H = Ns/4 pin = 5000 t = -70 x1 = x[pin:pin+w.size] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) freqs = iploc*fs/N Y = UF.genSpecSines(freqs, ipmag, ipphase, Ns, fs) mY = 20*np.log10(abs(Y[:hNs])) pY = np.unwrap(np.angle(Y[:hNs])) y= fftshift(ifft(Y))*sum(blackmanharris(Ns)) sw = np.zeros(Ns) ow = triang(2*H); sw[hNs-H:hNs+H] = ow bh = blackmanharris(Ns) bh = bh / sum(bh) sw[hNs-H:hNs+H] = sw[hNs-H:hNs+H] / bh[hNs-H:hNs+H] plt.figure(1, figsize=(9, 6)) plt.subplot(3,1,1) plt.plot(np.arange(hNs), mY, 'r', lw=1.5) plt.axis([0, hNs,-90,max(mY)+2]) plt.title("mY, Blackman-Harris, Ns = 512") plt.subplot(3,1,2) plt.plot(np.arange(-hNs,hNs), y, 'b', lw=1.5) plt.plot(np.arange(-hNs,hNs), max(y)*bh/max(bh), 'k', alpha=.5,lw=1.5) plt.axis([-hNs, hNs,min(y),max(y)+.1]) plt.title("y, size = Ns = 512 (Blackman-Harris window)") yw = y * sw / max(sw) plt.subplot(3,1,3) plt.plot(np.arange(-hNs,hNs), yw, 'b',lw=1.5) plt.plot(np.arange(-hNs/2,hNs/2), max(y)*ow/max(ow), 'k', alpha=.5,lw=1.5) plt.axis([-hNs, hNs,min(yw),max(yw)+.1]) plt.title("yw = y * triangular / Blackman Harris; size = Ns/2 = 256") plt.tight_layout() plt.savefig('synthesis-window.png') plt.show()
agpl-3.0
ch3ll0v3k/scikit-learn
examples/cluster/plot_cluster_iris.py
350
2593
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= K-means Clustering ========================================================= The plots display firstly what a K-means algorithm would yield using three clusters. It is then shown what the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. The next plot displays what using eight clusters would deliver and finally the ground truth. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets np.random.seed(5) centers = [[1, 1], [-1, -1], [1, -1]] iris = datasets.load_iris() X = iris.data y = iris.target estimators = {'k_means_iris_3': KMeans(n_clusters=3), 'k_means_iris_8': KMeans(n_clusters=8), 'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1, init='random')} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float)) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') fignum = fignum + 1 # Plot the ground truth fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() for name, label in [('Setosa', 0), ('Versicolour', 1), ('Virginica', 2)]: ax.text3D(X[y == label, 3].mean(), X[y == label, 0].mean() + 1.5, X[y == label, 2].mean(), name, horizontalalignment='center', bbox=dict(alpha=.5, edgecolor='w', facecolor='w')) # Reorder the labels to have colors matching the cluster results y = np.choose(y, [1, 2, 0]).astype(np.float) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) ax.set_xlabel('Petal width') ax.set_ylabel('Sepal length') ax.set_zlabel('Petal length') plt.show()
bsd-3-clause
cactusbin/nyt
matplotlib/examples/pylab_examples/psd_demo2.py
9
1445
#This example shows the effects of some of the different PSD parameters import numpy as np import matplotlib.pyplot as plt dt = np.pi / 100. fs = 1. / dt t = np.arange(0, 8, dt) y = 10. * np.sin(2 * np.pi * 4 * t) + 5. * np.sin(2 * np.pi * 4.25 * t) y = y + np.random.randn(*t.shape) #Plot the raw time series fig = plt.figure() fig.subplots_adjust(hspace=0.45, wspace=0.3) ax = fig.add_subplot(2, 1, 1) ax.plot(t, y) #Plot the PSD with different amounts of zero padding. This uses the entire #time series at once ax2 = fig.add_subplot(2, 3, 4) ax2.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*2, Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*4, Fs=fs) plt.title('zero padding') #Plot the PSD with different block sizes, Zero pad to the length of the original #data sequence. ax3 = fig.add_subplot(2, 3, 5, sharex=ax2, sharey=ax2) ax3.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//2, pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//4, pad_to=len(t), Fs=fs) ax3.set_ylabel('') plt.title('block size') #Plot the PSD with different amounts of overlap between blocks ax4 = fig.add_subplot(2, 3, 6, sharex=ax2, sharey=ax2) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=0, Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.05*len(t)/2.), Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.2*len(t)/2.), Fs=fs) ax4.set_ylabel('') plt.title('overlap') plt.show()
unlicense
Weihonghao/ECM
Vpy34/lib/python3.5/site-packages/scipy/signal/_arraytools.py
28
7553
""" Functions for acting on a axis of an array. """ from __future__ import division, print_function, absolute_import import numpy as np def axis_slice(a, start=None, stop=None, step=None, axis=-1): """Take a slice along axis 'axis' from 'a'. Parameters ---------- a : numpy.ndarray The array to be sliced. start, stop, step : int or None The slice parameters. axis : int, optional The axis of `a` to be sliced. Examples -------- >>> a = array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> axis_slice(a, start=0, stop=1, axis=1) array([[1], [4], [7]]) >>> axis_slice(a, start=1, axis=0) array([[4, 5, 6], [7, 8, 9]]) Notes ----- The keyword arguments start, stop and step are used by calling slice(start, stop, step). This implies axis_slice() does not handle its arguments the exacty the same as indexing. To select a single index k, for example, use axis_slice(a, start=k, stop=k+1) In this case, the length of the axis 'axis' in the result will be 1; the trivial dimension is not removed. (Use numpy.squeeze() to remove trivial axes.) """ a_slice = [slice(None)] * a.ndim a_slice[axis] = slice(start, stop, step) b = a[a_slice] return b def axis_reverse(a, axis=-1): """Reverse the 1-d slices of `a` along axis `axis`. Returns axis_slice(a, step=-1, axis=axis). """ return axis_slice(a, step=-1, axis=axis) def odd_ext(x, n, axis=-1): """ Odd extension at the boundaries of an array Generate a new ndarray by making an odd extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import odd_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> odd_ext(a, 2) array([[-1, 0, 1, 2, 3, 4, 5, 6, 7], [-4, -1, 0, 1, 4, 9, 16, 23, 28]]) Odd extension is a "180 degree rotation" at the endpoints of the original array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = odd_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='odd extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x if n > x.shape[axis] - 1: raise ValueError(("The extension length n (%d) is too big. " + "It must not exceed x.shape[axis]-1, which is %d.") % (n, x.shape[axis] - 1)) left_end = axis_slice(x, start=0, stop=1, axis=axis) left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) right_end = axis_slice(x, start=-1, axis=axis) right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) ext = np.concatenate((2 * left_end - left_ext, x, 2 * right_end - right_ext), axis=axis) return ext def even_ext(x, n, axis=-1): """ Even extension at the boundaries of an array Generate a new ndarray by making an even extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import even_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> even_ext(a, 2) array([[ 3, 2, 1, 2, 3, 4, 5, 4, 3], [ 4, 1, 0, 1, 4, 9, 16, 9, 4]]) Even extension is a "mirror image" at the boundaries of the original array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = even_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='even extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x if n > x.shape[axis] - 1: raise ValueError(("The extension length n (%d) is too big. " + "It must not exceed x.shape[axis]-1, which is %d.") % (n, x.shape[axis] - 1)) left_ext = axis_slice(x, start=n, stop=0, step=-1, axis=axis) right_ext = axis_slice(x, start=-2, stop=-(n + 2), step=-1, axis=axis) ext = np.concatenate((left_ext, x, right_ext), axis=axis) return ext def const_ext(x, n, axis=-1): """ Constant extension at the boundaries of an array Generate a new ndarray that is a constant extension of `x` along an axis. The extension repeats the values at the first and last element of the axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import const_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> const_ext(a, 2) array([[ 1, 1, 1, 2, 3, 4, 5, 5, 5], [ 0, 0, 0, 1, 4, 9, 16, 16, 16]]) Constant extension continues with the same values as the endpoints of the array: >>> t = np.linspace(0, 1.5, 100) >>> a = 0.9 * np.sin(2 * np.pi * t**2) >>> b = const_ext(a, 40) >>> import matplotlib.pyplot as plt >>> plt.plot(arange(-40, 140), b, 'b', lw=1, label='constant extension') >>> plt.plot(arange(100), a, 'r', lw=2, label='original') >>> plt.legend(loc='best') >>> plt.show() """ if n < 1: return x left_end = axis_slice(x, start=0, stop=1, axis=axis) ones_shape = [1] * x.ndim ones_shape[axis] = n ones = np.ones(ones_shape, dtype=x.dtype) left_ext = ones * left_end right_end = axis_slice(x, start=-1, axis=axis) right_ext = ones * right_end ext = np.concatenate((left_ext, x, right_ext), axis=axis) return ext def zero_ext(x, n, axis=-1): """ Zero padding at the boundaries of an array Generate a new ndarray that is a zero padded extension of `x` along an axis. Parameters ---------- x : ndarray The array to be extended. n : int The number of elements by which to extend `x` at each end of the axis. axis : int, optional The axis along which to extend `x`. Default is -1. Examples -------- >>> from scipy.signal._arraytools import zero_ext >>> a = np.array([[1, 2, 3, 4, 5], [0, 1, 4, 9, 16]]) >>> zero_ext(a, 2) array([[ 0, 0, 1, 2, 3, 4, 5, 0, 0], [ 0, 0, 0, 1, 4, 9, 16, 0, 0]]) """ if n < 1: return x zeros_shape = list(x.shape) zeros_shape[axis] = n zeros = np.zeros(zeros_shape, dtype=x.dtype) ext = np.concatenate((zeros, x, zeros), axis=axis) return ext
agpl-3.0
vkscool/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/bezier.py
70
14387
""" A module providing some utility functions regarding bezier path manipulation. """ import numpy as np from math import sqrt from matplotlib.path import Path from operator import xor # some functions def get_intersection(cx1, cy1, cos_t1, sin_t1, cx2, cy2, cos_t2, sin_t2): """ return a intersecting point between a line through (cx1, cy1) and having angle t1 and a line through (cx2, cy2) and angle t2. """ # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0. # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1 line1_rhs = sin_t1 * cx1 - cos_t1 * cy1 line2_rhs = sin_t2 * cx2 - cos_t2 * cy2 # rhs matrix a, b = sin_t1, -cos_t1 c, d = sin_t2, -cos_t2 ad_bc = a*d-b*c if ad_bc == 0.: raise ValueError("Given lines do not intersect") #rhs_inverse a_, b_ = d, -b c_, d_ = -c, a a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]] x = a_* line1_rhs + b_ * line2_rhs y = c_* line1_rhs + d_ * line2_rhs return x, y def get_normal_points(cx, cy, cos_t, sin_t, length): """ For a line passing through (*cx*, *cy*) and having a angle *t*, return locations of the two points located along its perpendicular line at the distance of *length*. """ if length == 0.: return cx, cy, cx, cy cos_t1, sin_t1 = sin_t, -cos_t cos_t2, sin_t2 = -sin_t, cos_t x1, y1 = length*cos_t1 + cx, length*sin_t1 + cy x2, y2 = length*cos_t2 + cx, length*sin_t2 + cy return x1, y1, x2, y2 ## BEZIER routines # subdividing bezier curve # http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html def _de_casteljau1(beta, t): next_beta = beta[:-1] * (1-t) + beta[1:] * t return next_beta def split_de_casteljau(beta, t): """split a bezier segment defined by its controlpoints *beta* into two separate segment divided at *t* and return their control points. """ beta = np.asarray(beta) beta_list = [beta] while True: beta = _de_casteljau1(beta, t) beta_list.append(beta) if len(beta) == 1: break left_beta = [beta[0] for beta in beta_list] right_beta = [beta[-1] for beta in reversed(beta_list)] return left_beta, right_beta def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, t0=0., t1=1., tolerence=0.01): """ Find a parameter t0 and t1 of the given bezier path which bounds the intersecting points with a provided closed path(*inside_closedpath*). Search starts from *t0* and *t1* and it uses a simple bisecting algorithm therefore one of the end point must be inside the path while the orther doesn't. The search stop when |t0-t1| gets smaller than the given tolerence. value for - bezier_point_at_t : a function which returns x, y coordinates at *t* - inside_closedpath : return True if the point is insed the path """ # inside_closedpath : function start = bezier_point_at_t(t0) end = bezier_point_at_t(t1) start_inside = inside_closedpath(start) end_inside = inside_closedpath(end) if not xor(start_inside, end_inside): raise ValueError("the segment does not seemed to intersect with the path") while 1: # return if the distance is smaller than the tolerence if (start[0]-end[0])**2 + (start[1]-end[1])**2 < tolerence**2: return t0, t1 # calculate the middle point middle_t = 0.5*(t0+t1) middle = bezier_point_at_t(middle_t) middle_inside = inside_closedpath(middle) if xor(start_inside, middle_inside): t1 = middle_t end = middle end_inside = middle_inside else: t0 = middle_t start = middle start_inside = middle_inside class BezierSegment: """ A simple class of a 2-dimensional bezier segment """ # Highrt order bezier lines can be supported by simplying adding # correcponding values. _binom_coeff = {1:np.array([1., 1.]), 2:np.array([1., 2., 1.]), 3:np.array([1., 3., 3., 1.])} def __init__(self, control_points): """ *control_points* : location of contol points. It needs have a shpae of n * 2, where n is the order of the bezier line. 1<= n <= 3 is supported. """ _o = len(control_points) self._orders = np.arange(_o) _coeff = BezierSegment._binom_coeff[_o - 1] _control_points = np.asarray(control_points) xx = _control_points[:,0] yy = _control_points[:,1] self._px = xx * _coeff self._py = yy * _coeff def point_at_t(self, t): "evaluate a point at t" one_minus_t_powers = np.power(1.-t, self._orders)[::-1] t_powers = np.power(t, self._orders) tt = one_minus_t_powers * t_powers _x = sum(tt * self._px) _y = sum(tt * self._py) return _x, _y def split_bezier_intersecting_with_closedpath(bezier, inside_closedpath, tolerence=0.01): """ bezier : control points of the bezier segment inside_closedpath : a function which returns true if the point is inside the path """ bz = BezierSegment(bezier) bezier_point_at_t = bz.point_at_t t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath, tolerence=tolerence) _left, _right = split_de_casteljau(bezier, (t0+t1)/2.) return _left, _right def find_r_to_boundary_of_closedpath(inside_closedpath, xy, cos_t, sin_t, rmin=0., rmax=1., tolerence=0.01): """ Find a radius r (centered at *xy*) between *rmin* and *rmax* at which it intersect with the path. inside_closedpath : function cx, cy : center cos_t, sin_t : cosine and sine for the angle rmin, rmax : """ cx, cy = xy def _f(r): return cos_t*r + cx, sin_t*r + cy find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath, t0=rmin, t1=rmax, tolerence=tolerence) ## matplotlib specific def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False): """ divide a path into two segment at the point where inside(x, y) becomes False. """ path_iter = path.iter_segments() ctl_points, command = path_iter.next() begin_inside = inside(ctl_points[-2:]) # true if begin point is inside bezier_path = None ctl_points_old = ctl_points concat = np.concatenate iold=0 i = 1 for ctl_points, command in path_iter: iold=i i += len(ctl_points)/2 if inside(ctl_points[-2:]) != begin_inside: bezier_path = concat([ctl_points_old[-2:], ctl_points]) break ctl_points_old = ctl_points if bezier_path is None: raise ValueError("The path does not seem to intersect with the patch") bp = zip(bezier_path[::2], bezier_path[1::2]) left, right = split_bezier_intersecting_with_closedpath(bp, inside, tolerence) if len(left) == 2: codes_left = [Path.LINETO] codes_right = [Path.MOVETO, Path.LINETO] elif len(left) == 3: codes_left = [Path.CURVE3, Path.CURVE3] codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3] elif len(left) == 4: codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4] codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] else: raise ValueError() verts_left = left[1:] verts_right = right[:] #i += 1 if path.codes is None: path_in = Path(concat([path.vertices[:i], verts_left])) path_out = Path(concat([verts_right, path.vertices[i:]])) else: path_in = Path(concat([path.vertices[:iold], verts_left]), concat([path.codes[:iold], codes_left])) path_out = Path(concat([verts_right, path.vertices[i:]]), concat([codes_right, path.codes[i:]])) if reorder_inout and begin_inside == False: path_in, path_out = path_out, path_in return path_in, path_out def inside_circle(cx, cy, r): r2 = r**2 def _f(xy): x, y = xy return (x-cx)**2 + (y-cy)**2 < r2 return _f # quadratic bezier lines def get_cos_sin(x0, y0, x1, y1): dx, dy = x1-x0, y1-y0 d = (dx*dx + dy*dy)**.5 return dx/d, dy/d def get_parallels(bezier2, width): """ Given the quadraitc bezier control points *bezier2*, returns control points of quadrativ bezier lines roughly parralel to given one separated by *width*. """ # The parallel bezier lines constructed by following ways. # c1 and c2 are contol points representing the begin and end of the bezier line. # cm is the middle point c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c2x, c2y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c2. # They are also a angle of the tangential line of the path at c1 and c2 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c2_left and # c2_right with respect to c2. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width) c2x_left, c2y_left, c2x_right, c2y_right = \ get_normal_points(c2x, c2y, cos_t2, sin_t2, width) # find cm_left which is the intersectng point of a line through # c1_left with angle t1 and a line throught c2_left with angle # t2. Same with cm_right. cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, sin_t1, c2x_left, c2y_left, cos_t2, sin_t2) cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, sin_t1, c2x_right, c2y_right, cos_t2, sin_t2) # the parralel bezier lines are created with control points of # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right] path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)] path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)] return path_left, path_right def make_wedged_bezier2(bezier2, length, shrink_factor=0.5): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ xx1, yy1 = bezier2[2] xx2, yy2 = bezier2[1] xx3, yy3 = bezier2[0] cx, cy = xx3, yy3 x0, y0 = xx2, yy2 dist = sqrt((x0-cx)**2 + (y0-cy)**2) cos_t, sin_t = (x0-cx)/dist, (y0-cy)/dist, x1, y1, x2, y2 = get_normal_points(cx, cy, cos_t, sin_t, length) xx12, yy12 = (xx1+xx2)/2., (yy1+yy2)/2., xx23, yy23 = (xx2+xx3)/2., (yy2+yy3)/2., dist = sqrt((xx12-xx23)**2 + (yy12-yy23)**2) cos_t, sin_t = (xx12-xx23)/dist, (yy12-yy23)/dist, xm1, ym1, xm2, ym2 = get_normal_points(xx2, yy2, cos_t, sin_t, length*shrink_factor) l_plus = [(x1, y1), (xm1, ym1), (xx1, yy1)] l_minus = [(x2, y2), (xm2, ym2), (xx1, yy1)] return l_plus, l_minus def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y): """ Find control points of the bezier line throught c1, mm, c2. We simply assume that c1, mm, c2 which have parameteric value 0, 0.5, and 1. """ cmx = .5 * (4*mmx - (c1x + c2x)) cmy = .5 * (4*mmy - (c1y + c2y)) return [(c1x, c1y), (cmx, cmy), (c2x, c2y)] def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.): """ Being similar to get_parallels, returns control points of two quadrativ bezier lines having a width roughly parralel to given one separated by *width*. """ # c1, cm, c2 c1x, c1y = bezier2[0] cmx, cmy = bezier2[1] c3x, c3y = bezier2[2] # t1 and t2 is the anlge between c1 and cm, cm, c3. # They are also a angle of the tangential line of the path at c1 and c3 cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy) cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y) # find c1_left, c1_right which are located along the lines # throught c1 and perpendicular to the tangential lines of the # bezier path at a distance of width. Same thing for c3_left and # c3_right with respect to c3. c1x_left, c1y_left, c1x_right, c1y_right = \ get_normal_points(c1x, c1y, cos_t1, sin_t1, width*w1) c3x_left, c3y_left, c3x_right, c3y_right = \ get_normal_points(c3x, c3y, cos_t2, sin_t2, width*w2) # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and c12-c23 c12x, c12y = (c1x+cmx)*.5, (c1y+cmy)*.5 c23x, c23y = (cmx+c3x)*.5, (cmy+c3y)*.5 c123x, c123y = (c12x+c23x)*.5, (c12y+c23y)*.5 # tangential angle of c123 (angle between c12 and c23) cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y) c123x_left, c123y_left, c123x_right, c123y_right = \ get_normal_points(c123x, c123y, cos_t123, sin_t123, width*wm) path_left = find_control_points(c1x_left, c1y_left, c123x_left, c123y_left, c3x_left, c3y_left) path_right = find_control_points(c1x_right, c1y_right, c123x_right, c123y_right, c3x_right, c3y_right) return path_left, path_right if 0: path = Path([(0, 0), (1, 0), (2, 2)], [Path.MOVETO, Path.CURVE3, Path.CURVE3]) left, right = divide_path_inout(path, inside) clf() ax = gca()
gpl-3.0
pandyag/trading-with-python
lib/interactiveBrokers/histData.py
76
6472
''' Created on May 8, 2013 Copyright: Jev Kuznetsov License: BSD Module for downloading historic data from IB ''' import ib import pandas as pd from ib.ext.Contract import Contract from ib.opt import ibConnection, message import logger as logger from pandas import DataFrame, Index import os import datetime as dt import time from time import sleep from extra import timeFormat, dateFormat class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pd.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = _HistDataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1 D',barSizeSetting='30 secs',whatToShow='TRADES',useRTH=1,formatDate=1): if isinstance(endDateTime,dt.datetime): # convert to string endDateTime = endDateTime.strftime(timeFormat) self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(10) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data # def getIntradayData(self,contract, dateTuple ): # ''' get full day data on 1-s interval # date: a tuple of (yyyy,mm,dd) # ''' # # openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) # closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) # # timeRange = pd.date_range(openTime,closeTime,freq='30min') # # datasets = [] # # for t in timeRange: # datasets.append(self.requestData(contract,t.strftime(timeFormat))) # # return pd.concat(datasets) def disconnect(self): self.tws.disconnect() class _HistDataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return if len(msg.date) > 8: self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) else: self._timestamp.append(dt.datetime.strptime(msg.date,dateFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class TimeKeeper(object): ''' class for keeping track of previous requests, to satify the IB requirements (max 60 requests / 10 min) each time a requiest is made, a timestamp is added to a txt file in the user dir. ''' def __init__(self): self._log = logger.getLogger('TK') dataDir = os.path.expanduser('~')+'/twpData' if not os.path.exists(dataDir): os.mkdir(dataDir) self._timeFormat = "%Y%m%d %H:%M:%S" self.dataFile = os.path.normpath(os.path.join(dataDir,'requests.txt')) # Create file if it's missing if not os.path.exists(self.dataFile): open(self.dataFile,'w').close() self._log.debug('Data file: {0}'.format(self.dataFile)) def addRequest(self): ''' adds a timestamp of current request''' with open(self.dataFile,'a') as f: f.write(dt.datetime.now().strftime(self._timeFormat)+'\n') def nrRequests(self,timeSpan=600): ''' return number of requests in past timespan (s) ''' delta = dt.timedelta(seconds=timeSpan) now = dt.datetime.now() requests = 0 with open(self.dataFile,'r') as f: lines = f.readlines() for line in lines: if now-dt.datetime.strptime(line.strip(),self._timeFormat) < delta: requests+=1 if requests==0: # erase all contents if no requests are relevant open(self.dataFile,'w').close() self._log.debug('past requests: {0}'.format(requests)) return requests if __name__ == '__main__': from extra import createContract dl = Downloader(debug=True) # historic data downloader class contract = createContract('SPY') # create contract using defaults (STK,SMART,USD) data = dl.requestData(contract,"20141208 16:00:00 EST") # request 30-second data bars up till now data.to_csv('SPY.csv') # write data to csv print 'Done'
bsd-3-clause
WillieMaddox/scipy
tools/refguide_check.py
3
27754
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a Scipy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --check_docs optimize """ from __future__ import print_function import sys import os import re import copy import inspect import warnings import doctest import tempfile import io import docutils.core from docutils.parsers.rst import directives import shutil import glob from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL from argparse import ArgumentParser, REMAINDER import numpy as np sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object # Remove sphinx directives that don't run without Sphinx environment directives._directives.pop('versionadded', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "scipy" PUBLIC_SUBMODULES = [ 'cluster', 'cluster.hierarchy', 'cluster.vq', 'constants', 'fftpack', 'fftpack.convolve', 'integrate', 'interpolate', 'io', 'io.arff', 'io.wavfile', 'linalg', 'linalg.blas', 'linalg.lapack', 'linalg.interpolative', 'misc', 'ndimage', 'odr', 'optimize', 'signal', 'sparse', 'sparse.csgraph', 'sparse.linalg', 'spatial', 'spatial.distance', 'special', 'stats', 'stats.mstats', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ 'scipy.stats.kstwobign', # inaccurate cdf or ppf 'scipy.stats.levy_stable', 'scipy.special.sinc', # comes from numpy 'scipy.misc.who', # comes from numpy 'weave.rst', # tutorial for a deprecated module 'io.rst', # XXX: need to figure out how to deal w/ mat files ]) # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.csgraph', r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] HAVE_MATPLOTLIB = False def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): # Refguide entries: # # - 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) # # - special directives, such as data and function # # - (scipy.constants only): quoted list # patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """Return sets of objects only in __all__, refguide, or completely missing.""" only_all = set() for name in all_dict: if name not in names: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = set(only_ref).intersection(deprecated) only_ref = set(only_ref).difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'currentmodule', 'autosummary', 'data', 'obj', 'versionadded', 'module', 'class', 'ref', 'func', 'toctree', 'moduleauthor', 'sectionauthor', 'codeauthor', 'eq', ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Returns: [(name, success_flag, output), ...] """ try: skip_types = (dict, str, unicode, float, int) except NameError: # python 3 skip_types = (dict, str, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue m = re.search("([\x00-\x09\x0b-\x1f])", text) if m: msg = ("Docstring contains a non-printable character %r! " "Maybe forgot r\"\"\"?" % (m.group(1),)) results.append((full_name, False, msg)) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results ### Doctest helpers #### # the namespace to run examples in DEFAULT_NAMESPACE = {'np': np} # the namespace to do checks in CHECK_NAMESPACE = { 'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'matrix': np.matrix, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf,} class DTRunner(doctest.DocTestRunner): DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): self._report_item_name(out) return doctest.DocTestRunner.report_unexpected_exception( self, out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile('at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', 'ax.axis', 'plt.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim', '# reformatted'} def __init__(self, parse_namedtuples=True, ns=None, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol if ns is None: self.ns = dict(CHECK_NAMESPACE) else: self.ns = ns def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(self.ns)) a_got = eval(got, dict(self.ns)) except: if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = ('[\w\d_]+\(' + ', '.join(['[\w\d_]+=(.+)']*num) + '\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except (TypeError, ValueError): return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogenous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) def _run_doctests(tests, full_name, verbose, doctest_warnings): """Run modified doctests for the set of `tests`. Returns: list of [(success_flag, output), ...] """ flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = [] success = True def out(msg): output.append(msg) class MyStderr(object): """Redirect stderr to the current stdout""" def write(self, msg): if doctest_warnings: sys.stdout.write(msg) else: out(msg) # Run tests, trying to restore global state afterward old_printoptions = np.get_printoptions() old_errstate = np.seterr() old_stderr = sys.stderr cwd = os.getcwd() tmpdir = tempfile.mkdtemp() sys.stderr = MyStderr() try: os.chdir(tmpdir) # try to ensure random seed is NOT reproducible np.random.seed(None) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t, out=out) if fails > 0: success = False finally: sys.stderr = old_stderr os.chdir(cwd) shutil.rmtree(tmpdir) np.set_printoptions(**old_printoptions) np.seterr(**old_errstate) return success, output def check_doctests(module, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in docstrings of the module's public symbols. Returns: list of [(item_name, success_flag, output), ...] """ if ns is None: ns = dict(DEFAULT_NAMESPACE) # Loop over non-deprecated items results = [] for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def check_doctests_testfile(fname, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in a text file. Mimic `check_doctests` above, differing mostly in test discovery. (which is borrowed from stdlib's doctest.testfile here, https://github.com/python-git/python/blob/master/Lib/doctest.py) Returns: list of [(item_name, success_flag, output), ...] Notes ----- We also try to weed out pseudocode: * We maintain a list of exceptions which signal pseudocode, * We split the text file into "blocks" of code separated by empty lines and/or intervening text. * If a block contains a marker, the whole block is then assumed to be pseudocode. It is then not being doctested. The rationale is that typically, the text looks like this: blah <BLANKLINE> >>> from numpy import some_module # pseudocode! >>> func = some_module.some_function >>> func(42) # still pseudocode 146 <BLANKLINE> blah <BLANKLINE> >>> 2 + 3 # real code, doctest it 5 """ results = [] if ns is None: ns = dict(DEFAULT_NAMESPACE) _, short_name = os.path.split(fname) if short_name in DOCTEST_SKIPLIST: return results full_name = fname text = open(fname).read() PSEUDOCODE = set(['some_function', 'some_module', 'import example', 'ctypes.CDLL', # likely need compiling, skip it 'integrate.nquad(func,' # ctypes integrate tutotial ]) # split the text into "blocks" and try to detect and omit pseudocode blocks. parser = doctest.DocTestParser() good_parts = [] for part in text.split('\n\n'): tests = parser.get_doctest(part, ns, fname, fname, 0) if any(word in ex.source for word in PSEUDOCODE for ex in tests.examples): # omit it pass else: # `part` looks like a good code, let's doctest it good_parts += [part] # Reassemble the good bits and doctest them: good_text = '\n\n'.join(good_parts) tests = parser.get_doctest(good_text, ns, fname, fname, 0) success, output = _run_doctests([tests], full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, "".join(output))) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def init_matplotlib(): global HAVE_MATPLOTLIB try: import matplotlib matplotlib.use('Agg') HAVE_MATPLOTLIB = True except ImportError: HAVE_MATPLOTLIB = False def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=list(PUBLIC_SUBMODULES), nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") parser.add_argument("--skip-tutorial", action="store_true", help="Skip running doctests in the tutorial.") args = parser.parse_args(argv) modules = [] names_dict = {} os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in list(module_names): if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) dots = True success = True results = [] print("Running checks for %d modules:" % (len(modules),)) if args.doctests or not args.skip_tutorial: init_matplotlib() for module in modules: if dots: if module is not modules[0]: sys.stderr.write(' ') sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() if not args.skip_tutorial: tut_path = os.path.join(os.getcwd(), 'doc', 'source', 'tutorial', '*.rst') print('\nChecking tutorial files at %s:' % tut_path) for filename in sorted(glob.glob(tut_path)): if dots: sys.stderr.write('\n') sys.stderr.write(os.path.split(filename)[1] + ' ') sys.stderr.flush() tut_results = check_doctests_testfile(filename, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) def scratch(): pass # stub out a "module", see below scratch.__name__ = filename results.append((scratch, tut_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results all_success = True for module, mod_results in results: success = all(x[1] for x in mod_results) all_success = all_success and success if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if all_success: print("\nOK: refguide and doctests checks passed!") sys.exit(0) else: print("\nERROR: refguide or doctests have errors") sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
xuewei4d/scikit-learn
examples/covariance/plot_robust_vs_empirical_covariance.py
17
6481
r""" ======================================= Robust vs Empirical covariance estimate ======================================= The usual covariance maximum likelihood estimate is very sensitive to the presence of outliers in the data set. In such a case, it would be better to use a robust estimator of covariance to guarantee that the estimation is resistant to "erroneous" observations in the data set. [1]_, [2]_ Minimum Covariance Determinant Estimator ---------------------------------------- The Minimum Covariance Determinant estimator is a robust, high-breakdown point (i.e. it can be used to estimate the covariance matrix of highly contaminated datasets, up to :math:`\frac{n_\text{samples} - n_\text{features}-1}{2}` outliers) estimator of covariance. The idea is to find :math:`\frac{n_\text{samples} + n_\text{features}+1}{2}` observations whose empirical covariance has the smallest determinant, yielding a "pure" subset of observations from which to compute standards estimates of location and covariance. After a correction step aiming at compensating the fact that the estimates were learned from only a portion of the initial data, we end up with robust estimates of the data set location and covariance. The Minimum Covariance Determinant estimator (MCD) has been introduced by P.J.Rousseuw in [3]_. Evaluation ---------- In this example, we compare the estimation errors that are made when using various types of location and covariance estimates on contaminated Gaussian distributed data sets: - The mean and the empirical covariance of the full dataset, which break down as soon as there are outliers in the data set - The robust MCD, that has a low error provided :math:`n_\text{samples} > 5n_\text{features}` - The mean and the empirical covariance of the observations that are known to be good ones. This can be considered as a "perfect" MCD estimation, so one can trust our implementation by comparing to this case. References ---------- .. [1] Johanna Hardin, David M Rocke. The distribution of robust distances. Journal of Computational and Graphical Statistics. December 1, 2005, 14(4): 928-946. .. [2] Zoubir A., Koivunen V., Chakhchoukh Y. and Muma M. (2012). Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Processing Magazine 29(4), 61-80. .. [3] P. J. Rousseeuw. Least median of squares regression. Journal of American Statistical Ass., 79:871, 1984. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.covariance import EmpiricalCovariance, MinCovDet # example settings n_samples = 80 n_features = 5 repeat = 10 range_n_outliers = np.concatenate( (np.linspace(0, n_samples / 8, 5), np.linspace(n_samples / 8, n_samples / 2, 5)[1:-1])).astype(int) # definition of arrays to store results err_loc_mcd = np.zeros((range_n_outliers.size, repeat)) err_cov_mcd = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_full = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_full = np.zeros((range_n_outliers.size, repeat)) err_loc_emp_pure = np.zeros((range_n_outliers.size, repeat)) err_cov_emp_pure = np.zeros((range_n_outliers.size, repeat)) # computation for i, n_outliers in enumerate(range_n_outliers): for j in range(repeat): rng = np.random.RandomState(i * j) # generate data X = rng.randn(n_samples, n_features) # add some outliers outliers_index = rng.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (np.random.randint(2, size=(n_outliers, n_features)) - 0.5) X[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False # fit a Minimum Covariance Determinant (MCD) robust estimator to data mcd = MinCovDet().fit(X) # compare raw robust estimates with the true location and covariance err_loc_mcd[i, j] = np.sum(mcd.location_ ** 2) err_cov_mcd[i, j] = mcd.error_norm(np.eye(n_features)) # compare estimators learned from the full data set with true # parameters err_loc_emp_full[i, j] = np.sum(X.mean(0) ** 2) err_cov_emp_full[i, j] = EmpiricalCovariance().fit(X).error_norm( np.eye(n_features)) # compare with an empirical covariance learned from a pure data set # (i.e. "perfect" mcd) pure_X = X[inliers_mask] pure_location = pure_X.mean(0) pure_emp_cov = EmpiricalCovariance().fit(pure_X) err_loc_emp_pure[i, j] = np.sum(pure_location ** 2) err_cov_emp_pure[i, j] = pure_emp_cov.error_norm(np.eye(n_features)) # Display results font_prop = matplotlib.font_manager.FontProperties(size=11) plt.subplot(2, 1, 1) lw = 2 plt.errorbar(range_n_outliers, err_loc_mcd.mean(1), yerr=err_loc_mcd.std(1) / np.sqrt(repeat), label="Robust location", lw=lw, color='m') plt.errorbar(range_n_outliers, err_loc_emp_full.mean(1), yerr=err_loc_emp_full.std(1) / np.sqrt(repeat), label="Full data set mean", lw=lw, color='green') plt.errorbar(range_n_outliers, err_loc_emp_pure.mean(1), yerr=err_loc_emp_pure.std(1) / np.sqrt(repeat), label="Pure data set mean", lw=lw, color='black') plt.title("Influence of outliers on the location estimation") plt.ylabel(r"Error ($||\mu - \hat{\mu}||_2^2$)") plt.legend(loc="upper left", prop=font_prop) plt.subplot(2, 1, 2) x_size = range_n_outliers.size plt.errorbar(range_n_outliers, err_cov_mcd.mean(1), yerr=err_cov_mcd.std(1), label="Robust covariance (mcd)", color='m') plt.errorbar(range_n_outliers[:(x_size // 5 + 1)], err_cov_emp_full.mean(1)[:(x_size // 5 + 1)], yerr=err_cov_emp_full.std(1)[:(x_size // 5 + 1)], label="Full data set empirical covariance", color='green') plt.plot(range_n_outliers[(x_size // 5):(x_size // 2 - 1)], err_cov_emp_full.mean(1)[(x_size // 5):(x_size // 2 - 1)], color='green', ls='--') plt.errorbar(range_n_outliers, err_cov_emp_pure.mean(1), yerr=err_cov_emp_pure.std(1), label="Pure data set empirical covariance", color='black') plt.title("Influence of outliers on the covariance estimation") plt.xlabel("Amount of contamination (%)") plt.ylabel("RMSE") plt.legend(loc="upper center", prop=font_prop) plt.show()
bsd-3-clause
nipunagarwala/cs224s_final_project
code/utils/mvTrainDev.py
1
2719
import os import pickle import shutil import pandas as pd from sklearn.model_selection import train_test_split """ One-time use. Splits data/train/* into data/train/* and data/dev/* at random such that transcripts do not overlap between sets, with an 80-20 split. As part of this, this script revises utteranceInfo.pkl and creates utteranceInfo.pkl. """ with open("data/train/utteranceInfo.pkl", "rb") as f: meta = pickle.load(f) PROB_OF_TRAINING = 0.8 # Transcripts can be used a variable number of times # Iterate over each transcript and the number of times it is used, # and split it and only its instances fairly among train/dev # # What is the distribution of transcript usage in their training dat? #>>> meta["transcript"].value_counts().value_counts() # 1 391 # 3 5 # 4 35 # 5 2 # 6 38 # 16 4 # 17 36 # aka 391 transcripts are used only 1 time, 5 transcripts are used 3 times, ... transcript_uses = meta["transcript"].value_counts() num_uses = transcript_uses.value_counts().index train = [] dev = [] for use_count in num_uses: transcript_values = transcript_uses[transcript_uses == use_count].index t_transcripts, d_transcripts = train_test_split(transcript_values, train_size=PROB_OF_TRAINING, random_state=42) train.append( meta[meta["transcript"].isin(t_transcripts)] ) dev.append( meta[meta["transcript"].isin(d_transcripts)] ) train = pd.concat(train) dev = pd.concat(dev) dev["split"] = "dev" # Move around the results directory = "data/train" newtrain = os.path.join(directory, "newtrain") os.mkdir(newtrain) for i, utterance in train.iterrows(): old_pkl_filename = os.path.join(directory, utterance["label"] + ".pkl") assert( utterance["split"] == "train" ) new_pkl_filename = os.path.join(newtrain, utterance["label"] + ".pkl") os.rename(old_pkl_filename, new_pkl_filename) newdev = os.path.join(directory, "newdev") os.mkdir(newdev) for i, utterance in dev.iterrows(): old_pkl_filename = os.path.join(directory, utterance["label"] + ".pkl") assert( utterance["split"] == "dev" ) new_pkl_filename = os.path.join(newdev, utterance["label"] + ".pkl") os.rename(old_pkl_filename, new_pkl_filename) # Write out the meta info with open(os.path.join(directory, "newtrain", "utteranceInfo.pkl"), "wb") as f: pickle.dump(train, f) with open(os.path.join(directory, "newdev", "utteranceInfo.pkl"), "wb") as f: pickle.dump(dev, f) ############################## # Move things around ############################## os.rename("data/train/newtrain", "data/newtrain") os.rename("data/train/newdev", "data/dev") shutil.rmtree("data/train") os.rename("data/newtrain", "data/train")
mit
linebp/pandas
pandas/errors/__init__.py
3
1640
# flake8: noqa """ expose public exceptions & warnings """ from pandas._libs.tslib import OutOfBoundsDatetime class PerformanceWarning(Warning): """ Warnings shown when there is a possible performance impact. """ class UnsupportedFunctionCall(ValueError): """ If attempting to call a numpy function on a pandas object. For example using ``np.cumsum(groupby_object)``. """ class UnsortedIndexError(KeyError): """ Error raised when attempting to get a slice of a MultiIndex and the index has not been lexsorted. Subclass of `KeyError`. .. versionadded:: 0.20.0 """ class ParserError(ValueError): """ Exception that is thrown by an error is encountered in `pd.read_csv` """ class DtypeWarning(Warning): """ Warning that is raised for a dtype incompatiblity. This is can happen whenever `pd.read_csv` encounters non- uniform dtypes in a column(s) of a given CSV file """ class EmptyDataError(ValueError): """ Exception that is thrown in `pd.read_csv` (by both the C and Python engines) when empty data or header is encountered """ class ParserWarning(Warning): """ Warning that is raised in `pd.read_csv` whenever it is necessary to change parsers (generally from 'c' to 'python') contrary to the one specified by the user due to lack of support or functionality for parsing particular attributes of a CSV file with the requsted engine """ class MergeError(ValueError): """ Error raised when problems arise during merging due to problems with input data. Subclass of `ValueError`. """
bsd-3-clause
BigBigXiong/ML_learning
logic_regression.py
1
2925
# -*- coding: utf-8 -*- """ Created on Fri Aug 25 14:59:24 2017 @author: Austin """ import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from scipy.optimize import minimize from sklearn.preprocessing import PolynomialFeatures import seaborn as sns def loadData(file, delimeter): data = np.loadtxt(file, delimiter=delimeter) print("dims: ", data.shape) print(data[1:6, :]) return(data) def plotData(data, label_x, label_y, label_pos, label_neg, axes=None): neg = data[:, 2] == 0 pos = data[:, 2] == 1 if axes == None: axes = plt.gca() axes.scatter(data[pos][:, 0], data[pos][:, 1], marker='+', c='k', s=60, linewidths=2, label=label_pos) axes.scatter(data[neg][:,0], data[neg][:,1], c='y', s=60, label=label_neg) axes.set_xlabel(label_x) axes.set_ylabel(label_y) axes.legend(frameon= True, fancybox = True) #定义sigmoid函数 def sigmoid(z): return(1 / (1 + np.exp(-z))) #定义损失函数 def costFunction(theta, X, y): m = y.size h = sigmoid(X.dot(theta)) try: J = -1.0*(1.0/m)*(np.log(h).T.dot(y)+np.log(1-h).T.dot(1-y)) except Exception(e): return(np.inf) if np.isnan(J[0]): return(np.inf) return J[0] def gradient(theta, X, y): m = y.size h = sigmoid(X.dot(theta.reshape(-1,1))) grad =(1.0/m)*X.T.dot(h-y) return(grad.flatten()) def predict(theta, X, threshold=0.5): p = sigmoid(X.dot(theta.T)) >= threshold return(p.astype('int')) def main(): data = loadData("data1.txt", ",") X = np.c_[np.ones((data.shape[0],1)), data[:,0:2]] y = np.c_[data[:, 2]] plotData(data, 'Exam 1 score', 'Exam 2 score', 'Pass', 'Fail') initial_theta = np.zeros(X.shape[1]) cost = costFunction(initial_theta, X, y) grad = gradient(initial_theta, X, y) print('Cost: \n', cost) print('Grad: \n', grad) res = minimize(costFunction, initial_theta, args=(X,y), jac=gradient, options={'maxiter':400}) score = sigmoid(np.array([1, 45, 85]).dot(res.x.T)) print(score) plt.scatter(45, 85, s=60, c='r', marker='v', label='(45, 85)') plotData(data, 'Exam 1 score', 'Exam 2 score', 'Admitted', 'Not admitted') x1_min, x1_max = X[:,1].min(), X[:,1].max() x2_min, x2_max = X[:,2].min(), X[:,2].max() xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max)) h = sigmoid(np.c_[np.ones((xx1.ravel().shape[0],1)), xx1.ravel(), xx2.ravel()].dot(res.x)) h = h.reshape(xx1.shape) plt.contour(xx1, xx2, h, [0.5], linewidths=1, colors='b'); if __name__ == '__main__': main()
gpl-3.0
wathen/PhD
MHD/FEniCS/MHD/CG/PicardIter_Direct/precondition/tests/MHD.py
1
14147
#!/usr/bin/python # interpolate scalar gradient onto nedelec space from dolfin import * import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc Print = PETSc.Sys.Print # from MatrixOperations import * import numpy as np #import matplotlib.pylab as plt import PETScIO as IO import common import scipy import scipy.io import time as t import BiLinear as forms import IterOperations as Iter import MatrixOperations as MO import CheckPetsc4py as CP import Solver as S import ExactSol import P as Precond import cProfile, pstats, StringIO m = 4 # m = 2 IterType = "Full" errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,1)) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) TotalWork = [] InnerTolerances = [] nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0]= 1e0 test = [[1e-6,1e-6],[1e-6,1e-5],[1e-6,1e-4],[1e-6,1e-3],[1e-6,1e-6,'Reduce1',2],[1e-6,1e-6,'Reduce1',5],[1e-6,1e-6,'Reduce1',10]] # test = [[1e-6,1e-6],[1e-5,1e-5],[1e-4,1e-4],[1e-3,1e-3]] test = [[1e-6,1e-6],[1e-6,1e-4],[1e-6,1e-2],[1e-6,1e-1]] # test =[[1e-6,1e-1]] MinTol = 1e-3 aa = 0 for kk in xrange(1,len(test)+1): aa += 1 for xx in xrange(1,m): print xx level[xx-1] = xx+3 nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 mesh = RectangleMesh(0, 0, 1, 1, nn, nn,'left') parameters["form_compiler"]["precision"] = 15 parameters["form_compiler"]["quadrature_degree"] = -1 order = 2 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "CG", order-1) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity,Pressure,Magnetic,Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcp = DirichletBC(W.sub(1),p0, boundary) bcb = DirichletBC(W.sub(2),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, p, b, r) = TrialFunctions(W) (v, q, c,s ) = TestFunctions(W) kappa = 100.0 parameters['linear_algebra_backend'] = 'uBLAS' Mu_m =1e1 MU = 1.0 F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,Neumann=Expression(("0","0")),options ="New") p_k.vector()[:]= p_k.vector().array()+np.abs(np.min(p_k.vector().array())) # bcu.apply(u_k) # bcb.apply(b_k) # bcr.apply(r_k) x = Iter.u_prev(u_k,p_k,b_k,r_k) ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType) print CoupleTerm RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params) bcu = DirichletBC(W.sub(0),Expression(("0","0")), boundary) bcb = DirichletBC(W.sub(2),Expression(("0","0")), boundary) bcr = DirichletBC(W.sub(3),Expression(("0")), boundary) bcs = [bcu,bcb,bcr] p = forms.Preconditioner(mesh,W,u_k,b_k,params,IterType) PP,Pb = assemble_system(p, Lns,bcs) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) if IterType == "Full" or IterType == "MD": (pQ) = TrialFunction(Pressure) (qQ) = TestFunction(Pressure) print MU Q = assemble(inner(pQ,qQ)*dx) L = assemble(inner(grad(pQ),grad(qQ))*dx) n = FacetNormal(mesh) fp = MU*inner(grad(qQ), grad(pQ))*dx+inner((u_k[0]*grad(pQ)[0]+u_k[1]*grad(pQ)[1]),qQ)*dx + (1/2)*div(u_k)*inner(pQ,qQ)*dx - (1/2)*(u_k[0]*n[0]+u_k[1]*n[1])*inner(pQ,qQ)*ds L = CP.Assemble(L) if IterType == "CD": AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) P = CP.Assemble(PP) u = b.duplicate() Mits = 0 NSits = 0 time InnerTol = [] OuterTol = [] # MPI.barrier() eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 50 # max no of iterations allowed SolutionTime = 0 outer = 0 parameters['linear_algebra_backend'] = 'uBLAS' TotalStart = t.clock() while eps > tol and iter < maxiter: iter += 1 if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) A,b = CP.Assemble(AA,bb) P = CP.Assemble(PP) print b Mass = 0 L = 0 F = 0 else: # tic() AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) del AA F = assemble(fp) F = CP.Assemble(F) P = CP.Assemble(PP) # P = S.ExactPrecond(PP,Q,L,F,FSpaces) Mass = CP.Assemble(Q) # print "Assemble time >>>>>>",toc() if iter == 1: uu = b.duplicate() else: uu = uu pr = cProfile.Profile() start = t.clock() pr.enable() # if len(test[kk-1]) ==2: OuterTol = test[kk-1][0] InnerTol = test[kk-1][1] print InnerTol print OuterTol u,it1,it2 = S.solve(A,b,uu,P,[NS_is,M_is],FSpaces,IterType,OuterTol,InnerTol,Mass,L,F) # else: # if test[kk-1] == "Reduce": # OuterTol = test[kk-1][0] # InnerTol.append(test[kk-1][1]*((iter)*test[kk-1][3])) # print InnerTol # print OuterTol # u,it1,it2 = S.solve(A,b,uu,P,[NS_is,M_is],FSpaces,IterType,OuterTol,InnerTol[iter-1],Mass,L,F) # else: # OuterTol = test[kk-1][0] # if iter == 1: # InnerTol.append(test[kk-1][1]) # else: # print InnerTol[iter-2] # InnerTol.append(min(MinTol,InnerTol[iter-2]*test[kk-1][3])) # print InnerTol # print OuterTol # u,it1,it2 = S.solve(A,b,uu,P,[NS_is,M_is],FSpaces,IterType,OuterTol,InnerTol[iter-1],Mass,L,F) del A,P # print InnerTol[iter-1] pr.disable() # time = toc() time = (t.clock() - start) s = StringIO.StringIO() print "Solve time >>>>>>", time print it1,it2 NSits += it1 Mits +=it2 SolutionTime = SolutionTime +time # tic() u, p, b, r, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"inf",iter) u_k.assign(u) p_k.assign(p) b_k.assign(b) r_k.assign(r) # print "Correction time >>>>>>", toc() # p_k.vector()[:]= p_k.vector().array()+np.abs(np.min(p_k.vector().array())) x = Iter.u_prev(u_k,p_k,b_k,r_k) print toc() # u_k,b_k,epsu,epsb=Direct.PicardTolerance(x,u_k,b_k,FSpaces,dim,"inf",iter) TotalTime[xx-1] = t.clock()-TotalStart NSave[xx-1] = (float(NSits)/iter) Mave[xx-1] = (float(Mits)/iter) iterations[xx-1] = iter SolTime[xx-1] = SolutionTime/iter ue = u0 pe = p0 be = b0 re = r0 ExactSolution = [ue,pe,be,re] #errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(x,mesh,FSpaces,ExactSolution,order,dim) if xx == 1: l2uorder[xx-1] = 0 else: l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) import pandas as pd # print "\n\n Velocity convergence" # VelocityTitles = ["l","Total DoF","V DoF","Soln Time","V-L2","L2-order","V-H1","H1-order"] # VelocityValues = np.concatenate((level,Wdim,Velocitydim,SolTime,errL2u,l2uorder,errH1u,H1uorder),axis=1) # VelocityTable= pd.DataFrame(VelocityValues, columns = VelocityTitles) # pd.set_option('precision',3) # VelocityTable = MO.PandasFormat(VelocityTable,"V-L2","%2.4e") # VelocityTable = MO.PandasFormat(VelocityTable,'V-H1',"%2.4e") # VelocityTable = MO.PandasFormat(VelocityTable,"H1-order","%1.2f") # VelocityTable = MO.PandasFormat(VelocityTable,'L2-order',"%1.2f") # print VelocityTable.to_latex() # print "\n\n Pressure convergence" # PressureTitles = ["l","Total DoF","P DoF","Soln Time","P-L2","L2-order"] # PressureValues = np.concatenate((level,Wdim,Pressuredim,SolTime,errL2p,l2porder),axis=1) # PressureTable= pd.DataFrame(PressureValues, columns = PressureTitles) # pd.set_option('precision',3) # PressureTable = MO.PandasFormat(PressureTable,"P-L2","%2.4e") # PressureTable = MO.PandasFormat(PressureTable,'L2-order',"%1.2f") # print PressureTable.to_latex() name = "OutputNew8/table"+str(aa) print "\n\n Iteration table" if IterType == "Full": IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av Outer its","Av Inner its",] else: IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av NS iters","Av M iters"] IterValues = np.concatenate((level,Wdim,SolTime,TotalTime,iterations,NSave,Mave),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable,'Av Outer its',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av Inner its',"%2.1f") else: IterTable = MO.PandasFormat(IterTable,'Av NS iters',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av M iters',"%2.1f") print IterTable.to_latex() IterTable.to_csv(name) print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol file = open("OutputNew8/tol"+str(aa)+".txt", "w") file.write("Outer:\n"+str(OuterTol)+"\n\n") file.write("Inner:\n") if len(test[kk-1]) ==2: file.write(str(InnerTol)) else: for s in InnerTol: file.write(str(s)) file.write(str(kappa)+","+str(MU)) print "-------------------------------------------------------\n\n\n\n\n\n\n" # \begin{tabular}{lrrrrrll} # \toprule # {} & l & DoF & AV solve Time & Total picard time & picard iterations & Av Outer its & Av Inner its \\ # \midrule # 0 & 3 & 1620 & 7.568889 & 68.87 & 9 & 245.2 & 3.4 \\ # 1 & 4 & 6180 & 1.267143 & 10.28 & 7 & 96.9 & 2.0 \\ # 2 & 5 & 24132 & 5.147143 & 40.59 & 7 & 107.6 & 2.7 \\ # 3 & 6 & 95364 & 19.560000 & 154.99 & 7 & 94.4 & 2.1 \\ # \bottomrule # \end{tabular} # Outer Tol: 1e-06 Inner Tol: 0.1 # # # if (ShowResultPlots == 'yes'): # plot(u_k) # # plot(interpolate(ue,Velocity)) # plot(p_k) # # pe = interpolate(pe,Pressure) # # pe.vector()[:] -= np.max(pe.vector().array() )/2 # # plot(interpolate(pe,Pressure)) # plot(b_k) # # plot(interpolate(be,Magnetic)) # plot(r_k) # # plot(interpolate(re,Lagrange)) # # # interactive() print kappa, MU # interactive()
