repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
joshloyal/scikit-learn
examples/ensemble/plot_gradient_boosting_quantile.py
392
2114
""" ===================================================== Prediction Intervals for Gradient Boosting Regression ===================================================== This example shows how quantile regression can be used to create prediction intervals. """ import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import GradientBoostingRegressor np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) #---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d(np.random.uniform(0, 10.0, size=100)).T X = X.astype(np.float32) # Observations y = f(X).ravel() dy = 1.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise y = y.astype(np.float32) # Mesh the input space for evaluations of the real function, the prediction and # its MSE xx = np.atleast_2d(np.linspace(0, 10, 1000)).T xx = xx.astype(np.float32) alpha = 0.95 clf = GradientBoostingRegressor(loss='quantile', alpha=alpha, n_estimators=250, max_depth=3, learning_rate=.1, min_samples_leaf=9, min_samples_split=9) clf.fit(X, y) # Make the prediction on the meshed x-axis y_upper = clf.predict(xx) clf.set_params(alpha=1.0 - alpha) clf.fit(X, y) # Make the prediction on the meshed x-axis y_lower = clf.predict(xx) clf.set_params(loss='ls') clf.fit(X, y) # Make the prediction on the meshed x-axis y_pred = clf.predict(xx) # Plot the function, the prediction and the 90% confidence interval based on # the MSE fig = plt.figure() plt.plot(xx, f(xx), 'g:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'b.', markersize=10, label=u'Observations') plt.plot(xx, y_pred, 'r-', label=u'Prediction') plt.plot(xx, y_upper, 'k-') plt.plot(xx, y_lower, 'k-') plt.fill(np.concatenate([xx, xx[::-1]]), np.concatenate([y_upper, y_lower[::-1]]), alpha=.5, fc='b', ec='None', label='90% prediction interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
kaiserroll14/301finalproject
main/pandas/tests/test_series.py
9
288883
# coding=utf-8 # pylint: disable-msg=E1101,W0612 import re import sys from datetime import datetime, timedelta import operator import string from inspect import getargspec from itertools import product, starmap from distutils.version import LooseVersion import warnings import random import nose from numpy import nan, inf import numpy as np import numpy.ma as ma import pandas as pd from pandas import (Index, Series, DataFrame, isnull, notnull, bdate_range, date_range, period_range, timedelta_range, _np_version_under1p8) from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.period import PeriodIndex from pandas.tseries.index import Timestamp, DatetimeIndex from pandas.tseries.tdi import Timedelta, TimedeltaIndex import pandas.core.common as com import pandas.core.config as cf import pandas.lib as lib import pandas.core.datetools as datetools import pandas.core.nanops as nanops from pandas.compat import StringIO, lrange, range, zip, u, OrderedDict, long from pandas import compat from pandas.util.testing import (assert_series_equal, assert_almost_equal, assert_frame_equal, assert_index_equal, ensure_clean) import pandas.util.testing as tm #------------------------------------------------------------------------------ # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): _multiprocess_can_split_ = True def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEqual(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEqual(result.name, self.ts.name) def test_copy_index_name_checking(self): # don't want to be able to modify the index stored elsewhere after # making a copy self.ts.index.name = None self.assertIsNone(self.ts.index.name) self.assertIs(self.ts, self.ts) cp = self.ts.copy() cp.index.name = 'foo' com.pprint_thing(self.ts.index.name) self.assertIsNone(self.ts.index.name) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEqual(result.name, self.ts.name) def test_dt_namespace_accessor(self): # GH 7207 # test .dt namespace accessor ok_for_base = ['year','month','day','hour','minute','second','weekofyear','week','dayofweek','weekday','dayofyear','quarter','freq','days_in_month','daysinmonth'] ok_for_period = ok_for_base + ['qyear'] ok_for_period_methods = ['strftime'] ok_for_dt = ok_for_base + ['date','time','microsecond','nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'tz'] ok_for_dt_methods = ['to_period','to_pydatetime','tz_localize','tz_convert', 'normalize', 'strftime'] ok_for_td = ['days','seconds','microseconds','nanoseconds'] ok_for_td_methods = ['components','to_pytimedelta','total_seconds'] def get_expected(s, name): result = getattr(Index(s._values),prop) if isinstance(result, np.ndarray): if com.is_integer_dtype(result): result = result.astype('int64') elif not com.is_list_like(result): return result return Series(result,index=s.index) def compare(s, name): a = getattr(s.dt,prop) b = get_expected(s,prop) if not (com.is_list_like(a) and com.is_list_like(b)): self.assertEqual(a,b) else: tm.assert_series_equal(a,b) # datetimeindex for s in [Series(date_range('20130101',periods=5)), Series(date_range('20130101',periods=5,freq='s')), Series(date_range('20130101 00:00:00',periods=5,freq='ms'))]: for prop in ok_for_dt: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_dt_methods: getattr(s.dt, prop) result = s.dt.to_pydatetime() self.assertIsInstance(result,np.ndarray) self.assertTrue(result.dtype == object) result = s.dt.tz_localize('US/Eastern') expected = Series(DatetimeIndex(s.values).tz_localize('US/Eastern'),index=s.index) tm.assert_series_equal(result, expected) tz_result = result.dt.tz self.assertEqual(str(tz_result), 'US/Eastern') freq_result = s.dt.freq self.assertEqual(freq_result, DatetimeIndex(s.values, freq='infer').freq) # let's localize, then convert result = s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern') expected = Series(DatetimeIndex(s.values).tz_localize('UTC').tz_convert('US/Eastern'),index=s.index) tm.assert_series_equal(result, expected) # datetimeindex with tz s = Series(date_range('20130101',periods=5,tz='US/Eastern')) for prop in ok_for_dt: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_dt_methods: getattr(s.dt,prop) result = s.dt.to_pydatetime() self.assertIsInstance(result,np.ndarray) self.assertTrue(result.dtype == object) result = s.dt.tz_convert('CET') expected = Series(s._values.tz_convert('CET'),index=s.index) tm.assert_series_equal(result, expected) tz_result = result.dt.tz self.assertEqual(str(tz_result), 'CET') freq_result = s.dt.freq self.assertEqual(freq_result, DatetimeIndex(s.values, freq='infer').freq) # timedeltaindex for s in [Series(timedelta_range('1 day',periods=5),index=list('abcde')), Series(timedelta_range('1 day 01:23:45',periods=5,freq='s')), Series(timedelta_range('2 days 01:23:45.012345',periods=5,freq='ms'))]: for prop in ok_for_td: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_td_methods: getattr(s.dt, prop) result = s.dt.components self.assertIsInstance(result,DataFrame) tm.assert_index_equal(result.index,s.index) result = s.dt.to_pytimedelta() self.assertIsInstance(result,np.ndarray) self.assertTrue(result.dtype == object) result = s.dt.total_seconds() self.assertIsInstance(result,pd.Series) self.assertTrue(result.dtype == 'float64') freq_result = s.dt.freq self.assertEqual(freq_result, TimedeltaIndex(s.values, freq='infer').freq) # both index = date_range('20130101',periods=3,freq='D') s = Series(date_range('20140204',periods=3,freq='s'),index=index) tm.assert_series_equal(s.dt.year,Series(np.array([2014,2014,2014],dtype='int64'),index=index)) tm.assert_series_equal(s.dt.month,Series(np.array([2,2,2],dtype='int64'),index=index)) tm.assert_series_equal(s.dt.second,Series(np.array([0,1,2],dtype='int64'),index=index)) tm.assert_series_equal(s.dt.normalize(), pd.Series([s[0]] * 3, index=index)) # periodindex for s in [Series(period_range('20130101',periods=5,freq='D'))]: for prop in ok_for_period: # we test freq below if prop != 'freq': compare(s, prop) for prop in ok_for_period_methods: getattr(s.dt, prop) freq_result = s.dt.freq self.assertEqual(freq_result, PeriodIndex(s.values).freq) # test limited display api def get_dir(s): results = [ r for r in s.dt.__dir__() if not r.startswith('_') ] return list(sorted(set(results))) s = Series(date_range('20130101',periods=5,freq='D')) results = get_dir(s) tm.assert_almost_equal(results,list(sorted(set(ok_for_dt + ok_for_dt_methods)))) s = Series(period_range('20130101',periods=5,freq='D').asobject) results = get_dir(s) tm.assert_almost_equal(results, list(sorted(set(ok_for_period + ok_for_period_methods)))) # 11295 # ambiguous time error on the conversions s = Series(pd.date_range('2015-01-01', '2016-01-01', freq='T')) s = s.dt.tz_localize('UTC').dt.tz_convert('America/Chicago') results = get_dir(s) tm.assert_almost_equal(results, list(sorted(set(ok_for_dt + ok_for_dt_methods)))) expected = Series(pd.date_range('2015-01-01', '2016-01-01', freq='T', tz='UTC').tz_convert('America/Chicago')) tm.assert_series_equal(s, expected) # no setting allowed s = Series(date_range('20130101',periods=5,freq='D')) with tm.assertRaisesRegexp(ValueError, "modifications"): s.dt.hour = 5 # trying to set a copy with pd.option_context('chained_assignment','raise'): def f(): s.dt.hour[0] = 5 self.assertRaises(com.SettingWithCopyError, f) def test_dt_accessor_no_new_attributes(self): # https://github.com/pydata/pandas/issues/10673 s = Series(date_range('20130101',periods=5,freq='D')) with tm.assertRaisesRegexp(AttributeError, "You cannot add any new attribute"): s.dt.xlabel = "a" def test_strftime(self): # GH 10086 s = Series(date_range('20130101', periods=5)) result = s.dt.strftime('%Y/%m/%d') expected = Series(['2013/01/01', '2013/01/02', '2013/01/03', '2013/01/04', '2013/01/05']) tm.assert_series_equal(result, expected) s = Series(date_range('2015-02-03 11:22:33.4567', periods=5)) result = s.dt.strftime('%Y/%m/%d %H-%M-%S') expected = Series(['2015/02/03 11-22-33', '2015/02/04 11-22-33', '2015/02/05 11-22-33', '2015/02/06 11-22-33', '2015/02/07 11-22-33']) tm.assert_series_equal(result, expected) s = Series(period_range('20130101', periods=5)) result = s.dt.strftime('%Y/%m/%d') expected = Series(['2013/01/01', '2013/01/02', '2013/01/03', '2013/01/04', '2013/01/05']) tm.assert_series_equal(result, expected) s = Series(period_range('2015-02-03 11:22:33.4567', periods=5, freq='s')) result = s.dt.strftime('%Y/%m/%d %H-%M-%S') expected = Series(['2015/02/03 11-22-33', '2015/02/03 11-22-34', '2015/02/03 11-22-35', '2015/02/03 11-22-36', '2015/02/03 11-22-37']) tm.assert_series_equal(result, expected) s = Series(date_range('20130101', periods=5)) s.iloc[0] = pd.NaT result = s.dt.strftime('%Y/%m/%d') expected = Series(['NaT', '2013/01/02', '2013/01/03', '2013/01/04', '2013/01/05']) tm.assert_series_equal(result, expected) datetime_index = date_range('20150301', periods=5) result = datetime_index.strftime("%Y/%m/%d") expected = np.array(['2015/03/01', '2015/03/02', '2015/03/03', '2015/03/04', '2015/03/05'], dtype=object) self.assert_numpy_array_equal(result, expected) period_index = period_range('20150301', periods=5) result = period_index.strftime("%Y/%m/%d") expected = np.array(['2015/03/01', '2015/03/02', '2015/03/03', '2015/03/04', '2015/03/05'], dtype=object) self.assert_numpy_array_equal(result, expected) s = Series([datetime(2013, 1, 1, 2, 32, 59), datetime(2013, 1, 2, 14, 32, 1)]) result = s.dt.strftime('%Y-%m-%d %H:%M:%S') expected = Series(["2013-01-01 02:32:59", "2013-01-02 14:32:01"]) tm.assert_series_equal(result, expected) s = Series(period_range('20130101', periods=4, freq='H')) result = s.dt.strftime('%Y/%m/%d %H:%M:%S') expected = Series(["2013/01/01 00:00:00", "2013/01/01 01:00:00", "2013/01/01 02:00:00", "2013/01/01 03:00:00"]) s = Series(period_range('20130101', periods=4, freq='L')) result = s.dt.strftime('%Y/%m/%d %H:%M:%S.%l') expected = Series(["2013/01/01 00:00:00.000", "2013/01/01 00:00:00.001", "2013/01/01 00:00:00.002", "2013/01/01 00:00:00.003"]) tm.assert_series_equal(result, expected) def test_valid_dt_with_missing_values(self): from datetime import date, time # GH 8689 s = Series(date_range('20130101',periods=5,freq='D')) s.iloc[2] = pd.NaT for attr in ['microsecond','nanosecond','second','minute','hour','day']: expected = getattr(s.dt,attr).copy() expected.iloc[2] = np.nan result = getattr(s.dt,attr) tm.assert_series_equal(result, expected) result = s.dt.date expected = Series([date(2013,1,1),date(2013,1,2),np.nan,date(2013,1,4),date(2013,1,5)],dtype='object') tm.assert_series_equal(result, expected) result = s.dt.time expected = Series([time(0),time(0),np.nan,time(0),time(0)],dtype='object') tm.assert_series_equal(result, expected) def test_dt_accessor_api(self): # GH 9322 from pandas.tseries.common import (CombinedDatetimelikeProperties, DatetimeProperties) self.assertIs(Series.dt, CombinedDatetimelikeProperties) s = Series(date_range('2000-01-01', periods=3)) self.assertIsInstance(s.dt, DatetimeProperties) for s in [Series(np.arange(5)), Series(list('abcde')), Series(np.random.randn(5))]: with tm.assertRaisesRegexp(AttributeError, "only use .dt accessor"): s.dt self.assertFalse(hasattr(s, 'dt')) def test_tab_completion(self): # GH 9910 s = Series(list('abcd')) # Series of str values should have .str but not .dt/.cat in __dir__ self.assertTrue('str' in dir(s)) self.assertTrue('dt' not in dir(s)) self.assertTrue('cat' not in dir(s)) # similiarly for .dt s = Series(date_range('1/1/2015', periods=5)) self.assertTrue('dt' in dir(s)) self.assertTrue('str' not in dir(s)) self.assertTrue('cat' not in dir(s)) # similiarly for .cat, but with the twist that str and dt should be there # if the categories are of that type # first cat and str s = Series(list('abbcd'), dtype="category") self.assertTrue('cat' in dir(s)) self.assertTrue('str' in dir(s)) # as it is a string categorical self.assertTrue('dt' not in dir(s)) # similar to cat and str s = Series(date_range('1/1/2015', periods=5)).astype("category") self.assertTrue('cat' in dir(s)) self.assertTrue('str' not in dir(s)) self.assertTrue('dt' in dir(s)) # as it is a datetime categorical def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEqual(result.name, self.ts.name) result = self.ts.mul(self.ts) self.assertEqual(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEqual(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assertIsNone(result.name) result = self.ts.add(cp) self.assertIsNone(result.name) ops = ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow'] ops = ops + ['r' + op for op in ops] for op in ops: # names match, preserve s = self.ts.copy() result = getattr(s, op)(s) self.assertEqual(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'changed' result = getattr(s, op)(cp) self.assertIsNone(result.name) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEqual(result.name, self.ts.name) def test_combine_first_dt64(self): from pandas.tseries.tools import to_datetime s0 = to_datetime(Series(["2010", np.NaN])) s1 = to_datetime(Series([np.NaN, "2011"])) rs = s0.combine_first(s1) xp = to_datetime(Series(['2010', '2011'])) assert_series_equal(rs, xp) s0 = to_datetime(Series(["2010", np.NaN])) s1 = Series([np.NaN, "2011"]) rs = s0.combine_first(s1) xp = Series([datetime(2010, 1, 1), '2011']) assert_series_equal(rs, xp) def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result,expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index([25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result,expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i':[0]*3, 'b':[False]*3}) vc = df.i.value_counts() result = vc.get(99,default='Missing') self.assertEqual(result,'Missing') vc = df.b.value_counts() result = vc.get(False,default='Missing') self.assertEqual(result,3) result = vc.get(True,default='Missing') self.assertEqual(result,'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1,5),index=lrange(1,5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2,5),index=lrange(2,5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index([], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index([], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index([], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index([], dtype='object'))) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEqual(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEqual(result.name, self.ts.name) result = self.ts[5:10] self.assertEqual(result.name, self.ts.name) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(lrange(0, len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth, dtype: int64"] expected = "\n".join(expected) self.assertEqual(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEqual(result.name, s.name) self.assertEqual(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) # test big series (diff code path) s = Series(lrange(0, 1000)) s.name = "test" self.assertIn("Name: test", repr(s)) s.name = None self.assertNotIn("Name:", repr(s)) s = Series(index=date_range('20010101', '20020101'), name='test') self.assertIn("Name: test", repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip_name(self.ts) self.assertEqual(unpickled.name, self.ts.name) def _pickle_roundtrip_name(self, obj): with ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEqual(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEqual(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEqual(result.name, self.ts.name) class TestNanops(tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! s == s2 s2 == s def test_sum_zero(self): arr = np.array([]) self.assertEqual(nanops.nansum(arr), 0) arr = np.empty((10, 0)) self.assertTrue((nanops.nansum(arr, axis=1) == 0).all()) # GH #844 s = Series([], index=[]) self.assertEqual(s.sum(), 0) df = DataFrame(np.empty((10, 0))) self.assertTrue((df.sum(1) == 0).all()) def test_nansum_buglet(self): s = Series([1.0, np.nan], index=[0, 1]) result = np.nansum(s) assert_almost_equal(result, 1) def test_overflow(self): # GH 6915 # overflowing on the smaller int dtypes for dtype in ['int32','int64']: v = np.arange(5000000,dtype=dtype) s = Series(v) # no bottleneck result = s.sum(skipna=False) self.assertEqual(int(result),v.sum(dtype='int64')) result = s.min(skipna=False) self.assertEqual(int(result),0) result = s.max(skipna=False) self.assertEqual(int(result),v[-1]) # use bottleneck if available result = s.sum() self.assertEqual(int(result),v.sum(dtype='int64')) result = s.min() self.assertEqual(int(result),0) result = s.max() self.assertEqual(int(result),v[-1]) for dtype in ['float32', 'float64']: v = np.arange(5000000, dtype=dtype) s = Series(v) # no bottleneck result = s.sum(skipna=False) self.assertEqual(result, v.sum(dtype=dtype)) result = s.min(skipna=False) self.assertTrue(np.allclose(float(result), 0.0)) result = s.max(skipna=False) self.assertTrue(np.allclose(float(result), v[-1])) # use bottleneck if available result = s.sum() self.assertEqual(result, v.sum(dtype=dtype)) result = s.min() self.assertTrue(np.allclose(float(result), 0.0)) result = s.max() self.assertTrue(np.allclose(float(result), v[-1])) class SafeForSparse(object): pass _ts = tm.makeTimeSeries() class TestSeries(tm.TestCase, CheckNameIntegration): _multiprocess_can_split_ = True def setUp(self): import warnings self.ts = _ts.copy() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) self.assertNotIsInstance(scalar, float) # coercion self.assertEqual(float(Series([1.])), 1.0) self.assertEqual(int(Series([1.])), 1) self.assertEqual(long(Series([1.])), 1) def test_astype(self): s = Series(np.random.randn(5),name='foo') for dtype in ['float32','float64','int64','int32']: astyped = s.astype(dtype) self.assertEqual(astyped.dtype, dtype) self.assertEqual(astyped.name, s.name) def test_TimeSeries_deprecation(self): # deprecation TimeSeries, #10890 with tm.assert_produces_warning(FutureWarning): pd.TimeSeries(1,index=date_range('20130101',periods=3)) def test_constructor(self): # Recognize TimeSeries with tm.assert_produces_warning(FutureWarning): self.assertTrue(self.ts.is_time_series) self.assertTrue(self.ts.index.is_all_dates) # Pass in Series derived = Series(self.ts) with tm.assert_produces_warning(FutureWarning): self.assertTrue(derived.is_time_series) self.assertTrue(derived.index.is_all_dates) self.assertTrue(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEqual(id(self.ts.index), id(derived.index)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assertEqual(mixed.dtype, np.object_) self.assertIs(mixed[1], np.NaN) with tm.assert_produces_warning(FutureWarning): self.assertFalse(self.empty.is_time_series) self.assertFalse(self.empty.index.is_all_dates) with tm.assert_produces_warning(FutureWarning): self.assertFalse(Series({}).is_time_series) self.assertFalse(Series({}).index.is_all_dates) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) mixed.name = 'Series' rs = Series(mixed).name xp = 'Series' self.assertEqual(rs, xp) # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) self.assertRaises(NotImplementedError, Series, m) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2, check_index_type=False) empty = Series(index=lrange(10)) empty2 = Series(np.nan, index=lrange(10)) assert_series_equal(empty, empty2) def test_constructor_series(self): index1 = ['d', 'b', 'a', 'c'] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) assert_series_equal(s2, s1.sort_index()) def test_constructor_iterator(self): expected = Series(list(range(10)),dtype='int64') result = Series(range(10),dtype='int64') assert_series_equal(result, expected) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(lrange(10)) assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(lrange(10)) assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=lrange(10, 20)) exp.index = lrange(10, 20) assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ['a', 'b', 'c'], fastpath=True) res = Series(cat) self.assertTrue(res.values.equals(cat)) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([nan, nan, nan], dtype=float) assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0, nan, 2], index=index, dtype=float) assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([nan, nan, nan], dtype=object) assert_series_equal(result, expected) data[0] = True data[2] = False index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([True, nan, False], index=index, dtype=object) assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) assert_series_equal(result, expected) from pandas import tslib data = ma.masked_all((3,), dtype='M8[ns]') result = Series(data) expected = Series([tslib.iNaT, tslib.iNaT, tslib.iNaT], dtype='M8[ns]') assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), tslib.iNaT, datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series([datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype='M8[ns]') assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) tm.assertIsInstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1., 1., 8.]), dtype='i8') self.assertEqual(s.dtype, np.dtype('i8')) s = Series(np.array([1., 1., np.nan]), copy=True, dtype='i8') self.assertEqual(s.dtype, np.dtype('f8')) def test_constructor_pass_none(self): s = Series(None, index=lrange(5)) self.assertEqual(s.dtype, np.float64) s = Series(None, index=lrange(5), dtype=object) self.assertEqual(s.dtype, np.object_) # GH 7431 # inference on the index s = Series(index=np.array([None])) expected = Series(index=Index([None])) assert_series_equal(s,expected) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dtype_nocast(self): # 1572 s = Series([1, 2, 3]) s2 = Series(s, dtype=np.int64) s2[1] = 5 self.assertEqual(s[1], 5) def test_constructor_datelike_coercion(self): # GH 9477 # incorrectly infering on dateimelike looking when object dtype is specified s = Series([Timestamp('20130101'),'NOV'],dtype=object) self.assertEqual(s.iloc[0],Timestamp('20130101')) self.assertEqual(s.iloc[1],'NOV') self.assertTrue(s.dtype == object) # the dtype was being reset on the slicing and re-inferred to datetime even # thought the blocks are mixed belly = '216 3T19'.split() wing1 = '2T15 4H19'.split() wing2 = '416 4T20'.split() mat = pd.to_datetime('2016-01-22 2019-09-07'.split()) df = pd.DataFrame({'wing1':wing1, 'wing2':wing2, 'mat':mat}, index=belly) result = df.loc['3T19'] self.assertTrue(result.dtype == object) result = df.loc['216'] self.assertTrue(result.dtype == object) def test_constructor_dtype_datetime64(self): import pandas.tslib as tslib s = Series(tslib.iNaT, dtype='M8[ns]', index=lrange(5)) self.assertTrue(isnull(s).all()) # in theory this should be all nulls, but since # we are not specifying a dtype is ambiguous s = Series(tslib.iNaT, index=lrange(5)) self.assertFalse(isnull(s).all()) s = Series(nan, dtype='M8[ns]', index=lrange(5)) self.assertTrue(isnull(s).all()) s = Series([datetime(2001, 1, 2, 0, 0), tslib.iNaT], dtype='M8[ns]') self.assertTrue(isnull(s[1])) self.assertEqual(s.dtype, 'M8[ns]') s = Series([datetime(2001, 1, 2, 0, 0), nan], dtype='M8[ns]') self.assertTrue(isnull(s[1])) self.assertEqual(s.dtype, 'M8[ns]') # GH3416 dates = [ np.datetime64(datetime(2013, 1, 1)), np.datetime64(datetime(2013, 1, 2)), np.datetime64(datetime(2013, 1, 3)), ] s = Series(dates) self.assertEqual(s.dtype, 'M8[ns]') s.ix[0] = np.nan self.assertEqual(s.dtype, 'M8[ns]') # invalid astypes for t in ['s', 'D', 'us', 'ms']: self.assertRaises(TypeError, s.astype, 'M8[%s]' % t) # GH3414 related self.assertRaises(TypeError, lambda x: Series( Series(dates).astype('int') / 1000000, dtype='M8[ms]')) self.assertRaises( TypeError, lambda x: Series(dates, dtype='datetime64')) # invalid dates can be help as object result = Series([datetime(2,1,1)]) self.assertEqual(result[0], datetime(2,1,1,0,0)) result = Series([datetime(3000,1,1)]) self.assertEqual(result[0], datetime(3000,1,1,0,0)) # don't mix types result = Series([ Timestamp('20130101'), 1],index=['a','b']) self.assertEqual(result['a'], Timestamp('20130101')) self.assertEqual(result['b'], 1) # GH6529 # coerce datetime64 non-ns properly dates = date_range('01-Jan-2015', '01-Dec-2015', freq='M') values2 = dates.view(np.ndarray).astype('datetime64[ns]') expected = Series(values2, dates) for dtype in ['s', 'D', 'ms', 'us', 'ns']: values1 = dates.view(np.ndarray).astype('M8[{0}]'.format(dtype)) result = Series(values1, dates) assert_series_equal(result,expected) # leave datetime.date alone dates2 = np.array([d.date() for d in dates.to_pydatetime()], dtype=object) series1 = Series(dates2, dates) self.assert_numpy_array_equal(series1.values,dates2) self.assertEqual(series1.dtype,object) # these will correctly infer a datetime s = Series([None, pd.NaT, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([np.nan, pd.NaT, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([pd.NaT, None, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') s = Series([pd.NaT, np.nan, '2013-08-05 15:30:00.000001']) self.assertEqual(s.dtype,'datetime64[ns]') # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101',periods=3) self.assertTrue(Series(dr).iloc[0].tz is None) dr = date_range('20130101',periods=3,tz='UTC') self.assertTrue(str(Series(dr).iloc[0].tz) == 'UTC') dr = date_range('20130101',periods=3,tz='US/Eastern') self.assertTrue(str(Series(dr).iloc[0].tz) == 'US/Eastern') # non-convertible s = Series([1479596223000, -1479590, pd.NaT]) self.assertTrue(s.dtype == 'object') self.assertTrue(s[2] is pd.NaT) self.assertTrue('NaT' in str(s)) # if we passed a NaT it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), pd.NaT]) self.assertTrue(s.dtype == 'object') self.assertTrue(s[2] is pd.NaT) self.assertTrue('NaT' in str(s)) # if we passed a nan it remains s = Series([datetime(2010, 1, 1), datetime(2, 1, 1), np.nan]) self.assertTrue(s.dtype == 'object') self.assertTrue(s[2] is np.nan) self.assertTrue('NaN' in str(s)) def test_constructor_with_datetime_tz(self): # 8260 # support datetime64 with tz dr = date_range('20130101',periods=3,tz='US/Eastern') s = Series(dr) self.assertTrue(s.dtype.name == 'datetime64[ns, US/Eastern]') self.assertTrue(s.dtype == 'datetime64[ns, US/Eastern]') self.assertTrue(com.is_datetime64tz_dtype(s.dtype)) self.assertTrue('datetime64[ns, US/Eastern]' in str(s)) # export result = s.values self.assertIsInstance(result, np.ndarray) self.assertTrue(result.dtype == 'datetime64[ns]') self.assertTrue(dr.equals(pd.DatetimeIndex(result).tz_localize('UTC').tz_convert(tz=s.dt.tz))) # indexing result = s.iloc[0] self.assertEqual(result,Timestamp('2013-01-01 00:00:00-0500', tz='US/Eastern', offset='D')) result = s[0] self.assertEqual(result,Timestamp('2013-01-01 00:00:00-0500', tz='US/Eastern', offset='D')) result = s[Series([True,True,False],index=s.index)] assert_series_equal(result,s[0:2]) result = s.iloc[0:1] assert_series_equal(result,Series(dr[0:1])) # concat result = pd.concat([s.iloc[0:1],s.iloc[1:]]) assert_series_equal(result,s) # astype result = s.astype(object) expected = Series(DatetimeIndex(s._values).asobject) assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize('UTC').dt.tz_convert(s.dt.tz) assert_series_equal(result, s) # astype - datetime64[ns, tz] result = Series(s.values).astype('datetime64[ns, US/Eastern]') assert_series_equal(result, s) result = Series(s.values).astype(s.dtype) assert_series_equal(result, s) result = s.astype('datetime64[ns, CET]') expected = Series(date_range('20130101 06:00:00',periods=3,tz='CET')) assert_series_equal(result, expected) # short str self.assertTrue('datetime64[ns, US/Eastern]' in str(s)) # formatting with NaT result = s.shift() self.assertTrue('datetime64[ns, US/Eastern]' in str(result)) self.assertTrue('NaT' in str(result)) # long str t = Series(date_range('20130101',periods=1000,tz='US/Eastern')) self.assertTrue('datetime64[ns, US/Eastern]' in str(t)) result = pd.DatetimeIndex(s,freq='infer') tm.assert_index_equal(result, dr) # inference s = Series([pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'),pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Pacific')]) self.assertTrue(s.dtype == 'datetime64[ns, US/Pacific]') self.assertTrue(lib.infer_dtype(s) == 'datetime64') s = Series([pd.Timestamp('2013-01-01 13:00:00-0800', tz='US/Pacific'),pd.Timestamp('2013-01-02 14:00:00-0800', tz='US/Eastern')]) self.assertTrue(s.dtype == 'object') self.assertTrue(lib.infer_dtype(s) == 'datetime') def test_constructor_periodindex(self): # GH7932 # converting a PeriodIndex when put in a Series pi = period_range('20130101',periods=5,freq='D') s = Series(pi) expected = Series(pi.asobject) assert_series_equal(s, expected) def test_constructor_dict(self): d = {'a': 0., 'b': 1., 'c': 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) pidx = tm.makePeriodIndex(100) d = {pidx[0]: 0, pidx[1]: 1} result = Series(d, index=pidx) expected = Series(np.nan, pidx) expected.ix[0] = 0 expected.ix[1] = 1 assert_series_equal(result, expected) def test_constructor_dict_multiindex(self): check = lambda result, expected: tm.assert_series_equal( result, expected, check_dtype=True, check_index_type=True, check_series_type=True) d = {('a', 'a'): 0., ('b', 'a'): 1., ('b', 'c'): 2.} _d = sorted(d.items()) ser = Series(d) expected = Series([x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])) check(ser, expected) d['z'] = 111. _d.insert(0, ('z', d['z'])) ser = Series(d) expected = Series( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)) ser = ser.reindex(index=expected.index) check(ser, expected) def test_constructor_subclass_dict(self): data = tm.TestSubDict((x, 10.0 * x) for x in range(10)) series = Series(data) refseries = Series(dict(compat.iteritems(data))) assert_series_equal(refseries, series) def test_constructor_dict_datetime64_index(self): # GH 9456 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] values = [42544017.198965244, 1234565, 40512335.181958228, -1] def create_data(constructor): return dict(zip((constructor(x) for x in dates_as_str), values)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = Series(values, (Timestamp(x) for x in dates_as_str)) result_datetime64 = Series(data_datetime64) result_datetime = Series(data_datetime) result_Timestamp = Series(data_Timestamp) assert_series_equal(result_datetime64, expected) assert_series_equal(result_datetime, expected) assert_series_equal(result_Timestamp, expected) def test_orderedDict_ctor(self): # GH3283 import pandas import random data = OrderedDict([('col%s' % i, random.random()) for i in range(12)]) s = pandas.Series(data) self.assertTrue(all(s.values == list(data.values()))) def test_orderedDict_subclass_ctor(self): # GH3283 import pandas import random class A(OrderedDict): pass data = A([('col%s' % i, random.random()) for i in range(12)]) s = pandas.Series(data) self.assertTrue(all(s.values == list(data.values()))) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_constructor_set(self): values = set([1, 2, 3, 4, 5]) self.assertRaises(TypeError, Series, values) values = frozenset(values) self.assertRaises(TypeError, Series, values) def test_fromDict(self): data = {'a': 0, 'b': 1, 'c': 2, 'd': 3} series = Series(data) self.assertTrue(tm.is_sorted(series.index)) data = {'a': 0, 'b': '1', 'c': '2', 'd': datetime.now()} series = Series(data) self.assertEqual(series.dtype, np.object_) data = {'a': 0, 'b': '1', 'c': '2', 'd': '3'} series = Series(data) self.assertEqual(series.dtype, np.object_) data = {'a': '0', 'b': '1'} series = Series(data, dtype=float) self.assertEqual(series.dtype, np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(Exception, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) tm.assertIsInstance(series.index, Index) def test_array_finalize(self): pass def test_pop(self): # GH 6600 df = DataFrame({ 'A': 0, 'B': np.arange(5,dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_not_hashable(self): s_empty = Series() s = Series([1]) self.assertRaises(TypeError, hash, s_empty) self.assertRaises(TypeError, hash, s) def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assertEqual(nans.dtype, np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assertEqual(strings.dtype, np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assertEqual(dates.dtype, 'M8[ns]') self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): with ensure_clean() as path: obj.to_pickle(path) unpickled = pd.read_pickle(path) return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_numpy_array_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan,index=['C'],dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=datetools.bday) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) #ts[mask_shifted] #ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) #ts.ix[mask_shifted] #ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(np.isscalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5),index=['A','A','B','C','C'],dtype=np.int64) expected = Series([3,4],index=['C','C'],dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df>5) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5],index=[1])) assert_series_equal(s2,expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5],index=[1])) assert_series_equal(s2,expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda : self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan,2,3]) s = Series([1,2,3]) s.iloc[0] = np.nan assert_series_equal(s,expected) s = Series([1,2,3]) s.loc[0] = np.nan assert_series_equal(s,expected) s = Series([1,2,3]) s[0] = np.nan assert_series_equal(s,expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s,Series([np.nan])) s = Series([False,True]) s.loc[0] = np.nan assert_series_equal(s,Series([np.nan,1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_reshape_non_2d(self): # GH 4554 x = Series(np.random.random(201), name='x') self.assertTrue(x.reshape(x.shape,) is x) # GH 2719 a = Series([1, 2, 3, 4]) result = a.reshape(2, 2) expected = a.values.reshape(2, 2) tm.assert_numpy_array_equal(result, expected) self.assertTrue(type(result) is type(expected)) def test_reshape_2d_return_array(self): x = Series(np.random.random(201), name='x') result = x.reshape((-1, 1)) self.assertNotIsInstance(result, Series) result2 = np.reshape(x, (-1, 1)) self.assertNotIsInstance(result2, Series) result = x[:, None] expected = x.reshape((-1, 1)) assert_almost_equal(result, expected) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert(s.shape == rs.shape) assert(rs is not s) # test alignment cond = Series([True,False,False,True,False],index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises( ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises( ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5,4,3,2,1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1,2,3,4]) result = s.where(s>2,np.nan) expected = Series([np.nan,np.nan,3,4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan,index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0,1,2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0,'b',1,'d','e','f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a','b','c',0,1,'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0,1,2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0,1,2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)),'b','c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [np.resize([True, False, False, False, False], size), # First element should be set # Set alternating elements] np.resize([True, False], size), np.resize([False], size)]: # No element should be set # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item,)]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1,s2]) result = comb.where(comb < 2) expected = Series([0,1,np.nan,0,1,np.nan],index=[0,1,2,0,1,2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb<1] = 5 expected = Series([5,1,2,5,1,2],index=[0,1,2,0,1,2]) assert_series_equal(comb, expected) comb[comb<2] += 10 expected = Series([5,11,2,5,11,2],index=[0,1,2,0,1,2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1,2,3,4]) result = s.mask(s>2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [np.resize([True, False, False, False, False], size), # First element should be set # Set alternating elements] np.resize([True, False], size), np.resize([False], size)]: # No element should be set for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item,)]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_drop(self): # unique s = Series([1,2],index=['one','two']) expected = Series([1],index=['one']) result = s.drop(['two']) assert_series_equal(result,expected) result = s.drop('two', axis='rows') assert_series_equal(result,expected) # non-unique # GH 5248 s = Series([1,1,2],index=['one','two','one']) expected = Series([1,2],index=['one','one']) result = s.drop(['two'], axis=0) assert_series_equal(result,expected) result = s.drop('two') assert_series_equal(result,expected) expected = Series([1],index=['two']) result = s.drop(['one']) assert_series_equal(result,expected) result = s.drop('one') assert_series_equal(result,expected) # single string/tuple-like s = Series(range(3),index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a',)) # errors='ignore' s = Series(range(3),index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2,3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3],index=[False]) assert_series_equal(result,expected) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s>1, 'X') self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s>1, ['X', 'Y', 'Z']) self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s>1, np.array(['X', 'Y', 'Z'])) self.assertFalse(com.is_integer(w[0])) self.assertTrue(com.is_integer(w[1])) self.assertTrue(com.is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # with Nones ots = self.ts.astype('O') ots[::2] = None repr(ots) # various names for name in ['', 1, 1.2, 'foo', u('\u03B1\u03B2\u03B3'), 'loooooooooooooooooooooooooooooooooooooooooooooooooooong', ('foo', 'bar', 'baz'), (1, 2), ('foo', 1, 2.3), (u('\u03B1'), u('\u03B2'), u('\u03B3')), (u('\u03B1'), 'bar')]: self.series.name = name repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) # 0 as name ser = Series(np.random.randn(100), name=0) rep_str = repr(ser) self.assertIn("Name: 0", rep_str) # tidy repr ser = Series(np.random.randn(1001), name=0) rep_str = repr(ser) self.assertIn("Name: 0", rep_str) ser = Series(["a\n\r\tb"], name=["a\n\r\td"], index=["a\n\r\tf"]) self.assertFalse("\t" in repr(ser)) self.assertFalse("\r" in repr(ser)) self.assertFalse("a\n" in repr(ser)) # with empty series (#4651) s = Series([], dtype=np.int64, name='foo') self.assertEqual(repr(s), 'Series([], Name: foo, dtype: int64)') s = Series([], dtype=np.int64, name=None) self.assertEqual(repr(s), 'Series([], dtype: int64)') def test_tidy_repr(self): a = Series([u("\u05d0")] * 1000) a.name = 'title1' repr(a) # should not raise exception def test_repr_bool_fails(self): s = Series([DataFrame(np.random.randn(2, 2)) for i in range(5)]) import sys buf = StringIO() tmp = sys.stderr sys.stderr = buf try: # it works (with no Cython exception barf)! repr(s) finally: sys.stderr = tmp self.assertEqual(buf.getvalue(), '') def test_repr_name_iterable_indexable(self): s = Series([1, 2, 3], name=np.int64(3)) # it works! repr(s) s.name = (u("\u05d0"),) * 2 repr(s) def test_repr_should_return_str(self): # http://docs.python.org/py3k/reference/datamodel.html#object.__repr__ # http://docs.python.org/reference/datamodel.html#object.__repr__ # ...The return value must be a string object. # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = [u("\u03c3"), u("\u03c4"), u("\u03c5"), u("\u03c6")] df = Series(data, index=index1) self.assertTrue(type(df.__repr__() == str)) # both py2 / 3 def test_repr_max_rows(self): # GH 6863 with pd.option_context('max_rows', None): str(Series(range(1001))) # should not raise exception def test_unicode_string_with_unicode(self): df = Series([u("\u05d0")], name=u("\u05d1")) if compat.PY3: str(df) else: compat.text_type(df) def test_bytestring_with_unicode(self): df = Series([u("\u05d0")], name=u("\u05d1")) if compat.PY3: bytes(df) else: str(df) def test_timeseries_repr_object_dtype(self): index = Index([datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], dtype=object) ts = Series(np.random.randn(len(index)), index) repr(ts) ts = tm.makeTimeSeries(1000) self.assertTrue(repr(ts).splitlines()[-1].startswith('Freq:')) ts2 = ts.ix[np.random.randint(0, len(ts) - 1, 400)] repr(ts2).splitlines()[-1] def test_timeseries_periodindex(self): # GH2891 from pandas import period_range prng = period_range('1/1/2011', '1/1/2012', freq='M') ts = Series(np.random.randn(len(prng)), prng) new_ts = self.round_trip_pickle(ts) self.assertEqual(new_ts.index.freq, 'M') def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assertIs(getkeys(), self.ts.index) def test_values(self): self.assert_numpy_array_equal(self.ts, self.ts.values) def test_iteritems(self): for idx, val in compat.iteritems(self.series): self.assertEqual(val, self.series[idx]) for idx, val in compat.iteritems(self.ts): self.assertEqual(val, self.ts[idx]) # assert is lazy (genrators don't define reverse, lists do) self.assertFalse(hasattr(self.series.iteritems(), 'reverse')) def test_sum(self): self._check_stat_op('sum', np.sum, check_allna=True) def test_sum_inf(self): import pandas.core.nanops as nanops s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan self.assertTrue(np.isinf(s.sum())) arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf with cf.option_context("mode.use_inf_as_null", True): assert_almost_equal(s.sum(), s2.sum()) res = nanops.nansum(arr, axis=1) self.assertTrue(np.isinf(res).all()) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = Series(np.ones(10, dtype=int), index=lrange(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_mode(self): s = Series([12, 12, 11, 10, 19, 11]) exp = Series([11, 12]) assert_series_equal(s.mode(), exp) assert_series_equal(Series([1, 2, 3]).mode(), Series([], dtype='int64')) lst = [5] * 20 + [1] * 10 + [6] * 25 np.random.shuffle(lst) s = Series(lst) assert_series_equal(s.mode(), Series([6])) s = Series([5] * 10) assert_series_equal(s.mode(), Series([5])) s = Series(lst) s[0] = np.nan assert_series_equal(s.mode(), Series([6.])) s = Series(list('adfasbasfwewefwefweeeeasdfasnbam')) assert_series_equal(s.mode(), Series(['e'])) s = Series(['2011-01-03', '2013-01-02', '1900-05-03'], dtype='M8[ns]') assert_series_equal(s.mode(), Series([], dtype="M8[ns]")) s = Series(['2011-01-03', '2013-01-02', '1900-05-03', '2011-01-03', '2013-01-02'], dtype='M8[ns]') assert_series_equal(s.mode(), Series(['2011-01-03', '2013-01-02'], dtype='M8[ns]')) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_var_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) result = self.ts.std(ddof=4) expected = np.std(self.ts.values, ddof=4) assert_almost_equal(result, expected) result = self.ts.var(ddof=4) expected = np.var(self.ts.values, ddof=4) assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = self.ts.iloc[[0]] result = s.var(ddof=1) self.assertTrue(isnull(result)) result = s.std(ddof=1) self.assertTrue(isnull(result)) def test_sem(self): alt = lambda x: np.std(x, ddof=1)/np.sqrt(len(x)) self._check_stat_op('sem', alt) result = self.ts.sem(ddof=4) expected = np.std(self.ts.values, ddof=4)/np.sqrt(len(self.ts.values)) assert_almost_equal(result, expected) # 1 - element series with ddof=1 s = self.ts.iloc[[0]] result = s.sem(ddof=1) self.assertTrue(isnull(result)) def test_skew(self): tm._skip_if_no_scipy() from scipy.stats import skew alt = lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) # test corner cases, skew() returns NaN unless there's at least 3 values min_N = 3 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: self.assertTrue(np.isnan(s.skew())) self.assertTrue(np.isnan(df.skew()).all()) else: self.assertEqual(0, s.skew()) self.assertTrue((df.skew() == 0).all()) def test_kurt(self): tm._skip_if_no_scipy() from scipy.stats import kurtosis alt = lambda x: kurtosis(x, bias=False) self._check_stat_op('kurt', alt) index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) self.assertAlmostEqual(s.kurt(), s.kurt(level=0)['bar']) # test corner cases, kurt() returns NaN unless there's at least 4 values min_N = 4 for i in range(1, min_N + 1): s = Series(np.ones(i)) df = DataFrame(np.ones((i, i))) if i < min_N: self.assertTrue(np.isnan(s.kurt())) self.assertTrue(np.isnan(df.kurt()).all()) else: self.assertEqual(0, s.kurt()) self.assertTrue((df.kurt() == 0).all()) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assertTrue(issubclass(argsorted.dtype.type, np.integer)) # GH 2967 (introduced bug in 0.11-dev I think) s = Series([Timestamp('201301%02d' % (i + 1)) for i in range(5)]) self.assertEqual(s.dtype, 'datetime64[ns]') shifted = s.shift(-1) self.assertEqual(shifted.dtype, 'datetime64[ns]') self.assertTrue(isnull(shifted[4])) result = s.argsort() expected = Series(lrange(5), dtype='int64') assert_series_equal(result, expected) result = shifted.argsort() expected = Series(lrange(4) + [-1], dtype='int64') assert_series_equal(result, expected) def test_argsort_stable(self): s = Series(np.random.randint(0, 100, size=10000)) mindexer = s.argsort(kind='mergesort') qindexer = s.argsort() mexpected = np.argsort(s.values, kind='mergesort') qexpected = np.argsort(s.values, kind='quicksort') self.assert_numpy_array_equal(mindexer, mexpected) self.assert_numpy_array_equal(qindexer, qexpected) self.assertFalse(np.array_equal(qindexer, mindexer)) def test_reorder_levels(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]], names=['L0', 'L1', 'L2']) s = Series(np.arange(6), index=index) # no change, position result = s.reorder_levels([0, 1, 2]) assert_series_equal(s, result) # no change, labels result = s.reorder_levels(['L0', 'L1', 'L2']) assert_series_equal(s, result) # rotate, position result = s.reorder_levels([1, 2, 0]) e_idx = MultiIndex(levels=[['one', 'two', 'three'], [0, 1], ['bar']], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0]], names=['L1', 'L2', 'L0']) expected = Series(np.arange(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels([0, 0, 0]) e_idx = MultiIndex(levels=[['bar'], ['bar'], ['bar']], labels=[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]], names=['L0', 'L0', 'L0']) expected = Series(range(6), index=e_idx) assert_series_equal(result, expected) result = s.reorder_levels(['L0', 'L0', 'L0']) assert_series_equal(result, expected) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def test_cummin(self): self.assert_numpy_array_equal(self.ts.cummin(), np.minimum.accumulate(np.array(self.ts))) ts = self.ts.copy() ts[::2] = np.NaN result = ts.cummin()[1::2] expected = np.minimum.accumulate(ts.valid()) self.assert_numpy_array_equal(result, expected) def test_cummax(self): self.assert_numpy_array_equal(self.ts.cummax(), np.maximum.accumulate(np.array(self.ts))) ts = self.ts.copy() ts[::2] = np.NaN result = ts.cummax()[1::2] expected = np.maximum.accumulate(ts.valid()) self.assert_numpy_array_equal(result, expected) def test_cummin_datetime64(self): s = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-3'])) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-1'])) result = s.cummin(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', '2000-1-2', '2000-1-1', '2000-1-1', '2000-1-1'])) result = s.cummin(skipna=False) self.assert_series_equal(expected, result) def test_cummax_datetime64(self): s = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-1', 'NaT', '2000-1-3'])) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', 'NaT', '2000-1-2', 'NaT', '2000-1-3'])) result = s.cummax(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_datetime( ['NaT', '2000-1-2', '2000-1-2', '2000-1-2', '2000-1-2', '2000-1-3'])) result = s.cummax(skipna=False) self.assert_series_equal(expected, result) def test_cummin_timedelta64(self): s = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '3 min', ])) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '1 min', ])) result = s.cummin(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', '2 min', '1 min', '1 min', '1 min', ])) result = s.cummin(skipna=False) self.assert_series_equal(expected, result) def test_cummax_timedelta64(self): s = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '1 min', 'NaT', '3 min', ])) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', 'NaT', '2 min', 'NaT', '3 min', ])) result = s.cummax(skipna=True) self.assert_series_equal(expected, result) expected = pd.Series(pd.to_timedelta( ['NaT', '2 min', '2 min', '2 min', '2 min', '3 min', ])) result = s.cummax(skipna=False) self.assert_series_equal(expected, result) def test_npdiff(self): raise nose.SkipTest("skipping due to Series no longer being an " "ndarray") # no longer works as the return type of np.diff is now nd.array s = Series(np.arange(5)) r = np.diff(s) assert_series_equal(Series([nan, 0, 0, 0, nan]), r) def _check_stat_op(self, name, alternate, check_objects=False, check_allna=False): import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # idxmax, idxmin, min, and max are valid for dates if name not in ['max','min']: ds = Series(date_range('1/1/2001', periods=10)) self.assertRaises(TypeError, f, ds) # skipna or no self.assertTrue(notnull(f(self.series))) self.assertTrue(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona.values)) assert_almost_equal(f(self.series), alternate(nona.values)) allna = self.series * nan if check_allna: # xref 9422 # bottleneck >= 1.0 give 0.0 for an allna Series sum try: self.assertTrue(nanops._USE_BOTTLENECK) import bottleneck as bn self.assertTrue(bn.