mit
sryza/freewaydata
python/clusterstations.py
1
1314
import pandas as pd import loadfreewaydata import sklearn.cluster as cluster import plotonmap import numpy as np #rawdata = loadfreewaydata.load_measurement_data_hour('../d07_text_station_hour_2013_01.txt') freeway_data = loadfreewaydata.load_freeway_metadata('../d07_stations_2012_09_06.txt') def cluster_stations(rawdata, colname, filename): times = rawdata['timestamp'].unique() speeds_by_station = {g[0]:g[1][colname] for g in rawdata.groupby('station')} for station_speeds in speeds_by_station.values(): station_speeds.index = times # rows are stations, columns are times station_mat = pd.DataFrame(data=speeds_by_station).transpose() # filter out stations with no data station_mat = station_mat[station_mat.count(axis=1) == 744] # TODO: replace 744 with num columns # do the clustering num_clusters = 5 kmeans = cluster.KMeans(n_clusters = num_clusters) kmeans.fit(station_mat) colors = np.linspace(0, 1, num_clusters) station_colors = {station_mat.index[i]:colors[kmeans.labels_[i]] for i in range(len(station_mat.index))} plotonmap.plot_on_map(station_colors, freeway_data, '../html/showfreeways.html.template', filename) # cluster_stations(rawdata, 'avgspeed', '../speedclusters.html') # cluster_stations(rawdata, 'totalflow', '../flowclusters.html')
apache-2.0
levelrf/level_basestation
gr-filter/examples/decimate.py
13
5841
#!/usr/bin/env python # # Copyright 2009,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import filter import sys, time try: import scipy from scipy import fftpack except ImportError: print "Error: Program requires scipy (see: www.scipy.org)." sys.exit(1) try: import pylab from pylab import mlab except ImportError: print "Error: Program requires matplotlib (see: matplotlib.sourceforge.net)." sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 10000000 # number of samples to use self._fs = 10000 # initial sampling rate self._decim = 20 # Decimation rate # Generate the prototype filter taps for the decimators with a 200 Hz bandwidth self._taps = filter.firdes.low_pass_2(1, self._fs, 200, 150, attenuation_dB=120, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._decim)) print "Number of taps: ", len(self._taps) print "Number of filters: ", self._decim print "Taps per channel: ", tpc # Build the input signal source # We create a list of freqs, and a sine wave is generated and added to the source # for each one of these frequencies. self.signals = list() self.add = gr.add_cc() freqs = [10, 20, 2040] for i in xrange(len(freqs)): self.signals.append(gr.sig_source_c(self._fs, gr.GR_SIN_WAVE, freqs[i], 1)) self.connect(self.signals[i], (self.add,i)) self.head = gr.head(gr.sizeof_gr_complex, self._N) # Construct a PFB decimator filter self.pfb = filter.pfb.decimator_ccf(self._decim, self._taps, 0) # Construct a standard FIR decimating filter self.dec = filter.fir_filter_ccf(self._decim, self._taps) self.snk_i = gr.vector_sink_c() # Connect the blocks self.connect(self.add, self.head, self.pfb) self.connect(self.add, self.snk_i) # Create the sink for the decimated siganl self.snk = gr.vector_sink_c() self.connect(self.pfb, self.snk) def main(): tb = pfb_top_block() tstart = time.time() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig1 = pylab.figure(1, figsize=(16,9)) fig2 = pylab.figure(2, figsize=(16,9)) Ns = 10000 Ne = 10000 fftlen = 8192 winfunc = scipy.blackman fs = tb._fs # Plot the input to the decimator d = tb.snk_i.data()[Ns:Ns+Ne] sp1_f = fig1.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) p1_f = sp1_f.plot(f_in, X_in, "b") sp1_f.set_xlim([min(f_in), max(f_in)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title("Input Signal", weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) sp1_t = fig1.add_subplot(2, 1, 2) p1_t = sp1_t.plot(t_in, x_in.real, "b") p1_t = sp1_t.plot(t_in, x_in.imag, "r") sp1_t.set_ylim([-tb._decim*1.1, tb._decim*1.1]) sp1_t.set_xlabel("Time (s)") sp1_t.set_ylabel("Amplitude") # Plot the output of the decimator fs_o = tb._fs / tb._decim sp2_f = fig2.add_subplot(2, 1, 1) d = tb.snk.data()[Ns:Ns+Ne] X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_o = scipy.arange(-fs_o/2.0, fs_o/2.0, fs_o/float(X_o.size)) p2_f = sp2_f.plot(f_o, X_o, "b") sp2_f.set_xlim([min(f_o), max(f_o)+1]) sp2_f.set_ylim([-200.0, 50.0]) sp2_f.set_title("PFB Decimated Signal", weight="bold") sp2_f.set_xlabel("Frequency (Hz)") sp2_f.set_ylabel("Power (dBW)") Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_t = fig2.add_subplot(2, 1, 2) p2_t = sp2_t.plot(t_o, x_o.real, "b-o") p2_t = sp2_t.plot(t_o, x_o.imag, "r-o") sp2_t.set_ylim([-2.5, 2.5]) sp2_t.set_xlabel("Time (s)") sp2_t.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
ajaybhat/scikit-image
doc/examples/segmentation/plot_otsu.py
10
1209
""" ============ Thresholding ============ Thresholding is used to create a binary image. This example uses Otsu's method to calculate the threshold value. Otsu's method calculates an "optimal" threshold (marked by a red line in the histogram below) by maximizing the variance between two classes of pixels, which are separated by the threshold. Equivalently, this threshold minimizes the intra-class variance. .. [1] http://en.wikipedia.org/wiki/Otsu's_method """ import matplotlib import matplotlib.pyplot as plt from skimage.data import camera from skimage.filters import threshold_otsu matplotlib.rcParams['font.size'] = 9 image = camera() thresh = threshold_otsu(image) binary = image > thresh #fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(8, 2.5)) fig = plt.figure(figsize=(8, 2.5)) ax1 = plt.subplot(1, 3, 1, adjustable='box-forced') ax2 = plt.subplot(1, 3, 2) ax3 = plt.subplot(1, 3, 3, sharex=ax1, sharey=ax1, adjustable='box-forced') ax1.imshow(image, cmap=plt.cm.gray) ax1.set_title('Original') ax1.axis('off') ax2.hist(image) ax2.set_title('Histogram') ax2.axvline(thresh, color='r') ax3.imshow(binary, cmap=plt.cm.gray) ax3.set_title('Thresholded') ax3.axis('off') plt.show()
bsd-3-clause
fspaolo/scikit-learn
sklearn/manifold/tests/test_locally_linear.py
9
4822
from itertools import product import numpy as np from nose.tools import assert_true from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import neighbors, manifold from sklearn.manifold.locally_linear import barycenter_kneighbors_graph from sklearn.utils.testing import assert_less eigen_solvers = ['dense', 'arpack'] #---------------------------------------------------------------------- # Test utility routines def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = barycenter_kneighbors_graph(X, 1) assert_array_almost_equal( A.todense(), [[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]]) A = barycenter_kneighbors_graph(X, 2) # check that columns sum to one assert_array_almost_equal(np.sum(A.todense(), 1), np.ones((3, 1))) pred = np.dot(A.todense(), X) assert_less(np.linalg.norm(pred - X) / X.shape[0], 1) #---------------------------------------------------------------------- # Test LLE by computing the reconstruction error on some manifolds. def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 2 because the tests pass. rng = np.random.RandomState(2) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 clf = manifold.LocallyLinearEmbedding(n_neighbors=5, n_components=n_components, random_state=rng) tol = 0.1 N = barycenter_kneighbors_graph(X, clf.n_neighbors).todense() reconstruction_error = np.linalg.norm(np.dot(N, X) - X, 'fro') assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert_less(reconstruction_error, tol) assert_almost_equal(clf.reconstruction_error_, reconstruction_error, decimal=1) # re-embed a noisy version of X using the transform method noise = rng.randn(*X.shape) / 100 X_reembedded = clf.transform(X + noise) assert_less(np.linalg.norm(X_reembedded - clf.embedding_), tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(20), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 20] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 for method in ["standard", "hessian", "modified", "ltsa"]: clf = manifold.LocallyLinearEmbedding(n_neighbors=6, n_components=n_components, method=method, random_state=0) tol = 1.5 if method == "standard" else 3 N = barycenter_kneighbors_graph(X, clf.n_neighbors).toarray() reconstruction_error = np.linalg.norm(np.dot(N, X) - X) assert_less(reconstruction_error, tol) for solver in eigen_solvers: clf.set_params(eigen_solver=solver) clf.fit(X) assert_true(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 details = ("solver: %s, method: %s" % (solver, method)) assert_less(reconstruction_error, tol, msg=details) assert_less(np.abs(clf.reconstruction_error_ - reconstruction_error), tol * reconstruction_error, msg=details) def test_pipeline(): # check that LocallyLinearEmbedding works fine as a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful from sklearn import pipeline, datasets X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('filter', manifold.LocallyLinearEmbedding(random_state=0)), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y)) # Test the error raised when the weight matrix is singular def test_singular_matrix(): import warnings from nose.tools import assert_raises M = np.ones((10, 3)) with warnings.catch_warnings(record=True): assert_raises(ValueError, manifold.locally_linear_embedding, M, 2, 1, method='standard', eigen_solver='arpack') if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
youprofit/scikit-image
skimage/io/tests/test_plugin.py
24
3393
from contextlib import contextmanager from numpy.testing import assert_equal, raises from skimage import io from skimage.io import manage_plugins io.use_plugin('pil') priority_plugin = 'pil' def setup_module(): manage_plugins.use_plugin('test') # see ../_plugins/test_plugin.py def teardown_module(): io.reset_plugins() @contextmanager def protect_preferred_plugins(): """Contexts where `preferred_plugins` can be modified w/o side-effects.""" preferred_plugins = manage_plugins.preferred_plugins.copy() try: yield finally: manage_plugins.preferred_plugins = preferred_plugins def test_read(): io.imread('test.png', as_grey=True, dtype='i4', plugin='test') def test_save(): io.imsave('test.png', [1, 2, 3], plugin='test') def test_show(): io.imshow([1, 2, 3], plugin_arg=(1, 2), plugin='test') def test_collection(): io.imread_collection('*.png', conserve_memory=False, plugin='test') def test_use(): manage_plugins.use_plugin('test') manage_plugins.use_plugin('test', 'imshow') @raises(ValueError) def test_failed_use(): manage_plugins.use_plugin('asd') def test_use_priority(): manage_plugins.use_plugin(priority_plugin) plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, priority_plugin) manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') def test_use_priority_with_func(): manage_plugins.use_plugin('pil') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test', 'imread') plug, func = manage_plugins.plugin_store['imread'][0] assert_equal(plug, 'test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'pil') manage_plugins.use_plugin('test') plug, func = manage_plugins.plugin_store['imsave'][0] assert_equal(plug, 'test') def test_plugin_order(): p = io.plugin_order() assert 'imread' in p assert 'test' in p['imread'] def test_available(): assert 'qt' in io.available_plugins assert 'test' in io.find_available_plugins(loaded=True) def test_load_preferred_plugins_all(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins = {'all': ['pil'], 'imshow': ['matplotlib']} manage_plugins.reset_plugins() for plugin_type in ('imread', 'imsave'): plug, func = manage_plugins.plugin_store[plugin_type][0] assert func == getattr(pil_plugin, plugin_type) plug, func = manage_plugins.plugin_store['imshow'][0] assert func == getattr(matplotlib_plugin, 'imshow') def test_load_preferred_plugins_imread(): from skimage.io._plugins import pil_plugin, matplotlib_plugin with protect_preferred_plugins(): manage_plugins.preferred_plugins['imread'] = ['pil'] manage_plugins.reset_plugins() plug, func = manage_plugins.plugin_store['imread'][0] assert func == pil_plugin.imread plug, func = manage_plugins.plugin_store['imshow'][0] assert func == matplotlib_plugin.imshow, func.__module__ if __name__ == "__main__": from numpy.testing import run_module_suite run_module_suite()
bsd-3-clause
NetEaseGame/AutomatorX
scripts/image.py
6
3198
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'hzsunshx' #import numpy as np import cv2 #from matplotlib import pyplot as plt MIN_MATCH_COUNT = 8 def _middlePoint(pts): def add(p1, p2): return (p1[0]+p2[0], p1[1]+p2[1]) def distance(p1, p2): import math l2 = (p1[0]-p2[0])*(p1[0]-p2[0]) + (p1[1]-p2[1])*(p1[1]-p2[1]) return math.sqrt(l2) # debug for p in pts: print 'Point:', p.pt length = len(pts) sumx, sumy = reduce(add, [p.pt for p in pts]) point = sumx/length, sumy/length print 'step1: result=', point # filter out ok points avg_distance = sum([distance(point, p.pt) for p in pts])/length print 'avg distance=', avg_distance good = [] sumx, sumy = 0.0, 0.0 for p in pts: print 'point: %s, distance: %.2f' %(p.pt, distance(p.pt, point)) if distance(p.pt, point) < 1.2*avg_distance: good.append(p.pt) sumx += p.pt[0] sumy += p.pt[1] else: print 'not good', p.pt print 'step1: result=', point point = map(long, (sumx/len(good), sumy/len(good))) print 'step2: point=', point return point def find_image_position(origin='origin.png', query='query.png', outfile=None): ''' find all image positions @return None if not found else a tuple: (origin.shape, query.shape, postions) might raise Exception ''' img1 = cv2.imread(query, 0) # query image(small) img2 = cv2.imread(origin, 0) # train image(big) # Initiate SIFT detector sift = cv2.SIFT() # find the keypoints and descriptors with SIFT kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) print len(kp1), len(kp2) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 50) # flann flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # store all the good matches as per Lowe's ratio test. good = [] for m,n in matches: if m.distance < 0.7*n.distance: good.append(m) print len(kp1), len(kp2), 'good cnt:', len(good) if len(good)*1.0/len(kp1) < 0.5: #if len(good)<MIN_MATCH_COUNT: print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT) return img2.shape, img1.shape, [] queryPts = [] trainPts = [] for dm in good: queryPts.append(kp1[dm.queryIdx]) trainPts.append(kp2[dm.trainIdx]) img3 = cv2.drawKeypoints(img1, queryPts) cv2.imwrite('image/query.png', img3) img3 = cv2.drawKeypoints(img2, trainPts) point = _middlePoint(trainPts) print 'position in', point if outfile: edge = 10 top_left = (point[0]-edge, point[1]-edge) bottom_right = (point[0]+edge, point[1]+edge) cv2.rectangle(img3, top_left, bottom_right, 255, 2) cv2.imwrite(outfile, img3) return img2.shape, img1.shape, [point] if __name__ == '__main__': pts = find_image_position('image/mule.png', 'image/template.png', outfile='image/train.png') print pts
apache-2.0
jamesliu/mxnet
example/deep-embedded-clustering/data.py
16
1384
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=missing-docstring from __future__ import print_function import os import numpy as np from sklearn.datasets import fetch_mldata def get_mnist(): """ Gets MNIST dataset """ np.random.seed(1234) # set seed for deterministic ordering data_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) data_path = os.path.join(data_path, '../../data') mnist = fetch_mldata('MNIST original', data_home=data_path) p = np.random.permutation(mnist.data.shape[0]) X = mnist.data[p].astype(np.float32)*0.02 Y = mnist.target[p] return X, Y
apache-2.0
rrohan/scikit-learn
doc/conf.py
210
8446
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2014, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
rickyhan83/ml_kaggle
Digit Recognizer/plot_numbers.py
1
1048
import pandas as pd import numpy as np import matplotlib.pyplot as plt trains = pd.read_csv("train.csv") Y = trains['label'] del trains['label'] X_datasarr = trains.as_matrix() X_norm = X_datasarr > 0 X = X_norm.astype(int) ones = [] for i in range(len(Y)): if Y[i] == 4: ones.append(i) fig = plt.figure() for index in range(25): #fig, ax = plt.subplots() ax = fig.add_subplot(5,5,index+1) data = X[ones[index]] digit = np.zeros((28,28),dtype=int) xlist = [] ylist = [] col = 28 row = 28 for i in range(row): for j in range(col): if data.item(i * 28 + j)==1: digit [i][j] = data.item(i * 28 + j) data = np.rot90(digit,k=3) for i in range(row): for j in range(col): if data.item(i * 28 + j)==1: xlist.append(i) ylist.append(j) ax.set_xlim([0,28]) ax.set_ylim([0,28]) plt.scatter(xlist,ylist, marker = 'x')
apache-2.0
phoebe-project/phoebe2-docs
2.1/tutorials/RV.py
1
4824
#!/usr/bin/env python # coding: utf-8 # 'rv' Datasets and Options # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.1 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.1,<2.2"') # As always, let's do imports and initialize a logger and a new Bundle. See [Building a System](building_a_system.html) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() # Dataset Parameters # -------------------------- # # Let's add an RV dataset to the Bundle. # In[3]: b.add_dataset('rv') print b.filter(kind='rv') # In[4]: print b.filter(kind='rv_dep') # For information on these passband-dependent parameters, see the section on the [lc dataset](LC) (these are used only to compute fluxes when rv_method=='flux-weighted') # ### times # In[5]: print b['times'] # ### rvs # In[6]: print b['rvs'] # ### sigmas # In[7]: print b['sigmas'] # Compute Options # ------------------ # # Let's look at the compute options (for the default PHOEBE 2 backend) that relate to the RV dataset. # # Other compute options are covered elsewhere: # * parameters related to dynamics are explained in the section on the [orb dataset](ORB) # * parameters related to meshing, eclipse detection, and subdivision (used if rv_method=='flux-weighted') are explained in the section on the [mesh dataset](MESH) # * parameters related to computing fluxes (used if rv_method=='flux-weighted') are explained in the section on the [lc dataset](LC) # In[8]: print b['compute'] # ### rv_method # In[9]: print b['rv_method'] # If rv_method is set to 'dynamical' then the computed radial velocities are simply the z-velocities of the centers of mass of each component. In this case, only the dynamical options are relevant. For more details on these, see the section on the [orb dataset](ORB). # # If rv_method is set to 'flux-weighted' then radial velocities are determined by the z-velocity of each visible surface element of the mesh, weighted by their respective intensities. Since the stars are placed in their orbits by the dynamic options, the section on the [orb dataset](ORB) is still applicable. So are the meshing options described in [mesh dataset](MESH) and the options for computing fluxes in [lc dataset](LC). # ### rv_grav # In[10]: print b['rv_grav'] # See the [Gravitational Redshift Example Script](../examples/grav_redshift) for more details on the influence this parameter has on radial velocities. # Synthetics # ------------------ # In[11]: b.set_value_all('times', np.linspace(0,1,101)) # In[12]: b.run_compute(irrad_method='none') # In[13]: b['rv@model'].twigs # In[14]: print b['times@primary@rv@model'] # In[15]: print b['rvs@primary@rv@model'] # Plotting # --------------- # # By default, RV datasets plot as 'rvs' vs 'times'. # In[16]: afig, mplfig = b['rv@model'].plot(show=True) # Since these are the only two columns available in the synthetic model, the only other options is to plot in phase instead of time. # In[17]: afig, mplfig = b['rv@model'].plot(x='phases', show=True) # In system hierarchies where there may be multiple periods, it is also possible to determine whose period to use for phasing. # In[18]: b['period'].components # In[19]: afig, mplfig = b['rv@model'].plot(x='phases:binary', show=True) # Mesh Fields # --------------------- # # # By adding a mesh dataset and setting the columns parameter, radial velocities per-element quantities can be exposed and plotted. Since the radial velocities are flux-weighted, the flux-related quantities are also included. For a description of these, see the section on the [lc dataset](LC). # # Let's add a mesh at the first time of the rv dataset and re-call run_compute # In[20]: b.add_dataset('mesh', times=[0], dataset='mesh01') # In[21]: print b['columns'].choices # In[22]: b['columns'] = ['rvs@rv01'] # In[23]: b.run_compute(irrad_method='none') # In[24]: print b['model'].datasets # These new columns are stored with the rv's dataset tag, but with the mesh model-kind. # In[25]: b.filter(dataset='rv01', kind='mesh', context='model').twigs # Any of these columns are then available to use as edge or facecolors when plotting the mesh (see the section on the [MESH dataset](MESH)). # In[26]: afig, mplfig = b['mesh01@model'].plot(fc='rvs', ec='None', show=True) # ### rvs # In[27]: print b['rvs@primary@rv01@mesh@model']
gpl-3.0
acq4/acq4
acq4/analysis/modules/IVCurve/IVCurve.py
3
89452
# -*- coding: utf-8 -*- from __future__ import print_function """ IVCurve: Analysis module that analyzes current-voltage and firing relationships from current clamp data. This is part of Acq4 Paul B. Manis, Ph.D. 2011-2013. Pep8 compliant (via pep8.py) 10/25/2013 Refactoring begun 3/21/2015 """ from collections import OrderedDict import os import os.path # import traceback import itertools import functools # import gc import numpy as np import scipy from acq4.util import Qt # from acq4.util import DataManager from acq4.analysis.AnalysisModule import AnalysisModule import acq4.pyqtgraph as pg # from acq4.pyqtgraph import configfile # from acq4.util.metaarray import MetaArray import acq4.util.matplotlibexporter as matplotlibexporter import acq4.analysis.tools.Utility as Utility # pbm's utilities... import acq4.analysis.tools.Fitting as Fitting # pbm's fitting stuff... import acq4.analysis.tools.ScriptProcessor as ScriptProcessor from . import ctrlTemplate import pprint import time # noinspection PyPep8 class IVCurve(AnalysisModule): """ IVCurve is an Analysis Module for Acq4. IVCurve performs analyses of current-voltage relationships in electrophysiology experiments. The module is interactive, and is primarily designed to allow a preliminary examination of data collected in current clamp and voltage clamp. Results analyzed include: Resting potential (average RMP through the episodes in the protocol). Input resistance (maximum slope if IV relationship below Vrest) Cell time constant (single exponential fit) Ih Sag amplitude and tau Spike rate as a function of injected current Interspike interval as a function of time for each current level RMP as a function of time through the protocol """ def __init__(self, host): AnalysisModule.__init__(self, host) self.Clamps = self.dataModel.GetClamps() # access the "GetClamps" class for reading data self.data_template = ( OrderedDict([('Species', (12, '{:>12s}')), ('Age', (5, '{:>5s}')), ('Sex', (3, '{:>3s}')), ('Weight', (6, '{:>6s}')), ('Temperature', (10, '{:>10s}')), ('ElapsedTime', (11, '{:>11.2f}')), ('RMP', (5, '{:>5.1f}')), ('Rin', (5, '{:>5.1f}')), ('Bridge', (5, '{:>5.1f}')), ('tau', (5, '{:>5.1f}')), ('AdaptRatio', (9, '{:>9.3f}')), ('tauh', (5, '{:>5.1f}')), ('Gh', (6, '{:>6.2f}')), ('FiringRate', (12, '{:>9.1f}')), ('AP1_HalfWidth', (13, '{:>13.2f}')), ('AP1_Latency', (11, '{:>11.1f}')), ('AP2_HalfWidth', (13, '{:>13.2f}')), ('AP2_Latency', (11, '{:>11.1f}')), ('AHP_Depth', (9, '{:9.2f}')), ('Description', (11, '{:s}')), ])) self.Script = ScriptProcessor.ScriptProcessor(host) self.Script.setAnalysis(analysis=self.updateAnalysis, fileloader = self.loadFileRequested, template = self.data_template, clamps = self.Clamps, printer=self.printAnalysis, dbupdate=self.dbStoreClicked) # specify the routines to be called and data sets to be used self.loaded = None self.filename = None self.dirsSet = None self.lrss_flag = True # show is default self.lrpk_flag = True self.rmp_flag = True self.bridgeCorrection = None # bridge correction in Mohm. self.showFISI = True # show FISI or ISI as a function of spike number (when False) self.lrtau_flag = False self.regions_exist = False self.tauh_fits = {} self.tauh_fitted = {} self.tau_fits = {} self.tau_fitted = {} self.regions_exist = False self.regions = {} self.analysis_summary = {} self.tx = None self.keep_analysis_count = 0 self.dataMarkers = [] self.doUpdates = True self.colors = ['w', 'g', 'b', 'r', 'y', 'c'] self.symbols = ['o', 's', 't', 'd', '+'] self.color_list = itertools.cycle(self.colors) self.symbol_list = itertools.cycle(self.symbols) self.script_header = False self.Clamps.data_mode = 'IC' # analysis depends on the type of data we have. self.clear_results() # --------------graphical elements----------------- self._sizeHint = (1280, 900) # try to establish size of window self.ctrlWidget = Qt.QWidget() self.ctrl = ctrlTemplate.Ui_Form() self.ctrl.setupUi(self.ctrlWidget) self.main_layout = pg.GraphicsView() # instead of GraphicsScene? # make fixed widget for the module output self.widget = Qt.QWidget() self.gridLayout = Qt.QGridLayout() self.widget.setLayout(self.gridLayout) self.gridLayout.setContentsMargins(4, 4, 4, 4) self.gridLayout.setSpacing(1) # Setup basic GUI self._elements_ = OrderedDict([ ('File Loader', {'type': 'fileInput', 'size': (170, 50), 'host': self}), ('Parameters', {'type': 'ctrl', 'object': self.ctrlWidget, 'host': self, 'size': (160, 700)}), ('Plots', {'type': 'ctrl', 'object': self.widget, 'pos': ('right',), 'size': (400, 700)}), ]) self.initializeElements() self.file_loader_instance = self.getElement('File Loader', create=True) # grab input form the "Ctrl" window self.ctrl.IVCurve_Update.clicked.connect(self.updateAnalysis) self.ctrl.IVCurve_PrintResults.clicked.connect( functools.partial(self.printAnalysis, printnow=True, script_header=True)) if not matplotlibexporter.HAVE_MPL: self.ctrl.IVCurve_MPLExport.setEnabled = False # make button inactive # self.ctrl.IVCurve_MPLExport.clicked.connect(self.matplotlibExport) else: self.ctrl.IVCurve_MPLExport.clicked.connect( functools.partial(matplotlibexporter.matplotlibExport, gridlayout=self.gridLayout, title=self.filename)) self.ctrl.IVCurve_KeepAnalysis.clicked.connect(self.resetKeepAnalysis) self.ctrl.IVCurve_getFileInfo.clicked.connect(self.get_file_information) [self.ctrl.IVCurve_RMPMode.currentIndexChanged.connect(x) for x in [self.update_rmpAnalysis, self.analyzeSpikes]] self.ctrl.IVCurve_FISI_ISI_button.clicked.connect(self.displayFISI_ISI) self.ctrl.dbStoreBtn.clicked.connect(self.dbStoreClicked) self.ctrl.IVCurve_OpenScript_Btn.clicked.connect(self.read_script) self.ctrl.IVCurve_RunScript_Btn.clicked.connect(self.rerun_script) self.ctrl.IVCurve_PrintScript_Btn.clicked.connect(self.Script.print_script_output) #self.scripts_form.PSPReversal_ScriptCopy_Btn.clicked.connect(self.copy_script_output) #self.scripts_form.PSPReversal_ScriptFormatted_Btn.clicked.connect(self.print_formatted_script_output) self.ctrl.IVCurve_ScriptName.setText('None') self.layout = self.getElement('Plots', create=True) # instantiate the graphs using a gridLayout (also facilitates matplotlib export; see export routine below) self.data_plot = pg.PlotWidget() self.gridLayout.addWidget(self.data_plot, 0, 0, 3, 1) self.label_up(self.data_plot, 'T (s)', 'V (V)', 'Data') self.cmd_plot = pg.PlotWidget() self.gridLayout.addWidget(self.cmd_plot, 3, 0, 1, 1) self.label_up(self.cmd_plot, 'T (s)', 'I (A)', 'Command') self.RMP_plot = pg.PlotWidget() self.gridLayout.addWidget(self.RMP_plot, 1, 1, 1, 1) self.label_up(self.RMP_plot, 'T (s)', 'V (mV)', 'RMP') self.fiPlot = pg.PlotWidget() self.gridLayout.addWidget(self.fiPlot, 2, 1, 1, 1) self.label_up(self.fiPlot, 'I (pA)', 'Spikes (#)', 'F-I') self.fslPlot = pg.PlotWidget() self.gridLayout.addWidget(self.fslPlot, 3, 1, 1, 1) self.label_up(self.fslPlot, 'I (pA)', 'Fsl/Fisi (ms)', 'FSL/FISI') self.IV_plot = pg.PlotWidget() self.gridLayout.addWidget(self.IV_plot, 0, 1, 1, 1) self.label_up(self.IV_plot, 'I (pA)', 'V (V)', 'I-V') for row, s in enumerate([20, 10, 10, 10]): self.gridLayout.setRowStretch(row, s) # self.tailPlot = pg.PlotWidget() # self.gridLayout.addWidget(self.fslPlot, 3, 1, 1, 1) # self.label_up(self.tailPlot, 'V (V)', 'I (A)', 'Tail Current') # Add a color scale self.color_scale = pg.GradientLegend((20, 150), (-10, -10)) self.data_plot.scene().addItem(self.color_scale) self.ctrl.pushButton.clicked.connect(functools.partial(self.initialize_regions, reset=True)) def clear_results(self): """ Clear results resets variables. This is typically needed every time a new data set is loaded. """ self.filename = '' self.r_in = 0.0 self.tau = 0.0 self.adapt_ratio = 0.0 self.spikes_counted = False self.nospk = [] self.spk = [] self.Sequence = '' self.ivss = [] # steady-state IV (window 2) self.ivpk = [] # peak IV (window 1) self.fsl = [] # first spike latency self.fisi = [] # first isi self.rmp = [] # resting membrane potential during sequence self.analysis_summary = {} self.script_header = True def resetKeepAnalysis(self): self.keep_analysis_count = 0 # reset counter. def show_or_hide(self, lrregion='', forcestate=None): """ Show or hide specific regions in the display Parameters ---------- lrregion : str, default: '' name of the region('lrwin0', etc) forcestate : None or Boolean, default: None Set True to force the show status, False to Hide. If forcestate is None, then uses the region's 'shstate' value to set the state. Returns ------- nothing """ if lrregion == '': print('PSPReversal:show_or_hide:: lrregion is {:<s}'.format(lrregion)) return region = self.regions[lrregion] if forcestate is not None: if forcestate: region['region'].show() region['state'].setChecked(Qt.Qt.Checked) region['shstate'] = True else: region['region'].hide() region['state'].setChecked(Qt.Qt.Unchecked) region['shstate'] = False else: if not region['shstate']: region['region'].show() region['state'].setChecked(Qt.Qt.Checked) region['shstate'] = True else: region['region'].hide() region['state'].setChecked(Qt.Qt.Unchecked) region['shstate'] = False def displayFISI_ISI(self): """ Control display of first interspike interval/first spike latency versus ISI over time. """ if self.showFISI: # currently showin FISI/FSL; switch to ISI over time self.showFISI = False else: self.showFISI = True self.update_SpikePlots() def initialize_regions(self, reset=False): """ initialize_regions sets the linear regions on the displayed data Here we create the analysis regions in the plot. However, this should NOT happen until the plot has been created Note the the information about each region is held in a dictionary, which for each region has a dictionary that accesses the UI and class methods for that region. This later simplifies the code and reduces repetitive sections. """ # hold all the linear regions in a dictionary if not self.regions_exist: self.regions['lrleak'] = {'name': 'leak', # use a "leak" window 'region': pg.LinearRegionItem([0, 1], orientation=pg.LinearRegionItem.Horizontal, brush=pg.mkBrush(255, 255, 0, 50.)), 'plot': self.cmd_plot, 'state': self.ctrl.IVCurve_subLeak, 'shstate': False, # keep internal copy of the state 'mode': self.ctrl.IVCurve_subLeak.isChecked(), 'start': self.ctrl.IVCurve_LeakMin, 'stop': self.ctrl.IVCurve_LeakMax, 'updater': self.updateAnalysis, 'units': 'pA'} self.ctrl.IVCurve_subLeak.region = self.regions['lrleak']['region'] # save region with checkbox self.regions['lrwin0'] = {'name': 'win0', # peak window 'region': pg.LinearRegionItem([0, 1], brush=pg.mkBrush(128, 128, 128, 50.)), 'plot': self.data_plot, 'state': self.ctrl.IVCurve_showHide_lrpk, 'shstate': True, # keep internal copy of the state 'mode': None, 'start': self.ctrl.IVCurve_pkTStart, 'stop': self.ctrl.IVCurve_pkTStop, 'updater': self.updateAnalysis, 'units': 'ms'} self.ctrl.IVCurve_showHide_lrpk.region = self.regions['lrwin0']['region'] # save region with checkbox self.regions['lrwin1'] = {'name': 'win2', # ss window 'region': pg.LinearRegionItem([0, 1], brush=pg.mkBrush(0, 0, 255, 50.)), 'plot': self.data_plot, 'state': self.ctrl.IVCurve_showHide_lrss, 'shstate': True, # keep internal copy of the state 'mode': None, 'start': self.ctrl.IVCurve_ssTStart, 'stop': self.ctrl.IVCurve_ssTStop, 'updater': self.updateAnalysis, 'units': 'ms'} self.ctrl.IVCurve_showHide_lrss.region = self.regions['lrwin1']['region'] # save region with checkbox # self.lrtau = pg.LinearRegionItem([0, 1], # brush=pg.mkBrush(255, 0, 0, 50.)) self.regions['lrrmp'] = {'name': 'rmp', 'region': pg.LinearRegionItem([0, 1], brush=pg.mkBrush (255, 255, 0, 25.)), 'plot': self.data_plot, 'state': self.ctrl.IVCurve_showHide_lrrmp, 'shstate': True, # keep internal copy of the state 'mode': None, 'start': self.ctrl.IVCurve_rmpTStart, 'stop': self.ctrl.IVCurve_rmpTStop, 'updater': self.update_rmpAnalysis, 'units': 'ms'} self.ctrl.IVCurve_showHide_lrrmp.region = self.regions['lrrmp']['region'] # save region with checkbox # establish that measurement is on top, exclusion is next, and reference is on bottom self.regions['lrtau'] = {'name': 'tau', 'region': pg.LinearRegionItem([0, 1], brush=pg.mkBrush (255, 255, 0, 25.)), 'plot': self.data_plot, 'state': self.ctrl.IVCurve_showHide_lrtau, 'shstate': False, # keep internal copy of the state 'mode': None, 'start': self.ctrl.IVCurve_tau2TStart, 'stop': self.ctrl.IVCurve_tau2TStop, 'updater': self.update_Tauh, 'units': 'ms'} self.ctrl.IVCurve_showHide_lrtau.region = self.regions['lrtau']['region'] # save region with checkbox self.regions['lrwin0']['region'].setZValue(500) self.regions['lrwin1']['region'].setZValue(100) self.regions['lrtau']['region'].setZValue(1000) self.regions['lrrmp']['region'].setZValue(1000) self.regions['lrleak']['region'].setZValue(1000) for regkey, reg in self.regions.items(): # initialize region states self.show_or_hide(lrregion=regkey, forcestate=reg['shstate']) for regkey, reg in self.regions.items(): reg['plot'].addItem(reg['region']) reg['state'].clicked.connect(functools.partial(self.show_or_hide, lrregion=regkey)) if reg['updater'] is not None: reg['region'].sigRegionChangeFinished.connect( functools.partial(reg['updater'], region=reg['name'])) # if self.regions[reg]['mode'] is not None: # self.regions[reg]['mode'].currentIndexChanged.connect(self.interactive_analysis) if reset: for regkey, reg in self.regions.items(): # initialize region states self.show_or_hide(lrregion=regkey, forcestate=reg['shstate']) for reg in self.regions.values(): for s in ['start', 'stop']: reg[s].setSuffix(' ' + reg['units']) self.regions_exist = True def get_file_information(self, default_dh=None): """ get_file_information reads the sequence information from the currently selected data file Two-dimensional sequences are supported. Parameter --------- default_dh : data handle, default None the data handle to use to access the file information Return ------ nothing: """ if default_dh is None: dh = self.file_loader_instance.selectedFiles() else: dh = default_dh if not dh or len(dh) == 0: # when using scripts, the fileloader may not know.. return dh = dh[0] # only the first file sequence = self.dataModel.listSequenceParams(dh) keys = list(sequence.keys()) leftseq = [str(x) for x in sequence[keys[0]]] if len(keys) > 1: rightseq = [str(x) for x in sequence[keys[1]]] else: rightseq = [] leftseq.insert(0, 'All') rightseq.insert(0, 'All') ### specific to our program - relocate self.ctrl.IVCurve_Sequence1.clear() self.ctrl.IVCurve_Sequence2.clear() self.ctrl.IVCurve_Sequence1.addItems(leftseq) self.ctrl.IVCurve_Sequence2.addItems(rightseq) self.sequence = sequence def updaterStatus(self, mode='on'): """ Change the auto updater status """ for regkey, reg in self.regions.items(): if mode in ['on', 'On', True]: self.doUpdates = True reg['region'].sigRegionChangeFinished.connect( functools.partial(reg['updater'], region=reg['name'])) if mode in ['off', 'Off', None, False]: self.doUpdates = False try: reg['region'].sigRegionChangeFinished.disconnect() except: # may already be disconnected...so fail gracefully pass def loadFileRequested(self, dh, analyze=True, bridge=None): """ loadFileRequested is called by "file loader" when a file is requested. FileLoader is provided by the AnalysisModule class dh is the handle to the currently selected directory (or directories) This function loads all of the successive records from the specified protocol. Ancillary information from the protocol is stored in class variables. Extracts information about the commands, sometimes using a rather simplified set of assumptions. Much of the work for reading the data is performed in the GetClamps class in PatchEPhys. :param dh: the directory handle (or list of handles) representing the selected entitites from the FileLoader in the Analysis Module :modifies: plots, sequence, data arrays, data mode, etc. :return: True if successful; otherwise raises an exception """ self.data_plot.clearPlots() self.cmd_plot.clearPlots() self.clear_results() self.updaterStatus('Off') if len(dh) == 0: raise Exception("IVCurve::loadFileRequested: " + "Select an IV protocol directory.") if len(dh) != 1: raise Exception("IVCurve::loadFileRequested: " + "Can only load one file at a time.") self.get_file_information(default_dh=dh) # Get info from most recent file requested dh = dh[0] # just get the first one self.filename = dh.name() self.current_dirhandle = dh # this is critical! self.loaded = dh self.analysis_summary = self.dataModel.cell_summary(dh) # get other info as needed for the protocol # print 'analysis summary: ', self.analysis_summary pars = {} # need to pass some parameters from the GUI pars['limits'] = self.ctrl.IVCurve_IVLimits.isChecked() # checkbox: True if loading limited current range pars['cmin'] = self.ctrl.IVCurve_IVLimitMin.value() # minimum current level to load pars['cmax'] = self.ctrl.IVCurve_IVLimitMax.value() # maximum current level to load pars['KeepT'] = self.ctrl.IVCurve_KeepT.isChecked() # keep timebase # sequence selections: # pars[''sequence'] is a dictionary # The dictionary has 'index' (currentIndex()) and 'count' from the GUI pars['sequence1'] = {'index': [self.ctrl.IVCurve_Sequence1.currentIndex() - 1]} pars['sequence1']['count'] = self.ctrl.IVCurve_Sequence1.count() - 1 pars['sequence2'] = {'index': [self.ctrl.IVCurve_Sequence2.currentIndex() - 1]} pars['sequence2']['count'] = self.ctrl.IVCurve_Sequence2.count() - 1 ci = self.Clamps.getClampData(dh, pars) if ci is None: return False self.ctrl.IVCurve_dataMode.setText(self.Clamps.data_mode) # self.bridgeCorrection = 200e6 # print 'bridge: ', bridge if bridge is not None: self.bridgeCorrection = bridge self.ctrl.IVCurve_bridge.setValue(self.bridgeCorrection) #for i in range(self.Clamps.traces.shape[0]): print('******** Doing bridge correction: ', self.bridgeCorrection) self.Clamps.traces = self.Clamps.traces - (self.bridgeCorrection * self.Clamps.cmd_wave) else: br = self.ctrl.IVCurve_bridge.value()*1e6 # print 'br: ', br if br != 0.0: self.bridgeCorrection = br self.Clamps.traces = self.Clamps.traces - (self.bridgeCorrection * self.Clamps.cmd_wave) else: self.bridgeCorrection = None # now plot the data self.ctrl.IVCurve_tauh_Commands.clear() self.ctrl.IVCurve_tauh_Commands.addItems(ci['cmdList']) self.color_scale.setIntColorScale(0, len(ci['dirs']), maxValue=200) self.make_map_symbols() self.plot_traces() self.setup_regions() self.get_window_analysisPars() # prepare the analysis parameters self.updaterStatus('on') # re-enable update status if analyze: # only do this if requested (default). Don't do in script processing ....yet self.updateAnalysis() return True def plot_traces(self, multimode=False): """ Plot the current data traces. :param multimode: try using "multiline plot routine" to speed up plots (no color though) :return: nothing """ if self.ctrl.IVCurve_KeepAnalysis.isChecked(): self.keep_analysis_count += 1 else: self.keep_analysis_count = 0 # always make sure is reset # this is the only way to reset iterators. self.color_list = itertools.cycle(self.colors) self.symbol_list = itertools.cycle(self.symbols) self.clearDecorators() self.make_map_symbols() self.data_plot.plotItem.clearPlots() self.cmd_plot.plotItem.clearPlots() ntr = self.Clamps.traces.shape[0] self.data_plot.setDownsampling(auto=False, mode='mean') self.data_plot.setClipToView(False) # setting True deletes some points used for decoration of spikes by shape self.cmd_plot.setDownsampling(auto=False, mode='mean') self.cmd_plot.setClipToView(True) # can leave this true since we do not put symbols on the plot self.data_plot.disableAutoRange() self.cmd_plot.disableAutoRange() cmdindxs = np.unique(self.Clamps.commandLevels) # find the unique voltages colindxs = [int(np.where(cmdindxs == self.Clamps.commandLevels[i])[0]) for i in range(len(self.Clamps.commandLevels))] # make a list to use if multimode: pass # datalines = MultiLine(self.Clamps.time_base, self.Clamps.traces, downsample=10) # self.data_plot.addItem(datalines) # cmdlines = MultiLine(self.Clamps.time_base, self.Clamps.cmd_wave, downsample=10) # self.cmd_plot.addItem(cmdlines) else: for i in range(ntr): atrace = self.Clamps.traces[i] acmdwave = self.Clamps.cmd_wave[i] self.data_plot.plot(x=self.Clamps.time_base, y=atrace, downSample=10, downSampleMethod='mean', pen=pg.intColor(colindxs[i], len(cmdindxs), maxValue=255)) self.cmd_plot.plot(x=self.Clamps.time_base, y=acmdwave, downSample=10, downSampleMethod='mean', pen=pg.intColor(colindxs[i], len(cmdindxs), maxValue=255)) if self.Clamps.data_mode in self.dataModel.ic_modes: self.label_up(self.data_plot, 'T (s)', 'V (V)', 'Data') self.label_up(self.cmd_plot, 'T (s)', 'I (%s)' % self.Clamps.command_units, 'Data') elif self.Clamps.data_mode in self.dataModel.vc_modes: # voltage clamp self.label_up(self.data_plot, 'T (s)', 'I (A)', 'Data') self.label_up(self.cmd_plot, 'T (s)', 'V (%s)' % self.Clamps.command_units, 'Data') else: # mode is not known: plot both as V self.label_up(self.data_plot, 'T (s)', 'V (V)', 'Data') self.label_up(self.cmd_plot, 'T (s)', 'V (%s)' % self.Clamps.command_units, 'Data') self.data_plot.autoRange() self.cmd_plot.autoRange() def setup_regions(self): """ Initialize the positions of the lr regions on the display. We attempt to use a logical set of values based on the timing of command steps and stimulus events :return: """ self.initialize_regions() # now create the analysis regions, if not already existing if self.ctrl.IVCurve_KeepT.isChecked() is False: # change regions; otherwise keep... tstart_pk = self.Clamps.tstart tdur_pk = self.Clamps.tdur * 0.4 # use first 40% of trace for peak tstart_ss = self.Clamps.tstart + 0.75 * self.Clamps.tdur tdur_ss = self.Clamps.tdur * 0.25 tstart_tau = self.Clamps.tstart + 0.1 * self.Clamps.tdur tdur_tau = 0.9 * self.Clamps.tdur # tauh window self.regions['lrtau']['region'].setRegion([tstart_tau, tstart_tau + tdur_tau]) # peak voltage window self.regions['lrwin0']['region'].setRegion([tstart_pk, tstart_pk + tdur_pk]) # steady-state meausurement: self.regions['lrwin1']['region'].setRegion([tstart_ss, tstart_ss + tdur_ss]) # rmp measurement self.regions['lrrmp']['region'].setRegion([0., self.Clamps.tstart * 0.9]) # rmp window # print 'rmp window region: ', self.Clamps.tstart * 0.9 for r in ['lrtau', 'lrwin0', 'lrwin1', 'lrrmp']: self.regions[r]['region'].setBounds([0., np.max(self.Clamps.time_base)]) # limit regions to data def get_window_analysisPars(self): """ Retrieve the settings of the lr region windows, and some other general values in preparation for analysis :return: """ self.analysis_parameters = {} # start out empty so we are not fooled by priors for region in ['lrleak', 'lrwin0', 'lrwin1', 'lrrmp', 'lrtau']: rgninfo = self.regions[region]['region'].getRegion() # from the display self.regions[region]['start'].setValue(rgninfo[0] * 1.0e3) # report values to screen self.regions[region]['stop'].setValue(rgninfo[1] * 1.0e3) self.analysis_parameters[region] = {'times': rgninfo} # for region in ['lrwin0', 'lrwin1', 'lrwin2']: # if self.regions[region]['mode'] is not None: # self.analysis_parameters[region]['mode'] = self.regions[region]['mode'].currentText() # self.get_alternation() # get values into the analysisPars dictionary # self.get_baseline() # self.get_junction() def updateAnalysis(self, presets=None, region=None): """updateAnalysis re-reads the time parameters and re-analyzes the spikes""" # print 'self.Script.script: ', self.Script.script['Cells'].keys() if presets in [True, False]: presets = None # print '\n\n*******\n', traceback.format_stack(limit=7) if presets is not None and type(presets) == type({}): # copy from dictionary of presets into analysis parameters for k in presets.keys(): self.analysis_summary[k] = presets[k] if 'SpikeThreshold' in presets.keys(): self.ctrl.IVCurve_SpikeThreshold.setValue(float(presets['SpikeThreshold'])) #print 'set threshold to %f' % float(presets['SpikeThreshold']) if 'bridgeCorrection' in presets.keys(): self.bridgeCorrection = presets['bridgeCorrection'] print('####### BRIDGE CORRRECTION #######: ', self.bridgeCorrection) else: self.bridgeCorrection = 0. self.get_window_analysisPars() # print 'updateanalysis: readparsupdate' self.readParsUpdate(clearFlag=True, pw=False) def readParsUpdate(self, clearFlag=False, pw=False): """ Read the parameter window entries, set the lr regions to the values in the window, and do an update on the analysis Parameters ---------- clearFlag : Boolean, False appears to be unused pw : Boolean, False appears to be unused """ if not self.doUpdates: return # analyze spikes first (gets information on which traces to exclude/include for other calculations) # print 'readparsupdate, calling analyze spikes' self.analyzeSpikes() self.analysis_summary['tauh'] = np.nan # define these because they may not get filled... self.analysis_summary['Gh'] = np.nan (pen, filledbrush, emptybrush, symbol, n, clearFlag) = self.map_symbol() # update RMP first as we might need it for the others. if self.ctrl.IVCurve_showHide_lrrmp.isChecked(): rgnx1 = self.ctrl.IVCurve_rmpTStart.value() / 1.0e3 rgnx2 = self.ctrl.IVCurve_rmpTStop.value() / 1.0e3 self.regions['lrrmp']['region'].setRegion([rgnx1, rgnx2]) self.update_rmpAnalysis(clear=clearFlag, pw=pw) if self.ctrl.IVCurve_showHide_lrss.isChecked(): rgnx1 = self.ctrl.IVCurve_ssTStart.value() / 1.0e3 rgnx2 = self.ctrl.IVCurve_ssTStop.value() / 1.0e3 self.regions['lrwin1']['region'].setRegion([rgnx1, rgnx2]) self.update_ssAnalysis() if self.ctrl.IVCurve_showHide_lrpk.isChecked(): rgnx1 = self.ctrl.IVCurve_pkTStart.value() / 1.0e3 rgnx2 = self.ctrl.IVCurve_pkTStop.value() / 1.0e3 self.regions['lrwin0']['region'].setRegion([rgnx1, rgnx2]) self.update_pkAnalysis(clear=clearFlag, pw=pw) if self.ctrl.IVCurve_subLeak.isChecked(): rgnx1 = self.ctrl.IVCurve_LeakMin.value() / 1e3 rgnx2 = self.ctrl.IVCurve_LeakMax.value() / 1e3 self.regions['lrleak']['region'].setRegion([rgnx1, rgnx2]) self.update_ssAnalysis() self.update_pkAnalysis() if self.ctrl.IVCurve_showHide_lrtau.isChecked(): # include tau in the list... if the tool is selected rgnx1 = self.ctrl.IVCurve_tau2TStart.value() / 1e3 rgnx2 = self.ctrl.IVCurve_tau2TStop.value() / 1e3 self.regions['lrtau']['region'].setRegion([rgnx1, rgnx2]) self.update_Tauh() if self.ctrl.IVCurve_PeakMode.currentIndexChanged: self.peakmode = self.ctrl.IVCurve_PeakMode.currentText() self.update_pkAnalysis() self.analyzeSpikeShape() # finally do the spike shape self.ctrl.IVCurve_bridge.setValue(0.) # reset bridge value after analysis. def read_script(self, name=''): """ read a script file from disk, and use that information to drive the analysis :param name: :return: """ self.script_name = self.Script.read_script() if self.script_name is None: print('Failed to read script') self.ctrl.IVCurve_ScriptName.setText('None') return self.ctrl.IVCurve_ScriptName.setText(os.path.basename(self.script_name)) self.Script.run_script() def rerun_script(self): """ revalidate and run the current script :return: """ self.Script.run_script() def analyzeSpikes(self): """ analyzeSpikes: Using the threshold set in the control panel, count the number of spikes in the stimulation window (self.Clamps.tstart, self.Clamps.tend) Updates the spike plot(s). The following variables are set: self.spikecount: a 1-D numpy array of spike counts, aligned with the current (command) self.adapt_ratio: the adaptation ratio of the spike train self.fsl: a numpy array of first spike latency for each command level self.fisi: a numpy array of first interspike intervals for each command level self.nospk: the indices of command levels where no spike was detected self.spk: the indices of command levels were at least one spike was detected """ if self.keep_analysis_count == 0: clearFlag = True else: clearFlag = False self.analysis_summary['FI_Curve'] = None # print '***** analyzing Spikes' if self.Clamps.data_mode not in self.dataModel.ic_modes or self.Clamps.time_base is None: print('IVCurve::analyzeSpikes: Cannot count spikes, ' + 'and dataMode is ', self.Clamps.data_mode, 'and ICModes are: ', self.dataModel.ic_modes, 'tx is: ', self.tx) self.spikecount = [] self.fiPlot.plot(x=[], y=[], clear=clearFlag, pen='w', symbolSize=6, symbolPen='b', symbolBrush=(0, 0, 255, 200), symbol='s') self.fslPlot.plot(x=[], y=[], pen='w', clear=clearFlag, symbolSize=6, symbolPen='g', symbolBrush=(0, 255, 0, 200), symbol='t') self.fslPlot.plot(x=[], y=[], pen='w', symbolSize=6, symbolPen='y', symbolBrush=(255, 255, 0, 200), symbol='s') return twin = self.Clamps.tend - self.Clamps.tstart # measurements window in seconds maxspkrate = 50 # max rate to count in adaptation is 50 spikes/second minspk = 4 maxspk = int(maxspkrate*twin) # scale max dount by range of spike counts threshold = self.ctrl.IVCurve_SpikeThreshold.value() * 1e-3 self.analysis_summary['SpikeThreshold'] = self.ctrl.IVCurve_SpikeThreshold.value() ntr = len(self.Clamps.traces) self.spikecount = np.zeros(ntr) self.fsl = np.zeros(ntr) self.fisi = np.zeros(ntr) ar = np.zeros(ntr) self.allisi = {} self.spikes = [[] for i in range(ntr)] self.spikeIndices = [[] for i in range(ntr)] #print 'clamp start/end: ', self.Clamps.tstart, self.Clamps.tend for i in range(ntr): (spikes, spkx) = Utility.findspikes(self.Clamps.time_base, self.Clamps.traces[i], threshold, t0=self.Clamps.tstart, t1=self.Clamps.tend, dt=self.Clamps.sample_interval, mode='peak', # best to use peak for detection interpolate=False, debug=False) if len(spikes) == 0: #print 'no spikes found' continue self.spikes[i] = spikes #print 'found %d spikes in trace %d' % (len(spikes), i) self.spikeIndices[i] = [np.argmin(np.fabs(self.Clamps.time_base-t)) for t in spikes] self.spikecount[i] = len(spikes) self.fsl[i] = (spikes[0] - self.Clamps.tstart)*1e3 if len(spikes) > 1: self.fisi[i] = (spikes[1] - spikes[0])*1e3 self.allisi[i] = np.diff(spikes)*1e3 # for Adaptation ratio analysis if minspk <= len(spikes) <= maxspk: misi = np.mean(np.diff(spikes[-3:]))*1e3 ar[i] = misi / self.fisi[i] iAR = np.where(ar > 0) self.adapt_ratio = np.mean(ar[iAR]) # only where we made the measurement self.analysis_summary['AdaptRatio'] = self.adapt_ratio self.ctrl.IVCurve_AR.setText(u'%7.3f' % self.adapt_ratio) self.nospk = np.where(self.spikecount == 0) self.spk = np.where(self.spikecount > 0)[0] self.analysis_summary['FI_Curve'] = np.array([self.Clamps.values, self.spikecount]) # print self.analysis_summary['FI_Curve'] self.spikes_counted = True self.update_SpikePlots() def _timeindex(self, t): return np.argmin(self.Clamps.time_base-t) def analyzeSpikeShape(self, printSpikeInfo=False): # analyze the spike shape. # based on Druckman et al. Cerebral Cortex, 2013 begin_dV = 12.0 # V/s or mV/ms ntr = len(self.Clamps.traces) # print 'analyzespikeshape, self.spk: ', self.spk self.spikeShape = OrderedDict() rmp = np.zeros(ntr) iHold = np.zeros(ntr) for i in range(ntr): if len(self.spikes[i]) == 0: continue trspikes = OrderedDict() if printSpikeInfo: print(np.array(self.Clamps.values)) print(len(self.Clamps.traces)) (rmp[i], r2) = Utility.measure('mean', self.Clamps.time_base, self.Clamps.traces[i], 0.0, self.Clamps.tstart) (iHold[i], r2) = Utility.measure('mean', self.Clamps.time_base, self.Clamps.cmd_wave[i], 0.0, self.Clamps.tstart) for j in range(len(self.spikes[i])): thisspike = {'trace': i, 'AP_number': j, 'AP_beginIndex': None, 'AP_endIndex': None, 'peakIndex': None, 'peak_T': None, 'peak_V': None, 'AP_Latency': None, 'AP_beginV': None, 'halfwidth': None, 'trough_T': None, 'trough_V': None, 'peaktotroughT': None, 'current': None, 'iHold': None, 'pulseDuration': None, 'tstart': self.Clamps.tstart} # initialize the structure thisspike['current'] = self.Clamps.values[i] - iHold[i] thisspike['iHold'] = iHold[i] thisspike['pulseDuration'] = self.Clamps.tend - self.Clamps.tstart # in seconds thisspike['peakIndex'] = self.spikeIndices[i][j] thisspike['peak_T'] = self.Clamps.time_base[thisspike['peakIndex']] thisspike['peak_V'] = self.Clamps.traces[i][thisspike['peakIndex']] # max voltage of spike thisspike['tstart'] = self.Clamps.tstart # find the minimum going forward - that is AHP min dt = (self.Clamps.time_base[1]-self.Clamps.time_base[0]) dv = np.diff(self.Clamps.traces[i])/dt k = self.spikeIndices[i][j] + 1 if j < self.spikecount[i] - 1: # find end of spike (top of next, or end of trace) kend = self.spikeIndices[i][j+1] else: kend = len(self.Clamps.traces[i]) try: km = np.argmin(dv[k:kend])+k # find fastst falling point, use that for start of detection except: continue # v = self.Clamps.traces[i][km] # vlast = self.Clamps.traces[i][km] #kmin = np.argmin(np.argmin(dv2[k:kend])) + k # np.argmin(np.fabs(self.Clamps.traces[i][k:kend]))+k kmin = np.argmin(self.Clamps.traces[i][km:kend])+km thisspike['AP_endIndex'] = kmin thisspike['trough_T'] = self.Clamps.time_base[thisspike['AP_endIndex']] thisspike['trough_V'] = self.Clamps.traces[i][kmin] if thisspike['AP_endIndex'] is not None: thisspike['peaktotrough'] = thisspike['trough_T'] - thisspike['peak_T'] k = self.spikeIndices[i][j]-1 if j > 0: kbegin = self.spikeIndices[i][j-1] # trspikes[j-1]['AP_endIndex'] # self.spikeIndices[i][j-1] # index to previ spike start else: kbegin = k - int(0.002/dt) # for first