__version__ >= LooseVersion('1.0')) self.assertEqual(f(allna),0.0) except: self.assertTrue(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # 2888 l = [0] l.extend(lrange(2 ** 40, 2 ** 40+1000)) s = Series(l, dtype='int64') assert_almost_equal(float(f(s)), float(alternate(s.values))) # check date range if check_objects: s = Series(bdate_range('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) # check on string data if name not in ['sum','min','max']: self.assertRaises(TypeError, f, Series(list('abc'))) # Invalid axis. self.assertRaises(ValueError, f, self.series, axis=1) # Unimplemented numeric_only parameter. if 'numeric_only' in getargspec(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, self.series, numeric_only=True) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_numpy_array_equal(func(self.ts), func(np.array(self.ts))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_numpy_array_equal(result, expected) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index, name='ts') assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.], index=lrange(3)) result = s.prod() self.assertNotIsInstance(result, Series) def test_quantile(self): from numpy import percentile q = self.ts.quantile(0.1) self.assertEqual(q, percentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, percentile(self.ts.valid(), 90)) # object dtype q = Series(self.ts,dtype=object).quantile(0.9) self.assertEqual(q, percentile(self.ts.valid(), 90)) # datetime64[ns] dtype dts = self.ts.index.to_series() q = dts.quantile(.2) self.assertEqual(q, Timestamp('2000-01-10 19:12:00')) # timedelta64[ns] dtype tds = dts.diff() q = tds.quantile(.25) self.assertEqual(q, pd.to_timedelta('24:00:00')) # GH7661 result = Series([np.timedelta64('NaT')]).sum() self.assertTrue(result is pd.NaT) msg = 'percentiles should all be in the interval \\[0, 1\\]' for invalid in [-1, 2, [0.5, -1], [0.5, 2]]: with tm.assertRaisesRegexp(ValueError, msg): self.ts.quantile(invalid) def test_quantile_multi(self): from numpy import percentile qs = [.1, .9] result = self.ts.quantile(qs) expected = pd.Series([percentile(self.ts.valid(), 10), percentile(self.ts.valid(), 90)], index=qs, name=self.ts.name) assert_series_equal(result, expected) dts = self.ts.index.to_series() dts.name = 'xxx' result = dts.quantile((.2, .2)) expected = Series([Timestamp('2000-01-10 19:12:00'), Timestamp('2000-01-10 19:12:00')], index=[.2, .2], name='xxx') assert_series_equal(result, expected) result = self.ts.quantile([]) expected = pd.Series([], name=self.ts.name, index=Index([], dtype=float)) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.objSeries) for idx, value in compat.iteritems(appendedSeries): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.objSeries.index: self.assertEqual(value, self.objSeries[idx]) else: self.fail("orphaned index!") self.assertRaises(ValueError, self.ts.append, self.ts, verify_integrity=True) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): ts = tm.makeTimeSeries() bool_series = ts > 0 self.assertFalse(bool_series.all()) self.assertTrue(bool_series.any()) # Alternative types, with implicit 'object' dtype. s = Series(['abc', True]) self.assertEqual('abc', s.any()) # 'abc' || True => 'abc' def test_all_any_params(self): # Check skipna, with implicit 'object' dtype. s1 = Series([np.nan, True]) s2 = Series([np.nan, False]) self.assertTrue(s1.all(skipna=False)) # nan && True => True self.assertTrue(s1.all(skipna=True)) self.assertTrue(np.isnan(s2.any(skipna=False))) # nan || False => nan self.assertFalse(s2.any(skipna=True)) # Check level. s = pd.Series([False, False, True, True, False, True], index=[0, 0, 1, 1, 2, 2]) assert_series_equal(s.all(level=0), Series([False, True, False])) assert_series_equal(s.any(level=0), Series([False, True, True])) # bool_only is not implemented with level option. self.assertRaises(NotImplementedError, s.any, bool_only=True, level=0) self.assertRaises(NotImplementedError, s.all, bool_only=True, level=0) # bool_only is not implemented alone. self.assertRaises(NotImplementedError, s.any, bool_only=True) self.assertRaises(NotImplementedError, s.all, bool_only=True) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_modulo(self): # GH3590, modulo as ints p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] % p['second'] expected = Series(p['first'].values % p['second'].values, dtype='float64') expected.iloc[0:3] = np.nan assert_series_equal(result, expected) result = p['first'] % 0 expected = Series(np.nan, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] % p['second'] expected = Series(p['first'].values % p['second'].values) assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] % p['second'] result2 = p['second'] % p['first'] self.assertFalse(np.array_equal(result, result2)) # GH 9144 s = Series([0, 1]) result = s % 0 expected = Series([nan, nan]) assert_series_equal(result, expected) result = 0 % s expected = Series([nan, 0.0]) assert_series_equal(result, expected) def test_div(self): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series(p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan,1.,-1.]) result = s / 0 expected = Series([np.nan,np.inf,-np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1,0), 'second': (-0.01,-0.02)}) expected = Series([-0.01,-np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other): _check_op(series, other, operator.gt) _check_op(series, other, operator.ge) _check_op(series, other, operator.eq) _check_op(series, other, operator.lt) _check_op(series, other, operator.le) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_constructor_dtype_timedelta64(self): # basic td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1),timedelta(days=2),np.timedelta64(1,'s')]) self.assertEqual(td.dtype, 'timedelta64[ns]') # mixed with NaT from pandas import tslib td = Series([timedelta(days=1),tslib.NaT ], dtype='m8[ns]' ) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([timedelta(days=1),np.nan ], dtype='m8[ns]' ) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), pd.NaT],dtype='m8[ns]') self.assertEqual(td.dtype, 'timedelta64[ns]') # improved inference # GH5689 td = Series([np.timedelta64(300000000), pd.NaT]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), tslib.iNaT]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(300000000), np.nan]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([pd.NaT, np.timedelta64(300000000)]) self.assertEqual(td.dtype, 'timedelta64[ns]') td = Series([np.timedelta64(1,'s')]) self.assertEqual(td.dtype, 'timedelta64[ns]') # these are frequency conversion astypes #for t in ['s', 'D', 'us', 'ms']: # self.assertRaises(TypeError, td.astype, 'm8[%s]' % t) # valid astype td.astype('int64') # invalid casting self.assertRaises(TypeError, td.astype, 'int32') # this is an invalid casting def f(): Series([timedelta(days=1), 'foo'],dtype='m8[ns]') self.assertRaises(Exception, f) # leave as object here td = Series([timedelta(days=i) for i in range(3)] + ['foo']) self.assertEqual(td.dtype, 'object') # these will correctly infer a timedelta s = Series([None, pd.NaT, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([np.nan, pd.NaT, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([pd.NaT, None, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') s = Series([pd.NaT, np.nan, '1 Day']) self.assertEqual(s.dtype,'timedelta64[ns]') def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises( Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises( Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype( 'int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series([timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5,seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5,seconds=1)) self.assertEqual(rs[2], value) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series( [Timestamp('20130101 9:01:05'), Timestamp('20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp('20130101 9:06:00.005'), Timestamp('20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series( [Timestamp('20130101 9:01:01'), Timestamp('20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series( [Timestamp('20130101 9:01:00.005'), Timestamp('20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in [ 'Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano' ]: op = getattr(pd.offsets,do) s + op(5) op(5) + s def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta(minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in [ 'Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano' ]: op = getattr(pd.offsets,do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) -Series( [timedelta(seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2,td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) -Series( [timedelta(seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2,td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result,expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result,expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result,expected) for dtype in ['int32','int16','uint32','uint64','uint32','uint16','uint8']: s2 = Series([20, 30, 40],dtype=dtype) expected = Series(s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result,expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result,expected) # invalid ops for op in ['__true_div__','__div__','__mul__']: sop = getattr(s1,op,None) if sop is not None: self.assertRaises(TypeError, sop, s2.astype(float)) self.assertRaises(TypeError, sop, 2.) for op in ['__add__','__sub__']: sop = getattr(s1,op,None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D','h','m','s','ms','us','ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m,unit)) result = s1 / np.timedelta64(m,unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply(lambda x: np.timedelta64(m,unit) / x) result = np.timedelta64(m,unit) / s1 # astype s = Series(date_range('20130101',periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0],datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0],timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp('20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' npy16_mappings = {'D': 24 * 60 * 60 * 1000000, 'h': 60 * 60 * 1000000, 'm': 60 * 1000000, 's': 1000000, 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3},s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s,Series(Timedelta('1 days'),index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s,Series([np.nan,Timedelta('1 days')],index=['A','B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'),index=['A','B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) ### timedelta64 ### td1 = Series([timedelta(minutes=5,seconds=3)]*3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5,seconds=4) ops = ['__mul__','__floordiv__','__pow__', '__rmul__','__rfloordiv__','__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 ### datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 ### datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 ### timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rsub__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] dt1 = Series(date_range('2000-01-01 09:00:00',periods=5,tz='US/Eastern'),name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min',periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] expected = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = dt2 + td2[0] expected = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 expected = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = td2[0] + dt2 expected = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = dt1 - td1[0] expected = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] expected = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 expected = (dt1.dt.tz_localize(None) + td1).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = dt2 + td2 expected = (dt2.dt.tz_localize(None) + td2).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = dt1 - td1 expected = (dt1.dt.tz_localize(None) - td1).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) result = dt2 - td2 expected = (dt2.dt.tz_localize(None) - td2).dt.tz_localize('US/Eastern') assert_series_equal(result, expected) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_timedelta64_functions(self): from datetime import timedelta from pandas import date_range # index min/max td = Series(date_range('2012-1-1', periods=3, freq='D')) - \ Timestamp('20120101') result = td.idxmin() self.assertEqual(result, 0) result = td.idxmax() self.assertEqual(result, 2) # GH 2982 # with NaT td[0] = np.nan result = td.idxmin() self.assertEqual(result, 1) result = td.idxmax() self.assertEqual(result, 2) # abs s1 = Series(date_range('20120101', periods=3)) s2 = Series(date_range('20120102', periods=3)) expected = Series(s2 - s1) # this fails as numpy returns timedelta64[us] #result = np.abs(s1-s2) # assert_frame_equal(result,expected) result = (s1 - s2).abs() assert_series_equal(result, expected) # max/min result = td.max() expected = Timedelta('2 days') self.assertEqual(result, expected) result = td.min() expected = Timedelta('1 days') self.assertEqual(result, expected) def test_ops_consistency_on_empty(self): # GH 7869 # consistency on empty # float result = Series(dtype=float).sum() self.assertEqual(result,0) result = Series(dtype=float).mean() self.assertTrue(isnull(result)) result = Series(dtype=float).median() self.assertTrue(isnull(result)) # timedelta64[ns] result = Series(dtype='m8[ns]').sum() self.assertEqual(result, Timedelta(0)) result = Series(dtype='m8[ns]').mean() self.assertTrue(result is pd.NaT) result = Series(dtype='m8[ns]').median() self.assertTrue(result is pd.NaT) def test_timedelta_fillna(self): #GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9*3600+60+1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9*3600+60+1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series(['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA', Timestamp('2011-01-03 10:00', tz=tz), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00', tz=tz)}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00', tz=tz)]) self.assert_series_equal(expected, result) # filling with a naive/other zone, coerce to object result = s.fillna(Timestamp('20130101')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01')]) self.assert_series_equal(expected, result) result = s.fillna(Timestamp('20130101',tz='US/Pacific')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01',tz='US/Pacific'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01',tz='US/Pacific')]) self.assert_series_equal(expected, result) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_raise_on_info(self): s = Series(np.random.randn(10)) with tm.assertRaises(AttributeError): s.info() def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) # TimeSeries-specific def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_numpy_array_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN self.assert_numpy_array_equal(ts.fillna(method='ffill'), [0., 1., 1., 3., 4.]) self.assert_numpy_array_equal(ts.fillna(method='backfill'), [0., 1., 3., 3., 4.]) self.assert_numpy_array_equal(ts.fillna(value=5), [0., 1., 5., 3., 4.]) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result,expected) result = s1.fillna({}) assert_series_equal(result,s1) result = s1.fillna(Series(())) assert_series_equal(result,s1) result = s2.fillna(s1) assert_series_equal(result,s2) result = s1.fillna({ 0 : 1}) assert_series_equal(result,expected) result = s1.fillna({ 1 : 1}) assert_series_equal(result,Series([np.nan])) result = s1.fillna({ 0 : 1, 1 : 1}) assert_series_equal(result,expected) result = s1.fillna(Series({ 0 : 1, 1 : 1})) assert_series_equal(result,expected) result = s1.fillna(Series({ 0 : 1, 1 : 1},index=[4,5])) assert_series_equal(result,s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0,0,2.], list('bac')) assert_series_equal(result,expected) # limit s = Series(np.nan,index=[0,1,2]) result = s.fillna(999,limit=1) expected = Series([999,np.nan,np.nan],index=[0,1,2]) assert_series_equal(result,expected) result = s.fillna(999,limit=2) expected = Series([999,999,np.nan],index=[0,1,2]) assert_series_equal(result,expected) # GH 9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ['0', '1.5', '-0.3'] for val in vals: s = Series([0, 1, np.nan, np.nan, 4], dtype='float64') result = s.fillna(val) expected = Series([0, 1, val, val, 4], dtype='object') assert_series_equal(result, expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_sub_of_datetime_from_TimeSeries(self): from pandas.tseries.timedeltas import to_timedelta from datetime import datetime a = Timestamp(datetime(1993, 0o1, 0o7, 13, 30, 00)) b = datetime(1993, 6, 22, 13, 30) a = Series([a]) result = to_timedelta(np.abs(a - b)) self.assertEqual(result.dtype, 'timedelta64[ns]') def test_datetime64_with_index(self): # arithmetic integer ops with an index s = Series(np.random.randn(5)) expected = s - s.index.to_series() result = s - s.index assert_series_equal(result, expected) # GH 4629 # arithmetic datetime64 ops with an index s = Series(date_range('20130101', periods=5), index=date_range('20130101', periods=5)) expected = s - s.index.to_series() result = s - s.index assert_series_equal(result, expected) result = s - s.index.to_period() assert_series_equal(result, expected) df = DataFrame(np.random.randn(5,2), index=date_range('20130101', periods=5)) df['date'] = Timestamp('20130102') df['expected'] = df['date'] - df.index.to_series() df['result'] = df['date'] - df.index assert_series_equal(df['result'], df['expected'], check_names=False) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it #result = td[(td>np.timedelta64(timedelta(days=3))) & (td<np.timedelta64(timedelta(days=7)))] = np.nan #self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_operators_na_handling(self): from decimal import Decimal from datetime import date s = Series([Decimal('1.3'), Decimal('2.3')], index=[date(2012, 1, 1), date(2012, 1, 2)]) result = s + s.shift(1) result2 = s.shift(1) + s self.assertTrue(isnull(result[0])) self.assertTrue(isnull(result2[0])) s = Series(['foo', 'bar', 'baz', np.nan]) result = 'prefix_' + s expected = Series(['prefix_foo', 'prefix_bar', 'prefix_baz', np.nan]) assert_series_equal(result, expected) result = s + '_suffix' expected = Series(['foo_suffix', 'bar_suffix', 'baz_suffix', np.nan]) assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1,1),(1,2)]) result = s == (1,2) expected = Series([False,True]) assert_series_equal(result, expected) result = s != (1,2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0,0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0,0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1,1),(1,1)]) result = s == (1,1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1,1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]),frozenset([1,2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s,s2),(s2,s)]: self.assertRaises(TypeError, lambda : x == y) self.assertRaises(TypeError, lambda : x != y) self.assertRaises(TypeError, lambda : x >= y) self.assertRaises(TypeError, lambda : x > y) self.assertRaises(TypeError, lambda : x < y) self.assertRaises(TypeError, lambda : x <= y) def test_more_na_comparisons(self): left = Series(['a', np.nan, 'c']) right = Series(['a', np.nan, 'd']) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_comparison_different_length(self): a = Series(['a', 'b', 'c']) b = Series(['b', 'a']) self.assertRaises(ValueError, a.__lt__, b) a = Series([1, 2]) b = Series([2, 3, 4]) self.assertRaises(ValueError, a.__eq__, b) def test_comparison_label_based(self): # GH 4947 # comparisons should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([True, False, False], list('bca')) result = a & b assert_series_equal(result,expected) expected = Series([True, False, True], list('bca')) result = a | b assert_series_equal(result,expected) expected = Series([False, False, True], list('bca')) result = a ^ b assert_series_equal(result,expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([True, False, False], list('bca')) result = a & b assert_series_equal(result,expected) expected = Series([True, False, True], list('bca')) result = a | b assert_series_equal(result,expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result,expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result,expected) # vs non-matching result = a & Series([1],['z']) expected = Series([False, False, False], list('bca')) assert_series_equal(result,expected) result = a | Series([1],['z']) expected = Series([True, False, True], list('bca')) assert_series_equal(result,expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]),Series([1],['z']),Series(['z']),Series(np.nan,b.index),Series(np.nan,a.index)]: result = a[a | e] assert_series_equal(result,a[a]) # vs scalars index = list('bca') t = Series([True,False,True]) for v in [True,1,2]: result = Series([True,False,True],index=index) | v expected = Series([True,True,True],index=index) assert_series_equal(result,expected) for v in [np.nan,'foo']: self.assertRaises(TypeError, lambda : t | v) for v in [False,0]: result = Series([True,False,True],index=index) | v expected = Series([True,False,True],index=index) assert_series_equal(result,expected) for v in [True,1]: result = Series([True,False,True],index=index) & v expected = Series([True,False,True],index=index) assert_series_equal(result,expected) for v in [False,0]: result = Series([True,False,True],index=index) & v expected = Series([False,False,False],index=index) assert_series_equal(result,expected) for v in [np.nan]: self.assertRaises(TypeError, lambda : t & v) def test_operators_bitwise(self): # GH 9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) s_0101 = Series([0,1,0,1]) s_0123 = Series(range(4),dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4),dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8),dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1]*4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) self.assertRaises(TypeError, lambda: s_1111 & 'a') self.assertRaises(TypeError, lambda: s_1111 & ['a','b','c','d']) self.assertRaises(TypeError, lambda: s_0123 & np.NaN) self.assertRaises(TypeError, lambda: s_0123 & 3.14) self.assertRaises(TypeError, lambda: s_0123 & [0.1, 4, 3.14, 2]) # s_0123 will be all false now because of reindexing like s_tft assert_series_equal(s_tft & s_0123, Series([False] * 3, list('bca'))) # s_tft will be all false now because of reindexing like s_0123 assert_series_equal(s_0123 & s_tft, Series([False] * 4)) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a','b',np.NaN,'d']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_between(self): s = Series(bdate_range('1/1/2000', periods=20).asobject) s[::2] = np.nan result = s[s.between(s[3], s[17])] expected = s[3:18].dropna() assert_series_equal(result, expected) result = s[s.between(s[3], s[17], inclusive=False)] expected = s[5:16].dropna() assert_series_equal(result, expected) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_scalar_na_cmp_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) def tester(a, b): return a & b self.assertRaises(TypeError, tester, s, datetime(2005, 1, 1)) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True,index=s.index) expected[::2] = False assert_series_equal(tester(s, list(s)), expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented self.assertRaises(ValueError, tester, s, d) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assertTrue(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmin())) # datetime64[ns] from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmin() self.assertEqual(result, 0) s[0] = np.nan result = s.idxmin() self.assertEqual(result, 1) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assertTrue(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assertTrue(isnull(allna.idxmax())) from pandas import date_range s = Series(date_range('20130102', periods=6)) result = s.idxmax() self.assertEqual(result, 5) s[5] = np.nan result = s.idxmax() self.assertEqual(result, 4) # Float64Index # GH 5914 s = pd.Series([1,2,3],[1.1,2.1,3.1]) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) s = pd.Series(s.index, s.index) result = s.idxmax() self.assertEqual(result, 3.1) result = s.idxmin() self.assertEqual(result, 1.1) def test_ndarray_compat(self): # test numpy compat with Series as sub-class of NDFrame tsdf = DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=1000)) def f(x): return x[x.argmax()] result = tsdf.apply(f) expected = tsdf.max() assert_series_equal(result,expected) # .item() s = Series([1]) result = s.item() self.assertEqual(result, 1) self.assertEqual(s.item(), s.iloc[0]) # using an ndarray like function s = Series(np.random.randn(10)) result = np.ones_like(s) expected = Series(1,index=range(10),dtype='float64') #assert_series_equal(result,expected) # ravel s = Series(np.random.randn(10)) tm.assert_almost_equal(s.ravel(order='F'),s.values.ravel(order='F')) # compress # GH 6658 s = Series([0, 1., -1], index=list('abc')) result = np.compress(s > 0, s) assert_series_equal(result, Series([1.], index=['b'])) result = np.compress(s < -1, s) # result empty Index(dtype=object) as the same as original exp = Series([], dtype='float64', index=Index([], dtype='object')) assert_series_equal(result, exp) s = Series([0, 1., -1], index=[.1, .2, .3]) result = np.compress(s > 0, s) assert_series_equal(result, Series([1.], index=[.2])) result = np.compress(s < -1, s) # result empty Float64Index as the same as original exp = Series([], dtype='float64', index=Index([], dtype='float64')) assert_series_equal(result, exp) def test_complexx(self): # GH4819 # complex access for ndarray compat a = np.arange(5) b = Series(a + 4j*a) tm.assert_almost_equal(a,b.real) tm.assert_almost_equal(4*a,b.imag) b.real = np.arange(5)+5 tm.assert_almost_equal(a+5,b.real) tm.assert_almost_equal(4*a,b.imag) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1,2,3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2,2,2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame(dict(a = [1,2,3], b = [1,2,3], c = [1,2,3], val = [0,1,0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df,expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment',None) df = DataFrame({ "aa":range(5), "bb":[2.2]*5}) df["cc"] = 0.0 ck = [True]*len(df) df["bb"].iloc[0] = .13 df_tmp = df.iloc[ck] df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment','raise') # GH 3217 df = DataFrame(dict(a = [1,3], b = [np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'],index=[0])) expected = DataFrame(dict(a = [1,3], b = [np.nan, 2], c = ['foo',np.nan])) tm.assert_frame_equal(df,expected) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assertTrue(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assertEqual(len(result), 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_numpy_array_equal(added[:-5], expected) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): import operator # GH 353 vals = Series(tm.rands_array(5, 10)) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals': vals}) result = 'foo_' + frame expected = DataFrame({'vals': vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A': self.ts}) tm.assert_almost_equal(self.ts + self.ts, self.ts + df['A']) tm.assert_almost_equal(self.ts ** self.ts, self.ts ** df['A']) tm.assert_almost_equal(self.ts < self.ts, self.ts < df['A']) tm.assert_almost_equal(self.ts / self.ts, self.ts / df['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) pairings = [] for op in ['add', 'sub', 'mul', 'pow', 'truediv', 'floordiv']: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, 'r' + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) if compat.PY3: pairings.append((Series.div, operator.truediv, 1)) pairings.append((Series.rdiv, lambda x, y: operator.truediv(y, x), 1)) else: pairings.append((Series.div, operator.div, 1)) pairings.append((Series.rdiv, lambda x, y: operator.div(y, x), 1)) for op, equiv_op, fv in pairings: result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_numpy_array_equal(combined, series) # Holes filled from input combined = series_copy.combine_first(series) self.assertTrue(np.isfinite(combined).all()) self.assert_numpy_array_equal(combined[::2], series[::2]) self.assert_numpy_array_equal(combined[1::2], series_copy[1::2]) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_update(self): s = Series([1.5, nan, 3., 4., nan]) s2 = Series([nan, 3.5, nan, 5.]) s.update(s2) expected = Series([1.5, 3.5, 3., 5., np.nan]) assert_series_equal(s, expected) # GH 3217 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df['c'] = np.nan # this will fail as long as series is a sub-class of ndarray # df['c'].update(Series(['foo'],index=[0])) ##### def test_corr(self): tm._skip_if_no_scipy() import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) self.assertTrue(isnull(self.ts[:15].corr(self.ts[5:], min_periods=12))) ts1 = self.ts[:15].reindex(self.ts.index) ts2 = self.ts[5:].reindex(self.ts.index) self.assertTrue(isnull(ts1.corr(ts2, min_periods=12))) # No overlap self.assertTrue(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assertTrue(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): tm._skip_if_no_scipy() import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if scipy.__version__ < LooseVersion('0.9'): raise nose.SkipTest("skipping corr rank because of scipy version " "{0}".format(scipy.__version__)) # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std() ** 2) # partial overlap self.assertAlmostEqual( self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std() ** 2) # No overlap self.assertTrue(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assertTrue(isnull(cp.cov(cp))) # min_periods self.assertTrue(isnull(self.ts[:15].cov(self.ts[5:], min_periods=12))) ts1 = self.ts[:15].reindex(self.ts.index) ts2 = self.ts[5:].reindex(self.ts.index) self.assertTrue(isnull(ts1.cov(ts2, min_periods=12))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) mi = MultiIndex.from_arrays([list('aabbcc'), [1, 2, 2, nan, 1, 2]]) ts = Series(np.arange(len(mi)), index=mi) left = ts.count(level=1) right = Series([2, 3, 1], index=[1, 2, nan]) assert_series_equal(left, right) ts.iloc[[0, 3, 5]] = nan assert_series_equal(ts.count(level=1), right - 1) def test_dtype(self): self.assertEqual(self.ts.dtype, np.dtype('float64')) self.assertEqual(self.ts.dtypes, np.dtype('float64')) self.assertEqual(self.ts.ftype, 'float64:dense') self.assertEqual(self.ts.ftypes, 'float64:dense') assert_series_equal(self.ts.get_dtype_counts(),Series(1,['float64'])) assert_series_equal(self.ts.get_ftype_counts(),Series(1,['float64:dense'])) def test_dot(self): a = Series(np.random.randn(4), index=['p', 'q', 'r', 's']) b = DataFrame(np.random.randn(3, 4), index=['1', '2', '3'], columns=['p', 'q', 'r', 's']).T result = a.dot(b) expected = Series(np.dot(a.values, b.values), index=['1', '2', '3']) assert_series_equal(result, expected) # Check index alignment b2 = b.reindex(index=reversed(b.index)) result = a.dot(b) assert_series_equal(result, expected) # Check ndarray argument result = a.dot(b.values) self.assertTrue(np.all(result == expected.values)) assert_almost_equal(a.dot(b['2'].values), expected['2']) # Check series argument assert_almost_equal(a.dot(b['1']), expected['1']) assert_almost_equal(a.dot(b2['1']), expected['1']) self.assertRaises(Exception, a.dot, a.values[:3]) self.assertRaises(ValueError, a.dot, b.T) def test_value_counts_nunique(self): # basics.rst doc example series = Series(np.random.randn(500)) series[20:500] = np.nan series[10:20] = 5000 result = series.nunique() self.assertEqual(result, 11) def test_unique(self): # 714 also, dtype=float s = Series([1.2345] * 100) s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) s = Series([1.2345] * 100, dtype='f4') s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) # NAs in object arrays #714 s = Series(['foo'] * 100, dtype='O') s[::2] = np.nan result = s.unique() self.assertEqual(len(result), 2) # decision about None s = Series([1, 2, 3, None, None, None], dtype=object) result = s.unique() expected = np.array([1, 2, 3, None], dtype=object) self.assert_numpy_array_equal(result, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp('2011-01-03 10:00'), pd.NaT]) result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-03 10:00')], index=[0, 2]) self.assert_series_equal(result, expected) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz='Asia/Tokyo') s = pd.Series(idx) self.assertEqual(s.dtype, 'datetime64[ns, Asia/Tokyo]') result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')], index=[0, 2]) self.assertEqual(result.dtype, 'datetime64[ns, Asia/Tokyo]') self.assert_series_equal(result, expected) def test_dropna_no_nan(self): for s in [Series([1, 2, 3], name='x'), Series([False, True, False], name='x')]: result = s.dropna() self.assert_series_equal(result, s) self.assertFalse(result is s) s2 = s.copy() s2.dropna(inplace=True) self.assert_series_equal(s2, s) def test_axis_alias(self): s = Series([1, 2, np.nan]) assert_series_equal(s.dropna(axis='rows'), s.dropna(axis='index')) self.assertEqual(s.dropna().sum('rows'), 3) self.assertEqual(s._get_axis_number('rows'), 0) self.assertEqual(s._get_axis_name('rows'), 'index') def test_drop_duplicates(self): # check both int and object for s in [Series([1, 2, 3, 3]), Series(['1', '2', '3', '3'])]: expected = Series([False, False, False, True]) assert_series_equal(s.duplicated(), expected) assert_series_equal(s.drop_duplicates(), s[~expected]) sc = s.copy() sc.drop_duplicates(inplace=True) assert_series_equal(sc, s[~expected]) expected = Series([False, False, True, False]) assert_series_equal(s.duplicated(keep='last'), expected) assert_series_equal(s.drop_duplicates(keep='last'), s[~expected]) sc = s.copy() sc.drop_duplicates(keep='last', inplace=True) assert_series_equal(sc, s[~expected]) # deprecate take_last with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.duplicated(take_last=True), expected) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.drop_duplicates(take_last=True), s[~expected]) sc = s.copy() with tm.assert_produces_warning(FutureWarning): sc.drop_duplicates(take_last=True, inplace=True) assert_series_equal(sc, s[~expected]) expected = Series([False, False, True, True]) assert_series_equal(s.duplicated(keep=False), expected) assert_series_equal(s.drop_duplicates(keep=False), s[~expected]) sc = s.copy() sc.drop_duplicates(keep=False, inplace=True) assert_series_equal(sc, s[~expected]) for s in [Series([1, 2, 3, 5, 3, 2, 4]), Series(['1', '2', '3', '5', '3', '2', '4'])]: expected = Series([False, False, False, False, True, True, False]) assert_series_equal(s.duplicated(), expected) assert_series_equal(s.drop_duplicates(), s[~expected]) sc = s.copy() sc.drop_duplicates(inplace=True) assert_series_equal(sc, s[~expected]) expected = Series([False, True, True, False, False, False, False]) assert_series_equal(s.duplicated(keep='last'), expected) assert_series_equal(s.drop_duplicates(keep='last'), s[~expected]) sc = s.copy() sc.drop_duplicates(keep='last', inplace=True) assert_series_equal(sc, s[~expected]) # deprecate take_last with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.duplicated(take_last=True), expected) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.drop_duplicates(take_last=True), s[~expected]) sc = s.copy() with tm.assert_produces_warning(FutureWarning): sc.drop_duplicates(take_last=True, inplace=True) assert_series_equal(sc, s[~expected]) expected = Series([False, True, True, False, True, True, False]) assert_series_equal(s.duplicated(keep=False), expected) assert_series_equal(s.drop_duplicates(keep=False), s[~expected]) sc = s.copy() sc.drop_duplicates(keep=False, inplace=True) assert_series_equal(sc, s[~expected]) def test_sort_values(self): ts = self.ts.copy() # 9816 deprecated with tm.assert_produces_warning(FutureWarning): ts.sort() self.assert_numpy_array_equal(ts, self.ts.sort_values()) self.assert_numpy_array_equal(ts.index, self.ts.sort_values().index) ts.sort_values(ascending=False, inplace=True) self.assert_numpy_array_equal(ts, self.ts.sort_values(ascending=False)) self.assert_numpy_array_equal(ts.index, self.ts.sort_values(ascending=False).index) # GH 5856/5853 # Series.sort_values operating on a view df = DataFrame(np.random.randn(10,4)) s = df.iloc[:,0] def f(): s.sort_values(inplace=True) self.assertRaises(ValueError, f) # test order/sort inplace # GH6859 ts1 = self.ts.copy() ts1.sort_values(ascending=False, inplace=True) ts2 = self.ts.copy() ts2.sort_values(ascending=False, inplace=True) assert_series_equal(ts1,ts2) ts1 = self.ts.copy() ts1 = ts1.sort_values(ascending=False, inplace=False) ts2 = self.ts.copy() ts2 = ts.sort_values(ascending=False) assert_series_equal(ts1,ts2) def test_sort_index(self): rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_sort_index_inplace(self): # For #11402 rindex = list(self.ts.index) random.shuffle(rindex) # descending random_order = self.ts.reindex(rindex) result = random_order.sort_index(ascending=False, inplace=True) self.assertIs(result, None, msg='sort_index() inplace should return None') assert_series_equal(random_order, self.ts.reindex(self.ts.index[::-1])) # ascending random_order = self.ts.reindex(rindex) result = random_order.sort_index(ascending=True, inplace=True) self.assertIs(result, None, msg='sort_index() inplace should return None') assert_series_equal(random_order, self.ts) def test_sort_API(self): # API for 9816 # sortlevel mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) s = Series([1, 2], mi) backwards = s.iloc[[1, 0]] res = s.sort_index(level='A') assert_series_equal(backwards, res) # sort_index rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index(level=0) assert_series_equal(sorted_series, self.ts) # compat on axis sorted_series = random_order.sort_index(axis=0) assert_series_equal(sorted_series, self.ts) self.assertRaises(ValueError, lambda : random_order.sort_values(axis=1)) sorted_series = random_order.sort_index(level=0, axis=0) assert_series_equal(sorted_series, self.ts) self.assertRaises(ValueError, lambda : random_order.sort_index(level=0, axis=1)) def test_order(self): # 9816 deprecated with tm.assert_produces_warning(FutureWarning): self.ts.order() ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.sort_values() self.assertTrue(np.isnan(result[-5:]).all()) self.assert_numpy_array_equal(result[:-5], np.sort(vals[5:])) result = ts.sort_values(na_position='first') self.assertTrue(np.isnan(result[:5]).all()) self.assert_numpy_array_equal(result[5:], np.sort(vals[5:])) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.sort_values() # ascending=False ordered = ts.sort_values(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.sort_values(ascending=False, na_position='first') assert_almost_equal(expected, ordered.valid().values) def test_nsmallest_nlargest(self): # float, int, datetime64 (use i8), timedelts64 (same), # object that are numbers, object that are strings base = [3, 2, 1, 2, 5] s_list = [ Series(base, dtype='int8'), Series(base, dtype='int16'), Series(base, dtype='int32'), Series(base, dtype='int64'), Series(base, dtype='float32'), Series(base, dtype='float64'), Series(base, dtype='uint8'), Series(base, dtype='uint16'), Series(base, dtype='uint32'), Series(base, dtype='uint64'), Series(base).astype('timedelta64[ns]'), Series(pd.to_datetime(['2003', '2002', '2001', '2002', '2005'])), ] raising = [ Series([3., 2, 1, 2, '5'], dtype='object'), Series([3., 2, 1, 2, 5], dtype='object'), # not supported on some archs # Series([3., 2, 1, 2, 5], dtype='complex256'), Series([3., 2, 1, 2, 5], dtype='complex128'), ] for r in raising: dt = r.dtype msg = "Cannot use method 'n(larg|small)est' with dtype %s" % dt args = 2, len(r), 0, -1 methods = r.nlargest, r.nsmallest for method, arg in product(methods, args): with tm.assertRaisesRegexp(TypeError, msg): method(arg) for s in s_list: assert_series_equal(s.nsmallest(2), s.iloc[[2, 1]]) assert_series_equal(s.nsmallest(2, keep='last'), s.iloc[[2, 3]]) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.nsmallest(2, take_last=True), s.iloc[[2, 3]]) assert_series_equal(s.nlargest(3), s.iloc[[4, 0, 1]]) assert_series_equal(s.nlargest(3, keep='last'), s.iloc[[4, 0, 3]]) with tm.assert_produces_warning(FutureWarning): assert_series_equal(s.nlargest(3, take_last=True), s.iloc[[4, 0, 3]]) empty = s.iloc[0:0] assert_series_equal(s.nsmallest(0), empty) assert_series_equal(s.nsmallest(-1), empty) assert_series_equal(s.nlargest(0), empty) assert_series_equal(s.nlargest(-1), empty) assert_series_equal(s.nsmallest(len(s)), s.sort_values()) assert_series_equal(s.nsmallest(len(s) + 1), s.sort_values()) assert_series_equal(s.nlargest(len(s)), s.iloc[[4, 0, 1, 3, 2]]) assert_series_equal(s.nlargest(len(s) + 1), s.iloc[[4, 0, 1, 3, 2]]) s = Series([3., np.nan, 1, 2, 5]) assert_series_equal(s.nlargest(), s.iloc[[4, 0, 3, 2]]) assert_series_equal(s.nsmallest(), s.iloc[[2, 3, 0, 4]]) msg = 'keep must be either "first", "last"' with tm.assertRaisesRegexp(ValueError, msg): s.nsmallest(keep='invalid') with tm.assertRaisesRegexp(ValueError, msg): s.nlargest(keep='invalid') def test_rank(self): tm._skip_if_no_scipy() from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) # rankdata returns a ndarray exp = Series(rankdata(filled),index=filled.index) exp[mask] = np.nan assert_almost_equal(ranks, exp) iseries = Series(np.arange(5).repeat(2)) iranks = iseries.rank() exp = iseries.astype(float).rank() assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 exp = iseries / 5.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(1, 100)) exp = Series(np.repeat(0.505, 100)) iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries[1] = np.nan exp = Series(np.repeat(50.0 / 99.0, 100)) exp[1] = np.nan iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1.0 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.repeat(np.nan, 100)) exp = iseries.copy() iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series(np.arange(5)) + 1 iseries[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) rng = date_range('1/1/1990', periods=5) iseries = Series(np.arange(5), rng) + 1 iseries.ix[4] = np.nan exp = iseries / 4.0 iranks = iseries.rank(pct=True) assert_series_equal(iranks, exp) iseries = Series([1e-50, 1e-100, 1e-20, 1e-2, 1e-20+1e-30, 1e-1]) exp = Series([2, 1, 3, 5, 4, 6.0]) iranks = iseries.rank() assert_series_equal(iranks, exp) values = np.array([-50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_rank_inf(self): raise nose.SkipTest('DataFrame.rank does not currently rank np.inf and -np.inf properly') values = np.array([-np.inf, -50, -1, -1e-20, -1e-25, -1e-50, 0, 1e-40, 1e-20, 1e-10, 2, 40, np.inf], dtype='float64') random_order = np.random.permutation(len(values)) iseries = Series(values[random_order]) exp = Series(random_order + 1.0, dtype='float64') iranks = iseries.rank() assert_series_equal(iranks, exp) def test_from_csv(self): with ensure_clean() as path: self.ts.to_csv(path) ts = Series.from_csv(path) assert_series_equal(self.ts, ts, check_names=False) self.assertTrue(ts.name is None) self.assertTrue(ts.index.name is None) # GH10483 self.ts.to_csv(path, header=True) ts_h = Series.from_csv(path, header=0) self.assertTrue(ts_h.name == 'ts') self.series.to_csv(path) series = Series.from_csv(path) self.assertIsNone(series.name) self.assertIsNone(series.index.name) assert_series_equal(self.series, series, check_names=False) self.assertTrue(series.name is None) self.assertTrue(series.index.name is None) self.series.to_csv(path, header=True) series_h = Series.from_csv(path, header=0) self.assertTrue(series_h.name == 'series') outfile = open(path, 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv(path, sep='|') checkseries = Series( {datetime(1998, 1, 1): 1.0, datetime(1999, 1, 1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv(path, sep='|', parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) def test_to_csv(self): import io with ensure_clean() as path: self.ts.to_csv(path) lines = io.open(path, newline=None).readlines() assert(lines[1] != '\n') self.ts.to_csv(path, index=False) arr = np.loadtxt(path) assert_almost_equal(arr, self.ts.values) def test_to_csv_unicode_index(self): buf = StringIO() s = Series([u("\u05d0"), "d2"], index=[u("\u05d0"), u("\u05d1")]) s.to_csv(buf, encoding='UTF-8') buf.seek(0) s2 = Series.from_csv(buf, index_col=0, encoding='UTF-8') assert_series_equal(s, s2) def test_tolist(self): rs = self.ts.tolist() xp = self.ts.values.tolist() assert_almost_equal(rs, xp) # datetime64 s = Series(self.ts.index) rs = s.tolist() self.assertEqual(self.ts.index[0], rs[0]) def test_to_frame(self): self.ts.name = None rs = self.ts.to_frame() xp = pd.DataFrame(self.ts.values, index=self.ts.index) assert_frame_equal(rs, xp) self.ts.name = 'testname' rs = self.ts.to_frame() xp = pd.DataFrame(dict(testname=self.ts.values), index=self.ts.index) assert_frame_equal(rs, xp) rs = self.ts.to_frame(name='testdifferent') xp = pd.DataFrame(dict(testdifferent=self.ts.values), index=self.ts.index) assert_frame_equal(rs, xp) def test_to_dict(self): self.assert_numpy_array_equal(Series(self.ts.to_dict()), self.ts) def test_to_csv_float_format(self): with ensure_clean() as filename: ser = Series([0.123456, 0.234567, 0.567567]) ser.to_csv(filename, float_format='%.2f') rs = Series.from_csv(filename) xp = Series([0.12, 0.23, 0.57]) assert_series_equal(rs, xp) def test_to_csv_list_entries(self): s = Series(['jack and jill', 'jesse and frank']) split = s.str.split(r'\s+and\s+') buf = StringIO() split.to_csv(buf) def test_to_csv_path_is_none(self): # GH 8215 # Series.to_csv() was returning None, inconsistent with # DataFrame.to_csv() which returned string s = Series([1, 2, 3]) csv_str = s.to_csv(path=None) self.assertIsInstance(csv_str, str) def test_str_attribute(self): # GH9068 methods = ['strip', 'rstrip', 'lstrip'] s = Series([' jack', 'jill ', ' jesse ', 'frank']) for method in methods: expected = Series([getattr(str, method)(x) for x in s.values]) assert_series_equal(getattr(Series.str, method)(s.str), expected) # str accessor only valid with string values s = Series(range(5)) with self.assertRaisesRegexp(AttributeError, 'only use .str accessor'): s.str.repeat(2) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) tm.assertIsInstance(expected, Series) def test_clip_types_and_nulls(self): sers = [Series([np.nan, 1.0, 2.0, 3.0]), Series([None, 'a', 'b', 'c']), Series(pd.to_datetime([np.nan, 1, 2, 3], unit='D'))] for s in sers: thresh = s[2] l = s.clip_lower(thresh) u = s.clip_upper(thresh) self.assertEqual(l[notnull(l)].min(), thresh) self.assertEqual(u[notnull(u)].max(), thresh) self.assertEqual(list(isnull(s)), list(isnull(l))) self.assertEqual(list(isnull(s)), list(isnull(u))) def test_clip_against_series(self): # GH #6966 s = Series([1.0, 1.0, 4.0]) threshold = Series([1.0, 2.0, 3.0]) assert_series_equal(s.clip_lower(threshold), Series([1.0, 2.0, 4.0])) assert_series_equal(s.clip_upper(threshold), Series([1.0, 1.0, 3.0])) lower = Series([1.0, 2.0, 3.0]) upper = Series([1.5, 2.5, 3.5]) assert_series_equal(s.clip(lower, upper), Series([1.0, 2.0, 3.5])) assert_series_equal(s.clip(1.5, upper), Series([1.5, 1.5, 3.5])) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_dict_equal(result, ts, compare_keys=False) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal( ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal( ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_shift(self): shifted = self.ts.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), self.ts, compare_keys=False) offset = datetools.bday shifted = self.ts.shift(1, freq=offset) unshifted = shifted.shift(-1, freq=offset) assert_series_equal(unshifted, self.ts) unshifted = self.ts.shift(0, freq=offset) assert_series_equal(unshifted, self.ts) shifted = self.ts.shift(1, freq='B') unshifted = shifted.shift(-1, freq='B') assert_series_equal(unshifted, self.ts) # corner case unshifted = self.ts.shift(0) assert_series_equal(unshifted, self.ts) # Shifting with PeriodIndex ps = tm.makePeriodSeries() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_dict_equal(unshifted.valid(), ps, compare_keys=False) shifted2 = ps.shift(1, 'B') shifted3 = ps.shift(1, datetools.bday) assert_series_equal(shifted2, shifted3) assert_series_equal(ps, shifted2.shift(-1, 'B')) self.assertRaises(ValueError, ps.shift, freq='D') # legacy support shifted4 = ps.shift(1, freq='B') assert_series_equal(shifted2, shifted4) shifted5 = ps.shift(1, freq=datetools.bday) assert_series_equal(shifted5, shifted4) # 32-bit taking # GH 8129 index=date_range('2000-01-01',periods=5) for dtype in ['int32','int64']: s1 = Series(np.arange(5,dtype=dtype),index=index) p = s1.iloc[1] result = s1.shift(periods=p) expected = Series([np.nan,0,1,2,3],index=index) assert_series_equal(result,expected) # xref 8260 # with tz s = Series(date_range('2000-01-01 09:00:00',periods=5,tz='US/Eastern'),name='foo') result = s-s.shift() assert_series_equal(result,Series(TimedeltaIndex(['NaT'] + ['1 days']*4),name='foo')) # incompat tz s2 = Series(date_range('2000-01-01 09:00:00',periods=5,tz='CET'),name='foo') self.assertRaises(ValueError, lambda : s-s2) def test_tshift(self): # PeriodIndex ps = tm.makePeriodSeries() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_series_equal(shifted, shifted2) shifted3 = ps.tshift(freq=datetools.bday) assert_series_equal(shifted, shifted3) self.assertRaises(ValueError, ps.tshift, freq='M') # DatetimeIndex shifted = self.ts.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(self.ts, unshifted) shifted2 = self.ts.tshift(freq=self.ts.index.freq) assert_series_equal(shifted, shifted2) inferred_ts = Series(self.ts.values, Index(np.asarray(self.ts.index)), name='ts') shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_series_equal(shifted, self.ts.tshift(1)) assert_series_equal(unshifted, inferred_ts) no_freq = self.ts[[0, 5, 7]] self.assertRaises(ValueError, no_freq.tshift) def test_shift_int(self): ts = self.ts.astype(int) shifted = ts.shift(1) expected = ts.astype(float).shift(1) assert_series_equal(shifted, expected) def test_shift_categorical(self): # GH 9416 s = pd.Series(['a', 'b', 'c', 'd'], dtype='category') assert_series_equal(s.iloc[:-1], s.shift(1).shift(-1).valid()) sp1 = s.shift(1) assert_index_equal(s.index, sp1.index) self.assertTrue(np.all(sp1.values.codes[:1] == -1)) self.assertTrue(np.all(s.values.codes[:-1] == sp1.values.codes[1:])) sn2 = s.shift(-2) assert_index_equal(s.index, sn2.index) self.assertTrue(np.all(sn2.values.codes[-2:] == -1)) self.assertTrue(np.all(s.values.codes[2:] == sn2.values.codes[:-2])) assert_index_equal(s.values.categories, sp1.values.categories) assert_index_equal(s.values.categories, sn2.values.categories) def test_truncate(self): offset = datetools.bday ts = self.ts[::3] start, end = self.ts.index[3], self.ts.index[6] start_missing, end_missing = self.ts.index[2], self.ts.index[7] # neither specified truncated = ts.truncate() assert_series_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) assert_series_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) assert_series_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) assert_series_equal(truncated, expected) truncated = ts.truncate(before=start_missing) assert_series_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end) assert_series_equal(truncated, expected) truncated = ts.truncate(after=end_missing) assert_series_equal(truncated, expected) # corner case, empty series returned truncated = ts.truncate(after=self.ts.index[0] - offset) assert(len(truncated) == 0) truncated = ts.truncate(before=self.ts.index[-1] + offset) assert(len(truncated) == 0) self.assertRaises(ValueError, ts.truncate, before=self.ts.index[-1] + offset, after=self.ts.index[0] - offset) def test_ptp(self): N = 1000 arr = np.random.randn(N) ser = Series(arr) self.assertEqual(np.ptp(ser), np.ptp(arr)) # GH11163 s = Series([3, 5, np.nan, -3, 10]) self.assertEqual(s.ptp(), 13) self.assertTrue(pd.isnull(s.ptp(skipna=False))) mi = pd.MultiIndex.from_product([['a','b'], [1,2,3]]) s = pd.Series([1, np.nan, 7, 3, 5, np.nan], index=mi) expected = pd.Series([6, 2], index=['a', 'b'], dtype=np.float64) self.assert_series_equal(s.ptp(level=0), expected) expected = pd.Series([np.nan, np.nan], index=['a', 'b']) self.assert_series_equal(s.ptp(level=0, skipna=False), expected) with self.assertRaises(ValueError): s.ptp(axis=1) s = pd.Series(['a', 'b', 'c', 'd', 'e']) with self.assertRaises(TypeError): s.ptp() with self.assertRaises(NotImplementedError): s.ptp(numeric_only=True) def test_asof(self): # array or list or dates N = 50 rng = date_range('1/1/1990', periods=N, freq='53s') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='25s') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) val = result[result.index[result.index >= ub][0]] self.assertEqual(ts[ub], val) self.ts[5:10] = np.NaN self.ts[15:20] = np.NaN val1 = self.ts.asof(self.ts.index[7]) val2 = self.ts.asof(self.ts.index[19]) self.assertEqual(val1, self.ts[4]) self.assertEqual(val2, self.ts[14]) # accepts strings val1 = self.ts.asof(str(self.ts.index[7])) self.assertEqual(val1, self.ts[4]) # in there self.assertEqual(self.ts.asof(self.ts.index[3]), self.ts[3]) # no as of value d = self.ts.index[0] - datetools.bday self.assertTrue(np.isnan(self.ts.asof(d))) def test_getitem_setitem_datetimeindex(self): from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04:00:00"] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result["1990-01-01 04:00:00"] = 0 result["1990-01-01 04:00:00"] = ts[4] assert_series_equal(result, ts) result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] assert_series_equal(result, ts) lb = "1990-01-01 04:00:00" rb = "1990-01-01 07:00:00" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) # repeat all the above with naive datetimes result = ts[datetime(1990, 1, 1, 4)] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result[datetime(1990, 1, 1, 4)] = 0 result[datetime(1990, 1, 1, 4)] = ts[4] assert_series_equal(result, ts) result = ts[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = 0 result[datetime(1990, 1, 1, 4):datetime(1990, 1, 1, 7)] = ts[4:8] assert_series_equal(result, ts) lb = datetime(1990, 1, 1, 4) rb = datetime(1990, 1, 1, 7) result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) result = ts[ts.index[4]] expected = ts[4] self.assertEqual(result, expected) result = ts[ts.index[4:8]] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result[4:8] = ts[4:8] assert_series_equal(result, ts) # also test partial date slicing result = ts["1990-01-02"] expected = ts[24:48] assert_series_equal(result, expected) result = ts.copy() result["1990-01-02"] = 0 result["1990-01-02"] = ts[24:48] assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_pytz(self): tm._skip_if_no_pytz() from pytz import timezone as tz from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4] assert_series_equal(result, ts) result = ts.copy() # comparison dates with datetime MUST be localized! date = tz('US/Central').localize(datetime(1990, 1, 1, 3)) result[date] = 0 result[date] = ts[4] assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_dateutil(self): tm._skip_if_no_dateutil() from dateutil.tz import tzutc from pandas.tslib import _dateutil_gettz as gettz tz = lambda x: tzutc() if x == 'UTC' else gettz(x) # handle special case for utc in dateutil from pandas import date_range N = 50 # testing with timezone, GH #2785 rng = date_range('1/1/1990', periods=N, freq='H', tz='US/Eastern') ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz('UTC'))] = ts[4] assert_series_equal(result, ts) result = ts.copy() result[datetime(1990, 1, 1, 3, tzinfo=tz('US/Central'))] = 0 result[datetime(1990, 1, 1, 3, tzinfo=tz('US/Central'))] = ts[4] assert_series_equal(result, ts) def test_getitem_setitem_periodindex(self): from pandas import period_range N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04"] expected = ts[4] self.assertEqual(result, expected) result = ts.copy() result["1990-01-01 04"] = 0 result["1990-01-01 04"] = ts[4] assert_series_equal(result, ts) result = ts["1990-01-01 04":"1990-01-01 07"] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04":"1990-01-01 07"] = 0 result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] assert_series_equal(result, ts) lb = "1990-01-01 04" rb = "1990-01-01 07" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] assert_series_equal(result, expected) # GH 2782 result = ts[ts.index[4]] expected = ts[4] self.assertEqual(result, expected) result = ts[ts.index[4:8]] expected = ts[4:8] assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result[4:8] = ts[4:8] assert_series_equal(result, ts) def test_asof_periodindex(self): from pandas import period_range, PeriodIndex # array or list or dates N = 50 rng = period_range('1/1/1990', periods=N, freq='H') ts = Series(np.random.randn(N), index=rng) ts[15:30] = np.nan dates = date_range('1/1/1990', periods=N * 3, freq='37min') result = ts.asof(dates) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) self.assertTrue(notnull(result).all()) lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq='H') mask = (pix >= lb) & (pix < ub) rs = result[mask] self.assertTrue((rs == ts[lb]).all()) ts[5:10] = np.NaN ts[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) self.assertEqual(val1, ts[4]) self.assertEqual(val2, ts[14]) # accepts strings val1 = ts.asof(str(ts.index[7])) self.assertEqual(val1, ts[4]) # in there self.assertEqual(ts.asof(ts.index[3]), ts[3]) # no as of value d = ts.index[0].to_timestamp() - datetools.bday self.assertTrue(np.isnan(ts.asof(d))) def test_asof_more(self): from pandas import date_range s = Series([nan, nan, 1, 2, nan, nan, 3, 4, 5], index=date_range('1/1/2000', periods=9)) dates = s.index[[4, 5, 6, 2, 1]] result = s.asof(dates) expected = Series([2, 2, 3, 1, np.nan], index=dates) assert_series_equal(result, expected) s = Series([1.5, 2.5, 1, 2, nan, nan, 3, 4, 5], index=date_range('1/1/2000', periods=9)) result = s.asof(s.index[0]) self.assertEqual(result, s[0]) def test_cast_on_putmask(self): # GH 2746 # need to upcast s = Series([1, 2], index=[1, 2], dtype='int64') s[[True, False]] = Series([0], index=[1], dtype='int64') expected = Series([0, 2], index=[1, 2], dtype='int64') assert_series_equal(s, expected) def test_type_promote_putmask(self): # GH8387: test that changing types does not break alignment ts = Series(np.random.randn(100), index=np.arange(100,0,-1)).round(5) left, mask = ts.copy(), ts > 0 right = ts[mask].copy().map(str) left[mask] = right assert_series_equal(left, ts.map(lambda t: str(t) if t > 0 else t)) s = Series([0, 1, 2, 0 ]) mask = s > 0 s2 = s[ mask ].map( str ) s[mask] = s2 assert_series_equal(s, Series([0, '1', '2', 0])) s = Series([0, 'foo', 'bar', 0 ]) mask = Series([False, True, True, False]) s2 = s[ mask ] s[mask] = s2 assert_series_equal(s, Series([0, 'foo','bar', 0])) def test_astype_cast_nan_int(self): df = Series([1.0, 2.0, 3.0, np.nan]) self.assertRaises(ValueError, df.astype, np.int64) def test_astype_cast_object_int(self): arr = Series(["car", "house", "tree", "1"]) self.assertRaises(ValueError, arr.astype, int) self.assertRaises(ValueError, arr.astype, np.int64) self.assertRaises(ValueError, arr.astype, np.int8) arr = Series(['1', '2', '3', '4'], dtype=object) result = arr.astype(int) self.assert_numpy_array_equal(result, np.arange(1, 5)) def test_astype_datetimes(self): import pandas.tslib as tslib s = Series(tslib.iNaT, dtype='M8[ns]', index=lrange(5)) s = s.astype('O') self.assertEqual(s.dtype, np.object_) s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype('O') self.assertEqual(s.dtype, np.object_) s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan self.assertEqual(s.dtype, 'M8[ns]') s = s.astype('O') self.assertEqual(s.dtype, np.object_) def test_astype_str(self): # GH4405 digits = string.digits s1 = Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]) s2 = Series([digits * 10, tm.rands(63), tm.rands(64), nan, 1.0]) types = (compat.text_type, np.str_) for typ in types: for s in (s1, s2): res = s.astype(typ) expec = s.map(compat.text_type) assert_series_equal(res, expec) # GH9757 # Test str and unicode on python 2.x and just str on python 3.x for tt in set([str, compat.text_type]): ts = Series([Timestamp('2010-01-04 00:00:00')]) s = ts.astype(tt) expected = Series([tt('2010-01-04')]) assert_series_equal(s, expected) ts = Series([Timestamp('2010-01-04 00:00:00', tz='US/Eastern')]) s = ts.astype(tt) expected = Series([tt('2010-01-04 00:00:00-05:00')]) assert_series_equal(s, expected) td = Series([Timedelta(1, unit='d')]) s = td.astype(tt) expected = Series([tt('1 days 00:00:00.000000000')]) assert_series_equal(s, expected) def test_astype_unicode(self): # GH7758 # a bit of magic is required to set default encoding encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([u('データーサイエンス、お前はもう死んでいる')]), ] former_encoding = None if not compat.PY3: # in python we can force the default encoding # for this test former_encoding = sys.getdefaultencoding() reload(sys) sys.setdefaultencoding("utf-8") if sys.getdefaultencoding() == "utf-8": test_series.append(Series([u('野菜食べないとやばい').encode("utf-8")])) for s in test_series: res = s.astype("unicode") expec = s.map(compat.text_type) assert_series_equal(res, expec) # restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_map(self): index, data = tm.getMixedTypeDict() source = Series(data['B'], index=data['C']) target = Series(data['C'][:4], index=data['D'][:4]) merged = target.map(source) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # input could be a dict merged = target.map(source.to_dict()) for k, v in compat.iteritems(merged): self.assertEqual(v, source[target[k]]) # function result = self.ts.map(lambda x: x * 2) self.assert_numpy_array_equal(result, self.ts * 2) # GH 10324 a = Series([1, 2, 3, 4]) b = Series(["even", "odd", "even", "odd"], dtype="category") c = Series(["even", "odd", "even", "odd"]) exp = Series(["odd", "even", "odd", np.nan], dtype="category") self.assert_series_equal(a.map(b), exp) exp = Series(["odd", "even", "odd", np.nan]) self.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series([1, 2, 3, 4], index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series([1, 2, 3, 4], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 1, 2, 3]) self.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 1, 2, 3]) self.assert_series_equal(a.map(c), exp) a = Series(['a', 'b', 'c', 'd']) b = Series(['B', 'C', 'D', 'E'], dtype='category', index=pd.CategoricalIndex(['b', 'c', 'd', 'e'])) c = Series(['B', 'C', 'D', 'E'], index=Index(['b', 'c', 'd', 'e'])) exp = Series([np.nan, 'B', 'C', 'D'], dtype='category') self.assert_series_equal(a.map(b), exp) exp = Series([np.nan, 'B', 'C', 'D']) self.assert_series_equal(a.map(c), exp) def test_map_compat(self): # related GH 8024 s = Series([True,True,False],index=[1,2,3]) result = s.map({ True : 'foo', False : 'bar' }) expected = Series(['foo','foo','bar'],index=[1,2,3]) assert_series_equal(result,expected) def test_map_int(self): left = Series({'a': 1., 'b': 2., 'c': 3., 'd': 4}) right = Series({1: 11, 2: 22, 3: 33}) self.assertEqual(left.dtype, np.float_) self.assertTrue(issubclass(right.dtype.type, np.integer)) merged = left.map(right) self.assertEqual(merged.dtype, np.float_) self.assertTrue(isnull(merged['d'])) self.assertTrue(not isnull(merged['c'])) def test_map_type_inference(self): s = Series(lrange(3)) s2 = s.map(lambda x: np.where(x == 0, 0, 1)) self.assertTrue(issubclass(s2.dtype.type, np.integer)) def test_divide_decimal(self): ''' resolves issue #9787 ''' from decimal import Decimal expected = Series([Decimal(5)]) s = Series([Decimal(10)]) s = s/Decimal(2) tm.assert_series_equal(expected, s) s = Series([Decimal(10)]) s = s//Decimal(2) tm.assert_series_equal(expected, s) def test_map_decimal(self): from decimal import Decimal result = self.series.map(lambda x: Decimal(str(x))) self.assertEqual(result.dtype, np.object_) tm.assertIsInstance(result[0], Decimal) def test_map_na_exclusion(self): s = Series([1.5, np.nan, 3, np.nan, 5]) result = s.map(lambda x: x * 2, na_action='ignore') exp = s * 2 assert_series_equal(result, exp) def test_map_dict_with_tuple_keys(self): ''' Due to new MultiIndex-ing behaviour in v0.14.0, dicts with tuple keys passed to map were being converted to a multi-index, preventing tuple values from being mapped properly. ''' df = pd.DataFrame({'a': [(1,), (2,), (3, 4), (5, 6)]}) label_mappings = { (1,): 'A', (2,): 'B', (3, 4): 'A', (5, 6): 'B' } df['labels'] = df['a'].map(label_mappings) df['expected_labels'] = pd.Series(['A', 'B', 'A', 'B'], index=df.index) # All labels should be filled now tm.assert_series_equal(df['labels'], df['expected_labels'], check_names=False) def test_apply(self): assert_series_equal(self.ts.apply(np.sqrt), np.sqrt(self.ts)) # elementwise-apply import math assert_series_equal(self.ts.apply(math.exp), np.exp(self.ts)) # how to handle Series result, #2316 result = self.ts.apply(lambda x: Series([x, x ** 2], index=['x', 'x^2'])) expected = DataFrame({'x': self.ts, 'x^2': self.ts ** 2}) tm.assert_frame_equal(result, expected) # empty series s = Series(dtype=object, name='foo', index=pd.Index([], name='bar')) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) # check all metadata (GH 9322) self.assertIsNot(s, rs) self.assertIs(s.index, rs.index) self.assertEqual(s.dtype, rs.dtype) self.assertEqual(s.name, rs.name) # index but no data s = Series(index=[1, 2, 3]) rs = s.apply(lambda x: x) tm.assert_series_equal(s, rs) def test_apply_same_length_inference_bug(self): s = Series([1, 2]) f = lambda x: (x, x + 1) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) s = Series([1, 2, 3]) result = s.apply(f) expected = s.map(f) assert_series_equal(result, expected) def test_apply_dont_convert_dtype(self): s = Series(np.random.randn(10)) f = lambda x: x if x > 0 else np.nan result = s.apply(f, convert_dtype=False) self.assertEqual(result.dtype, object) def test_convert_objects(self): s = Series([1., 2, 3], index=['a', 'b', 'c']) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) # force numeric conversion r = s.copy().astype('O') r['a'] = '1' with tm.assert_produces_warning(FutureWarning): result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = '1.' with tm.assert_produces_warning(FutureWarning): result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = 'garbled' expected = s.copy() expected['a'] = np.nan with tm.assert_produces_warning(FutureWarning): result = r.convert_objects(convert_dates=False, convert_numeric=True) assert_series_equal(result, expected) # GH 4119, not converting a mixed type (e.g.floats and object) s = Series([1, 'na', 3, 4]) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_numeric=True) expected = Series([1, np.nan, 3, 4]) assert_series_equal(result, expected) s = Series([1, '', 3, 4]) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_numeric=True) expected = Series([1, np.nan, 3, 4]) assert_series_equal(result, expected) # dates s = Series( [datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime(2001, 1, 3, 0, 0)]) s2 = Series([datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime( 2001, 1, 3, 0, 0), 'foo', 1.0, 1, Timestamp('20010104'), '20010105'], dtype='O') with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates=True, convert_numeric=False) expected = Series( [Timestamp('20010101'), Timestamp('20010102'), Timestamp('20010103')], dtype='M8[ns]') assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce', convert_numeric=False) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce', convert_numeric=True) assert_series_equal(result, expected) expected = Series( [Timestamp( '20010101'), Timestamp('20010102'), Timestamp('20010103'), lib.NaT, lib.NaT, lib.NaT, Timestamp('20010104'), Timestamp('20010105')], dtype='M8[ns]') with tm.assert_produces_warning(FutureWarning): result = s2.convert_objects(convert_dates='coerce', convert_numeric=False) assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning): result = s2.convert_objects(convert_dates='coerce', convert_numeric=True) assert_series_equal(result, expected) # preserver all-nans (if convert_dates='coerce') s = Series(['foo', 'bar', 1, 1.0], dtype='O') with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce', convert_numeric=False) assert_series_equal(result, s) # preserver if non-object s = Series([1], dtype='float32') with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce', convert_numeric=False) assert_series_equal(result, s) #r = s.copy() #r[0] = np.nan #result = r.convert_objects(convert_dates=True,convert_numeric=False) #self.assertEqual(result.dtype, 'M8[ns]') # dateutil parses some single letters into today's value as a date for x in 'abcdefghijklmnopqrstuvwxyz': s = Series([x]) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce') assert_series_equal(result, s) s = Series([x.upper()]) with tm.assert_produces_warning(FutureWarning): result = s.convert_objects(convert_dates='coerce') assert_series_equal(result, s) def test_convert_objects_preserve_bool(self): s = Series([1, True, 3, 5], dtype=object) with tm.assert_produces_warning(FutureWarning): r = s.convert_objects(convert_numeric=True) e = Series([1, 1, 3, 5], dtype='i8') tm.assert_series_equal(r, e) def test_convert_objects_preserve_all_bool(self): s = Series([False, True, False, False], dtype=object) with tm.assert_produces_warning(FutureWarning): r = s.convert_objects(convert_numeric=True) e = Series([False, True, False, False], dtype=bool) tm.assert_series_equal(r, e) # GH 10265 def test_convert(self): # Tests: All to nans, coerce, true # Test coercion returns correct type s = Series(['a', 'b', 'c']) results = s._convert(datetime=True, coerce=True) expected = Series([lib.NaT] * 3) assert_series_equal(results, expected) results = s._convert(numeric=True, coerce=True) expected = Series([np.nan] * 3) assert_series_equal(results, expected) expected = Series([lib.NaT] * 3, dtype=np.dtype('m8[ns]')) results = s._convert(timedelta=True, coerce=True) assert_series_equal(results, expected) dt = datetime(2001, 1, 1, 0, 0) td = dt - datetime(2000, 1, 1, 0, 0) # Test coercion with mixed types s = Series(['a', '3.1415', dt, td]) results = s._convert(datetime=True, coerce=True) expected = Series([lib.NaT, lib.NaT, dt, lib.NaT]) assert_series_equal(results, expected) results = s._convert(numeric=True, coerce=True) expected = Series([nan, 3.1415, nan, nan]) assert_series_equal(results, expected) results = s._convert(timedelta=True, coerce=True) expected = Series([lib.NaT, lib.NaT, lib.NaT, td], dtype=np.dtype('m8[ns]')) assert_series_equal(results, expected) # Test standard conversion returns original results = s._convert(datetime=True) assert_series_equal(results, s) results = s._convert(numeric=True) expected = Series([nan, 3.1415, nan, nan]) assert_series_equal(results, expected) results = s._convert(timedelta=True) assert_series_equal(results, s) # test pass-through and non-conversion when other types selected s = Series(['1.0','2.0','3.0']) results = s._convert(datetime=True, numeric=True, timedelta=True) expected = Series([1.0,2.0,3.0]) assert_series_equal(results, expected) results = s._convert(True,False,True) assert_series_equal(results, s) s = Series([datetime(2001, 1, 1, 0, 0),datetime(2001, 1, 1, 0, 0)], dtype='O') results = s._convert(datetime=True, numeric=True, timedelta=True) expected = Series([datetime(2001, 1, 1, 0, 0),datetime(2001, 1, 1, 0, 0)]) assert_series_equal(results, expected) results = s._convert(datetime=False,numeric=True,timedelta=True) assert_series_equal(results, s) td = datetime(2001, 1, 1, 0, 0) - datetime(2000, 1, 1, 0, 0) s = Series([td, td], dtype='O') results = s._convert(datetime=True, numeric=True, timedelta=True) expected = Series([td, td]) assert_series_equal(results, expected) results = s._convert(True,True,False) assert_series_equal(results, s) s = Series([1., 2, 3], index=['a', 'b', 'c']) result = s._convert(numeric=True) assert_series_equal(result, s) # force numeric conversion r = s.copy().astype('O') r['a'] = '1' result = r._convert(numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = '1.' result = r._convert(numeric=True) assert_series_equal(result, s) r = s.copy().astype('O') r['a'] = 'garbled' result = r._convert(numeric=True) expected = s.copy() expected['a'] = nan assert_series_equal(result, expected) # GH 4119, not converting a mixed type (e.g.floats and object) s = Series([1, 'na', 3, 4]) result = s._convert(datetime=True, numeric=True) expected = Series([1, nan, 3, 4]) assert_series_equal(result, expected) s = Series([1, '', 3, 4]) result = s._convert(datetime=True, numeric=True) assert_series_equal(result, expected) # dates s = Series( [datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime(2001, 1, 3, 0, 0)]) s2 = Series([datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 2, 0, 0), datetime( 2001, 1, 3, 0, 0), 'foo', 1.0, 1, Timestamp('20010104'), '20010105'], dtype='O') result = s._convert(datetime=True) expected = Series( [Timestamp('20010101'), Timestamp('20010102'), Timestamp('20010103')], dtype='M8[ns]') assert_series_equal(result, expected) result = s._convert(datetime=True, coerce=True) assert_series_equal(result, expected) expected = Series( [Timestamp( '20010101'), Timestamp('20010102'), Timestamp('20010103'), lib.NaT, lib.NaT, lib.NaT, Timestamp('20010104'), Timestamp('20010105')], dtype='M8[ns]') result = s2._convert(datetime=True, numeric=False, timedelta=False, coerce=True) assert_series_equal(result, expected) result = s2._convert(datetime=True, coerce=True) assert_series_equal(result, expected) s = Series(['foo', 'bar', 1, 1.0], dtype='O') result = s._convert(datetime=True, coerce=True) expected = Series([lib.NaT]*4) assert_series_equal(result, expected) # preserver if non-object s = Series([1], dtype='float32') result = s._convert(datetime=True, coerce=True) assert_series_equal(result, s) #r = s.copy() #r[0] = np.nan #result = r._convert(convert_dates=True,convert_numeric=False) #self.assertEqual(result.dtype, 'M8[ns]') # dateutil parses some single letters into today's value as a date expected = Series([lib.NaT]) for x in 'abcdefghijklmnopqrstuvwxyz': s = Series([x]) result = s._convert(datetime=True, coerce=True) assert_series_equal(result, expected) s = Series([x.upper()]) result = s._convert(datetime=True, coerce=True) assert_series_equal(result, expected) def test_convert_no_arg_error(self): s = Series(['1.0','2']) self.assertRaises(ValueError, s._convert) def test_convert_preserve_bool(self): s = Series([1, True, 3, 5], dtype=object) r = s._convert(datetime=True, numeric=True) e = Series([1, 1, 3, 5], dtype='i8') tm.assert_series_equal(r, e) def test_convert_preserve_all_bool(self): s = Series([False, True, False, False], dtype=object) r = s._convert(datetime=True, numeric=True) e = Series([False, True, False, False], dtype=bool) tm.assert_series_equal(r, e) def test_apply_args(self): s = Series(['foo,bar']) result = s.apply(str.split, args=(',',)) self.assertEqual(result[0], ['foo', 'bar']) tm.assertIsInstance(result[0], list) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12,dtype='int64'), index=midx) s2 = pd.Series(np.arange(2,dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_nan(self): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed reindexed_dep = self.empty.reindex(self.ts.index, method='pad') # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10),dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1,2,3,4,5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a','g','c','f'] expected = Series([1,1,3,3],index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inferrence of new dtype s = Series([True,False,False,True],index=list('abcd')) new_index='agc' result = s.reindex(list(new_index)).ffill() expected = Series([True,True,False],index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False,index=lrange(0,5)) result = s.shift(1).fillna(method='bfill') expected = Series(False,index=lrange(0,5)) assert_series_equal(result, expected) def test_reindex_nearest(self): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_int.dtype, np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assertEqual(reindexed_int.dtype, np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_bool.dtype, np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assertEqual(reindexed_bool.dtype, np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assertTrue(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013,3,5) day2 = datetime(2013,5,5) day3 = datetime(2014,3,5) series1 = Series([5, None, None],[day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected = Series([5, np.nan], index=[day1, day3]) assert_series_equal(result, expected) def test_reindex_fill_value(self): #------------------------------------------------------------ # floats floats = Series([1., 2., 3.]) result = floats.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) result = floats.reindex([1, 2, 3], fill_value=0) expected = Series([2., 3., 0], index=[1, 2, 3]) assert_series_equal(result, expected) #------------------------------------------------------------ # ints ints = Series([1, 2, 3]) result = ints.reindex([1, 2, 3]) expected = Series([2., 3., np.nan], index=[1, 2, 3]) assert_series_equal(result, expected) # don't upcast result = ints.reindex([1, 2, 3], fill_value=0) expected = Series([2, 3, 0], index=[1, 2, 3]) self.assertTrue(issubclass(result.dtype.type, np.integer)) assert_series_equal(result, expected) #------------------------------------------------------------ # objects objects = Series([1, 2, 3], dtype=object) result = objects.reindex([1, 2, 3]) expected = Series([2, 3, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = objects.reindex([1, 2, 3], fill_value='foo') expected = Series([2, 3, 'foo'], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) #------------------------------------------------------------ # bools bools = Series([True, False, True]) result = bools.reindex([1, 2, 3]) expected = Series([False, True, np.nan], index=[1, 2, 3], dtype=object) assert_series_equal(result, expected) result = bools.reindex([1, 2, 3], fill_value=False) expected = Series([False, True, False], index=[1, 2, 3]) assert_series_equal(result, expected) def test_rename(self): renamer = lambda x: x.strftime('%Y%m%d') renamed = self.ts.rename(renamer) self.assertEqual(renamed.index[0], renamer(self.ts.index[0])) # dict rename_dict = dict(zip(self.ts.index, renamed.index)) renamed2 = self.ts.rename(rename_dict) assert_series_equal(renamed, renamed2) # partial dict s = Series(np.arange(4), index=['a', 'b', 'c', 'd'], dtype='int64') renamed = s.rename({'b': 'foo', 'd': 'bar'}) self.assert_numpy_array_equal(renamed.index, ['a', 'foo', 'c', 'bar']) # index with name renamer = Series( np.arange(4), index=Index(['a', 'b', 'c', 'd'], name='name'), dtype='int64') renamed = renamer.rename({}) self.assertEqual(renamed.index.name, renamer.index.name) def test_rename_inplace(self): renamer = lambda x: x.strftime('%Y%m%d') expected = renamer(self.ts.index[0]) self.ts.rename(renamer, inplace=True) self.assertEqual(self.ts.index[0], expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_ne(self): ts = Series([3, 4, 5, 6, 7], [3, 4, 5, 6, 7], dtype=float) expected = [True, True, False, True, True] self.assertTrue(tm.equalContents(ts.index != 5, expected)) self.assertTrue(tm.equalContents(~(ts.index == 5), expected)) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_unstack(self): from numpy import nan from pandas.util.testing import assert_frame_equal index = MultiIndex(levels=[['bar', 'foo'], ['one', 'three', 'two']], labels=[[1, 1, 0, 0], [0, 1, 0, 2]]) s = Series(np.arange(4.), index=index) unstacked = s.unstack() expected = DataFrame([[2., nan, 3.], [0., 1., nan]], index=['bar', 'foo'], columns=['one', 'three', 'two']) assert_frame_equal(unstacked, expected) unstacked = s.unstack(level=0) assert_frame_equal(unstacked, expected.T) index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) exp_index = MultiIndex(levels=[['one', 'two', 'three'], [0, 1]], labels=[[0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) expected = DataFrame({'bar': s.values}, index=exp_index).sortlevel(0) unstacked = s.unstack(0) assert_frame_equal(unstacked, expected) # GH5873 idx = pd.MultiIndex.from_arrays([[101, 102], [3.5, np.nan]]) ts = pd.Series([1,2], index=idx) left = ts.unstack() right = DataFrame([[nan, 1], [2, nan]], index=[101, 102], columns=[nan, 3.5]) print(left) print(right) assert_frame_equal(left, right) idx = pd.MultiIndex.from_arrays([['cat', 'cat', 'cat', 'dog', 'dog'], ['a', 'a', 'b', 'a', 'b'], [1, 2, 1, 1, np.nan]]) ts = pd.Series([1.0, 1.1, 1.2, 1.3, 1.4], index=idx) right = DataFrame([[1.0, 1.3], [1.1, nan], [nan, 1.4], [1.2, nan]], columns=['cat', 'dog']) tpls = [('a', 1), ('a', 2), ('b', nan), ('b', 1)] right.index = pd.MultiIndex.from_tuples(tpls) assert_frame_equal(ts.unstack(level=0), right) def test_sortlevel(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) s = Series([1, 2], mi) backwards = s.iloc[[1, 0]] res = s.sortlevel('A') assert_series_equal(backwards, res) res = s.sortlevel(['A', 'B']) assert_series_equal(backwards, res) res = s.sortlevel('A', sort_remaining=False) assert_series_equal(s, res) res = s.sortlevel(['A', 'B'], sort_remaining=False) assert_series_equal(s, res) def test_head_tail(self): assert_series_equal(self.series.head(), self.series[:5]) assert_series_equal(self.series.tail(), self.series[-5:]) def test_isin(self): s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) result = s.isin(['A', 'C']) expected = Series([True, False, True, False, False, False, True, True]) assert_series_equal(result, expected) def test_isin_with_string_scalar(self): # GH4763 s = Series(['A', 'B', 'C', 'a', 'B', 'B', 'A', 'C']) with tm.assertRaises(TypeError): s.isin('a') with tm.assertRaises(TypeError): s = Series(['aaa', 'b', 'c']) s.isin('aaa') def test_isin_with_i8(self): # GH 5021 expected = Series([True,True,False,False,False]) expected2 = Series([False,True,False,False,False]) # datetime64[ns] s = Series(date_range('jan-01-2013','jan-05-2013')) result = s.isin(s[0:2]) assert_series_equal(result, expected) result = s.isin(s[0:2].values) assert_series_equal(result, expected) # fails on dtype conversion in the first place result = s.isin(s[0:2].values.astype('datetime64[D]')) assert_series_equal(result, expected) result = s.isin([s[1]]) assert_series_equal(result, expected2) result = s.isin([np.datetime64(s[1])]) assert_series_equal(result, expected2) # timedelta64[ns] s = Series(pd.to_timedelta(lrange(5),unit='d')) result = s.isin(s[0:2]) assert_series_equal(result, expected) #------------------------------------------------------------------------------ # TimeSeries-specific def test_cummethods_bool(self): # GH 6270 # looks like a buggy np.maximum.accumulate for numpy 1.6.1, py 3.2 def cummin(x): return np.minimum.accumulate(x) def cummax(x): return np.maximum.accumulate(x) a = pd.Series([False, False, False, True, True, False, False]) b = ~a c = pd.Series([False] * len(b)) d = ~c methods = {'cumsum': np.cumsum, 'cumprod': np.cumprod, 'cummin': cummin, 'cummax': cummax} args = product((a, b, c, d), methods) for s, method in args: expected = Series(methods[method](s.values)) result = getattr(s, method)() assert_series_equal(result, expected) e = pd.Series([False, True, nan, False]) cse = pd.Series([0, 1, nan, 1], dtype=object) cpe = pd.Series([False, 0, nan, 0]) cmin = pd.Series([False, False, nan, False]) cmax = pd.Series([False, True, nan, True]) expecteds = {'cumsum': cse, 'cumprod': cpe, 'cummin': cmin, 'cummax': cmax} for method in methods: res = getattr(e, method)() assert_series_equal(res, expecteds[method]) def test_replace(self): N = 100 ser = Series(np.random.randn(N)) ser[0:4] = np.nan ser[6:10] = 0 # replace list with a single value ser.replace([np.nan], -1, inplace=True) exp = ser.fillna(-1) assert_series_equal(ser, exp) rs = ser.replace(0., np.nan) ser[ser == 0.] = np.nan assert_series_equal(rs, ser) ser = Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -1).all()) self.assertTrue((rs[20:30] == -1).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -2).all()) self.assertTrue((rs[20:30] == -3).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) self.assertTrue((ser[:5] == -1).all()) self.assertTrue((ser[6:10] == -1).all()) self.assertTrue((ser[20:30] == -1).all()) ser = Series([np.nan, 0, np.inf]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) ser = Series([np.nan, 0, 'foo', 'bar', np.inf, None, lib.NaT]) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) filled = ser.copy() filled[4] = 0 assert_series_equal(ser.replace(np.inf, 0), filled) ser = Series(self.ts.index) assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) # malformed self.assertRaises(ValueError, ser.replace, [1, 2, 3], [np.nan, 0]) # make sure that we aren't just masking a TypeError because bools don't # implement indexing with tm.assertRaisesRegexp(TypeError, 'Cannot compare types .+'): ser.replace([1, 2], [np.nan, 0]) ser = Series([0, 1, 2, 3, 4]) result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) assert_series_equal(result, Series([4, 3, 2, 1, 0])) # API change from 0.12? # GH 5319 ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace([np.nan]) assert_series_equal(result, expected) ser = Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace(np.nan) assert_series_equal(result, expected) #GH 5797 ser = Series(date_range('20130101', periods=5)) expected = ser.copy() expected.loc[2] = Timestamp('20120101') result = ser.replace({Timestamp('20130103'): Timestamp('20120101')}) assert_series_equal(result, expected) result = ser.replace(Timestamp('20130103'), Timestamp('20120101')) assert_series_equal(result, expected) def test_replace_with_single_list(self): ser = Series([0, 1, 2, 3, 4]) result = ser.replace([1,2,3]) assert_series_equal(result, Series([0,0,0,0,4])) s = ser.copy() s.replace([1,2,3],inplace=True) assert_series_equal(s, Series([0,0,0,0,4])) # make sure things don't get corrupted when fillna call fails s = ser.copy() with tm.assertRaises(ValueError): s.replace([1,2,3],inplace=True,method='crash_cymbal') assert_series_equal(s, ser) def test_replace_mixed_types(self): s = Series(np.arange(5),dtype='int64') def check_replace(to_rep, val, expected): sc = s.copy() r = s.replace(to_rep, val) sc.replace(to_rep, val, inplace=True) assert_series_equal(expected, r) assert_series_equal(expected, sc) # should NOT upcast to float e = Series([0,1,2,3,4]) tr, v = [3], [3.0] check_replace(tr, v, e) # MUST upcast to float e = Series([0,1,2,3.5,4]) tr, v = [3], [3.5] check_replace(tr, v, e) # casts to object e = Series([0,1,2,3.5,'a']) tr, v = [3,4], [3.5,'a'] check_replace(tr, v, e) # again casts to object e = Series([0,1,2,3.5,Timestamp('20130101')]) tr, v = [3,4],[3.5,Timestamp('20130101')] check_replace(tr, v, e) # casts to float e = Series([0,1,2,3.5,1]) tr, v = [3,4],[3.5,True] check_replace(tr, v, e) # test an object with dates + floats + integers + strings dr = date_range('1/1/2001', '1/10/2001', freq='D').to_series().reset_index(drop=True) result = dr.astype(object).replace([dr[0],dr[1],dr[2]], [1.0,2,'a']) expected = Series([1.0,2,'a'] + dr[3:].tolist(),dtype=object) assert_series_equal(result, expected) def test_replace_bool_with_string_no_op(self): s = Series([True, False, True]) result = s.replace('fun', 'in-the-sun') tm.assert_series_equal(s, result) def test_replace_bool_with_string(self): # nonexistent elements s = Series([True, False, True]) result = s.replace(True, '2u') expected = Series(['2u', False, '2u']) tm.assert_series_equal(expected, result) def test_replace_bool_with_bool(self): s = Series([True, False, True]) result = s.replace(True, False) expected = Series([False] * len(s)) tm.assert_series_equal(expected, result) def test_replace_with_dict_with_bool_keys(self): s = Series([True, False, True]) with tm.assertRaisesRegexp(TypeError, 'Cannot compare types .+'): s.replace({'asdf': 'asdb', True: 'yes'}) def test_asfreq(self): ts = Series([0., 1., 2.], index=[datetime(2009, 10, 30), datetime(2009, 11, 30), datetime(2009, 12, 31)]) daily_ts = ts.asfreq('B') monthly_ts = daily_ts.asfreq('BM') self.assert_numpy_array_equal(monthly_ts, ts) daily_ts = ts.asfreq('B', method='pad') monthly_ts = daily_ts.asfreq('BM') self.assert_numpy_array_equal(monthly_ts, ts) daily_ts = ts.asfreq(datetools.bday) monthly_ts = daily_ts.asfreq(datetools.bmonthEnd) self.assert_numpy_array_equal(monthly_ts, ts) result = ts[:0].asfreq('M') self.assertEqual(len(result), 0) self.assertIsNot(result, ts) def test_diff(self): # Just run the function self.ts.diff() # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = s.diff() self.assertEqual(rs[1], 1) # neg n rs = self.ts.diff(-1) xp = self.ts - self.ts.shift(-1) assert_series_equal(rs, xp) # 0 rs = self.ts.diff(0) xp = self.ts - self.ts assert_series_equal(rs, xp) # datetime diff (GH3100) s = Series(date_range('20130102', periods=5)) rs = s - s.shift(1) xp = s.diff() assert_series_equal(rs, xp) # timedelta diff nrs = rs - rs.shift(1) nxp = xp.diff() assert_series_equal(nrs, nxp) # with tz s = Series(date_range('2000-01-01 09:00:00',periods=5,tz='US/Eastern'), name='foo') result = s.diff() assert_series_equal(result,Series(TimedeltaIndex(['NaT'] + ['1 days']*4),name='foo')) def test_pct_change(self): rs = self.ts.pct_change(fill_method=None) assert_series_equal(rs, self.ts / self.ts.shift(1) - 1) rs = self.ts.pct_change(2) filled = self.ts.fillna(method='pad') assert_series_equal(rs, filled / filled.shift(2) - 1) rs = self.ts.pct_change(fill_method='bfill', limit=1) filled = self.ts.fillna(method='bfill', limit=1) assert_series_equal(rs, filled / filled.shift(1) - 1) rs = self.ts.pct_change(freq='5D') filled = self.ts.fillna(method='pad') assert_series_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) chg = s.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) assert_series_equal(chg, expected) def test_autocorr(self): # Just run the function corr1 = self.ts.autocorr() # Now run it with the lag parameter corr2 = self.ts.autocorr(lag=1) # corr() with lag needs Series of at least length 2 if len(self.ts) <= 2: self.assertTrue(np.isnan(corr1)) self.assertTrue(np.isnan(corr2)) else: self.assertEqual(corr1, corr2) # Choose a random lag between 1 and length of Series - 2 # and compare the result with the Series corr() function n = 1 + np.random.randint(max(1, len(self.ts) - 2)) corr1 = self.ts.corr(self.ts.shift(n)) corr2 = self.ts.autocorr(lag=n) # corr() with lag needs Series of at least length 2 if len(self.ts) <= 2: self.assertTrue(np.isnan(corr1)) self.assertTrue(np.isnan(corr2)) else: self.assertEqual(corr1, corr2) def test_first_last_valid(self): ts = self.ts.copy() ts[:5] = np.NaN index = ts.first_valid_index() self.assertEqual(index, ts.index[5]) ts[-5:] = np.NaN index = ts.last_valid_index() self.assertEqual(index, ts.index[-6]) ts[:] = np.nan self.assertIsNone(ts.last_valid_index()) self.assertIsNone(ts.first_valid_index()) ser = Series([], index=[]) self.assertIsNone(ser.last_valid_index()) self.assertIsNone(ser.first_valid_index()) def test_mpl_compat_hack(self): result = self.ts[:, np.newaxis] expected = self.ts.values[:, np.newaxis] assert_almost_equal(result, expected) #------------------------------------------------------------------------------ # GroupBy def test_select(self): n = len(self.ts) result = self.ts.select(lambda x: x >= self.ts.index[n // 2]) expected = self.ts.reindex(self.ts.index[n // 2:]) assert_series_equal(result, expected) result = self.ts.select(lambda x: x.weekday() == 2) expected = self.ts[self.ts.index.weekday == 2] assert_series_equal(result, expected) #------------------------------------------------------------------------------ # Misc not safe for sparse def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_numpy_unique(self): # it works! result = np.unique(self.ts) def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype,['float64','int8','uint8','bool','m8[ns]','M8[ns]']) for dtype in dtypes: self.assertEqual(pd.concat([Series(dtype=dtype)]).dtype, dtype) self.assertEqual(pd.concat([Series(dtype=dtype), Series(dtype=dtype)]).dtype, dtype) def int_result_type(dtype, dtype2): typs = set([dtype.kind,dtype2.kind]) if not len(typs-set(['i','u','b'])) and (dtype.kind == 'i' or dtype2.kind == 'i'): return 'i' elif not len(typs-set(['u','b'])) and (dtype.kind == 'u' or dtype2.kind == 'u'): return 'u' return None def float_result_type(dtype, dtype2): typs = set([dtype.kind,dtype2.kind]) if not len(typs-set(['f','i','u'])) and (dtype.kind == 'f' or dtype2.kind == 'f'): return 'f' return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return 'O' for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = pd.concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype self.assertEqual(result.kind, expected) def test_concat_empty_series_dtypes(self): # bools self.assertEqual(pd.concat([Series(dtype=np.bool_), Series(dtype=np.int32)]).dtype, np.int32) self.assertEqual(pd.concat([Series(dtype=np.bool_), Series(dtype=np.float32)]).dtype, np.object_) # datetimelike self.assertEqual(pd.concat([Series(dtype='m8[ns]'), Series(dtype=np.bool)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='m8[ns]'), Series(dtype=np.int64)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.bool)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.int64)]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='M8[ns]'), Series(dtype=np.bool_), Series(dtype=np.int64)]).dtype, np.object_) # categorical self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='category')]).dtype, 'category') self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='float64')]).dtype, np.object_) self.assertEqual(pd.concat([Series(dtype='category'), Series(dtype='object')]).dtype, 'category') # sparse result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='float64').to_sparse()]) self.assertEqual(result.dtype,np.float64) self.assertEqual(result.ftype,'float64:sparse') result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='float64')]) self.assertEqual(result.dtype,np.float64) self.assertEqual(result.ftype,'float64:sparse') result = pd.concat([Series(dtype='float64').to_sparse(), Series(dtype='object')]) self.assertEqual(result.dtype,np.object_) self.assertEqual(result.ftype,'object:dense') def test_searchsorted_numeric_dtypes_scalar(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted(30) e = 2 tm.assert_equal(r, e) r = s.searchsorted([30]) e = np.array([2]) tm.assert_numpy_array_equal(r, e) def test_searchsorted_numeric_dtypes_vector(self): s = Series([1, 2, 90, 1000, 3e9]) r = s.searchsorted([91, 2e6]) e = np.array([3, 4]) tm.assert_numpy_array_equal(r, e) def test_search_sorted_datetime64_scalar(self): s = Series(pd.date_range('20120101', periods=10, freq='2D')) v = pd.Timestamp('20120102') r = s.searchsorted(v) e = 1 tm.assert_equal(r, e) def test_search_sorted_datetime64_list(self): s = Series(pd.date_range('20120101', periods=10, freq='2D')) v = [pd.Timestamp('20120102'), pd.Timestamp('20120104')] r = s.searchsorted(v) e = np.array([1, 2]) tm.assert_numpy_array_equal(r, e) def test_searchsorted_sorter(self): # GH8490 s = Series([3, 1, 2]) r = s.searchsorted([0, 3], sorter=np.argsort(s)) e = np.array([0, 2]) tm.assert_numpy_array_equal(r, e) def test_to_frame_expanddim(self): # GH 9762 class SubclassedSeries(Series): @property def _constructor_expanddim(self): return SubclassedFrame class SubclassedFrame(DataFrame): pass s = SubclassedSeries([1, 2, 3], name='X') result = s.to_frame() self.assertTrue(isinstance(result, SubclassedFrame)) expected = SubclassedFrame({'X': [1, 2, 3]}) assert_frame_equal(result, expected) class TestSeriesNonUnique(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): pass def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_reset_index(self): df = tm.makeDataFrame()[:5] ser = df.stack() ser.index.names = ['hash', 'category'] ser.name = 'value' df = ser.reset_index() self.assertIn('value', df) df = ser.reset_index(name='value2') self.assertIn('value2', df) # check inplace s = ser.reset_index(drop=True) s2 = ser s2.reset_index(drop=True, inplace=True) assert_series_equal(s, s2) # level index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], labels=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) s = Series(np.random.randn(6), index=index) rs = s.reset_index(level=1) self.assertEqual(len(rs.columns), 2) rs = s.reset_index(level=[0, 2], drop=True) self.assertTrue(rs.index.equals(Index(index.get_level_values(1)))) tm.assertIsInstance(rs, Series) def test_set_index_makes_timeseries(self): idx = tm.makeDateIndex(10) s = Series(lrange(10)) s.index = idx with tm.assert_produces_warning(FutureWarning): self.assertTrue(s.is_time_series == True) self.assertTrue(s.index.is_all_dates == True) def test_timeseries_coercion(self): idx = tm.makeDateIndex(10000) ser = Series(np.random.randn(len(idx)), idx.astype(object)) with tm.assert_produces_warning(FutureWarning): self.assertTrue(ser.is_time_series) self.assertTrue(ser.index.is_all_dates) self.assertIsInstance(ser.index, DatetimeIndex) def test_replace(self): N = 100 ser = Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = 'foo' ser[20:30] = 'bar' # replace list with a single value rs = ser.replace([np.nan, 'foo', 'bar'], -1) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -1).all()) self.assertTrue((rs[20:30] == -1).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values rs = ser.replace({np.nan: -1, 'foo': -2, 'bar': -3}) self.assertTrue((rs[:5] == -1).all()) self.assertTrue((rs[6:10] == -2).all()) self.assertTrue((rs[20:30] == -3).all()) self.assertTrue((isnull(ser[:5])).all()) # replace with different values with 2 lists rs2 = ser.replace([np.nan, 'foo', 'bar'], [-1, -2, -3]) assert_series_equal(rs, rs2) # replace inplace ser.replace([np.nan, 'foo', 'bar'], -1, inplace=True) self.assertTrue((ser[:5] == -1).all()) self.assertTrue((ser[6:10] == -1).all()) self.assertTrue((ser[20:30] == -1).all()) def test_repeat(self): s = Series(np.random.randn(3), index=['a', 'b', 'c']) reps = s.repeat(5) exp = Series(s.values.repeat(5), index=s.index.values.repeat(5)) assert_series_equal(reps, exp) to_rep = [2, 3, 4] reps = s.repeat(to_rep) exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep)) assert_series_equal(reps, exp) def test_unique_data_ownership(self): # it works! #1807 Series(Series(["a", "c", "b"]).unique()).sort_values() def test_datetime_timedelta_quantiles(self): # covers #9694 self.assertTrue(pd.isnull(Series([],dtype='M8[ns]').quantile(.5))) self.assertTrue(pd.isnull(Series([],dtype='m8[ns]').quantile(.5))) def test_empty_timeseries_redections_return_nat(self): # covers #11245 for dtype in ('m8[ns]', 'm8[ns]', 'M8[ns]', 'M8[ns, UTC]'): self.assertIs(Series([], dtype=dtype).min(), pd.NaT) self.assertIs(Series([], dtype=dtype).max(), pd.NaT) if __name__ == '__main__': nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/tests/frame/test_constructors.py
7