spike - 4 msec prior only if kbegin*dt <= self.Clamps.tstart: kbegin = kbegin + int(0.0002/dt) # 1 msec # revise k to start at max of rising phase try: km = np.argmax(dv[kbegin:k]) + kbegin except: continue if (km - kbegin < 1): km = kbegin + int((k - kbegin)/2.) + 1 kthresh = np.argmin(np.fabs(dv[kbegin:km] - begin_dV)) + kbegin # point where slope is closest to begin thisspike['AP_beginIndex'] = kthresh thisspike['AP_Latency'] = self.Clamps.time_base[kthresh] thisspike['AP_beginV'] = self.Clamps.traces[i][thisspike['AP_beginIndex']] if thisspike['AP_beginIndex'] is not None and thisspike['AP_endIndex'] is not None: halfv = 0.5*(thisspike['peak_V'] + thisspike['AP_beginV']) kup = np.argmin(np.fabs(self.Clamps.traces[i][thisspike['AP_beginIndex']:thisspike['peakIndex']] - halfv)) kup += thisspike['AP_beginIndex'] kdown = np.argmin(np.fabs(self.Clamps.traces[i][thisspike['peakIndex']:thisspike['AP_endIndex']] - halfv)) kdown += thisspike['peakIndex'] if kup is not None and kdown is not None: thisspike['halfwidth'] = self.Clamps.time_base[kdown] - self.Clamps.time_base[kup] thisspike['hw_up'] = self.Clamps.time_base[kup] thisspike['hw_down'] = self.Clamps.time_base[kdown] thisspike['hw_v'] = halfv trspikes[j] = thisspike self.spikeShape[i] = trspikes if printSpikeInfo: pp = pprint.PrettyPrinter(indent=4) for m in sorted(self.spikeShape.keys()): print('----\nTrace: %d has %d APs' % (m, len(list(self.spikeShape[m].keys())))) for n in sorted(self.spikeShape[m].keys()): pp.pprint(self.spikeShape[m][n]) self.analysis_summary['spikes'] = self.spikeShape # save in the summary dictionary too self.analysis_summary['iHold'] = np.mean(iHold) self.analysis_summary['pulseDuration'] = self.Clamps.tend - self.Clamps.tstart self.getClassifyingInfo() # build analysis summary here as well. self.clearDecorators() self.spikeDecorator() def spikeDecorator(self): """ Put markers on the spikes to visually confirm the analysis of thresholds, etc. """ # get colors cmdindxs = np.unique(self.Clamps.commandLevels) # find the unique voltages colindxs = [int(np.where(cmdindxs == self.Clamps.commandLevels[i])[0]) for i in range(len(self.Clamps.commandLevels))] # make a list to use alllats = [] allpeakt = [] allpeakv = [] for i, trace in enumerate(self.spikeShape): aps = [] tps = [] paps = [] ptps = [] taps = [] ttps = [] hwv = [] tups = [] tdps = [] for j, spk in enumerate(self.spikeShape[trace]): aps.append(self.spikeShape[trace][spk]['AP_beginV']) alllats.append(self.spikeShape[trace][spk]['AP_Latency']) tps.append(self.spikeShape[trace][spk]['AP_Latency']) u =self.data_plot.plot(tps, aps, pen=None, symbol='o', brush=pg.mkBrush('g'), symbolSize=4) self.dataMarkers.append(u) for j, spk in enumerate(self.spikeShape[trace]): paps.append(self.spikeShape[trace][spk]['peak_V']) ptps.append(self.spikeShape[trace][spk]['peak_T']) allpeakt.append(self.spikeShape[trace][spk]['peak_T']+0.01) allpeakv.append(self.spikeShape[trace][spk]['peak_V']) # u = self.data_plot.plot(allpeakt, allpeakv, pen=None, symbol='o', brush=pg.mkBrush('r'), size=2) # self.dataMarkers.append(u) u = self.data_plot.plot(ptps, paps, pen=None, symbol='t', brush=pg.mkBrush('w'), symbolSize=4) self.dataMarkers.append(u) for j, spk in enumerate(self.spikeShape[trace]): taps.append(self.spikeShape[trace][spk]['trough_V']) ttps.append(self.spikeShape[trace][spk]['trough_T']) u = self.data_plot.plot(ttps, taps, pen=None, symbol='+', brush=pg.mkBrush('r'), symbolSize=4) self.dataMarkers.append(u) for j, spk in enumerate(self.spikeShape[trace]): tups.append(self.spikeShape[trace][spk]['hw_up']) tdps.append(self.spikeShape[trace][spk]['hw_down']) hwv.append(self.spikeShape[trace][spk]['hw_v']) u =self.data_plot.plot(tups, hwv, pen=None, symbol='d', brush=pg.mkBrush('c'), symbolSize=4) self.dataMarkers.append(u) d =self.data_plot.plot(tdps, hwv, pen=None, symbol='s', brush=pg.mkBrush('c'), symbolSize=4) self.dataMarkers.append(d) def clearDecorators(self): if len(self.dataMarkers) > 0: [self.dataMarkers[k].clear() for k,m in enumerate(self.dataMarkers)] self.dataMarkers = [] def getIVCurrentThresholds(self): # figure out "threshold" for spike, get 150% and 300% points. nsp = [] icmd = [] for m in sorted(self.spikeShape.keys()): n = len(self.spikeShape[m].keys()) # number of spikes in the trace if n > 0: nsp.append(len(self.spikeShape[m].keys())) icmd.append(self.spikeShape[m][0]['current']) try: iamin = np.argmin(icmd) except: raise ValueError('IVCurve:getIVCurrentThresholds - icmd seems to be ? : ', icmd) imin = np.min(icmd) ia150 = np.argmin(np.abs(1.5*imin-np.array(icmd))) iacmdthr = np.argmin(np.abs(imin-self.Clamps.values)) ia150cmdthr = np.argmin(np.abs(icmd[ia150] - self.Clamps.values)) #print 'thr indices and values: ', iacmdthr, ia150cmdthr, self.Clamps.values[iacmdthr], self.Clamps.values[ia150cmdthr] return (iacmdthr, ia150cmdthr) # return threshold indices into self.Clamps.values array at threshold and 150% point def getClassifyingInfo(self): """ Adds the classifying information according to Druckmann et al., Cerebral Cortex, 2013 to the analysis summary """ (jthr, j150) = self.getIVCurrentThresholds() # get the indices for the traces we need to pull data from if jthr == j150: print('\n%s:' % self.filename) print('Threshold current T and 1.5T the same: using next up value for j150') print('jthr, j150, len(spikeShape): ', jthr, j150, len(self.spikeShape)) print('1 ', self.spikeShape[jthr][0]['current']*1e12) print('2 ', self.spikeShape[j150+1][0]['current']*1e12) print(' >> Threshold current: %8.3f 1.5T current: %8.3f, next up: %8.3f' % (self.spikeShape[jthr][0]['current']*1e12, self.spikeShape[j150][0]['current']*1e12, self.spikeShape[j150+1][0]['current']*1e12)) j150 = jthr + 1 if len(self.spikeShape[j150]) >= 1 and self.spikeShape[j150][0]['halfwidth'] is not None: self.analysis_summary['AP1_Latency'] = (self.spikeShape[j150][0]['AP_Latency'] - self.spikeShape[j150][0]['tstart'])*1e3 self.analysis_summary['AP1_HalfWidth'] = self.spikeShape[j150][0]['halfwidth']*1e3 else: self.analysis_summary['AP1_Latency'] = np.inf self.analysis_summary['AP1_HalfWidth'] = np.inf if len(self.spikeShape[j150]) >= 2 and self.spikeShape[j150][1]['halfwidth'] is not None: self.analysis_summary['AP2_Latency'] = (self.spikeShape[j150][1]['AP_Latency'] - self.spikeShape[j150][1]['tstart'])*1e3 self.analysis_summary['AP2_HalfWidth'] = self.spikeShape[j150][1]['halfwidth']*1e3 else: self.analysis_summary['AP2_Latency'] = np.inf self.analysis_summary['AP2_HalfWidth'] = np.inf rate = len(self.spikeShape[j150])/self.spikeShape[j150][0]['pulseDuration'] # spikes per second, normalized for pulse duration # first AHP depth # print 'j150: ', j150 # print self.spikeShape[j150][0].keys() # print self.spikeShape[j150] AHPDepth = self.spikeShape[j150][0]['AP_beginV'] - self.spikeShape[j150][0]['trough_V'] self.analysis_summary['FiringRate'] = rate self.analysis_summary['AHP_Depth'] = AHPDepth*1e3 # convert to mV # pprint.pprint(self.analysis_summary) # except: # raise ValueError ('Failed Classification for cell: %s' % self.filename) def update_Tau_membrane(self, peak_time=None, printWindow=False, whichTau=1, vrange=[-5., -20.]): """ Compute time constant (single exponential) from the onset of the response using lrpk window, and only steps that produce a voltage change between 5 and 20 mV below rest or as specified """ if len(self.Clamps.commandLevels) == 0: # probably not ready yet to do the update. return if self.Clamps.data_mode not in self.dataModel.ic_modes: # only permit in IC return rgnpk = list(self.regions['lrwin0']['region'].getRegion()) Func = 'exp1' # single exponential fit with DC offset. Fits = Fitting.Fitting() if self.rmp == []: self.update_rmpAnalysis() #print self.rmp initpars = [self.rmp*1e-3, 0.010, 0.01] peak_time = None icmdneg = np.where(self.Clamps.commandLevels < -20e-12) maxcmd = np.min(self.Clamps.commandLevels) ineg = np.where(self.Clamps.commandLevels[icmdneg] < 0.0) if peak_time is not None and ineg != np.array([]): rgnpk[1] = np.max(peak_time[ineg[0]]) dt = self.Clamps.sample_interval rgnindx = [int((rgnpk[1]-0.005)/dt), int((rgnpk[1])/dt)] rmps = self.ivbaseline vmeans = np.mean(self.Clamps.traces[:, rgnindx[0]:rgnindx[1]], axis=1) - self.ivbaseline indxs = np.where(np.logical_and((vrange[0]*1e-3 >= vmeans[ineg]), (vmeans[ineg] >= vrange[1]*1e-3))) indxs = list(indxs[0]) whichdata = ineg[0][indxs] # restricts to valid values itaucmd = self.Clamps.commandLevels[ineg] whichaxis = 0 fpar = [] names = [] okdata = [] if len(self.tau_fitted.keys()) > 0: [self.tau_fitted[k].clear() for k in self.tau_fitted.keys()] self.tau_fitted = {} for j, k in enumerate(whichdata): self.tau_fitted[j] = self.data_plot.plot(self.Clamps.time_base, self.Clamps.traces[k], pen=pg.mkPen('w')) (fparx, xf, yf, namesx) = Fits.FitRegion([k], whichaxis, self.Clamps.time_base, self.Clamps.traces, dataType='2d', t0=rgnpk[0], t1=rgnpk[1], fitFunc=Func, fitPars=initpars, method='SLSQP', bounds=[(-0.1, 0.1), (-0.1, 0.1), (0.005, 0.30)]) if not fparx: raise Exception('IVCurve::update_Tau_membrane: Charging tau fitting failed - see log') #print 'j: ', j, len(fpar) if fparx[0][1] < 2.5e-3: # amplitude must be > 2.5 mV to be useful continue fpar.append(fparx[0]) names.append(namesx[0]) okdata.append(k) self.taupars = fpar self.tauwin = rgnpk self.taufunc = Func self.whichdata = okdata taus = [] for j in range(len(fpar)): outstr = "" taus.append(fpar[j][2]) for i in range(0, len(names[j])): outstr += '%s = %f, ' % (names[j][i], fpar[j][i]) if printWindow: print("FIT(%d, %.1f pA): %s " % (whichdata[j], itaucmd[j] * 1e12, outstr)) meantau = np.mean(taus) self.ctrl.IVCurve_Tau.setText(u'%18.1f ms' % (meantau * 1.e3)) self.tau = meantau self.analysis_summary['tau'] = self.tau*1.e3 tautext = 'Mean Tau: %8.1f' if printWindow: print(tautext % (meantau * 1e3)) self.show_tau_plot() def show_tau_plot(self): Fits = Fitting.Fitting() fitPars = self.taupars xFit = np.zeros((len(self.taupars), 500)) for i in range(len(self.taupars)): xFit[i,:] = np.arange(0, self.tauwin[1]-self.tauwin[0], (self.tauwin[1]-self.tauwin[0])/500.) yFit = np.zeros((len(fitPars), xFit.shape[1])) fitfunc = Fits.fitfuncmap[self.taufunc] if len(self.tau_fits.keys()) > 0: [self.tau_fits[k].clear() for k in self.tau_fits.keys()] self.tau_fits = {} for k, whichdata in enumerate(self.whichdata): yFit[k] = fitfunc[0](fitPars[k], xFit[k], C=None) # +self.ivbaseline[whichdata] self.tau_fits[k] = self.data_plot.plot(xFit[k]+self.tauwin[0], yFit[k], pen=pg.mkPen('r', width=2, style=Qt.Qt.DashLine)) def update_Tauh(self, region=None, printWindow=False): """ compute tau (single exponential) from the onset of the markers using lrtau window, and only for the step closest to the selected current level in the GUI window. Parameters ---------- region : dummy argument, default : None printWindow : Boolean, default : False region is a dummy argument... Also compute the ratio of the sag from the peak (marker1) to the end of the trace (marker 2). Based on analysis in Fujino and Oertel, J. Neuroscience 2001, to type cells based on different Ih kinetics and magnitude. """ self.analysis_summary['tauh'] = np.nan self.analysis_summary['Gh'] = np.nan if not self.ctrl.IVCurve_showHide_lrtau.isChecked(): return rgn = self.regions['lrtau']['region'].getRegion() Func = 'exp1' # single exponential fit to the whole region Fits = Fitting.Fitting() initpars = [-80.0 * 1e-3, -10.0 * 1e-3, 50.0 * 1e-3] # find the current level that is closest to the target current s_target = self.ctrl.IVCurve_tauh_Commands.currentIndex() itarget = self.Clamps.values[s_target] # retrive actual value from commands self.neg_cmd = itarget idiff = np.abs(np.array(self.Clamps.commandLevels) - itarget) amin = np.argmin(idiff) # amin appears to be the same as s_target # target trace (as selected in cmd drop-down list): target = self.Clamps.traces[amin] # get Vrmp - # rmp approximation. vrmp = np.median(target['Time': 0.0:self.Clamps.tstart - 0.005]) * 1000. self.neg_vrmp = vrmp # get peak and steady-state voltages pkRgn = self.regions['lrwin0']['region'].getRegion() ssRgn = self.regions['lrwin1']['region'].getRegion() vpk = target['Time': pkRgn[0]:pkRgn[1]].min() * 1000 self.neg_pk = (vpk - vrmp) / 1000. vss = np.median(target['Time': ssRgn[0]:ssRgn[1]]) * 1000 self.neg_ss = (vss - vrmp) / 1000. whichdata = [int(amin)] itaucmd = [self.Clamps.commandLevels[amin]] self.ctrl.IVCurve_tau2TStart.setValue(rgn[0] * 1.0e3) self.ctrl.IVCurve_tau2TStop.setValue(rgn[1] * 1.0e3) fd = self.Clamps.traces['Time': rgn[0]:rgn[1]][whichdata][0] if len(self.tauh_fitted.keys()) > 0: [self.tauh_fitted[k].clear() for k in self.tauh_fitted.keys()] self.tauh_fitted = {} for k, d in enumerate(whichdata): self.tauh_fitted[k] = self.data_plot.plot(fd, pen=pg.mkPen('w')) # now do the fit whichaxis = 0 (fpar, xf, yf, names) = Fits.FitRegion(whichdata, whichaxis, self.Clamps.traces.xvals('Time'), self.Clamps.traces.view(np.ndarray), dataType='2d', t0=rgn[0], t1=rgn[1], fitFunc=Func, fitPars=initpars) if not fpar: raise Exception('IVCurve::update_Tauh: tau_h fitting failed - see log') bluepen = pg.mkPen('b', width=2.0, style=Qt.Qt.DashLine) if len(self.tauh_fits.keys()) > 0: [self.tauh_fits[k].clear() for k in self.tauh_fits.keys()] self.tauh_fits = {} self.tauh_fits[0] = self.data_plot.plot(xf[0]+rgn[0], yf[0], pen=bluepen) # self.tauh_fits.update() s = np.shape(fpar) taus = [] for j in range(0, s[0]): outstr = "" taus.append(fpar[j][2]) for i in range(0, len(names[j])): outstr += '%s = %f, ' % (names[j][i], fpar[j][i]) if printWindow: print("Ih FIT(%d, %.1f pA): %s " % (whichdata[j], itaucmd[j] * 1e12, outstr)) meantau = np.mean(taus) self.ctrl.IVCurve_Tauh.setText(u'%8.1f ms' % (meantau * 1.e3)) self.tau2 = meantau bovera = (vss - vrmp) / (vpk - vrmp) self.ctrl.IVCurve_Ih_ba.setText('%8.1f' % (bovera * 100.)) self.ctrl.IVCurve_ssAmp.setText('%8.2f' % (vss - vrmp)) self.ctrl.IVCurve_pkAmp.setText('%8.2f' % (vpk - vrmp)) if bovera < 0.55 and self.tau2 < 0.015: # self.ctrl.IVCurve_FOType.setText('D Stellate') else: self.ctrl.IVCurve_FOType.setText('T Stellate') # estimate of Gh: Gpk = itarget / self.neg_pk Gss = itarget / self.neg_ss self.Gh = Gss - Gpk self.analysis_summary['tauh'] = self.tau2*1.e3 self.analysis_summary['Gh'] = self.Gh self.ctrl.IVCurve_Gh.setText('%8.2f nS' % (self.Gh * 1e9)) def update_ssAnalysis(self): """ Compute the steady-state IV from the selected time window Parameters ---------- None. Returns ------- nothing. modifies: ivss, yleak, ivss_cmd, cmd. The IV curve is only valid when there are no spikes detected in the window. The values in the curve are taken as the mean of the current and the voltage in the time window, at each command step. We also compute the input resistance. For voltage clamp data, we can optionally remove the "leak" current. The resulting curve is plotted. """ if self.Clamps.traces is None: return rgnss = self.regions['lrwin1']['region'].getRegion() r1 = rgnss[1] if rgnss[1] == rgnss[0]: print('Steady-state regions have no width; using 100 msec. window for ss ') r1 = rgnss[0] + 0.1 self.ctrl.IVCurve_ssTStart.setValue(rgnss[0] * 1.0e3) self.ctrl.IVCurve_ssTStop.setValue(r1 * 1.0e3) data1 = self.Clamps.traces['Time': rgnss[0]:r1] # print 'data shape: ', data1.shape if data1.shape[1] == 0 or data1.shape[0] == 1: return # skip it self.ivss = [] # check out whether there are spikes in the window that is selected threshold = self.ctrl.IVCurve_SpikeThreshold.value() * 1e-3 ntr = len(self.Clamps.traces) if not self.spikes_counted: print('updatess: spikes not counted yet? ') self.analyzeSpikes() # spikecount = np.zeros(ntr) # for i in range(ntr): # (spike, spk) = Utility.findspikes(self.Clamps.time_base, self.Clamps.traces[i], # threshold, # t0=rgnss[0], t1=r1, # dt=self.Clamps.sample_interval, # mode='schmitt', # interpolate=False, # debug=False) # if len(spike) > 0: # spikecount[i] = len(spike) # nospk = np.where(spikecount == 0) # print 'spikes checked' self.ivss = data1.mean(axis=1) # all traces if self.ctrl.IVCurve_SubBaseline.isChecked(): self.ivss = self.ivss - self.ivbaseline if len(self.nospk) >= 1: # Steady-state IV where there are no spikes self.ivss = self.ivss[self.nospk] self.ivss_cmd = self.Clamps.commandLevels[self.nospk] # self.commandLevels = commands[self.nospk] # compute Rin from the SS IV: # this makes the assumption that: # successive trials are in order (as are commands) # commands are not repeated... if len(self.ivss_cmd) > 0 and len(self.ivss) > 0: self.r_in = np.max(np.diff (self.ivss) / np.diff(self.ivss_cmd)) self.ctrl.IVCurve_Rin.setText(u'%9.1f M\u03A9' % (self.r_in * 1.0e-6)) self.analysis_summary['Rin'] = self.r_in*1.0e-6 else: self.ctrl.IVCurve_Rin.setText(u'No valid points') self.yleak = np.zeros(len(self.ivss)) if self.ctrl.IVCurve_subLeak.isChecked(): if self.Clamps.data_mode in self.dataModel.ic_modes: sf = 1e-12 elif self.Clamps.data_mode in self.dataModel.vc_modes: sf = 1e-3 else: sf = 1.0 (x, y) = Utility.clipdata(self.ivss, self.ivss_cmd, self.ctrl.IVCurve_LeakMin.value() * sf, self.ctrl.IVCurve_LeakMax.value() * sf) try: p = np.polyfit(x, y, 1) # linear fit self.yleak = np.polyval(p, self.ivss_cmd) self.ivss = self.ivss - self.yleak except: raise ValueError('IVCurve Leak subtraction: no valid points to correct') isort = np.argsort(self.ivss_cmd) self.ivss_cmd = self.ivss_cmd[isort] self.ivss = self.ivss[isort] self.analysis_summary['IV_Curve_ss'] = [self.ivss_cmd, self.ivss] self.update_IVPlot() def update_pkAnalysis(self, clear=False, pw=False): """ Compute the peak IV (minimum) from the selected window mode can be 'min', 'max', or 'abs' Parameters ---------- clear : Boolean, False pw : Boolean, False pw is passed to update_taumembrane to control printing. """ if self.Clamps.traces is None: return mode = self.ctrl.IVCurve_PeakMode.currentText() rgnpk = self.regions['lrwin0']['region'].getRegion() self.ctrl.IVCurve_pkTStart.setValue(rgnpk[0] * 1.0e3) self.ctrl.IVCurve_pkTStop.setValue(rgnpk[1] * 1.0e3) data2 = self.Clamps.traces['Time': rgnpk[0]:rgnpk[1]] if data2.shape[1] == 0: return # skip it - window missed the data # check out whether there are spikes in the window that is selected # but only in current clamp nospk = [] peak_pos = None if self.Clamps.data_mode in self.dataModel.ic_modes: threshold = self.ctrl.IVCurve_SpikeThreshold.value() * 1e-3 ntr = len(self.Clamps.traces) if not self.spikes_counted: print('update_pkAnalysis: spikes not counted') self.analyzeSpikes() spikecount = np.zeros(ntr) # for i in range(ntr): # (spike, spk) = Utility.findspikes(self.Clamps.time_base, self.Clamps.traces[i], # threshold, # t0=rgnpk[0], t1=rgnpk[1], # dt=self.Clamps.sample_interval, # mode='schmitt', # interpolate=False, debug=False) # if len(spike) == 0: # continue # spikecount[i] = len(spike) # nospk = np.where(spikecount == 0) # nospk = np.array(nospk)[0] if mode == 'Min': self.ivpk = data2.min(axis=1) peak_pos = np.argmin(data2, axis=1) elif mode == 'Max': self.ivpk = data2.max(axis=1) peak_pos = np.argmax(data2, axis=1) elif mode == 'Abs': # find largest regardless of the sign ('minormax') x1 = data2.min(axis=1) peak_pos1 = np.argmin(data2, axis=1) x2 = data2.max(axis=1) peak_pos2 = np.argmax(data2, axis=1) self.ivpk = np.zeros(data2.shape[0]) for i in range(data2.shape[0]): if -x1[i] > x2[i]: self.ivpk[i] = x1[i] peak_pos = peak_pos1 else: self.ivpk[i] = x2[i] peak_pos = peak_pos2 # self.ivpk = np.array([np.max(x1[i], x2[i]) for i in range(data2.shape[0]]) #self.ivpk = np.maximum(np.fabs(data2.min(axis=1)), data2.max(axis=1)) if self.ctrl.IVCurve_SubBaseline.isChecked(): self.ivpk = self.ivpk - self.ivbaseline if len(self.nospk) >= 1: # Peak (min, max or absmax voltage) IV where there are no spikes self.ivpk = self.ivpk[self.nospk] self.ivpk_cmd = self.Clamps.commandLevels[self.nospk] else: self.ivpk_cmd = self.Clamps.commandLevels self.ivpk = self.ivpk.view(np.ndarray) if self.ctrl.IVCurve_subLeak.isChecked(): self.ivpk = self.ivpk - self.yleak # now sort data in ascending command levels isort = np.argsort(self.ivpk_cmd) self.ivpk_cmd = self.ivpk_cmd[isort] self.ivpk = self.ivpk[isort] self.analysis_summary['IV_Curve_pk'] = [self.ivpk_cmd, self.ivpk] self.update_IVPlot() peak_time = self.Clamps.time_base[peak_pos] self.update_Tau_membrane(peak_time=peak_time, printWindow=pw) def update_rmpAnalysis(self, **kwargs): """ Compute the RMP over time/commands from the selected window """ if self.Clamps.traces is None: return rgnrmp = self.regions['lrrmp']['region'].getRegion() self.ctrl.IVCurve_rmpTStart.setValue(rgnrmp[0] * 1.0e3) self.ctrl.IVCurve_rmpTStop.setValue(rgnrmp[1] * 1.0e3) data1 = self.Clamps.traces['Time': rgnrmp[0]:rgnrmp[1]] data1 = data1.view(np.ndarray) self.ivbaseline = data1.mean(axis=1) # all traces self.ivbaseline_cmd = self.Clamps.commandLevels self.rmp = np.mean(self.ivbaseline) * 1e3 # convert to mV self.ctrl.IVCurve_vrmp.setText('%8.2f' % self.rmp) self.update_RMPPlot() self.analysis_summary['RMP'] = self.rmp def make_map_symbols(self): """ Given the current state of things, (keeping the analysis, when superimposing multiple results, for example), sets self.currentSymDict with a dict of pen, fill color, empty color, a symbol from our lists, and a clearflag. Used to overplot different data. """ n = self.keep_analysis_count pen = next(self.color_list) filledbrush = pen emptybrush = None symbol = next(self.symbol_list) if n == 0: clearFlag = True else: clearFlag = False self.currentSymDict = {'pen': pen, 'filledbrush': filledbrush, 'emptybrush': emptybrush, 'symbol': symbol, 'n': n, 'clearFlag': clearFlag} def map_symbol(self): cd = self.currentSymDict if cd['filledbrush'] == 'w': cd['filledbrush'] = pg.mkBrush((128, 128, 128)) if cd['pen'] == 'w': cd['pen'] = pg.mkPen((128, 128, 128)) self.lastSymbol = (cd['pen'], cd['filledbrush'], cd['emptybrush'], cd['symbol'], cd['n'], cd['clearFlag']) return self.lastSymbol def update_IVPlot(self): """ Draw the peak and steady-sate IV to the I-V window Note: x axis is always I or V, y axis V or I """ if self.ctrl.IVCurve_KeepAnalysis.isChecked() is False: self.IV_plot.clear() (pen, filledbrush, emptybrush, symbol, n, clearFlag) = \ self.map_symbol() if self.Clamps.data_mode in self.dataModel.ic_modes: if (len(self.ivss) > 0 and self.ctrl.IVCurve_showHide_lrss.isChecked()): self.IV_plot.plot(self.ivss_cmd * 1e12, self.ivss * 1e3, symbol=symbol, pen=pen, symbolSize=6, symbolPen=pen, symbolBrush=filledbrush) if (len(self.ivpk) > 0 and self.ctrl.IVCurve_showHide_lrpk.isChecked()): self.IV_plot.plot(self.ivpk_cmd * 1e12, self.ivpk * 1e3, symbol=symbol, pen=pen, symbolSize=6, symbolPen=pen, symbolBrush=emptybrush) self.label_up(self.IV_plot, 'I (pA)', 'V (mV)', 'I-V (CC)') if self.Clamps.data_mode in self.dataModel.vc_modes: if (len(self.ivss) > 0 and self.ctrl.IVCurve_showHide_lrss.isChecked()): self.IV_plot.plot(self.ivss_cmd * 1e3, self.ivss * 1e9, symbol=symbol, pen=pen, symbolSize=6, symbolPen=pen, symbolBrush=filledbrush) if (len(self.ivpk) > 0 and self.ctrl.IVCurve_showHide_lrpk.isChecked()): self.IV_plot.plot(self.ivpk_cmd * 1e3, self.ivpk * 1e9, symbol=symbol, pen=pen, symbolSize=6, symbolPen=pen, symbolBrush=emptybrush) self.label_up(self.IV_plot, 'V (mV)', 'I (nA)', 'I-V (VC)') def update_RMPPlot(self): """ Draw the RMP to the I-V window Note: x axis can be I, T, or # spikes """ if self.ctrl.IVCurve_KeepAnalysis.isChecked() is False: self.RMP_plot.clear() if len(self.ivbaseline) > 0: (pen, filledbrush, emptybrush, symbol, n, clearFlag) = \ self.map_symbol() mode = self.ctrl.IVCurve_RMPMode.currentIndex() if self.Clamps.data_mode in self.dataModel.ic_modes: sf = 1e3 self.RMP_plot.setLabel('left', 'V mV') else: sf = 1e12 self.RMP_plot.setLabel('left', 'I (pA)') if mode == 0: self.RMP_plot.plot(self.Clamps.trace_StartTimes, sf * np.array(self.ivbaseline), symbol=symbol, pen=pen, symbolSize=6, symbolPen=pen, symbolBrush=filledbrush) self.RMP_plot.setLabel('bottom', 'T (s)') elif mode == 1: self.RMP_plot.plot(self.Clamps.commandLevels, 1.e3 * np.array(self.ivbaseline), symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=filledbrush) self.RMP_plot.setLabel('bottom', 'I (pA)') elif mode == 2: self.RMP_plot.plot(self.spikecount, 1.e3 * np.array(self.ivbaseline), symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=emptybrush) self.RMP_plot.setLabel('bottom', 'Spikes') else: pass def update_SpikePlots(self): """ Draw the spike counts to the FI and FSL windows Note: x axis can be I, T, or # spikes """ if self.Clamps.data_mode in self.dataModel.vc_modes: self.fiPlot.clear() # no plots of spikes in VC self.fslPlot.clear() return (pen, filledbrush, emptybrush, symbol, n, clearFlag) = self.map_symbol() mode = self.ctrl.IVCurve_RMPMode.currentIndex() # get x axis mode self.spcmd = self.Clamps.commandLevels[self.spk] # get command levels iwth spikes iscale = 1.0e12 # convert to pA yfslsc = 1.0 # convert to msec if mode == 0: # plot with time as x axis xfi = self.Clamps.trace_StartTimes xfsl = self.Clamps.trace_StartTimes select = range(len(self.Clamps.trace_StartTimes)) xlabel = 'T (s)' elif mode == 1: # plot with current as x select = self.spk xfi = self.Clamps.commandLevels * iscale xfsl = self.spcmd * iscale xlabel = 'I (pA)' elif mode == 2: # plot with spike counts as x xfi = self.spikecount xfsl = self.spikecount select = range(len(self.spikecount)) xlabel = 'Spikes (N)' else: return # mode not in available list self.fiPlot.plot(x=xfi, y=self.spikecount, clear=clearFlag, symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=filledbrush) fslmax = 0. if self.showFISI: self.fslPlot.plot(x=xfsl, y=self.fsl[select] * yfslsc, clear=clearFlag, symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=filledbrush) self.fslPlot.plot(x=xfsl, y=self.fisi[select] * yfslsc, symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=emptybrush) if len(xfsl) > 0: self.fslPlot.setXRange(0.0, np.max(xfsl)) self.fslPlot.setYRange(0., max(max(self.fsl[select]), max(self.fisi[select]))) ylabel = 'Fsl/Fisi (ms)' xfsllabel = xlabel self.fslPlot.setTitle('FSL/FISI') else: maxspk = 0 maxisi = 0. clear = clearFlag for i, k in enumerate(self.allisi.keys()): nspk = len(self.allisi[k]) xisi = np.arange(nspk) self.fslPlot.plot(x=xisi, y=self.allisi[k] * yfslsc, clear=clear, symbolSize=6, symbol=symbol, pen=pen, symbolPen=pen, symbolBrush=filledbrush) clear = False maxspk = max(nspk, maxspk) maxisi = max(np.max(self.allisi[k]), maxisi) self.fslPlot.setXRange(0.0, maxspk) self.fslPlot.setYRange(0.0, maxisi) xfsllabel = 'Spike Number' ylabel = 'ISI (s)' self.fslPlot.setTitle('ISI vs. Spike Number') self.fiPlot.setLabel('bottom', xlabel) self.fslPlot.setLabel('bottom', xfsllabel) self.fslPlot.setLabel('left', ylabel) def printAnalysis(self, printnow=True, script_header=True, copytoclipboard=False): """ Print the analysis summary information (Cell, protocol, etc) in a nice formatted version to the terminal. The output can be copied to another program (excel, prism) for further analysis Parameters ---------- printnow : Boolean, optional Set true to print to terminal, default: True script_header : Boolean, optional Set to print the header line, default: True copytoclipboard : Boolean, optional copy the text to the system clipboard, default: False Return ------ ltxt : string The text that would be printed. Might be useful to capture for other purposes """ # Dictionary structure: key = information about if self.Clamps.data_mode in self.dataModel.ic_modes or self.Clamps.data_mode == 'vc': data_template = self.data_template else: data_template = ( OrderedDict([('ElapsedTime', '{:>8.2f}'), ('HoldV', '{:>5.1f}'), ('JP', '{:>5.1f}'), ('Rs', '{:>6.2f}'), ('Cm', '{:>6.1f}'), ('Ru', '{:>6.2f}'), ('Erev', '{:>6.2f}'), ('gsyn_Erev', '{:>9.2f}'), ('gsyn_60', '{:>7.2f}'), ('gsyn_13', '{:>7.2f}'), # ('p0', '{:6.3e}'), ('p1', '{:6.3e}'), ('p2', '{:6.3e}'), ('p3', '{:6.3e}'), ('I_ionic+', '{:>8.3f}'), ('I_ionic-', '{:>8.3f}'), ('ILeak', '{:>7.3f}'), ('win1Start', '{:>9.3f}'), ('win1End', '{:>7.3f}'), ('win2Start', '{:>9.3f}'), ('win2End', '{:>7.3f}'), ('win0Start', '{:>9.3f}'), ('win0End', '{:>7.3f}'), ])) # summary table header is written anew for each cell htxt = '' if script_header: htxt = '{:34s}\t{:15s}\t{:24s}\t'.format("Cell", "Genotype", "Protocol") for k in data_template.keys(): cnv = '{:<%ds}' % (data_template[k][0]) # print 'cnv: ', cnv htxt += (cnv + '\t').format(k) script_header = False htxt += '\n' ltxt = '' if 'Genotype' not in self.analysis_summary.keys(): self.analysis_summary['Genotype'] = 'Unknown' ltxt += '{:34s}\t{:15s}\t{:24s}\t'.format(self.analysis_summary['CellID'], self.analysis_summary['Genotype'], self.analysis_summary['Protocol']) for a in data_template.keys(): if a in self.analysis_summary.keys(): txt = self.analysis_summary[a] if a in ['Description', 'Notes']: txt = txt.replace('\n', ' ').replace('\r', '') # remove line breaks from output, replace \n with space #print a, data_template[a] ltxt += (data_template[a][1]).format(txt) + ' \t' else: ltxt += ('{:>%ds}' % (data_template[a][0]) + '\t').format('NaN') ltxt = ltxt.replace('\n', ' ').replace('\r', '') # remove line breaks ltxt = htxt + ltxt if printnow: print(ltxt) if copytoclipboard: clipb = Qt.QApplication.clipboard() clipb.clear(mode=clipb.Clipboard) clipb.setText(ltxt, mode=clipb.Clipboard) return ltxt def dbStoreClicked(self): """ Store data into the current database for further analysis """ #self.updateAnalysis() if self.loaded is None: return self.dbIdentity = 'IVCurve' # type of data in the database db = self._host_.dm.currentDatabase() # print 'dir (db): ', dir(db) # print 'dir (db.db): ', dir(db.db) # print 'db.listTables: ', db.listTables() # print 'db.tables: ', db.tables # table = self.dbIdentity columns = OrderedDict([ # ('ProtocolDir', 'directory:Protocol'), ('AnalysisDate', 'text'), ('ProtocolSequenceDir', 'directory:ProtocolSequence'), ('Dir', 'text'), ('Protocol', 'text'), ('Genotype', 'text'), ('Celltype', 'text'), ('UseData', 'int'), ('RMP', 'real'), ('R_in', 'real'), ('tau_m', 'real'), ('iHold', 'real'), ('PulseDuration', 'real'), ('neg_cmd', 'real'), ('neg_pk', 'real'), ('neg_ss', 'real'), ('h_tau', 'real'), ('h_g', 'real'), ('SpikeThreshold', 'real'), ('AdaptRatio', 'real'), ('FiringRate', 'real'), ('AP1_HalfWidth', 'real'), ('AP1_Latency', 'real'), ('AP2_HalfWidth', 'real'), ('AP2_Latency', 'real'), ('AHP_Depth', 'real'), ('FI_Curve', 'text'), ('IV_Curve_pk', 'text'), ('IV_Curve_ss', 'text'), ]) if table not in db.tables: db.createTable(table, columns, owner=self.dbIdentity) try: z = self.neg_cmd except: self.neg_cmd = 0. self.neg_pk = 0. self.neg_ss = 0. self.tau2 = 0. self.Gh = 0. if 'Genotype' not in self.analysis_summary: self.analysis_summary['Genotype'] = 'Unknown' # print 'genytope: ', self.analysis_summary['Genotype'] if 'Celltype' not in self.Script.analysis_parameters: self.analysis_summary['Celltype'] = 'Unknown' data = { 'AnalysisDate': time.strftime("%Y-%m-%d %H:%M:%S"), 'ProtocolSequenceDir': self.loaded, # 'ProtocolSequenceDir': self.dataModel.getParent(self.loaded, 'ProtocolSequence'), 'Dir': self.loaded.parent().name(), 'Protocol': self.loaded.name(), 'Genotype': self.analysis_summary['Genotype'], 'Celltype': self.Script.analysis_parameters['Celltype'], # uses global info, not per cell info 'UseData' : 1, 'RMP': self.rmp / 1000., 'R_in': self.r_in, 'tau_m': self.tau, 'iHold': self.analysis_summary['iHold'], 'PulseDuration': self.analysis_summary['pulseDuration'], 'AdaptRatio': self.adapt_ratio, 'neg_cmd': self.neg_cmd, 'neg_pk': self.neg_pk, 'neg_ss': self.neg_ss, 'h_tau': self.analysis_summary['tauh'], 'h_g': self.analysis_summary['Gh'], 'SpikeThreshold': self.analysis_summary['SpikeThreshold'], 'FiringRate': self.analysis_summary['FiringRate'], 'AP1_HalfWidth': self.analysis_summary['AP1_HalfWidth'], 'AP1_Latency': self.analysis_summary['AP1_Latency'], 'AP2_HalfWidth': self.analysis_summary['AP2_HalfWidth'], 'AP2_Latency': self.analysis_summary['AP2_Latency'], 'AHP_Depth': self.analysis_summary['AHP_Depth'], 'FI_Curve': repr(self.analysis_summary['FI_Curve'].tolist()), # convert array to string for storage 'IV_Curve_pk': repr(np.array(self.analysis_summary['IV_Curve_pk']).tolist()), 'IV_Curve_ss': repr(np.array(self.analysis_summary['IV_Curve_ss']).tolist()), } ## If only one record was given, make it into a list of one record if isinstance(data, dict): data = [data] ## Make sure target table exists and has correct columns, links to input file fields = db.describeData(data) ## override directory fields since describeData can't guess these for us # fields['ProtocolDir'] = 'directory:Protocol' fields['ProtocolSequenceDir'] = 'directory:ProtocolSequence' with db.transaction(): db.checkTable(table, owner=self.dbIdentity, columns=fields, create=True, addUnknownColumns=True, indexes=[['ProtocolSequenceDir'],]) dirtable = db.dirTableName(self.loaded) # set up the DirTable Protocol Sequence directory. if not db.hasTable(dirtable): db.createDirTable(self.loaded) # delete old for source in set([d['ProtocolSequenceDir'] for d in data]): db.delete(table, where={'ProtocolSequenceDir': source}) # write new with pg.ProgressDialog("Storing IV Results..", 0, 100) as dlg: for n, nmax in db.iterInsert(table, data, chunkSize=30): dlg.setMaximum(nmax) dlg.setValue(n) if dlg.wasCanceled(): raise HelpfulException("Scan store canceled by user.", msgType='status') #db.close() #db.open() print("Updated record for ", self.loaded.name()) # ---- Helpers ---- # Some of these would normally live in a pyqtgraph-related module, but are # just stuck here to get the job done. # @staticmethod def label_up(plot, xtext, ytext, title): """helper to label up the plot""" plot.setLabel('bottom', xtext) plot.setLabel('left', ytext) plot.setTitle(title)
mit
marqh/iris
lib/iris/tests/experimental/test_animate.py
6
2918
# (C) British Crown Copyright 2013 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """ Test the animation of cubes within iris. """ from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # import iris tests first so that some things can be initialised before # importing anything else import iris.tests as tests import numpy as np import iris from iris.coord_systems import GeogCS # Run tests in no graphics mode if matplotlib is not available. if tests.MPL_AVAILABLE: import iris.experimental.animate as animate import iris.plot as iplt @tests.skip_plot class IntegrationTest(tests.GraphicsTest): def setUp(self): super(IntegrationTest, self).setUp() cube = iris.cube.Cube(np.arange(36, dtype=np.int32).reshape((3, 3, 4))) cs = GeogCS(6371229) coord = iris.coords.DimCoord( points=np.array([1, 2, 3], dtype=np.int32), long_name='time') cube.add_dim_coord(coord, 0) coord = iris.coords.DimCoord( points=np.array([-1, 0, 1], dtype=np.int32), standard_name='latitude', units='degrees', coord_system=cs) cube.add_dim_coord(coord, 1) coord = iris.coords.DimCoord( points=np.array([-1, 0, 1, 2], dtype=np.int32), standard_name='longitude', units='degrees', coord_system=cs) cube.add_dim_coord(coord, 2) self.cube = cube def test_cube_animation(self): # This follows :meth:`~matplotlib.animation.FuncAnimation.save` # to ensure that each frame corresponds to known accepted frames for # the animation. cube_iter = self.cube.slices(('latitude', 'longitude')) ani = animate.animate(cube_iter, iplt.contourf) # Disconnect the first draw callback to stop the animation ani._fig.canvas.mpl_disconnect(ani._first_draw_id) ani = [ani] # Extract frame data for data in zip(*[a.new_saved_frame_seq() for a in ani]): # Draw each frame for anim, d in zip(ani, data): anim._draw_next_frame(d, blit=False) self.check_graphic() if __name__ == "__main__": tests.main()
lgpl-3.0
henry-ngo/VIP
vip_hci/negfc/mcmc_sampling.py
1
39691
#! /usr/bin/env python """ Module with the MCMC (``emcee``) sampling for NEGFC parameter estimation. """ from __future__ import print_function __author__ = 'O. Wertz, C. Gomez @ ULg' __all__ = ['lnprior', 'lnlike', 'mcmc_negfc_sampling', 'chain_zero_truncated', 'show_corner_plot', 'show_walk_plot', 'confidence'] import numpy as np import os import emcee from math import isinf, floor, ceil import inspect import datetime import corner from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator from matplotlib.mlab import normpdf from scipy.stats import norm from ..fits import open_adicube, open_fits from ..phot import cube_inject_companions from ..conf import time_ini, timing, sep from .simplex_fmerit import get_values_optimize import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) def lnprior(param, bounds): """ Define the prior log-function. Parameters ---------- param: tuple The model parameters. bounds: list The bounds for each model parameter. Ex: bounds = [(10,20),(0,360),(0,5000)] Returns ------- out: float. 0 -- All the model parameters satisfy the prior conditions defined here. -np.inf -- At least one model parameters is out of bounds. """ try: r, theta, flux = param except TypeError: print('paraVector must be a tuple, {} was given'.format(type(param))) try: r_bounds, theta_bounds, flux_bounds = bounds except TypeError: print('bounds must be a list of tuple, {} was given'.format(type(param))) if r_bounds[0] <= r <= r_bounds[1] and \ theta_bounds[0] <= theta <= theta_bounds[1] and \ flux_bounds[0] <= flux <= flux_bounds[1]: return 0.0 else: return -np.inf def lnlike(param, cube, angs, plsc, psf_norm, fwhm, annulus_width, ncomp, aperture_radius, initial_state, cube_ref=None, svd_mode='lapack', scaling='temp-mean', fmerit='sum', collapse='median', debug=False): """ Define the likelihood log-function. Parameters ---------- param: tuple The model parameters, typically (r, theta, flux). cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. plsc: float The platescale, in arcsec per pixel. psf_norm: numpy.array The scaled psf expressed as a numpy.array. annulus_width: float The width of the annulus of interest in terms of the FWHM. ncomp: int The number of principal components. fwhm : float The FHWM in pixels. aperture_radius: float The radius of the circular aperture in terms of the FWHM. initial_state: numpy.array The initial guess for the position and the flux of the planet. cube_ref: array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). debug: boolean If True, the cube is returned along with the likelihood log-function. Returns ------- out: float The log of the likelihood. """ # Create the cube with the negative fake companion injected cube_negfc = cube_inject_companions(cube, psf_norm, angs, flevel=-param[2], plsc=plsc, rad_dists=[param[0]], n_branches=1, theta=param[1], verbose=False, imlib='opencv') # Perform PCA and extract the zone of interest values = get_values_optimize(cube_negfc,angs,ncomp,annulus_width*fwhm, aperture_radius*fwhm, initial_state[0], initial_state[1], cube_ref=cube_ref, svd_mode=svd_mode, scaling=scaling, collapse=collapse) # Function of merit if fmerit=='sum': lnlikelihood = -0.5 * np.sum(np.abs(values)) elif fmerit=='stddev': values = values[values!=0] lnlikelihood = -1*np.std(np.abs(values)) else: raise RuntimeError('fmerit choice not recognized') if debug: return lnlikelihood, cube_negfc else: return lnlikelihood def lnprob(param,bounds, cube, angs, plsc, psf_norm, fwhm, annulus_width, ncomp, aperture_radius, initial_state, cube_ref=None, svd_mode='lapack', scaling='temp-mean', fmerit='sum', collapse='median',display=False): """ Define the probability log-function as the sum between the prior and likelihood log-funtions. Parameters ---------- param: tuple The model parameters. bounds: list The bounds for each model parameter. Ex: bounds = [(10,20),(0,360),(0,5000)] cube: numpy.array The cube of fits images expressed as a numpy.array. angs: numpy.array The parallactic angle fits image expressed as a numpy.array. plsc: float The platescale, in arcsec per pixel. psf_norm: numpy.array The scaled psf expressed as a numpy.array. fwhm : float The FHWM in pixels. annulus_width: float The width in pixel of the annulus on wich the PCA is performed. ncomp: int The number of principal components. aperture_radius: float The radius of the circular aperture. initial_state: numpy.array The initial guess for the position and the flux of the planet. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). display: boolean If True, the cube is displayed with ds9. Returns ------- out: float The probability log-function. """ if initial_state is None: initial_state = param lp = lnprior(param, bounds) if isinf(lp): return -np.inf return lp + lnlike(param, cube, angs, plsc, psf_norm, fwhm, annulus_width, ncomp, aperture_radius, initial_state, cube_ref, svd_mode, scaling, fmerit, collapse, display) def gelman_rubin(x): """ Determine the Gelman-Rubin \hat{R} statistical test between Markov chains. Parameters ---------- x: numpy.array The numpy.array on which the Gelman-Rubin test is applied. This array should contain at least 2 set of data, i.e. x.shape >= (2,). Returns ------- out: float The Gelman-Rubin \hat{R}. Example ------- >>> x1 = np.random.normal(0.0,1.0,(1,100)) >>> x2 = np.random.normal(0.1,1.3,(1,100)) >>> x = np.vstack((x1,x2)) >>> gelman_rubin(x) 1.0366629898991262 >>> gelman_rubin(np.vstack((x1,x1))) 0.99 """ if np.shape(x) < (2,): raise ValueError( 'Gelman-Rubin diagnostic requires multiple chains of the same length.') try: m, n = np.shape(x) except ValueError: print("Bad shape for the chains") return # Calculate between-chain variance B_over_n = np.sum((np.mean(x, 1) - np.mean(x)) ** 2) / (m - 1) # Calculate within-chain variances W = np.sum([(x[i] - xbar) ** 2 for i, xbar in enumerate(np.mean(x, 1))]) / (m * (n - 1)) # (over) estimate of variance s2 = W * (n - 1) / n + B_over_n # Pooled posterior variance estimate V = s2 + B_over_n / m # Calculate PSRF R = V / W return R def gelman_rubin_from_chain(chain, burnin): """ Pack the MCMC chain and determine the Gelman-Rubin \hat{R} statistical test. In other words, two sub-sets are extracted from the chain (burnin parts are taken into account) and the Gelman-Rubin statistical test is performed. Parameters ---------- chain: numpy.array The MCMC chain with the shape walkers x steps x model_parameters burnin: float \in [0,1] The fraction of a walker which is discarded. Returns ------- out: float The Gelman-Rubin \hat{R}. """ dim = chain.shape[2] k = chain.shape[1] threshold0 = int(floor(burnin*k)) threshold1 = int(floor((1-burnin)*k*0.25)) rhat = np.zeros(dim) for j in range(dim): part1 = chain[:,threshold0:threshold0+threshold1,j].reshape((-1)) part2 = chain[:,threshold0+3*threshold1:threshold0+4*threshold1,j].reshape((-1)) series = np.vstack((part1,part2)) rhat[j] = gelman_rubin(series) return rhat def mcmc_negfc_sampling(cubes, angs, psfn, ncomp, plsc, initial_state, fwhm=4, annulus_width=3, aperture_radius=4, cube_ref=None, svd_mode='lapack', scaling='temp-mean', fmerit='sum', collapse='median', nwalkers=1000, bounds=None, a=2.0, burnin=0.3, rhat_threshold=1.01, rhat_count_threshold=1, niteration_min=0, niteration_limit=1e02, niteration_supp=0, check_maxgap=1e04, nproc=1, output_file=None, display=False, verbose=True, save=False): """ Runs an affine invariant mcmc sampling algorithm in order to determine the position and the flux of the planet using the 'Negative Fake Companion' technique. The result of this procedure is a chain with the samples from the posterior distributions of each of the 3 parameters. This technique can be summarized as follows: 1) We inject a negative fake companion (one candidate) at a given position and characterized by a given flux, both close to the expected values. 2) We run PCA on an full annulus which pass through the initial guess, regardless of the position of the candidate. 3) We extract the intensity values of all the pixels contained in a circular aperture centered on the initial guess. 4) We calculate the function of merit. The associated chi^2 is given by chi^2 = sum(|I_j|) where j \in {1,...,N} with N the total number of pixels contained in the circular aperture. The steps 1) to 4) are looped. At each iteration, the candidate model parameters are defined by the emcee Affine Invariant algorithm. Parameters ---------- cubes: str or numpy.array The relative path to the cube of fits images OR the cube itself. angs: str or numpy.array The relative path to the parallactic angle fits image or the angs itself. psfn: str or numpy.array The relative path to the instrumental PSF fits image or the PSF itself. The PSF must be centered and the flux in a 1*FWHM aperture must equal 1. ncomp: int The number of principal components. plsc: float The platescale, in arcsec per pixel. annulus_width: float, optional The width in pixel of the annulus on which the PCA is performed. aperture_radius: float, optional The radius of the circular aperture. nwalkers: int optional The number of Goodman & Weare 'walkers'. initial_state: numpy.array The first guess for the position and flux of the planet, respectively. Each walker will start in a small ball around this preferred position. cube_ref : array_like, 3d, optional Reference library cube. For Reference Star Differential Imaging. svd_mode : {'lapack', 'randsvd', 'eigen', 'arpack'}, str optional Switch for different ways of computing the SVD and selected PCs. 'randsvd' is not recommended for the negative fake companion technique. scaling : {'temp-mean', 'temp-standard'} or None, optional With None, no scaling is performed on the input data before SVD. With "temp-mean" then temporal px-wise mean subtraction is done and with "temp-standard" temporal mean centering plus scaling to unit variance is done. fmerit : {'sum', 'stddev'}, string optional Chooses the figure of merit to be used. stddev works better for close in companions sitting on top of speckle noise. collapse : {'median', 'mean', 'sum', 'trimmean', None}, str or None, optional Sets the way of collapsing the frames for producing a final image. If None then the cube of residuals is used when measuring the function of merit (instead of a single final frame). bounds: numpy.array or list, default=None, optional The prior knowledge on the model parameters. If None, large bounds will be automatically estimated from the initial state. a: float, default=2.0 The proposal scale parameter. See notes. burnin: float, default=0.3 The fraction of a walker which is discarded. rhat_threshold: float, default=0.01 The Gelman-Rubin threshold used for the test for nonconvergence. rhat_count_threshold: int, optional The Gelman-Rubin test must be satisfied 'rhat_count_threshold' times in a row before claiming that the chain has converged. niteration_min: int, optional Steps per walker lower bound. The simulation will run at least this number of steps per walker. niteration_limit: int, optional Steps per walker upper bound. If the simulation runs up to 'niteration_limit' steps without having reached the convergence criterion, the run is stopped. niteration_supp: int, optional Number of iterations to run after having "reached the convergence". check_maxgap: int, optional Maximum number of steps per walker between two Gelman-Rubin test. nproc: int, optional The number of processes to use for parallelization. output_file: str The name of the ouput file which contains the MCMC results (if save is True). display: boolean If True, the walk plot is displayed at each evaluation of the Gelman- Rubin test. verbose: boolean Display informations in the shell. save: boolean If True, the MCMC results are pickled. Returns ------- out : numpy.array The MCMC chain. Notes ----- The parameter 'a' must be > 1. For more theoretical information concerning this parameter, see Goodman & Weare, 2010, Comm. App. Math. Comp. Sci., 5, 65, Eq. [9] p70. The parameter 'rhat_threshold' can be a numpy.array with individual threshold value for each model parameter. """ if verbose: start_time = time_ini() print(" MCMC sampler for the NEGFC technique ") print(sep) # If required, one create the output folder. if save: if not os.path.exists('results'): os.makedirs('results') if output_file is None: datetime_today = datetime.datetime.today() output_file = str(datetime_today.year)+str(datetime_today.month)+\ str(datetime_today.day)+'_'+str(datetime_today.hour)+\ str(datetime_today.minute)+str(datetime_today.second) if not os.path.exists('results/'+output_file): os.makedirs('results/'+output_file) # ######################################################################### # If required, one opens the source files # ######################################################################### if isinstance(cubes,str) and isinstance(angs,str): if angs is None: cubes, angs = open_adicube(cubes, verbose=False) else: cubes = open_fits(cubes) angs = open_fits(angs, verbose=False) if isinstance(psfn,str): psfn = open_fits(psfn) if verbose: print('The data has been loaded. Let''s continue !') # ######################################################################### # Initialization of the variables # ######################################################################### dim = 3 # There are 3 model parameters, resp. the radial and angular # position of the planet and its flux. itermin = niteration_min limit = niteration_limit supp = niteration_supp maxgap = check_maxgap initial_state = np.array(initial_state) if itermin > limit: itermin = 0 print("'niteration_min' must be < 'niteration_limit'.") fraction = 0.3 geom = 0 lastcheck = 0 konvergence = np.inf rhat_count = 0 chain = np.empty([nwalkers,1,dim]) isamples = np.empty(0) pos = initial_state + np.random.normal(0,1e-01,(nwalkers,3)) nIterations = limit + supp rhat = np.zeros(dim) stop = np.inf if bounds is None: bounds = [(initial_state[0]-annulus_width/2.,initial_state[0]+annulus_width/2.), #radius (initial_state[1]-10,initial_state[1]+10), #angle (0,2*initial_state[2])] #flux sampler = emcee.EnsembleSampler(nwalkers,dim,lnprob,a, args =([bounds, cubes, angs, plsc, psfn, fwhm, annulus_width, ncomp, aperture_radius, initial_state, cube_ref, svd_mode, scaling, fmerit, collapse]), threads=nproc) start = datetime.datetime.now() # ######################################################################### # Affine Invariant MCMC run # ######################################################################### if verbose: print('') print('Start of the MCMC run ...') print('Step | Duration/step (sec) | Remaining Estimated Time (sec)') for k, res in enumerate(sampler.sample(pos,iterations=nIterations, storechain=True)): elapsed = (datetime.datetime.now()-start).total_seconds() if verbose: if k == 0: q = 0.5 else: q = 1 print('{}\t\t{:.5f}\t\t\t{:.5f}'.format(k,elapsed*q,elapsed*(limit-k-1)*q)) start = datetime.datetime.now() # --------------------------------------------------------------------- # Store the state manually in order to handle with dynamical sized chain. # --------------------------------------------------------------------- ## Check if the size of the chain is long enough. s = chain.shape[1] if k+1 > s: #if not, one doubles the chain length empty = np.zeros([nwalkers,2*s,dim]) chain = np.concatenate((chain,empty),axis=1) ## Store the state of the chain chain[:,k] = res[0] # --------------------------------------------------------------------- # If k meets the criterion, one tests the non-convergence. # --------------------------------------------------------------------- criterion = np.amin([ceil(itermin*(1+fraction)**geom),\ lastcheck+floor(maxgap)]) if k == criterion: if verbose: print('') print(' Gelman-Rubin statistic test in progress ...') geom += 1 lastcheck = k if display: show_walk_plot(chain) if save: import pickle with open('results/'+output_file+'/'+output_file+'_temp_k{}'.format(k),'wb') as fileSave: myPickler = pickle.Pickler(fileSave) myPickler.dump({'chain':sampler.chain, 'lnprob':sampler.lnprobability, 'AR':sampler.acceptance_fraction}) ## We only test the rhat if we have reached the minimum number of steps. if (k+1) >= itermin and konvergence == np.inf: threshold0 = int(floor(burnin*k)) threshold1 = int(floor((1-burnin)*k*0.25)) # We calculate the rhat for each model parameter. for j in range(dim): part1 = chain[:,threshold0:threshold0+threshold1,j].reshape((-1)) part2 = chain[:,threshold0+3*threshold1:threshold0+4*threshold1,j].reshape((-1)) series = np.vstack((part1,part2)) rhat[j] = gelman_rubin(series) if verbose: print(' r_hat = {}'.format(rhat)) print(' r_hat <= threshold = {}'.format(rhat <= rhat_threshold)) print('') # We test the rhat. if (rhat <= rhat_threshold).all(): #and rhat_count < rhat_count_threshold: rhat_count += 1 if rhat_count < rhat_count_threshold: print("Gelman-Rubin test OK {}/{}".format(rhat_count,rhat_count_threshold)) elif rhat_count >= rhat_count_threshold: print('... ==> convergence reached') konvergence = k stop = konvergence + supp #elif (rhat <= rhat_threshold).all() and rhat_count >= rhat_count_threshold: # print '... ==> convergence reached' # konvergence = k # stop = konvergence + supp else: rhat_count = 0 if (k+1) >= stop: #Then we have reached the maximum number of steps for our Markov chain. print('We break the loop because we have reached convergence') break if k == nIterations-1: print("We have reached the limit number of steps without having converged") # ######################################################################### # Construction of the independent samples # ######################################################################### temp = np.where(chain[0,:,0] == 0.0)[0] if len(temp) != 0: idxzero = temp[0] else: idxzero = chain.shape[1] idx = np.amin([np.floor(2e05/nwalkers),np.floor(0.1*idxzero)]) if idx == 0: isamples = chain[:,0:idxzero,:] else: isamples = chain[:,idxzero-idx:idxzero,:] if save: import pickle frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) input_parameters = {j : values[j] for j in args[1:]} output = {'isamples':isamples, 'chain': chain_zero_truncated(chain), 'input_parameters': input_parameters, 'AR': sampler.acceptance_fraction, 'lnprobability': sampler.lnprobability} with open('results/'+output_file+'/MCMC_results','wb') as fileSave: myPickler = pickle.Pickler(fileSave) myPickler.dump(output) print('') print("The file MCMC_results has been stored in the folder {}".format('results/'+output_file+'/')) if verbose: timing(start_time) return chain_zero_truncated(chain) def chain_zero_truncated(chain): """ Return the Markov chain with the dimension: walkers x steps* x parameters, where steps* is the last step before having 0 (not yet constructed chain). Parameters ---------- chain: numpy.array The MCMC chain. Returns ------- out: numpy.array The truncated MCMC chain, that is to say, the chain which only contains relevant information. """ try: idxzero = np.where(chain[0,:,0] == 0.0)[0][0] except: idxzero = chain.shape[1] return chain[:,0:idxzero,:] def show_walk_plot(chain, save=False, **kwargs): """ Display or save a figure showing the path of each walker during the MCMC run Parameters ---------- chain: numpy.array The Markov chain. The shape of chain must be nwalkers x length x dim. If a part of the chain is filled with zero values, the method will discard these steps. save: boolean, default: False If True, a pdf file is created. kwargs: Additional attributs are passed to the matplotlib plot method. Returns ------- Display the figure or create a pdf file named walk_plot.pdf in the working directory. """ temp = np.where(chain[0,:,0] == 0.0)[0] if len(temp) != 0: chain = chain[:,:temp[0],:] labels = kwargs.pop('labels',["$r$",r"$\theta$","$f$"]) fig, axes = plt.subplots(3, 1, sharex=True, figsize=kwargs.pop('figsize',(8,6))) axes[2].set_xlabel(kwargs.pop('xlabel','step number')) axes[2].set_xlim(kwargs.pop('xlim',[0,chain.shape[1]])) color = kwargs.pop('color','k') alpha = kwargs.pop('alpha',0.4) for j in range(3): axes[j].plot(chain[:,:,j].T, color=color, alpha=alpha, **kwargs) axes[j].yaxis.set_major_locator(MaxNLocator(5)) axes[j].set_ylabel(labels[j]) fig.tight_layout(h_pad=0.0) if save: plt.savefig('walk_plot.pdf') plt.close(fig) else: plt.show() def show_corner_plot(chain, burnin=0.5, save=False, **kwargs): """ Display or save a figure showing the corner plot (pdfs + correlation plots) Parameters ---------- chain: numpy.array The Markov chain. The shape of chain must be nwalkers x length x dim. If a part of the chain is filled with zero values, the method will discard these steps. burnin: float, default: 0 The fraction of a walker we want to discard. save: boolean, default: False If True, a pdf file is created. kwargs: Additional attributs are passed to the corner.corner() method. Returns ------- Display the figure or create a pdf file named walk_plot.pdf in the working directory. Raises ------ ImportError """ #burnin = kwargs.pop('burnin',0) try: temp = np.where(chain[0,:,0] == 0.0)[0] if len(temp) != 0: chain = chain[:,:temp[0],:] length = chain.shape[1] chain = chain[:,int(np.floor(burnin*(length-1))):length,:].reshape((-1,3)) except IndexError: pass if chain.shape[0] == 0: print("It seems that the chain is empty. Have you already run the MCMC ?") else: fig = corner.corner(chain, labels=kwargs.pop('labels',["$r$",r"$\theta$","$f$"]), **kwargs) if save: plt.savefig('corner_plot.pdf') plt.close(fig) else: plt.show() def writeText(document,text): """ Write a line of text in a txt file. Parameters ---------- document: str The path to the file to append or create. text: str The text to write. Returns ------- None """ with open(document,'a') as fileObject: if isinstance(text,str): fileObject.write("%s \n" % text) elif isinstance(text,tuple): defFormat = "%s" for k in range(1,len(text)): defFormat += "\t %s" fileObject.write(defFormat % text) def confidence(isamples, cfd=68.27, bins=100, gaussianFit=False, weights=None, verbose=True, save=False, **kwargs): """ Determine the highly probable value for each model parameter, as well as the 1-sigma confidence interval. Parameters ---------- isamples: numpy.array The independent samples for each model parameter. cfd: float, optional The confidence level given in percentage. bins: int, optional The number of bins used to sample the posterior distributions. gaussianFit: boolean, optional If True, a gaussian fit is performed in order to determine (\mu,\sigma) weights : (n, ) array_like or None, optional An array of weights for each sample. verbose: boolean, optional Display information in the shell. save: boolean, optional If "True", a txt file with the results is saved in the output repository. kwargs: optional Additional attributes are passed to the matplotlib hist() method. Returns ------- out: tuple A 2 elements tuple with the highly probable solution and the confidence interval. """ plsc = kwargs.pop('plsc',0.001) title = kwargs.pop('title',None) output_file = kwargs.pop('filename','confidence.txt') try: l = isamples.shape[1] except Exception: l = 1 confidenceInterval = dict() val_max = dict() pKey = ['r','theta','f'] if cfd == 100: cfd = 99.9 ######################################### ## Determine the confidence interval ## ######################################### if gaussianFit: mu = np.zeros(3) sigma = np.zeros_like(mu) if gaussianFit: fig,ax = plt.subplots(2,3, figsize=(12,8)) else: fig,ax = plt.subplots(1,3, figsize=(12,4)) for j in range(l): label_file = ['r','theta','flux'] label = [r'$\Delta r$',r'$\Delta \theta$',r'$\Delta f$'] if gaussianFit: n, bin_vertices, _ = ax[0][j].hist(isamples[:,j],bins=bins, weights=weights, histtype='step', edgecolor='gray') else: n, bin_vertices, _ = ax[j].hist(isamples[:,j],bins=bins, weights=weights, histtype='step', edgecolor='gray') bins_width = np.mean(np.diff(bin_vertices)) surface_total = np.sum(np.ones_like(n)*bins_width * n) n_arg_sort = np.argsort(n)[::-1] test = 0 pourcentage = 0 for k,jj in enumerate(n_arg_sort): test = test + bins_width*n[jj] pourcentage = test/surface_total*100. if pourcentage > cfd: if verbose: print('percentage for {}: {}%'.format(label_file[j],pourcentage)) break n_arg_min = n_arg_sort[:k].min() n_arg_max = n_arg_sort[:k+1].max() if n_arg_min == 0: n_arg_min += 1 if n_arg_max == bins: n_arg_max -= 1 val_max[pKey[j]] = bin_vertices[n_arg_sort[0]]+bins_width/2. confidenceInterval[pKey[j]] = np.array([bin_vertices[n_arg_min-1], bin_vertices[n_arg_max+1]]-val_max[pKey[j]]) arg = (isamples[:,j]>=bin_vertices[n_arg_min-1])*(isamples[:,j]<=bin_vertices[n_arg_max+1]) if gaussianFit: _ = ax[0][j].hist(isamples[arg,j],bins=bin_vertices, facecolor='gray', edgecolor='darkgray', histtype='stepfilled', alpha=0.5) ax[0][j].vlines(val_max[pKey[j]], 0, n[n_arg_sort[0]], linestyles='dashed', color='red') ax[0][j].set_xlabel(label[j]) if j==0: ax[0][j].set_ylabel('Counts') else: _ = ax[j].hist(isamples[arg,j],bins=bin_vertices, facecolor='gray', edgecolor='darkgray', histtype='stepfilled', alpha=0.5) ax[j].vlines(val_max[pKey[j]], 0, n[n_arg_sort[0]], linestyles='dashed', color='red') ax[j].set_xlabel(label[j]) if j==0: ax[j].set_ylabel('Counts') if gaussianFit: (mu[j], sigma[j]) = norm.fit(isamples[:,j]) n_fit, bins_fit = np.histogram(isamples[:,j], bins, normed=1, weights=weights) _= ax[1][j].hist(isamples[:,j], bins, normed=1, weights=weights, facecolor='gray', edgecolor='darkgray', histtype='step') y = normpdf( bins_fit, mu[j], sigma[j]) ax[1][j].plot(bins_fit, y, 'r--', linewidth=2, alpha=0.7) ax[1][j].set_xlabel(label[j]) if j==0: ax[1][j].set_ylabel('Counts') if title is not None: msg = r"$\mu$ = {:.4f}, $\sigma$ = {:.4f}" ax[1][j].set_title(title+' '+msg.format(mu[j],sigma[j]), fontsize=10) else: if title is not None: ax[1].set_title(title, fontsize=10) if save: if gaussianFit: plt.savefig('confi_hist_flux_r_theta_gaussfit.pdf') else: plt.savefig('confi_hist_flux_r_theta.pdf') plt.tight_layout(w_pad=0.001) if verbose: print('') print('Confidence intervals:') print('r: {} [{},{}]'.format(val_max['r'], confidenceInterval['r'][0], confidenceInterval['r'][1])) print('theta: {} [{},{}]'.format(val_max['theta'], confidenceInterval['theta'][0], confidenceInterval['theta'][1])) print('flux: {} [{},{}]'.format(val_max['f'], confidenceInterval['f'][0], confidenceInterval['f'][1])) if gaussianFit: print('') print('Gaussian fit results:') print('r: {} +-{}'.format(mu[0],sigma[0])) print('theta: {} +-{}'.format(mu[1],sigma[1])) print('f: {} +-{}'.format(mu[2],sigma[2])) ############################################## ## Write inference results in a text file ## ############################################## if save: try: fileObject = open(output_file,'r') except IOError: # if the file doesn't exist, we create it (empty) answer = 'y' if answer == 'y': fileObject = open(output_file,'w') elif answer == 'n': msg = "The file has not been created. The object cannot be " msg += "created neither." print(msg) raise IOError("No such file has been found") else: msg = "You must choose between 'y' for yes and 'n' for no. The " msg += "file has not been created. The object cannot be " msg += "created neither." print() raise IOError("No such file has been found") finally: fileObject.close() writeText(output_file,'###########################') writeText(output_file,'#### INFERENCE TEST ###') writeText(output_file,'###########################') writeText(output_file,' ') writeText(output_file,'Results of the MCMC fit') writeText(output_file,'----------------------- ') writeText(output_file,' ') writeText(output_file,'>> Position and flux of the planet (highly probable):') writeText(output_file,'{} % confidence interval'.format(cfd)) writeText(output_file,' ') for i in range(3): confidenceMax = confidenceInterval[pKey[i]][1] confidenceMin = -confidenceInterval[pKey[i]][0] if i == 2: text = '{}: \t\t\t{:.3f} \t-{:.3f} \t+{:.3f}' else: text = '{}: \t\t\t{:.3f} \t\t-{:.3f} \t\t+{:.3f}' writeText(output_file,text.format(pKey[i],val_max[pKey[i]], confidenceMin,confidenceMax)) writeText(output_file,' ') writeText(output_file,'Platescale = {} mas'.format(plsc*1000)) text = '{}: \t\t{:.2f} \t\t-{:.2f} \t\t+{:.2f}' writeText(output_file,text.format('r (mas)', val_max[pKey[0]]*plsc*1000, -confidenceInterval[pKey[0]][0]*plsc*1000, confidenceInterval[pKey[0]][1]*plsc*1000)) if gaussianFit: return (mu,sigma) else: return (val_max,confidenceInterval)
mit
yade/trunk
examples/adaptiveintegrator/simple-scene-plot-RungeKuttaCashKarp54.py
2
2589
#!/usr/bin/python # Burak ER # [email protected] # github.com/burak-er # Mechanical Engineering Department # Bursa Technical University # # -*- coding: utf-8 -*- from __future__ import print_function import matplotlib matplotlib.use('TkAgg') # Use an integrator engine that is derived from the interface Integrator. #RungeKuttaCashKarp54Integrator integrator performs one step of simulation for the given tolerances. Whether the time step is given, it completes it then stops. integrator=RungeKuttaCashKarp54Integrator([ ForceResetter(), GeneralIntegratorInsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()] ), GravityEngine(gravity=Vector3(0,0,-9.81)), PyRunner(virtPeriod=1e-99,command='myAddPlotData()')#use virtPeriod on this integrator. ]); #Tolerances can be set for the optimum accuracy integrator.rel_err=1e-6; integrator.abs_err=1e-6; O.engines=[integrator, ] O.bodies.append(box(center=[0,0,0],extents=[.5,.5,.5],fixed=True,color=[1,0,0])) O.bodies.append(sphere([0,0,2],1,color=[0,1,0])) O.dt=1e-2# this signifies the endpoint. It is not much important for the accuracy of the integration where accuracy is defined by rel_err and abs_err of the integrator. ############################################ ##### now the part pertaining to plots ##### ############################################ from yade import plot ## we will have 2 plots: ## 1. t as function of i (joke test function) ## 2. i as function of t on left y-axis ('|||' makes the separation) and z_sph, v_sph (as green circles connected with line) and z_sph_half again as function of t plot.plots={'i':('t'),'t':('z_sph',None,('v_sph','go-'),'z_sph_half')} ## this function is called by plotDataCollector ## it should add data with the labels that we will plot ## if a datum is not specified (but exists), it will be NaN and will not be plotted def myAddPlotData(): sph=O.bodies[1] ## store some numbers under some labels plot.addData(t=O.time,i=O.iter,z_sph=sph.state.pos[2],z_sph_half=.5*sph.state.pos[2],v_sph=sph.state.vel.norm()) print("Now calling plot.plot() to show the figures. The timestep is artificially low so that you can watch graphs being updated live.") plot.liveInterval=.2 plot.plot(subPlots=False) print("Number of threads ", os.environ['OMP_NUM_THREADS']) O.run(int(5./O.dt)); #plot.saveGnuplot('/tmp/a') ## you can also access the data in plot.data['i'], plot.data['t'] etc, under the labels they were saved.
gpl-2.0
elizabethswann/RR_fitter
codes/emcee/examples/line.py
2
4516
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import emcee import corner import numpy as np import scipy.optimize as op import matplotlib.pyplot as pl from matplotlib.ticker import MaxNLocator # Reproducible results! np.random.seed(123) # Choose the "true" parameters. m_true = -0.9594 b_true = 4.294 f_true = 0.534 # Generate some synthetic data from the model. N = 50 x = np.sort(10*np.random.rand(N)) yerr = 0.1+0.5*np.random.rand(N) y = m_true*x+b_true y += np.abs(f_true*y) * np.random.randn(N) y += yerr * np.random.randn(N) # Plot the dataset and the true model. xl = np.array([0, 10]) pl.errorbar(x, y, yerr=yerr, fmt=".k") pl.plot(xl, m_true*xl+b_true, "k", lw=3, alpha=0.6) pl.ylim(-9, 9) pl.xlabel("$x$") pl.ylabel("$y$") pl.tight_layout() pl.savefig("line-data.png") # Do the least-squares fit and compute the uncertainties. A = np.vstack((np.ones_like(x), x)).T C = np.diag(yerr * yerr) cov = np.linalg.inv(np.dot(A.T, np.linalg.solve(C, A))) b_ls, m_ls = np.dot(cov, np.dot(A.T, np.linalg.solve(C, y))) print("""Least-squares results: m = {0} ± {1} (truth: {2}) b = {3} ± {4} (truth: {5}) """.format(m_ls, np.sqrt(cov[1, 1]), m_true, b_ls, np.sqrt(cov[0, 0]), b_true)) # Plot the least-squares result. pl.plot(xl, m_ls*xl+b_ls, "--k") pl.savefig("line-least-squares.png") # Define the probability function as likelihood * prior. def lnprior(theta): m, b, lnf = theta if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0: return 0.0 return -np.inf def lnlike(theta, x, y, yerr): m, b, lnf = theta model = m * x + b inv_sigma2 = 1.0/(yerr**2 + model**2*np.exp(2*lnf)) return -0.5*(np.sum((y-model)**2*inv_sigma2 - np.log(inv_sigma2))) def lnprob(theta, x, y, yerr): lp = lnprior(theta) if not np.isfinite(lp): return -np.inf return lp + lnlike(theta, x, y, yerr) # Find the maximum likelihood value. chi2 = lambda *args: -2 * lnlike(*args) result = op.minimize(chi2, [m_true, b_true, np.log(f_true)], args=(x, y, yerr)) m_ml, b_ml, lnf_ml = result["x"] print("""Maximum likelihood result: m = {0} (truth: {1}) b = {2} (truth: {3}) f = {4} (truth: {5}) """.format(m_ml, m_true, b_ml, b_true, np.exp(lnf_ml), f_true)) # Plot the maximum likelihood result. pl.plot(xl, m_ml*xl+b_ml, "k", lw=2) pl.savefig("line-max-likelihood.png") # Set up the sampler. ndim, nwalkers = 3, 100 pos = [result["x"] + 1e-4*np.random.randn(ndim) for i in range(nwalkers)] sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr)) # Clear and run the production chain. print("Running MCMC...") sampler.run_mcmc(pos, 500, rstate0=np.random.get_state()) print("Done.") pl.clf() fig, axes = pl.subplots(3, 1, sharex=True, figsize=(8, 9)) axes[0].plot(sampler.chain[:, :, 0].T, color="k", alpha=0.4) axes[0].yaxis.set_major_locator(MaxNLocator(5)) axes[0].axhline(m_true, color="#888888", lw=2) axes[0].set_ylabel("$m$") axes[1].plot(sampler.chain[:, :, 1].T, color="k", alpha=0.4) axes[1].yaxis.set_major_locator(MaxNLocator(5)) axes[1].axhline(b_true, color="#888888", lw=2) axes[1].set_ylabel("$b$") axes[2].plot(np.exp(sampler.chain[:, :, 2]).T, color="k", alpha=0.4) axes[2].yaxis.set_major_locator(MaxNLocator(5)) axes[2].axhline(f_true, color="#888888", lw=2) axes[2].set_ylabel("$f$") axes[2].set_xlabel("step number") fig.tight_layout(h_pad=0.0) fig.savefig("line-time.png") # Make the triangle plot. burnin = 50 samples = sampler.chain[:, burnin:, :].reshape((-1, ndim)) fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"], truths=[m_true, b_true, np.log(f_true)]) fig.savefig("line-triangle.png") # Plot some samples onto the data. pl.figure() for m, b, lnf in samples[np.random.randint(len(samples), size=100)]: pl.plot(xl, m*xl+b, color="k", alpha=0.1) pl.plot(xl, m_true*xl+b_true, color="r", lw=2, alpha=0.8) pl.errorbar(x, y, yerr=yerr, fmt=".k") pl.ylim(-9, 9) pl.xlabel("$x$") pl.ylabel("$y$") pl.tight_layout() pl.savefig("line-mcmc.png") # Compute the quantiles. samples[:, 2] = np.exp(samples[:, 2]) m_mcmc, b_mcmc, f_mcmc = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(samples, [16, 50, 84], axis=0))) print("""MCMC result: m = {0[0]} +{0[1]} -{0[2]} (truth: {1}) b = {2[0]} +{2[1]} -{2[2]} (truth: {3}) f = {4[0]} +{4[1]} -{4[2]} (truth: {5}) """.format(m_mcmc, m_true, b_mcmc, b_true, f_mcmc, f_true))
mit
zodiacnan/Masterarbeit
moduls/results/psinew.py
1
1051
# -*- coding: utf-8 -*- """ Created on Mon Aug 07 09:53:26 2017 @author: DINGNAN """ #Psid_q import matplotlib.pyplot as plt import pandas as pd file_1 = "C:\\Users\\DINGNAN\\Desktop\\NanDing\\machines\\res\\Flux_d.dat" file_2 = "C:\\Users\\DINGNAN\\Desktop\\NanDing\\machines\\res\\Flux_q.dat" with open(file_1, "r") as fig: x = [] count = 0 y = [] for line in fig: count+=1 if count%2 == 0: data = line.split() x.append((float(data[0])*float(3000))) y.append((float(data[1]))) else: pass with open(file_2, "r") as fig: n = [] count = 0 for line in fig: count+=1 if count%2 == 0: data = line.split() n.append((float(data[1]))) else: pass plt.figure(figsize = (16,9),dpi=98) plt.plot(x,y,'red',label = 'Flux_d') plt.plot(x,n,'blue',label = 'Flux_q') plt.xlabel('Rotor Position -- [deg]') plt.ylabel('Psi_d/q') plt.grid(True) plt.legend() plt.savefig('Fluxdq.png') plt.show()
gpl-3.0
MalkIPP/openfisca-france-data
openfisca_france_data/scripts/read_dbf.py
5
3205
#! /usr/bin/env python # -*- coding: utf-8 -*- # This file is inspired by code found here # https://github.com/GeoDaSandbox/sandbox/blob/master/pyGDsandbox/dataIO.py # The aformementionned code is distributed under the following license # Copyright (c) 2007-2011, GeoDa Center for Geospatial Analysis and Computation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the name of the GeoDa Center for Geospatial Analysis and Computation # nor the names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF # USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import pysal as ps import pandas as pd def read_dbf(dbf_path, index = None, cols = False, incl_index = False): ''' Read a dbf file as a pandas.DataFrame, optionally selecting the index variable and which columns are to be loaded. __author__ = "Dani Arribas-Bel <[email protected]> " ... Arguments --------- dbf_path : str Path to the DBF file to be read index : str Name of the column to be used as the index of the DataFrame cols : list List with the names of the columns to be read into the DataFrame. Defaults to False, which reads the whole dbf incl_index : Boolean If True index is included in the DataFrame as a column too. Defaults to False Returns ------- df : DataFrame pandas.DataFrame object created ''' db = ps.open(dbf_path) if cols: if incl_index: cols.append(index) vars_to_read = cols else: vars_to_read = db.header data = dict([(var, db.by_col(var)) for var in vars_to_read]) if index: index = db.by_col(index) db.close() return pd.DataFrame(data, index=index) else: db.close() return pd.DataFrame(data)
agpl-3.0
bikong2/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
RachitKansal/scikit-learn
sklearn/ensemble/weight_boosting.py
71
40664
"""Weight Boosting This module contains weight boosting estimators for both classification and regression. The module structure is the following: - The ``BaseWeightBoosting`` base class implements a common ``fit`` method for all the estimators in the module. Regression and classification only differ from each other in the loss function that is optimized. - ``AdaBoostClassifier`` implements adaptive boosting (AdaBoost-SAMME) for classification problems. - ``AdaBoostRegressor`` implements adaptive boosting (AdaBoost.R2) for regression problems. """ # Authors: Noel Dawe <[email protected]> # Gilles Louppe <[email protected]> # Hamzeh Alsalhi <[email protected]> # Arnaud Joly <[email protected]> # # Licence: BSD 3 clause from abc import ABCMeta, abstractmethod import numpy as np from numpy.core.umath_tests import inner1d from .base import BaseEnsemble from ..base import ClassifierMixin, RegressorMixin from ..externals import six from ..externals.six.moves import zip from ..externals.six.moves import xrange as range from .forest import BaseForest from ..tree import DecisionTreeClassifier, DecisionTreeRegressor from ..tree.tree import BaseDecisionTree from ..tree._tree import DTYPE from ..utils import check_array, check_X_y, check_random_state from ..metrics import accuracy_score, r2_score from sklearn.utils.validation import has_fit_parameter, check_is_fitted __all__ = [ 'AdaBoostClassifier', 'AdaBoostRegressor', ] class BaseWeightBoosting(six.with_metaclass(ABCMeta, BaseEnsemble)): """Base class for AdaBoost estimators. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, base_estimator=None, n_estimators=50, estimator_params=tuple(), learning_rate=1., random_state=None): super(BaseWeightBoosting, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, estimator_params=estimator_params) self.learning_rate = learning_rate self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted classifier/regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is forced to DTYPE from tree._tree if the base classifier of this ensemble weighted boosting classifier is a tree or forest. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check parameters if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): dtype = DTYPE accept_sparse = 'csc' else: dtype = None accept_sparse = ['csr', 'csc'] X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype) if sample_weight is None: # Initialize weights to 1 / n_samples sample_weight = np.empty(X.shape[0], dtype=np.float) sample_weight[:] = 1. / X.shape[0] else: # Normalize existing weights sample_weight = sample_weight / sample_weight.sum(dtype=np.float64) # Check that the sample weights sum is positive if sample_weight.sum() <= 0: raise ValueError( "Attempting to fit with a non-positive " "weighted number of samples.") # Check parameters self._validate_estimator() # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float) self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float) for iboost in range(self.n_estimators): # Boosting step sample_weight, estimator_weight, estimator_error = self._boost( iboost, X, y, sample_weight) # Early termination if sample_weight is None: break self.estimator_weights_[iboost] = estimator_weight self.estimator_errors_[iboost] = estimator_error # Stop if error is zero if estimator_error == 0: break sample_weight_sum = np.sum(sample_weight) # Stop if the sum of sample weights has become non-positive if sample_weight_sum <= 0: break if iboost < self.n_estimators - 1: # Normalize sample_weight /= sample_weight_sum return self @abstractmethod def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Warning: This method needs to be overriden by subclasses. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. COO, DOK, and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. error : float The classification error for the current boost. If None then boosting has terminated early. """ pass def staged_score(self, X, y, sample_weight=None): """Return staged scores for X, y. This generator method yields the ensemble score after each iteration of boosting and therefore allows monitoring, such as to determine the score on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like, shape = [n_samples] Labels for X. sample_weight : array-like, shape = [n_samples], optional Sample weights. Returns ------- z : float """ for y_pred in self.staged_predict(X): if isinstance(self, ClassifierMixin): yield accuracy_score(y, y_pred, sample_weight=sample_weight) else: yield r2_score(y, y_pred, sample_weight=sample_weight) @property def feature_importances_(self): """Return the feature importances (the higher, the more important the feature). Returns ------- feature_importances_ : array, shape = [n_features] """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted, " "call `fit` before `feature_importances_`.") try: norm = self.estimator_weights_.sum() return (sum(weight * clf.feature_importances_ for weight, clf in zip(self.estimator_weights_, self.estimators_)) / norm) except AttributeError: raise AttributeError( "Unable to compute feature importances " "since base_estimator does not have a " "feature_importances_ attribute") def _validate_X_predict(self, X): """Ensure that X is in the proper format""" if (self.base_estimator is None or isinstance(self.base_estimator, (BaseDecisionTree, BaseForest))): X = check_array(X, accept_sparse='csr', dtype=DTYPE) else: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) return X def _samme_proba(estimator, n_classes, X): """Calculate algorithm 4, step 2, equation c) of Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ proba = estimator.predict_proba(X) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps log_proba = np.log(proba) return (n_classes - 1) * (log_proba - (1. / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]) class AdaBoostClassifier(BaseWeightBoosting, ClassifierMixin): """An AdaBoost classifier. An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases. This class implements the algorithm known as AdaBoost-SAMME [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeClassifier) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R') If 'SAMME.R' then use the SAMME.R real boosting algorithm. ``base_estimator`` must support calculation of class probabilities. If 'SAMME' then use the SAMME discrete boosting algorithm. The SAMME.R algorithm typically converges faster than SAMME, achieving a lower test error with fewer boosting iterations. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. classes_ : array of shape = [n_classes] The classes labels. n_classes_ : int The number of classes. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Classification error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostRegressor, GradientBoostingClassifier, DecisionTreeClassifier References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., algorithm='SAMME.R', random_state=None): super(AdaBoostClassifier, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.algorithm = algorithm def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to ``1 / n_samples``. Returns ------- self : object Returns self. """ # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) # Fit return super(AdaBoostClassifier, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostClassifier, self)._validate_estimator( default=DecisionTreeClassifier(max_depth=1)) # SAMME-R requires predict_proba-enabled base estimators if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator_, 'predict_proba'): raise TypeError( "AdaBoostClassifier with algorithm='SAMME.R' requires " "that the weak learner supports the calculation of class " "probabilities with a predict_proba method.\n" "Please change the base estimator or set " "algorithm='SAMME' instead.") if not has_fit_parameter(self.base_estimator_, "sample_weight"): raise ValueError("%s doesn't support sample_weight." % self.base_estimator_.__class__.__name__) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost. Perform a single boost according to the real multi-class SAMME.R algorithm or to the discrete SAMME algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The classification error for the current boost. If None then boosting has terminated early. """ if self.algorithm == 'SAMME.R': return self._boost_real(iboost, X, y, sample_weight) else: # elif self.algorithm == "SAMME": return self._boost_discrete(iboost, X, y, sample_weight) def _boost_real(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME.R real algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict_proba = estimator.predict_proba(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1), axis=0) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. # Construct y coding as described in Zhu et al [2]: # # y_k = 1 if c == k else -1 / (K - 1) # # where K == n_classes_ and c, k in [0, K) are indices along the second # axis of the y coding with c being the index corresponding to the true # class label. n_classes = self.n_classes_ classes = self.classes_ y_codes = np.array([-1. / (n_classes - 1), 1.]) y_coding = y_codes.take(classes == y[:, np.newaxis]) # Displace zero probabilities so the log is defined. # Also fix negative elements which may occur with # negative sample weights. proba = y_predict_proba # alias for readability proba[proba < np.finfo(proba.dtype).eps] = np.finfo(proba.dtype).eps # Boost weight using multi-class AdaBoost SAMME.R alg estimator_weight = (-1. * self.learning_rate * (((n_classes - 1.) / n_classes) * inner1d(y_coding, np.log(y_predict_proba)))) # Only boost the weights if it will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, 1., estimator_error def _boost_discrete(self, iboost, X, y, sample_weight): """Implement a single boost using the SAMME discrete algorithm.""" estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass estimator.fit(X, y, sample_weight=sample_weight) y_predict = estimator.predict(X) if iboost == 0: self.classes_ = getattr(estimator, 'classes_', None) self.n_classes_ = len(self.classes_) # Instances incorrectly classified incorrect = y_predict != y # Error fraction estimator_error = np.mean( np.average(incorrect, weights=sample_weight, axis=0)) # Stop if classification is perfect if estimator_error <= 0: return sample_weight, 1., 0. n_classes = self.n_classes_ # Stop if the error is at least as bad as random guessing if estimator_error >= 1. - (1. / n_classes): self.estimators_.pop(-1) if len(self.estimators_) == 0: raise ValueError('BaseClassifier in AdaBoostClassifier ' 'ensemble is worse than random, ensemble ' 'can not be fit.') return None, None, None # Boost weight using multi-class AdaBoost SAMME alg estimator_weight = self.learning_rate * ( np.log((1. - estimator_error) / estimator_error) + np.log(n_classes - 1.)) # Only boost the weights if I will fit again if not iboost == self.n_estimators - 1: # Only boost positive weights sample_weight *= np.exp(estimator_weight * incorrect * ((sample_weight > 0) | (estimator_weight < 0))) return sample_weight, estimator_weight, estimator_error def predict(self, X): """Predict classes for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted classes. """ pred = self.decision_function(X) if self.n_classes_ == 2: return self.classes_.take(pred > 0, axis=0) return self.classes_.take(np.argmax(pred, axis=1), axis=0) def staged_predict(self, X): """Return staged predictions for X. The predicted class of an input sample is computed as the weighted mean prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : array-like of shape = [n_samples, n_features] The input samples. Returns ------- y : generator of array, shape = [n_samples] The predicted classes. """ n_classes = self.n_classes_ classes = self.classes_ if n_classes == 2: for pred in self.staged_decision_function(X): yield np.array(classes.take(pred > 0, axis=0)) else: for pred in self.staged_decision_function(X): yield np.array(classes.take( np.argmax(pred, axis=1), axis=0)) def decision_function(self, X): """Compute the decision function of ``X``. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R pred = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" pred = sum((estimator.predict(X) == classes).T * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) pred /= self.estimator_weights_.sum() if n_classes == 2: pred[:, 0] *= -1 return pred.sum(axis=1) return pred def staged_decision_function(self, X): """Compute decision function of ``X`` for each boosting iteration. This method allows monitoring (i.e. determine error on testing set) after each boosting iteration. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- score : generator of array, shape = [n_samples, k] The decision function of the input samples. The order of outputs is the same of that of the `classes_` attribute. Binary classification is a special cases with ``k == 1``, otherwise ``k==n_classes``. For binary classification, values closer to -1 or 1 mean more like the first or second class in ``classes_``, respectively. """ check_is_fitted(self, "n_classes_") X = self._validate_X_predict(X) n_classes = self.n_classes_ classes = self.classes_[:, np.newaxis] pred = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_pred = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_pred = estimator.predict(X) current_pred = (current_pred == classes).T * weight if pred is None: pred = current_pred else: pred += current_pred if n_classes == 2: tmp_pred = np.copy(pred) tmp_pred[:, 0] *= -1 yield (tmp_pred / norm).sum(axis=1) else: yield pred / norm def predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ check_is_fitted(self, "n_classes_") n_classes = self.n_classes_ X = self._validate_X_predict(X) if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R proba = sum(_samme_proba(estimator, n_classes, X) for estimator in self.estimators_) else: # self.algorithm == "SAMME" proba = sum(estimator.predict_proba(X) * w for estimator, w in zip(self.estimators_, self.estimator_weights_)) proba /= self.estimator_weights_.sum() proba = np.exp((1. / (n_classes - 1)) * proba) normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba def staged_predict_proba(self, X): """Predict class probabilities for X. The predicted class probabilities of an input sample is computed as the weighted mean predicted class probabilities of the classifiers in the ensemble. This generator method yields the ensemble predicted class probabilities after each iteration of boosting and therefore allows monitoring, such as to determine the predicted class probabilities on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : generator of array, shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ X = self._validate_X_predict(X) n_classes = self.n_classes_ proba = None norm = 0. for weight, estimator in zip(self.estimator_weights_, self.estimators_): norm += weight if self.algorithm == 'SAMME.R': # The weights are all 1. for SAMME.R current_proba = _samme_proba(estimator, n_classes, X) else: # elif self.algorithm == "SAMME": current_proba = estimator.predict_proba(X) * weight if proba is None: proba = current_proba else: proba += current_proba real_proba = np.exp((1. / (n_classes - 1)) * (proba / norm)) normalizer = real_proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 real_proba /= normalizer yield real_proba def predict_log_proba(self, X): """Predict class log-probabilities for X. The predicted class log-probabilities of an input sample is computed as the weighted mean predicted class log-probabilities of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- p : array of shape = [n_samples] The class probabilities of the input samples. The order of outputs is the same of that of the `classes_` attribute. """ return np.log(self.predict_proba(X)) class AdaBoostRegressor(BaseWeightBoosting, RegressorMixin): """An AdaBoost regressor. An AdaBoost [1] regressor is a meta-estimator that begins by fitting a regressor on the original dataset and then fits additional copies of the regressor on the same dataset but where the weights of instances are adjusted according to the error of the current prediction. As such, subsequent regressors focus more on difficult cases. This class implements the algorithm known as AdaBoost.R2 [2]. Read more in the :ref:`User Guide <adaboost>`. Parameters ---------- base_estimator : object, optional (default=DecisionTreeRegressor) The base estimator from which the boosted ensemble is built. Support for sample weighting is required. n_estimators : integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. learning_rate : float, optional (default=1.) Learning rate shrinks the contribution of each regressor by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. loss : {'linear', 'square', 'exponential'}, optional (default='linear') The loss function to use when updating the weights after each boosting iteration. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators. estimator_weights_ : array of floats Weights for each estimator in the boosted ensemble. estimator_errors_ : array of floats Regression error for each estimator in the boosted ensemble. feature_importances_ : array of shape = [n_features] The feature importances if supported by the ``base_estimator``. See also -------- AdaBoostClassifier, GradientBoostingRegressor, DecisionTreeRegressor References ---------- .. [1] Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995. .. [2] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ def __init__(self, base_estimator=None, n_estimators=50, learning_rate=1., loss='linear', random_state=None): super(AdaBoostRegressor, self).__init__( base_estimator=base_estimator, n_estimators=n_estimators, learning_rate=learning_rate, random_state=random_state) self.loss = loss self.random_state = random_state def fit(self, X, y, sample_weight=None): """Build a boosted regressor from the training set (X, y). Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (real numbers). sample_weight : array-like of shape = [n_samples], optional Sample weights. If None, the sample weights are initialized to 1 / n_samples. Returns ------- self : object Returns self. """ # Check loss if self.loss not in ('linear', 'square', 'exponential'): raise ValueError( "loss must be 'linear', 'square', or 'exponential'") # Fit return super(AdaBoostRegressor, self).fit(X, y, sample_weight) def _validate_estimator(self): """Check the estimator and set the base_estimator_ attribute.""" super(AdaBoostRegressor, self)._validate_estimator( default=DecisionTreeRegressor(max_depth=3)) def _boost(self, iboost, X, y, sample_weight): """Implement a single boost for regression Perform a single boost according to the AdaBoost.R2 algorithm and return the updated sample weights. Parameters ---------- iboost : int The index of the current boost iteration. X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. y : array-like of shape = [n_samples] The target values (class labels in classification, real numbers in regression). sample_weight : array-like of shape = [n_samples] The current sample weights. Returns ------- sample_weight : array-like of shape = [n_samples] or None The reweighted sample weights. If None then boosting has terminated early. estimator_weight : float The weight for the current boost. If None then boosting has terminated early. estimator_error : float The regression error for the current boost. If None then boosting has terminated early. """ estimator = self._make_estimator() try: estimator.set_params(random_state=self.random_state) except ValueError: pass generator = check_random_state(self.random_state) # Weighted sampling of the training set with replacement # For NumPy >= 1.7.0 use np.random.choice cdf = sample_weight.cumsum() cdf /= cdf[-1] uniform_samples = generator.random_sample(X.shape[0]) bootstrap_idx = cdf.searchsorted(uniform_samples, side='right') # searchsorted returns a scalar bootstrap_idx = np.array(bootstrap_idx, copy=False) # Fit on the bootstrapped sample and obtain a prediction # for all samples in the training set estimator.fit(X[bootstrap_idx], y[bootstrap_idx]) y_predict = estimator.predict(X) error_vect = np.abs(y_predict - y) error_max = error_vect.max() if error_max != 0.: error_vect /= error_max if self.loss == 'square': error_vect **= 2 elif self.loss == 'exponential': error_vect = 1. - np.exp(- error_vect) # Calculate the average loss estimator_error = (sample_weight * error_vect).sum() if estimator_error <= 0: # Stop if fit is perfect return sample_weight, 1., 0. elif estimator_error >= 0.5: # Discard current estimator only if it isn't the only one if len(self.estimators_) > 1: self.estimators_.pop(-1) return None, None, None beta = estimator_error / (1. - estimator_error) # Boost weight using AdaBoost.R2 alg estimator_weight = self.learning_rate * np.log(1. / beta) if not iboost == self.n_estimators - 1: sample_weight *= np.power( beta, (1. - error_vect) * self.learning_rate) return sample_weight, estimator_weight, estimator_error def _get_median_predict(self, X, limit): # Evaluate predictions of all estimators predictions = np.array([ est.predict(X) for est in self.estimators_[:limit]]).T # Sort the predictions sorted_idx = np.argsort(predictions, axis=1) # Find index of median prediction for each sample weight_cdf = self.estimator_weights_[sorted_idx].cumsum(axis=1) median_or_above = weight_cdf >= 0.5 * weight_cdf[:, -1][:, np.newaxis] median_idx = median_or_above.argmax(axis=1) median_estimators = sorted_idx[np.arange(X.shape[0]), median_idx] # Return median predictions return predictions[np.arange(X.shape[0]), median_estimators] def predict(self, X): """Predict regression value for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : array of shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) return self._get_median_predict(X, len(self.estimators_)) def staged_predict(self, X): """Return staged predictions for X. The predicted regression value of an input sample is computed as the weighted median prediction of the classifiers in the ensemble. This generator method yields the ensemble prediction after each iteration of boosting and therefore allows monitoring, such as to determine the prediction on a test set after each boost. Parameters ---------- X : {array-like, sparse matrix} of shape = [n_samples, n_features] The training input samples. Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are converted to CSR. Returns ------- y : generator of array, shape = [n_samples] The predicted regression values. """ check_is_fitted(self, "estimator_weights_") X = self._validate_X_predict(X) for i, _ in enumerate(self.estimators_, 1): yield self._get_median_predict(X, limit=i)
bsd-3-clause
alexandrebarachant/mne-python
mne/viz/tests/test_circle.py
16
5177
# Authors: Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Martin Luessi <[email protected]> # # License: Simplified BSD import numpy as np from numpy.testing import assert_raises from mne.viz import plot_connectivity_circle, circular_layout # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server def test_plot_connectivity_circle(): """Test plotting connectivity circle """ import matplotlib.pyplot as plt node_order = ['frontalpole-lh', 'parsorbitalis-lh', 'lateralorbitofrontal-lh', 'rostralmiddlefrontal-lh', 'medialorbitofrontal-lh', 'parstriangularis-lh', 'rostralanteriorcingulate-lh', 'temporalpole-lh', 'parsopercularis-lh', 'caudalanteriorcingulate-lh', 'entorhinal-lh', 'superiorfrontal-lh', 'insula-lh', 'caudalmiddlefrontal-lh', 'superiortemporal-lh', 'parahippocampal-lh', 'middletemporal-lh', 'inferiortemporal-lh', 'precentral-lh', 'transversetemporal-lh', 'posteriorcingulate-lh', 'fusiform-lh', 'postcentral-lh', 'bankssts-lh', 'supramarginal-lh', 'isthmuscingulate-lh', 'paracentral-lh', 'lingual-lh', 'precuneus-lh', 'inferiorparietal-lh', 'superiorparietal-lh', 'pericalcarine-lh', 'lateraloccipital-lh', 'cuneus-lh', 'cuneus-rh', 'lateraloccipital-rh', 'pericalcarine-rh', 'superiorparietal-rh', 'inferiorparietal-rh', 'precuneus-rh', 'lingual-rh', 'paracentral-rh', 'isthmuscingulate-rh', 'supramarginal-rh', 'bankssts-rh', 'postcentral-rh', 'fusiform-rh', 'posteriorcingulate-rh', 'transversetemporal-rh', 'precentral-rh', 'inferiortemporal-rh', 'middletemporal-rh', 'parahippocampal-rh', 'superiortemporal-rh', 'caudalmiddlefrontal-rh', 'insula-rh', 'superiorfrontal-rh', 'entorhinal-rh', 'caudalanteriorcingulate-rh', 'parsopercularis-rh', 'temporalpole-rh', 'rostralanteriorcingulate-rh', 'parstriangularis-rh', 'medialorbitofrontal-rh', 'rostralmiddlefrontal-rh', 'lateralorbitofrontal-rh', 'parsorbitalis-rh', 'frontalpole-rh'] label_names = ['bankssts-lh', 'bankssts-rh', 'caudalanteriorcingulate-lh', 'caudalanteriorcingulate-rh', 'caudalmiddlefrontal-lh', 'caudalmiddlefrontal-rh', 'cuneus-lh', 'cuneus-rh', 'entorhinal-lh', 'entorhinal-rh', 'frontalpole-lh', 'frontalpole-rh', 'fusiform-lh', 'fusiform-rh', 'inferiorparietal-lh', 'inferiorparietal-rh', 'inferiortemporal-lh', 'inferiortemporal-rh', 'insula-lh', 'insula-rh', 'isthmuscingulate-lh', 'isthmuscingulate-rh', 'lateraloccipital-lh', 'lateraloccipital-rh', 'lateralorbitofrontal-lh', 'lateralorbitofrontal-rh', 'lingual-lh', 'lingual-rh', 'medialorbitofrontal-lh', 'medialorbitofrontal-rh', 'middletemporal-lh', 'middletemporal-rh', 'paracentral-lh', 'paracentral-rh', 'parahippocampal-lh', 'parahippocampal-rh', 'parsopercularis-lh', 'parsopercularis-rh', 'parsorbitalis-lh', 'parsorbitalis-rh', 'parstriangularis-lh', 'parstriangularis-rh', 'pericalcarine-lh', 'pericalcarine-rh', 'postcentral-lh', 'postcentral-rh', 'posteriorcingulate-lh', 'posteriorcingulate-rh', 'precentral-lh', 'precentral-rh', 'precuneus-lh', 'precuneus-rh', 'rostralanteriorcingulate-lh', 'rostralanteriorcingulate-rh', 'rostralmiddlefrontal-lh', 'rostralmiddlefrontal-rh', 'superiorfrontal-lh', 'superiorfrontal-rh', 'superiorparietal-lh', 'superiorparietal-rh', 'superiortemporal-lh', 'superiortemporal-rh', 'supramarginal-lh', 'supramarginal-rh', 'temporalpole-lh', 'temporalpole-rh', 'transversetemporal-lh', 'transversetemporal-rh'] group_boundaries = [0, len(label_names) / 2] node_angles = circular_layout(label_names, node_order, start_pos=90, group_boundaries=group_boundaries) con = np.random.RandomState(0).randn(68, 68) plot_connectivity_circle(con, label_names, n_lines=300, node_angles=node_angles, title='test', ) assert_raises(ValueError, circular_layout, label_names, node_order, group_boundaries=[-1]) assert_raises(ValueError, circular_layout, label_names, node_order, group_boundaries=[20, 0]) plt.close('all')
bsd-3-clause
daodaoliang/neural-network-animation
video.py
3
1722
import parameters from matplotlib import pyplot, animation, rcParams def generate_writer(): FFMpegWriter = animation.writers['ffmpeg'] writer = FFMpegWriter(fps=parameters.frames_per_second, metadata=parameters.metadata) fig = pyplot.figure() fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None) pyplot.xlim(0, parameters.width) pyplot.ylim(0, parameters.height) axis = pyplot.gca() axis.set_axis_bgcolor('black') axis.axes.get_xaxis().set_visible(False) axis.axes.get_yaxis().set_visible(False) rcParams['font.size'] = 12 rcParams['text.color'] = 'white' return fig, writer def annotate_frame(i, e, average_error, example): pyplot.text(1, parameters.height - 1, "Iteration #" + str(i)) pyplot.text(1, parameters.height - 2, "Training example #" + str(e + 1)) pyplot.text(1, parameters.output_y_position, "Desired output:") pyplot.text(1, parameters.output_y_position - 1, str(example.output)) pyplot.text(1, parameters.bottom_margin + 1, "Inputs:") pyplot.text(1, parameters.bottom_margin, str(example.inputs)) if average_error: error_bar(average_error) def error_bar(average_error): pyplot.text(parameters.error_bar_x_position, parameters.height - 1, "Average Error " + str(average_error) + "%") border = pyplot.Rectangle((parameters.error_bar_x_position, parameters.height - 3), 10, 1, color='white', fill=False) pyplot.gca().add_patch(border) rectangle = pyplot.Rectangle((parameters.error_bar_x_position, parameters.height - 3), 10 * average_error / 100, 1, color='red') pyplot.gca().add_patch(rectangle) def take_still(image_file_name): pyplot.savefig(image_file_name)
mit
pompiduskus/scikit-learn
sklearn/manifold/locally_linear.py
206
25061