73312
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import nose from numpy.random import randn import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from pandas.types.common import is_integer_dtype from pandas.compat import (lmap, long, zip, range, lrange, lzip, OrderedDict, is_platform_little_endian) from pandas import compat from pandas import (DataFrame, Index, Series, isnull, MultiIndex, Timedelta, Timestamp, date_range) from pandas.core.common import PandasError import pandas as pd import pandas.core.common as com import pandas.lib as lib import pandas.util.testing as tm from pandas.tests.frame.common import TestData MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_constructor(self): df = DataFrame() self.assertEqual(len(df.index), 0) df = DataFrame(data={}) self.assertEqual(len(df.index), 0) def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa self.assertEqual(self.mixed_frame['foo'].dtype, np.object_) def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) self.assertEqual(foo['a'].dtype, object) # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok self.assertRaises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. self.assertEqual(orig_df['col1'][0], 1.) def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 self.assertEqual(df.values[0, 0], 99) should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 self.assertEqual(df.values[0, 0], 97) def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) self.assertIsNone(df.ix[1, 0]) self.assertEqual(df.ix[0, 1], '2') def test_constructor_list_frames(self): # GH 3243 result = DataFrame([DataFrame([])]) self.assertEqual(result.shape, (1, 0)) result = DataFrame([DataFrame(dict(A=lrange(5)))]) tm.assertIsInstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update(dict([(d, a) for d, a in zipper])) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) self.assertEqual(a.dtype, df.a.dtype) self.assertEqual(b.dtype, df.b.dtype) def test_constructor_rec(self): rec = self.frame.to_records(index=False) # Assigning causes segfault in NumPy < 1.5.1 # rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) self.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) self.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) self.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) self.assertEqual(df.values.dtype, np.bool_) def test_constructor_overflow_int64(self): values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) self.assertEqual(result['a'].dtype, object) # #2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) self.assertEqual(df_crawls['uid'].dtype, object) def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) self.assertEqual(expected, list(df.columns)) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN self.assertEqual(len(self.ts1), 30) self.assertEqual(len(self.ts2), 25) tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) self.assertEqual(len(frame), len(self.ts2)) self.assertNotIn('col1', frame) self.assertTrue(isnull(frame['col3']).all()) # Corner cases self.assertEqual(len(DataFrame({})), 0) # mix dict and array, wrong size - no spec for which error should raise # first with tm.assertRaises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) self.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) self.assertIs(frame.index, idx) # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) self.assertIs(frame.index, idx) self.assertIs(frame.columns, idx) self.assertEqual(len(frame._series), 3) # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) self.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) tm.assert_equal(frame_none.get_value(0, 'a'), None) tm.assert_equal(frame_none_list.get_value(0, 'a'), None) tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed with tm.assertRaises(ValueError): DataFrame({'a': 0.7}) with tm.assertRaises(ValueError): DataFrame({'a': 0.7}, columns=['a']) with tm.assertRaises(ValueError): DataFrame({'a': 0.7}, columns=['b']) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) self.assertTrue(pd.isnull(df).values.ravel().all()) tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) self.assertTrue(pd.isnull(df).values.ravel().all()) def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with tm.assertRaisesRegexp(ValueError, msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with tm.assertRaisesRegexp(ValueError, msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with tm.assertRaisesRegexp(ValueError, msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with tm.assertRaisesRegexp(ValueError, 'Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels with tm.assertRaisesRegexp(ValueError, "Shape of passed values is " r"\(3, 2\), indices imply \(3, 1\)"): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) with tm.assertRaisesRegexp(ValueError, "Shape of passed values is " r"\(3, 2\), indices imply \(2, 2\)"): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) with tm.assertRaisesRegexp(ValueError, 'If using all scalar values, ' 'you must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame(dict((col, dict(compat.iteritems(val))) for col, val in compat.iteritems(data))) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) self.assertEqual(len(frame), 3) self.assertEqual(frame['B'].dtype, np.float64) self.assertEqual(frame['A'].dtype, np.float64) frame = DataFrame(test_data) self.assertEqual(len(frame), 3) self.assertEqual(frame['B'].dtype, np.object_) self.assertEqual(frame['A'].dtype, np.float64) # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) self.assertEqual(len(frame), 20) self.assertEqual(frame['A'].dtype, np.object_) self.assertEqual(frame['B'].dtype, np.float64) def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) tm.assertIsInstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) tm.assertIsInstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame(dict((k, list(v)) for k, v in compat.iteritems(data))) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): check = lambda result, expected: tm.assert_frame_equal( result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return dict((i, {constructor(s): 2 * i}) for i, s in enumerate(dates_as_str)) data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return dict((i, {constructor(s): 2 * i}) for i, s in enumerate(td_as_int)) data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) self.assertEqual(df['a'].dtype, 'object') self.assertEqual(df['b'].dtype, 'object') # list of periods df = pd.DataFrame({'a': a.asobject.tolist(), 'b': b.asobject.tolist()}) self.assertEqual(df['a'].dtype, 'object') self.assertEqual(df['b'].dtype, 'object') def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shpae (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(len(frame.index), 2) self.assertEqual(len(frame.columns), 3) # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) self.assertEqual(len(frame.index), 3) self.assertEqual(len(frame.columns), 1) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) self.assertEqual(frame.values.dtype, np.int64) # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with tm.assertRaisesRegexp(ValueError, msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with tm.assertRaisesRegexp(ValueError, msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with tm.assertRaisesRegexp(ValueError, 'Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) self.assert_index_equal(frame.index, pd.Index(lrange(2))) self.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) self.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) self.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) self.assertEqual(len(frame.index), 0) frame = DataFrame(empty((3, 0))) self.assertEqual(len(frame.columns), 0) def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) self.assertEqual(len(frame), 2) def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(1.0, frame['A'][1]) self.assertEqual(2.0, frame['C'][2]) # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertTrue(np.all(~np.asarray(frame == frame))) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(len(frame.index), 2) self.assertEqual(len(frame.columns), 3) self.assertTrue(np.all(~np.asarray(frame == frame))) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) self.assertEqual(frame.values.dtype, np.float64) # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(1, frame['A'][1]) self.assertEqual(2, frame['C'][2]) # masked np.datetime64 stays (use lib.NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(len(frame.index), 2) self.assertEqual(len(frame.columns), 3) self.assertTrue(isnull(frame).values.all()) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) self.assertEqual(frame.values.dtype, np.int64) # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(1, frame['A'].view('i8')[1]) self.assertEqual(2, frame['C'].view('i8')[2]) # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(len(frame.index), 2) self.assertEqual(len(frame.columns), 3) self.assertTrue(np.all(~np.asarray(frame == frame))) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) self.assertEqual(frame.values.dtype, object) # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) self.assertEqual(True, frame['A'][1]) self.assertEqual(False, frame['C'][2]) def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = dict([(k, v.filled()) if hasattr( v, 'filled') else (k, v) for k, v in comb]) expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner(self): df = DataFrame(index=[]) self.assertEqual(df.values.shape, (0, 0)) # empty but with specified dtype df = DataFrame(index=lrange(10), columns=['a', 'b'], dtype=object) self.assertEqual(df.values.dtype, np.object_) # does not error but ends up float df = DataFrame(index=lrange(10), columns=['a', 'b'], dtype=int) self.assertEqual(df.values.dtype, np.object_) # #1783 empty dtype object df = DataFrame({}, columns=['foo', 'bar']) self.assertEqual(df.values.dtype, np.object_) df = DataFrame({'b': 1}, index=lrange(10), columns=list('abc'), dtype=int) self.assertEqual(df.values.dtype, np.object_) def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) self.assertEqual(df['int'].dtype, np.int64) self.assertEqual(df['bool'].dtype, np.bool_) self.assertEqual(df['float'].dtype, np.float64) self.assertEqual(df['complex'].dtype, np.complex128) self.assertEqual(df['object'].dtype, np.object_) def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with tm.assertRaisesRegexp(ValueError, 'must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) self.assertEqual(df_casted.values.dtype, np.int64) def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) self.assertEqual(dm.values.ndim, 2) arr = randn(0) dm = DataFrame(arr) self.assertEqual(dm.values.ndim, 2) self.assertEqual(dm.values.ndim, 2) # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) self.assertEqual(dm.values.shape, (10, 2)) dm = DataFrame(columns=['A', 'B']) self.assertEqual(dm.values.shape, (0, 2)) dm = DataFrame(index=np.arange(10)) self.assertEqual(dm.values.shape, (10, 0)) # corner, silly # TODO: Fix this Exception to be better... with tm.assertRaisesRegexp(PandasError, 'constructor not ' 'properly called'): DataFrame((1, 2, 3)) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with tm.assertRaisesRegexp(ValueError, 'cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) self.assertEqual(len(dm.columns), 2) self.assertEqual(dm.values.dtype, np.float64) def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 l = [[1, 'a'], [2, 'b']] df = DataFrame(data=l, columns=["num", "str"]) self.assertTrue(is_integer_dtype(df['num'])) self.assertEqual(df['str'].dtype, np.object_) # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: range(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like import collections class DummyContainer(collections.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() l = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(l, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame.from_items([('A', array.array('i', range(10)))]) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with tm.assertRaisesRegexp(ValueError, 'arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) self.assertTrue(result.index.is_monotonic) # ordering ambiguous, raise exception with tm.assertRaisesRegexp(ValueError, 'ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) self.assertEqual(df.columns[0], 'x') self.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) self.assertRaises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) self.assertEqual(df.columns[0], 'x') # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) self.assertEqual(df1.columns[0], 'x') tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) self.assertEqual(df2.columns[0], 0) self.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) self.assert_index_equal(result.index, Index(index)) self.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.ix[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) self.assertEqual(recons['A'].dtype, np.float64) with tm.assertRaisesRegexp(TypeError, "Must pass columns with orient='index'"): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = lib.list_to_object_array( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) tm.assertIsInstance(recons['foo'][0], tuple) rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.ix[:, ['A', 'B']]) with tm.assertRaisesRegexp(ValueError, 'does not match index length'): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_iterator_failure(self): with tm.assertRaisesRegexp(TypeError, 'iterator'): df = DataFrame(iter([1, 2, 3])) # noqa def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_items( [('a', [8]), ('a', [5])], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) self.assertRaises(ValueError, DataFrame.from_items, [('a', [8]), ('a', [5]), ('b', [6])], columns=['b', 'a', 'a']) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) self.assertRaises(com.PandasError, DataFrame, 'a', [1, 2]) self.assertRaises(com.PandasError, DataFrame, 'a', columns=['a', 'c']) with tm.assertRaisesRegexp(TypeError, 'incompatible data and dtype'): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result.sort_index() expected = Series(expected) expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) self.assertEqual(datetime_s.dtype, 'M8[ns]') df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) self.assertEqual(df.iat[0, 0], dt) tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) self.assertEqual(df.iat[0, 0], dt) tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) self.assertTrue(df.iat[0, 0].tz is None) dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) self.assertTrue(str(df.iat[0, 0].tz) == 'UTC') dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) self.assertTrue(str(df.iat[0, 0].tz) == 'US/Eastern') # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 self.assertTrue((cop['A'] == 5).all()) self.assertFalse((self.frame['A'] == 5).all()) def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 self.assertTrue((df.values[5] == 5).all()) df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 self.assertFalse((df.values[6] == 6).all()) def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 self.assertFalse((series['A'] == 5).all()) def test_constructor_with_nas(self): # GH 5016 # na's in indicies def check(df): for i in range(len(df.columns)): df.iloc[:, i] # allow single nans to succeed indexer = np.arange(len(df.columns))[isnull(df.columns)] if len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should fail else: def f(): df.loc[:, np.nan] self.assertRaises(TypeError, f) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) self.assertEqual(d['a'].dtype, np.object_) self.assertFalse(d['a'][1]) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index) self.assert_index_equal(indexed_frame.index, index) # without names, it should go to last ditch arr2 = np.zeros((2, 3)) tm.assert_frame_equal(DataFrame.from_records(arr2), DataFrame(arr2)) # wrong length msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with tm.assertRaisesRegexp(ValueError, msg): DataFrame.from_records(arr, index=index[:-1]) indexed_frame = DataFrame.from_records(arr, index='f1') # what to do? records = indexed_frame.to_records() self.assertEqual(len(records.dtype.names), 3) records = indexed_frame.to_records(index=False) self.assertEqual(len(records.dtype.names), 2) self.assertNotIn('index', records.dtype.names) def test_from_records_nones(self): tuples = [(1, 2, None, 3), (1, 2, None, 3), (None, 2, 5, 3)] df = DataFrame.from_records(tuples, columns=['a', 'b', 'c', 'd']) self.assertTrue(np.isnan(df['c'][0])) def test_from_records_iterator(self): arr = np.array([(1.0, 1.0, 2, 2), (3.0, 3.0, 4, 4), (5., 5., 6, 6), (7., 7., 8, 8)], dtype=[('x', np.float64), ('u', np.float32), ('y', np.int64), ('z', np.int32)]) df = DataFrame.from_records(iter(arr), nrows=2) xp = DataFrame({'x': np.array([1.0, 3.0], dtype=np.float64), 'u': np.array([1.0, 3.0], dtype=np.float32), 'y': np.array([2, 4], dtype=np.int64), 'z': np.array([2, 4], dtype=np.int32)}) tm.assert_frame_equal(df.reindex_like(xp), xp) # no dtypes specified here, so just compare with the default arr = [(1.0, 2), (3.0, 4), (5., 6), (7., 8)] df = DataFrame.from_records(iter(arr), columns=['x', 'y'], nrows=2) tm.assert_frame_equal(df, xp.reindex(columns=['x', 'y']), check_dtype=False) def test_from_records_tuples_generator(self): def tuple_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield (i, letters[i % len(letters)], i / length) columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in tuple_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = tuple_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_lists_generator(self): def list_generator(length): for i in range(length): letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' yield [i, letters[i % len(letters)], i / length] columns_names = ['Integer', 'String', 'Float'] columns = [[i[j] for i in list_generator( 10)] for j in range(len(columns_names))] data = {'Integer': columns[0], 'String': columns[1], 'Float': columns[2]} expected = DataFrame(data, columns=columns_names) generator = list_generator(10) result = DataFrame.from_records(generator, columns=columns_names) tm.assert_frame_equal(result, expected) def test_from_records_columns_not_modified(self): tuples = [(1, 2, 3), (1, 2, 3), (2, 5, 3)] columns = ['a', 'b', 'c'] original_columns = list(columns) df = DataFrame.from_records(tuples, columns=columns, index='a') # noqa self.assertEqual(columns, original_columns) def test_from_records_decimal(self): from decimal import Decimal tuples = [(Decimal('1.5'),), (Decimal('2.5'),), (None,)] df = DataFrame.from_records(tuples, columns=['a']) self.assertEqual(df['a'].dtype, object) df = DataFrame.from_records(tuples, columns=['a'], coerce_float=True) self.assertEqual(df['a'].dtype, np.float64) self.assertTrue(np.isnan(df['a'].values[-1])) def test_from_records_duplicates(self): result = DataFrame.from_records([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) expected = DataFrame([(1, 2, 3), (4, 5, 6)], columns=['a', 'b', 'a']) tm.assert_frame_equal(result, expected) def test_from_records_set_index_name(self): def create_dict(order_id): return {'order_id': order_id, 'quantity': np.random.randint(1, 10), 'price': np.random.randint(1, 10)} documents = [create_dict(i) for i in range(10)] # demo missing data documents.append({'order_id': 10, 'quantity': 5}) result = DataFrame.from_records(documents, index='order_id') self.assertEqual(result.index.name, 'order_id') # MultiIndex result = DataFrame.from_records(documents, index=['order_id', 'quantity']) self.assertEqual(result.index.names, ('order_id', 'quantity')) def test_from_records_misc_brokenness(self): # #2179 data = {1: ['foo'], 2: ['bar']} result = DataFrame.from_records(data, columns=['a', 'b']) exp = DataFrame(data, columns=['a', 'b']) tm.assert_frame_equal(result, exp) # overlap in index/index_names data = {'a': [1, 2, 3], 'b': [4, 5, 6]} result = DataFrame.from_records(data, index=['a', 'b', 'c']) exp = DataFrame(data, index=['a', 'b', 'c']) tm.assert_frame_equal(result, exp) # GH 2623 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) # test col upconverts to obj df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'object': 1}) rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 1]) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) results = df2_obj.get_dtype_counts() expected = Series({'datetime64[ns]': 1, 'int64': 1}) tm.assert_series_equal(results, expected) def test_from_records_empty(self): # 3562 result = DataFrame.from_records([], columns=['a', 'b', 'c']) expected = DataFrame(columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) result = DataFrame.from_records([], columns=['a', 'b', 'b']) expected = DataFrame(columns=['a', 'b', 'b']) tm.assert_frame_equal(result, expected) def test_from_records_empty_with_nonempty_fields_gh3682(self): a = np.array([(1, 2)], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(a, index='id') tm.assert_index_equal(df.index, Index([1], name='id')) self.assertEqual(df.index.name, 'id') tm.assert_index_equal(df.columns, Index(['value'])) b = np.array([], dtype=[('id', np.int64), ('value', np.int64)]) df = DataFrame.from_records(b, index='id') tm.assert_index_equal(df.index, Index([], name='id')) self.assertEqual(df.index.name, 'id') def test_from_records_with_datetimes(self): # this may fail on certain platforms because of a numpy issue # related GH6140 if not is_platform_little_endian(): raise nose.SkipTest("known failure of test on non-little endian") # construction with a null in a recarray # GH 6140 expected = DataFrame({'EXPIRY': [datetime(2005, 3, 1, 0, 0), None]}) arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[ns]')] try: recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) except (ValueError): raise nose.SkipTest("known failure of numpy rec array creation") result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) # coercion should work too arrdata = [np.array([datetime(2005, 3, 1, 0, 0), None])] dtypes = [('EXPIRY', '<M8[m]')] recarray = np.core.records.fromarrays(arrdata, dtype=dtypes) result = DataFrame.from_records(recarray) tm.assert_frame_equal(result, expected) def test_from_records_sequencelike(self): df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # this is actually tricky to create the recordlike arrays and # have the dtypes be intact blocks = df.blocks tuples = [] columns = [] dtypes = [] for dtype, b in compat.iteritems(blocks): columns.extend(b.columns) dtypes.extend([(c, np.dtype(dtype).descr[0][1]) for c in b.columns]) for i in range(len(df.index)): tup = [] for _, b in compat.iteritems(blocks): tup.extend(b.iloc[i].values) tuples.append(tuple(tup)) recarray = np.array(tuples, dtype=dtypes).view(np.recarray) recarray2 = df.to_records() lists = [list(x) for x in tuples] # tuples (lose the dtype info) result = (DataFrame.from_records(tuples, columns=columns) .reindex(columns=df.columns)) # created recarray and with to_records recarray (have dtype info) result2 = (DataFrame.from_records(recarray, columns=columns) .reindex(columns=df.columns)) result3 = (DataFrame.from_records(recarray2, columns=columns) .reindex(columns=df.columns)) # list of tupels (no dtype info) result4 = (DataFrame.from_records(lists, columns=columns) .reindex(columns=df.columns)) tm.assert_frame_equal(result, df, check_dtype=False) tm.assert_frame_equal(result2, df) tm.assert_frame_equal(result3, df) tm.assert_frame_equal(result4, df, check_dtype=False) # tuples is in the order of the columns result = DataFrame.from_records(tuples) tm.assert_index_equal(result.columns, pd.Index(lrange(8))) # test exclude parameter & we are casting the results here (as we don't # have dtype info to recover) columns_to_test = [columns.index('C'), columns.index('E1')] exclude = list(set(range(8)) - set(columns_to_test)) result = DataFrame.from_records(tuples, exclude=exclude) result.columns = [columns[i] for i in sorted(columns_to_test)] tm.assert_series_equal(result['C'], df['C']) tm.assert_series_equal(result['E1'], df['E1'].astype('float64')) # empty case result = DataFrame.from_records([], columns=['foo', 'bar', 'baz']) self.assertEqual(len(result), 0) self.assert_index_equal(result.columns, pd.Index(['foo', 'bar', 'baz'])) result = DataFrame.from_records([]) self.assertEqual(len(result), 0) self.assertEqual(len(result.columns), 0) def test_from_records_dictlike(self): # test the dict methods df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64), 'A1': np.array(np.random.randn(6), dtype=np.float64), 'B': np.array(np.arange(6), dtype=np.int64), 'C': ['foo'] * 6, 'D': np.array([True, False] * 3, dtype=bool), 'E': np.array(np.random.randn(6), dtype=np.float32), 'E1': np.array(np.random.randn(6), dtype=np.float32), 'F': np.array(np.arange(6), dtype=np.int32)}) # columns is in a different order here than the actual items iterated # from the dict columns = [] for dtype, b in compat.iteritems(df.blocks): columns.extend(b.columns) asdict = dict((x, y) for x, y in compat.iteritems(df)) asdict2 = dict((x, y.values) for x, y in compat.iteritems(df)) # dict of series & dict of ndarrays (have dtype info) results = [] results.append(DataFrame.from_records( asdict).reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict, columns=columns) .reindex(columns=df.columns)) results.append(DataFrame.from_records(asdict2, columns=columns) .reindex(columns=df.columns)) for r in results: tm.assert_frame_equal(r, df) def test_from_records_with_index_data(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) data = np.random.randn(10) df1 = DataFrame.from_records(df, index=data) tm.assert_index_equal(df1.index, Index(data)) def test_from_records_bad_index_column(self): df = DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) # should pass df1 = DataFrame.from_records(df, index=['C']) tm.assert_index_equal(df1.index, Index(df.C)) df1 = DataFrame.from_records(df, index='C') tm.assert_index_equal(df1.index, Index(df.C)) # should fail self.assertRaises(ValueError, DataFrame.from_records, df, index=[2]) self.assertRaises(KeyError, DataFrame.from_records, df, index=2) def test_from_records_non_tuple(self): class Record(object): def __init__(self, *args): self.args = args def __getitem__(self, i): return self.args[i] def __iter__(self): return iter(self.args) recs = [Record(1, 2, 3), Record(4, 5, 6), Record(7, 8, 9)] tups = lmap(tuple, recs) result = DataFrame.from_records(recs) expected = DataFrame.from_records(tups) tm.assert_frame_equal(result, expected) def test_from_records_len0_with_columns(self): # #2633 result = DataFrame.from_records([], index='foo', columns=['foo', 'bar']) self.assertTrue(np.array_equal(result.columns, ['bar'])) self.assertEqual(len(result), 0) self.assertEqual(result.index.name, 'foo') class TestDataFrameConstructorWithDatetimeTZ(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_from_dict(self): # 8260 # support datetime64 with tz idx = Index(date_range('20130101', periods=3, tz='US/Eastern'), name='foo') dr = date_range('20130110', periods=3) # construction df = DataFrame({'A': idx, 'B': dr}) self.assertTrue(df['A'].dtype, 'M8[ns, US/Eastern') self.assertTrue(df['A'].name == 'A') tm.assert_series_equal(df['A'], Series(idx, name='A')) tm.assert_series_equal(df['B'], Series(dr, name='B')) def test_from_index(self): # from index idx2 = date_range('20130101', periods=3, tz='US/Eastern', name='foo') df2 = DataFrame(idx2) tm.assert_series_equal(df2['foo'], Series(idx2, name='foo')) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2['foo'], Series(idx2, name='foo')) idx2 = date_range('20130101', periods=3, tz='US/Eastern') df2 = DataFrame(idx2) tm.assert_series_equal(df2[0], Series(idx2, name=0)) df2 = DataFrame(Series(idx2)) tm.assert_series_equal(df2[0], Series(idx2, name=0)) if __name__ == '__main__': import nose # noqa nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
vitay/ANNarchy
examples/pyNN/IF_cond_exp.py
2
1427
# ANNarchy - IF_cond_exp # # A single IF neuron with exponential, conductance-based synapses, fed by two spike sources. # # This is a reimplementation of the PyNN example: # # http://www.neuralensemble.org/trac/PyNN/wiki/Examples/IF_cond_exp # # authors: Helge Uelo Dinkelbach, Julien Vitay from ANNarchy import * # Parameters dt = 0.1 tstop = 200.0 # Setup setup(dt=dt) # Input populations with predetermined spike times spike_sourceE = SpikeSourceArray(spike_times= [float(i) for i in range(5,105,10)] ) spike_sourceI = SpikeSourceArray(spike_times= [float(i) for i in range(155,255,10)]) # Population with one IF_cond_exp neuron ifcell = Population(1, IF_cond_exp) ifcell.set( { 'i_offset' : 0.1, 'tau_refrac' : 3.0, 'v_thresh' : -51.0, 'tau_syn_E' : 2.0, 'tau_syn_I': 5.0, 'v_reset' : -70.0, 'e_rev_E' : 0., 'e_rev_I' : -80.0 } ) # Projections connE = Projection(spike_sourceE, ifcell, 'exc').connect_all_to_all(weights=0.006, delays=2.0) connI = Projection(spike_sourceI, ifcell, 'inh').connect_all_to_all(weights=0.02, delays=4.0) # Compile the network compile() # Simulate m = Monitor(ifcell, ['spike', 'v']) simulate(tstop) data = m.get() # Show the result import matplotlib.pyplot as plt plt.plot(dt*np.arange(tstop/dt), data['v'][:, 0]) plt.xlabel('Time (ms)') plt.ylabel('Vm (mV)') plt.ylim([-66.0, -61.0]) plt.title('IF_cond_exp') plt.show()
gpl-2.0
bjsmith/motivation-simulation
get_data.py
1
1907
import pandas as pd data_folder = '/Users/benjaminsmith/Documents/computational-modeling/data/' exp_design = pd.read_csv(data_folder + 'daquila2012/exp-design.csv') data_exp_1_raw = pd.read_csv(data_folder + 'daquila2012/exp-1.csv') data_exp_2_raw = pd.read_csv(data_folder + 'daquila2012/exp-2.csv') def reshape_experimental_data(exp_df,DoseAmountDict,DoseSubstance): exp_df_long=pd.melt(exp_df, id_vars=['Subject','Measure'],var_name='ExposureEvent') exp_df_wide=exp_df_long.groupby(['Subject']).apply(lambda d: d.pivot(index='ExposureEvent',columns='Measure',values='value')) exp_df_tabular = exp_df_wide.reset_index() exp_df_tabular.ExposureEvent = [int(r.replace("Event ", "")) for r in exp_df_tabular.ExposureEvent] exp_df_tabular_ordered = exp_df_tabular.sort_values(['Subject','ExposureEvent']).reset_index(drop=True) exp_df_tabular_ordered_alldata = pd.merge(exp_df_tabular_ordered, exp_design, how='left', on='ExposureEvent') concentration_dict = {1: (0.9 / 100), 2: (2.70 / 100)} exp_df_tabular_ordered_alldata['ConcentrationAmount']= [concentration_dict[c] for c in exp_df_tabular_ordered_alldata.Concentration] exp_df_tabular_ordered_alldata['DoseAmount']= [DoseAmountDict[c] for c in exp_df_tabular_ordered_alldata.DoseType] depletion_dict = {1:'Na replete',2:'Na depleted'} exp_df_tabular_ordered_alldata['DepletionDescription']= [depletion_dict[c] for c in exp_df_tabular_ordered_alldata.loc[:,"Depletion status"]] exp_df_tabular_ordered_alldata['DoseSubstance']=DoseSubstance return exp_df_tabular_ordered_alldata data_exp_1 = reshape_experimental_data(data_exp_1_raw,{1:0,2:10,3:20,4:40},DoseSubstance='SCH 23390') data_exp_2 = reshape_experimental_data(data_exp_2_raw,{1:0,2:25,3:125,4:250},DoseSubstance='Raclopride') #data_exp_2.to_csv(data_folder + "myout.csv")
gpl-3.0
lekshmideepu/nest-simulator
pynest/examples/plot_weight_matrices.py
8
6989
# -*- coding: utf-8 -*- # # plot_weight_matrices.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Plot weight matrices example ---------------------------- This example demonstrates how to extract the connection strength for all the synapses among two populations of neurons and gather these values in weight matrices for further analysis and visualization. All connection types between these populations are considered, i.e., four weight matrices are created and plotted. """ ############################################################################### # First, we import all necessary modules to extract, handle and plot # the connectivity matrices import numpy as np import matplotlib.pyplot as plt import nest import matplotlib.gridspec as gridspec from mpl_toolkits.axes_grid1 import make_axes_locatable ############################################################################### # We now specify a function to extract and plot weight matrices for all # connections among `E_neurons` and `I_neurons`. # # We initialize all the matrices, whose dimensionality is determined by the # number of elements in each population. # Since in this example, we have 2 populations (E/I), :math:`2^2` possible # synaptic connections exist (EE, EI, IE, II). # # Note the use of "post-pre" notation when referring to synaptic connections. # As a matter of convention in computational neuroscience, we refer to the # connection from inhibitory to excitatory neurons (I->E) as EI (post-pre) and # connections from excitatory to inhibitory neurons (E->I) as IE (post-pre). def plot_weight_matrices(E_neurons, I_neurons): W_EE = np.zeros([len(E_neurons), len(E_neurons)]) W_EI = np.zeros([len(I_neurons), len(E_neurons)]) W_IE = np.zeros([len(E_neurons), len(I_neurons)]) W_II = np.zeros([len(I_neurons), len(I_neurons)]) a_EE = nest.GetConnections(E_neurons, E_neurons) # Using `get`, we can extract the value of the connection weight, # for all the connections between these populations c_EE = a_EE.weight # Repeat the two previous steps for all other connection types a_EI = nest.GetConnections(I_neurons, E_neurons) c_EI = a_EI.weight a_IE = nest.GetConnections(E_neurons, I_neurons) c_IE = a_IE.weight a_II = nest.GetConnections(I_neurons, I_neurons) c_II = a_II.weight # We now iterate through the range of all connections of each type. # To populate the corresponding weight matrix, we begin by identifying # the source-node_id (by using .source) and the target-node_id. # For each node_id, we subtract the minimum node_id within the corresponding # population, to assure the matrix indices range from 0 to the size of # the population. # After determining the matrix indices [i, j], for each connection # object, the corresponding weight is added to the entry W[i,j]. # The procedure is then repeated for all the different connection types. a_EE_src = a_EE.source a_EE_trg = a_EE.target a_EI_src = a_EI.source a_EI_trg = a_EI.target a_IE_src = a_IE.source a_IE_trg = a_IE.target a_II_src = a_II.source a_II_trg = a_II.target for idx in range(len(a_EE)): W_EE[a_EE_src[idx] - min(E_neurons), a_EE_trg[idx] - min(E_neurons)] += c_EE[idx] for idx in range(len(a_EI)): W_EI[a_EI_src[idx] - min(I_neurons), a_EI_trg[idx] - min(E_neurons)] += c_EI[idx] for idx in range(len(a_IE)): W_IE[a_IE_src[idx] - min(E_neurons), a_IE_trg[idx] - min(I_neurons)] += c_IE[idx] for idx in range(len(a_II)): W_II[a_II_src[idx] - min(I_neurons), a_II_trg[idx] - min(I_neurons)] += c_II[idx] fig = plt.figure() fig.subtitle('Weight matrices', fontsize=14) gs = gridspec.GridSpec(4, 4) ax1 = plt.subplot(gs[:-1, :-1]) ax2 = plt.subplot(gs[:-1, -1]) ax3 = plt.subplot(gs[-1, :-1]) ax4 = plt.subplot(gs[-1, -1]) plt1 = ax1.imshow(W_EE, cmap='jet') divider = make_axes_locatable(ax1) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(plt1, cax=cax) ax1.set_title('W_{EE}') plt.tight_layout() plt2 = ax2.imshow(W_IE) plt2.set_cmap('jet') divider = make_axes_locatable(ax2) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(plt2, cax=cax) ax2.set_title('W_{EI}') plt.tight_layout() plt3 = ax3.imshow(W_EI) plt3.set_cmap('jet') divider = make_axes_locatable(ax3) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(plt3, cax=cax) ax3.set_title('W_{IE}') plt.tight_layout() plt4 = ax4.imshow(W_II) plt4.set_cmap('jet') divider = make_axes_locatable(ax4) cax = divider.append_axes("right", "5%", pad="3%") plt.colorbar(plt4, cax=cax) ax4.set_title('W_{II}') plt.tight_layout() ################################################################################# # The script iterates through the list of all connections of each type. # To populate the corresponding weight matrix, we identify the source-node_id # (first element of each connection object, `n[0]`) and the target-node_id (second # element of each connection object, `n[1]`). # For each `node_id`, we subtract the minimum `node_id` within the corresponding # population, to assure the matrix indices range from 0 to the size of the # population. # # After determining the matrix indices `[i, j]`, for each connection object, the # corresponding weight is added to the entry `W[i,j]`. The procedure is then # repeated for all the different connection types. # # We then plot the figure, specifying the properties we want. For example, we # can display all the weight matrices in a single figure, which requires us to # use ``GridSpec`` to specify the spatial arrangement of the axes. # A subplot is subsequently created for each connection type. Using ``imshow``, # we can visualize the weight matrix in the corresponding axis. We can also # specify the colormap for this image. # Using the ``axis_divider`` module from ``mpl_toolkits``, we can allocate a small # extra space on the right of the current axis, which we reserve for a # colorbar. # We can set the title of each axis and adjust the axis subplot parameters. # Finally, the last three steps are repeated for each synapse type.
gpl-2.0
gditzler/py-npfs
src/npfs.py
1
6070
#!/usr/bin/env python import numpy as np import feast from scipy.stats import binom from multiprocessing import Pool import matplotlib.pylab as plt __author__ = "Gregory Ditzler" __copyright__ = "Copyright 2014, EESI Laboratory (Drexel University)" __credits__ = ["Gregory Ditzler"] __license__ = "GPL" __version__ = "0.1.0" __maintainer__ = "Gregory Ditzler" __email__ = "[email protected]" __status__ = "development" class npfs: def __init__(self, fs_method="JMI", n_select=5, n_bootstraps=100, \ verbose=False, alpha=.01, beta=0.0, parallel=None, min_improv=0.): """ @self - self explanitory @fs_method - feature selection algorithm to use. Available methods are: CIFE, CMIM, CONDMI, CONDRED, DISR, ICAP, JMI, MIM, MIFS, mRMR DEFAULT: JMI @n_select - number of features to select. this is the number of features that the base feature selection uses. NPFS may select a different number of features [DEFAULT = 5] @n_bootstraps - number of bootstraps [DEFAULT = 100] @alpha - size of the hypothesis test [DEFAULT = 0.01] @beta - bias parameter for the test [DEFAULT = 0.0] @parallel - number of parallel workers to use [DEFAULT = None] @min_improv - critera for early stopping [DEFAULT = 0.0] """ self.fs_method = fs_method self.n_select = n_select self.n_bootstraps = n_bootstraps self.alpha = alpha self.beta = beta self.selected_features = [] self.parallel = parallel self.min_improv = min_improv if min_improv != 0.: self.early_stopping = True else: self.early_stopping = False def fit(self, data, labels): """ @self - self explanitory @data - data in a numpy array. here are some suggestions for formatting the data. len(data) = n_observations len(data.transpose()) = n_features @labels - numerical class labels in a numpy array. len(labels) = n_observations """ data, labels = self.__check_data(data, labels) try: fs_method = getattr(feast, self.fs_method) except ImportError: raise("Method does not exist in FEAST") self.n_observations = len(data) self.n_features = len(data.transpose()) self.method = fs_method # @Z - contains the observations of the Bernoulli random variables # that are whether the feature were or were not selected Z = np.zeros( (self.n_features, self.n_bootstraps) ) self.data = data self.labels = labels if self.parallel == None: if self.early_stopping == False: for b in range(self.n_bootstraps): sf = self.boot_iteration() Z[sf, b] = 1 # mark the features selected with a '1'. else: p1_old = np.zeros((self.n_features,)) for b in range(self.n_bootstraps): sf = self.boot_iteration() Z[sf, b] = 1. p1 = Z.sum(axis=1)/b d = np.abs(p1 - p1_old).mean() if d < self.min_improv: self.run_time = b break p1_old = p1 else: pool = Pool(processes = self.parallel) sfs = pool.map(__call__, (self for x in range(self.n_bootstraps))) for x in range(len(sfs)): Z[sfs[x], x] = 1 z = np.sum(Z, axis=1) # z is a binomial random variable # compute the neyman-pearson threshold (include the bias term) p = (1.0*self.n_select)/self.n_features + self.beta if p > 1.0: # user chose \beta poorly -- null it out raise ValueError("p+beta > 1 -> Invalid probability") delta = binom.ppf(1 - self.alpha, self.n_bootstraps, p) # based on the threshold, determine which features are relevant and return # them in a numpy array selected_features = [] for k in range(self.n_features): if z[k] > delta: selected_features.append(k) self.Bernoulli_matrix = Z self.selected_features = np.array(selected_features) return self.selected_features def __check_data(self, data, labels): """ The data and label arrays must be of the same length. Furthermore, the data are expected to be in numpy arrays. Return an error if this is not the case. Otherwise, if everything else check out, cast the arrays as floats. Its how the data are expected for PyFeast. """ if isinstance(data, np.ndarray) is False: raise Exception("Data must be an numpy ndarray.") if isinstance(labels, np.ndarray) is False: raise Exception("Labels must be an numpy ndarray.") if len(data) != len(labels): raise Exception("Data and labels must be the same length") return 1.0*data, 1.0*labels def boot_iteration(self, null=None): """ @self @null - leave alone """ # generate some random integers that are the boostrap indices. the size # of the bootstrap is the size of the data sample. hence all samples are # sampled with replacement idx = np.random.randint(0, self.n_observations, self.n_observations) data_sub = self.data[idx] # bootstrap features labels_sub = self.labels[idx] # bootstrap labels sf = self.method(data_sub, labels_sub, self.n_select) # run feature selection return sf def plot_bernoulli_matrix(self, show_npfs=False): """ Plot the heatmap of the Bernoulli matrix @self @show_npfs - Highlight NPFS detections [Boolean] """ matrix = self.Bernoulli_matrix if show_npfs == False: plot = plt.imshow(matrix) plot.set_cmap('hot') plt.colorbar() plt.xlabel("Bootstraps") plt.ylabel("Feature") plt.show() else: for i in self.selected_features: for k in range(len(matrix[i])): matrix[i,k] = .5 plot = plt.imshow(matrix) plot.set_cmap('hot') plt.xlabel("Bootstraps") plt.ylabel("Feature") plt.colorbar() plt.show() return None def __call__(obj): """ This is a weird little hack to get around using multiprocessing with the package being called inside of the NPFS object """ return obj.boot_iteration(None)
gpl-3.0
Nyker510/scikit-learn
examples/neighbors/plot_kde_1d.py
347
5100
""" =================================== Simple 1D Kernel Density Estimation =================================== This example uses the :class:`sklearn.neighbors.KernelDensity` class to demonstrate the principles of Kernel Density Estimation in one dimension. The first plot shows one of the problems with using histograms to visualize the density of points in 1D. Intuitively, a histogram can be thought of as a scheme in which a unit "block" is stacked above each point on a regular grid. As the top two panels show, however, the choice of gridding for these blocks can lead to wildly divergent ideas about the underlying shape of the density distribution. If we instead center each block on the point it represents, we get the estimate shown in the bottom left panel. This is a kernel density estimation with a "top hat" kernel. This idea can be generalized to other kernel shapes: the bottom-right panel of the first figure shows a Gaussian kernel density estimate over the same distribution. Scikit-learn implements efficient kernel density estimation using either a Ball Tree or KD Tree structure, through the :class:`sklearn.neighbors.KernelDensity` estimator. The available kernels are shown in the second figure of this example. The third figure compares kernel density estimates for a distribution of 100 samples in 1 dimension. Though this example uses 1D distributions, kernel density estimation is easily and efficiently extensible to higher dimensions as well. """ # Author: Jake Vanderplas <[email protected]> # import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm from sklearn.neighbors import KernelDensity #---------------------------------------------------------------------- # Plot the progression of histograms to kernels np.random.seed(1) N = 20 X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] bins = np.linspace(-5, 10, 10) fig, ax = plt.subplots(2, 2, sharex=True, sharey=True) fig.subplots_adjust(hspace=0.05, wspace=0.05) # histogram 1 ax[0, 0].hist(X[:, 0], bins=bins, fc='#AAAAFF', normed=True) ax[0, 0].text(-3.5, 0.31, "Histogram") # histogram 2 ax[0, 1].hist(X[:, 0], bins=bins + 0.75, fc='#AAAAFF', normed=True) ax[0, 1].text(-3.5, 0.31, "Histogram, bins shifted") # tophat KDE kde = KernelDensity(kernel='tophat', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 0].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 0].text(-3.5, 0.31, "Tophat Kernel Density") # Gaussian KDE kde = KernelDensity(kernel='gaussian', bandwidth=0.75).fit(X) log_dens = kde.score_samples(X_plot) ax[1, 1].fill(X_plot[:, 0], np.exp(log_dens), fc='#AAAAFF') ax[1, 1].text(-3.5, 0.31, "Gaussian Kernel Density") for axi in ax.ravel(): axi.plot(X[:, 0], np.zeros(X.shape[0]) - 0.01, '+k') axi.set_xlim(-4, 9) axi.set_ylim(-0.02, 0.34) for axi in ax[:, 0]: axi.set_ylabel('Normalized Density') for axi in ax[1, :]: axi.set_xlabel('x') #---------------------------------------------------------------------- # Plot all available kernels X_plot = np.linspace(-6, 6, 1000)[:, None] X_src = np.zeros((1, 1)) fig, ax = plt.subplots(2, 3, sharex=True, sharey=True) fig.subplots_adjust(left=0.05, right=0.95, hspace=0.05, wspace=0.05) def format_func(x, loc): if x == 0: return '0' elif x == 1: return 'h' elif x == -1: return '-h' else: return '%ih' % x for i, kernel in enumerate(['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']): axi = ax.ravel()[i] log_dens = KernelDensity(kernel=kernel).fit(X_src).score_samples(X_plot) axi.fill(X_plot[:, 0], np.exp(log_dens), '-k', fc='#AAAAFF') axi.text(-2.6, 0.95, kernel) axi.xaxis.set_major_formatter(plt.FuncFormatter(format_func)) axi.xaxis.set_major_locator(plt.MultipleLocator(1)) axi.yaxis.set_major_locator(plt.NullLocator()) axi.set_ylim(0, 1.05) axi.set_xlim(-2.9, 2.9) ax[0, 1].set_title('Available Kernels') #---------------------------------------------------------------------- # Plot a 1D density example N = 100 np.random.seed(1) X = np.concatenate((np.random.normal(0, 1, 0.3 * N), np.random.normal(5, 1, 0.7 * N)))[:, np.newaxis] X_plot = np.linspace(-5, 10, 1000)[:, np.newaxis] true_dens = (0.3 * norm(0, 1).pdf(X_plot[:, 0]) + 0.7 * norm(5, 1).pdf(X_plot[:, 0])) fig, ax = plt.subplots() ax.fill(X_plot[:, 0], true_dens, fc='black', alpha=0.2, label='input distribution') for kernel in ['gaussian', 'tophat', 'epanechnikov']: kde = KernelDensity(kernel=kernel, bandwidth=0.5).fit(X) log_dens = kde.score_samples(X_plot) ax.plot(X_plot[:, 0], np.exp(log_dens), '-', label="kernel = '{0}'".format(kernel)) ax.text(6, 0.38, "N={0} points".format(N)) ax.legend(loc='upper left') ax.plot(X[:, 0], -0.005 - 0.01 * np.random.random(X.shape[0]), '+k') ax.set_xlim(-4, 9) ax.set_ylim(-0.02, 0.4) plt.show()
bsd-3-clause
Lowingbn/iccpy
simulations/aquarius.py
1
4810
import iccpy.gadget import matplotlib.pyplot as pl import numpy as np import iccpy.utils sim_label = { 'aqa' : 'A', 'aqb' : 'B', 'aqc':'C', 'aqd':'D', 'aqe':'E' } last_snapnum = { 'aqa2' : 1023, 'aqa3' : 511, 'aqa4' : 1023, 'aqb2' : 127, 'aqc2' : 127, 'aqd2' : 127, 'aqe2' : 127 } r_200 = { 'aqa1' : 245.67, 'aqa2' : 245.88, 'aqa3' : 245.64, 'aqa4' : 245.70, 'aqa5' : 246.37, 'aqb2' : 187.70, 'aqb4' : 188.85, 'aqc2' : 242.82, 'aqc4' : 243.68, 'aqd2' : 242.85, 'aqd4' : 243.60, 'aqe2' : 212.28, 'aqe4' : 213.63, 'aqf2' : 209.21, 'aqf4' : 207.15 } M_200 = { 'aqa1' : 183.9, 'aqa2' : 184.2, 'aqa3' : 183.6, 'aqa4' : 183.8, 'aqa5' : 185.3, 'aqb2' : 81.94, 'aqb4' : 83.45, 'aqc2' : 177.4, 'aqc4' : 179.3, 'aqd2' : 177.4, 'aqd4' : 179.1, 'aqe2' : 118.5, 'aqe4' : 120.8, 'aqf2' : 113.5, 'aqf4' : 110.1 } merger_tree_filename = { 'aqa2' : '/gpfs/data/jch/Aquarius/Trees/Aq-A/2/trees/treedir_127/tree_127.0.hdf5', 'aqb2' : '/gpfs/data/d50wse/WMAP7_Trees/trees_Aq-B2/treedir_127/tree_127.0.hdf5', 'aqc2' : '/gpfs/data/d50wse/WMAP7_Trees/trees_Aq-C2/treedir_127/tree_127.0.hdf5', 'aqd2' : '/gpfs/data/d50wse/WMAP7_Trees/trees_Aq-D2/treedir_127/tree_127.0.hdf5', 'aqe2' : '/gpfs/data/d50wse/WMAP7_Trees/trees_Aq-E2/treedir_127/tree_127.0.hdf5' } def get_dir(sim_name): return "/gpfs/data/aquarius/halo_data/Aq-%s/%c/" % (sim_label[sim_name[0:3]], sim_name[3]) def load_last_snapshot(sim_name): return iccpy.gadget.load_snapshot(directory=get_dir(sim_name), snapnum=last_snapnum[sim_name]) def get_subhaloes(sim_name, snapnum=None): if snapnum==None: snapnum=last_snapnum[sim_name] catalogue = iccpy.gadget.SubfindCatalogue(get_dir(sim_name), snapnum) return catalogue.subhalo def get_halo_centre(sim_name): return get_subhaloes(sim_name)[0].pot_min def get_merger_tree(sim_name): return MergerTree(merger_tree_filename[sim_name]) def plot(plot_func, haloes=['A', 'B', 'C', 'D', 'E', 'F'], legend=None, tick_length=8, minor_tick_x_space=None, minor_tick_y_space=None): from matplotlib.ticker import MultipleLocator haloes = np.array(haloes) # no space between the panels pl.rcParams.update({'figure.subplot.wspace':0,'figure.subplot.hspace':0}) all_haloes = np.array(['A', 'B', 'C', 'D', 'E', 'F']) plotIdxs = np.sort(iccpy.utils.match(haloes, all_haloes)) numRows = 3 numCols = 2 for i in plotIdxs: ax = pl.subplot(numRows,numCols,i+1) plot_func(all_haloes[i], ax) #Tidy up plot if minor_tick_y_space is not None: ax.yaxis.set_minor_locator(MultipleLocator(minor_tick_y_space)) if minor_tick_x_space is not None: ax.xaxis.set_minor_locator(MultipleLocator(minor_tick_x_space)) left_tick = i%numCols==0 or i-1 not in plotIdxs ax.yaxis.get_label().set_visible(left_tick) for tick in ax.yaxis.get_major_ticks(): tick.label1On=left_tick tick.tick1line.set_markersize(tick_length) tick.tick2line.set_markersize(tick_length) if left_tick and i-numCols in plotIdxs: lims = ax.get_ylim() ax.set_ylim(lims[0], 0.9999999999*lims[1]) lower_tick = i>=(numRows-1)*numCols or i+numCols not in plotIdxs ax.xaxis.get_label().set_visible(lower_tick) for tick in ax.xaxis.get_major_ticks(): tick.label1On=lower_tick tick.tick1line.set_markersize(tick_length) tick.tick2line.set_markersize(tick_length) for tick in ax.yaxis.get_minor_ticks() + ax.xaxis.get_minor_ticks(): tick.tick1line.set_markersize(tick_length/2) tick.tick2line.set_markersize(tick_length/2) if lower_tick and i+1 in plotIdxs and (i+1)%numCols!=0: lims = ax.get_xlim() ax.set_xlim(lims[0], 0.9999999999*lims[1]) if lower_tick and not left_tick and i<(numRows-1)*numCols: lims = ax.get_xlim() ax.set_xlim(lims[0]*1.0000000001, lims[1]) if ax.get_legend() is not None: if legend is None: ax.get_legend().set_visible(False) elif legend is 'All' or legend is 'all' or all_haloes[i] in legend: ax.get_legend().draw_frame(False) else: ax.get_legend().set_visible(False) def plot_test(halo, ax): ax.plot([1,2], [3,4]) pl.legend(['FISH']) pl.ylabel('x') if __name__=="__main__": #print load_last_snapshot("aqa4") #print get_halo_centre("aqa4") plot(plot_test, haloes=['A', 'B', 'C', 'D', 'E'], legend='A', minor_tick_x_space=0.025) #plot(plot_test, minor_tick_x_space=0.025) pl.show()
mit
clolsonus/madesigner
sandbox/ft_wing2.py
1
7423
#!/usr/bin/env python3 # this is a quick test to compute dimensions for a flight test style # folded foam board wing ... losely based on the clarky airfoil sorta # kinda import argparse import math import matplotlib.pyplot as plt import numpy as np from ft_profile import FtProfile, my_dist ap = argparse.ArgumentParser(description="Compute the dimensions of FT-style folded wing. All dimensions are mm unless otherwise noted.") ap.add_argument('root_chord_mm', type=float, nargs='?', help='root chord') ap.add_argument('tip_chord_mm', type=float, nargs='?', help='tip chord') ap.add_argument('span_mm', type=float, nargs='?', help='1/2 span') ap.add_argument('sweep_mm', type=float, nargs='?', help='sweep offset from straight at tip') ap.add_argument('inner_dihedral_deg', type=float, nargs='?', help='inner dihedral angle') ap.add_argument('outer_dihedral_deg', type=float, nargs='?', help='outer dihedral angle') ap.add_argument('--material_mm', type=float, default=4.9, help='material thickness') #ap.add_argument('--span_mm', type=float, help= args = ap.parse_args() #print(args) def parse_val(val): if not len(val): print("No response, assuming 0.0") return 0 else: try: return float(val) except: print("Entry is not a valid number, aborting, sorry...") quit() # do prompts if values aren't passed on the command line if not args.root_chord_mm: val = input("Enter root chord (mm): ") args.root_chord_mm = parse_val(val) if not args.root_chord_mm: print("Cannot continue without a root chord size, sorry...") quit() if not args.tip_chord_mm: val = input("Enter tip chord (mm): ") args.tip_chord_mm = parse_val(val) if args.tip_chord_mm: if not args.span_mm: val = input("Enter wing 1/2 span (mm): ") args.span_mm = parse_val(val) if args.sweep_mm is None: val = input("Enter leading edge sweep at tip (mm): ") args.sweep_mm = parse_val(val) if args.inner_dihedral_deg is None: val = input("Enter dihedral angle at root (deg): ") args.inner_dihedral_deg = parse_val(val) if args.outer_dihedral_deg is None: val = input("Enter dihedral angle at tip (deg): ") args.outer_dihedral_deg = parse_val(val) # units: let's do mm r2d = 180 / math.pi d2r = math.pi / 180 root = FtProfile(args.root_chord_mm, args.material_mm) root.compute() root.plot() if not args.tip_chord_mm: print("simple root profile finished, thank you!") quit() # proceeding with a full wing if not args.span_mm: print("Cannot generate a whole wing plan without a valid span, sorry...") quit() tip = FtProfile(args.tip_chord_mm, args.material_mm) tip.compute() tip.plot() if args.sweep_mm: tip.outer += np.array([args.sweep_mm, 0]) tip.spar += np.array([args.sweep_mm, 0]) # https://stackoverflow.com/questions/55816902/finding-the-intersection-of-two-circles def get_intersections(p0, r0, p1, r1): # circle 1: (p0[0], p0[1]), radius r0 # circle 2: (p1[0], p1[1]), radius r1 print(p0, r0, p1, r1) d=math.sqrt((p1[0]-p0[0])**2 + (p1[1]-p0[1])**2) # non intersecting if d > r0 + r1 : print("non interesecting circles") return None # One circle within other if d < abs(r0-r1): print("one circle inside the other") return None # coincident circles if d == 0 and r0 == r1: print("coincident circles") return None else: a=(r0**2-r1**2+d**2)/(2*d) h=math.sqrt(r0**2-a**2) x2=p0[0]+a*(p1[0]-p0[0])/d y2=p0[1]+a*(p1[1]-p0[1])/d x3=x2+h*(p1[1]-p0[1])/d y3=y2-h*(p1[0]-p0[0])/d x4=x2-h*(p1[1]-p0[1])/d y4=y2+h*(p1[0]-p0[0])/d return (x3, y3, x4, y4) margin = 5 # mm dih_in = args.inner_dihedral_deg dih_out = args.outer_dihedral_deg def do_dihedral(orig, angle, side): pt = orig.copy() a = 0.5 * angle * d2r d = pt[1] pt[1] = math.cos(a)*d if side == "inner": pt[2] = math.sin(a)*d else: pt[2] -= math.sin(a)*d return pt # unfold the vertical 2d coordinates (with implied 3rd dimension due # to span) into a new 2d top down space. This is intended to create # cut files that will fold back together into the correct desired # shape without weird nonsense over/under lap due to taper. def unfold(root, tip): cuts = [] scores = [] r_last = do_dihedral(np.hstack([root[0], 0]), dih_in, "inner") t_last = do_dihedral(np.hstack([tip[0], args.span_mm]), dih_out, "outer") dist = my_dist(r_last, t_last) p1_last = [margin, margin] p2_last = [margin+dist, margin] cuts.append( [p1_last, p2_last] ) print(r_last, t_last, p1_last, p2_last) sections = len(root)-1 for i in range(sections): r = do_dihedral(np.hstack([root[i+1], 0]), dih_in, "inner") t = do_dihedral(np.hstack([tip[i+1], args.span_mm]), dih_out, "outer") print(r, t) a = my_dist(r_last, t_last) b = my_dist(r_last, r) c = my_dist(t_last, r) d = my_dist(t_last, t) e = my_dist(r_last, t) print(a, b, c, d, e) x3, y3, x4, y4 = get_intersections(p1_last, b, p2_last, c) if y3 > y4: p1 = [ x3, y3 ] else: p1 = [ x4, y4 ] x3, y3, x4, y4 = get_intersections(p1_last, e, p2_last, d) if y3 > y4: p2 = [ x3, y3 ] else: p2 = [ x4, y4 ] if i == sections - 1: cuts.append( [p1, p2] ) else: scores.append( [p1, p2] ) cuts.append( [p1_last, p1] ) cuts.append( [p2_last, p2] ) r_last = r t_last = t p1_last = p1 p2_last = p2 return cuts, scores def do_plot(cuts, scores): # draw a plot of the unfolded layout fig = plt.figure() ax = fig.add_subplot() ax.grid() ax.set_aspect("equal") for seg in cuts: x, y = np.array([seg[0], seg[1]]).T ax.plot( x, y, color="r") for seg in scores: x, y = np.array([seg[0], seg[1]]).T ax.plot( x, y, color="b") plt.show() from svgwrite import Drawing, mm def do_svg(file, cuts, scores): # attempt to generate an svg "true scale" drawing width = 762 # 762mm = 30" height = 508 # 508mm = 20" units = "mm" dpi = 96 / 25.4 # for mm dwg = Drawing( file, size = ("%d%s" % (width, units), "%d%s" % (height, units)) ) dwg.viewbox(0, 0, width*dpi, height*dpi) g = dwg.g() # group dwg.add(g) for seg in cuts: line = dwg.line([seg[0][0]*mm, seg[0][1]*mm], [seg[1][0]*mm, seg[1][1]*mm], stroke='red', fill='none', stroke_width="1px") g.add( line ) for seg in scores: line = dwg.line([seg[0][0]*mm, seg[0][1]*mm], [seg[1][0]*mm, seg[1][1]*mm], stroke='blue', fill='none', stroke_width="1px") g.add( line ) dwg.save() cuts, scores = unfold(root.outer, tip.outer) do_plot(cuts, scores) do_svg("unfolded-wing.svg", cuts, scores) cuts, scores = unfold(root.spar, tip.spar) do_plot(cuts, scores) do_svg("unfolded-spar.svg", cuts, scores)
gpl-3.0
CCS-Lab/hBayesDM
Python/hbayesdm/models/_igt_orl.py
1
10493
from typing import Sequence, Union, Any from collections import OrderedDict from numpy import Inf, exp import pandas as pd from hbayesdm.base import TaskModel from hbayesdm.preprocess_funcs import igt_preprocess_func __all__ = ['igt_orl'] class IgtOrl(TaskModel): def __init__(self, **kwargs): super().__init__( task_name='igt', model_name='orl', model_type='', data_columns=( 'subjID', 'choice', 'gain', 'loss', ), parameters=OrderedDict([ ('Arew', (0, 0.1, 1)), ('Apun', (0, 0.1, 1)), ('K', (0, 0.1, 5)), ('betaF', (-Inf, 0.1, Inf)), ('betaP', (-Inf, 1, Inf)), ]), regressors=OrderedDict([ ]), postpreds=['y_pred'], parameters_desc=OrderedDict([ ('Arew', 'reward learning rate'), ('Apun', 'punishment learning rate'), ('K', 'perseverance decay'), ('betaF', 'outcome frequency weight'), ('betaP', 'perseverance weight'), ]), additional_args_desc=OrderedDict([ ('payscale', 100), ]), **kwargs, ) _preprocess_func = igt_preprocess_func def igt_orl( data: Union[pd.DataFrame, str, None] = None, niter: int = 4000, nwarmup: int = 1000, nchain: int = 4, ncore: int = 1, nthin: int = 1, inits: Union[str, Sequence[float]] = 'vb', ind_pars: str = 'mean', model_regressor: bool = False, vb: bool = False, inc_postpred: bool = False, adapt_delta: float = 0.95, stepsize: float = 1, max_treedepth: int = 10, **additional_args: Any) -> TaskModel: """Iowa Gambling Task - Outcome-Representation Learning Model Hierarchical Bayesian Modeling of the Iowa Gambling Task [Ahn2008]_ using Outcome-Representation Learning Model [Haines2018]_ with the following parameters: "Arew" (reward learning rate), "Apun" (punishment learning rate), "K" (perseverance decay), "betaF" (outcome frequency weight), "betaP" (perseverance weight). .. [Ahn2008] Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992 .. [Haines2018] Haines, N., Vassileva, J., & Ahn, W.-Y. (2018). The Outcome-Representation Learning Model: A Novel Reinforcement Learning Model of the Iowa Gambling Task. Cognitive Science. https://doi.org/10.1111/cogs.12688 .. codeauthor:: Nate Haines <[email protected]> User data should contain the behavioral data-set of all subjects of interest for the current analysis. When loading from a file, the datafile should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables. For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order; however, it is necessary that they be labeled correctly and contain the information below: - "subjID": A unique identifier for each subject in the data-set. - "choice": Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and D==4). - "gain": Floating point value representing the amount of currency won on that trial (e.g. 50, 100). - "loss": Floating point value representing the amount of currency lost on that trial (e.g. 0, -50). .. note:: User data may contain other columns of data (e.g. ``ReactionTime``, ``trial_number``, etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns. .. note:: ``adapt_delta``, ``stepsize``, and ``max_treedepth`` are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. See [Hoffman2014]_ for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the `Stan User's Guide and Reference Manual`__. .. [Hoffman2014] Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623. __ https://mc-stan.org/users/documentation/ Parameters ---------- data Data to be modeled. It should be given as a Pandas DataFrame object, a filepath for a data file, or ``"example"`` for example data. Data columns should be labeled as: "subjID", "choice", "gain", "loss". niter Number of iterations, including warm-up. Defaults to 4000. nwarmup Number of iterations used for warm-up only. Defaults to 1000. ``nwarmup`` is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e., where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The ``nwarmup`` argument can be set to a higher number in order to curb the effects that initial values have on the resulting posteriors. nchain Number of Markov chains to run. Defaults to 4. ``nchain`` is a numerical value that specifies how many chains (i.e., independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: .. code:: python output.plot(type='trace') ncore Number of CPUs to be used for running. Defaults to 1. nthin Every ``nthin``-th sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high. ``nthin`` is a numerical value that specifies the "skipping" behavior of the MCMC sampler. That is, only every ``nthin``-th sample is used to generate posterior distributions. By default, ``nthin`` is equal to 1, meaning that every sample is used to generate the posterior. inits String or list specifying how the initial values should be generated. Options are ``'fixed'`` or ``'random'``, or your own initial values. ind_pars String specifying how to summarize the individual parameters. Current options are: ``'mean'``, ``'median'``, or ``'mode'``. model_regressor Whether to export model-based regressors. Currently not available for this model. vb Whether to use variational inference to approximately draw from a posterior distribution. Defaults to ``False``. inc_postpred Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to ``False``. adapt_delta Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See note below. stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See note below. max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See note below. **additional_args For this model, it's possible to set the following model-specific argument to a value that you may prefer. - ``payscale``: Raw payoffs within data are divided by this number. Used for scaling data. Defaults to 100. Returns ------- model_data An ``hbayesdm.TaskModel`` instance with the following components: - ``model``: String value that is the name of the model ('igt_orl'). - ``all_ind_pars``: Pandas DataFrame containing the summarized parameter values (as specified by ``ind_pars``) for each subject. - ``par_vals``: OrderedDict holding the posterior samples over different parameters. - ``fit``: A PyStan StanFit object that contains the fitted Stan model. - ``raw_data``: Pandas DataFrame containing the raw data used to fit the model, as specified by the user. Examples -------- .. code:: python from hbayesdm import rhat, print_fit from hbayesdm.models import igt_orl # Run the model and store results in "output" output = igt_orl(data='example', niter=2000, nwarmup=1000, nchain=4, ncore=4) # Visually check convergence of the sampling chains (should look like "hairy caterpillars") output.plot(type='trace') # Plot posterior distributions of the hyper-parameters (distributions should be unimodal) output.plot() # Check Rhat values (all Rhat values should be less than or equal to 1.1) rhat(output, less=1.1) # Show the LOOIC and WAIC model fit estimates print_fit(output) """ return IgtOrl( data=data, niter=niter, nwarmup=nwarmup, nchain=nchain, ncore=ncore, nthin=nthin, inits=inits, ind_pars=ind_pars, model_regressor=model_regressor, vb=vb, inc_postpred=inc_postpred, adapt_delta=adapt_delta, stepsize=stepsize, max_treedepth=max_treedepth, **additional_args)
gpl-3.0
dalejung/trtools
trtools/core/tests/test_wrangling.py
1
5358
from unittest import TestCase import pandas as pd import numpy as np import trtools.core.wrangling as wrangling import imp imp.reload(wrangling) import trtools.util.testing as tm from trtools.tools.profiler import Profiler pairwise = wrangling.pairwise ind = pd.date_range(start="2000-01-01", freq="D", periods=300) columns = ['col'+str(i) for i in range(50)] df = pd.DataFrame(np.random.randn(len(ind), len(columns)), index=ind, columns=columns) class TestWrangling(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_pairwise(self): df = pd.DataFrame(index=list(range(10))) for x in range(3): df[x] = list(range(x, x+10)) nandf = df.copy().astype(float) nandf.ix[9:,1] = np.nan # test with order=True # test with permutations pairs = pairwise(df, lambda x, y: x.sum() - y.sum()) expected = pd.DataFrame([[0, -10, -20], [10, 0, -10], [20, 10, 0]], index=list(range(3)), dtype=float) tm.assert_frame_equal(pairs, expected) # test with combinations pairs = pairwise(df, lambda x, y: x.sum() - y.sum(), order=False) expected = pd.DataFrame([[0, -10, -20], [-10, 0, -10], [-20, -10, 0]], index=list(range(3)), dtype=float) tm.assert_frame_equal(pairs, expected) # test with combinations and values # use nandf to test. np.ndarray.sum() returns NaN if it contains nan pairs = pairwise(nandf, lambda x, y: x.sum() - y.sum(), order=True, force_values=True) expected = pd.DataFrame([[0, np.nan, -20], [np.nan, np.nan, np.nan], [20, np.nan, 0]], index=list(range(3)), dtype=float) tm.assert_frame_equal(pairs, expected) # test with np.nansum. pairs = pairwise(nandf, lambda x, y: np.nansum(x) - np.nansum(y), order=True, force_values=True) expected = pd.DataFrame([[0, 0, -20], [0, 0, -20], [20, 20, 0]], index=list(range(3)), dtype=float) tm.assert_frame_equal(pairs, expected) # the np.nansum version should be same as Series.sum version pairs_series = pairwise(nandf, lambda x, y: x.sum() - y.sum(), order=True, force_values=False) tm.assert_frame_equal(pairs, pairs_series) def test_dshift_float(self): """ Since float is nan-able. The simple call should give the same output """ test = df.dshift(1) correct = df.shift(1) tm.assert_almost_equal(test.values, correct.values) test = df.dshift(-2) correct = df.shift(-2) tm.assert_almost_equal(test.values, correct.values) def test_dshift_bool(self): """ bool has no nan. """ bf = df > 0 test = bf.dshift(1) correct = bf.shift(1).fillna(False).astype(bool) assert test.dtypes.unique()[0] == bool assert test.dtypes.nunique() == 1 tm.assert_almost_equal(test.values, correct.values) test = bf.dshift(-2) correct = bf.shift(-2).fillna(False).astype(bool) assert test.dtypes.unique()[0] == bool assert test.dtypes.nunique() == 1 tm.assert_almost_equal(test.values, correct.values) def test_dshift_int(self): """ int has no nan. """ intdf = (df * 100).astype(int) test = intdf.dshift(1) correct = intdf.shift(1).fillna(-1).astype(int) assert test.dtypes.unique()[0] == int assert test.dtypes.nunique() == 1 tm.assert_almost_equal(test.values, correct.values) test = intdf.dshift(-2) correct = intdf.shift(-2).fillna(-1).astype(int) assert test.dtypes.unique()[0] == int assert test.dtypes.nunique() == 1 tm.assert_almost_equal(test.values, correct.values) def test_dshift_raw(self): # bool bf = df > 0 test = bf.dshift(1, raw=True) correct = bf.shift(1).fillna(False).astype(float) assert type(test) is np.ndarray tm.assert_almost_equal(test, correct.values) # float test = df.dshift(1, raw=True) correct = df.shift(1) assert type(test) is np.ndarray tm.assert_almost_equal(test, correct.values) def test_dshift_fill_value(self): # float test = df.dshift(1, fill_value=-100) correct = df.shift(1).fillna(-100) tm.assert_almost_equal(test.values, correct.values) # int intdf = (df * 100).astype(int) test = intdf.dshift(1, fill_value=-100) correct = intdf.shift(1).fillna(-100) tm.assert_almost_equal(test.values, correct.values) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'],exit=False)
mit
r0k3/arctic
tests/integration/test_arctic.py
4
6898
from datetime import datetime as dt, timedelta as dtd from mock import patch from pandas import DataFrame from pandas.util.testing import assert_frame_equal import pytest import time import numpy as np from arctic.arctic import Arctic, VERSION_STORE from arctic.exceptions import LibraryNotFoundException, QuotaExceededException from ..util import get_large_ts def test_connect_to_Arctic_string(mongo_host): arctic = Arctic(mongo_host=mongo_host) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_connect_to_Arctic_connection(mongodb, mongo_host): arctic = Arctic(mongodb) assert arctic.list_libraries() == [] assert arctic.mongo_host == mongo_host def test_simple(library): sym = 'symbol' data = get_large_ts(100) library.write(sym, data) orig = dt.now() time.sleep(1) # Move the timestamp on 1ms data2 = get_large_ts(100) library.write(sym, data2, prune_previous_version=False) # Get the timeseries, it should be the same read2 = library.read(sym).data assert_frame_equal(read2, data2) # Ensure we can get the previous version read = library.read(sym, as_of=orig).data assert_frame_equal(read, data) def test_indexes(arctic): c = arctic._conn arctic.initialize_library("library", VERSION_STORE, segment='month') chunk = c.arctic.library.index_information() assert chunk == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library', u'v': 1}, u'symbol_1_parent_1_segment_1': {u'background': True, u'key': [(u'symbol', 1), (u'parent', 1), (u'segment', 1)], u'ns': u'arctic.library', u'unique': True, u'v': 1}, u'symbol_1_sha_1': {u'background': True, u'key': [(u'symbol', 1), (u'sha', 1)], u'ns': u'arctic.library', u'unique': True, u'v': 1}, u'symbol_hashed': {u'background': True, u'key': [(u'symbol', u'hashed')], u'ns': u'arctic.library', u'v': 1}} snapshots = c.arctic.library.snapshots.index_information() assert snapshots == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.snapshots', u'v': 1}, u'name_1': {u'background': True, u'key': [(u'name', 1)], u'ns': u'arctic.library.snapshots', u'unique': True, u'v': 1}} versions = c.arctic.library.versions.index_information() assert versions == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.versions', u'v': 1}, u'symbol_1__id_-1': {u'background': True, u'key': [(u'symbol', 1), (u'_id', -1)], u'ns': u'arctic.library.versions', u'v': 1}, u'symbol_1_version_-1': {u'background': True, u'key': [(u'symbol', 1), (u'version', -1)], u'ns': u'arctic.library.versions', u'unique': True, u'v': 1}} version_nums = c.arctic.library.version_nums.index_information() assert version_nums == {u'_id_': {u'key': [(u'_id', 1)], u'ns': u'arctic.library.version_nums', u'v': 1}, u'symbol_1': {u'background': True, u'key': [(u'symbol', 1)], u'ns': u'arctic.library.version_nums', u'unique': True, u'v': 1}} def test_delete_library(arctic, library, library_name): mongo = arctic._conn # create a library2 library too - ensure that this isn't deleted arctic.initialize_library('user.library2', VERSION_STORE, segment='month') library.write('asdf', get_large_ts(1)) assert 'TEST' in mongo.arctic_test.collection_names() assert 'TEST.versions' in mongo.arctic_test.collection_names() assert 'library2' in mongo.arctic_user.collection_names() assert 'library2.versions' in mongo.arctic_user.collection_names() arctic.delete_library(library_name) assert 'TEST' not in mongo.arctic_user.collection_names() assert 'TEST.versions' not in mongo.arctic_user.collection_names() with pytest.raises(LibraryNotFoundException): arctic[library_name] with pytest.raises(LibraryNotFoundException): arctic['arctic_{}'.format(library_name)] assert 'library2' in mongo.arctic_user.collection_names() assert 'library2.versions' in mongo.arctic_user.collection_names() def test_quota(arctic, library, library_name): thing = list(range(100)) library._arctic_lib.set_quota(10) assert arctic.get_quota(library_name) == 10 assert library._arctic_lib.get_quota() == 10 library.write('thing', thing) with pytest.raises(QuotaExceededException): library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) library.write('ts', thing) with pytest.raises(QuotaExceededException): arctic.check_quota(library_name) def test_check_quota(arctic, library, library_name): with patch('arctic.arctic.logger.info') as info: arctic.check_quota(library_name) assert info.call_count == 1 def test_default_mongo_retry_timout(): now = time.time() with pytest.raises(LibraryNotFoundException): Arctic('unresolved-host', serverSelectionTimeoutMS=0)['some.lib'] assert time.time() - now < 1.
lgpl-2.1
Gregor-Mendel-Institute/SNPmatch
snpmatch/core/simulate.py
1
3889
import logging import numpy as np import pandas as pd from . import snpmatch from . import parsers from . import snp_genotype log = logging.getLogger(__name__) def simulateSNPs(g, AccID, numSNPs, outFile=None, err_rate=0.001): assert type(AccID) is str, "provide Accession ID as a string" assert AccID in g.g.accessions, "accession is not present in the matrix!" AccToCheck = np.where(g.g.accessions == AccID)[0][0] log.info("loading input files") acc_snp = g.g_acc.snps[:,AccToCheck] informative_snps = np.where(acc_snp >= 0)[0] ## Removing NAs for accession input_df = pd.DataFrame(np.column_stack((np.array(g.g.chromosomes)[informative_snps], g.g.positions[informative_snps], acc_snp[informative_snps] )), columns = ["chr", 'pos', 'snp']) ## Input -- pandas dataframe with chr, position and genotype #assert type(input_df) == pd.core.frame.DataFrame, "please provide a pandas dataframe" #assert input_df.shape[1] >= 3, "first three columns are needed in dataframe: chr, pos, snp" ## default error rates = 0.001 log.info("sampling %s positions" % numSNPs) sampleSNPs = np.sort(np.random.choice(np.arange(input_df.shape[0]), numSNPs, replace=False)) input_df = input_df.iloc[sampleSNPs,:] log.info("adding in error rate: %s" % err_rate) num_to_change = int(err_rate * input_df.shape[0]) input_df.iloc[np.sort(np.random.choice(np.arange(input_df.shape[0]), num_to_change, replace=False)), 2] = np.random.choice(3, num_to_change) input_df.iloc[:, 2] = parsers.snp_binary_to_gt( np.array(input_df.iloc[:,2]) ) if outFile is not None: input_df.to_csv( outFile, sep = "\t", index = None, header = False ) return(input_df) def simulateSNPs_F1(g, parents, numSNPs, outFile, err_rate, rm_hets = 1): indP1 = np.where(g.g_acc.accessions == parents.split("x")[0])[0][0] indP2 = np.where(g.g_acc.accessions == parents.split("x")[1])[0][0] log.info("loading files!") snpsP1 = g.g_acc.snps[:,indP1] snpsP2 = g.g_acc.snps[:,indP2] common_ix = np.where((snpsP1 >= 0) & (snpsP2 >= 0) & (snpsP1 < 2) & (snpsP2 < 2))[0] segregating_ix = np.where(snpsP1[common_ix] != snpsP2[common_ix] )[0] diff_ix = np.setdiff1d( np.arange(len(common_ix)), segregating_ix ) common_snps = np.zeros(len(common_ix), dtype="int8") common_snps[segregating_ix] = 2 common_snps[diff_ix] = snpsP1[common_ix[diff_ix]] input_df = pd.DataFrame( np.column_stack((np.array(g.g_acc.chromosomes)[common_ix], np.array(g.g_acc.positions)[common_ix], common_snps )), columns = ["chr", 'pos', 'snp'] ) log.info("sampling %s positions" % numSNPs) sampleSNPs = np.sort(np.random.choice(np.arange(input_df.shape[0]), numSNPs, replace=False)) input_df = input_df.iloc[sampleSNPs,:] input_df['snp'] = input_df['snp'].astype(int) log.info("adding in error rate: %s" % err_rate) num_to_change = int(err_rate * input_df.shape[0]) input_df.iloc[np.sort(np.random.choice(np.where(input_df['snp'] != 2)[0], num_to_change, replace=False)), 2] = np.random.choice(2, num_to_change) ## Also change hets randomly to homozygous het_ix = np.where(input_df['snp'] == 2)[0] input_df.iloc[het_ix, 2] = np.random.choice(3, het_ix.shape[0], p=[(1-rm_hets)/2,(1-rm_hets)/2,rm_hets]) ## Save the file to a bed file input_df.iloc[:, 2] = parsers.snp_binary_to_gt( np.array(input_df.iloc[:,2]) ) if outFile is not None: input_df.to_csv( outFile, sep = "\t", index = None, header = False ) return(input_df) def potatoSimulate(args): g = snp_genotype.Genotype(args['hdf5File'], args['hdf5accFile'] ) if args['simF1']: simulateSNPs_F1(g, args['AccID'], args['numSNPs'], args['outFile'], args['err_rate'], args['rm_het']) else: simulateSNPs(g, args['AccID'], args['numSNPs'], args['outFile'], args['err_rate']) log.info("finished!")
mit
tjmassin/gwdetchar
gwdetchar/scattering/__main__.py
1
7365
# coding=utf-8 # Copyright (C) Alex Urban (2019) # # This file is part of the GW DetChar python package. # # GW DetChar is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GW DetChar is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GW DetChar. If not, see <http://www.gnu.org/licenses/>. """Simple command-line interface to gwdetchar.scattering This module scans through records of optic motion and projects scattering fringe frequencies. For those channels with fringes above a user-specified threshold, a plot is created comparing the fringes to a high-resolution Q-scan spectrogram. To identify time segments where scattering is likely, please use the command-line script: `gwdetchar-scattering --help` """ import os import sys from matplotlib import use use('agg') # noqa: E402 from gwpy.time import to_gps from .. import (cli, const) from ..omega import highpass from ..io.datafind import get_data from . import ( OPTIC_MOTION_CHANNELS, get_fringe_frequency, plot, ) __author__ = 'Alex Urban <[email protected]>' __credits__ = 'Joshua Smith <[email protected]>' \ 'Andrew Lundgren <andrew.lundgren>@ligo.org>' \ 'Duncan Macleod <[email protected]>' # global variables ASD_KW = { 'method': 'median', 'fftlength': 8, 'overlap': 4, } MOTION_CHANNELS = [channel for key in OPTIC_MOTION_CHANNELS.keys() for channel in OPTIC_MOTION_CHANNELS[key]] logger = cli.logger('gwdetchar.scattering') # -- main function ------------------------------------------------------------ def main(args=None): """Parse command-line arguments, process optics, and write plots """ # define command-line arguments parser = cli.create_parser(description=__doc__) parser.add_argument('gpstime', type=to_gps, help='GPS time or datestring to analyze') cli.add_ifo_option(parser, ifo=const.IFO) parser.add_argument('-d', '--duration', type=float, default=60, help='Duration (seconds) of analysis, default: 60') parser.add_argument('-t', '--frequency-threshold', type=float, default=15, help='critical fringe frequency threshold (Hz), ' 'default: %(default)s') parser.add_argument('-m', '--multipliers', default='1,2,4,8', help='harmonic numbers to plot projected motion for, ' 'should be given as a comma-separated list of ' 'numbers, default: %(default)s') parser.add_argument('-x', '--multiplier-for-threshold', type=int, default=4, help='frequency multiplier to use when applying ' '--frequency-threshold, default: %(default)s') parser.add_argument('-w', '--primary-channel', default='GDS-CALIB_STRAIN', help='name of primary channel (without IFO prefix), ' 'default: %(default)s') parser.add_argument('-W', '--primary-frametype', default='{IFO}_HOFT_C00', help='frametype from which to read primary channel, ' 'default: %(default)s') parser.add_argument('-a', '--aux-frametype', default='{IFO}_R', help='frametype from which to read aux channels, ' 'default: %(default)s') parser.add_argument('-o', '--output-dir', type=os.path.abspath, default=os.curdir, help='Output directory for analysis, ' 'default: %(default)s') parser.add_argument('-c', '--colormap', default='viridis', help='name of colormap to use, default: %(default)s') # parse arguments args = parser.parse_args(args) ifo = args.ifo gps = float(args.gpstime) gpsstart = gps - 0.5 * args.duration gpsend = gps + 0.5 * args.duration primary = ':'.join([ifo, args.primary_channel]) thresh = args.frequency_threshold multipliers = [int(x) for x in args.multipliers.split(',')] harmonic = args.multiplier_for_threshold if '{IFO}' in args.primary_frametype: args.primary_frametype = args.primary_frametype.format(IFO=ifo) if '{IFO}' in args.aux_frametype: args.aux_frametype = args.aux_frametype.format(IFO=ifo) logger.info('{0} Scattering: {1}'.format(ifo, gps)) # set up spectrogram logger.debug('Setting up a Q-scan spectrogram of {}'.format(primary)) hoft = get_data(primary, start=gps-34, end=gps+34, frametype=args.primary_frametype, verbose='Reading primary channel:'.rjust(30)) hoft = highpass(hoft, f_low=thresh).resample(256) qspecgram = hoft.q_transform(qrange=(4, 150), frange=(0, 60), gps=gps, fres=0.1, outseg=(gpsstart, gpsend), **ASD_KW) qspecgram.name = primary # process channels channels = [':'.join([ifo, c]) for c in MOTION_CHANNELS] data = get_data( channels, start=gpsstart, end=gpsend, frametype=args.aux_frametype, verbose='Reading auxiliary sensors:'.rjust(30)) count = 0 # running count of plots written for channel in channels: logger.info(' -- Processing {} -- '.format(channel)) try: motion = data[channel].detrend().resample(128) except KeyError: logger.warning('Skipping {}'.format(channel)) pass # project scattering frequencies fringe = get_fringe_frequency(motion, multiplier=1) ind = fringe.argmax() fmax = fringe.value[ind] tmax = fringe.times.value[ind] logger.debug('Maximum scatter frequency {0:.2f} Hz at GPS second ' '{1:.2f}'.format(fmax, tmax)) if harmonic * fmax < thresh: logger.warning('No significant evidence of scattering ' 'found in {}'.format(channel)) continue # plot spectrogram and fringe frequency output = os.path.join( args.output_dir, '%s-%s-%s-{}.png' % ( channel.replace('-', '_').replace(':', '-', 1), gps, args.duration) ) logger.debug('Plotting spectra and projected fringe frequencies') plot.spectral_comparison( gps, qspecgram, fringe, output.format('comparison'), thresh=thresh, multipliers=multipliers, colormap=args.colormap) plot.spectral_overlay( gps, qspecgram, fringe, output.format('overlay'), multipliers=multipliers) logger.info(' -- Channel complete -- ') count += 1 # increment counter logger.info('{0:g} chanels plotted in {1}'.format(count, args.output_dir)) if __name__ == "__main__": # pragma: no-cover sys.exit(main())
gpl-3.0
CTU-IIG/FlexRaySSScheduler
BenchmarkGenerator/Scripts/make_Incremental_plot.py
1
3512
from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib matplotlib.use("Qt4Agg") import matplotlib.pyplot as plt from matplotlib import cm import argparse import csv import os # python3 make_MV_vs_Incremental_plot.py --steps 50 --iterations 10 --instances 30 SAE_1.txt Results/results_MV_vs_Incremental.csv number_of_evaluations = 4 class Plotter: def __init__(self, iterations: int): self.dataset = [[0] * number_of_evaluations for _ in range(iterations)] def read_data(self, results_file: str, iterations: int, instances: int): if not os.path.exists(results_file): raise ValueError("The file with results {} does not exists!".format(results_file)) with open(results_file, 'r') as f: csv_file = csv.reader(f, delimiter=';') for row in csv_file: label = row[0] label = label.split(".", 1)[0] iteration = int(label.split("_")[4]) self.dataset[iteration][0] += int(row[1]) self.dataset[iteration][1] += int(row[3]) self.dataset[iteration][2] += int(row[5]) self.dataset[iteration][3] += int(row[7]) for i in range(iterations): for j in range(number_of_evaluations): self.dataset[i][j] /= instances def plot(self, iterations: int): if len(self.dataset) <= 0: raise ValueError("Dataset should not be empty") plt.rc("text", usetex=True) plt.rcParams["xtick.major.pad"]='10' fig = plt.figure(1) fig.patch.set_facecolor('white') axe_x = np.asarray([float(x) for x in range(iterations)]) datasetzip = list(zip(*self.dataset)) styles = ["s-", "D-", "o-", "^-", "*-"] labels = ["\\Large Lower bound", " \\Large Non-incremental scheduling", "\\Large Incremental scheduling with extensibility optimisation", "\\Large Incremental scheduling without extensibility optimisation"] cmap = cm.winter for i in range(number_of_evaluations): axe_y = np.asarray(datasetzip[i]) plt.plot(axe_x, axe_y, styles[i], markersize=7, color=cmap((i+1)/float(number_of_evaluations + 1)), label="\\rmfamily {}".format(labels[i])) plt.axis([0, 9.5, 100, 150]) plt.xticks(range(0, 10), ["\\rmfamily \\LARGE 1", "\\rmfamily \\LARGE 2", "\\rmfamily \\LARGE 3", "\\rmfamily \\LARGE 4", "\\rmfamily \\LARGE 5", "\\rmfamily \\LARGE 6", "\\rmfamily \\LARGE 7", "\\rmfamily \\LARGE 8", "\\rmfamily \\LARGE 9", "\\rmfamily \\LARGE 10"]) plt.yticks(range(100, 150, 10), ["\\rmfamily \\LARGE 100", "\\rmfamily \\LARGE 110", "\\rmfamily \\LARGE 120", "\\rmfamily \\LARGE 130", "\\rmfamily \\LARGE 140"]) plt.legend(loc="upper left") plt.xlabel("{\\rmfamily \\LARGE Iteration}") plt.ylabel("{\\rmfamily \\LARGE Number of allocated slots}") # plt.xticks(range(self.folders_count), self.folder_names, rotation=45) plt.show() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("file", help="Original file with the results") parser.add_argument("--instances", help="Number of instances", type=int, default=10) parser.add_argument("--iterations", help="Number of iterations", type=int, default=10) args = parser.parse_args() plotter = Plotter(args.iterations) plotter.read_data(args.file, args.iterations, args.instances) plotter.plot(args.iterations)
gpl-2.0
wwjiang007/flink
flink-python/pyflink/table/serializers.py
9
3095
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ import io from pyflink.serializers import IterableSerializer from pyflink.table.utils import arrow_to_pandas, pandas_to_arrow class ArrowSerializer(IterableSerializer): """ Serializes pandas.Series into Arrow streaming format data. """ def __init__(self, schema, row_type, timezone): super(ArrowSerializer, self).__init__() self._schema = schema self._field_types = row_type.field_types() self._timezone = timezone def __repr__(self): return "ArrowSerializer" def serialize(self, iterable, stream): writer = None try: for cols in iterable: batch = pandas_to_arrow(self._schema, self._timezone, self._field_types, cols) if writer is None: import pyarrow as pa writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def deserialize(self, stream): import pyarrow as pa reader = pa.ipc.open_stream(stream) for batch in reader: yield arrow_to_pandas(self._timezone, self._field_types, [batch]) def load_from_iterator(self, iter): class IteratorIO(io.RawIOBase): def __init__(self, iter): super(IteratorIO, self).__init__() self.iter = iter self.leftover = None def readable(self): return True def readinto(self, b): output_buffer_len = len(b) input = self.leftover or (self.iter.next() if self.iter.hasNext() else None) if input is None: return 0 output, self.leftover = input[:output_buffer_len], input[output_buffer_len:] b[:len(output)] = output return len(output) import pyarrow as pa reader = pa.ipc.open_stream( io.BufferedReader(IteratorIO(iter), buffer_size=io.DEFAULT_BUFFER_SIZE)) for batch in reader: yield batch
apache-2.0
musketeer191/job_analytics
ja_helpers.py
1
35949