"""Locally Linear Embedding""" # Author: Fabian Pedregosa -- <[email protected]> # Jake Vanderplas -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 import numpy as np from scipy.linalg import eigh, svd, qr, solve from scipy.sparse import eye, csr_matrix from ..base import BaseEstimator, TransformerMixin from ..utils import check_random_state, check_array from ..utils.arpack import eigsh from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..neighbors import NearestNeighbors def barycenter_weights(X, Z, reg=1e-3): """Compute barycenter weights of X from Y along the first axis We estimate the weights to assign to each point in Y[i] to recover the point X[i]. The barycenter weights sum to 1. Parameters ---------- X : array-like, shape (n_samples, n_dim) Z : array-like, shape (n_samples, n_neighbors, n_dim) reg: float, optional amount of regularization to add for the problem to be well-posed in the case of n_neighbors > n_dim Returns ------- B : array-like, shape (n_samples, n_neighbors) Notes ----- See developers note for more information. """ X = check_array(X, dtype=FLOAT_DTYPES) Z = check_array(Z, dtype=FLOAT_DTYPES, allow_nd=True) n_samples, n_neighbors = X.shape[0], Z.shape[1] B = np.empty((n_samples, n_neighbors), dtype=X.dtype) v = np.ones(n_neighbors, dtype=X.dtype) # this might raise a LinalgError if G is singular and has trace # zero for i, A in enumerate(Z.transpose(0, 2, 1)): C = A.T - X[i] # broadcasting G = np.dot(C, C.T) trace = np.trace(G) if trace > 0: R = reg * trace else: R = reg G.flat[::Z.shape[1] + 1] += R w = solve(G, v, sym_pos=True) B[i, :] = w / np.sum(w) return B def barycenter_kneighbors_graph(X, n_neighbors, reg=1e-3): """Computes the barycenter weighted graph of k-Neighbors for points in X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : int Number of neighbors for each sample. reg : float, optional Amount of regularization when solving the least-squares problem. Only relevant if mode='barycenter'. If None, use the default. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. See also -------- sklearn.neighbors.kneighbors_graph sklearn.neighbors.radius_neighbors_graph """ knn = NearestNeighbors(n_neighbors + 1).fit(X) X = knn._fit_X n_samples = X.shape[0] ind = knn.kneighbors(X, return_distance=False)[:, 1:] data = barycenter_weights(X, X[ind], reg=reg) indptr = np.arange(0, n_samples * n_neighbors + 1, n_neighbors) return csr_matrix((data.ravel(), ind.ravel(), indptr), shape=(n_samples, n_samples)) def null_space(M, k, k_skip=1, eigen_solver='arpack', tol=1E-6, max_iter=100, random_state=None): """ Find the null space of a matrix M. Parameters ---------- M : {array, matrix, sparse matrix, LinearOperator} Input covariance matrix: should be symmetric positive semi-definite k : integer Number of eigenvalues/vectors to return k_skip : integer, optional Number of low eigenvalues to skip. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method. Not used if eigen_solver=='dense'. max_iter : maximum number of iterations for 'arpack' method not used if eigen_solver=='dense' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. """ if eigen_solver == 'auto': if M.shape[0] > 200 and k + k_skip < 10: eigen_solver = 'arpack' else: eigen_solver = 'dense' if eigen_solver == 'arpack': random_state = check_random_state(random_state) v0 = random_state.rand(M.shape[0]) try: eigen_values, eigen_vectors = eigsh(M, k + k_skip, sigma=0.0, tol=tol, maxiter=max_iter, v0=v0) except RuntimeError as msg: raise ValueError("Error in determining null-space with ARPACK. " "Error message: '%s'. " "Note that method='arpack' can fail when the " "weight matrix is singular or otherwise " "ill-behaved. method='dense' is recommended. " "See online documentation for more information." % msg) return eigen_vectors[:, k_skip:], np.sum(eigen_values[k_skip:]) elif eigen_solver == 'dense': if hasattr(M, 'toarray'): M = M.toarray() eigen_values, eigen_vectors = eigh( M, eigvals=(k_skip, k + k_skip - 1), overwrite_a=True) index = np.argsort(np.abs(eigen_values)) return eigen_vectors[:, index], np.sum(eigen_values) else: raise ValueError("Unrecognized eigen_solver '%s'" % eigen_solver) def locally_linear_embedding( X, n_neighbors, n_components, reg=1e-3, eigen_solver='auto', tol=1e-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, random_state=None): """Perform a Locally Linear Embedding analysis on the data. Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, sparse array, precomputed tree, or NearestNeighbors object. n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold. reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. method : {'standard', 'hessian', 'modified', 'ltsa'} standard : use the standard locally linear embedding algorithm. see reference [1]_ hessian : use the Hessian eigenmap method. This method requires n_neighbors > n_components * (1 + (n_components + 1) / 2. see reference [2]_ modified : use the modified locally linear embedding algorithm. see reference [3]_ ltsa : use local tangent space alignment algorithm see reference [4]_ hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if method == 'hessian' modified_tol : float, optional Tolerance for modified LLE method. Only used if method == 'modified' random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Returns ------- Y : array-like, shape [n_samples, n_components] Embedding vectors. squared_error : float Reconstruction error for the embedding vectors. Equivalent to ``norm(Y - W Y, 'fro')**2``, where W are the reconstruction weights. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ if eigen_solver not in ('auto', 'arpack', 'dense'): raise ValueError("unrecognized eigen_solver '%s'" % eigen_solver) if method not in ('standard', 'hessian', 'modified', 'ltsa'): raise ValueError("unrecognized method '%s'" % method) nbrs = NearestNeighbors(n_neighbors=n_neighbors + 1) nbrs.fit(X) X = nbrs._fit_X N, d_in = X.shape if n_components > d_in: raise ValueError("output dimension must be less than or equal " "to input dimension") if n_neighbors >= N: raise ValueError("n_neighbors must be less than number of points") if n_neighbors <= 0: raise ValueError("n_neighbors must be positive") M_sparse = (eigen_solver != 'dense') if method == 'standard': W = barycenter_kneighbors_graph( nbrs, n_neighbors=n_neighbors, reg=reg) # we'll compute M = (I-W)'(I-W) # depending on the solver, we'll do this differently if M_sparse: M = eye(*W.shape, format=W.format) - W M = (M.T * M).tocsr() else: M = (W.T * W - W.T - W).toarray() M.flat[::M.shape[0] + 1] += 1 # W = W - I = W - I elif method == 'hessian': dp = n_components * (n_components + 1) // 2 if n_neighbors <= n_components + dp: raise ValueError("for method='hessian', n_neighbors must be " "greater than " "[n_components * (n_components + 3) / 2]") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] Yi = np.empty((n_neighbors, 1 + n_components + dp), dtype=np.float) Yi[:, 0] = 1 M = np.zeros((N, N), dtype=np.float) use_svd = (n_neighbors > d_in) for i in range(N): Gi = X[neighbors[i]] Gi -= Gi.mean(0) #build Hessian estimator if use_svd: U = svd(Gi, full_matrices=0)[0] else: Ci = np.dot(Gi, Gi.T) U = eigh(Ci)[1][:, ::-1] Yi[:, 1:1 + n_components] = U[:, :n_components] j = 1 + n_components for k in range(n_components): Yi[:, j:j + n_components - k] = (U[:, k:k + 1] * U[:, k:n_components]) j += n_components - k Q, R = qr(Yi) w = Q[:, n_components + 1:] S = w.sum(0) S[np.where(abs(S) < hessian_tol)] = 1 w /= S nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(w, w.T) if M_sparse: M = csr_matrix(M) elif method == 'modified': if n_neighbors < n_components: raise ValueError("modified LLE requires " "n_neighbors >= n_components") neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] #find the eigenvectors and eigenvalues of each local covariance # matrix. We want V[i] to be a [n_neighbors x n_neighbors] matrix, # where the columns are eigenvectors V = np.zeros((N, n_neighbors, n_neighbors)) nev = min(d_in, n_neighbors) evals = np.zeros([N, nev]) #choose the most efficient way to find the eigenvectors use_svd = (n_neighbors > d_in) if use_svd: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] V[i], evals[i], _ = svd(X_nbrs, full_matrices=True) evals **= 2 else: for i in range(N): X_nbrs = X[neighbors[i]] - X[i] C_nbrs = np.dot(X_nbrs, X_nbrs.T) evi, vi = eigh(C_nbrs) evals[i] = evi[::-1] V[i] = vi[:, ::-1] #find regularized weights: this is like normal LLE. # because we've already computed the SVD of each covariance matrix, # it's faster to use this rather than np.linalg.solve reg = 1E-3 * evals.sum(1) tmp = np.dot(V.transpose(0, 2, 1), np.ones(n_neighbors)) tmp[:, :nev] /= evals + reg[:, None] tmp[:, nev:] /= reg[:, None] w_reg = np.zeros((N, n_neighbors)) for i in range(N): w_reg[i] = np.dot(V[i], tmp[i]) w_reg /= w_reg.sum(1)[:, None] #calculate eta: the median of the ratio of small to large eigenvalues # across the points. This is used to determine s_i, below rho = evals[:, n_components:].sum(1) / evals[:, :n_components].sum(1) eta = np.median(rho) #find s_i, the size of the "almost null space" for each point: # this is the size of the largest set of eigenvalues # such that Sum[v; v in set]/Sum[v; v not in set] < eta s_range = np.zeros(N, dtype=int) evals_cumsum = np.cumsum(evals, 1) eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1 for i in range(N): s_range[i] = np.searchsorted(eta_range[i, ::-1], eta) s_range += n_neighbors - nev # number of zero eigenvalues #Now calculate M. # This is the [N x N] matrix whose null space is the desired embedding M = np.zeros((N, N), dtype=np.float) for i in range(N): s_i = s_range[i] #select bottom s_i eigenvectors and calculate alpha Vi = V[i, :, n_neighbors - s_i:] alpha_i = np.linalg.norm(Vi.sum(0)) / np.sqrt(s_i) #compute Householder matrix which satisfies # Hi*Vi.T*ones(n_neighbors) = alpha_i*ones(s) # using prescription from paper h = alpha_i * np.ones(s_i) - np.dot(Vi.T, np.ones(n_neighbors)) norm_h = np.linalg.norm(h) if norm_h < modified_tol: h *= 0 else: h /= norm_h #Householder matrix is # >> Hi = np.identity(s_i) - 2*np.outer(h,h) #Then the weight matrix is # >> Wi = np.dot(Vi,Hi) + (1-alpha_i) * w_reg[i,:,None] #We do this much more efficiently: Wi = (Vi - 2 * np.outer(np.dot(Vi, h), h) + (1 - alpha_i) * w_reg[i, :, None]) #Update M as follows: # >> W_hat = np.zeros( (N,s_i) ) # >> W_hat[neighbors[i],:] = Wi # >> W_hat[i] -= 1 # >> M += np.dot(W_hat,W_hat.T) #We can do this much more efficiently: nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] += np.dot(Wi, Wi.T) Wi_sum1 = Wi.sum(1) M[i, neighbors[i]] -= Wi_sum1 M[neighbors[i], i] -= Wi_sum1 M[i, i] += s_i if M_sparse: M = csr_matrix(M) elif method == 'ltsa': neighbors = nbrs.kneighbors(X, n_neighbors=n_neighbors + 1, return_distance=False) neighbors = neighbors[:, 1:] M = np.zeros((N, N)) use_svd = (n_neighbors > d_in) for i in range(N): Xi = X[neighbors[i]] Xi -= Xi.mean(0) # compute n_components largest eigenvalues of Xi * Xi^T if use_svd: v = svd(Xi, full_matrices=True)[0] else: Ci = np.dot(Xi, Xi.T) v = eigh(Ci)[1][:, ::-1] Gi = np.zeros((n_neighbors, n_components + 1)) Gi[:, 1:] = v[:, :n_components] Gi[:, 0] = 1. / np.sqrt(n_neighbors) GiGiT = np.dot(Gi, Gi.T) nbrs_x, nbrs_y = np.meshgrid(neighbors[i], neighbors[i]) M[nbrs_x, nbrs_y] -= GiGiT M[neighbors[i], neighbors[i]] += 1 return null_space(M, n_components, k_skip=1, eigen_solver=eigen_solver, tol=tol, max_iter=max_iter, random_state=random_state) class LocallyLinearEmbedding(BaseEstimator, TransformerMixin): """Locally Linear Embedding Read more in the :ref:`User Guide <locally_linear_embedding>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold reg : float regularization constant, multiplies the trace of the local covariance matrix of the distances. eigen_solver : string, {'auto', 'arpack', 'dense'} auto : algorithm will attempt to choose the best method for input data arpack : use arnoldi iteration in shift-invert mode. For this method, M may be a dense matrix, sparse matrix, or general linear operator. Warning: ARPACK can be unstable for some problems. It is best to try several random seeds in order to check results. dense : use standard dense matrix operations for the eigenvalue decomposition. For this method, M must be an array or matrix type. This method should be avoided for large problems. tol : float, optional Tolerance for 'arpack' method Not used if eigen_solver=='dense'. max_iter : integer maximum number of iterations for the arpack solver. Not used if eigen_solver=='dense'. method : string ('standard', 'hessian', 'modified' or 'ltsa') standard : use the standard locally linear embedding algorithm. see reference [1] hessian : use the Hessian eigenmap method. This method requires ``n_neighbors > n_components * (1 + (n_components + 1) / 2`` see reference [2] modified : use the modified locally linear embedding algorithm. see reference [3] ltsa : use local tangent space alignment algorithm see reference [4] hessian_tol : float, optional Tolerance for Hessian eigenmapping method. Only used if ``method == 'hessian'`` modified_tol : float, optional Tolerance for modified LLE method. Only used if ``method == 'modified'`` neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance random_state: numpy.RandomState or int, optional The generator or seed used to determine the starting vector for arpack iterations. Defaults to numpy.random. Attributes ---------- embedding_vectors_ : array-like, shape [n_components, n_samples] Stores the embedding vectors reconstruction_error_ : float Reconstruction error associated with `embedding_vectors_` nbrs_ : NearestNeighbors object Stores nearest neighbors instance, including BallTree or KDtree if applicable. References ---------- .. [1] `Roweis, S. & Saul, L. Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323 (2000).` .. [2] `Donoho, D. & Grimes, C. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc Natl Acad Sci U S A. 100:5591 (2003).` .. [3] `Zhang, Z. & Wang, J. MLLE: Modified Locally Linear Embedding Using Multiple Weights.` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.382 .. [4] `Zhang, Z. & Zha, H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Journal of Shanghai Univ. 8:406 (2004)` """ def __init__(self, n_neighbors=5, n_components=2, reg=1E-3, eigen_solver='auto', tol=1E-6, max_iter=100, method='standard', hessian_tol=1E-4, modified_tol=1E-12, neighbors_algorithm='auto', random_state=None): self.n_neighbors = n_neighbors self.n_components = n_components self.reg = reg self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.method = method self.hessian_tol = hessian_tol self.modified_tol = modified_tol self.random_state = random_state self.neighbors_algorithm = neighbors_algorithm def _fit_transform(self, X): self.nbrs_ = NearestNeighbors(self.n_neighbors, algorithm=self.neighbors_algorithm) random_state = check_random_state(self.random_state) X = check_array(X) self.nbrs_.fit(X) self.embedding_, self.reconstruction_error_ = \ locally_linear_embedding( self.nbrs_, self.n_neighbors, self.n_components, eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter, method=self.method, hessian_tol=self.hessian_tol, modified_tol=self.modified_tol, random_state=random_state, reg=self.reg) def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Compute the embedding vectors for data X and transform X. Parameters ---------- X : array-like of shape [n_samples, n_features] training set. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """ Transform new points into embedding space. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- X_new : array, shape = [n_samples, n_components] Notes ----- Because of scaling performed by this method, it is discouraged to use it together with methods that are not scale-invariant (like SVMs) """ check_is_fitted(self, "nbrs_") X = check_array(X) ind = self.nbrs_.kneighbors(X, n_neighbors=self.n_neighbors, return_distance=False) weights = barycenter_weights(X, self.nbrs_._fit_X[ind], reg=self.reg) X_new = np.empty((X.shape[0], self.n_components)) for i in range(X.shape[0]): X_new[i] = np.dot(self.embedding_[ind[i]].T, weights[i]) return X_new
bsd-3-clause
hsaputra/DDF
python/tests/test_ml.py
3
1794
from __future__ import unicode_literals import unittest import pandas as pd from py4j.java_gateway import Py4JJavaError import test_base from ddf import ml class TestMl(test_base.BaseTest): """ Test ML functions """ def testKmeans(self): model = ml.kmeans(self.mtcars, 2, 5, 10) self.assertIsInstance(model, ml.KMeansModel) self.assertIsInstance(model.centers, pd.DataFrame) self.assertEqual(len(model.centers), 2) self.assertItemsEqual(model.centers.columns.tolist(), self.mtcars.colnames) self.assertIsInstance(model.predict(range(0, self.mtcars.ncol)), float) with self.assertRaises(Py4JJavaError): model.predict([0, 1, 2]) def testLinearRegression(self): model = ml.linear_regression_gd(self.mtcars, 0.1, 0.1, 10) self.assertIsInstance(model, ml.LinearRegressionModel) self.assertIsInstance(model.weights, pd.DataFrame) self.assertEqual(len(model.weights), 1) self.assertEqual(len(model.weights.columns), self.mtcars.ncol) self.assertIsInstance(model.predict(range(0, self.mtcars.ncol - 1)), float) with self.assertRaises(Py4JJavaError): model.predict([0, 1, 2]) def testLogisticRegression(self): model = ml.logistic_regression_gd(self.mtcars, 0.1, 10) self.assertIsInstance(model, ml.LogisticRegressionModel) self.assertIsInstance(model.weights, pd.DataFrame) self.assertEqual(len(model.weights), 1) self.assertEqual(len(model.weights.columns), self.mtcars.ncol) self.assertIsInstance(model.predict(range(0, self.mtcars.ncol - 1)), float) with self.assertRaises(Py4JJavaError): model.predict([0, 1, 2]) if __name__ == '__main__': unittest.main()
apache-2.0
mfjb/scikit-learn
sklearn/svm/setup.py
321
3157
import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('svm', parent_package, top_path) config.add_subpackage('tests') # Section LibSVM # we compile both libsvm and libsvm_sparse config.add_library('libsvm-skl', sources=[join('src', 'libsvm', 'libsvm_template.cpp')], depends=[join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')], # Force C++ linking in case gcc is picked up instead # of g++ under windows with some versions of MinGW extra_link_args=['-lstdc++'], ) libsvm_sources = ['libsvm.c'] libsvm_depends = [join('src', 'libsvm', 'libsvm_helper.c'), join('src', 'libsvm', 'libsvm_template.cpp'), join('src', 'libsvm', 'svm.cpp'), join('src', 'libsvm', 'svm.h')] config.add_extension('libsvm', sources=libsvm_sources, include_dirs=[numpy.get_include(), join('src', 'libsvm')], libraries=['libsvm-skl'], depends=libsvm_depends, ) ### liblinear module cblas_libs, blas_info = get_blas_info() if os.name == 'posix': cblas_libs.append('m') liblinear_sources = ['liblinear.c', join('src', 'liblinear', '*.cpp')] liblinear_depends = [join('src', 'liblinear', '*.h'), join('src', 'liblinear', 'liblinear_helper.c')] config.add_extension('liblinear', sources=liblinear_sources, libraries=cblas_libs, include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), depends=liblinear_depends, # extra_compile_args=['-O0 -fno-inline'], ** blas_info) ## end liblinear module # this should go *after* libsvm-skl libsvm_sparse_sources = ['libsvm_sparse.c'] config.add_extension('libsvm_sparse', libraries=['libsvm-skl'], sources=libsvm_sparse_sources, include_dirs=[numpy.get_include(), join("src", "libsvm")], depends=[join("src", "libsvm", "svm.h"), join("src", "libsvm", "libsvm_sparse_helper.c")]) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
rxa254/VibrationsAndWaves
Simulations/plotInterference.py
1
3479
#!/usr/bin/env python from __future__ import division # -*- coding: utf-8 -*- """ Created on Wed Oct 19 11:09:27 2016 https://github.com/michellejw/Interference_demo @author: michw Modified by rxa254, 21-Nov-2017 """ import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.animation as manimation from timeit import default_timer as timer import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('Nsources', metavar='N', type=int, nargs='+', help='the number of radiating sources') args = parser.parse_args() makeimage = 1 makevideo = 1 f = 5000 # frequency (Hz) c = 1500 # sound speed (m/s) l = c / f # wavelength (m) dx = l * 15 # element separation (m) n = args.Nsources[0] # number of elements k = 2 * np.pi*f/c # wavenumber # Set acoustic element coordinates sy = np.zeros(n) sx = np.arange(0, dx*n, dx) # Construct background coordinates res = 0.01 xmin = -3 xmax = np.max(sx)+3 #xmax = 3 ymin = -6 ymax = 0 xvals = np.arange(xmin, xmax, res) yvals = np.arange(ymin, ymax, res) gridx, gridy = np.meshgrid(xvals,yvals) # Compute ranges from each element to each grid cell ranges0 = [] for sdex in np.arange(n): ranges0.append(np.sqrt(((sx[sdex]-gridx)**2) + ((sy[sdex]-gridy)**2))) ranges = np.array(ranges0) # Compute summed complex amplitude at each grid cell ampsum = sum(np.exp(1j*(k*ranges))/ranges) ampsum = np.flipud(ampsum) # Compute summed absolute amplitude at each grid cell memap = 'inferno' if makeimage: plt.figure(121) plt.clf() plt.imshow(np.real(ampsum), extent = [min(xvals),max(xvals), min(yvals),max(yvals)], vmin = -1, vmax = 1, cmap = memap) plt.scatter(sx,sy, s=5, c='k', edgecolor='black', linewidth=4, marker='s') plt.autoscale(tight = True) plt.gca().set_aspect('equal', adjustable='box') plt.xlabel('horizontal distance [m]') plt.ylabel('depth [m]') # Save figure filename = 'IMGintpattern_f' + str(np.round(f)) + '_n' + str(n) + '.png' print "Saving Image..." plt.savefig(filename) print "Done." if makevideo: start = timer() # Create a movie by looping through angular steps FFMpegWriter = manimation.writers['ffmpeg'] metadata = dict(title='Movie Test', artist='Matplotlib', comment='Get your popcorn!') writer = FFMpegWriter(fps = 15, metadata=metadata) tsteps = 50 T = np.linspace(0, 2*np.pi, tsteps) T = T[0:-1] reps = 10 T = np.tile(T, reps) T = np.flipud(T) # fig = plt.figure(221) moviename = 'intpattern_f' + str(np.round(f)) + '_n' + str(n) + '.mp4' print("making the movie...") with writer.saving(fig, moviename, 300): for tdex in np.arange(len(T)): ampsum2 = np.real(ampsum*np.exp(1j*T[tdex])) plt.clf() plt.imshow(ampsum2, extent = [min(xvals),max(xvals), min(yvals),max(yvals)], vmin = -1, vmax = 1,cmap = memap) plt.scatter(sx, sy, s=120, c='w', edgecolor='black', linewidth=4) plt.autoscale(tight = True) plt.xlabel('horizontal distance [m]') plt.ylabel('depth [m]') writer.grab_frame() end = timer() print(str(round(end-start, 1)) + " sec to make the movie.")
mit
lispc/Paddle
python/paddle/utils/plotcurve.py
18
5166
#!/usr/bin/python # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Plot training and testing curve from paddle log. It takes input from a file or stdin, and output to a file or stdout. Note: must have numpy and matplotlib installed in order to use this tool. usage: Plot training and testing curves from paddle log file. [-h] [-i INPUT] [-o OUTPUT] [--format FORMAT] [key [key ...]] positional arguments: key keys of scores to plot, the default will be AvgCost optional arguments: -h, --help show this help message and exit -i INPUT, --input INPUT input filename of paddle log, default will be standard input -o OUTPUT, --output OUTPUT output filename of figure, default will be standard output --format FORMAT figure format(png|pdf|ps|eps|svg) The keys must be in the order of paddle output(!!!). For example, paddle.INFO contrains the following log I0406 21:26:21.325584 3832 Trainer.cpp:601] Pass=0 Batch=7771 AvgCost=0.624935 Eval: error=0.260972 To use this script to generate plot for AvgCost, error: python plotcurve.py -i paddle.INFO -o figure.png AvgCost error """ import sys import matplotlib # the following line is added immediately after import matplotlib # and before import pylot. The purpose is to ensure the plotting # works even under remote login (i.e. headless display) matplotlib.use('Agg') from matplotlib import cm import matplotlib.pyplot as pyplot import numpy import argparse import re import os def plot_paddle_curve(keys, inputfile, outputfile, format='png', show_fig=False): """Plot curves from paddle log and save to outputfile. :param keys: a list of strings to be plotted, e.g. AvgCost :param inputfile: a file object for input :param outputfile: a file object for output :return: None """ pass_pattern = r"Pass=([0-9]*)" test_pattern = r"Test samples=([0-9]*)" if not keys: keys = ['AvgCost'] for k in keys: pass_pattern += r".*?%s=([0-9e\-\.]*)" % k test_pattern += r".*?%s=([0-9e\-\.]*)" % k data = [] test_data = [] compiled_pattern = re.compile(pass_pattern) compiled_test_pattern = re.compile(test_pattern) for line in inputfile: found = compiled_pattern.search(line) found_test = compiled_test_pattern.search(line) if found: data.append([float(x) for x in found.groups()]) if found_test: test_data.append([float(x) for x in found_test.groups()]) x = numpy.array(data) x_test = numpy.array(test_data) if x.shape[0] <= 0: sys.stderr.write("No data to plot. Exiting!\n") return m = len(keys) + 1 for i in xrange(1, m): pyplot.plot( x[:, 0], x[:, i], color=cm.jet(1.0 * (i - 1) / (2 * m)), label=keys[i - 1]) if (x_test.shape[0] > 0): pyplot.plot( x[:, 0], x_test[:, i], color=cm.jet(1.0 - 1.0 * (i - 1) / (2 * m)), label="Test " + keys[i - 1]) pyplot.xlabel('number of epoch') pyplot.legend(loc='best') if show_fig: pyplot.show() pyplot.savefig(outputfile, bbox_inches='tight') pyplot.clf() def main(argv): """ main method of plotting curves. """ cmdparser = argparse.ArgumentParser( "Plot training and testing curves from paddle log file.") cmdparser.add_argument( 'key', nargs='*', help='keys of scores to plot, the default is AvgCost') cmdparser.add_argument( '-i', '--input', help='input filename of paddle log, ' 'default will be standard input') cmdparser.add_argument( '-o', '--output', help='output filename of figure, ' 'default will be standard output') cmdparser.add_argument('--format', help='figure format(png|pdf|ps|eps|svg)') args = cmdparser.parse_args(argv) keys = args.key if args.input: inputfile = open(args.input) else: inputfile = sys.stdin format = args.format if args.output: outputfile = open(args.output, 'wb') if not format: format = os.path.splitext(args.output)[1] if not format: format = 'png' else: outputfile = sys.stdout plot_paddle_curve(keys, inputfile, outputfile, format) inputfile.close() outputfile.close() if __name__ == "__main__": main(sys.argv[1:])
apache-2.0
jpinedaf/pyspeckit
pyspeckit/spectrum/models/ammonia.py
4
54171
""" ======================================== Ammonia inversion transition TROT fitter ======================================== Ammonia inversion transition TROT fitter translated from Erik Rosolowsky's https://github.com/low-sky/nh3fit .. moduleauthor:: Adam Ginsburg <[email protected]> Module API ^^^^^^^^^^ """ from __future__ import division import numpy as np from ...mpfit import mpfit from ...spectrum.parinfo import ParinfoList,Parinfo from . import fitter from . import model import matplotlib.cbook as mpcb import copy from astropy import log from six import iteritems from . import mpfit_messages import operator import string import warnings from .ammonia_constants import (line_names, freq_dict, aval_dict, ortho_dict, voff_lines_dict, tau_wts_dict) TCMB = 2.7315 # K def ammonia(xarr, trot=20, tex=None, ntot=14, width=1, xoff_v=0.0, fortho=0.0, tau=None, fillingfraction=None, return_tau=False, return_tau_profile=False, background_tb=TCMB, verbose=False, return_components=False, debug=False, line_names=line_names, ignore_neg_models=False): """ Generate a model Ammonia spectrum based on input temperatures, column, and gaussian parameters. The returned model will be in Kelvin (brightness temperature) units. Note that astropy units are not used internally for performance reasons. A wrapped version of this module including those units would be a good idea, as it is definitely possible to implement this with unit support and good performance. Parameters ---------- xarr: `pyspeckit.spectrum.units.SpectroscopicAxis` Array of wavelength/frequency values trot: float The rotational temperature of the lines. This is the excitation temperature that governs the relative populations of the rotational states. tex: float or None Excitation temperature. Assumed LTE if unspecified (``None``) or if tex>trot. This is the excitation temperature for *all* of the modeled lines, which means we are explicitly assuming T_ex is the same for all lines. ntot: float Total log column density of NH3. Can be specified as a float in the range 5-25 width: float Line width (Gaussian sigma) in km/s xoff_v: float Line offset in km/s fortho: float Fraction of NH3 molecules in ortho state. Default assumes all para (fortho=0). tau: None or float If tau (optical depth in the 1-1 line) is specified, ntot is NOT fit but is set to a fixed value. The optical depths of the other lines are fixed relative to tau_oneone fillingfraction: None or float fillingfraction is an arbitrary scaling factor to apply to the model return_tau: bool Return a dictionary of the optical depths in each line instead of a synthetic spectrum return_tau_profile: bool Return a dictionary of the optical depth profiles in each line, i.e., the optical depths that will be used in conjunction with T_ex to produce the synthetic spectrum return_components: bool Return a list of arrays, one for each hyperfine component, instead of just one array background_tb : float The background brightness temperature. Defaults to TCMB. ignore_neg_models: bool Normally if background=TCMB and the model is negative, an exception will be raised. This parameter will simply skip that exception. Use with extreme caution: negative models (absorption spectra against the CMB) are not physical! You may want to allow this in some cases because there can be numerical issues where the model goes negative when it shouldn't. verbose: bool More messages debug: bool For debugging. Returns ------- spectrum: `numpy.ndarray` Synthetic spectrum with same shape as ``xarr`` component_list: list List of `numpy.ndarray`'s, one for each hyperfine component tau_dict: dict Dictionary of optical depth values for the various lines (if ``return_tau`` is set) """ from .ammonia_constants import (ckms, ccms, h, kb, Jortho, Jpara, Brot, Crot) # Convert X-units to frequency in GHz if xarr.unit.to_string() != 'GHz': xarr = xarr.as_unit('GHz') if tex is None: log.warning("Assuming tex=trot") tex = trot elif isinstance(tex, dict): for k in tex: assert k in line_names,"{0} not in line list".format(k) line_names = tex.keys() elif tex > trot: warnings.warn("tex > trot in the ammonia model. " "This is unphysical and " "suggests that you may need to constrain tex. See " "ammonia_model_restricted_tex.") if width < 0: return np.zeros(xarr.size)*np.nan elif width == 0: return np.zeros(xarr.size) from .ammonia_constants import line_name_indices, line_names as original_line_names # recreate line_names keeping only lines with a specified tex # using this loop instead of tex.keys() preserves the order & data type line_names = [k for k in original_line_names if k in line_names] if 5 <= ntot <= 25: # allow ntot to be specified as a logarithm. This is # safe because ntot < 1e10 gives a spectrum of all zeros, and the # plausible range of columns is not outside the specified range lin_ntot = 10**ntot else: raise ValueError("ntot, the logarithmic total column density," " must be in the range 5 - 25") tau_dict = {} """ Column density is the free parameter. It is used in conjunction with the full partition function to compute the optical depth in each band """ Zpara = (2*Jpara+1)*np.exp(-h*(Brot*Jpara*(Jpara+1)+ (Crot-Brot)*Jpara**2)/(kb*trot)) Zortho = 2*(2*Jortho+1)*np.exp(-h*(Brot*Jortho*(Jortho+1)+ (Crot-Brot)*Jortho**2)/(kb*trot)) Qpara = Zpara.sum() Qortho = Zortho.sum() log.debug("Partition Function: Q_ortho={0}, Q_para={1}".format(Qortho, Qpara)) for linename in line_names: if ortho_dict[linename]: # define variable "ortho_or_para_frac" that will be the ortho # fraction in the case of an ortho transition or the para # fraction for a para transition ortho_or_parafrac = fortho Z = Zortho Qtot = Qortho else: ortho_or_parafrac = 1.0-fortho Z = Zpara Qtot = Qpara # for a complete discussion of these equations, please see # https://github.com/keflavich/pyspeckit/blob/ammonia_equations/examples/AmmoniaLevelPopulation.ipynb # https://github.com/pyspeckit/pyspeckit/blob/master/examples/AmmoniaLevelPopulation.ipynb # and # http://low-sky.github.io/ammoniacolumn/ # and # https://github.com/pyspeckit/pyspeckit/pull/136 # short variable names for readability frq = freq_dict[linename] partition = Z[line_name_indices[linename]] aval = aval_dict[linename] # Total population of the higher energy inversion transition population_rotstate = lin_ntot * ortho_or_parafrac * partition/Qtot if isinstance(tex, dict): expterm = ((1-np.exp(-h*frq/(kb*tex[linename]))) / (1+np.exp(-h*frq/(kb*tex[linename])))) else: expterm = ((1-np.exp(-h*frq/(kb*tex))) / (1+np.exp(-h*frq/(kb*tex)))) fracterm = (ccms**2 * aval / (8*np.pi*frq**2)) widthterm = (ckms/(width*frq*(2*np.pi)**0.5)) tau_i = population_rotstate * fracterm * expterm * widthterm tau_dict[linename] = tau_i log.debug("Line {0}: tau={1}, expterm={2}, pop={3}," " partition={4}" .format(linename, tau_i, expterm, population_rotstate, partition)) # allow tau(11) to be specified instead of ntot # in the thin case, this is not needed: ntot plays no role # this process allows you to specify tau without using the approximate equations specified # above. It should remove ntot from the calculations anyway... if tau is not None: tau11_temp = tau_dict['oneone'] # re-scale all optical depths so that tau is as specified, but the relative taus # are sest by the kinetic temperature and partition functions for linename,t in iteritems(tau_dict): tau_dict[linename] = t * tau/tau11_temp if return_tau: return tau_dict model_spectrum = _ammonia_spectrum(xarr, tex, tau_dict, width, xoff_v, fortho, line_names, background_tb=background_tb, fillingfraction=fillingfraction, return_components=return_components, return_tau_profile=return_tau_profile ) if not return_tau_profile and model_spectrum.min() < 0 and background_tb == TCMB and not ignore_neg_models: raise ValueError("Model dropped below zero. That is not possible " " normally. Here are the input values: "+ ("tex: {0} ".format(tex)) + ("trot: %f " % trot) + ("ntot: %f " % ntot) + ("width: %f " % width) + ("xoff_v: %f " % xoff_v) + ("fortho: %f " % fortho) ) if verbose or debug: log.info("trot: %g tex: %s ntot: %g width: %g xoff_v: %g " "fortho: %g fillingfraction: %g" % (trot, tex, ntot, width, xoff_v, fortho, fillingfraction)) return model_spectrum def cold_ammonia(xarr, tkin, **kwargs): """ Generate a model Ammonia spectrum based on input temperatures, column, and gaussian parameters Parameters ---------- xarr: `pyspeckit.spectrum.units.SpectroscopicAxis` Array of wavelength/frequency values tkin: float The kinetic temperature of the lines in K. Will be converted to rotational temperature following the scheme of Swift et al 2005 (http://esoads.eso.org/abs/2005ApJ...620..823S, eqn A6) and further discussed in Equation 7 of Rosolowsky et al 2008 (http://adsabs.harvard.edu/abs/2008ApJS..175..509R) """ dT0 = 41.18 # Energy difference between (2,2) and (1,1) in K trot = tkin * (1 + (tkin/dT0)*np.log(1 + 0.6*np.exp(-15.7/tkin)))**-1 log.debug("Cold ammonia turned T_K = {0} into T_rot = {1}".format(tkin,trot)) return ammonia(xarr, trot=trot, **kwargs) def ammonia_thin(xarr, tkin=20, tex=None, ntot=14, width=1, xoff_v=0.0, fortho=0.0, tau=None, return_tau=False, **kwargs): """ Use optical depth in the 1-1 line as a free parameter The optical depths of the other lines are then set by the kinetic temperature tkin is used to compute trot assuming a 3-level system consisting of (1,1), (2,1), and (2,2) as in Swift et al, 2005 [2005ApJ...620..823S] """ tau_dict = {} tex = tkin dT0 = 41.5 # Energy diff between (2,2) and (1,1) in K trot = tkin/(1+tkin/dT0*np.log(1+0.6*np.exp(-15.7/tkin))) tau_dict['oneone'] = tau tau_dict['twotwo'] = tau*(23.722/23.694)**2*4/3.*5/3.*np.exp(-41.5/trot) tau_dict['threethree'] = tau*(23.8701279/23.694)**2*3/2.*14./3.*np.exp(-101.1/trot) tau_dict['fourfour'] = tau*(24.1394169/23.694)**2*8/5.*9/3.*np.exp(-177.34/trot) line_names = tau_dict.keys() # TODO: Raise a warning if tkin > (some value), probably 50 K, because # the 3-level system approximation used here will break down. if return_tau: return tau_dict else: return _ammonia_spectrum(xarr, tex, tau_dict, width, xoff_v, fortho, line_names, **kwargs) def _ammonia_spectrum(xarr, tex, tau_dict, width, xoff_v, fortho, line_names, background_tb=TCMB, fillingfraction=None, return_components=False, return_tau_profile=False): """ Helper function: given a dictionary of ammonia optical depths, an excitation tmeperature etc, produce the spectrum. The default return units are brightness temperature in Kelvin. If ``return_tau_profile`` is specified, the returned "spectrum" will be a spectrum of optical depths, not an intensity spectrum. If ``return_components`` is specified, a list of spectra will be returned, where each spectrum represents one of the hyperfine components of the particular ammonia line being modeled. """ from .ammonia_constants import (ckms, h, kb) # fillingfraction is an arbitrary scaling for the data # The model will be (normal model) * fillingfraction if fillingfraction is None: fillingfraction = 1.0 # "runspec" means "running spectrum": it is accumulated over a loop runspec = np.zeros(len(xarr)) if return_components: components = [] if return_tau_profile: tau_profile = {} for linename in line_names: voff_lines = np.array(voff_lines_dict[linename]) tau_wts = np.array(tau_wts_dict[linename]) lines = (1-voff_lines/ckms)*freq_dict[linename]/1e9 tau_wts = tau_wts / (tau_wts).sum() nuwidth = np.abs(width/ckms*lines) nuoff = xoff_v/ckms*lines # tau array tauprof = np.zeros(len(xarr)) for kk,nuo in enumerate(nuoff): tauprof_ = (tau_dict[linename] * tau_wts[kk] * np.exp(-(xarr.value+nuo-lines[kk])**2 / (2.0*nuwidth[kk]**2))) if return_components: components.append(tauprof_) tauprof += tauprof_ if return_tau_profile: tau_profile[linename] = tauprof T0 = (h*xarr.value*1e9/kb) # "temperature" of wavelength if isinstance(tex, dict): runspec = ((T0/(np.exp(T0/tex[linename])-1) - T0/(np.exp(T0/background_tb)-1)) * (1-np.exp(-tauprof)) * fillingfraction + runspec) else: runspec = ((T0/(np.exp(T0/tex)-1) - T0/(np.exp(T0/background_tb)-1)) * (1-np.exp(-tauprof)) * fillingfraction + runspec) if return_components: if isinstance(tex, dict): term1 = [(T0/(np.exp(T0/tex[linename])-1)-T0/(np.exp(T0/background_tb)-1)) for linename in line_names] else: term1 = (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/background_tb)-1)) return term1*(1-np.exp(-1*np.array(components))) elif return_tau_profile: return tau_profile else: return runspec class ammonia_model(model.SpectralModel): """ The basic Ammonia (NH3) model with 6 free parameters: Trot, Tex, ntot, width, xoff_v, and fortho Trot is the rotational temperature. It governs the relative populations of the rotational states, i.e., the relative strength of different transitions Tex is the excitation temperature. It is assumed constant across all states, which is not always a good assumption - a radiative transfer and excitation model is required to constrain this, though. ntot is the total column density of p-NH3 integrated over all states. width is the linewidth (the Gaussian sigma) xoff_v is the velocity offset / line of sight velocity fortho is the ortho fraction (northo / (northo+npara)) """ def __init__(self,npeaks=1,npars=6, parnames=['trot','tex','ntot','width','xoff_v','fortho'], **kwargs): npeaks = self.npeaks = int(npeaks) npars = self.npars = int(npars) self._default_parnames = parnames self.parnames = copy.copy(self._default_parnames) # all fitters must have declared modelfuncs, which should take the fitted pars... self.modelfunc = ammonia self.n_modelfunc = self.n_ammonia # for fitting ammonia simultaneously with a flat background self.onepeakammonia = fitter.vheightmodel(ammonia) #self.onepeakammoniafit = self._fourparfitter(self.onepeakammonia) self.default_parinfo = None self.default_parinfo, kwargs = self._make_parinfo(**kwargs) # Remove keywords parsed by parinfo and ignored by the fitter for kw in ('tied','partied'): if kw in kwargs: kwargs.pop(kw) # enforce ammonia-specific parameter limits for par in self.default_parinfo: if 'tex' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],TCMB), par.limits[1]) if 'trot' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],TCMB), par.limits[1]) if 'width' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) if 'fortho' in par.parname.lower(): par.limited = (True,True) if par.limits[1] != 0: par.limits = (max(par.limits[0],0), min(par.limits[1],1)) else: par.limits = (max(par.limits[0],0), 1) if 'ntot' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) self.parinfo = copy.copy(self.default_parinfo) self.modelfunc_kwargs = kwargs # lower case? self.modelfunc_kwargs.update({'parnames':self.parinfo.parnames}) self.use_lmfit = kwargs.pop('use_lmfit') if 'use_lmfit' in kwargs else False self.fitunit = 'GHz' def __call__(self,*args,**kwargs): return self.multinh3fit(*args,**kwargs) def n_ammonia(self, pars=None, parnames=None, **kwargs): """ Returns a function that sums over N ammonia line profiles, where N is the length of trot,tex,ntot,width,xoff_v,fortho *OR* N = len(pars) / 6 The background "height" is assumed to be zero (you must "baseline" your spectrum before fitting) *pars* [ list ] a list with len(pars) = (6-nfixed)n, assuming trot,tex,ntot,width,xoff_v,fortho repeated *parnames* [ list ] len(parnames) must = len(pars). parnames determine how the ammonia function parses the arguments """ npeaks = self.npeaks npars = len(self.default_parinfo) if hasattr(pars,'values'): # important to treat as Dictionary, since lmfit params & parinfo both have .items parnames,parvals = zip(*pars.items()) parnames = [p.lower() for p in parnames] parvals = [p.value for p in parvals] elif parnames is None: parvals = pars parnames = self.parnames else: parvals = pars if len(pars) != len(parnames): # this should only be needed when other codes are changing the number of peaks # during a copy, as opposed to letting them be set by a __call__ # (n_modelfuncs = n_ammonia can be called directly) # n_modelfuncs doesn't care how many peaks there are if len(pars) % len(parnames) == 0: parnames = [p for ii in range(len(pars)//len(parnames)) for p in parnames] npeaks = int(len(parvals) / npars) log.debug("Setting npeaks={0} npars={1}".format(npeaks, npars)) else: raise ValueError("Wrong array lengths passed to n_ammonia!") self._components = [] def L(x): v = np.zeros(len(x)) for jj in range(int(npeaks)): modelkwargs = kwargs.copy() for ii in range(int(npars)): name = parnames[ii+jj*int(npars)].strip('0123456789').lower() modelkwargs.update({name:parvals[ii+jj*int(npars)]}) v += self.modelfunc(x,**modelkwargs) return v return L def components(self, xarr, pars, hyperfine=False, return_hyperfine_components=False, **kwargs): """ Ammonia components don't follow the default, since in Galactic astronomy the hyperfine components should be well-separated. If you want to see the individual components overlaid, you'll need to pass hyperfine to the plot_fit call """ comps=[] for ii in range(self.npeaks): if hyperfine or return_hyperfine_components: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars], pars[ii*self.npars:(ii+1)*self.npars])) comps.append(self.modelfunc(xarr, return_components=True, **modelkwargs)) else: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars], pars[ii*self.npars:(ii+1)*self.npars])) comps.append([self.modelfunc(xarr, return_components=False, **modelkwargs)]) modelcomponents = np.concatenate(comps) return modelcomponents def multinh3fit(self, xax, data, err=None, parinfo=None, quiet=True, shh=True, debug=False, maxiter=200, use_lmfit=False, veryverbose=False, **kwargs): """ Fit multiple nh3 profiles (multiple can be 1) Parameters ---------- xax : array x axis data : array y axis npeaks : int How many nh3 profiles to fit? Default 1 (this could supersede onedgaussfit) err : array error corresponding to data params : list Fit parameters: [trot, tex, ntot (or tau), width, offset, ortho fraction] * npeaks If len(params) % 6 == 0, npeaks will be set to len(params) / 6. These parameters (and the related fixed, limited, min/max, names below) need to have length = 6*npeaks. If npeaks > 1 and length = 6, they will be replicated npeaks times, otherwise they will be reset to defaults: fixed : list Is parameter fixed? limitedmin : list minpars : list set lower limits on each parameter (default: width>0, Tex and trot > Tcmb) limitedmax : list maxpars : list set upper limits on each parameter parnames : list default parameter names, important for setting kwargs in model ['trot','tex','ntot','width','xoff_v','fortho'] quiet : bool should MPFIT output each iteration? shh : bool output final parameters? Returns ------- mpp : model parameter object Fit parameters model : array The model array errors : array the fit errors chi2 : float the chi^2 value of the fit """ if parinfo is None: parinfo = self.parinfo = self.make_parinfo(**kwargs) else: if isinstance(parinfo, ParinfoList): if not quiet: log.info("Using user-specified parinfo.") self.parinfo = parinfo else: if not quiet: log.info("Using something like a user-specified parinfo, but not.") self.parinfo = ParinfoList([p if isinstance(p,Parinfo) else Parinfo(p) for p in parinfo], preserve_order=True) fitfun_kwargs = dict((x,y) for (x,y) in kwargs.items() if x not in ('npeaks', 'params', 'parnames', 'fixed', 'limitedmin', 'limitedmax', 'minpars', 'maxpars', 'tied', 'max_tem_step')) fitfun_kwargs.update(self.modelfunc_kwargs) if 'use_lmfit' in fitfun_kwargs: raise KeyError("use_lmfit was specified in a location where it " "is unacceptable") # not used: npars = len(parinfo)/self.npeaks self._validate_parinfo() def mpfitfun(x,y,err): if err is None: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))] else: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))/err] return f if veryverbose: log.info("GUESSES: ") log.info(str(parinfo)) #log.info "\n".join(["%s: %s" % (p['parname'],p['value']) for p in parinfo]) if use_lmfit: return self.lmfitter(xax, data, err=err, parinfo=parinfo, quiet=quiet, debug=debug) else: mp = mpfit(mpfitfun(xax,data,err), parinfo=parinfo, maxiter=maxiter, quiet=quiet, debug=debug) mpp = mp.params if mp.perror is not None: mpperr = mp.perror else: mpperr = mpp*0 chi2 = mp.fnorm if mp.status == 0: raise Exception(mp.errmsg) for i,p in enumerate(mpp): parinfo[i]['value'] = p parinfo[i]['error'] = mpperr[i] if not shh: log.info("Fit status: {0}".format(mp.status)) log.info("Fit message: {0}".format(mpfit_messages[mp.status])) log.info("Fit error message: {0}".format(mp.errmsg)) log.info("Final fit values: ") for i,p in enumerate(mpp): log.info(" ".join((parinfo[i]['parname'], str(p), " +/- ", str(mpperr[i])))) log.info(" ".join(("Chi2: ", str(mp.fnorm)," Reduced Chi2: ", str(mp.fnorm/len(data)), " DOF:", str(len(data)-len(mpp))))) self.mp = mp self.parinfo = parinfo self.mpp = self.parinfo.values self.mpperr = self.parinfo.errors self.mppnames = self.parinfo.names self.model = self.n_ammonia(pars=self.mpp, parnames=self.mppnames, **fitfun_kwargs)(xax) indiv_parinfo = [self.parinfo[jj*self.npars:(jj+1)*self.npars] for jj in range(int(len(self.parinfo)/self.npars))] modelkwargs = [dict([(p['parname'].strip("0123456789").lower(), p['value']) for p in pi]) for pi in indiv_parinfo] self.tau_list = [self.modelfunc(xax, return_tau=True,**mk) for mk in modelkwargs] return self.mpp,self.model,self.mpperr,chi2 def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # trot, TEX, ntot, width, center, ortho fraction return [20,10, 15, 1.0, 0.0, 1.0] def annotations(self): from decimal import Decimal # for formatting tex_key = {'trot':'T_R', 'tkin': 'T_K', 'tex':'T_{ex}', 'ntot':'N', 'fortho':'F_o', 'width':'\\sigma', 'xoff_v':'v', 'fillingfraction':'FF', 'tau':'\\tau_{1-1}', 'background_tb':'T_{BG}', 'delta':'T_R-T_{ex}'} # small hack below: don't quantize if error > value. We want to see the values. label_list = [] for pinfo in self.parinfo: parname = tex_key[pinfo['parname'].strip("0123456789").lower()] parnum = int(pinfo['parname'][-1]) if pinfo['fixed']: formatted_value = "%s" % pinfo['value'] pm = "" formatted_error="" else: formatted_value = Decimal("%g" % pinfo['value']).quantize(Decimal("%0.2g" % (min(pinfo['error'],pinfo['value'])))) pm = "$\\pm$" formatted_error = Decimal("%g" % pinfo['error']).quantize(Decimal("%0.2g" % pinfo['error'])) label = "$%s(%i)$=%8s %s %8s" % (parname, parnum, formatted_value, pm, formatted_error) label_list.append(label) labels = tuple(mpcb.flatten(label_list)) return labels def make_parinfo(self, quiet=True, npeaks=1, params=(20,20,14,1.0,0.0,0.5), parnames=None, fixed=(False,False,False,False,False,False), limitedmin=(True,True,True,True,False,True), limitedmax=(False,False,True,False,False,True), minpars=(TCMB,TCMB,5,0,0,0), maxpars=(0,0,25,0,0,1), tied=('',)*6, max_tem_step=1., **kwargs ): if not quiet: log.info("Creating a 'parinfo' from guesses.") self.npars = int(len(params) / npeaks) if len(params) != npeaks and (len(params) / self.npars) > npeaks: npeaks = len(params) / self.npars npeaks = self.npeaks = int(npeaks) if isinstance(params,np.ndarray): params=params.tolist() # this is actually a hack, even though it's decently elegant # somehow, parnames was being changed WITHOUT being passed as a variable # this doesn't make sense - at all - but it happened. # (it is possible for self.parnames to have npars*npeaks elements where # npeaks > 1 coming into this function even though only 6 pars are specified; # _default_parnames is the workaround) if parnames is None: parnames = copy.copy(self._default_parnames) partype_dict = dict(zip(['params', 'parnames', 'fixed', 'limitedmin', 'limitedmax', 'minpars', 'maxpars', 'tied'], [params, parnames, fixed, limitedmin, limitedmax, minpars, maxpars, tied])) # make sure all various things are the right length; if they're # not, fix them using the defaults # (you can put in guesses of length 12 but leave the rest length 6; # this code then doubles the length of everything else) for partype,parlist in iteritems(partype_dict): if len(parlist) != self.npars*self.npeaks: # if you leave the defaults, or enter something that can be # multiplied by npars to get to the right number of # gaussians, it will just replicate if len(parlist) == self.npars: partype_dict[partype] *= npeaks elif len(parlist) > self.npars: # DANGER: THIS SHOULD NOT HAPPEN! log.warning("WARNING! Input parameters were longer than allowed for variable {0}".format(parlist)) partype_dict[partype] = partype_dict[partype][:self.npars] elif parlist==params: # this instance shouldn't really be possible partype_dict[partype] = [20,20,1e10,1.0,0.0,0.5] * npeaks elif parlist==fixed: partype_dict[partype] = [False] * len(params) elif parlist==limitedmax: # only fortho, fillingfraction have upper limits partype_dict[partype] = (np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction') elif parlist==limitedmin: # no physical values can be negative except velocity partype_dict[partype] = (np.array(parnames) != 'xoff_v') elif parlist==minpars: # all have minima of zero except kinetic temperature, which can't be below CMB. # Excitation temperature technically can be, but not in this model partype_dict[partype] = ((np.array(parnames) == 'trot') + (np.array(parnames) == 'tex')) * TCMB elif parlist==maxpars: # fractions have upper limits of 1.0 partype_dict[partype] = ((np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction')).astype('float') elif parlist==parnames: # assumes the right number of parnames (essential) partype_dict[partype] = list(parnames) * self.npeaks elif parlist==tied: partype_dict[partype] = [_increment_string_number(t, ii*self.npars) for t in tied for ii in range(self.npeaks)] if len(parnames) != len(partype_dict['params']): raise ValueError("Wrong array lengths AFTER fixing them") # used in components. Is this just a hack? self.parnames = partype_dict['parnames'] parinfo = [{'n':ii, 'value':partype_dict['params'][ii], 'limits':[partype_dict['minpars'][ii],partype_dict['maxpars'][ii]], 'limited':[partype_dict['limitedmin'][ii],partype_dict['limitedmax'][ii]], 'fixed':partype_dict['fixed'][ii], 'parname':partype_dict['parnames'][ii]+str(int(ii/int(self.npars))), 'tied':partype_dict['tied'][ii], 'mpmaxstep':max_tem_step*float(partype_dict['parnames'][ii] in ('tex','trot')), # must force small steps in temperature (True = 1.0) 'error': 0} for ii in range(len(partype_dict['params'])) ] # hack: remove 'fixed' pars #parinfo_with_fixed = parinfo #parinfo = [p for p in parinfo_with_fixed if not p['fixed']] #fixed_kwargs = dict((p['parname'].strip("0123456789").lower(), # p['value']) # for p in parinfo_with_fixed if p['fixed']) # don't do this - it breaks the NEXT call because npars != len(parnames) self.parnames = [p['parname'] for p in parinfo] # this is OK - not a permanent change #parnames = [p['parname'] for p in parinfo] # not OK self.npars = len(parinfo)/self.npeaks parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) #import pdb; pdb.set_trace() return parinfo def _validate_parinfo(self, must_be_limited={'trot': [True,False], 'tex': [False,False], 'ntot': [True, True], 'width': [True, False], 'xoff_v': [False, False], 'tau': [False, False], 'fortho': [True, True]}, required_limits={'trot': [0, None], 'ntot': [5, 25], 'width': [0, None], 'fortho': [0,1]}): """ Make sure the input parameters are all legitimate """ for par in self.parinfo: limited = par.limited parname = par.parname.strip(string.digits).lower() mbl = must_be_limited[parname] for a,b,ul in zip(limited, mbl, ('a lower','an upper')): if b and not a: raise ValueError("Parameter {0} must have {1} limit " "but no such limit is set.".format( parname, ul)) if parname in required_limits: limits = par.limits rlimits = required_limits[parname] for a,b,op,ul in zip(limits, rlimits, (operator.lt, operator.gt), ('a lower','an upper')): if b is not None and op(a,b): raise ValueError("Parameter {0} must have {1} limit " "at least {2} but it is set to {3}." .format(parname, ul, b, a)) def parse_3par_guesses(self, guesses): """ Try to convert a set of interactive guesses (peak, center, width) into guesses appropriate to the model. For NH3 models, we add in several extra parameters: tex = 2.73 * peak trot = tex * 2 fortho = 0.5 ntot = 15 ntot is set to a constant ~10^15 because this results in optical depths near 1, so it forces the emission to be approximately significant. trot > tex so that we're in a physical regime to begin with. We assume tex = peak + 2.73 because most spectra are shown background-subtracted (single dish are always that way, interferometric data are intrinsically that way...) and otherwise the guessing will crash if you guess a number < 2.73. """ gauss_npars = 3 if len(guesses) % gauss_npars != 0: raise ValueError("Guesses passed to parse_3par_guesses must have " "length % 3 == 0") npeaks = len(guesses) // gauss_npars npars = 6 new_guesses = [-1, -1, 15, -1, -1, 0.5] * npeaks for ii in range(npeaks): peak = guesses[ii * gauss_npars + 0] center = guesses[ii * gauss_npars + 1] width = guesses[ii * gauss_npars + 2] new_guesses[ii*npars + 0] = (2.73+peak) * 2 new_guesses[ii*npars + 1] = (2.73+peak) new_guesses[ii*npars + 3] = width new_guesses[ii*npars + 4] = center return new_guesses class ammonia_model_vtau(ammonia_model): def __init__(self, parnames=['trot', 'tex', 'tau', 'width', 'xoff_v', 'fortho'], **kwargs): super(ammonia_model_vtau, self).__init__(parnames=parnames, **kwargs) def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # trot, TEX, ntot, width, center, ortho fraction return [20, 10, 10, 1.0, 0.0, 1.0] def _validate_parinfo(self, must_be_limited={'trot': [True,False], 'tex': [False,False], 'tau': [True, False], 'width': [True, False], 'xoff_v': [False, False], 'fortho': [True, True]}, required_limits={'trot': [0, None], 'tex': [None,None], 'width': [0, None], 'tau': [0, None], 'xoff_v': [None,None], 'fortho': [0,1]}): supes = super(ammonia_model_vtau, self) supes._validate_parinfo(must_be_limited=must_be_limited, required_limits=required_limits) return supes def make_parinfo(self, params=(20,14,0.5,1.0,0.0,0.5), fixed=(False,False,False,False,False,False), limitedmin=(True,True,True,True,False,True), limitedmax=(False,False,False,False,False,True), minpars=(TCMB,TCMB,0,0,0,0), maxpars=(0,0,0,0,0,1), tied=('',)*6, **kwargs ): """ parnames=['trot', 'tex', 'tau', 'width', 'xoff_v', 'fortho'] """ return super(ammonia_model_vtau, self).make_parinfo(params=params, fixed=fixed, limitedmax=limitedmax, limitedmin=limitedmin, minpars=minpars, maxpars=maxpars, tied=tied, **kwargs) class ammonia_model_vtau_thin(ammonia_model_vtau): def __init__(self,parnames=['tkin', 'tau', 'width', 'xoff_v', 'fortho'], **kwargs): super(ammonia_model_vtau_thin, self).__init__(parnames=parnames, npars=5, **kwargs) self.modelfunc = ammonia_thin def _validate_parinfo(self, must_be_limited={'tkin': [True,False], 'tex': [False,False], 'ntot': [True, True], 'width': [True, False], 'xoff_v': [False, False], 'tau': [False, False], 'fortho': [True, True]}, required_limits={'tkin': [0, None], 'ntot': [5, 25], 'width': [0, None], 'fortho': [0,1]}): supes = super(ammonia_model_vtau_thin, self) return supes._validate_parinfo(must_be_limited=must_be_limited, required_limits=required_limits) def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # trot, tau, width, center, ortho fraction return [20, 1, 1.0, 0.0, 1.0] def __call__(self,*args,**kwargs): return self.multinh3fit(*args, **kwargs) def make_parinfo(self, params=(20,14,1.0,0.0,0.5), fixed=(False,False,False,False,False), limitedmin=(True,True,True,False,True), limitedmax=(False,False,False,False,True), minpars=(TCMB,0,0,0,0), maxpars=(0,0,0,0,1), tied=('',)*5, **kwargs ): return super(ammonia_model_vtau_thin, self).make_parinfo(params=params, fixed=fixed, limitedmax=limitedmax, limitedmin=limitedmin, minpars=minpars, maxpars=maxpars, tied=tied, **kwargs) class ammonia_model_background(ammonia_model): def __init__(self,**kwargs): super(ammonia_model_background,self).__init__(npars=7, parnames=['trot', 'tex', 'ntot', 'width', 'xoff_v', 'fortho', 'background_tb']) def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # trot, TEX, ntot, width, center, ortho fraction return [20,10, 10, 1.0, 0.0, 1.0, TCMB] def make_parinfo(self, npeaks=1, err=None, params=(20,20,14,1.0,0.0,0.5,TCMB), parnames=None, fixed=(False,False,False,False,False,False,True), limitedmin=(True,True,True,True,False,True,True), limitedmax=(False,False,False,False,False,True,True), minpars=(TCMB,TCMB,0,0,0,0,TCMB), parinfo=None, maxpars=(0,0,0,0,0,1,TCMB), tied=('',)*7, quiet=True, shh=True, veryverbose=False, **kwargs): return super(ammonia_model_background, self).make_parinfo(npeaks=npeaks, err=err, params=params, parnames=parnames, fixed=fixed, limitedmin=limitedmin, limitedmax=limitedmax, minpars=minpars, parinfo=parinfo, maxpars=maxpars, tied=tied, quiet=quiet, shh=shh, veryverbose=veryverbose, **kwargs) def multinh3fit(self, xax, data, npeaks=1, err=None, params=(20,20,14,1.0,0.0,0.5,TCMB), parnames=None, fixed=(False,False,False,False,False,False,True), limitedmin=(True,True,True,True,False,True,True), limitedmax=(False,False,False,False,False,True,True), minpars=(TCMB,TCMB,0,0,0,0,TCMB), parinfo=None, maxpars=(0,0,0,0,0,1,TCMB), tied=('',)*7, quiet=True, shh=True, veryverbose=False, **kwargs): return super(ammonia_model_background, self).multinh3fit(xax, data, npeaks=npeaks, err=err, params=params, parnames=parnames, fixed=fixed, limitedmin=limitedmin, limitedmax=limitedmax, minpars=minpars, parinfo=parinfo, maxpars=maxpars, tied=tied, quiet=quiet, shh=shh, veryverbose=veryverbose, **kwargs) class cold_ammonia_model(ammonia_model): def __init__(self, parnames=['tkin', 'tex', 'ntot', 'width', 'xoff_v', 'fortho'], **kwargs): super(cold_ammonia_model, self).__init__(parnames=parnames, **kwargs) self.modelfunc = cold_ammonia def _validate_parinfo(self, must_be_limited={'tkin': [True,False], 'tex': [False,False], 'ntot': [True, False], 'width': [True, False], 'xoff_v': [False, False], 'fortho': [True, True]}, required_limits={'tkin': [0, None], 'tex': [None,None], 'width': [0, None], 'ntot': [0, None], 'xoff_v': [None,None], 'fortho': [0,1]}): supes = super(cold_ammonia_model, self) return supes._validate_parinfo(must_be_limited=must_be_limited, required_limits=required_limits) class ammonia_model_restricted_tex(ammonia_model): """ Ammonia model with an explicitly restricted excitation temperature such that tex <= trot, set by the "delta" parameter (tex = trot - delta) with delta > 0. You can choose the ammonia funciton when you initialize it (e.g., ``ammonia_model_restricted_tex(ammonia_func=ammonia)`` or ``ammonia_model_restricted_tex(ammonia_func=cold_ammonia)``) """ def __init__(self, parnames=['trot', 'tex', 'ntot', 'width', 'xoff_v', 'fortho', 'delta'], ammonia_func=ammonia, **kwargs): super(ammonia_model_restricted_tex, self).__init__(npars=7, parnames=parnames, **kwargs) def ammonia_dtex(*args, **kwargs): """ Strip out the 'delta' keyword """ # for py2 compatibility, must strip out manually delta = kwargs.pop('delta') if 'delta' in kwargs else None np.testing.assert_allclose(kwargs['trot'] - kwargs['tex'], delta) return ammonia_func(*args, **kwargs) self.modelfunc = ammonia_dtex def n_ammonia(self, pars=None, parnames=None, **kwargs): if parnames is not None: for ii,pn in enumerate(parnames): if ii % 7 == 1 and 'tex' not in pn: raise ValueError('bad parameter names') if ii % 7 == 6 and 'delta' not in pn: raise ValueError('bad parameter names') if pars is not None: assert len(pars) % 7 == 0 for ii in range(int(len(pars)/7)): try: # Case A: they're param objects # (setting the param directly can result in recursion errors) pars[1+ii*7].value = pars[0+ii*7].value - pars[6+ii*7].value except AttributeError: # Case B: they're just lists of values pars[1+ii*7] = pars[0+ii*7] - pars[6+ii*7] supes = super(ammonia_model_restricted_tex, self) return supes.n_ammonia(pars=pars, parnames=parnames, **kwargs) def _validate_parinfo(self, must_be_limited={'trot': [True,False], 'tex': [False,False], 'ntot': [True, False], 'width': [True, False], 'xoff_v': [False, False], 'fortho': [True, True], 'delta': [True, False], }, required_limits={'trot': [0, None], 'tex': [None,None], 'width': [0, None], 'ntot': [0, None], 'xoff_v': [None,None], 'fortho': [0,1], 'delta': [0, None], }): supes = super(ammonia_model_restricted_tex, self) return supes._validate_parinfo(must_be_limited=must_be_limited, required_limits=required_limits) def make_parinfo(self, params=(20,20,0.5,1.0,0.0,0.5,0), fixed=(False,False,False,False,False,False,False), limitedmin=(True,True,True,True,False,True,True), limitedmax=(False,False,False,False,False,True,False), minpars=(TCMB,TCMB,0,0,0,0,0), maxpars=(0,0,0,0,0,1,0), tied=('','p[0]-p[6]','','','','',''), **kwargs ): """ parnames=['trot', 'tex', 'ntot', 'width', 'xoff_v', 'fortho', 'delta'] 'delta' is the difference between tex and trot """ supes = super(ammonia_model_restricted_tex, self) return supes.make_parinfo(params=params, fixed=fixed, limitedmax=limitedmax, limitedmin=limitedmin, minpars=minpars, maxpars=maxpars, tied=tied, **kwargs) def _increment_string_number(st, count): """ Increment a number in a string Expects input of the form: p[6] """ import re dig = re.compile('[0-9]+') if dig.search(st): n = int(dig.search(st).group()) result = dig.sub(str(n+count), st) return result else: return st