import random import sklearn.feature_extraction.text as text_manip import matplotlib.ticker as mtick from sklearn.decomposition import NMF, LatentDirichletAllocation from scipy.sparse import * from scipy.io import * from collections import Counter from time import time # my own modules import my_util as my_util from my_util import * from stat_helpers import * ## Seed for reproducibility # random.seed(123) ## Helpers for filtering max_n_word = 3 def filterJDs(post_df, skills, min_n_skill=2): print('Extracting JDs with at least %d unique skills...' %min_n_skill) n_post, n_skill = post_df.shape[0], len(skills) # Count no. of unique skills in each JD binary_vectorizer = text_manip.CountVectorizer(vocabulary=skills, ngram_range=(1, max_n_word), binary=True) t0 = time() print('\tMarking occurrence of %d skills in %d JDs...' %(n_skill, n_post)) doc_skill_occurrence = binary_vectorizer.fit_transform(post_df['clean_text']) print('Done after %.1fs' %(time() - t0)) post_df['n_uniq_skill'] = doc_skill_occurrence.sum(axis=1).A1 ## Remove JDs with <= 1 skills cond = 'n_uniq_skill >= {}'.format(min_n_skill) sub_posts = post_df.query(cond) return sub_posts def filterSkills(skills, posts, min_n_jd): print('Extracting skills occuring in at least %d JDs...' %min_n_jd) # (Re-)count no. of JDs containing each skill n_posts = posts.shape[0] t0 = time() print('\tMarking occurrence of skills in %d JDs ...' %n_posts) binary_vectorizer = text_manip.CountVectorizer(vocabulary=skills, ngram_range=(1, max_n_word), binary=True) doc_skill_occurrence = binary_vectorizer.fit_transform(posts['clean_text']) print('Done after %.1fs' %(time() - t0)) n_jd_by_skill = doc_skill_occurrence.sum(axis=0).A1 # print quantile(n_jd_by_skill) # Remove skills occuring in <=1 JDs df = pd.DataFrame({'skill': skills, 'n_jd_with_skill': n_jd_by_skill}) cond = 'n_jd_with_skill >= {}'.format(min_n_jd) sub_skill_df = df.query(cond) return sub_skill_df def cal_test_err(mf_models): test_error = [] print('No. of topics, Test error, Running time') for k in ks: t0 = time() H = mf_models[k].components_ W_test = mf_models[k].fit_transform(X_test, H=H) err = la.norm(X_test - np.matmul(W_test, H)) test_error.append(err) print('%d, %0.1f, %0.1fs' %(k, err, time() - t0)) # end for return test_error def findOccurSkills(init_skills, jd_docs): count_vectorizer = text_manip.CountVectorizer(vocabulary=init_skills, ngram_range=(1, max_n_word)) t0 = time() print('Counting occurrence of skills with length <= %d ...' %max_n_word) doc_skill_freq = count_vectorizer.fit_transform(jd_docs) print('Done after %.1fs' %(time() - t0)) skill_freq = doc_skill_freq.sum(axis=0).A1 skill_df = pd.DataFrame({'skill': init_skills, 'total_freq': skill_freq}) occur_skills_df = skill_df.query('total_freq > 0') occur_skills = occur_skills_df['skill'] print('No. of skills actually occurring in JDs: %d' %len(occur_skills)) return occur_skills_df # def findSkills(occur_skills, jd_docs): # count_vectorizer = text_manip.CountVectorizer(vocabulary=occur_skills, ngram_range=(1, max_n_word)) # t0 = time() # print('Counting occurrence of skills with length <= %d ...' %max_n_word) # doc_skill_freq = count_vectorizer.fit_transform(jd_docs) # print('Doing inverse transform to get skills in each JD...') # skills_by_jd = count_vectorizer.inverse_transform(doc_skill_freq) # print('Done after %.1fs' %(time() - t0)) # return skills_by_jd def filtering(init_posts, init_skills): n_iter, posts, skills = 0, init_posts, init_skills n_post = posts.shape[0] stop_cond, thres = False, .98 while not stop_cond: n_iter = n_iter + 1 print('Iteration %d' %n_iter) new_posts = extractJDs(posts, skills, min_n_skill=2) n_new_post = new_posts.shape[0] print('No. of posts after filtering: %d' %n_new_post) skill_df = extractSkills(skills, new_posts, min_n_jd=2) new_skills = skill_df['skill'] print('No. of skills after filtering: %d' %len(new_skills) ) stop_cond = (n_new_post >= thres*n_post) and (len(new_skills) >= thres*len(skills)) posts = new_posts n_post = posts.shape[0] skills = new_skills # end while return posts, skills def countOccur_ngram(n=1): t0 = time() print('Marking occurrence of {}-gram skills...'.format(n)) # use option binary to indicate that we only care whether a given skill occurs or not, not the freq of the skill vectorizer = text_manip.CountVectorizer(vocabulary=skills, binary=True, ngram_range=(n,n)) doc_ngram_occurrence = vectorizer.fit_transform(jd_docs) print('Done after %.1fs' %(time() - t0)) n_ngram_by_jd = doc_ngram_occurrence.sum(axis=1).A1 return pd.DataFrame({'job_id': posts['job_id'], 'n_{}gram'.format(n): n_ngram_by_jd}) def buildDocNgramMat(n, jd_docs, skills): t0 = time() print('Counting occurrence of {}-gram skills...'.format(n)) vectorizer = text_manip.CountVectorizer(vocabulary=skills, ngram_range=(n,n)) doc_ngram_mat = vectorizer.fit_transform(jd_docs) print('Done after %.1fs' %(time() - t0)) return doc_ngram_mat # global n_proc_doc # n_proc_doc=0 def rmSkills(d, skills): ## there is problem with using a global count, turn off tmp global n_proc_doc n_proc_doc += 1; if (n_proc_doc % 10000)==0: print('Removal for {} docs and counting...'.format(n_proc_doc)) res = d for sk in skills: res = res.replace(sk, '') return res def buildDocSkillMat(jd_docs, skill_df, folder): """ @brief {Build a document-skill matrix where each entry $e(d, s)$ is the freq of skill $s$ in job description $d$. Handle overlapping problem bw n-grams (e.g. business in 2-gram 'business management' is regarded diff from business in 1-gram 'business')} @param jd_docs The clean jd documents @param skill_df The skill df @param folder The folder to store intermediate matrices {doc_unigram, doc_bigram, doc_trigram}, None if don't want to store them. @return The sparse document-skill matrix. """ def save(sp_mat, mat_name): fname = folder + mat_name + '.mtx' with(open(fname, 'w')) as f: mmwrite(f, sp_mat) print('Saved {} matrix'.format(mat_name)) global n_proc_doc if not folder: print('No folder passed, will not save intermediate matrices.') trigram_skills = np.unique(skill_df.query('n_word == 3')['skill']) bigram_skills = np.unique(skill_df.query('n_word == 2')['skill']) unigram_skills = np.unique(skill_df.query('n_word == 1')['skill']) doc_trigram = buildDocNgramMat(n=3, jd_docs=jd_docs, skills=trigram_skills) if folder: save(doc_trigram, 'doc_trigram') print('Removing tri-grams from JDs to avoid duplications...') n_proc_doc = 0 jd_docs = jd_docs.apply(rmSkills, skills=trigram_skills) print('Done') doc_bigram = buildDocNgramMat(n=2, jd_docs=jd_docs, skills=bigram_skills) if folder: save(doc_bigram, 'doc_bigram') print('Removing bi-grams from JDs...') n_proc_doc = 0 jd_docs = jd_docs.apply(rmSkills, skills = bigram_skills) print('Done') doc_unigram = buildDocNgramMat(n=1, jd_docs=jd_docs, skills=unigram_skills) if folder: save(doc_unigram, 'doc_unigram') doc_skill = hstack([doc_unigram, doc_bigram, doc_trigram]) return doc_skill def getSkills(doc_idx, doc_term, skills): row = doc_term.getrow(doc_idx) indices = row.nonzero()[1] occur_skills = skills[indices] return pd.DataFrame({'occur_skills': ','.join(occur_skills), 'n_skill': len(occur_skills)}, index=[doc_idx]) # including original document is meant for sanity checking # return pd.DataFrame({'doc': docs[doc_idx], 'occur_skills': ','.join(occur_skills), 'n_skill': len(occur_skills)}, index=[doc_idx]) def getSkills4Docs(docs, doc_term, skills): # doc_term is the doc-term count matrix built from docs (so train/test_docs go with train/test_doc_term resp) n_doc = len(docs) frames = [getSkills(doc_idx=dd, doc_term=doc_term, skills=skills) for dd in range(n_doc)] res = pd.concat(frames) # res = res.drop_duplicates() return res def initLDA_model(k, beta): alpha = 50.0/k print("Init LDA with priors: alpha = %.1f, beta = %.1f" %(alpha, beta)) model = LatentDirichletAllocation(n_topics=k, max_iter=5, learning_method='online', learning_offset=50., random_state=0, doc_topic_prior=alpha, topic_word_prior=beta) # verbose=1 return model def trainLDA(beta, ks, trainning_set): lda_scores = [] lda = {k: initLDA_model(k, beta) for k in ks} print('Fitting LDA models...') print('No. of topics, Log-likelihood, Running time') for k in ks: t0 = time() lda[k].fit(trainning_set) s = lda[k].score(trainning_set) print('%d, %0.1f, %0.1fs' %(k, s, time() - t0)) lda_scores.append(s) return lda def testLDA(lda, ks, test_set): perp = [lda[k].perplexity(test_set) for k in ks] perp_df = pd.DataFrame({'No. of topics': ks, 'Perplexity': perp}) lda_best_k = ks[np.argmin(perp)] print('Best no. of topics for LDA: %d' %lda_best_k) return perp_df def toIDF(terms, doc_term_mat): n_doc, n_term = doc_term_mat.shape[0], doc_term_mat.shape[1] # no. of docs containing a term = no. of non zero entries in the col of the term n_doc_with_term = [doc_term_mat.getcol(t).nnz for t in range(n_term)] res = pd.DataFrame({'term': terms, 'n_doc_with_term': n_doc_with_term}) res = res.query('n_doc_with_term > 0') res['idf'] = np.log10(np.divide(n_doc, n_doc_with_term)) return res def getClusterAtRow(i, df): r = df.iloc[i] cluster = r['cluster'] prob = str(round(r['cluster_prob'], 3)) s = ''.join([cluster, '(', prob, ')']) return s # LDA_DIR = 'd:/larc_projects/job_analytics/results/skill_cluster/new/lda/' # clusters = pd.read_csv(LDA_DIR + 'clusters.csv')['cluster'] # print('Loaded cluster labels as follow:') # print(clusters) def getTopClusterProb(row, doc_topic_distr): doc_idx = row.name probs = doc_topic_distr[doc_idx, :] return round(max(probs), 4) def getTopClusters(k, doc_idx, doc_df, doc_topic_distr): probs = doc_topic_distr[doc_idx, :] df = pd.DataFrame({'cluster': clusters, 'cluster_prob': probs}) df.sort_values('cluster_prob', ascending=False, inplace=True) top_k = [getClusterAtRow(i, df) for i in range(k)] row = doc_df.iloc[doc_idx] job_id, doc = row['job_id'], row['doc'] return pd.DataFrame({'job_id': job_id, 'doc': doc, 'top_{}_cluster'.format(k): ';'.join(top_k)}, index=[doc_idx]) # df.head(k) # df['job_id'] = doc_df.iloc[doc_idx]['job_id'] # df['doc'] = doc_df.iloc[doc_idx]['doc'] def findIndex(arr, thres): sub_sums = {k: sum(arr[0:k]) for k in range(len(arr))} for k in range(len(arr)): if sub_sums[k] > thres: return k def getTermsInDoc(row, doc_term_mat, vocab): idx = doc_term_mat[row].nonzero()[1] occur_terms = [vocab[i] for i in idx] return occur_terms def getTopClusters_GT(row, doc_topic_distr, thres): doc_idx = row.name probs = doc_topic_distr[doc_idx, :] df = pd.DataFrame({'cluster': clusters, 'cluster_prob': probs}) df.sort_values('cluster_prob', ascending=False, inplace=True) ## get top k clusters such that sum(prob_of_top_k) > thres k = findIndex(df['cluster_prob'], thres) top_k = [getClusterAtRow(i, df) for i in range(k)] return ';'.join(top_k) # return k ## Topics learned by MALLET LDA ==================================== def getTopicRow(i, df): row = df.iloc[i, :] topic, prob = row['topic'], str(round(row['prob'], 3)) return ''.join([topic, '(', prob, ')']) def getTopTopics(row, topics, thres=.5): df = pd.DataFrame({'topic': topics, 'prob': row}) df = df.sort_values('prob', ascending=False) k = findIndex(df['prob'], thres) top_k = [getTopicRow(i, df) for i in range(k)] return ';'.join(top_k) ## Skill clustering analysis def plotSkillDist(res): fig = plt.figure() n, bins, patches = plt.hist(res['n_skill'], bins=np.unique(res['n_skill'])) plt.xlabel('# skills in JD'); plt.ylabel('# JDs') plt.xticks(range(0, 120, 10)) plt.grid(True) return fig def getGroupMedian(g1, g2, g3, g4): m1 = np.median(g1['n_top_cluster']); m2 = np.median(g2['n_top_cluster']) m3 = np.median(g3['n_top_cluster']); m4 = np.median(g4['n_top_cluster']) print('Medians of the groups:') return pd.DataFrame({'range_of_n_skill': ['[2, 7)', '[7, 12)', '[12, 18)', '[18, 115]'], 'median_of_n_top_cluster': [m1, m2, m3, m4]}) # x = [1,2,3,4]; labels = ['[2, 7)', '[7, 12)', '[12, 18)', '[18, 115]'] def mixtureSizePlot(g1, g2, g3, g4): groups = [g1['n_top_cluster'], g2['n_top_cluster'], g3['n_top_cluster'], g4['n_top_cluster']] fig = plt.boxplot(groups) plt.xlabel('# skills in job post'); plt.ylabel('Mixture size') # # most likely clusters plt.xticks(x, labels); plt.ylim(0, 9) return fig def topClusterProbPlot(g1, g2, g3, g4): groups = [g1['prob_top_cluster'], g2['prob_top_cluster'], g3['prob_top_cluster'], g4['prob_top_cluster']] fig = plt.boxplot(groups) plt.xlabel('# skills in job post'); plt.ylabel('Probability of top cluster') plt.xticks(x, labels); plt.grid(True) return fig def errorBarPlot(res, thres): g1 = res.query('n_skill < 7'); g2 = res.query('n_skill >= 7 & n_skill < 12') g3 = res.query('n_skill >= 12 & n_skill < 18'); g4 = res.query('n_skill >= 18') print('# posts in 4 groups:'); print(','.join([str(g1.shape[0]), str(g2.shape[0]), str(g3.shape[0]), str(g4.shape[0])])) ## Cal avg, min, max of each group col = 'n_top_cluster_{}'.format(int(thres*100)) groups = [g1[col], g2[col], g3[col], g4[col]] min_groups = np.asarray(map(min, groups)); max_groups = np.asarray(map(max, groups)); avg_groups = np.asarray(map(np.mean, groups)) ## Plot lower_error = avg_groups - min_groups; upper_error = max_groups - avg_groups asymmetric_error = [lower_error, upper_error] y = avg_groups fig = plt.errorbar(x, y, yerr=asymmetric_error, fmt='o') plt.xlim(0, 5); plt.ylim(0, 7) plt.xticks(x, labels); plt.grid(True) plt.xlabel('# skills in job post'); plt.ylabel('# skill clusters assigned to job post') plt.title('Mixture size (threshold={})'.format(thres)) return fig def getIndex(i, df): return df.iloc[i].name ## Topic modelling ==================================== # get top words of a topic (i.e. a word dist) def get_top_words(n_top_words, word_dist, feature_names): norm_word_dist = np.divide(word_dist, sum(word_dist)) sorting_idx = word_dist.argsort() top_words = [feature_names[i] for i in sorting_idx[:-n_top_words - 1:-1]] probs = [norm_word_dist[i] for i in sorting_idx[:-n_top_words - 1:-1]] return pd.DataFrame({'top_words': top_words, 'word_probs': probs}) def print_top_words(n_top_words, model, feature_names): for topic_idx, topic in enumerate(model.components_): norm_topic = np.divide(topic, sum(topic)) print("Topic #%d:" % topic_idx) print(" ".join([(feature_names[i] + '(%0.3f' %norm_topic[i] + ')') for i in topic.argsort()[:-n_top_words - 1:-1]])) print() # get top words learnt by a model def top_words_df(n_top_words, model, feature_names): res = pd.DataFrame({'topic':[], 'top_words':[], 'word_probs':[]}) for t_idx, topic in enumerate(model.components_): top_words_of_topic = get_top_words(n_top_words, word_dist=topic, feature_names=feature_names) topic_idx = np.ones(n_top_words)*(t_idx+1) tmp = pd.concat([pd.DataFrame({'topic_idx': topic_idx }), top_words_of_topic], axis=1) res = pd.concat([res, tmp]) return res[:][['topic_idx', 'top_words', 'word_probs']] # re-order columns as desired ## Similarity scores ==================================== def skillSim(p1, p2): skills1, skills2 = set(p1['occur_skills'].split(',')), set(p2['occur_skills'].split(',')) intersection, union = skills1.intersection(skills2), skills1.union(skills2) return len(intersection)/float(len(union)) # Main workhorse, return sims in either data frame or matrix format, # output format is controlled by out_fmt def pairwiseSim(posts, doc_topic_distr, out_fmt='data_frame', verbose=True): def topicSim(i, j, df): idx1, idx2 = getIndex(i, df), getIndex(j, df) d1, d2 = doc_topic_distr[idx1, :], doc_topic_distr[idx2, :] topic_sim = 1 - np.sqrt(JSD(d1, d2)) return topic_sim def skillSimOfRows(i, j, df): """ Jaccard similarity between 2 posts at rows i and j of given df """ p1, p2 = df.iloc[i], df.iloc[j] return skillSim(p1, p2) # employer = p1['employer_name'] # job_id1, job_id2 = p1['job_id'], p2['job_id'] def simPair(i, j, df): topic_sim = topicSim(i, j, df) skill_sim = skillSimOfRows(i, j, df) # meta-info idoc, jdoc = df.iloc[i], df.iloc[j] job_id1, job_id2 = idoc['job_id'], jdoc['job_id'] employer1, employer2 = idoc['employer_name'],jdoc['employer_name'] skills1, skills2 = idoc['occur_skills'], jdoc['occur_skills'] # doc1, doc2 = idoc['doc'], jdoc['doc'] res = pd.DataFrame({'job_id1': job_id1, 'job_id2': job_id2, 'topic_sim': round(topic_sim, 3), 'skill_sim': round(skill_sim, 2), 'skills1': skills1, 'skills2': skills2, 'employer1': employer1, 'employer2': employer2}, index=[1]) # 'doc1': doc1, 'doc2': doc2 return res def sim2Subseq(i, df, out_fmt='lists'): """Similarity scores bw a post at row i with subseq posts in df""" n_doc = df.shape[0] # If there are actually subseq posts if (i <= n_doc-2): if (i % 50 == 0) and verbose: print('\t {} posts and counting...'.format(i)) if (out_fmt == 'data_frame'): frames = [simPair(i, j, df) for j in range(i, n_doc)] # i+1 res = pd.concat(frames).reset_index(); del res['index'] return res if (out_fmt == 'lists'): topic_sims = [topicSim(i, j, df) for j in range(i, n_doc)] # i+1 skill_sims = [skillSimOfRows(i, j, df) for j in range(i+1, n_doc)] return pd.DataFrame({'topic_sim': topic_sims, 'skill_sim': skill_sims}) pass def simMat(posts, level='topic'): n_post = posts.shape[0] sims = np.zeros(shape=(n_post, n_post)) for i in xrange(n_post): sims[i, i] = 1 # j < i for j in xrange(i): sims[i, j] = sims[j, i] # j > i (only exist if i is not the last post, ie n_post-1) if (i < n_post-1) : if (level == 'topic'): sims[i, (i+1):n_post] = sim2Subseq(i, posts, out_fmt='lists')['topic_sim'] if (level == 'skill'): sims[i, (i+1):n_post] = sim2Subseq(i, posts, out_fmt='lists')['skill_sim'] return sims def simDF(posts): n_post = posts.shape[0] # t0 = time() frames = [sim2Subseq(i, posts, out_fmt='data_frame') for i in range(n_post)] # print('Done after %.1fs' %(time() - t0)) return pd.concat(frames).reset_index() # n_post = posts.shape[0] # print('Computing pairwise similarity scores among {} job posts...'.format(n_post)) # print('each post is compared with subseq posts...') if (out_fmt == 'data_frame'): return simDF(posts) if (out_fmt == 'matrix_topic_sim'): return simMat(posts, level='topic') if (out_fmt == 'matrix_skill_sim') : return simMat(posts, level='skill') def rmBadPosts(posts, title): thres = posts.n_skill.quantile(.25) # print('Removed 1st quarter of posts of {}, each having <= {} skills'.format(title, int(thres))) return posts[posts.n_skill > thres] def sampleIfMoreThan(max_n_post, t, post_df): posts = post_df[post_df.title == t] return posts if len(posts) <= max_n_post else posts.sample(max_n_post) def cachePosts(titles, post_df): max_n_post = 100 res = {t: sampleIfMoreThan(max_n_post, t, post_df) for t in titles} print('Done caching sampled posts for titles with more than {}'.format(max_n_post)) return res def crossSimScores(posts1, posts2, doc_topic_distr, verbose=False): """ Return cross sims (topic_sim and skill_sim) bw posts in 2 sets posts1 and posts2 """ def sims(p1, p2): idx1, idx2 = p1.name, p2.name d1, d2 = doc_topic_distr[idx1, :], doc_topic_distr[idx2, :] topic_sim = 1 - np.sqrt(JSD(d1, d2)) skill_sim = skillSim(p1, p2) res = pd.DataFrame({'job_id1': p1.job_id, 'job_title1': p1.title, 'employer1': p1.employer_name, 'job_id2': p2.job_id, 'job_title2': p2.title, 'employer2': p2.employer_name, 'topic_sim': topic_sim, 'skill_sim': skill_sim, 'skills1': p1.occur_skills, 'skills2': p2.occur_skills}, index=[1]) return res # global count; count = 0 def sims2Set(p, posts): n_post = posts.shape[0] frames = [sims(p, posts.iloc[i]) for i in xrange(n_post)] # global count; count += 1 # if (count % 10 == 0) and verbose: # print('%d posts and counting...' %count) return pd.concat(frames) n1 = posts1.shape[0]; n2 = posts2.shape[0] frames = [sims2Set(posts1.iloc[i], posts2) for i in xrange(n1)] res = pd.concat(frames); return res def postSimScore(posts1, posts2, doc_topic_distr): ## Rm lousy posts with too few skills from both sets # posts1 = rmBadPosts(posts1, t1) # posts2 = rmBadPosts(posts2, t2) n1, n2 = posts1.shape[0], posts2.shape[0] if (n1 > 0) and (n2 > 0): res = crossSimScores(posts1, posts2, doc_topic_distr, verbose=False) topic_sim = round(res['topic_sim'].mean(), 3) return topic_sim # return res return np.nan def titleSim(t1, t2, doc_topic_distr, df=None, cached_posts=None, verbose=False): # posts1 = df[df.title == t1] # posts2 = df[df.title == t2] posts1 = cached_posts[t1] posts2 = cached_posts[t2] if verbose: n1, n2 = posts1.shape[0], posts2.shape[0] print('\t{} ({} posts) vs. {} ({} posts)'.format(t1, n1, t2, n2)) return postSimScore(posts1, posts2, doc_topic_distr) def sims2SubseqTitle(i, titles, doc_topic_distr, cached_posts=None, verbose=False): ''' @param i: index of the focus title @param titles @return topic sims of i-th title with its sub seq titles in the given titles ''' n_title = len(titles); focus_title = titles[i] sub_seq_titles = titles[i+1 : n_title] res = pd.DataFrame({'t1': sub_seq_titles, 't2': focus_title}) res['topic_sim'] = res['t1'].apply(titleSim, t2=focus_title, doc_topic_distr=doc_topic_distr, cached_posts=cached_posts, verbose=verbose) print('\t Calculated sims of {} to all subseq titles'.format(focus_title)) return res def calSims4Batch(b, size, titles, doc_topic_distr, cached_posts): start = b*size; end = start + size t0 = time() frames = [sims2SubseqTitle(i, titles, doc_topic_distr, cached_posts) for i in range(start, end)] elapse = round(time() - t0, 1) print('\tFinished sim cals for a batch of {} job titles in {}s'.format(size, elapse)) return frames def saveBatch(b, res, tmp_dir): res = res.reset_index(); del res['index'] res.to_csv(tmp_dir + 'b{}.csv'.format(b), index=False) print('\t Saved results of batch {}'.format(b)) def calAndSaveSims4Batch(b, bsize, titles, doc_topic_distr, cached_posts, tmp_dir): frames = calSims4Batch(b, bsize, titles, doc_topic_distr, cached_posts) res = pd.concat(frames) saveBatch(b, res, tmp_dir) return res def simsAmong(titles, doc_topic_distr, df, verbose=False, bsize=50, tmp_dir=''): n_title = len(titles) msg = '# job titles: {}. For job titles with > 100 posts, only sample 100 posts.' print(msg.format(n_title)) if n_title > 1: cached_posts = cachePosts(titles, df) # s.t. we do not have to repeat sampling # if no. of title is large, it is better to # cal for each batch and save defensively to avoid loss of results n_batch = n_title/bsize; remains = n_title % bsize frames = [calAndSaveSims4Batch(b, bsize, titles, doc_topic_distr, cached_posts, tmp_dir) for b in xrange(0, n_batch)] return pd.concat(frames) else: # return an empty data frame instead of None return pd.DataFrame({'t1': [], 't2': [], 'topic_sim': []}) def buildTopkFrom(rel_sims, k, job_title): rel_sims.sort_values('topic_sim', ascending=False, inplace=True) tmp = rel_sims.head(k).copy() # if focus job title is the 2nd column, swap it to 1st column part1 = tmp[tmp.t1 == job_title] part2 = tmp[tmp.t2 == job_title] topk = part1.append(swapCols('t1', 't2', part2)) topk['title_n_sim'] = pasteCols('t2', 'topic_sim', topk) return topk # return ', '.join(topk['title_n_sim']) def topkByFunction(job_title, k, func_sims): q = 't1 == "{}" or t2 == "{}"'.format(job_title, job_title) rel_sims = func_sims.query(q) return buildTopkFrom(rel_sims, k, job_title) ## Funcs for filtering ==================================== def titlesIn(domain, title_df): return title_df.title[title_df.domain == domain].unique() def titlesWithFunc(pri_func, title_df): sub_df = title_df[title_df.pri_func == pri_func] sub_df = sub_df.sort_values('n_post', ascending=False) return sub_df.title.unique() def titlesHavingAtLeast(records, min_post): return list(records[records.n_post >= min_post]['title']) ## Visualization ==================================== def getPostsInPairs(pairs, df): job_ids = set(pairs.job_id1.append(pairs.job_id2)) posts = df[df.job_id.isin(job_ids)] print('# posts retrieved: %d' %posts.shape[0]) return posts def pretty(employer_name='Millennium Capital Management (Singapore) Pte. Ltd.'): name = employer_name.title() name = name.replace('Pte.','').replace('Ltd.','').replace('(Singapore)','').replace('Job-', '') return name.strip() def plotDist(post, doc_topic_distr, labels): """ @param post @param doc_topic_distr contains cluster distributions of all posts @return Bar chart of the cluster distribution of given post (bars at x locs) """ n_topic = doc_topic_distr.shape[1] topic_idx = np.arange(1, n_topic + 1) if len(topic_idx) != len(labels): print('# xticks ({}) != # labels ({})!'.format(len(topic_idx), len(labels))) pass if len(topic_idx) == len(labels): job_id, employer, job_title = pretty(post['job_id']), pretty(post['employer_name']), post['title'] idx = post.name # post['index'] probs = doc_topic_distr[idx, :] bars = plt.bar(topic_idx, probs) # width = 0.3 plt.xticks(topic_idx, labels, rotation=45) plt.xlim(0, n_topic + 1) plt.grid(True) plt.title(job_id + '(' + job_title + ' at ' + employer + ')') # print('x = {}'.format(x)) return bars def topicDists(p1, p2, doc_topic_distr, labels): fig, axes = plt.subplots(2, sharex=True, figsize=(6,6)) plt.subplot(211) bars1 = plotDist(p1, doc_topic_distr, labels) plt.subplots_adjust(hspace=.3) plt.subplot(212) bars2 = plotDist(p2, doc_topic_distr, labels) plt.xlabel('Skill Clusters', fontsize=16) # hide x-ticks of 1st subplot (NOTE: this kind of fine tune need to be done last, why?) plt.setp(fig.axes[0].get_xticklabels(), visible=False) return fig def vizDists4Pair(row, df, doc_topic_distr, labels): """ @brief Plot cluster distributions of the pair of posts stored at given row (in a df of post sims) @param row @param df {storing posts and their indices in the matrix doc_topic_distr} @return {2 bar charts of the cluster distributions, sharing x axis} """ p1 = df[df.job_id == row.job_id1].iloc[0]; p2 = df[df.job_id == row.job_id2].iloc[0] fig = topicDists(p1, p2, doc_topic_distr, labels) topic_sim, skill_sim = round(row.topic_sim, 3), round(row.skill_sim, 3) title = 'Topic similarity: {}, skill similarity {}'.format(topic_sim, skill_sim) fig.suptitle(title, fontsize=16) return fig topic_df = pd.read_csv('d:/larc_projects/job_analytics/results/lda/20_topics.csv') labels = map(str.upper, topic_df['label']) def vizPostPair(i, sim_df, post_df, doc_topic_distr, labels, abbv_title=''): row = sim_df.iloc[i] fig = vizDists4Pair(row, post_df, doc_topic_distr, labels) fig.savefig(RES_DIR + 'fig/{}_p{}.pdf'.format(abbv_title, i+1)) plt.show(); plt.close() # May not be needed anymore def vizTopicDists(posts, doc_topic_distr, figsize): """ Plot cluster distributions of posts """ n_post = posts.shape[0] fig, axarr = plt.subplots(n_post, sharex='col', sharey='row', figsize=figsize) # sharex=True n_group = 2; group_size = n_post/n_group lasts = range((group_size-1)*n_group, n_post) for i in range(n_post): plt.subplot(group_size, n_group, p+1) plotDist(posts.iloc[i], doc_topic_distr) # Show xtick labels and x-label only for the last subplot in each group if p in lasts: plt.xticks(x, labels, rotation=45) plt.xlabel('Skill Clusters', fontsize=16) # Show ylabel at the middle # if p==(n_post/2 - 1): # plt.ylabel('Probability', fontsize=16) ## Fine tune the fig fig.subplots_adjust(hspace=.5) # In each group, hide xticks on all subplots except the last one hide_xticks(fig, lasts) return fig def vizSkillSim(sim_df, ax, sci_fmt=True, fontsize=16): skill_sim = sim_df.skill_sim hist = ax.hist(skill_sim) ax.grid(True) skill_sim_mean, skill_sim_std = round(skill_sim.mean(), 2), round(skill_sim.std(), 2) xl = 'Skill Similarity\n' + r'$(\mu: {}, \sigma: {})$'.format(skill_sim_mean, skill_sim_std) plt.xlabel(xl, fontsize=fontsize) plt.ylabel('Count', fontsize=fontsize) if sci_fmt: ax.yaxis.set_major_formatter( mtick.FormatStrFormatter('%.1e') ) # setAxProps(ax, fontproperties) return hist def vizTopicSim(sim_df, ax=None, sci_fmt=True, fontsize=16): topic_sim = sim_df.topic_sim if ax: ax.hist(topic_sim) ax.grid(True) else: plt.hist(topic_sim) plt.grid(True) topic_sim_mean, topic_sim_std = round(topic_sim.mean(), 3), round(topic_sim.std(), 3) xl = 'Topic Similarity\n' + r'$(\mu: {}, \sigma: {})$'.format(topic_sim_mean, topic_sim_std) plt.xlabel(xl, fontsize=fontsize) plt.ylabel('# pairs of job titles', fontsize=fontsize) if sci_fmt: ax.yaxis.set_major_formatter( mtick.FormatStrFormatter('%.1e') ) # setAxProps(ax, fontproperties) def plotSimDists(sim_df, figsize=(10, 5), sci_fmt=True): """ @param sim_df @return 2 hists of topic_sim and skill_sim (in sim_df) of job posts """ fig, axes = plt.subplots(1, 2, sharey=True, figsize=figsize) fontsize = 16; fontweight = 'bold' fontproperties = {'weight' : fontweight} # 'family':'sans-serif','sans-serif':['Helvetica'], 'size' : fontsize ax = plt.subplot(1,2,1) skill_sim_hist = vizSkillSim(sim_df, ax, sci_fmt) plt.subplots_adjust(wspace=.5, bottom=.15) # top=.9 ax = plt.subplot(1,2,2) topic_sim_hist = vizTopicSim(sim_df, ax, sci_fmt) return fig def viz(sims): fig, ax = plt.subplots() vizTopicSim(sims, ax) fig.subplots_adjust(bottom=.2) return fig def vizJobPostDist(by_n_post): """ @param by_n_post: group job titles by their number of posts @return The 2 distributions of job posts in job titles before and after title standardization """ fig = plt.figure() n_post_vals = by_n_post.n_post plt.scatter(x=n_post_vals, y=by_n_post.n_title, marker='o', c='b') plt.scatter(x=n_post_vals, y=by_n_post.n_title_after_std, marker='x', c='r') plt.loglog() plt.xlabel('# job posts'); plt.ylabel('# job titles') plt.xlim(min(n_post_vals), max(n_post_vals)*10) plt.grid(True) plt.legend(['Before title standardization', 'After title standardization']) return fig ## Eval against SkillFuture framework def skillFreq(posts): skills_in_posts = ','.join(posts.occur_skills); ls_skills = skills_in_posts.split(',') c = Counter(ls_skills) skill_df = pd.DataFrame({'skill': c.keys(), 'freq': c.values()}) return skill_df.sort_values('freq', ascending=False) def getTitleStats(posts, titles=None): """ @param titles, None if we just want to get stats for all titles in the posts instead of a specific set of titles @param posts @return The statistics for the titles in the given posts, not in whole ds """ by_title = posts.groupby('title') tmp = by_title.agg({'n_skill': np.mean, 'job_id': len, 'employer_id': 'nunique'}) tmp = tmp.reset_index(); tmp = tmp.rename(columns={'job_id': 'n_post', 'n_skill': 'avg_n_skill', 'employer_id': 'n_employer'}) if not titles: return tmp.sort_values('n_post', ascending=False).round(1) if titles: tmp = tmp[tmp.title.isin(titles)] return tmp.sort_values('n_post', ascending=False).round(1) # def freq(sk, skill_sets): # count = 0; # for ss in skill_sets: # if sk in ss: count += 1 # return count ## Others def findOutliers(res): lif, lof = getLowerFences(res['topic_sim']) sus_outliers = res.query('topic_sim < {}'.format(lif)).query('topic_sim > {}'.format(lof)) outliers = res.query('topic_sim < {}'.format(lof)) return [sus_outliers, outliers] def analyzeOutliers(res): outliers = pd.concat(findOutliers(res)) return outliers.sort_values('topic_sim') def trainNMF(tfidf_mat): pass def plotMetrics(train_metric, test_metric, model_name): fig = plt.figure(figsize=(6,6)) plt.subplot(2, 1, 1) plt.plot(ks, train_metric) plt.xlabel('No. of topics') plt.ylabel(r'$\| X_{train} - W_{train} H \|_2$') plt.title('Error of {} on train set'.format(model_name)) plt.grid(True) plt.xticks(ks) plt.subplots_adjust(wspace=.5, hspace=.5) plt.subplot(2, 1, 2) plt.plot(ks, test_metric) plt.xlabel('No. of topics') plt.ylabel(r'$\| X_{test} - W_{test} H \|_2$') plt.title('Error of {} on test set'.format(model_name)) plt.grid(True) plt.xticks(ks) plt.show() return fig
gpl-3.0
macks22/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
recarroll/opengm
src/interfaces/python/examples/python_visitor_gui.py
14
1377
""" Usage: python_visitor_gui.py This script shows how one can implement visitors in pure python and inject them into OpenGM solver. ( not all OpenGM solvers support this kind of code injection ) """ import opengm import numpy import matplotlib from matplotlib import pyplot as plt shape=[100,100] numLabels=10 unaries=numpy.random.rand(shape[0], shape[1],numLabels) potts=opengm.PottsFunction([numLabels,numLabels],0.0,0.4) gm=opengm.grid2d2Order(unaries=unaries,regularizer=potts) inf=opengm.inference.BeliefPropagation(gm,parameter=opengm.InfParam(damping=0.5)) class PyCallback(object): def __init__(self,shape,numLabels): self.shape=shape self.numLabels=numLabels self.cmap = matplotlib.colors.ListedColormap ( numpy.random.rand ( self.numLabels,3)) matplotlib.interactive(True) def begin(self,inference): print "begin of inference" def end(self,inference): print "end of inference" def visit(self,inference): gm=inference.gm() labelVector=inference.arg() print "energy ",gm.evaluate(labelVector) labelVector=labelVector.reshape(self.shape) plt.imshow(labelVector*255.0, cmap=self.cmap,interpolation="nearest") plt.draw() callback=PyCallback(shape,numLabels) visitor=inf.pythonVisitor(callback,visitNth=1) inf.infer(visitor) argmin=inf.arg()
mit
moutai/scikit-learn
sklearn/utils/tests/test_class_weight.py
50
13151
import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.datasets import make_blobs from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_sample_weight from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_warns def test_compute_class_weight(): # Test (and demo) compute_class_weight. y = np.asarray([2, 2, 2, 3, 3, 4]) classes = np.unique(y) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_true(cw[0] < cw[1] < cw[2]) cw = compute_class_weight("balanced", classes, y) # total effect of samples is preserved class_counts = np.bincount(y)[2:] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_true(cw[0] < cw[1] < cw[2]) def test_compute_class_weight_not_present(): # Raise error when y does not contain all class labels classes = np.arange(4) y = np.asarray([0, 0, 0, 1, 1, 2]) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) # Raise error when y has items not in classes classes = np.arange(2) assert_raises(ValueError, compute_class_weight, "auto", classes, y) assert_raises(ValueError, compute_class_weight, "balanced", classes, y) assert_raises(ValueError, compute_class_weight, {0: 1., 1: 2.}, classes, y) def test_compute_class_weight_dict(): classes = np.arange(3) class_weights = {0: 1.0, 1: 2.0, 2: 3.0} y = np.asarray([0, 0, 1, 2]) cw = compute_class_weight(class_weights, classes, y) # When the user specifies class weights, compute_class_weights should just # return them. assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw) # When a class weight is specified that isn't in classes, a ValueError # should get raised msg = 'Class label 4 not present.' class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) msg = 'Class label -1 not present.' class_weights = {-1: 5.0, 0: 1.0, 1: 2.0, 2: 3.0} assert_raise_message(ValueError, msg, compute_class_weight, class_weights, classes, y) def test_compute_class_weight_invariance(): # Test that results with class_weight="balanced" is invariant wrt # class imbalance if the number of samples is identical. # The test uses a balanced two class dataset with 100 datapoints. # It creates three versions, one where class 1 is duplicated # resulting in 150 points of class 1 and 50 of class 0, # one where there are 50 points in class 1 and 150 in class 0, # and one where there are 100 points of each class (this one is balanced # again). # With balancing class weights, all three should give the same model. X, y = make_blobs(centers=2, random_state=0) # create dataset where class 1 is duplicated twice X_1 = np.vstack([X] + [X[y == 1]] * 2) y_1 = np.hstack([y] + [y[y == 1]] * 2) # create dataset where class 0 is duplicated twice X_0 = np.vstack([X] + [X[y == 0]] * 2) y_0 = np.hstack([y] + [y[y == 0]] * 2) # duplicate everything X_ = np.vstack([X] * 2) y_ = np.hstack([y] * 2) # results should be identical logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1) logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0) logreg = LogisticRegression(class_weight="balanced").fit(X_, y_) assert_array_almost_equal(logreg1.coef_, logreg0.coef_) assert_array_almost_equal(logreg.coef_, logreg0.coef_) def test_compute_class_weight_auto_negative(): # Test compute_class_weight when labels are negative # Test with balanced class labels. classes = np.array([-2, -1, 0]) y = np.asarray([-1, -1, 0, 0, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1., 1., 1.])) # Test with unbalanced class labels. y = np.asarray([-1, 0, 0, -2, -2, -2]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([0.545, 1.636, 0.818]), decimal=3) cw = compute_class_weight("balanced", classes, y) assert_equal(len(cw), len(classes)) class_counts = np.bincount(y + 2) assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2. / 3, 2., 1.]) def test_compute_class_weight_auto_unordered(): # Test compute_class_weight when classes are unordered classes = np.array([1, 0, 3]) y = np.asarray([1, 0, 0, 3, 3, 3]) cw = assert_warns(DeprecationWarning, compute_class_weight, "auto", classes, y) assert_almost_equal(cw.sum(), classes.shape) assert_equal(len(cw), len(classes)) assert_array_almost_equal(cw, np.array([1.636, 0.818, 0.545]), decimal=3) cw = compute_class_weight("balanced", classes, y) class_counts = np.bincount(y)[classes] assert_almost_equal(np.dot(cw, class_counts), y.shape[0]) assert_array_almost_equal(cw, [2., 1., 2. / 3]) def test_compute_sample_weight(): # Test (and demo) compute_sample_weight. # Test with balanced classes y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with user-defined weights sample_weight = compute_sample_weight({1: 2, 2: 1}, y) assert_array_almost_equal(sample_weight, [2., 2., 2., 1., 1., 1.]) # Test with column vector of balanced classes y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with unbalanced classes y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) expected_auto = np.asarray([.6, .6, .6, .6, .6, .6, 1.8]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y) expected_balanced = np.array([0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]) assert_array_almost_equal(sample_weight, expected_balanced, decimal=4) # Test with `None` weights sample_weight = compute_sample_weight(None, y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 1.]) # Test with multi-output of balanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with multi-output with user-defined weights y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y) assert_array_almost_equal(sample_weight, [2., 2., 2., 2., 2., 2.]) # Test with multi-output of unbalanced classes y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y) assert_array_almost_equal(sample_weight, expected_balanced ** 2, decimal=3) def test_compute_sample_weight_with_subsample(): # Test compute_sample_weight with subsamples specified. # Test with balanced classes and all samples present y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with column vector of balanced classes and all samples present y = np.asarray([[1], [1], [1], [2], [2], [2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1.]) # Test with a subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(4)) assert_array_almost_equal(sample_weight, [.5, .5, .5, 1.5, 1.5, 1.5]) sample_weight = compute_sample_weight("balanced", y, range(4)) assert_array_almost_equal(sample_weight, [2. / 3, 2. / 3, 2. / 3, 2., 2., 2.]) # Test with a bootstrap subsample y = np.asarray([1, 1, 1, 2, 2, 2]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) expected_auto = np.asarray([1 / 3., 1 / 3., 1 / 3., 5 / 3., 5 / 3., 5 / 3.]) assert_array_almost_equal(sample_weight, expected_auto) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) expected_balanced = np.asarray([0.6, 0.6, 0.6, 3., 3., 3.]) assert_array_almost_equal(sample_weight, expected_balanced) # Test with a bootstrap subsample for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_auto ** 2) sample_weight = compute_sample_weight("balanced", y, [0, 1, 1, 2, 2, 3]) assert_array_almost_equal(sample_weight, expected_balanced ** 2) # Test with a missing class y = np.asarray([1, 1, 1, 2, 2, 2, 3]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) # Test with a missing class for multi-output y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]]) sample_weight = assert_warns(DeprecationWarning, compute_sample_weight, "auto", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) sample_weight = compute_sample_weight("balanced", y, range(6)) assert_array_almost_equal(sample_weight, [1., 1., 1., 1., 1., 1., 0.]) def test_compute_sample_weight_errors(): # Test compute_sample_weight raises errors expected. # Invalid preset string y = np.asarray([1, 1, 1, 2, 2, 2]) y_ = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]]) assert_raises(ValueError, compute_sample_weight, "ni", y) assert_raises(ValueError, compute_sample_weight, "ni", y, range(4)) assert_raises(ValueError, compute_sample_weight, "ni", y_) assert_raises(ValueError, compute_sample_weight, "ni", y_, range(4)) # Not "auto" for subsample assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y, range(4)) # Not a list or preset for multi-output assert_raises(ValueError, compute_sample_weight, {1: 2, 2: 1}, y_) # Incorrect length list for multi-output assert_raises(ValueError, compute_sample_weight, [{1: 2, 2: 1}], y_)
bsd-3-clause
LiaoPan/scikit-learn
sklearn/tree/tree.py
113
34767
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <[email protected]> # Peter Prettenhofer <[email protected]> # Brian Holt <[email protected]> # Noel Dawe <[email protected]> # Satrajit Gosh <[email protected]> # Joly Arnaud <[email protected]> # Fares Hedayati <[email protected]> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator, ClassifierMixin, RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array, check_random_state, compute_sample_weight from ..utils.validation import NotFittedError from ._tree import Criterion from ._tree import Splitter from ._tree import DepthFirstTreeBuilder, BestFirstTreeBuilder from ._tree import Tree from . import _tree __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _tree.Gini, "entropy": _tree.Entropy} CRITERIA_REG = {"mse": _tree.MSE, "friedman_mse": _tree.FriedmanMSE} DENSE_SPLITTERS = {"best": _tree.BestSplitter, "presort-best": _tree.PresortBestSplitter, "random": _tree.RandomSplitter} SPARSE_SPLITTERS = {"best": _tree.BestSparseSplitter, "random": _tree.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_store_unique_indices = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_store_unique_indices[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_store_unique_indices if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if self.min_samples_split <= 0: raise ValueError("min_samples_split must be greater than zero.") if self.min_samples_leaf <= 0: raise ValueError("min_samples_leaf must be greater than zero.") if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. # Set min_samples_split sensibly min_samples_split = max(self.min_samples_split, 2 * self.min_samples_leaf) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, self.min_samples_leaf, min_weight_leaf, random_state) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, self.min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " " match the input. Model n_features is %s and " " input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, optional (default=2) The minimum number of samples required to split an internal node. min_samples_leaf : int, optional (default=1) The minimum number of samples required to be at a leaf node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.cross_validation import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
jesserobertson/daft
examples/thicklines.py
7
1212
""" T-shirt style ============= Don't like dainty thin lines? Need to make graphical-model-themed conference schwag? Then `line_width` is the parameter for you. Also check out the `preamble` option in the `matplotlib.rc` command. """ from matplotlib import rc rc("font", family="serif", size=14) rc("text", usetex=True) rc('text.latex', preamble="\usepackage{amssymb}\usepackage{amsmath}\usepackage{mathrsfs}") import daft # Instantiate the PGM. pgm = daft.PGM([2.3, 2.05], origin=[0.3, 0.3], line_width=2.5) # Hierarchical parameters. pgm.add_node(daft.Node("alpha", r"$\boldsymbol{\alpha}$", 0.5, 2, fixed=True)) pgm.add_node(daft.Node("beta", r"$\boldsymbol{\beta}$", 1.5, 2)) # Latent variable. pgm.add_node(daft.Node("w", r"$\boldsymbol{w_n}$", 1, 1)) # Data. pgm.add_node(daft.Node("x", r"$\boldsymbol{x_n}$", 2, 1, observed=True)) # Add in the edges. pgm.add_edge("alpha", "beta") pgm.add_edge("beta", "w") pgm.add_edge("w", "x") pgm.add_edge("beta", "x") # And a plate. pgm.add_plate(daft.Plate([0.5, 0.5, 2, 1], label=r"$\boldsymbol{n = 1, \cdots, N}$", shift=-0.1)) # Render and save. pgm.render() pgm.figure.savefig("thicklines.pdf") pgm.figure.savefig("thicklines.png", dpi=150)
mit
wanderknight/trading-with-python
lib/interactivebrokers.py
77
18140
""" Copyright: Jev Kuznetsov Licence: BSD Interface to interactive brokers together with gui widgets """ import sys # import os from time import sleep from PyQt4.QtCore import (SIGNAL, SLOT) from PyQt4.QtGui import (QApplication, QFileDialog, QDialog, QVBoxLayout, QHBoxLayout, QDialogButtonBox, QTableView, QPushButton, QWidget, QLabel, QLineEdit, QGridLayout, QHeaderView) import ib from ib.ext.Contract import Contract from ib.opt import ibConnection, message from ib.ext.Order import Order import logger as logger from qtpandas import DataFrameModel, TableView from eventSystem import Sender import numpy as np import pandas from pandas import DataFrame, Index from datetime import datetime import os import datetime as dt import time priceTicks = {1: 'bid', 2: 'ask', 4: 'last', 6: 'high', 7: 'low', 9: 'close', 14: 'open'} timeFormat = "%Y%m%d %H:%M:%S" dateFormat = "%Y%m%d" def createContract(symbol, secType='STK', exchange='SMART', currency='USD'): """ contract factory function """ contract = Contract() contract.m_symbol = symbol contract.m_secType = secType contract.m_exchange = exchange contract.m_currency = currency return contract def _str2datetime(s): """ convert string to datetime """ return datetime.strptime(s, '%Y%m%d') def readActivityFlex(fName): """ parse trade log in a csv file produced by IB 'Activity Flex Query' the file should contain these columns: ['Symbol','TradeDate','Quantity','TradePrice','IBCommission'] Returns: A DataFrame with parsed trade data """ import csv rows = [] with open(fName, 'rb') as f: reader = csv.reader(f) for row in reader: rows.append(row) header = ['TradeDate', 'Symbol', 'Quantity', 'TradePrice', 'IBCommission'] types = dict(zip(header, [_str2datetime, str, int, float, float])) idx = dict(zip(header, [rows[0].index(h) for h in header])) data = dict(zip(header, [[] for h in header])) for row in rows[1:]: print row for col in header: val = types[col](row[idx[col]]) data[col].append(val) return DataFrame(data)[header].sort(column='TradeDate') class Subscriptions(DataFrameModel, Sender): """ a data table containing price & subscription data """ def __init__(self, tws=None): super(Subscriptions, self).__init__() self.df = DataFrame() # this property holds the data in a table format self._nextId = 1 self._id2symbol = {} # id-> symbol lookup dict self._header = ['id', 'position', 'bid', 'ask', 'last'] # columns of the _data table # register callbacks if tws is not None: tws.register(self.priceHandler, message.TickPrice) tws.register(self.accountHandler, message.UpdatePortfolio) def add(self, symbol, subId=None): """ Add a subscription to data table return : subscription id """ if subId is None: subId = self._nextId data = dict(zip(self._header, [subId, 0, np.nan, np.nan, np.nan])) row = DataFrame(data, index=Index([symbol])) self.df = self.df.append(row[self._header]) # append data and set correct column order self._nextId = subId + 1 self._rebuildIndex() self.emit(SIGNAL("layoutChanged()")) return subId def priceHandler(self, msg): """ handler function for price updates. register this with ibConnection class """ if priceTicks[msg.field] not in self._header: # do nothing for ticks that are not in _data table return self.df[priceTicks[msg.field]][self._id2symbol[msg.tickerId]] = msg.price #notify viewer col = self._header.index(priceTicks[msg.field]) row = self.df.index.tolist().index(self._id2symbol[msg.tickerId]) idx = self.createIndex(row, col) self.emit(SIGNAL("dataChanged(QModelIndex,QModelIndex)"), idx, idx) def accountHandler(self, msg): if msg.contract.m_symbol in self.df.index.tolist(): self.df['position'][msg.contract.m_symbol] = msg.position def _rebuildIndex(self): """ udate lookup dictionary id-> symbol """ symbols = self.df.index.tolist() ids = self.df['id'].values.tolist() self._id2symbol = dict(zip(ids, symbols)) def __repr__(self): return str(self.df) class Broker(object): """ Broker class acts as a wrapper around ibConnection from ibPy. It tracks current subscriptions and provides data models to viewiers . """ def __init__(self, name='broker'): """ initialize broker class """ self.name = name self.log = logger.getLogger(self.name) self.log.debug('Initializing broker. Pandas version={0}'.format(pandas.__version__)) self.contracts = {} # a dict to keep track of subscribed contracts self.tws = ibConnection() # tws interface self.nextValidOrderId = None self.dataModel = Subscriptions(self.tws) # data container self.tws.registerAll(self.defaultHandler) #self.tws.register(self.debugHandler,message.TickPrice) self.tws.register(self.nextValidIdHandler, 'NextValidId') self.log.debug('Connecting to tws') self.tws.connect() self.tws.reqAccountUpdates(True, '') def subscribeStk(self, symbol, secType='STK', exchange='SMART', currency='USD'): """ subscribe to stock data """ self.log.debug('Subscribing to ' + symbol) # if symbol in self.data.symbols: # print 'Already subscribed to {0}'.format(symbol) # return c = Contract() c.m_symbol = symbol c.m_secType = secType c.m_exchange = exchange c.m_currency = currency subId = self.dataModel.add(symbol) self.tws.reqMktData(subId, c, '', False) self.contracts[symbol] = c return subId @property def data(self): return self.dataModel.df def placeOrder(self, symbol, shares, limit=None, exchange='SMART', transmit=0): """ place an order on already subscribed contract """ if symbol not in self.contracts.keys(): self.log.error("Can't place order, not subscribed to %s" % symbol) return action = {-1: 'SELL', 1: 'BUY'} o = Order() o.m_orderId = self.getOrderId() o.m_action = action[cmp(shares, 0)] o.m_totalQuantity = abs(shares) o.m_transmit = transmit if limit is not None: o.m_orderType = 'LMT' o.m_lmtPrice = limit self.log.debug('Placing %s order for %i %s (id=%i)' % (o.m_action, o.m_totalQuantity, symbol, o.m_orderId)) self.tws.placeOrder(o.m_orderId, self.contracts[symbol], o) def getOrderId(self): self.nextValidOrderId += 1 return self.nextValidOrderId - 1 def unsubscribeStk(self, symbol): self.log.debug('Function not implemented') def disconnect(self): self.tws.disconnect() def __del__(self): """destructor, clean up """ print 'Broker is cleaning up after itself.' self.tws.disconnect() def debugHandler(self, msg): print msg def defaultHandler(self, msg): """ default message handler """ #print msg.typeName if msg.typeName == 'Error': self.log.error(msg) def nextValidIdHandler(self, msg): self.nextValidOrderId = msg.orderId self.log.debug('Next valid order id:{0}'.format(self.nextValidOrderId)) def saveData(self, fname): """ save current dataframe to csv """ self.log.debug("Saving data to {0}".format(fname)) self.dataModel.df.to_csv(fname) # def __getattr__(self, name): # """ x.__getattr__('name') <==> x.name # an easy way to call ibConnection methods # @return named attribute from instance tws # """ # return getattr(self.tws, name) class _HistDataHandler(object): """ handles incoming messages """ def __init__(self, tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler, message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open': [], 'high': [], 'low': [], 'close': [], 'volume': [], 'count': [], 'WAP': []} def msgHandler(self, msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return if len(msg.date) > 8: self._timestamp.append(dt.datetime.strptime(msg.date, timeFormat)) else: self._timestamp.append(dt.datetime.strptime(msg.date, dateFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): """ return downloaded data as a DataFrame """ df = DataFrame(data=self._data, index=Index(self._timestamp)) return df class Downloader(object): def __init__(self, debug=False): self._log = logger.getLogger('DLD') self._log.debug( 'Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__, ib.version)) self.tws = ibConnection() self._dataHandler = _HistDataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler, message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self, msg): print '[debug]', msg def requestData(self, contract, endDateTime, durationStr='1 D', barSizeSetting='30 secs', whatToShow='TRADES', useRTH=1, formatDate=1): self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol, endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(10) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId, contract, endDateTime, durationStr, barSizeSetting, whatToShow, useRTH, formatDate) self._reqId += 1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time() - startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data def getIntradayData(self, contract, dateTuple): """ get full day data on 1-s interval date: a tuple of (yyyy,mm,dd) """ openTime = dt.datetime(*dateTuple) + dt.timedelta(hours=16) closeTime = dt.datetime(*dateTuple) + dt.timedelta(hours=22) timeRange = pandas.date_range(openTime, closeTime, freq='30min') datasets = [] for t in timeRange: datasets.append(self.requestData(contract, t.strftime(timeFormat))) return pandas.concat(datasets) def disconnect(self): self.tws.disconnect() class TimeKeeper(object): def __init__(self): self._log = logger.getLogger('TK') dataDir = os.path.expanduser('~') + '/twpData' if not os.path.exists(dataDir): os.mkdir(dataDir) self._timeFormat = "%Y%m%d %H:%M:%S" self.dataFile = os.path.normpath(os.path.join(dataDir, 'requests.txt')) self._log.debug('Data file: {0}'.format(self.dataFile)) def addRequest(self): """ adds a timestamp of current request""" with open(self.dataFile, 'a') as f: f.write(dt.datetime.now().strftime(self._timeFormat) + '\n') def nrRequests(self, timeSpan=600): """ return number of requests in past timespan (s) """ delta = dt.timedelta(seconds=timeSpan) now = dt.datetime.now() requests = 0 with open(self.dataFile, 'r') as f: lines = f.readlines() for line in lines: if now - dt.datetime.strptime(line.strip(), self._timeFormat) < delta: requests += 1 if requests == 0: # erase all contents if no requests are relevant open(self.dataFile, 'w').close() self._log.debug('past requests: {0}'.format(requests)) return requests #---------------test functions----------------- def dummyHandler(msg): print msg def testConnection(): """ a simple test to check working of streaming prices etc """ tws = ibConnection() tws.registerAll(dummyHandler) tws.connect() c = createContract('SPY') tws.reqMktData(1, c, '', False) sleep(3) print 'testConnection done.' def testSubscriptions(): s = Subscriptions() s.add('SPY') #s.add('XLE') print s def testBroker(): b = Broker() sleep(2) b.subscribeStk('SPY') b.subscribeStk('XLE') b.subscribeStk('GOOG') b.placeOrder('ABC', 125, 55.1) sleep(3) return b #---------------------GUI stuff-------------------------------------------- class AddSubscriptionDlg(QDialog): def __init__(self, parent=None): super(AddSubscriptionDlg, self).__init__(parent) symbolLabel = QLabel('Symbol') self.symbolEdit = QLineEdit() secTypeLabel = QLabel('secType') self.secTypeEdit = QLineEdit('STK') exchangeLabel = QLabel('exchange') self.exchangeEdit = QLineEdit('SMART') currencyLabel = QLabel('currency') self.currencyEdit = QLineEdit('USD') buttonBox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) lay = QGridLayout() lay.addWidget(symbolLabel, 0, 0) lay.addWidget(self.symbolEdit, 0, 1) lay.addWidget(secTypeLabel, 1, 0) lay.addWidget(self.secTypeEdit, 1, 1) lay.addWidget(exchangeLabel, 2, 0) lay.addWidget(self.exchangeEdit, 2, 1) lay.addWidget(currencyLabel, 3, 0) lay.addWidget(self.currencyEdit, 3, 1) lay.addWidget(buttonBox, 4, 0, 1, 2) self.setLayout(lay) self.connect(buttonBox, SIGNAL("accepted()"), self, SLOT("accept()")) self.connect(buttonBox, SIGNAL("rejected()"), self, SLOT("reject()")) self.setWindowTitle("Add subscription") class BrokerWidget(QWidget): def __init__(self, broker, parent=None): super(BrokerWidget, self).__init__(parent) self.broker = broker self.dataTable = TableView() self.dataTable.setModel(self.broker.dataModel) self.dataTable.horizontalHeader().setResizeMode(QHeaderView.Stretch) #self.dataTable.resizeColumnsToContents() dataLabel = QLabel('Price Data') dataLabel.setBuddy(self.dataTable) dataLayout = QVBoxLayout() dataLayout.addWidget(dataLabel) dataLayout.addWidget(self.dataTable) addButton = QPushButton("&Add Symbol") saveDataButton = QPushButton("&Save Data") #deleteButton = QPushButton("&Delete") buttonLayout = QVBoxLayout() buttonLayout.addWidget(addButton) buttonLayout.addWidget(saveDataButton) buttonLayout.addStretch() layout = QHBoxLayout() layout.addLayout(dataLayout) layout.addLayout(buttonLayout) self.setLayout(layout) self.connect(addButton, SIGNAL('clicked()'), self.addSubscription) self.connect(saveDataButton, SIGNAL('clicked()'), self.saveData) #self.connect(deleteButton,SIGNAL('clicked()'),self.deleteSubscription) def addSubscription(self): dialog = AddSubscriptionDlg(self) if dialog.exec_(): self.broker.subscribeStk(str(dialog.symbolEdit.text()), str(dialog.secTypeEdit.text()), str(dialog.exchangeEdit.text()), str(dialog.currencyEdit.text())) def saveData(self): """ save data to a .csv file """ fname = unicode(QFileDialog.getSaveFileName(self, caption="Save data to csv", filter='*.csv')) if fname: self.broker.saveData(fname) # def deleteSubscription(self): # pass class Form(QDialog): def __init__(self, parent=None): super(Form, self).__init__(parent) self.resize(640, 480) self.setWindowTitle('Broker test') self.broker = Broker() self.broker.subscribeStk('SPY') self.broker.subscribeStk('XLE') self.broker.subscribeStk('GOOG') brokerWidget = BrokerWidget(self.broker, self) lay = QVBoxLayout() lay.addWidget(brokerWidget) self.setLayout(lay) def startGui(): app = QApplication(sys.argv) form = Form() form.show() app.exec_() if __name__ == "__main__": import ib print 'iby version:', ib.version #testConnection() #testBroker() #testSubscriptions() print message.messageTypeNames() startGui() print 'All done'
bsd-3-clause
ndingwall/scikit-learn
sklearn/random_projection.py
6
23301
# -*- coding: utf8 """Random Projection transformers. Random Projections are a simple and computationally efficient way to reduce the dimensionality of the data by trading a controlled amount of accuracy (as additional variance) for faster processing times and smaller model sizes. The dimensions and distribution of Random Projections matrices are controlled so as to preserve the pairwise distances between any two samples of the dataset. The main theoretical result behind the efficiency of random projection is the `Johnson-Lindenstrauss lemma (quoting Wikipedia) <https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma>`_: In mathematics, the Johnson-Lindenstrauss lemma is a result concerning low-distortion embeddings of points from high-dimensional into low-dimensional Euclidean space. The lemma states that a small set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved. The map used for the embedding is at least Lipschitz, and can even be taken to be an orthogonal projection. """ # Authors: Olivier Grisel <[email protected]>, # Arnaud Joly <[email protected]> # License: BSD 3 clause import warnings from abc import ABCMeta, abstractmethod import numpy as np import scipy.sparse as sp from .base import BaseEstimator, TransformerMixin from .utils import check_random_state from .utils.extmath import safe_sparse_dot from .utils.random import sample_without_replacement from .utils.validation import check_array, check_is_fitted from .utils.validation import _deprecate_positional_args from .exceptions import DataDimensionalityWarning __all__ = ["SparseRandomProjection", "GaussianRandomProjection", "johnson_lindenstrauss_min_dim"] @_deprecate_positional_args def johnson_lindenstrauss_min_dim(n_samples, *, eps=0.1): """Find a 'safe' number of components to randomly project to. The distortion introduced by a random projection `p` only changes the distance between two points by a factor (1 +- eps) in an euclidean space with good probability. The projection `p` is an eps-embedding as defined by: (1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2 Where u and v are any rows taken from a dataset of shape (n_samples, n_features), eps is in ]0, 1[ and p is a projection by a random Gaussian N(0, 1) matrix of shape (n_components, n_features) (or a sparse Achlioptas matrix). The minimum number of components to guarantee the eps-embedding is given by: n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3) Note that the number of dimensions is independent of the original number of features but instead depends on the size of the dataset: the larger the dataset, the higher is the minimal dimensionality of an eps-embedding. Read more in the :ref:`User Guide <johnson_lindenstrauss>`. Parameters ---------- n_samples : int or array-like of int Number of samples that should be a integer greater than 0. If an array is given, it will compute a safe number of components array-wise. eps : float or ndarray of shape (n_components,), dtype=float, \ default=0.1 Maximum distortion rate in the range (0,1 ) as defined by the Johnson-Lindenstrauss lemma. If an array is given, it will compute a safe number of components array-wise. Returns ------- n_components : int or ndarray of int The minimal number of components to guarantee with good probability an eps-embedding with n_samples. Examples -------- >>> johnson_lindenstrauss_min_dim(1e6, eps=0.5) 663 >>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01]) array([ 663, 11841, 1112658]) >>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1) array([ 7894, 9868, 11841]) References ---------- .. [1] https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma .. [2] Sanjoy Dasgupta and Anupam Gupta, 1999, "An elementary proof of the Johnson-Lindenstrauss Lemma." http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.3654 """ eps = np.asarray(eps) n_samples = np.asarray(n_samples) if np.any(eps <= 0.0) or np.any(eps >= 1): raise ValueError( "The JL bound is defined for eps in ]0, 1[, got %r" % eps) if np.any(n_samples) <= 0: raise ValueError( "The JL bound is defined for n_samples greater than zero, got %r" % n_samples) denominator = (eps ** 2 / 2) - (eps ** 3 / 3) return (4 * np.log(n_samples) / denominator).astype(int) def _check_density(density, n_features): """Factorize density check according to Li et al.""" if density == 'auto': density = 1 / np.sqrt(n_features) elif density <= 0 or density > 1: raise ValueError("Expected density in range ]0, 1], got: %r" % density) return density def _check_input_size(n_components, n_features): """Factorize argument checking for random matrix generation.""" if n_components <= 0: raise ValueError("n_components must be strictly positive, got %d" % n_components) if n_features <= 0: raise ValueError("n_features must be strictly positive, got %d" % n_features) def _gaussian_random_matrix(n_components, n_features, random_state=None): """Generate a dense Gaussian random matrix. The components of the random matrix are drawn from N(0, 1.0 / n_components). Read more in the :ref:`User Guide <gaussian_random_matrix>`. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. random_state : int, RandomState instance or None, default=None Controls the pseudo random number generator used to generate the matrix at fit time. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- components : ndarray of shape (n_components, n_features) The generated Gaussian random matrix. See Also -------- GaussianRandomProjection """ _check_input_size(n_components, n_features) rng = check_random_state(random_state) components = rng.normal(loc=0.0, scale=1.0 / np.sqrt(n_components), size=(n_components, n_features)) return components def _sparse_random_matrix(n_components, n_features, density='auto', random_state=None): """Generalized Achlioptas random sparse matrix for random projection. Setting density to 1 / 3 will yield the original matrix by Dimitris Achlioptas while setting a lower value will yield the generalization by Ping Li et al. If we note :math:`s = 1 / density`, the components of the random matrix are drawn from: - -sqrt(s) / sqrt(n_components) with probability 1 / 2s - 0 with probability 1 - 1 / s - +sqrt(s) / sqrt(n_components) with probability 1 / 2s Read more in the :ref:`User Guide <sparse_random_matrix>`. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. density : float or 'auto', default='auto' Ratio of non-zero component in the random projection matrix in the range `(0, 1]` If density = 'auto', the value is set to the minimum density as recommended by Ping Li et al.: 1 / sqrt(n_features). Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001. random_state : int, RandomState instance or None, default=None Controls the pseudo random number generator used to generate the matrix at fit time. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Returns ------- components : {ndarray, sparse matrix} of shape (n_components, n_features) The generated Gaussian random matrix. Sparse matrix will be of CSR format. See Also -------- SparseRandomProjection References ---------- .. [1] Ping Li, T. Hastie and K. W. Church, 2006, "Very Sparse Random Projections". https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf .. [2] D. Achlioptas, 2001, "Database-friendly random projections", http://www.cs.ucsc.edu/~optas/papers/jl.pdf """ _check_input_size(n_components, n_features) density = _check_density(density, n_features) rng = check_random_state(random_state) if density == 1: # skip index generation if totally dense components = rng.binomial(1, 0.5, (n_components, n_features)) * 2 - 1 return 1 / np.sqrt(n_components) * components else: # Generate location of non zero elements indices = [] offset = 0 indptr = [offset] for _ in range(n_components): # find the indices of the non-zero components for row i n_nonzero_i = rng.binomial(n_features, density) indices_i = sample_without_replacement(n_features, n_nonzero_i, random_state=rng) indices.append(indices_i) offset += n_nonzero_i indptr.append(offset) indices = np.concatenate(indices) # Among non zero components the probability of the sign is 50%/50% data = rng.binomial(1, 0.5, size=np.size(indices)) * 2 - 1 # build the CSR structure by concatenating the rows components = sp.csr_matrix((data, indices, indptr), shape=(n_components, n_features)) return np.sqrt(1 / density) / np.sqrt(n_components) * components class BaseRandomProjection(TransformerMixin, BaseEstimator, metaclass=ABCMeta): """Base class for random projections. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, n_components='auto', *, eps=0.1, dense_output=False, random_state=None): self.n_components = n_components self.eps = eps self.dense_output = dense_output self.random_state = random_state @abstractmethod def _make_random_matrix(self, n_components, n_features): """Generate the random projection matrix. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. Returns ------- components : {ndarray, sparse matrix} of shape \ (n_components, n_features) The generated random matrix. Sparse matrix will be of CSR format. """ def fit(self, X, y=None): """Generate a sparse random projection matrix. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) Training set: only the shape is used to find optimal random matrix dimensions based on the theory referenced in the afore mentioned papers. y Ignored Returns ------- self """ X = self._validate_data(X, accept_sparse=['csr', 'csc']) n_samples, n_features = X.shape if self.n_components == 'auto': self.n_components_ = johnson_lindenstrauss_min_dim( n_samples=n_samples, eps=self.eps) if self.n_components_ <= 0: raise ValueError( 'eps=%f and n_samples=%d lead to a target dimension of ' '%d which is invalid' % ( self.eps, n_samples, self.n_components_)) elif self.n_components_ > n_features: raise ValueError( 'eps=%f and n_samples=%d lead to a target dimension of ' '%d which is larger than the original space with ' 'n_features=%d' % (self.eps, n_samples, self.n_components_, n_features)) else: if self.n_components <= 0: raise ValueError("n_components must be greater than 0, got %s" % self.n_components) elif self.n_components > n_features: warnings.warn( "The number of components is higher than the number of" " features: n_features < n_components (%s < %s)." "The dimensionality of the problem will not be reduced." % (n_features, self.n_components), DataDimensionalityWarning) self.n_components_ = self.n_components # Generate a projection matrix of size [n_components, n_features] self.components_ = self._make_random_matrix(self.n_components_, n_features) # Check contract assert self.components_.shape == (self.n_components_, n_features), ( 'An error has occurred the self.components_ matrix has ' ' not the proper shape.') return self def transform(self, X): """Project the data by using matrix product with the random matrix Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The input data to project into a smaller dimensional space. Returns ------- X_new : {ndarray, sparse matrix} of shape (n_samples, n_components) Projected array. """ X = check_array(X, accept_sparse=['csr', 'csc']) check_is_fitted(self) if X.shape[1] != self.components_.shape[1]: raise ValueError( 'Impossible to perform projection:' 'X at fit stage had a different number of features. ' '(%s != %s)' % (X.shape[1], self.components_.shape[1])) X_new = safe_sparse_dot(X, self.components_.T, dense_output=self.dense_output) return X_new class GaussianRandomProjection(BaseRandomProjection): """Reduce dimensionality through Gaussian random projection. The components of the random matrix are drawn from N(0, 1 / n_components). Read more in the :ref:`User Guide <gaussian_random_matrix>`. .. versionadded:: 0.13 Parameters ---------- n_components : int or 'auto', default='auto' Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the ``eps`` parameter. It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. eps : float, default=0.1 Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when `n_components` is set to 'auto'. The value should be strictly positive. Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. random_state : int, RandomState instance or None, default=None Controls the pseudo random number generator used to generate the projection matrix at fit time. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Attributes ---------- n_components_ : int Concrete number of components computed when n_components="auto". components_ : ndarray of shape (n_components, n_features) Random matrix used for the projection. Examples -------- >>> import numpy as np >>> from sklearn.random_projection import GaussianRandomProjection >>> rng = np.random.RandomState(42) >>> X = rng.rand(100, 10000) >>> transformer = GaussianRandomProjection(random_state=rng) >>> X_new = transformer.fit_transform(X) >>> X_new.shape (100, 3947) See Also -------- SparseRandomProjection """ @_deprecate_positional_args def __init__(self, n_components='auto', *, eps=0.1, random_state=None): super().__init__( n_components=n_components, eps=eps, dense_output=True, random_state=random_state) def _make_random_matrix(self, n_components, n_features): """ Generate the random projection matrix. Parameters ---------- n_components : int, Dimensionality of the target projection space. n_features : int, Dimensionality of the original source space. Returns ------- components : {ndarray, sparse matrix} of shape \ (n_components, n_features) The generated random matrix. Sparse matrix will be of CSR format. """ random_state = check_random_state(self.random_state) return _gaussian_random_matrix(n_components, n_features, random_state=random_state) class SparseRandomProjection(BaseRandomProjection): """Reduce dimensionality through sparse random projection. Sparse random matrix is an alternative to dense random projection matrix that guarantees similar embedding quality while being much more memory efficient and allowing faster computation of the projected data. If we note `s = 1 / density` the components of the random matrix are drawn from: - -sqrt(s) / sqrt(n_components) with probability 1 / 2s - 0 with probability 1 - 1 / s - +sqrt(s) / sqrt(n_components) with probability 1 / 2s Read more in the :ref:`User Guide <sparse_random_matrix>`. .. versionadded:: 0.13 Parameters ---------- n_components : int or 'auto', default='auto' Dimensionality of the target projection space. n_components can be automatically adjusted according to the number of samples in the dataset and the bound given by the Johnson-Lindenstrauss lemma. In that case the quality of the embedding is controlled by the ``eps`` parameter. It should be noted that Johnson-Lindenstrauss lemma can yield very conservative estimated of the required number of components as it makes no assumption on the structure of the dataset. density : float or 'auto', default='auto' Ratio in the range (0, 1] of non-zero component in the random projection matrix. If density = 'auto', the value is set to the minimum density as recommended by Ping Li et al.: 1 / sqrt(n_features). Use density = 1 / 3.0 if you want to reproduce the results from Achlioptas, 2001. eps : float, default=0.1 Parameter to control the quality of the embedding according to the Johnson-Lindenstrauss lemma when n_components is set to 'auto'. This value should be strictly positive. Smaller values lead to better embedding and higher number of dimensions (n_components) in the target projection space. dense_output : bool, default=False If True, ensure that the output of the random projection is a dense numpy array even if the input and random projection matrix are both sparse. In practice, if the number of components is small the number of zero components in the projected data will be very small and it will be more CPU and memory efficient to use a dense representation. If False, the projected data uses a sparse representation if the input is sparse. random_state : int, RandomState instance or None, default=None Controls the pseudo random number generator used to generate the projection matrix at fit time. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Attributes ---------- n_components_ : int Concrete number of components computed when n_components="auto". components_ : sparse matrix of shape (n_components, n_features) Random matrix used for the projection. Sparse matrix will be of CSR format. density_ : float in range 0.0 - 1.0 Concrete density computed from when density = "auto". Examples -------- >>> import numpy as np >>> from sklearn.random_projection import SparseRandomProjection >>> rng = np.random.RandomState(42) >>> X = rng.rand(100, 10000) >>> transformer = SparseRandomProjection(random_state=rng) >>> X_new = transformer.fit_transform(X) >>> X_new.shape (100, 3947) >>> # very few components are non-zero >>> np.mean(transformer.components_ != 0) 0.0100... See Also -------- GaussianRandomProjection References ---------- .. [1] Ping Li, T. Hastie and K. W. Church, 2006, "Very Sparse Random Projections". https://web.stanford.edu/~hastie/Papers/Ping/KDD06_rp.pdf .. [2] D. Achlioptas, 2001, "Database-friendly random projections", https://users.soe.ucsc.edu/~optas/papers/jl.pdf """ @_deprecate_positional_args def __init__(self, n_components='auto', *, density='auto', eps=0.1, dense_output=False, random_state=None): super().__init__( n_components=n_components, eps=eps, dense_output=dense_output, random_state=random_state) self.density = density def _make_random_matrix(self, n_components, n_features): """ Generate the random projection matrix Parameters ---------- n_components : int Dimensionality of the target projection space. n_features : int Dimensionality of the original source space. Returns ------- components : {ndarray, sparse matrix} of shape \ (n_components, n_features) The generated random matrix. Sparse matrix will be of CSR format. """ random_state = check_random_state(self.random_state) self.density_ = _check_density(self.density, n_features) return _sparse_random_matrix(n_components, n_features, density=self.density_, random_state=random_state)
bsd-3-clause
HappyPhysics/Designer-Motion
Many_Triangles.py
1
17080
# -*- coding: utf-8 -*- """ Created on Tue Oct 24 10:39:08 2017 @author: Salem This script starts with a lattice and then divides it into a bunch of triangles. Then for each triangle it calls Little-Triangle and implements the addition of gray matter to each triangle separately. Before calling Little-Triangle a change of frame must be implemented. Methods: find_desired_lattice(disp_type=DispType.random): Finds the lattice that has the desired motion as lowest energy mode rotation_matrix(angle): rotates a vector by angle degrees angle_between(vec1, vec2): angle from vec1 to vec2 """ import numpy as np import numpy.random as npr import LatticeMaking import Little_Triangle from numpy import linalg as la from matplotlib import pyplot as plt import importlib importlib.reload(LatticeMaking) importlib.reload(Little_Triangle) from LatticeMaking import * #custom from Little_Triangle import * #custom # take in a triangulated mesh. # generate a list or an array of triangles with elements (indx1, indx2, indx3) # take in the desired displacements of each triangle. # transform the displacements to a canonical frame of reference. # run little_triangle on them. # store the results of all the little triangles. # combine the triangles back to a single mesh adding the extra vertices and edges. # minimize the cost function for the whole lattice as a function of the original edges (optional). PI = np.pi # take in a triangulated lattice. LATTICE_WIDTH = 3 # same as height TRI_LATTICE = triangular_lattice(LATTICE_WIDTH) #contains vertices and edges as tuple #=========================================================================================================================================== # A test lattice for changing a transverse wave to a longitudinal one #=========================================================================================================================================== def wave_changer(): verts = np.array([[0.0, 0.0], [0.0, 1.0], [np.sin(PI/3), 0.5], [np.sin(PI/3), -0.5]]) edges = np.array([[0, 1], [0, 2], [0, 3], [1,2], [2,3]], dtype=np.int64) mesh = [verts, edges] disp = np.array([[0.0, 1.0], [0.0, -1.0], [-1.0, 0.0], [1.0, 0.0]]) test = True; while(test): res = find_desired_lattice(mesh=mesh, desired_disp=disp, edgeType=EdgeTypes.all_to_gray) test = check_answer(res) return res #=========================================================================================================================================== # Finds the lattice that has the desired motion as lowest energy mode #=========================================================================================================================================== def find_desired_lattice(disp_type=DispType.random, edgeType = EdgeTypes.all_connected, num_of_added_verts= 3, mesh = list(TRI_LATTICE), desired_disp = None): print("\n") num_of_verts = mesh[0].size//2 mesh1 = mesh.copy() # define the desired displacement field of the entire lattice if desired_disp is None: desired_disp = make_desired_disp(mesh1[0], DeformType=disp_type, num_of_vertices=num_of_verts) desired_disp = np.hstack(([0,0,0], desired_disp)).reshape((num_of_verts, 2)) # take in an edge list, generate a list or an array of triangles with elements (indx1, indx2, indx3) triangles = get_mesh_faces(mesh1[1]) print("The mesh contrains the triangles: ", triangles) results = [] if(edgeType == EdgeTypes.all_to_gray): mesh1[1] = np.ones((0,2), dtype=np.int64) springConstants = np.ones(0) # no springs started on the original mesh else: springConstants = np.ones(mesh1[1].size//2) total_added = 0 # run over all the triangeles or faces of the mesh. for tri_ID, triangle in enumerate(triangles): triangle_verts = np.array(mesh1[0][triangle]) #get the indices of the triangle as a mask and use it to return the desired displacements of the triangle triangle_disps = desired_disp[triangle].flatten() # change thier frame of reference to the canonical one (from little triangle). #new_tri_verts, canon_disps = lab_to_triangle_frame(triangle_disps, triangle_verts) # call little triangle to add the gray matter res = find_desired_face(num_of_added_verts=num_of_added_verts, face_Disps=triangle_disps, face_verts=triangle_verts, face_ID=tri_ID + 1, edgeType=edgeType) add_res_to_mesh(mesh1, res, triangle, np.arange(num_of_verts + total_added, num_of_verts + total_added + res[0].size//2)) total_added += res[0].size//2 #the spring constants they are not squared anymore, they will be squared when the energy is evaluated springConstants = np.hstack((springConstants, res[2])) results.append(res) #handle edges #add the grey matter on the end of the lattice. #increment the corresponding edges in the edge array #add in the correct spring constants print("\n") #springConstants /= np.max(springConstants) mask = springConstants**2 < 0.01 #show vertices plotPoints(mesh1[0], num_of_originals=num_of_verts) #spring constants are normalized so that the maximum value is one return results, mesh1, springConstants #=========================================================================================================================================== #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #this enumumerates the possible outputs of get_triangle_indices #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ class OutType(Enum): mask = 1 indices = 2 #TRI_LATTICE = 3 #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #=========================================================================================================================================== # puts the triangle displacements in canonical form #=========================================================================================================================================== def get_triangle_indices(indx, num_of_verts, output = OutType.mask): """ description """ mask = np.zeros(num_of_verts, dtype=np.bool) #ignore the indices at the boundaries that are not at the Lower-Left corner of a triangle if np.mod(indx + 1, LATTICE_WIDTH) == 0 or indx >= LATTICE_WIDTH *(LATTICE_WIDTH - 1): #return nothing because they do not represent a triangle return None if output is not OutType.mask: return np.array([indx, indx + 1, indx + LATTICE_WIDTH, indx + LATTICE_WIDTH + 1]) # gets the indices of the triangle corresponding to indx (indx of lower left corner) # start with indx, then find the indices of the other three mask[indx] = mask[indx + 1] = mask[indx + LATTICE_WIDTH] = mask[indx + LATTICE_WIDTH + 1] = True return mask #=========================================================================================================================================== # return thier positions and displacements to change frame. #=========================================================================================================================================== # puts the triangle displacements in canonical form #=========================================================================================================================================== def lab_to_triangle_frame(triangle_disps, triangle_verts, direction = 1): """ Translates between the lab and triangle frames. triangle frame is the natural frame introduced in the script Little_triangle. Input: direction: gives the direction of the transformation. If direction is +1 the transformation goes from lab to triangle frame. if direction is -1 then the transformation goes the other way (note that the outputs will have different shapes because of flattening and reshaping) """ # find the triangle vertices in canonical for, [0,0], [0, y],... new_verts = np.copy(triangle_verts) new_verts -= new_verts[0] new_verts = np.dot(new_verts, rotation_matrix(angle_between([0, 1],new_verts[1]))) #for disps, find the amount needed to be rotated. #subtract the displacement of the first vertex from all the displacements. new_disps = triangle_disps - triangle_disps[0] #rotation vectors, these are vectors normal to the position vector (starting from the pivot point) rotation_vecs = np.dot((new_verts), rotation_matrix(-PI/2)) # C.C. rotation print(rotation_vecs) # find (negative of ) the component of the first displacement perpendicular to the first edge. # find the ratio of length of this component to the length of the first edge, this is the rotation parameter. rotation_param = -np.dot(new_disps[1], rotation_vecs[1])/(la.norm(rotation_vecs[1])**2) #rotate the right amount #start with the triangle positions. (DONE ABOVE) #subtract the first position from all of them. (DONE ABOVE) # rotate the result by 90 degrees. (DONE ABOVE) # multiply by the rotation parameter. #add to displacements. new_disps += rotation_param*rotation_vecs # return the displacemetns in canonical form. return new_verts, new_disps.flatten()[3:] #=========================================================================================================================================== #=========================================================================================================================================== # changes from the canonical form of the triangle back to the "lab" frame (acts on vertex positions) #=========================================================================================================================================== def back_to_lab_frame(output, triangle_verts): """ translates the gray matter back to lab frame """ #subtract the displacement of the first vertex from all the displacements. output += triangle_verts[0] output = np.dot(output, rotation_matrix(-angle_between([0, 1], triangle_verts[1]))) return output #=========================================================================================================================================== #=========================================================================================================================================== # rotates a vector by angle degrees #=========================================================================================================================================== def rotation_matrix(angle): """ rotates a vector by angle degrees in the counter clockwise direction. (2 by 2) """ return np.array([[np.cos(angle), -np.sin(angle)],[np.sin(angle), np.cos(angle)]]) #=========================================================================================================================================== import warnings #=========================================================================================================================================== # angle from vec1 to vec2 #=========================================================================================================================================== def angle_between (vec1, vec2): """ Angle from vec1 to vec2. This gives the angle you have to rotate vec1 to make it parallel to vec2, could be negative. """ norm1 = la.norm(vec1) norm2 = la.norm(vec2) if (norm1 == 0 or norm2 == 0): warnings.warn("Warning, angle between zero vector assumed to be pi/2 ") return np.pi/2 #find the angles with respect to the x axis then take the different. us x hat helps get the sign right return np.arccos(np.dot(vec2, [1, 0])/(norm2))*np.sign(vec2[1]) - np.arccos(np.dot(vec1, [1, 0])/(norm1))*np.sign(vec1[1]) #=========================================================================================================================================== #=========================================================================================================================================== # adds the new results to the original mesh #=========================================================================================================================================== def add_res_to_mesh(mesh, res, triangle, new_verts): ''' adds the extra vertices from res to the mesh. And adds the edges too after replacing the values of the indices by the order in which they appear in the new mesh ''' mesh[0] = np.vstack((mesh[0], res[0])) a = res[1] #print("edges: ", a) palette = np.arange(0, 3 + new_verts.size) #print("palette: ", palette) key = np.hstack((triangle, new_verts)) #print("key: ", key) #print("a.ravel:", a.ravel()) index = np.digitize(a.ravel(), palette, right=True) #print("index: ", index) #print(key[index].reshape(a.shape)) mesh[1] = np.vstack((mesh[1], key[index].reshape(a.shape))) #=========================================================================================================================================== #=========================================================================================================================================== # check the final answer #=========================================================================================================================================== def check_answer(result): ''' checks whether the results returned match the desired dispalcement. The desired displacements are given explicitly for now. ''' face_verts = np.array([[0.0, 0.0], [0.0, 1.0], [np.sin(PI/3), 0.5], [np.sin(PI/3), -0.5]]) desired_disp = np.array([ 0. , 1. , 0. , -1. , -1. , 0. , 1. , 0. , 0.83382341, 0.56617335, 0.53577003, 0.39596225, 0.55284973, 0.15255589, 0.85216995, 0.05556033, 0.10565699, 0.17175687, 0.42789355, 0.83339344]) mesh = result[1].copy() k = result[2].copy() #print("spring constants:" , k**2/max(k**2)) mask = k**2/max(k**2) < 0.01 dyn_mat = makeDynamicalMat(verts=mesh[0], edgeArray=mesh[1], springK=k) lowestEigVector = normalizeVec(la.eigh(dyn_mat)[1][:,3]) # project out the euclidean transforms euclid_transforms = get_rigid_transformations(mesh[0]) euclid_projector = get_complement_space(euclid_transforms) projected_disp = normalizeVec(np.dot(euclid_projector, desired_disp.flatten())) disp, disp_energy= check_energy(desired_disp[:face_verts.size], mesh, k) projected_disp = normalizeVec(np.dot(euclid_projector, disp)) print("eigenvalues: ", lowestEigenVals(dyn_mat, 2, 4)) print("result energy: " , disp_energy) dot_product = np.dot(projected_disp[:8], lowestEigVector[:8]) print("desired dot product: ", dot_product, "\n\n") projected_disp[:8] *= np.sign(dot_product) print("differece:", (projected_disp[:8] - lowestEigVector[:8]) ) if dot_product*np.sign(dot_product) < 0.995: return True return False; def check_energy(original_disps, mesh, k): num_of_verts = mesh[0].size//2 disps = npr.rand(num_of_verts*2) disps[:original_disps.size] = original_disps euclid_transforms = get_rigid_transformations(mesh[0]) euclid_projector = get_complement_space(euclid_transforms) projected_disp = normalizeVec(np.dot(euclid_projector, disps)) # project out the euclidean transforms dyn_mat = makeDynamicalMat(verts=mesh[0], edgeArray=mesh[1], springK=k) res = op.minimize(energy, projected_disp, method='Newton-CG', args=(dyn_mat, euclid_projector, original_disps), jac=energy_Der, hess=energy_Hess, options={'xtol': 1e-8, 'disp': False}) return res.x, res.fun
mit
ndingwall/scikit-learn
sklearn/utils/tests/test_random.py
10
7360
import numpy as np import pytest import scipy.sparse as sp from scipy.special import comb from numpy.testing import assert_array_almost_equal from sklearn.utils.random import _random_choice_csc, sample_without_replacement from sklearn.utils._random import _our_rand_r_py ############################################################################### # test custom sampling without replacement algorithm ############################################################################### def test_invalid_sample_without_replacement_algorithm(): with pytest.raises(ValueError): sample_without_replacement(5, 4, "unknown") def test_sample_without_replacement_algorithms(): methods = ("auto", "tracking_selection", "reservoir_sampling", "pool") for m in methods: def sample_without_replacement_method(n_population, n_samples, random_state=None): return sample_without_replacement(n_population, n_samples, method=m, random_state=random_state) check_edge_case_of_sample_int(sample_without_replacement_method) check_sample_int(sample_without_replacement_method) check_sample_int_distribution(sample_without_replacement_method) def check_edge_case_of_sample_int(sample_without_replacement): # n_population < n_sample with pytest.raises(ValueError): sample_without_replacement(0, 1) with pytest.raises(ValueError): sample_without_replacement(1, 2) # n_population == n_samples assert sample_without_replacement(0, 0).shape == (0, ) assert sample_without_replacement(1, 1).shape == (1, ) # n_population >= n_samples assert sample_without_replacement(5, 0).shape == (0, ) assert sample_without_replacement(5, 1).shape == (1, ) # n_population < 0 or n_samples < 0 with pytest.raises(ValueError): sample_without_replacement(-1, 5) with pytest.raises(ValueError): sample_without_replacement(5, -1) def check_sample_int(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # the sample is of the correct length and contains only unique items n_population = 100 for n_samples in range(n_population + 1): s = sample_without_replacement(n_population, n_samples) assert len(s) == n_samples unique = np.unique(s) assert np.size(unique) == n_samples assert np.all(unique < n_population) # test edge case n_population == n_samples == 0 assert np.size(sample_without_replacement(0, 0)) == 0 def check_sample_int_distribution(sample_without_replacement): # This test is heavily inspired from test_random.py of python-core. # # For the entire allowable range of 0 <= k <= N, validate that # sample generates all possible permutations n_population = 10 # a large number of trials prevents false negatives without slowing normal # case n_trials = 10000 for n_samples in range(n_population): # Counting the number of combinations is not as good as counting the # the number of permutations. However, it works with sampling algorithm # that does not provide a random permutation of the subset of integer. n_expected = comb(n_population, n_samples, exact=True) output = {} for i in range(n_trials): output[frozenset(sample_without_replacement(n_population, n_samples))] = None if len(output) == n_expected: break else: raise AssertionError( "number of combinations != number of expected (%s != %s)" % (len(output), n_expected)) def test_random_choice_csc(n_samples=10000, random_state=24): # Explicit class probabilities classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] got = _random_choice_csc(n_samples, classes, class_probabilities, random_state) assert sp.issparse(got) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilities[k], p, decimal=1) # Implicit class probabilities classes = [[0, 1], [1, 2]] # test for array-like support class_probabilities = [np.array([0.5, 0.5]), np.array([0, 1/2, 1/2])] got = _random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert sp.issparse(got) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / float(n_samples) assert_array_almost_equal(class_probabilities[k], p, decimal=1) # Edge case probabilities 1.0 and 0.0 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilities = [np.array([1.0, 0.0]), np.array([0.0, 1.0, 0.0])] got = _random_choice_csc(n_samples, classes, class_probabilities, random_state) assert sp.issparse(got) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel(), minlength=len(class_probabilities[k])) / n_samples assert_array_almost_equal(class_probabilities[k], p, decimal=1) # One class target data classes = [[1], [0]] # test for array-like support class_probabilities = [np.array([0.0, 1.0]), np.array([1.0])] got = _random_choice_csc(n_samples=n_samples, classes=classes, random_state=random_state) assert sp.issparse(got) for k in range(len(classes)): p = np.bincount(got.getcol(k).toarray().ravel()) / n_samples assert_array_almost_equal(class_probabilities[k], p, decimal=1) def test_random_choice_csc_errors(): # the length of an array in classes and class_probabilities is mismatched classes = [np.array([0, 1]), np.array([0, 1, 2, 3])] class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] with pytest.raises(ValueError): _random_choice_csc(4, classes, class_probabilities, 1) # the class dtype is not supported classes = [np.array(["a", "1"]), np.array(["z", "1", "2"])] class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] with pytest.raises(ValueError): _random_choice_csc(4, classes, class_probabilities, 1) # the class dtype is not supported classes = [np.array([4.2, 0.1]), np.array([0.1, 0.2, 9.4])] class_probabilities = [np.array([0.5, 0.5]), np.array([0.6, 0.1, 0.3])] with pytest.raises(ValueError): _random_choice_csc(4, classes, class_probabilities, 1) # Given probabilities don't sum to 1 classes = [np.array([0, 1]), np.array([0, 1, 2])] class_probabilities = [np.array([0.5, 0.6]), np.array([0.6, 0.1, 0.3])] with pytest.raises(ValueError): _random_choice_csc(4, classes, class_probabilities, 1) def test_our_rand_r(): assert 131541053 == _our_rand_r_py(1273642419) assert 270369 == _our_rand_r_py(0)
bsd-3-clause
robintw/Py6S
doc/source/conf.py
1
8291
# -*- coding: utf-8 -*- # # Py6S documentation build configuration file, created by # sphinx-quickstart on Thu Feb 16 12:07:44 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import mock MOCK_MODULES = [ "numpy", "scipy", "matplotlib", "matplotlib.pyplot", "scipy.interpolate", ] for mod_name in MOCK_MODULES: sys.modules[mod_name] = mock.Mock() # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, "C:\_Work\Py6S\py6s") sys.path.insert(0, "/Users/robin/Documents/University/Py6S/py6s") # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ["sphinx.ext.autodoc", "sphinx.ext.intersphinx", "sphinx.ext.viewcode"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # The suffix of source filenames. source_suffix = ".rst" # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = "Py6S" copyright = "2012, Robin Wilson" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "1.9.0" # The full version, including alpha/beta/rc tags. release = "1.9.0" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "default" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = "Py6Sdoc" # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). "papersize": "a4paper", # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ("index", "Py6S.tex", "Py6S Documentation", "Robin Wilson", "manual"), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [("index", "py6s", "Py6S Documentation", ["Robin Wilson"], 1)] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( "index", "Py6S", "Py6S Documentation", "Robin Wilson", "Py6S", "One line description of project.", "Miscellaneous", ), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {"http://docs.python.org/": None} autodoc_member_order = "bysource"
lgpl-3.0
ResByte/SLAM
mit_data.py
1
3600
import random from math import * import sys import matplotlib.pyplot as plt import numpy as np """ Define a robot class. """ class robot: def __init__(self): self.x = random.random()*world_size self.y = random.random()*world_size self.orientation = random.random()*1.0*pi self.forward_noise = 0.0 self.turn_noise = 0.0 self.sense_noise= 0.0 def set(self,new_X,new_Y,new_PHI): if new_X>= world_size: print new_X raise ValueError, 'X coordinate is out of range' if new_Y >= world_size: raise ValueError, 'Y coordinate out of bound' if new_PHI < -pi or new_PHI >= pi: raise ValueError, 'orientation is out of bound' self.x = float(new_X) + (world_size/2.0) self.y = float(new_Y) + (world_size/2.0) self.orientation= float(new_PHI) def set_noise(self,new_f_noise,new_t_noise, new_s_noise): self.turn_noise = float(new_t_noise) self.sense_noise = float(new_s_noise) self.forward_noise = float(new_f_noise) def sense(self): Z = [] for i in range(len(landmarks)): dist = landmarks[i] dist += random.gauss(0.0,self.sense_noise) Z.append(dist) return Z def move(self, turn, forward): if forward < 0 : raise ValueError, 'robot cannot move backwards' orientation = self.orientation+float(turn) + random.gauss(0.0, self.turn_noise) orientation %= 2*pi dist = float(forward) + random.gauss(0.0, self.forward_noise) x = self.x + (cos(orientation)*dist) y = self.y + (sin(orientation)*dist) x%= world_size y%= world_size res = robot() res.set(x,y,orientation) res.set_noise(self.forward_noise, self.turn_noise, self.sense_noise) return res def Gaussian(self, mu, sigma, x): return exp(-((mu-x)**2)/(sigma**2)/2.0)/sqrt(2.0*pi*(sigma**2)) def measurement_prob(self, measurement): prob = 1.0 for i in range(len(landmarks)): dist = sqrt((self.x - landmarks[i][0])**2 + (self.y- landmarks[i][1])**2) prob +=self.Gaussian(dist, self.sense_noise, measurement[i]) return prob def __repr__(self): return '[x = %.6s y = %.6s orient=%.6s]' %(str(self.x),str(self.y),str(self.orientation)) """ Read Odometry data from MIT dataset of Infinite Corridor """ def readMitData(): odom_data=[] sonar_data=[] flaser_data=[] with open(sys.argv[1],'r') as data_file: print"-> reading data" for line in data_file: a = line.strip().split() if a[0]=='ODOM': odom_data.append(a) if a[0]=='SONAR': sonar_data.append(a) if a[0]=='FLASER': flaser_data.append(a) return odom_data,sonar_data,flaser_data # create world world_size = 1300 createWorld = np.zeros([world_size,world_size]) # initialize robot myrobot = robot() #print odo_data x_co=[] # get odometry data from file odom, sonar, flaser = readMitData() # get laser data from file for i in flaser: angle = float(i[184]) newx = float(i[182]) newy=float(i[183]) #print i[184] myrobot.set(newx,newy,angle) laser_array=[] for n in range(180): x_lm = float(i[n+2])*cos(float(n) + angle) y_lm = float(i[n+2])*sin(float(n)+ angle) x_world = round(myrobot.x+x_lm) y_world = round(myrobot.y + x_lm) # laser_array.append(float(i[n+2])) if x_world >= world_size: x_world = world_size-1 if y_world >= world_size: y_world = world_size-1 #print x_world, y_world # upadate map ISM = 0.0 prior = 0.5 if i[n+2]<=20.0: ISM = 1.0 if 20.0< i[n+2]<=50.0: ISM = 0.5 if i[n+2]>50.0: ISM = 0.0 createWorld[x_world][y_world]=createWorld[x_world][y_world] + ISM + prior #odometry.append(float(i[184])) #print laser_array plt.imshow(createWorld,origin='lower') plt.show()
gpl-2.0
Aidan-Bharath/code_and_stuffs
v_save_vel.py
1
8839