mit
dfst/deepforge
src/plugins/GenerateJob/templates/backend_deepforge.py
1
10781
""" This is a fully functional do nothing backend to provide a template to backend writers. It is fully functional in that you can select it as a backend with import matplotlib matplotlib.use('Template') and your matplotlib scripts will (should!) run without error, though no output is produced. This provides a nice starting point for backend writers because you can selectively implement methods (draw_rectangle, draw_lines, etc...) and slowly see your figure come to life w/o having to have a full blown implementation before getting any results. Copy this to backend_xxx.py and replace all instances of 'template' with 'xxx'. Then implement the class methods and functions below, and add 'xxx' to the switchyard in matplotlib/backends/__init__.py and 'xxx' to the backends list in the validate_backend methon in matplotlib/__init__.py and you're off. You can use your backend with:: import matplotlib matplotlib.use('xxx') from pylab import * plot([1,2,3]) show() matplotlib also supports external backends, so you can place you can use any module in your PYTHONPATH with the syntax:: import matplotlib matplotlib.use('module://my_backend') where my_backend.py is your module name. This syntax is also recognized in the rc file and in the -d argument in pylab, e.g.,:: python simple_plot.py -dmodule://my_backend If your backend implements support for saving figures (i.e. has a print_xyz() method) you can register it as the default handler for a given file type from matplotlib.backend_bases import register_backend register_backend('xyz', 'my_backend', 'XYZ File Format') ... plt.savefig("figure.xyz") The files that are most relevant to backend_writers are matplotlib/backends/backend_your_backend.py matplotlib/backend_bases.py matplotlib/backends/__init__.py matplotlib/__init__.py matplotlib/_pylab_helpers.py Naming Conventions * classes Upper or MixedUpperCase * variables lower or lowerUpper * functions lower or underscore_separated """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( FigureCanvasBase, FigureManagerBase, GraphicsContextBase, RendererBase) from matplotlib.figure import Figure import simplejson as json class RendererTemplate(RendererBase): """ The renderer handles drawing/rendering operations. This is a minimal do-nothing class that can be used to get started when writing a new backend. Refer to backend_bases.RendererBase for documentation of the classes methods. """ def __init__(self, dpi): self.dpi = dpi def draw_path(self, gc, path, transform, rgbFace=None): pass # draw_markers is optional, and we get more correct relative # timings by leaving it out. backend implementers concerned with # performance will probably want to implement it # def draw_markers(self, gc, marker_path, marker_trans, path, trans, # rgbFace=None): # pass # draw_path_collection is optional, and we get more correct # relative timings by leaving it out. backend implementers concerned with # performance will probably want to implement it # def draw_path_collection(self, gc, master_transform, paths, # all_transforms, offsets, offsetTrans, # facecolors, edgecolors, linewidths, linestyles, # antialiaseds): # pass # draw_quad_mesh is optional, and we get more correct # relative timings by leaving it out. backend implementers concerned with # performance will probably want to implement it # def draw_quad_mesh(self, gc, master_transform, meshWidth, meshHeight, # coordinates, offsets, offsetTrans, facecolors, # antialiased, edgecolors): # pass def draw_image(self, gc, x, y, im): pass def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): pass def flipy(self): return True def get_canvas_width_height(self): return 100, 100 def get_text_width_height_descent(self, s, prop, ismath): return 1, 1, 1 def new_gc(self): return GraphicsContextTemplate() def points_to_pixels(self, points): # if backend doesn't have dpi, e.g., postscript or svg return points # elif backend assumes a value for pixels_per_inch #return points/72.0 * self.dpi.get() * pixels_per_inch/72.0 # else #return points/72.0 * self.dpi.get() class GraphicsContextTemplate(GraphicsContextBase): """ The graphics context provides the color, line styles, etc... See the gtk and postscript backends for examples of mapping the graphics context attributes (cap styles, join styles, line widths, colors) to a particular backend. In GTK this is done by wrapping a gtk.gdk.GC object and forwarding the appropriate calls to it using a dictionary mapping styles to gdk constants. In Postscript, all the work is done by the renderer, mapping line styles to postscript calls. If it's more appropriate to do the mapping at the renderer level (as in the postscript backend), you don't need to override any of the GC methods. If it's more appropriate to wrap an instance (as in the GTK backend) and do the mapping here, you'll need to override several of the setter methods. The base GraphicsContext stores colors as a RGB tuple on the unit interval, e.g., (0.5, 0.0, 1.0). You may need to map this to colors appropriate for your backend. """ pass ######################################################################## # # The following functions and classes are for pylab and implement # window/figure managers, etc... # ######################################################################## def draw_if_interactive(): """ For image backends - is not required For GUI backends - this should be overridden if drawing should be done in interactive python mode """ def show(block=None): """ For image backends - is not required For GUI backends - show() is usually the last line of a pylab script and tells the backend that it is time to draw. In interactive mode, this may be a do nothing func. See the GTK backend for an example of how to handle interactive versus batch mode """ for manager in Gcf.get_all_fig_managers(): manager.canvas.send_deepforge_update() pass def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ # May be implemented via the `_new_figure_manager_template` helper. # If a main-level app must be created, this (and # new_figure_manager_given_figure) is the usual place to do it -- see # backend_wx, backend_wxagg and backend_tkagg for examples. Not all GUIs # require explicit instantiation of a main-level app (egg backend_gtk, # backend_gtkagg) for pylab. FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) return new_figure_manager_given_figure(num, thisFig) def new_figure_manager_given_figure(num, figure): """ Create a new figure manager instance for the given figure. """ # May be implemented via the `_new_figure_manager_template` helper. canvas = FigureCanvasTemplate(figure) manager = FigureManagerTemplate(canvas, num) return manager class FigureCanvasTemplate(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Note GUI templates will want to connect events for button presses, mouse movements and key presses to functions that call the base class methods button_press_event, button_release_event, motion_notify_event, key_press_event, and key_release_event. See, e.g., backend_gtk.py, backend_wx.py and backend_tkagg.py Attributes ---------- figure : `matplotlib.figure.Figure` A high-level Figure instance """ def draw(self): """ Draw the figure using the renderer """ self.send_deepforge_update() renderer = RendererTemplate(self.figure.dpi) self.figure.draw(renderer) def send_deepforge_update(self): state = self.figure_to_state() # Probably should do some diff-ing if the state hasn't changed... # TODO print('deepforge-cmd PLOT ' + json.dumps(state, ignore_nan=True)) def figure_to_state(self): figure = self.figure state = {} state['id'] = self.manager.num #state['title'] = self.manager.num state['axes'] = [] # Get the data points for axes in figure.get_axes(): axes_data = {} axes_data['title'] = axes.get_title() axes_data['xlabel'] = axes.get_xlabel() axes_data['ylabel'] = axes.get_ylabel() axes_data['lines'] = [] for i, line in enumerate(axes.lines): lineDict = {} lineDict['points'] = line.get_xydata().tolist() lineDict['label'] = '' default_label = ('_line' + str(i)) if line.get_label() != default_label: lineDict['label'] = line.get_label() axes_data['lines'].append(lineDict) state['axes'].append(axes_data) return state # You should provide a print_xxx function for every file format # you can write. # If the file type is not in the base set of filetypes, # you should add it to the class-scope filetypes dictionary as follows: filetypes = FigureCanvasBase.filetypes.copy() filetypes['foo'] = 'My magic Foo format' def print_foo(self, filename, *args, **kwargs): """ Write out format foo. The dpi, facecolor and edgecolor are restored to their original values after this call, so you don't need to save and restore them. """ pass def get_default_filetype(self): return 'foo' class FigureManagerTemplate(FigureManagerBase): """ Wrap everything up into a window for the pylab interface For non interactive backends, the base class does all the work """ pass ######################################################################## # # Now just provide the standard names that backend.__init__ is expecting # ######################################################################## FigureCanvas = FigureCanvasTemplate FigureManager = FigureManagerTemplate
apache-2.0
arvinsahni/ml4
flask/app/viz_1.py
2
3249
from __future__ import division from flask import render_template, request, Response, jsonify, send_from_directory from app import app import json import psycopg2 import os import sys import psycopg2.extras import pandas as pd module_path = os.path.abspath(os.path.join('../')) if module_path not in sys.path: sys.path.append(module_path) from learn import forall as fa from learn import utils @app.route('/index') def index(): return render_template('home.html') @app.route('/viz') def viz(): return render_template('viz.html') def to_csv(d, fields): d.insert(0, fields) return Response('\n'.join([",".join(map(str, e)) for e in d]), mimetype='text/csv') @app.route('/hist_data', methods=['GET', 'POST']) def hist_data(): website = request.args.get('website') person = request.args.get('person') db = psycopg2.connect(host='ec2-54-208-219-223.compute-1.amazonaws.com', database='election', user='elections', password='election2016') curs = db.cursor(cursor_factory=psycopg2.extras.RealDictCursor) DEC2FLOAT = psycopg2.extensions.new_type( psycopg2.extensions.DECIMAL.values, 'DEC2FLOAT', lambda value, curs: float(value) if value is not None else None) psycopg2.extensions.register_type(DEC2FLOAT) if website: sql = """select a.bin, sum(coalesce(count,0)) from histogram_bins a left join (select * from data_binned where website = '%s' and person = '%s') b on a.bin = b.bin group by 1 order by 1""" % (website, person) else: sql = """select a.bin, sum(coalesce(count,0)) from histogram_bins a left join (select * from data_binned where person = '%s') b on a.bin = b.bin group by 1 order by 1""" % person print(sql) curs.execute(sql) d = curs.fetchall() print(d) fields = ('bin', 'sum') return jsonify(data=d) @app.route('/dataset', methods=['POST']) def dataset(): # print(request.get_data()) print(request.files) dtrain = request.files['train'] dtest = request.files['test'] #Save input data files in input folder dtrain.save("input/" + dtrain.filename) dtest.save("input/" + dtest.filename) df_train = pd.read_csv("input/" + dtrain.filename) # print(df_train.head()) df_test = pd.read_csv("input/" + dtest.filename) # print(df_test.head()) #From Jason's ML module X, y = utils.X_y_split(X_train=df_train, X_test=df_test) model = fa.All() model.fit(X, y) #Append prediction column to test set predictions = model.predict(df_test) df_test['prediction'] = predictions #Save prediction in output folder print(df_test.head()) df_test.to_csv("output/" + "prediction.csv", index=False) print("%s: %.3f (%s)" % ("Jacky's data:", model.score, model.score_type)) return '{ "fake_json":100}', 200 @app.route('/download') def download(filename=None): # uploads = os.path.join(current_app.root_path, app.config['UPLOAD_FOLDER']) return send_from_directory(directory=os.path.abspath(os.path.join('../flask/output')), filename="prediction.csv") # return '{ "fake_json":100}'
mit
rvraghav93/scikit-learn
examples/manifold/plot_compare_methods.py
52
3878
""" ========================================= Comparison of Manifold Learning methods ========================================= An illustration of dimensionality reduction on the S-curve dataset with various manifold learning methods. For a discussion and comparison of these algorithms, see the :ref:`manifold module page <manifold>` For a similar example, where the methods are applied to a sphere dataset, see :ref:`sphx_glr_auto_examples_manifold_plot_manifold_sphere.py` Note that the purpose of the MDS is to find a low-dimensional representation of the data (here 2D) in which the distances respect well the distances in the original high-dimensional space, unlike other manifold-learning algorithms, it does not seeks an isotropic representation of the data in the low-dimensional space. """ # Author: Jake Vanderplas -- <[email protected]> print(__doc__) from time import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import NullFormatter from sklearn import manifold, datasets # Next line to silence pyflakes. This import is needed. Axes3D n_points = 1000 X, color = datasets.samples_generator.make_s_curve(n_points, random_state=0) n_neighbors = 10 n_components = 2 fig = plt.figure(figsize=(15, 8)) plt.suptitle("Manifold Learning with %i points, %i neighbors" % (1000, n_neighbors), fontsize=14) ax = fig.add_subplot(251, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.view_init(4, -72) methods = ['standard', 'ltsa', 'hessian', 'modified'] labels = ['LLE', 'LTSA', 'Hessian LLE', 'Modified LLE'] for i, method in enumerate(methods): t0 = time() Y = manifold.LocallyLinearEmbedding(n_neighbors, n_components, eigen_solver='auto', method=method).fit_transform(X) t1 = time() print("%s: %.2g sec" % (methods[i], t1 - t0)) ax = fig.add_subplot(252 + i) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("%s (%.2g sec)" % (labels[i], t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() Y = manifold.Isomap(n_neighbors, n_components).fit_transform(X) t1 = time() print("Isomap: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(257) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("Isomap (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() mds = manifold.MDS(n_components, max_iter=100, n_init=1) Y = mds.fit_transform(X) t1 = time() print("MDS: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(258) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("MDS (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() se = manifold.SpectralEmbedding(n_components=n_components, n_neighbors=n_neighbors) Y = se.fit_transform(X) t1 = time() print("SpectralEmbedding: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(259) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("SpectralEmbedding (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') t0 = time() tsne = manifold.TSNE(n_components=n_components, init='pca', random_state=0) Y = tsne.fit_transform(X) t1 = time() print("t-SNE: %.2g sec" % (t1 - t0)) ax = fig.add_subplot(2, 5, 10) plt.scatter(Y[:, 0], Y[:, 1], c=color, cmap=plt.cm.Spectral) plt.title("t-SNE (%.2g sec)" % (t1 - t0)) ax.xaxis.set_major_formatter(NullFormatter()) ax.yaxis.set_major_formatter(NullFormatter()) plt.axis('tight') plt.show()
bsd-3-clause
pgroth/independence-indicators
Temporal-Coauthor-Networks/vincent/examples/map_examples.py
11
6721
# -*- coding: utf-8 -*- """ Vincent Map Examples """ #Build a map from scratch from vincent import * world_topo = r'world-countries.topo.json' state_topo = r'us_states.topo.json' lake_topo = r'lakes_50m.topo.json' county_geo = r'us_counties.geo.json' county_topo = r'us_counties.topo.json' or_topo = r'or_counties.topo.json' vis = Visualization(width=960, height=500) vis.data['countries'] = Data( name='countries', url=world_topo, format={'type': 'topojson', 'feature': 'world-countries'} ) geo_transform = Transform( type='geopath', value="data", projection='winkel3', scale=200, translate=[480, 250] ) geo_from = MarkRef(data='countries', transform=[geo_transform]) enter_props = PropertySet( stroke=ValueRef(value='#000000'), path=ValueRef(field='path') ) update_props = PropertySet(fill=ValueRef(value='steelblue')) mark_props = MarkProperties(enter=enter_props, update=update_props) vis.marks.append( Mark(type='path', from_=geo_from, properties=mark_props) ) vis.to_json('vega.json') #Convenience Method geo_data = [{'name': 'countries', 'url': world_topo, 'feature': 'world-countries'}] vis = Map(geo_data=geo_data, scale=200) vis.to_json('vega.json') #States & Counties geo_data = [{'name': 'counties', 'url': county_topo, 'feature': 'us_counties.geo'}, {'name': 'states', 'url': state_topo, 'feature': 'us_states.geo'} ] vis = Map(geo_data=geo_data, scale=1000, projection='albersUsa') del vis.marks[1].properties.update vis.marks[0].properties.update.fill.value = '#084081' vis.marks[1].properties.enter.stroke.value = '#fff' vis.marks[0].properties.enter.stroke.value = '#7bccc4' vis.to_json('vega.json') #Choropleth import json import pandas as pd #Map the county codes we have in our geometry to those in the #county_data file, which contains additional rows we don't need with open('us_counties.topo.json', 'r') as f: get_id = json.load(f) #A little FIPS code munging new_geoms = [] for geom in get_id['objects']['us_counties.geo']['geometries']: geom['properties']['FIPS'] = int(geom['properties']['FIPS']) new_geoms.append(geom) get_id['objects']['us_counties.geo']['geometries'] = new_geoms with open('us_counties.topo.json', 'w') as f: json.dump(get_id, f) #Grab the FIPS codes and load them into a dataframe geometries = get_id['objects']['us_counties.geo']['geometries'] county_codes = [x['properties']['FIPS'] for x in geometries] county_df = pd.DataFrame({'FIPS': county_codes}, dtype=str) county_df = county_df.astype(int) #Read into Dataframe, cast to int for consistency df = pd.read_csv('data/us_county_data.csv', na_values=[' ']) df['FIPS'] = df['FIPS'].astype(int) #Perform an inner join, pad NA's with data from nearest county merged = pd.merge(df, county_df, on='FIPS', how='inner') merged = merged.fillna(method='pad') geo_data = [{'name': 'counties', 'url': county_topo, 'feature': 'us_counties.geo'}] vis = Map(data=merged, geo_data=geo_data, scale=1100, projection='albersUsa', data_bind='Employed_2011', data_key='FIPS', map_key={'counties': 'properties.FIPS'}) vis.marks[0].properties.enter.stroke_opacity = ValueRef(value=0.5) #Change our domain for an even inteager vis.scales['color'].domain = [0, 189000] vis.legend(title='Number Employed 2011') vis.to_json('vega.json') #Lets look at different stats vis.rebind(column='Civilian_labor_force_2011', brew='BuPu') vis.to_json('vega.json') vis.rebind(column='Unemployed_2011', brew='PuBu') vis.to_json('vega.json') vis.rebind(column='Unemployment_rate_2011', brew='YlGnBu') vis.to_json('vega.json') vis.rebind(column='Median_Household_Income_2011', brew='RdPu') vis.to_json('vega.json') #Mapping US State Level Data state_data = pd.read_csv('data/US_Unemployment_Oct2012.csv') geo_data = [{'name': 'states', 'url': state_topo, 'feature': 'us_states.geo'}] vis = Map(data=state_data, geo_data=geo_data, scale=1000, projection='albersUsa', data_bind='Unemployment', data_key='NAME', map_key={'states': 'properties.NAME'}) vis.legend(title='Unemployment (%)') vis.to_json('vega.json') #Iterating State Level Data yoy = pd.read_table('data/State_Unemp_YoY.txt', delim_whitespace=True) #Standardize State names to match TopoJSON for keying names = [] for row in yoy.iterrows(): pieces = row[1]['NAME'].split('_') together = ' '.join(pieces) names.append(together.title()) yoy['NAME'] = names geo_data = [{'name': 'states', 'url': state_topo, 'feature': 'us_states.geo'}] vis = Map(data=yoy, geo_data=geo_data, scale=1000, projection='albersUsa', data_bind='AUG_2012', data_key='NAME', map_key={'states': 'properties.NAME'}, brew='YlGnBu') #Custom threshold scale vis.scales[0].type='threshold' vis.scales[0].domain = [0, 2, 4, 6, 8, 10, 12] vis.legend(title='Unemployment (%)') vis.to_json('vega.json') #Rebind and set our scale again vis.rebind(column='AUG_2013', brew='YlGnBu') vis.scales[0].type='threshold' vis.scales[0].domain = [0, 2, 4, 6, 8, 10, 12] vis.to_json('vega.json') vis.rebind(column='CHANGE', brew='YlGnBu') vis.scales[0].type='threshold' vis.scales[0].domain = [-1.5, -1.3, -1.1, 0, 0.1, 0.3, 0.5, 0.8] vis.legends[0].title = "YoY Change in Unemployment (%)" vis.to_json('vega.json') #Oregon County-level population data or_data = pd.read_table('data/OR_County_Data.txt', delim_whitespace=True) or_data['July_2012_Pop']= or_data['July_2012_Pop'].astype(int) #Standardize keys with open('or_counties.topo.json', 'r') as f: counties = json.load(f) def split_county(name): parts = name.split(' ') parts.pop(-1) return ''.join(parts).upper() #A little FIPS code munging new_geoms = [] for geom in counties['objects']['or_counties.geo']['geometries']: geom['properties']['COUNTY'] = split_county(geom['properties']['COUNTY']) new_geoms.append(geom) counties['objects']['or_counties.geo']['geometries'] = new_geoms with open('or_counties.topo.json', 'w') as f: json.dump(counties, f) geo_data = [{'name': 'states', 'url': state_topo, 'feature': 'us_states.geo'}, {'name': 'or_counties', 'url': or_topo, 'feature': 'or_counties.geo'}] vis = Map(data=or_data, geo_data=geo_data, scale=3700, translate=[1480, 830], projection='albersUsa', data_bind='July_2012_Pop', data_key='NAME', map_key={'or_counties': 'properties.COUNTY'}) vis.marks[0].properties.update.fill.value = '#c2c2c2' vis.to_json('vega.json')
gpl-2.0
maahn/pyOptimalEstimation
pyOptimalEstimation/tests/test_pyoe.py
1
7099
# -*- coding: utf-8 -*- import numpy as np import pandas as pn import scipy from copy import deepcopy import pyOptimalEstimation as pyOE def forward_simple(X): z = np.linspace(1, 99, 50) N = X['N'] R = X['R'] W = X['W'] F = N * np.exp(-((z-R)/W)**2) return F class TestFullRetrieval(object): def test_simple(self): x_vars = ['N', 'R', 'W'] x_truth = pn.Series([300., 60., 10.], index=x_vars) x_a = pn.Series([200., 50., 15.], index=x_vars) x_cov = pn.DataFrame([[200.**2, 0., 0.], [0., 50.**2, 0.], [0., 0., 5.**2]], index=x_vars, columns=x_vars, ) y_vars = ['z%02i' % i for i in range(50)] y_cov = pn.DataFrame(np.identity(50) * 100**2, index=y_vars, columns=y_vars) np.random.seed(1) y_obs = forward_simple(x_truth) + \ np.random.normal(loc=0, scale=100, size=50) oe = pyOE.optimalEstimation( x_vars, x_a, x_cov, y_vars, y_obs, y_cov, forward_simple, forwardKwArgs={}, x_truth=x_truth, ) oe.doRetrieval() chi2passed, chi2value, chi2critical = oe.chiSquareTest() linearity, trueLinearityChi2, trueLinearityChi2Critical = oe.linearityTest() print('np', np.__version__) print('pn', pn.__version__) print('pyOE', pyOE.__version__) print('scipy', scipy.__version__) assert np.all(np.isclose(oe.x_op.values, np.array( [230.75639479, 58.49351178, 12.32118448]))) assert np.all(np.isclose(oe.x_op_err.values, np.array( [42.940902, 2.05667214, 2.4442318]))) assert np.all( np.isclose( oe.y_op.values, np.array( [8.07132255e-08, 3.57601384e-07, 1.50303019e-06, 5.99308237e-06, 2.26697545e-05, 8.13499728e-05, 2.76937671e-04, 8.94377132e-04, 2.74014386e-03, 7.96416170e-03, 2.19594168e-02, 5.74401494e-02, 1.42535928e-01, 3.35542210e-01, 7.49348775e-01, 1.58757726e+00, 3.19080133e+00, 6.08385266e+00, 1.10045335e+01, 1.88833313e+01, 3.07396995e+01, 4.74716852e+01, 6.95478498e+01, 9.66600005e+01, 1.27445324e+02, 1.59409810e+02, 1.89156040e+02, 2.12931252e+02, 2.27390663e+02, 2.30366793e+02, 2.21401803e+02, 2.01862876e+02, 1.74600622e+02, 1.43267982e+02, 1.11523535e+02, 8.23565110e+01, 5.76956909e+01, 3.83444793e+01, 2.41755486e+01, 1.44598524e+01, 8.20475101e+00, 4.41652793e+00, 2.25533253e+00, 1.09258243e+00, 5.02125028e-01, 2.18919049e-01, 9.05459987e-02, 3.55278561e-02, 1.32246067e-02, 4.66993202e-03] ) ) ) assert np.isclose(oe.dgf, (2.7132392503933556)) assert np.isclose(oe.trueLinearity, 0.41529831393972894) assert np.all(np.array(oe.linearity) < 1) assert np.all(chi2passed) def test_simple_withB(self): x_vars = ['N', 'R'] b_vars = ['W'] x_truth = pn.Series([300., 60.], index=x_vars) x_a = pn.Series([200., 50.], index=x_vars) x_cov = pn.DataFrame([[200.**2, 0.], [0., 50.**2]], index=x_vars, columns=x_vars, ) b_vars = ['W'] b_param = pn.Series(15, index=b_vars) b_cov = pn.DataFrame([[5**2]], index=b_vars, columns=b_vars) y_vars = ['z%02i' % i for i in range(50)] y_cov = pn.DataFrame(np.identity(50) * 100**2, index=y_vars, columns=y_vars) np.random.seed(1) y_obs = forward_simple(pn.concat((x_truth, b_param))) + \ np.random.normal(loc=0, scale=100, size=50) oe = pyOE.optimalEstimation( x_vars, x_a, x_cov, y_vars, y_obs, y_cov, forward_simple, forwardKwArgs={}, x_truth=x_truth, b_vars=b_vars, b_p=b_param, S_b=b_cov, ) oe.doRetrieval() chi2passed, chi2value, chi2critical = oe.chiSquareTest() linearity, trueLinearityChi2, trueLinearityChi2Critical = oe.linearityTest() print('np', np.__version__) print('pn', pn.__version__) print('pyOE', pyOE.__version__) print('scipy', scipy.__version__) assert np.all(np.isclose(oe.x_op.values, np.array( [255.30992222, 58.68130862]))) assert np.all(np.isclose(oe.x_op_err.values, np.array( [38.59979542, 2.0071929]))) assert np.all( np.isclose( oe.y_op.values, np.array([9.66145500e-05, 2.64647052e-04, 6.99600329e-04, 1.78480744e-03, 4.39431462e-03, 1.04411743e-02, 2.39423053e-02, 5.29835436e-02, 1.13155184e-01, 2.33220288e-01, 4.63891718e-01, 8.90482377e-01, 1.64965245e+00, 2.94929357e+00, 5.08864283e+00, 8.47313942e+00, 1.36158624e+01, 2.11156461e+01, 3.16025417e+01, 4.56455107e+01, 6.36256959e+01, 8.55904756e+01, 1.11116039e+02, 1.39215145e+02, 1.68327329e+02, 1.96417962e+02, 2.21190355e+02, 2.40386232e+02, 2.52122389e+02, 2.55194702e+02, 2.49281652e+02, 2.34999746e+02, 2.13797631e+02, 1.87714060e+02, 1.59055663e+02, 1.30064833e+02, 1.02642934e+02, 7.81729764e+01, 5.74569615e+01, 4.07555802e+01, 2.78990827e+01, 1.84310971e+01, 1.17508929e+01, 7.23017763e+00, 4.29324314e+00, 2.46025669e+00, 1.36061037e+00, 7.26182114e-01, 3.74038011e-01, 1.85927808e-01]) ) ) assert np.isclose(oe.dgf, 1.9611398655015124) assert np.isclose(oe.trueLinearity, 0.039634853402863594) assert np.all(np.array(oe.linearity) < 1) assert np.all(chi2passed)
gpl-3.0
hpi-xnor/BMXNet
example/kaggle-ndsb1/gen_img_list.py
42
7000
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import csv import os import sys import random import numpy as np import argparse parser = argparse.ArgumentParser(description='generate train/test image list files form input directory. If training it will also split into tr and va sets.') parser.add_argument('--image-folder', type=str, default="data/train/", help='the input data directory') parser.add_argument('--out-folder', type=str, default="data/", help='the output folder') parser.add_argument('--out-file', type=str, default="train.lst", help='the output lst file') parser.add_argument('--train', action='store_true', help='if we are generating training list and hence we have to loop over subdirectories') ## These options are only used if we are doing training lst parser.add_argument('--percent-val', type=float, default=0.25, help='the percentage of training list to use as validation') parser.add_argument('--stratified', action='store_true', help='if True it will split train lst into tr and va sets using stratified sampling') args = parser.parse_args() random.seed(888) fo_name=os.path.join(args.out_folder+args.out_file) fo = csv.writer(open(fo_name, "w"), delimiter='\t', lineterminator='\n') if args.train: tr_fo_name=os.path.join(args.out_folder+"tr.lst") va_fo_name=os.path.join(args.out_folder+"va.lst") tr_fo = csv.writer(open(tr_fo_name, "w"), delimiter='\t', lineterminator='\n') va_fo = csv.writer(open(va_fo_name, "w"), delimiter='\t', lineterminator='\n') #check sampleSubmission.csv from kaggle website to view submission format head = "acantharia_protist_big_center,acantharia_protist_halo,acantharia_protist,amphipods,appendicularian_fritillaridae,appendicularian_s_shape,appendicularian_slight_curve,appendicularian_straight,artifacts_edge,artifacts,chaetognath_non_sagitta,chaetognath_other,chaetognath_sagitta,chordate_type1,copepod_calanoid_eggs,copepod_calanoid_eucalanus,copepod_calanoid_flatheads,copepod_calanoid_frillyAntennae,copepod_calanoid_large_side_antennatucked,copepod_calanoid_large,copepod_calanoid_octomoms,copepod_calanoid_small_longantennae,copepod_calanoid,copepod_cyclopoid_copilia,copepod_cyclopoid_oithona_eggs,copepod_cyclopoid_oithona,copepod_other,crustacean_other,ctenophore_cestid,ctenophore_cydippid_no_tentacles,ctenophore_cydippid_tentacles,ctenophore_lobate,decapods,detritus_blob,detritus_filamentous,detritus_other,diatom_chain_string,diatom_chain_tube,echinoderm_larva_pluteus_brittlestar,echinoderm_larva_pluteus_early,echinoderm_larva_pluteus_typeC,echinoderm_larva_pluteus_urchin,echinoderm_larva_seastar_bipinnaria,echinoderm_larva_seastar_brachiolaria,echinoderm_seacucumber_auricularia_larva,echinopluteus,ephyra,euphausiids_young,euphausiids,fecal_pellet,fish_larvae_deep_body,fish_larvae_leptocephali,fish_larvae_medium_body,fish_larvae_myctophids,fish_larvae_thin_body,fish_larvae_very_thin_body,heteropod,hydromedusae_aglaura,hydromedusae_bell_and_tentacles,hydromedusae_h15,hydromedusae_haliscera_small_sideview,hydromedusae_haliscera,hydromedusae_liriope,hydromedusae_narco_dark,hydromedusae_narco_young,hydromedusae_narcomedusae,hydromedusae_other,hydromedusae_partial_dark,hydromedusae_shapeA_sideview_small,hydromedusae_shapeA,hydromedusae_shapeB,hydromedusae_sideview_big,hydromedusae_solmaris,hydromedusae_solmundella,hydromedusae_typeD_bell_and_tentacles,hydromedusae_typeD,hydromedusae_typeE,hydromedusae_typeF,invertebrate_larvae_other_A,invertebrate_larvae_other_B,jellies_tentacles,polychaete,protist_dark_center,protist_fuzzy_olive,protist_noctiluca,protist_other,protist_star,pteropod_butterfly,pteropod_theco_dev_seq,pteropod_triangle,radiolarian_chain,radiolarian_colony,shrimp_caridean,shrimp_sergestidae,shrimp_zoea,shrimp-like_other,siphonophore_calycophoran_abylidae,siphonophore_calycophoran_rocketship_adult,siphonophore_calycophoran_rocketship_young,siphonophore_calycophoran_sphaeronectes_stem,siphonophore_calycophoran_sphaeronectes_young,siphonophore_calycophoran_sphaeronectes,siphonophore_other_parts,siphonophore_partial,siphonophore_physonect_young,siphonophore_physonect,stomatopod,tornaria_acorn_worm_larvae,trichodesmium_bowtie,trichodesmium_multiple,trichodesmium_puff,trichodesmium_tuft,trochophore_larvae,tunicate_doliolid_nurse,tunicate_doliolid,tunicate_partial,tunicate_salp_chains,tunicate_salp,unknown_blobs_and_smudges,unknown_sticks,unknown_unclassified".split(',') # make image list img_lst = [] cnt = 0 if args.train: for i in xrange(len(head)): path = args.image_folder + head[i] lst = os.listdir(args.image_folder + head[i]) for img in lst: img_lst.append((cnt, i, path + '/' + img)) cnt += 1 else: lst = os.listdir(args.image_folder) for img in lst: img_lst.append((cnt, 0, args.image_folder + img)) cnt += 1 # shuffle random.shuffle(img_lst) #write for item in img_lst: fo.writerow(item) ## If training, split into train and validation lists (tr.lst and va.lst) ## Optional stratified sampling if args.train: img_lst=np.array(img_lst) if args.stratified: from sklearn.cross_validation import StratifiedShuffleSplit ## Stratified sampling to generate train and validation sets labels_train=img_lst[:,1] # unique_train, counts_train = np.unique(labels_train, return_counts=True) # To have a look at the frecuency distribution sss = StratifiedShuffleSplit(labels_train, 1, test_size=args.percent_val, random_state=0) for tr_idx, va_idx in sss: print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") else: (nRows, nCols) = img_lst.shape splitat=int(round(nRows*(1-args.percent_val),0)) tr_idx=range(0,splitat) va_idx=range(splitat,nRows) print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") tr_lst=img_lst[tr_idx,:].tolist() va_lst=img_lst[va_idx,:].tolist() for item in tr_lst: tr_fo.writerow(item) for item in va_lst: va_fo.writerow(item)
apache-2.0
dmargala/lyabao
bin/analysis_prep.py
1
5168
#!/usr/bin/env python import argparse import numpy as np import numpy.ma as ma import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import h5py # def sum_chunk(x, chunk_size, axis=-1): # shape = x.shape # if axis < 0: # axis += x.ndim # shape = shape[:axis] + (-1, chunk_size) + shape[axis+1:] # x = x.reshape(shape) # return x.sum(axis=axis+1) def combine_pixels(loglam, flux, ivar, num_combine, trim_front=True): ''' Combines neighboring pixels of inner most axis using ivar weighted average ''' shape = flux.shape num_pixels = flux.shape[-1] assert len(loglam) == num_pixels ndim = flux.ndim new_shape = shape[:ndim-1] + (-1, num_combine) num_leftover = num_pixels % num_combine s = slice(num_leftover, None) if trim_front else slice(0, -num_leftover) flux = flux[..., s].reshape(new_shape) ivar = ivar[..., s].reshape(new_shape) loglam = loglam[s].reshape(-1, num_combine) flux, ivar = ma.average(flux, weights=ivar, axis=ndim, returned=True) loglam = ma.average(loglam, axis=1) return loglam, flux, ivar def main(): # parse command-line arguments parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) ## targets to fit parser.add_argument('--name', type=str, default=None, help='file name base') parser.add_argument('--num-combine', type=int, default=3, help='number of pixels to combine') parser.add_argument('--wave-min', type=float, default=3600, help='minimum observed wavelength') args = parser.parse_args() # import data skim = h5py.File(args.name + '-skim.hdf5', 'r') skim_norm = skim['norm'][:][:,np.newaxis] assert not np.any(skim_norm <= 0) skim_flux = np.ma.MaskedArray( skim['flux'][:], mask=skim['mask'][:] )/skim_norm skim_ivar = np.ma.MaskedArray( skim['ivar'][:], mask=skim['mask'][:] )*skim_norm*skim_norm skim_loglam = skim['loglam'][:] skim_wave = np.power(10.0, skim_loglam) good_waves = skim_wave > args.wave_min print('Combining input pixels...') loglam, flux, ivar = combine_pixels( skim_loglam[good_waves], skim_flux[:, good_waves], skim_ivar[:, good_waves], args.num_combine ) wave = np.power(10.0, loglam) outfile = h5py.File(args.name + '-cskim.hdf5', 'w') dataset_kwargs = { 'compression': 'gzip' } # save pixel flux, ivar, and mask outfile.create_dataset('flux', data=flux.data, **dataset_kwargs) outfile.create_dataset('ivar', data=ivar.data, **dataset_kwargs) outfile.create_dataset('mask', data=ivar.mask, **dataset_kwargs) # save uniform wavelength grid outfile.create_dataset('loglam', data=loglam, **dataset_kwargs) # save redshifts from input target list outfile.copy(skim['z'], 'z') # save additional quantities outfile.copy(skim['norm'], 'norm') # save meta data outfile.copy(skim['meta'], 'meta') # copy attrs for attr_key in skim.attrs: outfile.attrs[attr_key] = skim.attrs[attr_key] outfile.attrs['coeff0'] = loglam[0] outfile.attrs['coeff1'] = args.num_combine * skim.attrs['coeff1'] outfile.attrs['max_fid_index'] = len(loglam) outfile.attrs['wave_min'] = args.wave_min outfile.close() # verify combined pixels print('Computing mean and variance of input pixels...') skim_flux_mean = np.ma.average(skim_flux, axis=0, weights=skim_ivar) skim_flux_var = np.ma.average( (skim_flux - skim_flux_mean)**2, axis=0, weights=skim_ivar) print('Computing mean and variance of combined pixels...') flux_mean = np.ma.average(flux, axis=0, weights=ivar) flux_var = np.ma.average((flux - flux_mean)**2, axis=0, weights=ivar) savefig_kwargs = { 'dpi': 100, 'bbox_inches': 'tight' } print('Making comparison plots...') plt.figure(figsize=(12, 9)) plt.plot(skim_wave, skim_flux_mean, label='Pipeline pixels') plt.plot(wave, flux_mean, label='Analysis pixels') plt.ylim(0.5, 1.5) plt.ylabel(r'Normalized Flux Mean (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid(True) plt.savefig(args.name + '-flux-mean.png', **savefig_kwargs) plt.close() plt.figure(figsize=(12, 9)) plt.plot(skim_wave, skim_flux_var, label='Pipeline pixels') plt.plot(wave, flux_var, label='Analysis pixels') plt.ylim(0, 0.45) plt.ylabel(r'Normalized Flux Variance (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid(True) plt.savefig(args.name + '-flux-var.png', **savefig_kwargs) plt.close() plt.figure(figsize=(12, 9)) plt.plot(skim_wave, np.sum(skim_ivar, axis=0), label='Pipeline pixels') plt.plot(wave, np.sum(ivar, axis=0), label='Analysis pixels') plt.ylabel(r'Inv. Var. Total (arb. units)') plt.xlabel(r'Observed Wavelength ($\AA$)') plt.legend() plt.grid(True) plt.savefig(args.name + '-ivar-total.png', **savefig_kwargs) plt.close() if __name__ == '__main__': main()
mit
Srisai85/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
bsipocz/statsmodels
statsmodels/tools/data.py
23
3369
""" Compatibility tools for various data structure inputs """ from statsmodels.compat.python import range import numpy as np import pandas as pd def _check_period_index(x, freq="M"): from pandas import PeriodIndex, DatetimeIndex if not isinstance(x.index, (DatetimeIndex, PeriodIndex)): raise ValueError("The index must be a DatetimeIndex or PeriodIndex") from statsmodels.tsa.base.datetools import _infer_freq inferred_freq = _infer_freq(x.index) if not inferred_freq.startswith(freq): raise ValueError("Expected frequency {}. Got {}".format(inferred_freq, freq)) def is_data_frame(obj): return isinstance(obj, pd.DataFrame) def is_design_matrix(obj): from patsy import DesignMatrix return isinstance(obj, DesignMatrix) def _is_structured_ndarray(obj): return isinstance(obj, np.ndarray) and obj.dtype.names is not None def interpret_data(data, colnames=None, rownames=None): """ Convert passed data structure to form required by estimation classes Parameters ---------- data : ndarray-like colnames : sequence or None May be part of data structure rownames : sequence or None Returns ------- (values, colnames, rownames) : (homogeneous ndarray, list) """ if isinstance(data, np.ndarray): if _is_structured_ndarray(data): if colnames is None: colnames = data.dtype.names values = struct_to_ndarray(data) else: values = data if colnames is None: colnames = ['Y_%d' % i for i in range(values.shape[1])] elif is_data_frame(data): # XXX: hack data = data.dropna() values = data.values colnames = data.columns rownames = data.index else: # pragma: no cover raise Exception('cannot handle other input types at the moment') if not isinstance(colnames, list): colnames = list(colnames) # sanity check if len(colnames) != values.shape[1]: raise ValueError('length of colnames does not match number ' 'of columns in data') if rownames is not None and len(rownames) != len(values): raise ValueError('length of rownames does not match number ' 'of rows in data') return values, colnames, rownames def struct_to_ndarray(arr): return arr.view((float, len(arr.dtype.names))) def _is_using_ndarray_type(endog, exog): return (type(endog) is np.ndarray and (type(exog) is np.ndarray or exog is None)) def _is_using_ndarray(endog, exog): return (isinstance(endog, np.ndarray) and (isinstance(exog, np.ndarray) or exog is None)) def _is_using_pandas(endog, exog): klasses = (pd.Series, pd.DataFrame, pd.WidePanel) return (isinstance(endog, klasses) or isinstance(exog, klasses)) def _is_array_like(endog, exog): try: # do it like this in case of mixed types, ie., ndarray and list endog = np.asarray(endog) exog = np.asarray(exog) return True except: return False def _is_using_patsy(endog, exog): # we get this when a structured array is passed through a formula return (is_design_matrix(endog) and (is_design_matrix(exog) or exog is None))
bsd-3-clause
backmari/moose
python/peacock/tests/postprocessor_tab/test_VectorPostprocessorViewer.py
1
4296
#!/usr/bin/env python import sys import os import unittest import shutil import glob from PyQt5 import QtCore, QtWidgets from peacock.PostprocessorViewer.VectorPostprocessorViewer import VectorPostprocessorViewer from peacock.utils import Testing class TestVectorPostprocessorViewer(Testing.PeacockImageTestCase): """ Test class for the ArtistToggleWidget which toggles postprocessor lines. """ #: QApplication: The main App for QT, this must be static to work correctly. qapp = QtWidgets.QApplication(sys.argv) def setUp(self): """ Creates the GUI containing the ArtistGroupWidget and the matplotlib figure axes. """ self._filename = "{}_test_*.csv".format(self.__class__.__name__) self._widget = VectorPostprocessorViewer(timeout=None) self._widget.initialize([self._filename]) def copyfiles(self): """ Copy to temprary location. """ for i in [0, 1, 3, 5, 7, 9]: shutil.copyfile('../input/vpp2_000{}.csv'.format(i), "{}_test_000{}.csv".format(self.__class__.__name__, i)) for data in self._widget._data[0]: data.load() def tearDown(self): """ Remove temporary. """ for filename in glob.glob(self._filename): if os.path.exists(filename): os.remove(filename) def write(self, filename): """ Overload the write method. """ self._widget.currentWidget().OutputPlugin.write.emit(filename) def plot(self): """ Create plot with all widgets modified. """ widget = self._widget.currentWidget() # Plot some data toggle = widget.PostprocessorSelectPlugin._groups[0]._toggles['t*x**2'] toggle.CheckBox.setCheckState(QtCore.Qt.Checked) toggle.PlotAxis.setCurrentIndex(1) toggle.LineStyle.setCurrentIndex(1) toggle.LineWidth.setValue(5) toggle.clicked.emit() # Add title and legend ax = widget.AxesSettingsPlugin ax.Title.setText('Data Plot') ax.Title.editingFinished.emit() ax.Legend2.setCheckState(QtCore.Qt.Checked) ax.Legend2.clicked.emit(True) ax.Legend2Location.setCurrentIndex(4) ax.Legend2Location.currentIndexChanged.emit(4) ax.onAxesModified() # Set limits and axis titles (y2-only) ax = widget.AxisTabsPlugin.Y2AxisTab ax.Label.setText('y2y2y2y2y2y2y2y2y2y2y2y2y2') ax.Label.editingFinished.emit() ax.RangeMinimum.setText('1') ax.RangeMinimum.editingFinished.emit() def testEmpty(self): """ Test that empty plot is working. """ self.assertImage('testEmpty.png') def testWidgets(self): """ Test that the widgets contained in PostprocessorPlotWidget are working. """ self.copyfiles() self.plot() self.assertImage('testWidgets.png') self.assertFalse(self._widget.cornerWidget().CloseButton.isEnabled()) self.assertEqual(self._widget.tabText(self._widget.currentIndex()), 'Results') def testCloneClose(self): """ Test clone button works. """ self.copyfiles() self._widget.cornerWidget().clone.emit() self.assertEqual(self._widget.count(), 2) self.assertEqual(self._widget.tabText(self._widget.currentIndex()), 'Results (2)') self.assertTrue(self._widget.cornerWidget().CloseButton.isEnabled()) self.assertImage('testEmpty.png') # Plot something self.plot() self.assertImage('testWidgets.png') # Switch to first tab self._widget.setCurrentIndex(0) self.assertEqual(self._widget.tabText(self._widget.currentIndex()), 'Results') self.assertImage('testEmpty.png') self.plot() self.assertImage('testWidgets.png') # Close the first tab self._widget.cornerWidget().close.emit() self.assertEqual(self._widget.count(), 1) self.assertEqual(self._widget.tabText(self._widget.currentIndex()), 'Results (2)') self.assertFalse(self._widget.cornerWidget().CloseButton.isEnabled()) if __name__ == '__main__': unittest.main(module=__name__, verbosity=2)
lgpl-2.1
qiime2/q2-types
q2_types/sample_data/tests/test_transformer.py
1
3363
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd import qiime2 from pandas.testing import assert_series_equal from q2_types.sample_data import AlphaDiversityFormat from qiime2.plugin.testing import TestPluginBase class TestTransformers(TestPluginBase): package = "q2_types.sample_data.tests" def test_pd_series_to_alpha_diversity_format(self): transformer = self.get_transformer(pd.Series, AlphaDiversityFormat) exp_index = pd.Index(['Sample1', 'Sample4'], dtype=object) exp = pd.Series([0.970950594455, 0.721928094887], name='shannon', index=exp_index) obs = transformer(exp) # Squeeze equals true to return series instead of dataframe obs = pd.read_csv(str(obs), sep='\t', header=0, index_col=0, squeeze=True) assert_series_equal(exp, obs) def test_alpha_diversity_format_to_pd_series(self): filename = 'alpha-diversity.tsv' _, obs = self.transform_format(AlphaDiversityFormat, pd.Series, filename) exp_index = pd.Index(['Sample1', 'Sample4'], dtype=object) exp = pd.Series([0.970950594455, 0.721928094887], name='shannon', index=exp_index) assert_series_equal(exp, obs) def test_alpha_diversity_format_with_metadata_to_pd_series(self): filename = 'alpha-diversity-with-metadata.tsv' _, obs = self.transform_format(AlphaDiversityFormat, pd.Series, filename) exp_index = pd.Index(['Sample1', 'Sample4'], dtype=object) exp = pd.Series([0.970950594455, 0.721928094887], name='shannon', index=exp_index) assert_series_equal(exp, obs) def test_alpha_diversity_format_to_pd_series_int_indices(self): filename = 'alpha-diversity-int-indices.tsv' _, obs = self.transform_format(AlphaDiversityFormat, pd.Series, filename) exp_index = pd.Index(['1', '4'], dtype=object) exp = pd.Series([0.97, 0.72], name='foo', index=exp_index) assert_series_equal(exp, obs) def test_alpha_diversity_format_to_metadata(self): filename = 'alpha-diversity.tsv' _, obs = self.transform_format(AlphaDiversityFormat, qiime2.Metadata, filename) exp_index = pd.Index(['Sample1', 'Sample4'], name='Sample ID', dtype=object) exp_df = pd.DataFrame([[0.9709505944546688], [0.7219280948873623]], columns=['shannon'], index=exp_index) exp_md = qiime2.Metadata(exp_df) self.assertEqual(obs, exp_md) def test_non_alpha_diversity(self): filename = 'also-not-alpha-diversity.tsv' with self.assertRaisesRegex(ValueError, 'Non-numeric values '): self.transform_format(AlphaDiversityFormat, pd.Series, filename) if __name__ == '__main__': unittest.main()
bsd-3-clause
mblondel/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
286
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
qifeigit/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
ycool/apollo
modules/tools/prediction/data_pipelines/junctionMLP_train.py
3
4312
#!/usr/bin/env python ############################################################################### # Copyright 2018 The Apollo Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """ @requirement: tensorflow 1.11 """ import os import h5py import logging import argparse import numpy as np import tensorflow as tf import proto.fnn_model_pb2 from proto.fnn_model_pb2 import FnnModel, Layer from sklearn.model_selection import train_test_split dim_input = 7 + 72 dim_output = 12 def load_data(filename): """ Load the data from h5 file to the format of numpy """ if not (os.path.exists(filename)): logging.error("file: {}, does not exist".format(filename)) os._exit(1) if os.path.splitext(filename)[1] != '.h5': logging.error("file: {} is not an hdf5 file".format(filename)) os._exit(1) samples = dict() h5_file = h5py.File(filename, 'r') for key in h5_file.keys(): samples[key] = h5_file[key][:] print("load file success") return samples['data'] def data_preprocessing(data): X = data[:, :dim_input] Y = data[:, -dim_output:] return X, Y def save_model(model, filename): """ Save the trained model parameters into protobuf binary format file """ net_params = FnnModel() net_params.num_layer = 0 for layer in model.layers: net_params.num_layer += 1 net_layer = net_params.layer.add() config = layer.get_config() net_layer.layer_input_dim = dim_input net_layer.layer_output_dim = dim_output if config['activation'] == 'relu': net_layer.layer_activation_func = proto.fnn_model_pb2.Layer.RELU elif config['activation'] == 'tanh': net_layer.layer_activation_func = proto.fnn_model_pb2.Layer.TANH elif config['activation'] == 'sigmoid': net_layer.layer_activation_func = proto.fnn_model_pb2.Layer.SIGMOID elif config['activation'] == 'softmax': net_layer.layer_activation_func = proto.fnn_model_pb2.Layer.SOFTMAX weights, bias = layer.get_weights() net_layer.layer_bias.columns.extend(bias.reshape(-1).tolist()) for col in weights.tolist(): row = net_layer.layer_input_weight.rows.add() row.columns.extend(col) net_params.dim_input = dim_input net_params.dim_output = dim_output with open(filename, 'wb') as params_file: params_file.write(net_params.SerializeToString()) if __name__ == "__main__": parser = argparse.ArgumentParser( description='train neural network based on feature files and save parameters') parser.add_argument('filename', type=str, help='h5 file of data.') args = parser.parse_args() file = args.filename # load_data data = load_data(file) print("Data load success, with data shape: " + str(data.shape)) train_data, test_data = train_test_split(data, test_size=0.2) X_train, Y_train = data_preprocessing(train_data) X_test, Y_test = data_preprocessing(test_data) model = tf.keras.models.Sequential([ tf.keras.layers.Dense(30, activation=tf.nn.relu), tf.keras.layers.Dense(20, activation=tf.nn.relu), tf.keras.layers.Dense(12, activation=tf.nn.softmax)]) model.compile(optimizer='adam', loss='categorical_crossentropy', # loss='MSE', metrics=['accuracy']) model.fit(X_train, Y_train, epochs=5) model_path = os.path.join(os.getcwd(), "junction_mlp_vehicle_model.bin") save_model(model, model_path) print("Model saved to: " + model_path) score = model.evaluate(X_test, Y_test) print("Testing accuracy is: " + str(score))
apache-2.0
michaelpacer/scikit-image
doc/examples/plot_local_otsu.py
14
1575
""" ==================== Local Otsu Threshold ==================== This example shows how Otsu's threshold [1]_ method can be applied locally. For each pixel, an "optimal" threshold is determined by maximizing the variance between two classes of pixels of the local neighborhood defined by a structuring element. The example compares the local threshold with the global threshold. .. note: local is much slower than global thresholding .. [1] http://en.wikipedia.org/wiki/Otsu's_method """ import matplotlib import matplotlib.pyplot as plt from skimage import data from skimage.morphology import disk from skimage.filters import threshold_otsu, rank from skimage.util import img_as_ubyte matplotlib.rcParams['font.size'] = 9 img = img_as_ubyte(data.page()) radius = 15 selem = disk(radius) local_otsu = rank.otsu(img, selem) threshold_global_otsu = threshold_otsu(img) global_otsu = img >= threshold_global_otsu fig, ax = plt.subplots(2, 2, figsize=(8, 5)) ax1, ax2, ax3, ax4 = ax.ravel() fig.colorbar(ax1.imshow(img, cmap=plt.cm.gray), ax=ax1, orientation='horizontal') ax1.set_title('Original') ax1.axis('off') fig.colorbar(ax2.imshow(local_otsu, cmap=plt.cm.gray), ax=ax2, orientation='horizontal') ax2.set_title('Local Otsu (radius=%d)' % radius) ax2.axis('off') ax3.imshow(img >= local_otsu, cmap=plt.cm.gray) ax3.set_title('Original >= Local Otsu' % threshold_global_otsu) ax3.axis('off') ax4.imshow(global_otsu, cmap=plt.cm.gray) ax4.set_title('Global Otsu (threshold = %d)' % threshold_global_otsu) ax4.axis('off') plt.show()
bsd-3-clause
binghongcha08/pyQMD
GWP/2D/1.0.4/resample/c.py
28
1767
##!/usr/bin/python import numpy as np import pylab as plt import seaborn as sns sns.set_context('poster') #with open("traj.dat") as f: # data = f.read() # # data = data.split('\n') # # x = [row.split(' ')[0] for row in data] # y = [row.split(' ')[1] for row in data] # # fig = plt.figure() # # ax1 = fig.add_subplot(111) # # ax1.set_title("Plot title...") # ax1.set_xlabel('your x label..') # ax1.set_ylabel('your y label...') # # ax1.plot(x,y, c='r', label='the data') # # leg = ax1.legend() #fig = plt.figure() f, (ax1, ax2) = plt.subplots(2, sharex=True) #f.subplots_adjust(hspace=0.1) #plt.subplot(211) ax1.set_ylim(0,4) data = np.genfromtxt(fname='q.dat') #data = np.loadtxt('traj.dat') for x in range(1,data.shape[1]): ax1.plot(data[:,0],data[:,x], linewidth=1) #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') #plt.xlabel('time') ax1.set_ylabel('position [bohr]') #plt.title('traj') #plt.subplot(212) data = np.genfromtxt(fname='c.dat') #data = np.loadtxt('traj.dat') for x in range(1,16): ax2.plot(data[:,0],data[:,x], linewidth=1) ax2.set_xlabel('time [a.u.]') ax2.set_ylabel('$|c_i|$') #plt.ylim(-0.2,5) #plt.subplot(2,2,3) #data = np.genfromtxt(fname='norm') #plt.plot(data[:,0],data[:,1],'r-',linewidth=2) #plt.ylim(0,2) #plt.subplot(2,2,4) #data = np.genfromtxt(fname='wf.dat') #data1 = np.genfromtxt(fname='wf0.dat') #data0 = np.genfromtxt('../spo_1d/t500') #plt.plot(data[:,0],data[:,1],'r--',linewidth=2) #plt.plot(data0[:,0],data0[:,1],'k-',linewidth=2) #plt.plot(data1[:,0],data1[:,1],'k-.',linewidth=2) #plt.title('t=100') #plt.figure(1) #plt.plot(x,y1,'-') #plt.plot(x,y2,'g-') #plt.xlim(0.8,2.1) #plt.xlabel('x') #plt.ylabel('$\psi^*\psi$') plt.savefig('traj.pdf') plt.show()
gpl-3.0
RabadanLab/Pandora
helpers/makeHTML.py
1
26512
import pandas as pd; def generateHTML(reportLoc, namesLoc, outputLoc): """ generateHTML: generate HTML report from report.taxon: reportLoc - location of report.taxon namesLoc - location of names.dmp file containing taxid to name outputLoc - location of file output folder """ #reportLoc = "report.taxon.txt" #namesLoc = "/names.dmp" #outputLoc = "." #reportLoc = "~/report.taxon.txt" #namesLoc = "~/Downloads/taxdump/names.dmp" #load taxon report df = pd.read_table(reportLoc) df.applymap(str) df.columns = ['name','taxID','num_of_read','num_of_contigs','longest_contig','len_longest_contig','RPMH'] sampleID = str(df['name'][0]) #### #load canvasJS # with open(canvasLoc,'r') as canvasjs: # canvasString = canvasjs.read() # # #load jquery # with open(jqueryLoc,'r') as jqueryjs: # jqueryString = jqueryjs.read() # # #load DataTables # with open(datatablesLoc,'r') as datatables: # datatablesString = datatables.read() #load taxid to name nameDump = pd.read_table(namesLoc,sep="|",header=None) nameDump[1] = nameDump[1].str.strip() nameDump[2] = nameDump[2].str.strip() nameDump[3] = nameDump[3].str.strip() nameDump = nameDump.applymap(str) #generate canvasJS string for donut chart pd.options.mode.chained_assignment = None #donutString = "" df = df.applymap(str) for i in range(0,len(df.index)): df['taxID'][i] = df['taxID'][i].split(";")[0] tempname = nameDump[(nameDump[0] == df['taxID'][i]) & (nameDump[3] == 'scientific name')][[1]] if(not tempname.empty): df['name'][i] = tempname.to_string(header=False,index=False) #temp = "{y:"+str(df['RPMH'][i])+",label:'"+df['name'][i].replace("'","")+" -'}," #df['taxID'][i] = '<a href="https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id='+ str(df['taxID'][i]) +'">'+str(df['taxID'][i])+'</a>' #donutString=donutString+temp #donutString=donutString.rstrip(',') #workaround of column width to properly display taxid lnk #old_width = pd.get_option('display.max_colwidth') #pd.set_option('display.max_colwidth', -1) #tableString = df.to_html(index=False).replace("&lt;","<").replace("&gt;",">").replace('<table border="1" class="dataframe">','<table id="table1" border="1" class="dataframe">') #pd.set_option('display.max_colwidth', old_width) #generate output including JS packages as string in header htmloutput = ''' <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script src="https://d3js.org/d3.v4.min.js"></script> </head> <body> <div id="wrapper"> <h1 style="margin-left:10%; font-size: 40px">Pandora Report</h1> <div id="chart"></div> <div id="table"></div> </div> <script> var chartDiv = document.getElementById("chart"); var width = chartDiv.clientWidth -20; var height = chartDiv.clientHeight -20; var x = d3.scaleLinear().range([0,width]).domain([0,1000]) var y = d3.scaleLinear().range([0,height]).domain([0,1000]) var scale = d3.scaleLinear().range([0,width]).domain([0,1000]) function donutChart() { var width, height, margin = {top: 10, right: 10, bottom: 10, left: 10}, colour = d3.scaleOrdinal(d3.schemeCategory20c), // colour scheme variable, // value in data that will dictate proportions on chart category, // compare data by padAngle, // effectively dictates the gap between slices floatFormat = d3.format('.4r'), cornerRadius, // sets how rounded the corners are on each slice percentFormat = d3.format(',.2%'); function chart(selection){ selection.each(function(data) { // generate chart // =========================================================================================== // Set up constructors for making donut. See https://github.com/d3/d3-shape/blob/master/README.md var radius = Math.min(width, height) / 2; // creates a new pie generator var pie = d3.pie() .value(function(d) { return floatFormat(d[variable]); }) .sort(null) // contructs and arc generator. This will be used for the donut. The difference between outer and inner // radius will dictate the thickness of the donut var arc = d3.arc() .outerRadius(radius * 0.8) .innerRadius(radius * 0.5) .cornerRadius(cornerRadius) .padAngle(padAngle); var bigArc = d3.arc() .outerRadius(radius * 0.85) .innerRadius(radius * 0.5) .cornerRadius(cornerRadius) .padAngle(padAngle); // this arc is used for aligning the text labels var outerArc = d3.arc() .outerRadius(radius * 0.9) .innerRadius(radius * 0.9); // =========================================================================================== // =========================================================================================== // append the svg object to the selection var svg = selection.append('svg') .attr('width', width + margin.left + margin.right) .attr('height', height + margin.top + margin.bottom) .append('g') .attr('transform', 'translate(' + width / 2 + ',' + height / 2 + ')'); // =========================================================================================== // =========================================================================================== // g elements to keep elements within svg modular svg.append('g').attr('class', 'slices'); svg.append('g').attr('class', 'labelName'); svg.append('g').attr('class', 'lines'); // =========================================================================================== // =========================================================================================== // add and colour the donut slices var path = svg.select('.slices') .datum(data).selectAll('path') .data(pie) .enter().append('path') .attr('fill', function(d) { return colour(d.data[category]); }) .attr('d', arc) // =========================================================================================== // =========================================================================================== // add text labels var label = svg.select('.labelName').selectAll('text') .data(pie) .enter().append('text') .attr('dy', '.35em') .html(function(d) { // add "key: value" for given category. Number inside tspan is bolded in stylesheet. return d.data[category] + ': <tspan>' + percentFormat(d.data[variable]) + '</tspan>'; }) .attr('transform', function(d) { // effectively computes the centre of the slice. // see https://github.com/d3/d3-shape/blob/master/README.md#arc_centroid var pos = outerArc.centroid(d); // changes the point to be on left or right depending on where label is. pos[0] = radius * 0.95 * (midAngle(d) < Math.PI ? 1 : -1); return 'translate(' + pos + ')'; }) .style('text-anchor', function(d) { // if slice centre is on the left, anchor text to start, otherwise anchor to end return (midAngle(d)) < Math.PI ? 'start' : 'end'; }); // =========================================================================================== // =========================================================================================== // add lines connecting labels to slice. A polyline creates straight lines connecting several points var polyline = svg.select('.lines') .selectAll('polyline') .data(pie) .enter().append('polyline') .attr('points', function(d) { // see label transform function for explanations of these three lines. var pos = outerArc.centroid(d); pos[0] = radius * 0.95 * (midAngle(d) < Math.PI ? 1 : -1); return [arc.centroid(d), outerArc.centroid(d), pos] }); // =========================================================================================== // =========================================================================================== // add tooltip to mouse events on slices and labels d3.selectAll('.labelName text, .slices path').call(toolTip); // =========================================================================================== // =========================================================================================== // Functions // calculates the angle for the middle of a slice function midAngle(d) { return d.startAngle + (d.endAngle - d.startAngle) / 2; } // function that creates and adds the tool tip to a selected element function toolTip(selection) { // add tooltip (svg circle element) when mouse enters label or slice selection.on('mouseenter', function (data) { d3.select(this) .transition() .duration(200) .attr('d',bigArc) svg.append('text') .attr('class', 'toolCircle') .attr('dy', -15) // hard-coded. can adjust this to adjust text vertical alignment in tooltip .html(toolTipHTML(data)) // add text to the circle. .style('font-size', '.9em') .style('text-anchor', 'middle'); // centres text in tooltip svg.append('circle') .attr('class', 'toolCircle') .attr('r', radius * 0.45) // radius of tooltip circle .style('fill', colour(data.data[category])) // colour based on category mouse is over .style('fill-opacity', 0.35); }); // remove the tooltip when mouse leaves the slice/label selection.on('mouseout', function () { d3.selectAll('.toolCircle').remove(); d3.select(this) .transition() .duration(100) .attr('d',arc) }); } // function to create the HTML string for the tool tip. Loops through each key in data object // and returns the html string key: value function toolTipHTML(data) { /* var tip = '', i = 0; for (var key in data.data) { // if value is a number, format it as a percentage var value = data.data[key]; // leave off 'dy' attr for first tspan so the 'dy' attr on text element works. The 'dy' attr on // tspan effectively imitates a line break. if (i === 0) tip += '<tspan x="0">' + key + ': ' + value + '</tspan>'; else tip += '<tspan x="0" dy="1.2em">' + key + ': ' + value + '</tspan>'; i++; } */ var tip = '<tspan x="0" dy="-0.5em" font-weight="bold">' + data.data.name + '</tspan>' + '<tspan x="0" dy="1.2em">' + 'Percentage : ' + percentFormat(data.data[variable]) + '</tspan>' + '<tspan x="0" dy="1.2em">' + 'Reads : ' + data.data.num_of_read + '</tspan>' + '<tspan x="0" dy="1.2em">' + 'Contigs : ' + data.data.num_of_contigs + '</tspan>' return tip; } // =========================================================================================== }); } // getter and setter functions. See Mike Bostocks post "Towards Reusable Charts" for a tutorial on how this works. chart.width = function(value) { if (!arguments.length) return width; width = value; return chart; }; chart.height = function(value) { if (!arguments.length) return height; height = value; return chart; }; chart.margin = function(value) { if (!arguments.length) return margin; margin = value; return chart; }; chart.radius = function(value) { if (!arguments.length) return radius; radius = value; return chart; }; chart.padAngle = function(value) { if (!arguments.length) return padAngle; padAngle = value; return chart; }; chart.cornerRadius = function(value) { if (!arguments.length) return cornerRadius; cornerRadius = value; return chart; }; chart.colour = function(value) { if (!arguments.length) return colour; colour = value; return chart; }; chart.variable = function(value) { if (!arguments.length) return variable; variable = value; return chart; }; chart.category = function(value) { if (!arguments.length) return category; category = value; return chart; }; return chart; } function barTable() { var width, cellheight, margin = {top: 10, right: 10, bottom: 10, left: 10}, columns function chart(selection) { selection.each(function(data) { console.log(data) var svg = selection.append('svg') .attr('width', '80%') .attr('height', (data.length * cellheight) + margin.top + margin.bottom) .attr('overflow','scroll') .attr('transform', function(d,i){ return 'translate(' + scale(100) + ', 0)'; }) var header = svg.append('g') .attr('class','header') //loop through object to generate columns for (var i in columns){ var headerCol = header.append('g') .attr('class','headerCol') .attr('transform', 'translate(' + columns[i].x + ', 0)') headerCol.append('rect') .attr('width',columns[i].width) .attr('height',40) .attr('rx',3) .attr('ry',3) .style('fill', 'rgb(253, 174, 107)') .style('opacity',1) headerCol.append('text') .attr('transform', function(d,i){ return 'translate(10, 30)'; }) .style('font-weight','bold') .text(columns[i].name); } //draw table body var tablebody = svg.append('g') .attr('class','tablebody') var row = tablebody.selectAll('g') .data(data) .enter() .append('g') .attr('class','row') .attr('transform', function(d,i){ return 'translate(0, ' + ((i * cellheight) + 60)+ ')'; }) var row_background = row.append('rect') .attr('transform', function(d,i){ return 'translate(' + scale(10) + ', -15)'; }) .attr('width','97%') .attr('height',20) .style('fill', 'rgb(253, 208, 162)') .style('opacity',0) .on('mouseover',function(d){ d3.select(this) .style('opacity',0.9) }) .on('mouseout',function(d){ d3.select(this) .transition() .duration(100) .style('opacity',0) }) var name_col = row.append('text') .attr('transform', function(d,i){ return 'translate(' + (10 + columns[0].x) + ', 0)'; }) .text(function(d,i){ return d.name }); var taxid_col = row.append('a') .attr('transform', function(d,i){ return 'translate(' + (10 + columns[1].x) + ', 0)'; }) .attr('href', function(d){ return 'https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=' + d.taxID }) .attr('target','_blank') .append('text') .text(function(d){ return d.taxID }); var longestcontigbox_col = row.append('rect') .attr('transform', function(d,i){ return 'translate(' + (5 + columns[2].x) + ', -15)'; }) .attr('height',20) .attr('width', function(d){ return d.contig_percentage * scale(90) }) .attr('fill','rgb(198, 219, 239)') .attr('stroke','none') var longestcontig_col = row.append('text') .attr('transform', function(d,i){ return 'translate(' + (10 + columns[2].x) + ', 0)'; }) .text(function(d){ return d.len_longest_contig + ' bp' }); var percentbox_col = row.append('rect') .attr('transform', function(d,i){ return 'translate(' + (5 + columns[3].x) + ', -15)'; }) .attr('height',20) .attr('width', function(d){ return d.percentage * scale(200) }) .attr('fill','rgb(198, 219, 239)') .attr('stroke','none') var readnum_col = row.append('text') .attr('transform', function(d,i){ return 'translate(' + (10 + columns[3].x) + ', 0)'; }) .text(function(d){ return d.num_of_read }); var rpmh_col = row.append('rect') .attr('transform', function(d,i){ return 'translate(' + (5 + columns[4].x) + ', -15)'; }) .attr('height',20) .attr('width', function(d){ return d.rpmh_percentage * scale(90) }) .attr('fill','rgb(198, 219, 239)') .attr('stroke','none') var rpmh_col = row.append('text') .attr('transform', function(d,i){ return 'translate(' + (10 + columns[4].x) + ', 0)'; }) .text(function(d){ return d.RPMH }); }); } chart.width = function(value) { if (!arguments.length) return width; width = value; return chart; }; chart.cellheight = function(value) { if (!arguments.length) return cellheight; cellheight = value; return chart; }; chart.margin = function(value) { if (!arguments.length) return margin; margin = value; return chart; }; chart.columns = function(value) { if (!arguments.length) return columns; columns = value; return chart; }; return chart; } var donut = donutChart() .width(width) .height(scale(250)) .cornerRadius(2) // sets how rounded the corners are on each slice .padAngle(0.015) // effectively dictates the gap between slices .variable('percentage') .category('name'); var bartable = barTable() .width(width) .cellheight(22) .columns([ {name: 'Name', width: scale(285), x:scale(10)}, {name: 'TaxID', width: scale(95), x:scale(300)}, {name: 'Longest contig', width: scale(95), x:scale(400)}, {name: '# of reads', width: scale(195), x:scale(500)}, {name: 'RPMH', width: scale(95), x:scale(700)}, ]) var data = d3.tsvParse(`''' + df.to_csv(sep="\t",index=False,doublequote=False) + '''`) //get total number of reads var total_num_reads = 0 var longest_contig_length = 0 var max_rpmh = 0 for(var organism in data) { if(data[organism].num_of_read){ total_num_reads += parseInt(data[organism].num_of_read) } if(parseInt(data[organism].len_longest_contig) > longest_contig_length){ longest_contig_length = data[organism].len_longest_contig } if(parseInt(data[organism].RPMH) > max_rpmh){ max_rpmh = data[organism].RPMH } } //filter out organisms over thresh for(var i in data){ data[i].percentage = data[i].num_of_read / total_num_reads data[i].contig_percentage = data[i].len_longest_contig / longest_contig_length data[i].rpmh_percentage = data[i].RPMH / max_rpmh } data.sort(function(a, b) { return b.RPMH - a.RPMH ; }); var filteredData = data.filter(function(d) { return d.percentage > 0.015 }) var underThresh = data.filter(function(d) { return d.percentage <= 0.015 }) //save organisms under thresh var readUnderThresh = 0 for(var organism in underThresh) { if(underThresh[organism].num_of_read){ readUnderThresh += parseInt(underThresh[organism].num_of_read) } } //add combined others to filteredData filteredData.push({ name: "Others", num_of_read: readUnderThresh }) for(var i in filteredData){ filteredData[i].percentage = filteredData[i].num_of_read / total_num_reads } d3.select('#chart') .datum(filteredData) // bind data to the div .call(donut); // draw chart in div d3.select('#table') .datum(data) .call(bartable); </script> </body> <style> body { font-family: 'Roboto', sans-serif; color: #333333; } /*Styling for the lines connecting the labels to the slices*/ polyline{ opacity: .3; stroke: black; stroke-width: 1.5px; fill: none; } /* Make the percentage on the text labels bold*/ .labelName tspan { font-style: normal; font-weight: 700; } /* In biology we generally italicise species names. */ .labelName { font-size: 0.9em; font-style: italic; } #wrapper { display: table; height: 100vh; } #chart { display: table-row; left: 0px; right: 0px; top: 0px; bottom: 0px; z-index: 1; } #table { display:table-row; height:100%; overflow-y: scroll; font-size: 15px; } </style> </html> ''' #write to html file with open(outputLoc+'/report.taxon.html', 'w') as f: f.write(htmloutput)
mit
ibis-project/ibis
ibis/backends/base/file/__init__.py
1
3834
from pathlib import Path import ibis.expr.types as ir from ibis.backends.base import Client, Database from ibis.backends.pandas.core import execute_and_reset class FileClient(Client): def __init__(self, backend, root): self.extension = backend.extension self.table_class = backend.table_class self.root = Path(str(root)) self.dictionary = {} def insert(self, path, expr, **kwargs): raise NotImplementedError def table(self, name, path): raise NotImplementedError def database(self, name=None, path=None): if name is None: return FileDatabase('root', self, path=path) if name not in self.list_databases(path): raise AttributeError(name) if path is None: path = self.root new_name = "{}.{}".format(name, self.extension) if (self.root / name).is_dir(): path /= name elif not str(path).endswith(new_name): path /= new_name return FileDatabase(name, self, path=path) def execute(self, expr, params=None, **kwargs): # noqa assert isinstance(expr, ir.Expr) return execute_and_reset(expr, params=params, **kwargs) def list_tables(self, path=None): raise NotImplementedError def _list_tables_files(self, path=None): # tables are files in a dir if path is None: path = self.root tables = [] if path.is_dir(): for d in path.iterdir(): if d.is_file(): if str(d).endswith(self.extension): tables.append(d.stem) elif path.is_file(): if str(path).endswith(self.extension): tables.append(path.stem) return tables def list_databases(self, path=None): raise NotImplementedError def _list_databases_dirs(self, path=None): # databases are dir if path is None: path = self.root tables = [] if path.is_dir(): for d in path.iterdir(): if d.is_dir(): tables.append(d.name) return tables def _list_databases_dirs_or_files(self, path=None): # databases are dir & file if path is None: path = self.root tables = [] if path.is_dir(): for d in path.iterdir(): if d.is_dir(): tables.append(d.name) elif d.is_file(): if str(d).endswith(self.extension): tables.append(d.stem) elif path.is_file(): # by definition we are at the db level at this point pass return tables class FileDatabase(Database): def __init__(self, name, client, path=None): super().__init__(name, client) self.path = path def __str__(self): return '{0.__class__.__name__}({0.name})'.format(self) def __dir__(self): dbs = self.list_databases(path=self.path) tables = self.list_tables(path=self.path) return sorted(set(dbs).union(set(tables))) def __getattr__(self, name): try: return self.table(name, path=self.path) except AttributeError: return self.database(name, path=self.path) def table(self, name, path): return self.client.table(name, path=path) def database(self, name=None, path=None): return self.client.database(name=name, path=path) def list_databases(self, path=None): if path is None: path = self.path return sorted(self.client.list_databases(path=path)) def list_tables(self, path=None): if path is None: path = self.path return sorted(self.client.list_tables(path=path))
apache-2.0
rajat1994/scikit-learn
examples/model_selection/grid_search_text_feature_extraction.py
253
4158
""" ========================================================== Sample pipeline for text feature extraction and evaluation ========================================================== The dataset used in this example is the 20 newsgroups dataset which will be automatically downloaded and then cached and reused for the document classification example. You can adjust the number of categories by giving their names to the dataset loader or setting them to None to get the 20 of them. Here is a sample output of a run on a quad-core machine:: Loading 20 newsgroups dataset for categories: ['alt.atheism', 'talk.religion.misc'] 1427 documents 2 categories Performing grid search... pipeline: ['vect', 'tfidf', 'clf'] parameters: {'clf__alpha': (1.0000000000000001e-05, 9.9999999999999995e-07), 'clf__n_iter': (10, 50, 80), 'clf__penalty': ('l2', 'elasticnet'), 'tfidf__use_idf': (True, False), 'vect__max_n': (1, 2), 'vect__max_df': (0.5, 0.75, 1.0), 'vect__max_features': (None, 5000, 10000, 50000)} done in 1737.030s Best score: 0.940 Best parameters set: clf__alpha: 9.9999999999999995e-07 clf__n_iter: 50 clf__penalty: 'elasticnet' tfidf__use_idf: True vect__max_n: 2 vect__max_df: 0.75 vect__max_features: 50000 """ # Author: Olivier Grisel <[email protected]> # Peter Prettenhofer <[email protected]> # Mathieu Blondel <[email protected]> # License: BSD 3 clause from __future__ import print_function from pprint import pprint from time import time import logging from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) data = fetch_20newsgroups(subset='train', categories=categories) print("%d documents" % len(data.filenames)) print("%d categories" % len(data.target_names)) print() ############################################################################### # define a pipeline combining a text feature extractor with a simple # classifier pipeline = Pipeline([ ('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SGDClassifier()), ]) # uncommenting more parameters will give better exploring power but will # increase processing time in a combinatorial way parameters = { 'vect__max_df': (0.5, 0.75, 1.0), #'vect__max_features': (None, 5000, 10000, 50000), 'vect__ngram_range': ((1, 1), (1, 2)), # unigrams or bigrams #'tfidf__use_idf': (True, False), #'tfidf__norm': ('l1', 'l2'), 'clf__alpha': (0.00001, 0.000001), 'clf__penalty': ('l2', 'elasticnet'), #'clf__n_iter': (10, 50, 80), } if __name__ == "__main__": # multiprocessing requires the fork to happen in a __main__ protected # block # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1) print("Performing grid search...") print("pipeline:", [name for name, _ in pipeline.steps]) print("parameters:") pprint(parameters) t0 = time() grid_search.fit(data.data, data.target) print("done in %0.3fs" % (time() - t0)) print() print("Best score: %0.3f" % grid_search.best_score_) print("Best parameters set:") best_parameters = grid_search.best_estimator_.get_params() for param_name in sorted(parameters.keys()): print("\t%s: %r" % (param_name, best_parameters[param_name]))
bsd-3-clause
yunfeilu/scikit-learn
sklearn/datasets/species_distributions.py
198
7923
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
VandroiyLabs/FaroresWind
faroreswind/collector/Recording.py
1
9078
# standard libraries import sys, os, time, io import datetime # enose library import ElectronicNose as EN # signal processing and math import signal import numpy as np # to create threads import multiprocessing as mp # For plot import matplotlib as mpl mpl.use('Agg') import pylab as pl import matplotlib.gridspec as gridspec # For the web service import tornado.ioloop import tornado.web import logging from websocket import create_connection ## Mutliprocessing Shared variables # Stop switch stopSwitch = mp.Value('i') stopSwitch.value = 1 # Exporting flag doExport = mp.Value('i') doExport.value = 0 # Variable for the name of the nome sensorname = mp.Value('i') def exporter(host): ## Counts how many times the server was busy, ## then quits... busyCount = 0 maxBusyCount = 3 ## Automatic updating system lastUpdateTimeStamp = datetime.datetime.now() # first sets as starting point updateInterval = datetime.timedelta(minutes = 30) while True: currTime = datetime.datetime.now() time4Update = currTime - lastUpdateTimeStamp > updateInterval if doExport.value == 1 or time4Update: ## In case only time4Update was true doExport.value = 1 print( "\n\nConnecting to server..." ) try: ## Connecting to the socket ws = create_connection("ws://" + host + ":8799/DataIntegration") response = ws.recv() ## Checking server status if response == "Busy": print( "Server is busy." ) busyCount += 1 # max trials achieved, quitting trying to contat the server... if busyCount == maxBusyCount: print( "Server not responsive!! (maxBusyCount achieved)" ) doExport.value = 0 busyCount = 0 ## Server is ready to receive the data elif response == "Free": print( "Server ready to process data." ) ## Resetting the counter for busy responses busyCount = 0 ## Identifying itself for the server, and sending a warning ws.send( "My name: " + str(sensorname.value) ) ws.send( "sending" ) print( ws.recv() ) ## Exporting the Data # Sends a message to Enose to export the data stopSwitch.value = 3 # Waiting until ENOSE exported the data while doExport.value == 1: time.sleep(2.) ## Receing confirmation that the server received the last message ws.send("sent") print( ws.recv() ) ## Closing the connection ws.close() ## Updating the record for the last updating time stamp lastUpdateTimeStamp = datetime.datetime.now() # first sets as starting point doExport.value = 0 else: print( "Server is crazy." ) except: print( "Server not responsive!!" ) doExport.value = 0 time.sleep(5.) return def collector(enose, user, host, folder): ## Interval between measurements intrval = 0.050 ## Counting for automatic plotting count = 0 while stopSwitch.value != 0: ## Getting new sample pre = time.time() enose.sniff(nsamples=3) e = time.time() - pre < 0.005 if e < 0.004: time.sleep(0.004 - e) ## Updating the local visualization tool count +=1 if count == 20: # updating shared array np.save( 'recent.npy', enose.memory[-5000:] ) count = 0 ## Checking if data should be exported if stopSwitch.value == 3: file_name = 'NewData_' + str(sensorname.value) + '_' \ + time.strftime("%Y-%m_%d_%H-%M-%S") ##TO DO checar se arquivo foi salvo e exportado np.save( file_name+'.npy', enose.memory ) outscp = os.system("scp " + file_name + ".npy " + user + "@" + host + ":" + folder) if outscp == 0: os.system("rm -f "+file_name+".npy") enose.forget() stopSwitch.value = 1 doExport.value = -1 ## Clock key = True while key: dif = intrval - ( time.time() % 1 ) % intrval key = not ( dif < 0.005 ) time.sleep( dif*0.6 ) np.save('Data.npy', enose.memory) return def genImage(): # Collecting latest data recent = np.load('recent.npy') # Converting time from seconds to hours time = recent[:,0] / 3600. pl.figure( figsize=(8,5) ) gs = gridspec.GridSpec(2, 2, height_ratios=[1.5,1], width_ratios = [1,1] ) ## Starting with the sensors sensorPanel = pl.subplot(gs[0,:]) for j in range(1,9): sensorPanel.plot(time, recent[:,j]) sensorPanel.set_ylabel("Sensor resistance") sensorPanel.set_xlabel('Time (h)') sensorPanel.set_xlim( time.min() - 0.01, time.max() + 0.01) sensorPanel.grid(True) ## Temperature and humidity tempPanel = pl.subplot(gs[1,0]) tempPanel.plot(time, recent[:,9]) tempPanel.set_ylabel("Temperature") tempPanel.set_xlabel('Time (h)') tempPanel.set_xlim( time.min() - 0.01, time.max() + 0.01) humdPanel = pl.subplot(gs[1,1]) humdPanel.plot(time, recent[:,10]) humdPanel.set_ylabel("Humidity") humdPanel.set_xlabel('Time (h)') humdPanel.set_xlim( time.min() - 0.01, time.max() + 0.01) memdata = io.BytesIO() pl.tight_layout() pl.savefig(memdata, format='png', dpi=150) image = memdata.getvalue() pl.close() return image class MainHandler(tornado.web.RequestHandler): def get(self): self.write("<html><head>") self.write('<meta http-equiv="refresh" content="5">') self.write("<title>Sensor</title></head>") self.write("<body>") self.write("<h1>Sensor hal"+str(sensorname.value)+"k</h1>") self.write('<img src="recent.png" style="width: 900px;" />') self.write("</body></html>") class ImageHandler(tornado.web.RequestHandler): def get(self): image = genImage() self.set_header('Content-type', 'image/png') self.set_header('Content-length', len(image)) self.write(image) def webservice(port): application = tornado.web.Application([ (r"/", MainHandler), (r"/recent.png", ImageHandler), ]) application.listen(port) tornado.ioloop.PeriodicCallback(try_exit, 100).start() tornado.ioloop.IOLoop.instance().start() return def try_exit(): if stopSwitch.value == 0: tornado.ioloop.IOLoop.instance().stop() return def signal_handler(signal, frame): print( "\nStopping..." ) sys.exit(0) def daemon( enoseID ): hn = logging.NullHandler() hn.setLevel(logging.DEBUG) logging.getLogger("tornado.access").addHandler(hn) logging.getLogger("tornado.access").propagate = False signal.signal(signal.SIGINT, signal_handler) # Defining the name sensorname.value = int(enoseID) print( "Creating the ENose object..." ) enose = EN.ElectronicNose() print( "Preparing environment..." ) ## Reading configuration file configfile = file('Cconfig','r') user = configfile.readline().split('\n')[0] port = int(configfile.readline().split('\n')[0]) host = configfile.readline().split('\n')[0] folder = configfile.readline().split('\n')[0] configfile.close() ## Parallel processes sniffer = mp.Process(target=collector, args=(enose, user, host, folder)) sniffer.start() exporter_th = mp.Process(target=exporter, args=(host,)) exporter_th.start() print( "Starting web service (use port " + str(port) + ")" ) is_closing = False webserv = mp.Process(target=webservice, args=(port,)) webserv.start() print( "Starting data collection (CTRL+C to stop)" ) print( "\n" ) while True: command = raw_input("\nCommand: [") if command == "": ctime = datetime.datetime.now() print( "Current time stamp: " + str(ctime) ) elif command == "plot" or command == "p": stopSwitch.value = 2 pl.close() elif command == "export" or command == "e": doExport.value = 1 while doExport.value != 0: time.sleep(0.1) elif command == "stop" or command == "s": stopSwitch.value = 0 sniffer.join() os.system(" rm -f recent.npy plot_recent.png ") break print( "\nThe end, my friend." ) return
gpl-3.0
aiguofer/bokeh
examples/charts/file/hover_span.py
6
2741
import pandas as pd from bokeh.charts import Line, Scatter, show, output_file, defaults from bokeh.layouts import gridplot from bokeh.models import HoverTool from bokeh.sampledata.degrees import data defaults.width = 500 defaults.height = 300 TOOLS='box_zoom,box_select,hover,crosshair,reset' TOOLTIPS = [ ("y", "$~y"), ("x", "$~x") ] data = data[['Biology', 'Business', 'Computer Science', "Year"]] data = pd.melt(data, id_vars=['Year'], value_vars=['Biology', 'Business', 'Computer Science'], value_name='Count', var_name='Degree') vline = Line(data, y='Count', color='Degree', title="Lines VLine", ylabel='measures', tools=TOOLS) hline = Line(data, y='Count', color='Degree', title="Lines HLine", ylabel='measures', tools=TOOLS) int_vline = Line(data, y='Count', color='Degree', title="Lines VLine Interp", ylabel='measures', tools=TOOLS) int_hline = Line(data, y='Count', color='Degree', title="Lines HLine Interp", ylabel='measures', tools=TOOLS) scatter_point = Scatter(data, x='Year', y='Count', color='Degree', title="Scatter mouse", ylabel='measures', legend=True, tools=TOOLS) scatter = Scatter(data, x='Year', y='Count', color='Degree', title="Scatter V Line", ylabel='measures', legend=True, tools=TOOLS) int_point_line = Line(data, x='Year', y='Count', color='Degree', title="Lines Mouse Interp.", ylabel='measures', tools=TOOLS) point_line = Line(data, x='Year', y='Count', color='Degree', title="Lines Mouse", ylabel='measures', tools=TOOLS) hhover = hline.select(HoverTool) hhover.mode = 'hline' hhover.line_policy = 'next' vhover = vline.select(HoverTool) vhover.mode = 'vline' vhover.line_policy = 'nearest' int_hhover = int_hline.select(HoverTool) int_hhover.mode = 'hline' int_hhover.line_policy = 'interp' int_vhover = int_vline.select(HoverTool) int_vhover.mode = 'vline' int_vhover.line_policy = 'interp' iphover = int_point_line.select(HoverTool) iphover.mode = 'mouse' iphover.line_policy = 'interp' tphover = point_line.select(HoverTool) tphover.mode = 'mouse' shover = scatter.select(HoverTool) shover.mode = 'vline' shoverp = scatter_point.select(HoverTool) shoverp.mode = 'mouse' # set up tooltips int_vhover.tooltips = int_hhover.tooltips = TOOLTIPS tphover.tooltips = iphover.tooltips = TOOLTIPS shover.tooltips = shoverp.tooltips = TOOLTIPS vhover.tooltips = hhover.tooltips = TOOLTIPS output_file("hover_span.html", title="hover_span.py example") show(gridplot(hline, vline, int_hline, int_vline, int_point_line, point_line, scatter_point, scatter, ncols=2))
bsd-3-clause
poryfly/scikit-learn
examples/neighbors/plot_classification.py
287
1790
""" ================================ Nearest Neighbors Classification ================================ Sample usage of Nearest Neighbors classification. It will plot the decision boundaries for each class. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import neighbors, datasets n_neighbors = 15 # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. We could # avoid this ugly slicing by using a two-dim dataset y = iris.target h = .02 # step size in the mesh # Create color maps cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) for weights in ['uniform', 'distance']: # we create an instance of Neighbours Classifier and fit the data. clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights) clf.fit(X, y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, cmap=cmap_light) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.title("3-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights)) plt.show()
bsd-3-clause
BiaDarkia/scikit-learn
sklearn/metrics/pairwise.py
1
47372
# -*- coding: utf-8 -*- # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Robert Layton <[email protected]> # Andreas Mueller <[email protected]> # Philippe Gervais <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # License: BSD 3 clause import itertools from functools import partial import warnings import numpy as np from scipy.spatial import distance from scipy.sparse import csr_matrix from scipy.sparse import issparse from ..utils import check_array from ..utils import gen_even_slices from ..utils import gen_batches from ..utils.extmath import row_norms, safe_sparse_dot from ..preprocessing import normalize from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..externals.joblib import cpu_count from .pairwise_fast import _chi2_kernel_fast, _sparse_manhattan # Utility Functions def _return_float_dtype(X, Y): """ 1. If dtype of X and Y is float32, then dtype float32 is returned. 2. Else dtype float is returned. """ if not issparse(X) and not isinstance(X, np.ndarray): X = np.asarray(X) if Y is None: Y_dtype = X.dtype elif not issparse(Y) and not isinstance(Y, np.ndarray): Y = np.asarray(Y) Y_dtype = Y.dtype else: Y_dtype = Y.dtype if X.dtype == Y_dtype == np.float32: dtype = np.float32 else: dtype = np.float return X, Y, dtype def check_pairwise_arrays(X, Y, precomputed=False, dtype=None): """ Set X and Y appropriately and checks inputs If Y is None, it is set as a pointer to X (i.e. not a copy). If Y is given, this does not happen. All distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats (or dtype if provided). Finally, the function checks that the size of the second dimension of the two arrays is equal, or the equivalent check for a precomputed distance matrix. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) precomputed : bool True if X is to be treated as precomputed distances to the samples in Y. dtype : string, type, list of types or None (default=None) Data type required for X and Y. If None, the dtype will be an appropriate float type selected by _return_float_dtype. .. versionadded:: 0.18 Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y, dtype_float = _return_float_dtype(X, Y) warn_on_dtype = dtype is not None estimator = 'check_pairwise_arrays' if dtype is None: dtype = dtype_float if Y is X or Y is None: X = Y = check_array(X, accept_sparse='csr', dtype=dtype, warn_on_dtype=warn_on_dtype, estimator=estimator) else: X = check_array(X, accept_sparse='csr', dtype=dtype, warn_on_dtype=warn_on_dtype, estimator=estimator) Y = check_array(Y, accept_sparse='csr', dtype=dtype, warn_on_dtype=warn_on_dtype, estimator=estimator) if precomputed: if X.shape[1] != Y.shape[0]: raise ValueError("Precomputed metric requires shape " "(n_queries, n_indexed). Got (%d, %d) " "for %d indexed." % (X.shape[0], X.shape[1], Y.shape[0])) elif X.shape[1] != Y.shape[1]: raise ValueError("Incompatible dimension for X and Y matrices: " "X.shape[1] == %d while Y.shape[1] == %d" % ( X.shape[1], Y.shape[1])) return X, Y def check_paired_arrays(X, Y): """ Set X and Y appropriately and checks inputs for paired distances All paired distance metrics should use this function first to assert that the given parameters are correct and safe to use. Specifically, this function first ensures that both X and Y are arrays, then checks that they are at least two dimensional while ensuring that their elements are floats. Finally, the function checks that the size of the dimensions of the two arrays are equal. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_a, n_features) Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) Returns ------- safe_X : {array-like, sparse matrix}, shape (n_samples_a, n_features) An array equal to X, guaranteed to be a numpy array. safe_Y : {array-like, sparse matrix}, shape (n_samples_b, n_features) An array equal to Y if Y was not None, guaranteed to be a numpy array. If Y was None, safe_Y will be a pointer to X. """ X, Y = check_pairwise_arrays(X, Y) if X.shape != Y.shape: raise ValueError("X and Y should be of same shape. They were " "respectively %r and %r long." % (X.shape, Y.shape)) return X, Y # Pairwise distances def euclidean_distances(X, Y=None, Y_norm_squared=None, squared=False, X_norm_squared=None): """ Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors. For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as:: dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then `dot(x, x)` and/or `dot(y, y)` can be pre-computed. However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples_1, n_features) Y : {array-like, sparse matrix}, shape (n_samples_2, n_features) Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) squared : boolean, optional Return squared Euclidean distances. X_norm_squared : array-like, shape = [n_samples_1], optional Pre-computed dot-products of vectors in X (e.g., ``(X**2).sum(axis=1)``) Returns ------- distances : {array, sparse matrix}, shape (n_samples_1, n_samples_2) Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [[0, 1], [1, 1]] >>> # distance between rows of X >>> euclidean_distances(X, X) array([[0., 1.], [1., 0.]]) >>> # get distance to origin >>> euclidean_distances(X, [[0, 0]]) array([[1. ], [1.41421356]]) See also -------- paired_distances : distances betweens pairs of elements of X and Y. """ X, Y = check_pairwise_arrays(X, Y) if X_norm_squared is not None: XX = check_array(X_norm_squared) if XX.shape == (1, X.shape[0]): XX = XX.T elif XX.shape != (X.shape[0], 1): raise ValueError( "Incompatible dimensions for X and X_norm_squared") else: XX = row_norms(X, squared=True)[:, np.newaxis] if X is Y: # shortcut in the common case euclidean_distances(X, X) YY = XX.T elif Y_norm_squared is not None: YY = np.atleast_2d(Y_norm_squared) if YY.shape != (1, Y.shape[0]): raise ValueError( "Incompatible dimensions for Y and Y_norm_squared") else: YY = row_norms(Y, squared=True)[np.newaxis, :] distances = safe_sparse_dot(X, Y.T, dense_output=True) distances *= -2 distances += XX distances += YY np.maximum(distances, 0, out=distances) if X is Y: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. distances.flat[::distances.shape[0] + 1] = 0.0 return distances if squared else np.sqrt(distances, out=distances) def pairwise_distances_argmin_min(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). The minimal distances are also returned. This is mostly equivalent to calling: (pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis), pairwise_distances(X, Y=Y, metric=metric).min(axis=axis)) but uses much less memory, and is faster for large arrays. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples1, n_features) Array containing points. Y : {array-like, sparse matrix}, shape (n_samples2, n_features) Arrays containing points. axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. metric : string or callable, default 'euclidean' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric_kwargs : dict, optional Keyword arguments to pass to specified metric function. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. distances : numpy.ndarray distances[i] is the distance between the i-th row in X and the argmin[i]-th row in Y. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin """ dist_func = None if metric in PAIRWISE_DISTANCE_FUNCTIONS: dist_func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif not callable(metric) and not isinstance(metric, str): raise ValueError("'metric' must be a string or a callable") X, Y = check_pairwise_arrays(X, Y) if metric_kwargs is None: metric_kwargs = {} if axis == 0: X, Y = Y, X # Allocate output arrays indices = np.empty(X.shape[0], dtype=np.intp) values = np.empty(X.shape[0]) values.fill(np.infty) for chunk_x in gen_batches(X.shape[0], batch_size): X_chunk = X[chunk_x, :] for chunk_y in gen_batches(Y.shape[0], batch_size): Y_chunk = Y[chunk_y, :] if dist_func is not None: if metric == 'euclidean': # special case, for speed d_chunk = safe_sparse_dot(X_chunk, Y_chunk.T, dense_output=True) d_chunk *= -2 d_chunk += row_norms(X_chunk, squared=True)[:, np.newaxis] d_chunk += row_norms(Y_chunk, squared=True)[np.newaxis, :] np.maximum(d_chunk, 0, d_chunk) else: d_chunk = dist_func(X_chunk, Y_chunk, **metric_kwargs) else: d_chunk = pairwise_distances(X_chunk, Y_chunk, metric=metric, **metric_kwargs) # Update indices and minimum values using chunk min_indices = d_chunk.argmin(axis=1) min_values = d_chunk[np.arange(chunk_x.stop - chunk_x.start), min_indices] flags = values[chunk_x] > min_values indices[chunk_x][flags] = min_indices[flags] + chunk_y.start values[chunk_x][flags] = min_values[flags] if metric == "euclidean" and not metric_kwargs.get("squared", False): np.sqrt(values, values) return indices, values def pairwise_distances_argmin(X, Y, axis=1, metric="euclidean", batch_size=500, metric_kwargs=None): """Compute minimum distances between one point and a set of points. This function computes for each row in X, the index of the row of Y which is closest (according to the specified distance). This is mostly equivalent to calling: pairwise_distances(X, Y=Y, metric=metric).argmin(axis=axis) but uses much less memory, and is faster for large arrays. This function works with dense 2D arrays only. Parameters ---------- X : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) Y : array-like Arrays containing points. Respective shapes (n_samples1, n_features) and (n_samples2, n_features) axis : int, optional, default 1 Axis along which the argmin and distances are to be computed. metric : string or callable metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. batch_size : integer To reduce memory consumption over the naive solution, data are processed in batches, comprising batch_size rows of X and batch_size rows of Y. The default value is quite conservative, but can be changed for fine-tuning. The larger the number, the larger the memory usage. metric_kwargs : dict keyword arguments to pass to specified metric function. Returns ------- argmin : numpy.ndarray Y[argmin[i], :] is the row in Y that is closest to X[i, :]. See also -------- sklearn.metrics.pairwise_distances sklearn.metrics.pairwise_distances_argmin_min """ if metric_kwargs is None: metric_kwargs = {} return pairwise_distances_argmin_min(X, Y, axis, metric, batch_size, metric_kwargs)[0] def manhattan_distances(X, Y=None, sum_over_features=True, size_threshold=None): """ Compute the L1 distances between the vectors in X and Y. With sum_over_features equal to False it returns the componentwise distances. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like, optional An array with shape (n_samples_Y, n_features). sum_over_features : bool, default=True If True the function returns the pairwise distance matrix else it returns the componentwise L1 pairwise-distances. Not supported for sparse matrix inputs. size_threshold : int, default=5e8 Unused parameter. Returns ------- D : array If sum_over_features is False shape is (n_samples_X * n_samples_Y, n_features) and D contains the componentwise L1 pairwise-distances (ie. absolute difference), else shape is (n_samples_X, n_samples_Y) and D contains the pairwise L1 distances. Examples -------- >>> from sklearn.metrics.pairwise import manhattan_distances >>> manhattan_distances([[3]], [[3]])#doctest:+ELLIPSIS array([[0.]]) >>> manhattan_distances([[3]], [[2]])#doctest:+ELLIPSIS array([[1.]]) >>> manhattan_distances([[2]], [[3]])#doctest:+ELLIPSIS array([[1.]]) >>> manhattan_distances([[1, 2], [3, 4]],\ [[1, 2], [0, 3]])#doctest:+ELLIPSIS array([[0., 2.], [4., 4.]]) >>> import numpy as np >>> X = np.ones((1, 2)) >>> y = 2 * np.ones((2, 2)) >>> manhattan_distances(X, y, sum_over_features=False)#doctest:+ELLIPSIS array([[1., 1.], [1., 1.]]) """ if size_threshold is not None: warnings.warn('Use of the "size_threshold" is deprecated ' 'in 0.19 and it will be removed version ' '0.21 of scikit-learn', DeprecationWarning) X, Y = check_pairwise_arrays(X, Y) if issparse(X) or issparse(Y): if not sum_over_features: raise TypeError("sum_over_features=%r not supported" " for sparse matrices" % sum_over_features) X = csr_matrix(X, copy=False) Y = csr_matrix(Y, copy=False) D = np.zeros((X.shape[0], Y.shape[0])) _sparse_manhattan(X.data, X.indices, X.indptr, Y.data, Y.indices, Y.indptr, X.shape[1], D) return D if sum_over_features: return distance.cdist(X, Y, 'cityblock') D = X[:, np.newaxis, :] - Y[np.newaxis, :, :] D = np.abs(D, D) return D.reshape((-1, X.shape[1])) def cosine_distances(X, Y=None): """Compute cosine distance between samples in X and Y. Cosine distance is defined as 1.0 minus the cosine similarity. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array_like, sparse matrix with shape (n_samples_X, n_features). Y : array_like, sparse matrix (optional) with shape (n_samples_Y, n_features). Returns ------- distance matrix : array An array with shape (n_samples_X, n_samples_Y). See also -------- sklearn.metrics.pairwise.cosine_similarity scipy.spatial.distance.cosine (dense matrices only) """ # 1.0 - cosine_similarity(X, Y) without copy S = cosine_similarity(X, Y) S *= -1 S += 1 np.clip(S, 0, 2, out=S) if X is Y or Y is None: # Ensure that distances between vectors and themselves are set to 0.0. # This may not be the case due to floating point rounding errors. S[np.diag_indices_from(S)] = 0.0 return S # Paired distances def paired_euclidean_distances(X, Y): """ Computes the paired euclidean distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) return row_norms(X - Y) def paired_manhattan_distances(X, Y): """Compute the L1 distances between the vectors in X and Y. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray (n_samples, ) """ X, Y = check_paired_arrays(X, Y) diff = X - Y if issparse(diff): diff.data = np.abs(diff.data) return np.squeeze(np.array(diff.sum(axis=1))) else: return np.abs(diff).sum(axis=-1) def paired_cosine_distances(X, Y): """ Computes the paired cosine distances between X and Y Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array-like, shape (n_samples, n_features) Y : array-like, shape (n_samples, n_features) Returns ------- distances : ndarray, shape (n_samples, ) Notes ------ The cosine distance is equivalent to the half the squared euclidean distance if each sample is normalized to unit norm """ X, Y = check_paired_arrays(X, Y) return .5 * row_norms(normalize(X) - normalize(Y), squared=True) PAIRED_DISTANCES = { 'cosine': paired_cosine_distances, 'euclidean': paired_euclidean_distances, 'l2': paired_euclidean_distances, 'l1': paired_manhattan_distances, 'manhattan': paired_manhattan_distances, 'cityblock': paired_manhattan_distances} def paired_distances(X, Y, metric="euclidean", **kwds): """ Computes the paired distances between X and Y. Computes the distances between (X[0], Y[0]), (X[1], Y[1]), etc... Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : ndarray (n_samples, n_features) Array 1 for distance computation. Y : ndarray (n_samples, n_features) Array 2 for distance computation. metric : string or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options specified in PAIRED_DISTANCES, including "euclidean", "manhattan", or "cosine". Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. Returns ------- distances : ndarray (n_samples, ) Examples -------- >>> from sklearn.metrics.pairwise import paired_distances >>> X = [[0, 1], [1, 1]] >>> Y = [[0, 1], [2, 1]] >>> paired_distances(X, Y) array([0., 1.]) See also -------- pairwise_distances : Computes the distance between every pair of samples """ if metric in PAIRED_DISTANCES: func = PAIRED_DISTANCES[metric] return func(X, Y) elif callable(metric): # Check the matrix first (it is usually done by the metric) X, Y = check_paired_arrays(X, Y) distances = np.zeros(len(X)) for i in range(len(X)): distances[i] = metric(X[i], Y[i]) return distances else: raise ValueError('Unknown distance %s' % metric) # Kernels def linear_kernel(X, Y=None, dense_output=True): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : array of shape (n_samples_1, n_features) Y : array of shape (n_samples_2, n_features) dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.20 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=dense_output) def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1): """ Compute the polynomial kernel between X and Y:: K(X, Y) = (gamma <X, Y> + coef0)^degree Read more in the :ref:`User Guide <polynomial_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) degree : int, default 3 gamma : float, default None if None, defaults to 1.0 / n_features coef0 : int, default 1 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 K **= degree return K def sigmoid_kernel(X, Y=None, gamma=None, coef0=1): """ Compute the sigmoid kernel between X and Y:: K(X, Y) = tanh(gamma <X, Y> + coef0) Read more in the :ref:`User Guide <sigmoid_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_1, n_features) Y : ndarray of shape (n_samples_2, n_features) gamma : float, default None If None, defaults to 1.0 / n_features coef0 : int, default 1 Returns ------- Gram matrix : array of shape (n_samples_1, n_samples_2) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = safe_sparse_dot(X, Y.T, dense_output=True) K *= gamma K += coef0 np.tanh(K, K) # compute tanh in-place return K def rbf_kernel(X, Y=None, gamma=None): """ Compute the rbf (gaussian) kernel between X and Y:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <rbf_kernel>`. Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default None If None, defaults to 1.0 / n_features Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = euclidean_distances(X, Y, squared=True) K *= -gamma np.exp(K, K) # exponentiate K in-place return K def laplacian_kernel(X, Y=None, gamma=None): """Compute the laplacian kernel between X and Y. The laplacian kernel is defined as:: K(x, y) = exp(-gamma ||x-y||_1) for each pair of rows x in X and y in Y. Read more in the :ref:`User Guide <laplacian_kernel>`. .. versionadded:: 0.17 Parameters ---------- X : array of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default None If None, defaults to 1.0 / n_features Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) """ X, Y = check_pairwise_arrays(X, Y) if gamma is None: gamma = 1.0 / X.shape[1] K = -gamma * manhattan_distances(X, Y) np.exp(K, K) # exponentiate K in-place return K def cosine_similarity(X, Y=None, dense_output=True): """Compute cosine similarity between samples in X and Y. Cosine similarity, or the cosine kernel, computes similarity as the normalized dot product of X and Y: K(X, Y) = <X, Y> / (||X||*||Y||) On L2-normalized data, this function is equivalent to linear_kernel. Read more in the :ref:`User Guide <cosine_similarity>`. Parameters ---------- X : ndarray or sparse array, shape: (n_samples_X, n_features) Input data. Y : ndarray or sparse array, shape: (n_samples_Y, n_features) Input data. If ``None``, the output will be the pairwise similarities between all samples in ``X``. dense_output : boolean (optional), default True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.17 parameter ``dense_output`` for dense output. Returns ------- kernel matrix : array An array with shape (n_samples_X, n_samples_Y). """ # to avoid recursive import X, Y = check_pairwise_arrays(X, Y) X_normalized = normalize(X, copy=True) if X is Y: Y_normalized = X_normalized else: Y_normalized = normalize(Y, copy=True) K = safe_sparse_dot(X_normalized, Y_normalized.T, dense_output=dense_output) return K def additive_chi2_kernel(X, Y=None): """Computes the additive chi-squared kernel between observations in X and Y The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = -Sum [(x - y)^2 / (x + y)] It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Notes ----- As the negative of a distance, this kernel is only conditionally positive definite. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf See also -------- chi2_kernel : The exponentiated version of the kernel, which is usually preferable. sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to this kernel. """ if issparse(X) or issparse(Y): raise ValueError("additive_chi2 does not support sparse matrices.") X, Y = check_pairwise_arrays(X, Y) if (X < 0).any(): raise ValueError("X contains negative values.") if Y is not X and (Y < 0).any(): raise ValueError("Y contains negative values.") result = np.zeros((X.shape[0], Y.shape[0]), dtype=X.dtype) _chi2_kernel_fast(X, Y, result) return result def chi2_kernel(X, Y=None, gamma=1.): """Computes the exponential chi-squared kernel X and Y. The chi-squared kernel is computed between each pair of rows in X and Y. X and Y have to be non-negative. This kernel is most commonly applied to histograms. The chi-squared kernel is given by:: k(x, y) = exp(-gamma Sum [(x - y)^2 / (x + y)]) It can be interpreted as a weighted difference per entry. Read more in the :ref:`User Guide <chi2_kernel>`. Parameters ---------- X : array-like of shape (n_samples_X, n_features) Y : array of shape (n_samples_Y, n_features) gamma : float, default=1. Scaling parameter of the chi2 kernel. Returns ------- kernel_matrix : array of shape (n_samples_X, n_samples_Y) References ---------- * Zhang, J. and Marszalek, M. and Lazebnik, S. and Schmid, C. Local features and kernels for classification of texture and object categories: A comprehensive study International Journal of Computer Vision 2007 http://research.microsoft.com/en-us/um/people/manik/projects/trade-off/papers/ZhangIJCV06.pdf See also -------- additive_chi2_kernel : The additive version of this kernel sklearn.kernel_approximation.AdditiveChi2Sampler : A Fourier approximation to the additive version of this kernel. """ K = additive_chi2_kernel(X, Y) K *= gamma return np.exp(K, K) # Helper functions - distance PAIRWISE_DISTANCE_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'cityblock': manhattan_distances, 'cosine': cosine_distances, 'euclidean': euclidean_distances, 'l2': euclidean_distances, 'l1': manhattan_distances, 'manhattan': manhattan_distances, 'precomputed': None, # HACK: precomputed is always allowed, never called } def distance_metrics(): """Valid metrics for pairwise_distances. This function simply returns the valid pairwise distance metrics. It exists to allow for a description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: ============ ==================================== metric Function ============ ==================================== 'cityblock' metrics.pairwise.manhattan_distances 'cosine' metrics.pairwise.cosine_distances 'euclidean' metrics.pairwise.euclidean_distances 'l1' metrics.pairwise.manhattan_distances 'l2' metrics.pairwise.euclidean_distances 'manhattan' metrics.pairwise.manhattan_distances ============ ==================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_DISTANCE_FUNCTIONS def _parallel_pairwise(X, Y, func, n_jobs, **kwds): """Break the pairwise matrix in n_jobs even slices and compute them in parallel""" if n_jobs < 0: n_jobs = max(cpu_count() + 1 + n_jobs, 1) if Y is None: Y = X if n_jobs == 1: # Special case to avoid picklability checks in delayed return func(X, Y, **kwds) # TODO: in some cases, backend='threading' may be appropriate fd = delayed(func) ret = Parallel(n_jobs=n_jobs, verbose=0)( fd(X, Y[s], **kwds) for s in gen_even_slices(Y.shape[0], n_jobs)) return np.hstack(ret) def _pairwise_callable(X, Y, metric, **kwds): """Handle the callable case for pairwise_{distances,kernels} """ X, Y = check_pairwise_arrays(X, Y) if X is Y: # Only calculate metric for upper triangle out = np.zeros((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.combinations(range(X.shape[0]), 2) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) # Make symmetric # NB: out += out.T will produce incorrect results out = out + out.T # Calculate diagonal # NB: nonzero diagonals are allowed for both metrics and kernels for i in range(X.shape[0]): x = X[i] out[i, i] = metric(x, x, **kwds) else: # Calculate all cells out = np.empty((X.shape[0], Y.shape[0]), dtype='float') iterator = itertools.product(range(X.shape[0]), range(Y.shape[0])) for i, j in iterator: out[i, j] = metric(X[i], Y[j], **kwds) return out _VALID_METRICS = ['euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', "wminkowski"] def pairwise_distances(X, Y=None, metric="euclidean", n_jobs=1, **kwds): """ Compute the distance matrix from a vector array X and optional Y. This method takes either a vector array or a distance matrix, and returns a distance matrix. If the input is a vector array, the distances are computed. If the input is a distances matrix, it is returned instead. This method provides a safe way to take a distance matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise distance between the arrays from both X and Y. Valid values for metric are: - From scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan']. These metrics support sparse matrix inputs. - From scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. These metrics do not support sparse matrix inputs. Note that in the case of 'cityblock', 'cosine' and 'euclidean' (which are valid scipy.spatial.distance metrics), the scikit-learn implementation will be used, which is faster and has support for sparse matrices (except for 'cityblock'). For a verbose description of the metrics from scikit-learn, see the __doc__ of the sklearn.pairwise.distance_metrics function. Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. Y : array [n_samples_b, n_features], optional An optional second feature array. Only allowed if metric != "precomputed". metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by scipy.spatial.distance.pdist for its metric parameter, or a metric listed in pairwise.PAIRWISE_DISTANCE_FUNCTIONS. If metric is "precomputed", X is assumed to be a distance matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. **kwds : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- D : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A distance matrix D such that D_{i, j} is the distance between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then D_{i, j} is the distance between the ith array from X and the jth array from Y. See also -------- paired_distances : Computes the distances between corresponding elements of two arrays """ if (metric not in _VALID_METRICS and not callable(metric) and metric != "precomputed"): raise ValueError("Unknown metric %s. " "Valid metrics are %s, or 'precomputed', or a " "callable" % (metric, _VALID_METRICS)) if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True) return X elif metric in PAIRWISE_DISTANCE_FUNCTIONS: func = PAIRWISE_DISTANCE_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: if issparse(X) or issparse(Y): raise TypeError("scipy distance metrics do not" " support sparse matrices.") dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else None X, Y = check_pairwise_arrays(X, Y, dtype=dtype) if n_jobs == 1 and X is Y: return distance.squareform(distance.pdist(X, metric=metric, **kwds)) func = partial(distance.cdist, metric=metric, **kwds) return _parallel_pairwise(X, Y, func, n_jobs, **kwds) # These distances recquire boolean arrays, when using scipy.spatial.distance PAIRWISE_BOOLEAN_FUNCTIONS = [ 'dice', 'jaccard', 'kulsinski', 'matching', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath', 'yule', ] # Helper functions - distance PAIRWISE_KERNEL_FUNCTIONS = { # If updating this dictionary, update the doc in both distance_metrics() # and also in pairwise_distances()! 'additive_chi2': additive_chi2_kernel, 'chi2': chi2_kernel, 'linear': linear_kernel, 'polynomial': polynomial_kernel, 'poly': polynomial_kernel, 'rbf': rbf_kernel, 'laplacian': laplacian_kernel, 'sigmoid': sigmoid_kernel, 'cosine': cosine_similarity, } def kernel_metrics(): """ Valid metrics for pairwise_kernels This function simply returns the valid pairwise distance metrics. It exists, however, to allow for a verbose description of the mapping for each of the valid strings. The valid distance metrics, and the function they map to, are: =============== ======================================== metric Function =============== ======================================== 'additive_chi2' sklearn.pairwise.additive_chi2_kernel 'chi2' sklearn.pairwise.chi2_kernel 'linear' sklearn.pairwise.linear_kernel 'poly' sklearn.pairwise.polynomial_kernel 'polynomial' sklearn.pairwise.polynomial_kernel 'rbf' sklearn.pairwise.rbf_kernel 'laplacian' sklearn.pairwise.laplacian_kernel 'sigmoid' sklearn.pairwise.sigmoid_kernel 'cosine' sklearn.pairwise.cosine_similarity =============== ======================================== Read more in the :ref:`User Guide <metrics>`. """ return PAIRWISE_KERNEL_FUNCTIONS KERNEL_PARAMS = { "additive_chi2": (), "chi2": frozenset(["gamma"]), "cosine": (), "linear": (), "poly": frozenset(["gamma", "degree", "coef0"]), "polynomial": frozenset(["gamma", "degree", "coef0"]), "rbf": frozenset(["gamma"]), "laplacian": frozenset(["gamma"]), "sigmoid": frozenset(["gamma", "coef0"]), } def pairwise_kernels(X, Y=None, metric="linear", filter_params=False, n_jobs=1, **kwds): """Compute the kernel between arrays X and optional array Y. This method takes either a vector array or a kernel matrix, and returns a kernel matrix. If the input is a vector array, the kernels are computed. If the input is a kernel matrix, it is returned instead. This method provides a safe way to take a kernel matrix as input, while preserving compatibility with many other algorithms that take a vector array. If Y is given (default is None), then the returned matrix is the pairwise kernel between the arrays from both X and Y. Valid values for metric are:: ['rbf', 'sigmoid', 'polynomial', 'poly', 'linear', 'cosine'] Read more in the :ref:`User Guide <metrics>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise kernels between samples, or a feature array. Y : array [n_samples_b, n_features] A second feature array only if X has shape [n_samples_a, n_features]. metric : string, or callable The metric to use when calculating kernel between instances in a feature array. If metric is a string, it must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If metric is "precomputed", X is assumed to be a kernel matrix. Alternatively, if metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays from X as input and return a value indicating the distance between them. filter_params : boolean Whether to filter invalid parameters or not. n_jobs : int The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. **kwds : optional keyword parameters Any further parameters are passed directly to the kernel function. Returns ------- K : array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b] A kernel matrix K such that K_{i, j} is the kernel between the ith and jth vectors of the given matrix X, if Y is None. If Y is not None, then K_{i, j} is the kernel between the ith array from X and the jth array from Y. Notes ----- If metric is 'precomputed', Y is ignored and X is returned. """ # import GPKernel locally to prevent circular imports from ..gaussian_process.kernels import Kernel as GPKernel if metric == "precomputed": X, _ = check_pairwise_arrays(X, Y, precomputed=True) return X elif isinstance(metric, GPKernel): func = metric.__call__ elif metric in PAIRWISE_KERNEL_FUNCTIONS: if filter_params: kwds = dict((k, kwds[k]) for k in kwds if k in KERNEL_PARAMS[metric]) func = PAIRWISE_KERNEL_FUNCTIONS[metric] elif callable(metric): func = partial(_pairwise_callable, metric=metric, **kwds) else: raise ValueError("Unknown kernel %r" % metric) return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
bsd-3-clause
nickcdryan/hep_ml
hep_ml/uboost.py
4
24323
""" The module contains an implementation of uBoost algorithm. The main goal of **uBoost** is to fight correlation between predictions and some variables (i.e. mass of particle). * `uBoostBDT` is a modified version of AdaBoost, that targets to obtain efficiency uniformity at the specified level (global efficiency) * `uBoostClassifier` is a combination of uBoostBDTs for different efficiencies This implementation is more advanced than one described in the original paper, contains smoothing and trains classifiers in threads, has `learning_rate` and `uniforming_rate` parameters, does automatic weights renormalization and supports SAMME.R modification to use predicted probabilities. Only binary classification is implemented. See also: :class:`hep_ml.losses.BinFlatnessLossFunction`, :class:`hep_ml.losses.KnnFlatnessLossFunction`, :class:`hep_ml.losses.KnnAdaLossFunction` to fight correlation. Examples ________ To get uniform prediction in mass for background: >>> base_tree = DecisionTreeClassifier(max_depth=3) >>> clf = uBoostClassifier(uniform_features=['mass'], uniform_label=0, base_estimator=base_tree, >>> train_features=['pt', 'flight_time']) >>> clf.fit(train_data, train_labels, sample_weight=train_weights) >>> proba = clf.predict_proba(test_data) To get uniform prediction in Dalitz variables for signal >>> clf = uBoostClassifier(uniform_features=['mass_12', 'mass_23'], uniform_label=1, base_estimator=base_tree, >>> train_features=['pt', 'flight_time']) >>> clf.fit(train_data, train_labels, sample_weight=train_weights) >>> proba = clf.predict_proba(test_data) """ # Authors: # Alex Rogozhnikov <[email protected]> # Nikita Kazeev <[email protected]> from six.moves import zip import numpy as np from sklearn.base import BaseEstimator, ClassifierMixin, clone from sklearn.tree import DecisionTreeClassifier from sklearn.utils.random import check_random_state from .commonutils import sigmoid_function, map_on_cluster, \ compute_knn_indices_of_same_class, compute_cut_for_efficiency, check_xyw from . import commonutils from .metrics_utils import compute_group_efficiencies_by_indices __author__ = "Alex Rogozhnikov, Nikita Kazeev" __all__ = ["uBoostBDT", "uBoostClassifier"] class uBoostBDT(BaseEstimator, ClassifierMixin): def __init__(self, uniform_features, uniform_label, target_efficiency=0.5, n_neighbors=50, subsample=1.0, base_estimator=None, n_estimators=50, learning_rate=1., uniforming_rate=1., train_features=None, smoothing=0.0, random_state=None, algorithm="SAMME"): """ uBoostBDT is AdaBoostClassifier, which is modified to have flat efficiency of signal (class=1) along some variables. Efficiency is only guaranteed at the cut, corresponding to global efficiency == target_efficiency. Can be used alone, without uBoostClassifier. :param uniform_features: list of strings, names of variables, along which flatness is desired :param uniform_label: int, label of class on which uniformity is desired (typically 0 for background, 1 for signal). :param target_efficiency: float, the flatness is obtained at global BDT cut, corresponding to global efficiency :param n_neighbors: int, (default=50) the number of neighbours, which are used to compute local efficiency :param subsample: float (default=1.0), part of training dataset used to build each base estimator. :param base_estimator: classifier, optional (default=DecisionTreeClassifier(max_depth=2)) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. :param n_estimators: integer, optional (default=50) number of estimators used. :param learning_rate: float, optional (default=1.) Learning rate shrinks the contribution of each classifier by ``learning_rate``. There is a trade-off between ``learning_rate`` and ``n_estimators``. :param uniforming_rate: float, optional (default=1.) how much do we take into account the uniformity of signal, there is a trade-off between uniforming_rate and the speed of uniforming, zero value corresponds to plain AdaBoost :param train_features: list of strings, names of variables used in fit/predict. If None, all the variables are used (including uniform_variables) :param smoothing: float, (default=0.), used to smooth computing of local efficiencies, 0.0 corresponds to usual uBoost :param random_state: int, RandomState instance or None (default None) Reference ---------- .. [1] J. Stevens, M. Williams 'uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers' """ self.base_estimator = base_estimator self.n_estimators = n_estimators self.learning_rate = learning_rate self.uniforming_rate = uniforming_rate self.uniform_features = uniform_features self.target_efficiency = target_efficiency self.n_neighbors = n_neighbors self.subsample = subsample self.train_features = train_features self.smoothing = smoothing self.uniform_label = uniform_label self.random_state = random_state self.algorithm = algorithm def fit(self, X, y, sample_weight=None, neighbours_matrix=None): """Build a boosted classifier from the training set (X, y). :param X: array-like of shape [n_samples, n_features] :param y: labels, array of shape [n_samples] with 0 and 1. :param sample_weight: array-like of shape [n_samples] or None :param neighbours_matrix: array-like of shape [n_samples, n_neighbours], each row contains indices of signal neighbours (neighbours should be computed for background too), if None, this matrix is computed. :return: self """ if self.smoothing < 0: raise ValueError("Smoothing must be non-negative") if not isinstance(self.base_estimator, BaseEstimator): raise TypeError("estimator must be a subclass of BaseEstimator") if self.n_estimators <= 0: raise ValueError("n_estimators must be greater than zero.") if self.learning_rate <= 0: raise ValueError("learning_rate must be greater than zero") if self.base_estimator is None: self.base_estimator = DecisionTreeClassifier(max_depth=2) # Check that algorithm is supported if self.algorithm not in ('SAMME', 'SAMME.R'): raise ValueError("algorithm %s is not supported" % self.algorithm) if self.algorithm == 'SAMME.R': if not hasattr(self.base_estimator, 'predict_proba'): raise TypeError( "uBoostBDT with algorithm='SAMME.R' requires " "that the weak learner have a predict_proba method.\n" "Please change the base estimator or set algorithm='SAMME' instead.") assert np.in1d(y, [0, 1]).all(), \ "only two-class classification is implemented, with labels 0 and 1" self.signed_uniform_label = 2 * self.uniform_label - 1 if neighbours_matrix is not None: assert np.shape(neighbours_matrix) == (len(X), self.n_neighbors), \ "Wrong shape of neighbours_matrix" self.knn_indices = neighbours_matrix else: assert self.uniform_features is not None, \ "uniform_variables should be set" self.knn_indices = compute_knn_indices_of_same_class( X.ix[:, self.uniform_features], y, self.n_neighbors) sample_weight = commonutils.check_sample_weight(y, sample_weight=sample_weight, normalize=True) assert np.all(sample_weight >= 0.), 'the weights should be non-negative' # Clear any previous fit results self.estimators_ = [] self.estimator_weights_ = [] # score cuts correspond to # global efficiency == target_efficiency on each iteration. self.score_cuts_ = [] x_train_features = self._get_train_features(X) x_train_features, y, sample_weight = check_xyw(x_train_features, y, sample_weight) self.random_state_ = check_random_state(self.random_state) self._boost(x_train_features, y, sample_weight) self.score_cut = self.signed_uniform_label * compute_cut_for_efficiency( self.target_efficiency, y == self.uniform_label, self.decision_function(X) * self.signed_uniform_label) assert np.allclose(self.score_cut, self.score_cuts_[-1], rtol=1e-10, atol=1e-10), \ "score cut doesn't appear to coincide with the staged one" assert len(self.estimators_) == len(self.estimator_weights_) == len(self.score_cuts_) return self def _make_estimator(self): estimator = clone(self.base_estimator) # self.estimators_.append(estimator) try: estimator.set_params(random_state=self.random_state) except ValueError: pass return estimator def _estimator_score(self, estimator, X): if self.algorithm == "SAMME": return 2 * estimator.predict(X) - 1. else: p = estimator.predict_proba(X) p[p <= 1e-5] = 1e-5 return np.log(p[:, 1] / p[:, 0]) @staticmethod def _normalize_weight(y, weight): # frequently algorithm assigns very big weight to signal events # compared to background ones (or visa versa, if want to be uniform in bck) return commonutils.check_sample_weight(y, sample_weight=weight, normalize=True, normalize_by_class=True) def _compute_uboost_multipliers(self, sample_weight, score, y): """Returns uBoost multipliers to sample_weight and computed global cut""" signed_score = score * self.signed_uniform_label signed_score_cut = compute_cut_for_efficiency(self.target_efficiency, y == self.uniform_label, signed_score) global_score_cut = signed_score_cut * self.signed_uniform_label local_efficiencies = compute_group_efficiencies_by_indices(signed_score, self.knn_indices, cut=signed_score_cut, smoothing=self.smoothing) # pay attention - sample_weight should be used only here e_prime = np.average(np.abs(local_efficiencies - self.target_efficiency), weights=sample_weight) is_uniform_class = (y == self.uniform_label) # beta = np.log((1.0 - e_prime) / e_prime) # changed to log(1. / e_prime), otherwise this can lead to the situation # where beta is negative (which is a disaster). # Mike (uboost author) said he didn't take that into account. beta = np.log(1. / e_prime) boost_weights = np.exp((self.target_efficiency - local_efficiencies) * is_uniform_class * (beta * self.uniforming_rate)) return boost_weights, global_score_cut def _boost(self, X, y, sample_weight): """Implement a single boost using the SAMME or SAMME.R algorithm, which is modified in uBoost way""" cumulative_score = np.zeros(len(X)) y_signed = 2 * y - 1 for iteration in range(self.n_estimators): estimator = self._make_estimator() mask = _generate_subsample_mask(len(X), self.subsample, self.random_state_) estimator.fit(X[mask], y[mask], sample_weight=sample_weight[mask]) # computing estimator weight if self.algorithm == 'SAMME': y_pred = estimator.predict(X) # Error fraction estimator_error = np.average(y_pred != y, weights=sample_weight) estimator_error = np.clip(estimator_error, 1e-6, 1. - 1e-6) estimator_weight = self.learning_rate * 0.5 * ( np.log((1. - estimator_error) / estimator_error)) score = estimator_weight * (2 * y_pred - 1) else: estimator_weight = self.learning_rate * 0.5 score = estimator_weight * self._estimator_score(estimator, X) # correcting the weights and score according to predictions sample_weight *= np.exp(- y_signed * score) sample_weight = self._normalize_weight(y, sample_weight) cumulative_score += score uboost_multipliers, global_score_cut = \ self._compute_uboost_multipliers(sample_weight, cumulative_score, y) sample_weight *= uboost_multipliers sample_weight = self._normalize_weight(y, sample_weight) self.score_cuts_.append(global_score_cut) self.estimators_.append(estimator) self.estimator_weights_.append(estimator_weight) # erasing from memory self.knn_indices = None def _get_train_features(self, X): """Gets the DataFrame and returns only columns that should be used in fitting / predictions""" if self.train_features is None: return X else: return X[self.train_features] def staged_decision_function(self, X): """Decision function after each stage of boosting. Float for each sample, the greater --- the more signal like event is. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with floats. """ X = self._get_train_features(X) score = np.zeros(len(X)) for classifier, weight in zip(self.estimators_, self.estimator_weights_): score += self._estimator_score(classifier, X) * weight yield score def decision_function(self, X): """Decision function. Float for each sample, the greater --- the more signal like event is. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with floats """ return commonutils.take_last(self.staged_decision_function(X)) def predict(self, X): """Predict classes for each sample :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples] with predicted classes. """ return np.array(self.decision_function(X) > self.score_cut, dtype=int) def predict_proba(self, X): """Predict probabilities :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples, n_classes] with probabilities. """ return commonutils.score_to_proba(self.decision_function(X)) def staged_predict_proba(self, X): """Predicted probabilities for each sample after each stage of boosting. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: sequence of numpy.arrays of shape [n_samples, n_classes] """ for score in self.staged_decision_function(X): yield commonutils.score_to_proba(score) def _uboost_predict_score(self, X): """Method added specially for uBoostClassifier""" return sigmoid_function(self.decision_function(X) - self.score_cut, self.smoothing) def _uboost_staged_predict_score(self, X): """Method added specially for uBoostClassifier""" for cut, score in zip(self.score_cuts_, self.staged_decision_function(X)): yield sigmoid_function(score - cut, self.smoothing) @property def feature_importances_(self): """Return the feature importances for `train_features`. :return: array of shape [n_features], the order is the same as in `train_features` """ if self.estimators_ is None or len(self.estimators_) == 0: raise ValueError("Estimator not fitted," " call `fit` before `feature_importances_`.") return sum(tree.feature_importances_ * weight for tree, weight in zip(self.estimators_, self.estimator_weights_)) def _train_classifier(classifier, X_train_vars, y, sample_weight, neighbours_matrix): # supplementary function to train separate parts of uBoost on cluster return classifier.fit(X_train_vars, y, sample_weight=sample_weight, neighbours_matrix=neighbours_matrix) class uBoostClassifier(BaseEstimator, ClassifierMixin): def __init__(self, uniform_features, uniform_label, train_features=None, n_neighbors=50, efficiency_steps=20, n_estimators=40, base_estimator=None, subsample=1.0, algorithm="SAMME", smoothing=None, n_threads=1, random_state=None): """uBoost classifier, an algorithm of boosting targeted to obtain flat efficiency in signal along some variables (e.g. mass). In principle, uBoost is ensemble of uBoostBDTs. See [1] for details. Parameters ---------- :param uniform_features: list of strings, names of variables, along which flatness is desired :param uniform_label: int, tha label of class for which uniformity is desired :param train_features: list of strings, names of variables used in fit/predict. if None, all the variables are used (including uniform_variables) :param n_neighbors: int, (default=50) the number of neighbours, which are used to compute local efficiency :param n_estimators: integer, optional (default=50) The maximum number of estimators at which boosting is terminated. In case of perfect fit, the learning procedure is stopped early. :param efficiency_steps: integer, optional (default=20), How many uBoostBDTs should be trained (each with its own target_efficiency) :param base_estimator: object, optional (default=DecisionTreeClassifier(max_depth=2)) The base estimator from which the boosted ensemble is built. Support for sample weighting is required, as well as proper `classes_` and `n_classes_` attributes. :param subsample: float (default =1.) part of training dataset used to train each base classifier. :param smoothing: float, default=None, used to smooth computing of local efficiencies, 0.0 corresponds to usual uBoost, :param random_state: int, RandomState instance or None, (default=None) :param n_threads: int, number of threads used. Reference ---------- .. [1] J. Stevens, M. Williams 'uBoost: A boosting method for producing uniform selection efficiencies from multivariate classifiers' """ self.uniform_features = uniform_features self.uniform_label = uniform_label self.knn = n_neighbors self.efficiency_steps = efficiency_steps self.random_state = random_state self.n_estimators = n_estimators self.base_estimator = base_estimator self.subsample = subsample self.train_features = train_features self.smoothing = smoothing self.n_threads = n_threads self.algorithm = algorithm def _get_train_features(self, X): if self.train_features is not None: return X[self.train_features] else: return X def fit(self, X, y, sample_weight=None): """Build a boosted classifier from the training set. :param X: data, pandas.DatFrame of shape [n_samples, n_features] :param y: labels, array of shape [n_samples] with 0 and 1. The target values (integers that correspond to classes). :param sample_weight: array-like of shape [n_samples] with weights or None :return: self """ if self.uniform_features is None: raise ValueError("Please set uniform variables") if len(self.uniform_features) == 0: raise ValueError("The set of uniform variables cannot be empty") assert np.in1d(y, [0, 1]).all(), \ "only two-class classification is implemented" if self.base_estimator is None: self.base_estimator = DecisionTreeClassifier(max_depth=2) X, y, sample_weight = check_xyw(X, y, sample_weight=sample_weight, classification=True) data_train_features = self._get_train_features(X) if self.smoothing is None: self.smoothing = 10. / self.efficiency_steps neighbours_matrix = compute_knn_indices_of_same_class( X[self.uniform_features], y, n_neighbours=self.knn) self.target_efficiencies = np.linspace(0, 1, self.efficiency_steps + 2)[1:-1] self.classifiers = [] for efficiency in self.target_efficiencies: classifier = uBoostBDT( uniform_features=self.uniform_features, uniform_label=self.uniform_label, train_features=None, target_efficiency=efficiency, n_neighbors=self.knn, n_estimators=self.n_estimators, base_estimator=self.base_estimator, random_state=self.random_state, subsample=self.subsample, smoothing=self.smoothing, algorithm=self.algorithm) self.classifiers.append(classifier) self.classifiers = map_on_cluster('threads-{}'.format(self.n_threads), _train_classifier, self.classifiers, self.efficiency_steps * [data_train_features], self.efficiency_steps * [y], self.efficiency_steps * [sample_weight], self.efficiency_steps * [neighbours_matrix]) return self def predict(self, X): """Predict labels :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: numpy.array of shape [n_samples] """ return self.predict_proba(X).argmax(axis=1) def predict_proba(self, X): """Predict probabilities :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: array of shape [n_samples, n_classes] with probabilities. """ X = self._get_train_features(X) score = sum(clf._uboost_predict_score(X) for clf in self.classifiers) return commonutils.score_to_proba(score / self.efficiency_steps) def staged_predict_proba(self, X): """Predicted probabilities for each sample after each stage of boosting. :param X: data, pandas.DataFrame of shape [n_samples, n_features] :return: sequence of numpy.arrays of shape [n_samples, n_classes] """ X = self._get_train_features(X) for scores in zip(*[clf._uboost_staged_predict_score(X) for clf in self.classifiers]): yield commonutils.score_to_proba(sum(scores) / self.efficiency_steps) def _generate_subsample_mask(n_samples, subsample, random_generator): """ :param float subsample: part of samples to be left :param random_generator: numpy.random.RandomState instance """ assert 0 < subsample <= 1., 'subsample should be in range (0, 1]' if subsample == 1.0: mask = slice(None, None, None) else: mask = random_generator.uniform(size=n_samples) < subsample return mask
apache-2.0
DGrady/pandas
pandas/tests/io/msgpack/test_seq.py
14
1171
# coding: utf-8 import io import pandas.io.msgpack as msgpack binarydata = bytes(bytearray(range(256))) def gen_binary_data(idx): return binarydata[:idx % 300] def test_exceeding_unpacker_read_size(): dumpf = io.BytesIO() packer = msgpack.Packer() NUMBER_OF_STRINGS = 6 read_size = 16 # 5 ok for read_size=16, while 6 glibc detected *** python: double free or # corruption (fasttop): # 20 ok for read_size=256, while 25 segfaults / glibc detected *** python: # double free or corruption (!prev) # 40 ok for read_size=1024, while 50 introduces errors # 7000 ok for read_size=1024*1024, while 8000 leads to glibc detected *** # python: double free or corruption (!prev): for idx in range(NUMBER_OF_STRINGS): data = gen_binary_data(idx) dumpf.write(packer.pack(data)) f = io.BytesIO(dumpf.getvalue()) dumpf.close() unpacker = msgpack.Unpacker(f, read_size=read_size, use_list=1) read_count = 0 for idx, o in enumerate(unpacker): assert type(o) == bytes assert o == gen_binary_data(idx) read_count += 1 assert read_count == NUMBER_OF_STRINGS
bsd-3-clause
zaxliu/deepnap
experiments/kdd-exps/experiment_message_2016-6-12_G5_BUF2_AR1_b2_legacy.py
1
4372
# System built-in modules import time from datetime import datetime import sys import os from multiprocessing import Pool # Project dependency modules import pandas as pd pd.set_option('mode.chained_assignment', None) # block warnings due to DataFrame value assignment import lasagne # Project modules sys.path.append('../') from sleep_control.traffic_emulator import TrafficEmulator from sleep_control.traffic_server import TrafficServer from sleep_control.controller import QController, DummyController, NController from sleep_control.integration import Emulation from sleep_control.env_models import SJTUModel from rl.qtable import QAgent from rl.qnn_theano import QAgentNN from rl.mixin import PhiMixin, DynaMixin sys_stdout = sys.stdout log_file_name = 'message_2016-6-12_G5_BUF2_AR1_b2.log' # Composite classes class Phi_QAgentNN(PhiMixin, QAgentNN): def __init__(self, **kwargs): super(Phi_QAgentNN, self).__init__(**kwargs) # Parameters # |- Agent # |- QAgent actions = [(True, None), (False, 'serve_all')] gamma, alpha = 0.5, 0.9 explore_strategy, epsilon = 'epsilon', 0.02 # exploration # |- QAgentNN # | - Phi phi_length = 5 dim_state = (1, phi_length, 3+2) range_state_slice = [(0, 10), (0, 10), (0, 10), (0, 1), (0, 1)] range_state = [[range_state_slice]*phi_length] # | - Other params momentum, learning_rate = 0.9, 0.01 # SGD num_buffer, memory_size = 2, 200 reward_scaling, reward_scaling_update = 1, 'adaptive' batch_size, update_period, freeze_period, rs_period = 100, 4, 16, 32 # |- Env model Rs, Rw, Rf, Co, Cw = 1.0, -1.0, -10.0, -5.0, 0.0 beta = 0.2 reward_params = (Rs, Rw, Rf, Co, Cw, beta) # |- Env # |- Time start_time = pd.to_datetime('2014-11-05 09:20:00') total_time = pd.Timedelta(days=7) time_step = pd.Timedelta(seconds=2) backoff_epochs = num_buffer*memory_size+phi_length head_datetime = start_time - time_step*backoff_epochs tail_datetime = head_datetime + total_time TOTAL_EPOCHS = int(total_time/time_step) # |- Reward rewarding = {'serve': Rs, 'wait': Rw, 'fail': Rf} # load from processed data session_df =pd.read_csv( filepath_or_buffer='../data/trace_dh3.dat', parse_dates=['startTime_datetime', 'endTime_datetime'] ) te = TrafficEmulator( session_df=session_df, time_step=time_step, head_datetime=head_datetime, tail_datetime=tail_datetime, rewarding=rewarding, verbose=2) ts = TrafficServer(cost=(Co, Cw), verbose=2) agent = Phi_QAgentNN( phi_length=phi_length, dim_state=dim_state, range_state=range_state, f_build_net = None, batch_size=batch_size, learning_rate=learning_rate, momentum=momentum, reward_scaling=reward_scaling, reward_scaling_update=reward_scaling_update, rs_period=rs_period, update_period=update_period, freeze_period=freeze_period, memory_size=memory_size, num_buffer=num_buffer, # Below is QAgent params actions=actions, alpha=alpha, gamma=gamma, explore_strategy=explore_strategy, epsilon=epsilon, verbose=2) c = QController(agent=agent) emu = Emulation(te=te, ts=ts, c=c, beta=beta) # Heavyliftings t = time.time() sys.stdout = sys_stdout log_path = './log/' if os.path.isfile(log_path+log_file_name): print "Log file {} already exist. Experiment cancelled.".format(log_file_name) else: log_file = open(log_path+log_file_name,"w") print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file while emu.epoch is not None and emu.epoch<TOTAL_EPOCHS: # log time print "Epoch {},".format(emu.epoch), left = emu.te.head_datetime + emu.te.epoch*emu.te.time_step right = left + emu.te.time_step print "{} - {}".format(left.strftime("%Y-%m-%d %H:%M:%S"), right.strftime("%Y-%m-%d %H:%M:%S")) emu.step() print if emu.epoch%(0.05*TOTAL_EPOCHS)==0: sys.stdout = sys_stdout print datetime.now().strftime('[%Y-%m-%d %H:%M:%S]'), print '{}%'.format(int(100.0*emu.epoch/TOTAL_EPOCHS)), print log_file_name time.sleep(1) sys.stdout = log_file sys.stdout = sys_stdout log_file.close() print print log_file_name, print '{:.3f} sec,'.format(time.time()-t), print '{:.3f} min'.format((time.time()-t)/60)
bsd-3-clause
kevin-intel/scikit-learn
sklearn/linear_model/_bayes.py
2
26806
""" Various bayesian regression """ # Authors: V. Michel, F. Pedregosa, A. Gramfort # License: BSD 3 clause from math import log import numpy as np from scipy import linalg from ._base import LinearModel, _rescale_data from ..base import RegressorMixin from ._base import _deprecate_normalize from ..utils.extmath import fast_logdet from scipy.linalg import pinvh from ..utils.validation import _check_sample_weight ############################################################################### # BayesianRidge regression class BayesianRidge(RegressorMixin, LinearModel): """Bayesian ridge regression. Fit a Bayesian ridge model. See the Notes section for details on this implementation and the optimization of the regularization parameters lambda (precision of the weights) and alpha (precision of the noise). Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, default=300 Maximum number of iterations. Should be greater than or equal to 1. tol : float, default=1e-3 Stop the algorithm if w has converged. alpha_1 : float, default=1e-6 Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. alpha_2 : float, default=1e-6 Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. lambda_1 : float, default=1e-6 Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. lambda_2 : float, default=1e-6 Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. alpha_init : float, default=None Initial value for alpha (precision of the noise). If not set, alpha_init is 1/Var(y). .. versionadded:: 0.22 lambda_init : float, default=None Initial value for lambda (precision of the weights). If not set, lambda_init is 1. .. versionadded:: 0.22 compute_score : bool, default=False If True, compute the log marginal likelihood at each iteration of the optimization. fit_intercept : bool, default=True Whether to calculate the intercept for this model. The intercept is not treated as a probabilistic parameter and thus has no associated variance. If set to False, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. verbose : bool, default=False Verbose mode when fitting the model. Attributes ---------- coef_ : array-like of shape (n_features,) Coefficients of the regression model (mean of distribution) intercept_ : float Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. alpha_ : float Estimated precision of the noise. lambda_ : float Estimated precision of the weights. sigma_ : array-like of shape (n_features, n_features) Estimated variance-covariance matrix of the weights scores_ : array-like of shape (n_iter_+1,) If computed_score is True, value of the log marginal likelihood (to be maximized) at each iteration of the optimization. The array starts with the value of the log marginal likelihood obtained for the initial values of alpha and lambda and ends with the value obtained for the estimated alpha and lambda. n_iter_ : int The actual number of iterations to reach the stopping criterion. X_offset_ : float If `normalize=True`, offset subtracted for centering data to a zero mean. X_scale_ : float If `normalize=True`, parameter used to scale data to a unit standard deviation. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) BayesianRidge() >>> clf.predict([[1, 1]]) array([1.]) Notes ----- There exist several strategies to perform Bayesian ridge regression. This implementation is based on the algorithm described in Appendix A of (Tipping, 2001) where updates of the regularization parameters are done as suggested in (MacKay, 1992). Note that according to A New View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these update rules do not guarantee that the marginal likelihood is increasing between two consecutive iterations of the optimization. References ---------- D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems, Vol. 4, No. 3, 1992. M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine, Journal of Machine Learning Research, Vol. 1, 2001. """ def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None, lambda_init=None, compute_score=False, fit_intercept=True, normalize='deprecated', copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.alpha_init = alpha_init self.lambda_init = lambda_init self.compute_score = compute_score self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.verbose = verbose def fit(self, X, y, sample_weight=None): """Fit the model Parameters ---------- X : ndarray of shape (n_samples, n_features) Training data y : ndarray of shape (n_samples,) Target values. Will be cast to X's dtype if necessary sample_weight : ndarray of shape (n_samples,), default=None Individual weights for each sample .. versionadded:: 0.20 parameter *sample_weight* support to BayesianRidge. Returns ------- self : returns an instance of self. """ self._normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) if self.n_iter < 1: raise ValueError('n_iter should be greater than or equal to 1.' ' Got {!r}.'.format(self.n_iter)) X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self._normalize, self.copy_X, sample_weight=sample_weight) if sample_weight is not None: # Sample weight can be implemented via a simple rescaling. X, y = _rescale_data(X, y, sample_weight) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ n_samples, n_features = X.shape # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero alpha_ = self.alpha_init lambda_ = self.lambda_init if alpha_ is None: alpha_ = 1. / (np.var(y) + eps) if lambda_ is None: lambda_ = 1. verbose = self.verbose lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 self.scores_ = list() coef_old_ = None XT_y = np.dot(X.T, y) U, S, Vh = linalg.svd(X, full_matrices=False) eigen_vals_ = S ** 2 # Convergence loop of the bayesian ridge regression for iter_ in range(self.n_iter): # update posterior mean coef_ based on alpha_ and lambda_ and # compute corresponding rmse coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood(n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_) self.scores_.append(s) # Update alpha and lambda according to (MacKay, 1992) gamma_ = np.sum((alpha_ * eigen_vals_) / (lambda_ + alpha_ * eigen_vals_)) lambda_ = ((gamma_ + 2 * lambda_1) / (np.sum(coef_ ** 2) + 2 * lambda_2)) alpha_ = ((n_samples - gamma_ + 2 * alpha_1) / (rmse_ + 2 * alpha_2)) # Check for convergence if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Convergence after ", str(iter_), " iterations") break coef_old_ = np.copy(coef_) self.n_iter_ = iter_ + 1 # return regularization parameters and corresponding posterior mean, # log marginal likelihood and posterior covariance self.alpha_ = alpha_ self.lambda_ = lambda_ self.coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_) if self.compute_score: # compute the log marginal likelihood s = self._log_marginal_likelihood(n_samples, n_features, eigen_vals_, alpha_, lambda_, coef_, rmse_) self.scores_.append(s) self.scores_ = np.array(self.scores_) # posterior covariance is given by 1/alpha_ * scaled_sigma_ scaled_sigma_ = np.dot(Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis]) self.sigma_ = (1. / alpha_) * scaled_sigma_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Samples. return_std : bool, default=False Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array-like of shape (n_samples,) Mean of predictive distribution of query points. y_std : array-like of shape (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self._normalize: X = (X - self.X_offset_) / self.X_scale_ sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std def _update_coef_(self, X, y, n_samples, n_features, XT_y, U, Vh, eigen_vals_, alpha_, lambda_): """Update posterior mean and compute corresponding rmse. Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features) + np.dot(X.T, X))^-1 """ if n_samples > n_features: coef_ = np.linalg.multi_dot([Vh.T, Vh / (eigen_vals_ + lambda_ / alpha_)[:, np.newaxis], XT_y]) else: coef_ = np.linalg.multi_dot([X.T, U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T, y]) rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) return coef_, rmse_ def _log_marginal_likelihood(self, n_samples, n_features, eigen_vals, alpha_, lambda_, coef, rmse): """Log marginal likelihood.""" alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 # compute the log of the determinant of the posterior covariance. # posterior covariance is given by # sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1 if n_samples > n_features: logdet_sigma = - np.sum(np.log(lambda_ + alpha_ * eigen_vals)) else: logdet_sigma = np.full(n_features, lambda_, dtype=np.array(lambda_).dtype) logdet_sigma[:n_samples] += alpha_ * eigen_vals logdet_sigma = - np.sum(np.log(logdet_sigma)) score = lambda_1 * log(lambda_) - lambda_2 * lambda_ score += alpha_1 * log(alpha_) - alpha_2 * alpha_ score += 0.5 * (n_features * log(lambda_) + n_samples * log(alpha_) - alpha_ * rmse - lambda_ * np.sum(coef ** 2) + logdet_sigma - n_samples * log(2 * np.pi)) return score ############################################################################### # ARD (Automatic Relevance Determination) regression class ARDRegression(RegressorMixin, LinearModel): """Bayesian ARD regression. Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization) Read more in the :ref:`User Guide <bayesian_regression>`. Parameters ---------- n_iter : int, default=300 Maximum number of iterations. tol : float, default=1e-3 Stop the algorithm if w has converged. alpha_1 : float, default=1e-6 Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. alpha_2 : float, default=1e-6 Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. lambda_1 : float, default=1e-6 Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. lambda_2 : float, default=1e-6 Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. compute_score : bool, default=False If True, compute the objective function at each step of the model. threshold_lambda : float, default=10 000 threshold for removing (pruning) weights with high precision from the computation. fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. .. deprecated:: 1.0 ``normalize`` was deprecated in version 1.0 and will be removed in 1.2. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. verbose : bool, default=False Verbose mode when fitting the model. Attributes ---------- coef_ : array-like of shape (n_features,) Coefficients of the regression model (mean of distribution) alpha_ : float estimated precision of the noise. lambda_ : array-like of shape (n_features,) estimated precisions of the weights. sigma_ : array-like of shape (n_features, n_features) estimated variance-covariance matrix of the weights scores_ : float if computed, value of the objective function (to be maximized) intercept_ : float Independent term in decision function. Set to 0.0 if ``fit_intercept = False``. X_offset_ : float If `normalize=True`, offset subtracted for centering data to a zero mean. X_scale_ : float If `normalize=True`, parameter used to scale data to a unit standard deviation. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.ARDRegression() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) ARDRegression() >>> clf.predict([[1, 1]]) array([1.]) Notes ----- For an example, see :ref:`examples/linear_model/plot_ard.py <sphx_glr_auto_examples_linear_model_plot_ard.py>`. References ---------- D. J. C. MacKay, Bayesian nonlinear modeling for the prediction competition, ASHRAE Transactions, 1994. R. Salakhutdinov, Lecture notes on Statistical Machine Learning, http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15 Their beta is our ``self.alpha_`` Their alpha is our ``self.lambda_`` ARD is a little different than the slide: only dimensions/features for which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are discarded. """ def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6, lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False, threshold_lambda=1.e+4, fit_intercept=True, normalize='deprecated', copy_X=True, verbose=False): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.normalize = normalize self.alpha_1 = alpha_1 self.alpha_2 = alpha_2 self.lambda_1 = lambda_1 self.lambda_2 = lambda_2 self.compute_score = compute_score self.threshold_lambda = threshold_lambda self.copy_X = copy_X self.verbose = verbose def fit(self, X, y): """Fit the ARDRegression model according to the given training data and parameters. Iterative procedure to maximize the evidence Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like of shape (n_samples,) Target values (integers). Will be cast to X's dtype if necessary Returns ------- self : returns an instance of self. """ self._normalize = _deprecate_normalize( self.normalize, default=False, estimator_name=self.__class__.__name__ ) X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True, ensure_min_samples=2) n_samples, n_features = X.shape coef_ = np.zeros(n_features) X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data( X, y, self.fit_intercept, self._normalize, self.copy_X) self.X_offset_ = X_offset_ self.X_scale_ = X_scale_ # Launch the convergence loop keep_lambda = np.ones(n_features, dtype=bool) lambda_1 = self.lambda_1 lambda_2 = self.lambda_2 alpha_1 = self.alpha_1 alpha_2 = self.alpha_2 verbose = self.verbose # Initialization of the values of the parameters eps = np.finfo(np.float64).eps # Add `eps` in the denominator to omit division by zero if `np.var(y)` # is zero alpha_ = 1. / (np.var(y) + eps) lambda_ = np.ones(n_features) self.scores_ = list() coef_old_ = None def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_): coef_[keep_lambda] = alpha_ * np.linalg.multi_dot([ sigma_, X[:, keep_lambda].T, y]) return coef_ update_sigma = (self._update_sigma if n_samples >= n_features else self._update_sigma_woodbury) # Iterative procedure of ARDRegression for iter_ in range(self.n_iter): sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) # Update alpha and lambda rmse_ = np.sum((y - np.dot(X, coef_)) ** 2) gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_) lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) / ((coef_[keep_lambda]) ** 2 + 2. * lambda_2)) alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) / (rmse_ + 2. * alpha_2)) # Prune the weights with a precision over a threshold keep_lambda = lambda_ < self.threshold_lambda coef_[~keep_lambda] = 0 # Compute the objective function if self.compute_score: s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum() s += alpha_1 * log(alpha_) - alpha_2 * alpha_ s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) + np.sum(np.log(lambda_))) s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum()) self.scores_.append(s) # Check for convergence if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol: if verbose: print("Converged after %s iterations" % iter_) break coef_old_ = np.copy(coef_) if not keep_lambda.any(): break if keep_lambda.any(): # update sigma and mu using updated params from the last iteration sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda) coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_) else: sigma_ = np.array([]).reshape(0, 0) self.coef_ = coef_ self.alpha_ = alpha_ self.sigma_ = sigma_ self.lambda_ = lambda_ self._set_intercept(X_offset_, y_offset_, X_scale_) return self def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda): # See slides as referenced in the docstring note # this function is used when n_samples < n_features and will invert # a matrix of shape (n_samples, n_samples) making use of the # woodbury formula: # https://en.wikipedia.org/wiki/Woodbury_matrix_identity n_samples = X.shape[0] X_keep = X[:, keep_lambda] inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1) sigma_ = pinvh( np.eye(n_samples) / alpha_ + np.dot(X_keep * inv_lambda, X_keep.T) ) sigma_ = np.dot(sigma_, X_keep * inv_lambda) sigma_ = - np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_) sigma_[np.diag_indices(sigma_.shape[1])] += 1. / lambda_[keep_lambda] return sigma_ def _update_sigma(self, X, alpha_, lambda_, keep_lambda): # See slides as referenced in the docstring note # this function is used when n_samples >= n_features and will # invert a matrix of shape (n_features, n_features) X_keep = X[:, keep_lambda] gram = np.dot(X_keep.T, X_keep) eye = np.eye(gram.shape[0]) sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram sigma_ = pinvh(sigma_inv) return sigma_ def predict(self, X, return_std=False): """Predict using the linear model. In addition to the mean of the predictive distribution, also its standard deviation can be returned. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Samples. return_std : bool, default=False Whether to return the standard deviation of posterior prediction. Returns ------- y_mean : array-like of shape (n_samples,) Mean of predictive distribution of query points. y_std : array-like of shape (n_samples,) Standard deviation of predictive distribution of query points. """ y_mean = self._decision_function(X) if return_std is False: return y_mean else: if self._normalize: X = (X - self.X_offset_) / self.X_scale_ X = X[:, self.lambda_ < self.threshold_lambda] sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1) y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_)) return y_mean, y_std
bsd-3-clause