from __future__ import division import numpy as np import sys sys.path.insert(0,'/home/aidan/thesis/probe_code/fvcomprobe/const_panels/') from structFunc import conv_time import netCDF4 as net import matplotlib.ticker as ticker import matplotlib.pyplot as plt def time_index(a): a = a.reindex(index=a.index.to_datetime()) return a def magnitude(a): mag = np.sqrt(a['u']**2+a['v']**2+a['w']**2) return mag def theta(a): a = np.arctan2(a['v'],a['u']) return a if __name__ == "__main__": fileDir = '/home/aidan/thesis/ncdata/gp/2014/' filename = 'dngrid_0001.nc' siglay = np.array([0.98999,0.94999,0.86999,0.74999,0.58999,0.41000,0.25000,0.13000,0.05000,0.01000]) ### BPb -TA #elements = [17521, 18093, 18092, 18643, 19188, 19702, 20191, 20685, 21180, 21675, 22185, 22705, 23228, 23758, 24283, 24782, 25275, 25774, 26276, 26759, 27219, 27653, 28084, 28527] ## north gap #elements = [ 9204, 9203, 8761, 8760, 8764, 8763, 8360, 7944, 7943, 7538, 7537, 7135, 7134, 7515, 7517, 7518, 7113, 7119, 7526, 7530, 7529, 7532, 7549, 7547, 7858, 7857, 7860, 7859, 7455, 7445, 7844, 8258, 8261, 8263, 8682, 8678, 8677, 9115, 9113, 9118, 9112, 9111, 9571, 10044, 10045, 10041, 10507, 10506, 10508, 10517, 11035, 11034, 11576, 11602, 12161, 12160, 12736, 12735, 13325, 13323, 13321, 13934, 14560, 15185, 15806, 16386, 16385, 16962, 17537, 18108, 18107, 18656, 18655, 19199, 19197, 19712, 20199, 20693, 21187, 21188, 21682, 21681, 22190, 22710, 23232, 23231, 23761, 23760, 24285, 24783, 25275, 25774, 26275, 26756, 27216, 27650, 28080, 28521, 28979, 29452, 29929, 30408, 30899, 31402, 31910, 32421, 32423, 32913, 32912, 33374, 33373, 33803, 33802, 34215, 34214, 34615, 35029, 35462, 35914, 36372, 36813, 37232, 37634, 37640, 38046, 38045, 38444, 38831, 39202, 39553, 39896, 40244, 40594, 40593, 40955, 40954, 41319, 41679, 42053, 42435, 42827, 43226, 43225, 43625, 43624, 44029, 44443, 44845, 45223, 45227, 45593, 45972, 46361, 46364, 46751, 46752, 47140, 47542, 47957, 48361, 48360, 48764, 49170, 49585, 49584, 50007, 50006, 50435, 50875, 51317, 51761, 52212, 52670, 53143, 53615, 53614, 54084, 54574, 54573] ### south passage # top #elements = [41420, 41421, 41422, 41787, 41425, 41426, 41427, 41428, 41429, 41430, 41431, 41063, 41064, 40698, 40699, 40700, 40701, 40702, 40703, 40348, 40349, 40350, 40351, 40352, 40007, 40008, 39664, 39665, 39666, 39311, 39312, 39670, 39671, 39672, 39673, 39675, 39676, 39677, 39678, 39679, 39326, 39327, 39328, 39329, 39330, 39332, 39333, 39334, 38959, 38960, 38961, 38962, 38567, 38568, 38569, 38570, 38571, 38166, 38167, 38168, 38169, 38170, 38171, 38172, 38173, 38581, 38176, 38177, 38178, 38179, 38180, 38181, 38182, 37775, 37776, 37777, 37778, 37779, 38189, 38192, 38193, 38194, 38603, 38604, 38999, 39001, 39004, 39005, 38611, 38612, 38613, 38614, 38615, 38616, 39013, 39014, 39016, 39017, 39386, 39390, 39391, 39392, 39748, 39749, 39750, 39751, 39752, 39753, 39754, 39402, 39403, 39404, 39759, 39760, 39762, 39763] # bottom #elements = [48484, 48485, 48885, 48886, 49295, 49296, 49717, 49718, 49299, 49300, 49301, 49302, 49303, 49725, 49726, 49727, 49728, 50156, 49732, 49733, 49734, 49735, 49736, 49737, 49317, 49318, 49319, 49742, 49743, 50169, 49746, 49747, 49748, 49749, 49750, 49751, 49752, 50177, 50178, 50613, 50181, 50182, 50183, 50616, 50620, 50621, 50188, 50189, 50190, 50191, 50192, 50193, 50194, 50195, 50196, 50197, 49773, 49774, 50201, 50202, 50203, 50204, 50205, 50206, 50641, 50642, 50643, 50644, 50645, 50214, 50215, 50216, 50217, 50218, 50653, 50654, 50655, 50656, 51097, 51098, 51099, 51100, 51101, 51102, 51103, 51104, 51105, 51106, 51107, 51108, 51555, 51556, 51557, 51558, 51559, 51560, 52009, 52010, 52011, 52012, 52469, 52016, 52017, 52018, 52019, 52020, 52022, 52023, 52024, 52479, 52482, 52483, 52484, 52485, 52486, 52951, 52952, 52953, 52492, 52493, 52494, 52958, 52961, 52962, 52963, 52964, 53435, 53436, 53438, 53439, 53441] ### north pass # far top #elements = [44099, 43692, 43691, 43690, 43684, 43285, 43277, 43276, 42874, 42873, 42872, 42868, 42867, 42472, 42471, 42091, 42090, 42089, 42088, 42087, 42086, 42085, 42084, 42082, 42081, 42080, 42079, 42078, 42077, 42076, 42075, 42454, 42453, 42452, 42451, 42450, 42449, 42448, 42447, 42446, 42445, 42443, 42442, 42059, 42058, 42056, 42055, 42054, 42053, 42052, 42051, 42050, 42049, 42048, 42047, 42046, 42045, 42044, 42043, 42042, 42041, 42422, 42421, 42420, 42419, 42418, 42033, 42032, 42030, 42029, 42028, 42410, 42409, 42799, 42798, 42797, 42404, 42403, 42402, 42790, 42794, 43186, 43185, 43184, 43183, 43182, 43181, 43180, 43579, 43578, 43580, 43981, 43980, 43979, 44392, 44391, 44791, 44790, 44789, 44787, 44786, 44785, 44784, 44783, 44782, 44781, 44780, 44779, 45159, 44776, 44775, 44773, 44772, 44774, 45150, 45151, 45521, 45520, 45519, 45518, 45517, 45515, 45514, 45516, 45890, 45889, 45888, 45887, 45886, 45885, 45884, 45883, 45882, 45881, 45880, 45879, 45878, 45877, 45876, 45875, 45874, 46261, 46259, 46258, 46260, 46254, 46255, 45865, 45864] # next to top elements = [31433, 31432, 31430, 31429, 31428, 30922, 30921, 30920, 30427, 30426, 30421, 29941, 29942, 29463, 29462, 29460, 29459, 29458, 29457, 28983, 28982, 28980, 28979, 28978, 28977, 28976, 28975, 28974, 28973, 28972, 28969, 28510, 28509, 28066, 28065, 27634, 27633, 28062, 27630, 27629, 27194, 27193, 27192, 27191, 27189, 27188, 27187, 27186, 27185, 27183, 27182, 27181, 27614, 27613, 27612, 27611, 27610, 27609, 27608, 27607, 27606, 27605, 27604, 27603, 27602, 27166, 27165, 27598, 27597, 27596, 27595, 27594, 27593, 27592, 27591, 27590, 27589, 27588] ### top pass #elements = [27241, 27240, 27239, 27238, 27237, 26777, 26776, 26292, 26291, 26287, 26286, 25783, 25782, 25284, 25283, 25279, 25278, 25277, 25276, 25275, 25274, 25273, 25272, 25271, 25270, 25269, 25268, 25267, 25266, 25265, 25264, 25263, 25261, 25260, 25259, 24768, 24767, 24764, 24763, 24762, 24761, 24760, 24259, 24258, 24257, 24256, 24254, 24253, 24252, 24251, 24250, 24249, 23723, 23722, 23721, 24243, 24242, 24241, 24240, 24239, 24237, 24236, 24235, 24234, 23708, 23707, 23706, 24229, 24228, 24227, 24226] ### middle pass #elements = [21706, 21218, 21217, 21216, 20720, 20719, 20718, 20715, 20714, 20713, 20712, 20710, 20709, 20708, 20707, 20706, 20705, 20210, 20209, 19719, 19718, 19715, 19200, 19199, 19198, 18651, 18650, 18649, 18648, 18647, 18646, 18645, 18644, 18092, 18091, 18090, 18089, 18088, 18087, 18086, 18085, 18084, 18083, 17509, 17508, 17507, 17506, 17504, 17503, 16927, 16926, 16350, 16349, 16348, 16347, 16346, 16345, 16344, 16343, 16342, 16340, 16339, 16341, 16910, 16911, 17478, 17477, 17476, 17475, 16903, 16902, 16901, 17468, 17467, 18041, 17463, 17462, 17461, 17459, 17458] ### bottom pass #elements = [14587, 13965, 13964, 13963, 13352, 13351, 12762, 12761, 12758, 12753, 12183, 12178, 11621, 11618, 11617, 11070, 11069, 10544, 10543, 10048, 10047, 9572, 9571, 9570, 9569, 9568, 9105, 9104, 8664, 8663, 8239, 8238, 8237, 7822, 7821, 7820, 7807, 7802, 7396, 7395, 6988, 6987, 6605, 6604, 6603, 6598, 6218, 6217, 6216, 5836, 5835, 5834, 5833, 5824, 5823, 5822, 5821, 5817, 5816, 5454, 5453, 5452, 5451, 5450, 5449, 5447, 5446, 5445, 5444, 5443, 5442, 5441, 5801, 5800, 5799, 5798, 5797, 5434, 5433, 5432, 5431, 5430, 5429, 5074, 5073, 5072, 5071, 5070, 5069, 5068, 5419, 5418, 5417, 5416] nc = net.Dataset(fileDir+filename).variables time = nc['time'][:]+678942 time = np.array([time]).transpose() time = conv_time(time) time = time.flatten() _,a = np.where([time == '2014-02-02 03:39:59']) _,b = np.where([time == '2014-02-02 13:49:59']) array = np.linspace(a[:],b[:],b[:][:]-a[:][:]+1) el = elements for i,j in enumerate(array): print i j = int(j) vel = np.sqrt(nc['u'][j,:,el]**2+nc['v'][j,:,el]**2+nc['ww'][j,:,el]**2) lat = nc['latc'][el] lon = nc['lonc'][el] line = lon fig,ax = plt.subplots() plt.rc('font',size='22') levels = np.linspace(0,3,31) cs = ax.contourf(line,siglay,vel,levels=levels) ax.contour(line,siglay,vel,cs.levels,colors='k',hold='on') cbar = fig.colorbar(cs,ax=ax) cbar.set_label(r'Velocity $(m/s)$', rotation=-90,labelpad=30) plt.title(str(time[j])) ax.set_xlabel('Longitude') scale = 1 ticks = ticker.FuncFormatter(lambda lon, pos: '{0:g}'.format(lon/scale)) ax.xaxis.set_major_formatter(ticks) ax.yaxis.set_major_formatter(ticks) ax.get_xaxis().set_visible(False) #ax.get_yaxis().set_visible(False) plt.savefig("/home/aidan/thesis/defence_presentation/v_spat/spat-"+str(i)+".jpg",format='jpeg') if i == 0: plt.show() plt.close()
mit
googleapis/python-monitoring
noxfile.py
1
6975
# -*- coding: utf-8 -*- # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by synthtool. DO NOT EDIT! from __future__ import absolute_import import os import pathlib import shutil import nox BLACK_VERSION = "black==19.10b0" BLACK_PATHS = ["docs", "google", "tests", "noxfile.py", "setup.py"] DEFAULT_PYTHON_VERSION = "3.8" SYSTEM_TEST_PYTHON_VERSIONS = ["3.8"] UNIT_TEST_PYTHON_VERSIONS = ["3.6", "3.7", "3.8", "3.9"] CURRENT_DIRECTORY = pathlib.Path(__file__).parent.absolute() # 'docfx' is excluded since it only needs to run in 'docs-presubmit' nox.options.sessions = [ "unit", "system", "cover", "lint", "lint_setup_py", "blacken", "docs", ] # Error if a python version is missing nox.options.error_on_missing_interpreters = True @nox.session(python=DEFAULT_PYTHON_VERSION) def lint(session): """Run linters. Returns a failure if the linters find linting errors or sufficiently serious code quality issues. """ session.install("flake8", BLACK_VERSION) session.run( "black", "--check", *BLACK_PATHS, ) session.run("flake8", "google", "tests") @nox.session(python=DEFAULT_PYTHON_VERSION) def blacken(session): """Run black. Format code to uniform standard.""" session.install(BLACK_VERSION) session.run( "black", *BLACK_PATHS, ) @nox.session(python=DEFAULT_PYTHON_VERSION) def lint_setup_py(session): """Verify that setup.py is valid (including RST check).""" session.install("docutils", "pygments") session.run("python", "setup.py", "check", "--restructuredtext", "--strict") def default(session): # Install all test dependencies, then install this package in-place. constraints_path = str( CURRENT_DIRECTORY / "testing" / f"constraints-{session.python}.txt" ) session.install("asyncmock", "pytest-asyncio", "-c", constraints_path) session.install("mock", "pytest", "pytest-cov", "-c", constraints_path) session.install("-e", ".[pandas]", "-c", constraints_path) # Run py.test against the unit tests. session.run( "py.test", "--quiet", f"--junitxml=unit_{session.python}_sponge_log.xml", "--cov=google/cloud", "--cov=tests/unit", "--cov-append", "--cov-config=.coveragerc", "--cov-report=", "--cov-fail-under=0", os.path.join("tests", "unit"), *session.posargs, ) @nox.session(python=UNIT_TEST_PYTHON_VERSIONS) def unit(session): """Run the unit test suite.""" default(session) @nox.session(python=SYSTEM_TEST_PYTHON_VERSIONS) def system(session): """Run the system test suite.""" constraints_path = str( CURRENT_DIRECTORY / "testing" / f"constraints-{session.python}.txt" ) system_test_path = os.path.join("tests", "system.py") system_test_folder_path = os.path.join("tests", "system") # Check the value of `RUN_SYSTEM_TESTS` env var. It defaults to true. if os.environ.get("RUN_SYSTEM_TESTS", "true") == "false": session.skip("RUN_SYSTEM_TESTS is set to false, skipping") # Install pyopenssl for mTLS testing. if os.environ.get("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") == "true": session.install("pyopenssl") system_test_exists = os.path.exists(system_test_path) system_test_folder_exists = os.path.exists(system_test_folder_path) # Sanity check: only run tests if found. if not system_test_exists and not system_test_folder_exists: session.skip("System tests were not found") # Use pre-release gRPC for system tests. session.install("--pre", "grpcio") # Install all test dependencies, then install this package into the # virtualenv's dist-packages. session.install("mock", "pytest", "google-cloud-testutils", "-c", constraints_path) session.install("-e", ".[pandas]", "-c", constraints_path) # Run py.test against the system tests. if system_test_exists: session.run( "py.test", "--quiet", f"--junitxml=system_{session.python}_sponge_log.xml", system_test_path, *session.posargs, ) if system_test_folder_exists: session.run( "py.test", "--quiet", f"--junitxml=system_{session.python}_sponge_log.xml", system_test_folder_path, *session.posargs, ) @nox.session(python=DEFAULT_PYTHON_VERSION) def cover(session): """Run the final coverage report. This outputs the coverage report aggregating coverage from the unit test runs (not system test runs), and then erases coverage data. """ session.install("coverage", "pytest-cov") session.run("coverage", "report", "--show-missing", "--fail-under=99") session.run("coverage", "erase") @nox.session(python=DEFAULT_PYTHON_VERSION) def docs(session): """Build the docs for this library.""" session.install("-e", ".") session.install("sphinx==4.0.1", "alabaster", "recommonmark") shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", # "-W", # warnings as errors "-T", # show full traceback on exception "-N", # no colors "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), ) @nox.session(python=DEFAULT_PYTHON_VERSION) def docfx(session): """Build the docfx yaml files for this library.""" session.install("-e", ".") session.install( "sphinx==4.0.1", "alabaster", "recommonmark", "gcp-sphinx-docfx-yaml" ) shutil.rmtree(os.path.join("docs", "_build"), ignore_errors=True) session.run( "sphinx-build", "-T", # show full traceback on exception "-N", # no colors "-D", ( "extensions=sphinx.ext.autodoc," "sphinx.ext.autosummary," "docfx_yaml.extension," "sphinx.ext.intersphinx," "sphinx.ext.coverage," "sphinx.ext.napoleon," "sphinx.ext.todo," "sphinx.ext.viewcode," "recommonmark" ), "-b", "html", "-d", os.path.join("docs", "_build", "doctrees", ""), os.path.join("docs", ""), os.path.join("docs", "_build", "html", ""), )
apache-2.0
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/matplotlib/tests/test_patches.py
3
9654
""" Tests specific to the patches module. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_equal from numpy.testing import assert_almost_equal from matplotlib.patches import Polygon from matplotlib.patches import Rectangle from matplotlib.testing.decorators import image_comparison, cleanup import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.collections as mcollections from matplotlib import path as mpath from matplotlib import transforms as mtrans def test_Polygon_close(): #: Github issue #1018 identified a bug in the Polygon handling #: of the closed attribute; the path was not getting closed #: when set_xy was used to set the vertices. # open set of vertices: xy = [[0, 0], [0, 1], [1, 1]] # closed set: xyclosed = xy + [[0, 0]] # start with open path and close it: p = Polygon(xy, closed=True) assert_array_equal(p.get_xy(), xyclosed) p.set_xy(xy) assert_array_equal(p.get_xy(), xyclosed) # start with closed path and open it: p = Polygon(xyclosed, closed=False) assert_array_equal(p.get_xy(), xy) p.set_xy(xyclosed) assert_array_equal(p.get_xy(), xy) # start with open path and leave it open: p = Polygon(xy, closed=False) assert_array_equal(p.get_xy(), xy) p.set_xy(xy) assert_array_equal(p.get_xy(), xy) # start with closed path and leave it closed: p = Polygon(xyclosed, closed=True) assert_array_equal(p.get_xy(), xyclosed) p.set_xy(xyclosed) assert_array_equal(p.get_xy(), xyclosed) def test_rotate_rect(): loc = np.asarray([1.0, 2.0]) width = 2 height = 3 angle = 30.0 # A rotated rectangle rect1 = Rectangle(loc, width, height, angle=angle) # A non-rotated rectangle rect2 = Rectangle(loc, width, height) # Set up an explicit rotation matrix (in radians) angle_rad = np.pi * angle / 180.0 rotation_matrix = np.array([[np.cos(angle_rad), -np.sin(angle_rad)], [np.sin(angle_rad), np.cos(angle_rad)]]) # Translate to origin, rotate each vertex, and then translate back new_verts = np.inner(rotation_matrix, rect2.get_verts() - loc).T + loc # They should be the same assert_almost_equal(rect1.get_verts(), new_verts) @image_comparison(baseline_images=['clip_to_bbox']) def test_clip_to_bbox(): fig = plt.figure() ax = fig.add_subplot(111) ax.set_xlim([-18, 20]) ax.set_ylim([-150, 100]) path = mpath.Path.unit_regular_star(8).deepcopy() path.vertices *= [10, 100] path.vertices -= [5, 25] path2 = mpath.Path.unit_circle().deepcopy() path2.vertices *= [10, 100] path2.vertices += [10, -25] combined = mpath.Path.make_compound_path(path, path2) patch = mpatches.PathPatch( combined, alpha=0.5, facecolor='coral', edgecolor='none') ax.add_patch(patch) bbox = mtrans.Bbox([[-12, -77.5], [50, -110]]) result_path = combined.clip_to_bbox(bbox) result_patch = mpatches.PathPatch( result_path, alpha=0.5, facecolor='green', lw=4, edgecolor='black') ax.add_patch(result_patch) @image_comparison(baseline_images=['patch_alpha_coloring'], remove_text=True) def test_patch_alpha_coloring(): """ Test checks that the patch and collection are rendered with the specified alpha values in their facecolor and edgecolor. """ star = mpath.Path.unit_regular_star(6) circle = mpath.Path.unit_circle() # concatenate the star with an internal cutout of the circle verts = np.concatenate([circle.vertices, star.vertices[::-1]]) codes = np.concatenate([circle.codes, star.codes]) cut_star1 = mpath.Path(verts, codes) cut_star2 = mpath.Path(verts + 1, codes) ax = plt.axes() patch = mpatches.PathPatch(cut_star1, linewidth=5, linestyle='dashdot', facecolor=(1, 0, 0, 0.5), edgecolor=(0, 0, 1, 0.75)) ax.add_patch(patch) col = mcollections.PathCollection([cut_star2], linewidth=5, linestyles='dashdot', facecolor=(1, 0, 0, 0.5), edgecolor=(0, 0, 1, 0.75)) ax.add_collection(col) ax.set_xlim([-1, 2]) ax.set_ylim([-1, 2]) @image_comparison(baseline_images=['patch_alpha_override'], remove_text=True) def test_patch_alpha_override(): #: Test checks that specifying an alpha attribute for a patch or #: collection will override any alpha component of the facecolor #: or edgecolor. star = mpath.Path.unit_regular_star(6) circle = mpath.Path.unit_circle() # concatenate the star with an internal cutout of the circle verts = np.concatenate([circle.vertices, star.vertices[::-1]]) codes = np.concatenate([circle.codes, star.codes]) cut_star1 = mpath.Path(verts, codes) cut_star2 = mpath.Path(verts + 1, codes) ax = plt.axes() patch = mpatches.PathPatch(cut_star1, linewidth=5, linestyle='dashdot', alpha=0.25, facecolor=(1, 0, 0, 0.5), edgecolor=(0, 0, 1, 0.75)) ax.add_patch(patch) col = mcollections.PathCollection([cut_star2], linewidth=5, linestyles='dashdot', alpha=0.25, facecolor=(1, 0, 0, 0.5), edgecolor=(0, 0, 1, 0.75)) ax.add_collection(col) ax.set_xlim([-1, 2]) ax.set_ylim([-1, 2]) @cleanup(style='default') def test_patch_color_none(): # Make sure the alpha kwarg does not override 'none' facecolor. # Addresses issue #7478. c = plt.Circle((0, 0), 1, facecolor='none', alpha=1) assert c.get_facecolor()[0] == 0 @image_comparison(baseline_images=['patch_custom_linestyle'], remove_text=True) def test_patch_custom_linestyle(): #: A test to check that patches and collections accept custom dash #: patterns as linestyle and that they display correctly. star = mpath.Path.unit_regular_star(6) circle = mpath.Path.unit_circle() # concatenate the star with an internal cutout of the circle verts = np.concatenate([circle.vertices, star.vertices[::-1]]) codes = np.concatenate([circle.codes, star.codes]) cut_star1 = mpath.Path(verts, codes) cut_star2 = mpath.Path(verts + 1, codes) ax = plt.axes() patch = mpatches.PathPatch(cut_star1, linewidth=5, linestyle=(0.0, (5.0, 7.0, 10.0, 7.0)), facecolor=(1, 0, 0), edgecolor=(0, 0, 1)) ax.add_patch(patch) col = mcollections.PathCollection([cut_star2], linewidth=5, linestyles=[(0.0, (5.0, 7.0, 10.0, 7.0))], facecolor=(1, 0, 0), edgecolor=(0, 0, 1)) ax.add_collection(col) ax.set_xlim([-1, 2]) ax.set_ylim([-1, 2]) @cleanup def test_patch_linestyle_accents(): #: Test if linestyle can also be specified with short menoics #: like "--" #: c.f. Gihub issue #2136 star = mpath.Path.unit_regular_star(6) circle = mpath.Path.unit_circle() # concatenate the star with an internal cutout of the circle verts = np.concatenate([circle.vertices, star.vertices[::-1]]) codes = np.concatenate([circle.codes, star.codes]) linestyles = ["-", "--", "-.", ":", "solid", "dashed", "dashdot", "dotted"] fig = plt.figure() ax = fig.add_subplot(1, 1, 1) for i, ls in enumerate(linestyles): star = mpath.Path(verts + i, codes) patch = mpatches.PathPatch(star, linewidth=3, linestyle=ls, facecolor=(1, 0, 0), edgecolor=(0, 0, 1)) ax.add_patch(patch) ax.set_xlim([-1, i + 1]) ax.set_ylim([-1, i + 1]) fig.canvas.draw() assert True def test_wedge_movement(): param_dict = {'center': ((0, 0), (1, 1), 'set_center'), 'r': (5, 8, 'set_radius'), 'width': (2, 3, 'set_width'), 'theta1': (0, 30, 'set_theta1'), 'theta2': (45, 50, 'set_theta2')} init_args = dict((k, v[0]) for (k, v) in six.iteritems(param_dict)) w = mpatches.Wedge(**init_args) for attr, (old_v, new_v, func) in six.iteritems(param_dict): assert_equal(getattr(w, attr), old_v) getattr(w, func)(new_v) assert_equal(getattr(w, attr), new_v) @image_comparison(baseline_images=['wedge_range'], remove_text=True) def test_wedge_range(): ax = plt.axes() t1 = 2.313869244286224 args = [[52.31386924, 232.31386924], [52.313869244286224, 232.31386924428622], [t1, t1 + 180.0], [0, 360], [90, 90 + 360], [-180, 180], [0, 380], [45, 46], [46, 45]] for i, (theta1, theta2) in enumerate(args): x = i % 3 y = i // 3 wedge = mpatches.Wedge((x * 3, y * 3), 1, theta1, theta2, facecolor='none', edgecolor='k', lw=3) ax.add_artist(wedge) ax.set_xlim([-2, 8]) ax.set_ylim([-2, 9]) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
apache-2.0
cogmission/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_agg.py
69
11729
""" An agg http://antigrain.com/ backend Features that are implemented * capstyles and join styles * dashes * linewidth * lines, rectangles, ellipses * clipping to a rectangle * output to RGBA and PNG * alpha blending * DPI scaling properly - everything scales properly (dashes, linewidths, etc) * draw polygon * freetype2 w/ ft2font TODO: * allow save to file handle * integrate screen dpi w/ ppi and text """ from __future__ import division import numpy as npy from matplotlib import verbose, rcParams from matplotlib.backend_bases import RendererBase,\ FigureManagerBase, FigureCanvasBase from matplotlib.cbook import is_string_like, maxdict from matplotlib.figure import Figure from matplotlib.font_manager import findfont from matplotlib.ft2font import FT2Font, LOAD_FORCE_AUTOHINT from matplotlib.mathtext import MathTextParser from matplotlib.path import Path from matplotlib.transforms import Bbox from _backend_agg import RendererAgg as _RendererAgg from matplotlib import _png backend_version = 'v2.2' class RendererAgg(RendererBase): """ The renderer handles all the drawing primitives using a graphics context instance that controls the colors/styles """ debug=1 texd = maxdict(50) # a cache of tex image rasters _fontd = maxdict(50) def __init__(self, width, height, dpi): if __debug__: verbose.report('RendererAgg.__init__', 'debug-annoying') RendererBase.__init__(self) self.dpi = dpi self.width = width self.height = height if __debug__: verbose.report('RendererAgg.__init__ width=%s, height=%s'%(width, height), 'debug-annoying') self._renderer = _RendererAgg(int(width), int(height), dpi, debug=False) if __debug__: verbose.report('RendererAgg.__init__ _RendererAgg done', 'debug-annoying') #self.draw_path = self._renderer.draw_path # see below self.draw_markers = self._renderer.draw_markers self.draw_path_collection = self._renderer.draw_path_collection self.draw_quad_mesh = self._renderer.draw_quad_mesh self.draw_image = self._renderer.draw_image self.copy_from_bbox = self._renderer.copy_from_bbox self.restore_region = self._renderer.restore_region self.tostring_rgba_minimized = self._renderer.tostring_rgba_minimized self.mathtext_parser = MathTextParser('Agg') self.bbox = Bbox.from_bounds(0, 0, self.width, self.height) if __debug__: verbose.report('RendererAgg.__init__ done', 'debug-annoying') def draw_path(self, gc, path, transform, rgbFace=None): nmax = rcParams['agg.path.chunksize'] # here at least for testing npts = path.vertices.shape[0] if nmax > 100 and npts > nmax and path.should_simplify and rgbFace is None: nch = npy.ceil(npts/float(nmax)) chsize = int(npy.ceil(npts/nch)) i0 = npy.arange(0, npts, chsize) i1 = npy.zeros_like(i0) i1[:-1] = i0[1:] - 1 i1[-1] = npts for ii0, ii1 in zip(i0, i1): v = path.vertices[ii0:ii1,:] c = path.codes if c is not None: c = c[ii0:ii1] c[0] = Path.MOVETO # move to end of last chunk p = Path(v, c) self._renderer.draw_path(gc, p, transform, rgbFace) else: self._renderer.draw_path(gc, path, transform, rgbFace) def draw_mathtext(self, gc, x, y, s, prop, angle): """ Draw the math text using matplotlib.mathtext """ if __debug__: verbose.report('RendererAgg.draw_mathtext', 'debug-annoying') ox, oy, width, height, descent, font_image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) x = int(x) + ox y = int(y) - oy self._renderer.draw_text_image(font_image, x, y + 1, angle, gc) def draw_text(self, gc, x, y, s, prop, angle, ismath): """ Render the text """ if __debug__: verbose.report('RendererAgg.draw_text', 'debug-annoying') if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle) font = self._get_agg_font(prop) if font is None: return None if len(s) == 1 and ord(s) > 127: font.load_char(ord(s), flags=LOAD_FORCE_AUTOHINT) else: # We pass '0' for angle here, since it will be rotated (in raster # space) in the following call to draw_text_image). font.set_text(s, 0, flags=LOAD_FORCE_AUTOHINT) font.draw_glyphs_to_bitmap() #print x, y, int(x), int(y) self._renderer.draw_text_image(font.get_image(), int(x), int(y) + 1, angle, gc) def get_text_width_height_descent(self, s, prop, ismath): """ get the width and height in display coords of the string s with FontPropertry prop # passing rgb is a little hack to make cacheing in the # texmanager more efficient. It is not meant to be used # outside the backend """ if ismath=='TeX': # todo: handle props size = prop.get_size_in_points() texmanager = self.get_texmanager() Z = texmanager.get_grey(s, size, self.dpi) m,n = Z.shape # TODO: descent of TeX text (I am imitating backend_ps here -JKS) return n, m, 0 if ismath: ox, oy, width, height, descent, fonts, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) return width, height, descent font = self._get_agg_font(prop) font.set_text(s, 0.0, flags=LOAD_FORCE_AUTOHINT) # the width and height of unrotated string w, h = font.get_width_height() d = font.get_descent() w /= 64.0 # convert from subpixels h /= 64.0 d /= 64.0 return w, h, d def draw_tex(self, gc, x, y, s, prop, angle): # todo, handle props, angle, origins size = prop.get_size_in_points() texmanager = self.get_texmanager() key = s, size, self.dpi, angle, texmanager.get_font_config() im = self.texd.get(key) if im is None: Z = texmanager.get_grey(s, size, self.dpi) Z = npy.array(Z * 255.0, npy.uint8) self._renderer.draw_text_image(Z, x, y, angle, gc) def get_canvas_width_height(self): 'return the canvas width and height in display coords' return self.width, self.height def _get_agg_font(self, prop): """ Get the font for text instance t, cacheing for efficiency """ if __debug__: verbose.report('RendererAgg._get_agg_font', 'debug-annoying') key = hash(prop) font = self._fontd.get(key) if font is None: fname = findfont(prop) font = self._fontd.get(fname) if font is None: font = FT2Font(str(fname)) self._fontd[fname] = font self._fontd[key] = font font.clear() size = prop.get_size_in_points() font.set_size(size, self.dpi) return font def points_to_pixels(self, points): """ convert point measures to pixes using dpi and the pixels per inch of the display """ if __debug__: verbose.report('RendererAgg.points_to_pixels', 'debug-annoying') return points*self.dpi/72.0 def tostring_rgb(self): if __debug__: verbose.report('RendererAgg.tostring_rgb', 'debug-annoying') return self._renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('RendererAgg.tostring_argb', 'debug-annoying') return self._renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('RendererAgg.buffer_rgba', 'debug-annoying') return self._renderer.buffer_rgba(x,y) def clear(self): self._renderer.clear() def option_image_nocomposite(self): # It is generally faster to composite each image directly to # the Figure, and there's no file size benefit to compositing # with the Agg backend return True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if __debug__: verbose.report('backend_agg.new_figure_manager', 'debug-annoying') FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasAgg(thisFig) manager = FigureManagerBase(canvas, num) return manager class FigureCanvasAgg(FigureCanvasBase): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def copy_from_bbox(self, bbox): renderer = self.get_renderer() return renderer.copy_from_bbox(bbox) def restore_region(self, region): renderer = self.get_renderer() return renderer.restore_region(region) def draw(self): """ Draw the figure using the renderer """ if __debug__: verbose.report('FigureCanvasAgg.draw', 'debug-annoying') self.renderer = self.get_renderer() self.figure.draw(self.renderer) def get_renderer(self): l, b, w, h = self.figure.bbox.bounds key = w, h, self.figure.dpi try: self._lastKey, self.renderer except AttributeError: need_new_renderer = True else: need_new_renderer = (self._lastKey != key) if need_new_renderer: self.renderer = RendererAgg(w, h, self.figure.dpi) self._lastKey = key return self.renderer def tostring_rgb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_rgb', 'debug-annoying') return self.renderer.tostring_rgb() def tostring_argb(self): if __debug__: verbose.report('FigureCanvasAgg.tostring_argb', 'debug-annoying') return self.renderer.tostring_argb() def buffer_rgba(self,x,y): if __debug__: verbose.report('FigureCanvasAgg.buffer_rgba', 'debug-annoying') return self.renderer.buffer_rgba(x,y) def get_default_filetype(self): return 'png' def print_raw(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') renderer._renderer.write_rgba(filename_or_obj) renderer.dpi = original_dpi print_rgba = print_raw def print_png(self, filename_or_obj, *args, **kwargs): FigureCanvasAgg.draw(self) renderer = self.get_renderer() original_dpi = renderer.dpi renderer.dpi = self.figure.dpi if is_string_like(filename_or_obj): filename_or_obj = file(filename_or_obj, 'wb') _png.write_png(renderer._renderer.buffer_rgba(0, 0), renderer.width, renderer.height, filename_or_obj, self.figure.dpi) renderer.dpi = original_dpi
agpl-3.0
SixTrack/SixTrack
test/elensidealthin6d/elens_plot_kick.py
1
1663
import matplotlib.pyplot as plt import numpy as np r2hel1=6.928 # from fort.3 [mm] sig=r2hel1/6 # 1 sigma beam size, hel1 between 4-6 sigma offsetx=-1.1547 offsety=-2.3093 theta_r2=4.920e-03 # max. kick [mrad] oFile=open('kicks.dat','w') plt.figure('elens kick',figsize=(13,13)) for fnin,fnout,offx,offy,R,R2f,peakT in [(1,2,0,0,0.5,7,7),(2,3,offsetx,offsety,1,12,10.8),(3,4,-offsetx,0,1,5,2.91604),(4,5,0,-offsety,1/2.,3,3.48995)]: theta_max=theta_r2*R plt.subplot(2,2,fnin) helin=np.loadtxt('HEL_DUMP_%s'%fnin) helout=np.loadtxt('HEL_DUMP_%s'%fnout) rrin=np.sqrt((helin[:,3]-offx)**2+(helin[:,5]-offy)**2) rrout=np.sqrt((helout[:,3]-offx)**2+(helout[:,5]-offy)**2) if np.max(rrin-rrout)==0: fff=np.sqrt((helin[:,4]-helout[:,4])**2+(helin[:,6]-helout[:,6])**2) plt.plot(rrin/sig,fff,'.',label=r'offx=%2.3f sigma,offy=%2.3f sigma'%(offx/sig,offy/sig)) plt.plot(rrin/sig,np.ones(len(rrin))*theta_max,'k-',label=r'$\theta_{R_2}$') plt.plot([R2f,R2f],[0,theta_max*1.1],'g-',label=r'$R_2$') plt.plot([peakT,peakT],[0,max(fff)*1.05],'r-',label=r'$n_{\mathrm{peak}}$') plt.xlabel(r'$n_{\sigma}=\sqrt{(x-x_{\mathrm{off}})^2+(y-y_{\mathrm{off}})^2)}$ [$\sigma$]') plt.ylabel(r'$\theta(r)=\sqrt{xp^2+yp^2}$ [mrad]') plt.legend(loc='best',fontsize=10) plt.tight_layout() plt.grid() oFile.write('# %i %i \n'%(fnin,fnout)) for tmpR,tmpF in zip(rrin,fff): oFile.write(' % 22.15E % 22.15E % 22.15E \n'%(tmpR,tmpR/sig,tmpF)) oFile.write('\n\n') else: print 'x or y has been changed in %s / %s - elens should only change xp,yp'%('HEL_DUMP_%s'%fnin,'HEL_DUMP_%s'%fnout) oFile.close() plt.show()
lgpl-2.1
shusenl/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
beomyeol/models
autoencoder/MaskingNoiseAutoencoderRunner.py
10
1689
import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from autoencoder.autoencoder_models.DenoisingAutoencoder import MaskingNoiseAutoencoder mnist = input_data.read_data_sets('MNIST_data', one_hot = True) def standard_scale(X_train, X_test): preprocessor = prep.StandardScaler().fit(X_train) X_train = preprocessor.transform(X_train) X_test = preprocessor.transform(X_test) return X_train, X_test def get_random_block_from_data(data, batch_size): start_index = np.random.randint(0, len(data) - batch_size) return data[start_index:(start_index + batch_size)] X_train, X_test = standard_scale(mnist.train.images, mnist.test.images) n_samples = int(mnist.train.num_examples) training_epochs = 100 batch_size = 128 display_step = 1 autoencoder = MaskingNoiseAutoencoder(n_input = 784, n_hidden = 200, transfer_function = tf.nn.softplus, optimizer = tf.train.AdamOptimizer(learning_rate = 0.001), dropout_probability = 0.95) for epoch in range(training_epochs): avg_cost = 0. total_batch = int(n_samples / batch_size) for i in range(total_batch): batch_xs = get_random_block_from_data(X_train, batch_size) cost = autoencoder.partial_fit(batch_xs) avg_cost += cost / n_samples * batch_size if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch + 1), \ "cost=", "{:.9f}".format(avg_cost) print "Total cost: " + str(autoencoder.calc_total_cost(X_test))
apache-2.0
glennq/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
87
2510
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_predict(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
sibis-platform/ncanda-datacore
scripts/reporting/ncanda_quality_control_script.py
4
14366
#!/usr/bin/env python ## ## See COPYING file distributed along with the ncanda-data-integration package ## for the copyright and license terms ## """ ncanda_quality_control_script ====================== This script checks the quality of the data for the NCANDA Project on REDCap. Call script on command line. Example Usage: python ncanda_quality_control_script.py -v "baseline_visit_arm_1" """ import os import sys import json import datetime import csv import redcap import math import pandas as pd import sibis fields = ['study_id', 'redcap_event_name','exclude', 'visit_ignore', 'visit_date', 'dob', 'cnp_test_sessions_dob','saliva_missing', 'saliva_1_collected','saliva_1_date','saliva_2_collected','saliva_2_date', 'saliva_3_collected','saliva_3_date','saliva_4_collected', 'saliva_4_date','youthreport1_missing','youthreport1_date', 'youthreport1b_missing', 'youthreport1b_date','youthreport2_missing', 'youthreport2_date','youthreport2_yid2', 'youthreport1_yid2', 'parentreport_missing','parentreport_date','ssage_youth_missing', 'ssage_youth_date', 'lssaga1_youth_missing','lssaga1_youth_date', 'lssaga1_parent_missing','lssaga1_parent_date','bio_np_missing', 'bio_np_date','dd1000_missing','dd1000_date','dd100_missing', 'dd100_date','np_wrat4_missing','np_wrat4_wr_raw','np_gpeg_missing', 'np_gpeg_exclusion','np_gpeg_dh_time','np_gpeg_ndh_time', 'np_reyo_missing','np_reyo_copy_time','np_reyo_qc(completed)', 'np_atax_missing','np_atax_sht_trial1','np_wais4_missing', 'np_wais4_rawscore','np_wais4_rawscore_computed', 'np_wais4_rawscore_diff(correct)','pasat_missing','pasat_date', 'cnp_missing','cnp_test_sessions_dotest','stroop_missing', 'stroop_date','mrireport_missing','mrireport_date', 'mr_session_report_complete'] form_fields = [['youthreport1_missing','youthreport1_date'], ['youthreport1b_missing', 'youthreport1b_date'], ['youthreport2_missing', 'youthreport2_date'], ['parentreport_missing','parentreport_date'], ['ssage_youth_missing','ssage_youth_date'], ['lssaga1_youth_missing','lssaga1_youth_date'], ['lssaga1_parent_missing','lssaga1_parent_date'], ['bio_np_missing', 'bio_np_date'], ['dd1000_missing','dd1000_date'], ['dd100_missing','dd100_date'], ['np_wrat4_missing','np_wrat4_wr_raw'], ['np_reyo_missing','np_reyo_copy_time'], ['np_atax_missing','np_atax_sht_trial1'], ['np_wais4_missing', 'np_wais4_rawscore'], ['pasat_missing','pasat_date'], ['cnp_missing','cnp_test_sessions_dotest'], ['stroop_missing','stroop_date']] np_gpeg_fields = [['np_gpeg_exclusion___dh','np_gpeg_dh_time'], ['np_gpeg_exclusion___ndh','np_gpeg_ndh_time']] saliva_fields = [['saliva_1_collected','saliva_1_date'], ['saliva_2_collected','saliva_2_date'],['saliva_3_collected', 'saliva_3_date'],['saliva_4_collected','saliva_4_date']] fields_sex = [['youthreport1_missing','youthreport1_yid2'], ['youthreport2_missing','youthreport2_yid2']] def get_project_entry(args=None): """ Pulls the data from REDCap """ # Get API key. summary_key_file = open(os.path.join(os.path.expanduser("~"), '.server_config', 'redcap-dataentry-token'), 'r') summary_api_key = summary_key_file.read().strip() # Connect to API. project_entry = redcap.Project('https://ncanda.sri.com/redcap/api/', summary_api_key, verify_ssl=False) return project_entry def data_entry_fields(fields,project,arm): """ Gets the dataframe containing a specific arm from REDCap """ # Get a dataframe of fields data_entry_raw = project.export_records(fields=fields, format='df', events=arm) return data_entry_raw def check(check, error): if check: error.append(check) def missing_form(idx,row,field_missing, field_value): """ Generates a report indicating which Forms have not been entered onto redcap """ error = dict() #exclude with a value of 1 is excluded if math.isnan(row.get('exclude')): # visit_ignore____yes with value 1 is ignored if row.get('visit_ignore___yes') != 1: # form is not missing if form_missing if value nan or zero if row.get(field_missing) != 1: # for form_date, date is stored as a string if type(row.get(field_value)) == float: if math.isnan(row.get(field_value)): error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), form_missing = field_missing, event_name = idx[1], error = 'ERROR: Form is missing') return error def np_groove_check(idx,row,field_missing, field_excluded, field_value): """ Checks to see if the Grooveboard NP is missing """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') == 0: # np is not missing if field_missing if value nan or zero if row.get(field_excluded) == 0: # np is not excluded if field_missing if value nan or zero if row.get(field_missing) == 0 or math.isnan(row.get(field_missing)): # for np_date, date is stored as a string if type(row.get(field_value)) == float: # If field is left blank, a NaN is put in it's place if math.isnan(row.get(field_value)): error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), np_missing = field_missing, event_name = idx[1], error = 'ERROR: NP is missing.' ) return error def fourteen_days_mri_report(idx,row): """ Generates a report indicating which MRI reports have no data after 14 days. """ error = dict() #exclude with a value of 1 is excluded if math.isnan(row.get('exclude')): # visit_ignore____yes with value 1 is ignored if row.get('visit_ignore___yes') != 1: if row.get('mrireport_missing') != 1: if type(row.get('mrireport_missing')) == str: if datetime.datetime.strptime(row.get('mrireport_date'),'%Y-%m-%d') == datetime.date.today()-datetime.timedelta(days = 14): error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), event_name = idx[1], error = 'ERROR: No MRI data after 14 days') return error def cnp_dob(idx,row): """ Checks to see if dob and cnp_test_sessions_dob match """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') == 0: if row.get('dob') == row.get('cnp_test_sessions_dob'): error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), event_name = idx[1], error = 'ERROR: DOB and CNP_TEST_SESSIONS_DOB do not match.' ) return error def missing_mri_stroop(idx,row): """ Generate a report indicating which MRI Stroop have not been entered. """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') != 1: # MRI Report is not missing if form_missing if value nan or zero if row.get('mri_missing') != 1: if row.get('redcap_data_access_group') == 'SRI' or row.get('redcap_data_access_group') == 'UCSD': if row.get('mri_stroop_missing') == 0: # for mri_stroop_date, date is stored as a string, if blank, defaults to NaN if type(row.get('mri_stroop_date')) == float: error = dict(subject_site_id = idx[0], xnat_sid = row.get('mri_xnat_sid'), visit_date = row.get('visit_date'), event_name = idx[1], error = 'ERROR: MRI Stroop is missing' ) return error def missing_saliva_sample(idx,row,saliva_collected, saliva_date): """ Generate a report indicating which Saliva Samples have not been entered. """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') != 1: # saliva_sample is not missing if saliva_sample_missing if value zero if row.get('saliva_missing') != 1: if row.get(saliva_collected) == 1: # for form_date, date is stored as a string if type(row.get(saliva_date)) == float: error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), event_name = idx[1], sample_missing = saliva_collected, visit_notes = row.get('visit_notes'), error = 'ERROR: Saliva Sample is missing' ) return error def visit_data_missing(idx,row): """ Generate a report indicating which Visit Dates are missing. """ error = dict() if row.get('exclude') != 1: if row.get('visit_ignore___yes') != 1: if type(row.get('visit_date')) != str: error = dict(subject_site_id = idx[0], event_name = idx[1], error = 'ERROR: Visit date missing.' ) return error def wais_score_verification(idx,row): """ Verifies whether the wais_rawscore was computed correctly. """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') != 1: # form is not missing if form_missing if value nan or zero if row.get('np_wais4_missing') != 1: if row.get('np_wais4_rawscore_computed') == row.get('np_wais4_rawscore_diff(correct)'): if row.get('np_wais4_rawscore_diff(correct)') != 0: error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), event_name = idx[1], error = 'ERROR: WAIS score is not verified' ) return error def youth_report_sex(idx,row, field_missing, field_sex): """ Checks whether or not sex was entered correctly in the Youth Report """ # visit_ignore____yes with value 0 is not ignored error = dict() if math.isnan(row.get('exclude')): if row.get('visit_ignore___yes') != 1: # np is not missing if field_missing if value nan or zero if row.get(field_missing) != 1: if row.get('sex') != row.get(field_sex): error = dict(subject_site_id = idx[0], visit_date = row.get('visit_date'), event_name = idx[1], field = field_sex, error = 'ERROR: SEX and SEX in YOUTHREPORT do not match.' ) return error def main(args): project_entry = get_project_entry() project_df = data_entry_fields(fields,project_entry,args.visit) error = [] for idx, row in project_df.iterrows(): for f in form_fields: check(missing_form(idx,row,f[0],f[1]),error) for np in np_gpeg_fields: check(np_groove_check(idx,row,'np_gpeg_missing',np[0],np[1]),error) check(fourteen_days_mri_report(idx,row),error) check(cnp_dob(idx, row),error) check(missing_mri_stroop(idx, row),error) for s in saliva_fields: check(missing_saliva_sample(idx,row,s[0],s[1]),error) check(visit_data_missing(idx,row),error) check(wais_score_verification(idx,row),error) for f in fields_sex: check(youth_report_sex(idx,row,f[0],f[1]),error) if args.csvdir: for e in error: if e == 'null': error.remove(e) with open(args.csvdir, 'wb+') as fi: f = csv.writer(fi) f.writerow(["subject_site_id", "visit_date", "event_name", "error"]) for x in error: f.writerow([x["subject_site_id"], x["visit_date"], x["event_name"], x["error"]]) else: for e in error: if e != 'null': #print json.dumps(e, sort_keys=True) #print "{}-{}".format(e['subject_site_id'], e['visit_date']), e['error'],e sibis.logging("{}-{}".format(e['subject_site_id'], e['visit_date']), e['error'],e_dictionary=e) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('-v','--visit', default=['baseline_visit_arm_1', '1y_visit_arm_1'], help='Select which visit the QC script runs on',) parser.add_argument( "-c","--csvdir", action="store", help="Directory where CSV will be stored.") argv = parser.parse_args() sys.exit(main(args=argv))
bsd-3-clause
yudingding6197/fin_script
self_define.py
1
5827
#!/usr/bin/env python # -*- coding:utf8 -*- #新增更新juchao交易tips import sys import re import os import time import string import datetime import getopt import pandas as pd from internal.output_general import * from internal.dfcf_inf import * from internal.trade_date import * from internal.inf_juchao.daily_trade_tips import * def rt_quotes(dtFrame, source, qt_stage): print(source) for index,row in dtFrame.iterrows(): #print(row) r1_len = len(row[1]) r1 = row[1].decode('gbk') for i in range(10-r1_len): r1 += ' ' if row['state']!='00': line = "%06s %-s -- --" %(row[0], r1) print (line) continue open = row['open'] pre_close = row['p_close'] price = row['price'] high = row['high'] low = row['low'] volume = int(row['volume']) price_f = float(price) pre_close_f = float(pre_close) bidb_f = float(row['bidb']) bidb_s = float(row['bids']) if float(price)==0 or float(high)==0: change = '-' change_l = '-' change_h = '-' change_o = '-' if bidb_f==0 and bidb_s==0: pass elif bidb_f!=0: price_f = bidb_f change = '%02.02f'%( ((price_f-pre_close_f)/pre_close_f)*100 ) elif bidb_s!=0: price_f = bids_f change = '%02.02f'%( ((price_f-pre_close_f)/pre_close_f)*100 ) else: print("Error: Special Case", price, bidb, bids) print(row) else: change = '%02.02f'%( ((price_f-pre_close_f)/pre_close_f)*100 ) change_l = '%02.02f'%( ((float(low)-pre_close_f)/pre_close_f)*100 ) change_h = '%02.02f'%( ((float(high)-pre_close_f)/pre_close_f)*100 ) change_o = '%02.02f'%( ((float(open)-pre_close_f)/pre_close_f)*100 ) str_fmt = "%06s %-s %6.2f(%6s%%) %8s(%6s) %8s(%6s)" line = str_fmt %(row[0], r1, price_f, change, low, change_l, high, change_h) print(line) def index_follow_zd(head, index_ud): if len(index_ud)>3: zhang = index_ud[0] ping = index_ud[1] die = index_ud[2] total = int(zhang) + int(ping) + int(die) zh_per = int(zhang) * 100 / total die_per = int(die) * 100 / total print("%s %4s %4s %4s (%2d vs %2d) "%(head, zhang, ping, die, zh_per, die_per)) else: print(head) def index_info(df, show_idx, idxDict): if df is None: return sh_info = '' sz_info = '' for index,row in df.iterrows(): if row[0] not in show_idx: continue open = float(row['open']) close = float(row['close']) preclose = float(row['preclose']) if idxDict.has_key(row['code']): head = "%8.2f(%6s)"%(close, row[2]) index_follow_zd(head, idxDict[row['code']]) else: print("%8.2f(%6s)"%(close, row[2])) def read_def(data_path, stockCode, stockCode_sn): file = open(data_path, 'r') if file is None: print("Error open file", data_path) return if '_self_define' in data_path: flag=0 lines = file.readlines(10000) for line in lines: line=line.strip() if line=='STK': flag=1 continue elif flag==1 and line=='END': break if flag==0: continue code=line.strip() if len(code)!=6: continue; if not code.isdigit(): continue; stockCode.append(code) ncode = sina_code(code) stockCode_sn.append(ncode) else: line = file.readline() while line: if len(line)>=6: code = line[0:6] if code.isdigit(): stockCode.append(code) ncode = sina_code(code) stockCode_sn.append(ncode) line = file.readline() file.close() def update_juchao_tips(): curr = datetime.datetime.now() trade_date = get_lastday() if curr.hour<9: return t_fmt = '%d-%02d-%02d' cur_date = t_fmt%(curr.year, curr.month, curr.day) today = datetime.date.today() pre20Dt = today - datetime.timedelta(days=20) pre20_date = t_fmt%(pre20Dt.year, pre20Dt.month, pre20Dt.day) #print cur_date,pre20_date fetch_jc_trade_tips(pre20_date, cur_date) #Main curdate = '' data_path = "debug/_self_define.txt" exclude = 0 show_flag = 0 stockCode = [] stockCode_sn = [] qt_stage = 0 if __name__=="__main__": optlist, args = getopt.getopt(sys.argv[1:], '?f:en') for option, value in optlist: if option in ["-f","--file"]: if value=='.': data_path='../data/entry/miner/filter.txt' else: data_path=value elif option in ["-e","--exclude"]: exclude = 1 elif option in ["-n","--notice"]: show_flag = 1 elif option in ["-?","--???"]: print("Usage:", os.path.basename(sys.argv[0]), " [-f filename] [-e] [-t type]") exit() if not os.path.isfile(data_path): print("No file:",data_path) exit(0) today = datetime.date.today() curdate = '%04d-%02d-%02d' %(today.year, today.month, today.day) #更新巨潮的tips信息 update_juchao_tips() read_def(data_path, stockCode, stockCode_sn) if show_flag==1: list_latest_news(stockCode, curdate) exit(0) #当前时间对应情况 qt_stage = quotation_st() #Index实时信息 qt_index = getHSIndexStat() idxDict = {} ret = get4IndexInfo(idxDict) #show_idx = ['000001', '399001', '399005', '399006'] #idx_df=ts.get_index() #index_info(idx_df, show_idx, idxDict) show_idx = ['000001', '399001', '399005', '399006','399678'] show_real_index(show_idx) #codeArray = ['399678'] #list_extra_index(codeArray) column = [] create_column(column) #print(column) rt_list = [] realtime_price(stockCode_sn, rt_list) #print(rt_list) df = pd.DataFrame(rt_list, columns=column) #print (df) #df.set_index('code') rt_quotes(df, '', qt_stage) #Get self def from DFCF(DongCai) rt_list = [] stockCode_sn = [] if exclude==0: stock_array = [] getSelfDefStock(stock_array) if len(stock_array)==0: print "Fail to get self defined from DFCF" exit() stockCode = [] for i in stock_array: stockCode.append(i[:6]) ncode = sina_code(i[:6]) stockCode_sn.append(ncode) #print ("i===" + ncode) realtime_price(stockCode_sn, rt_list) df = pd.DataFrame(rt_list, columns=column) rt_quotes(df, 'DFCF', qt_stage)
gpl-2.0
averagehat/scikit-bio
skbio/stats/distance/tests/test_permanova.py
13
4940
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function from six import StringIO from functools import partial from unittest import TestCase, main import numpy as np import pandas as pd from pandas.util.testing import assert_series_equal from skbio import DistanceMatrix from skbio.stats.distance import permanova class TestPERMANOVA(TestCase): """All results were verified with R (vegan::adonis).""" def setUp(self): # Distance matrices with and without ties in the ranks, with 2 groups # of equal size. dm_ids = ['s1', 's2', 's3', 's4'] self.grouping_equal = ['Control', 'Control', 'Fast', 'Fast'] self.df = pd.read_csv( StringIO('ID,Group\ns2,Control\ns3,Fast\ns4,Fast\ns5,Control\n' 's1,Control'), index_col=0) self.dm_ties = DistanceMatrix([[0, 1, 1, 4], [1, 0, 3, 2], [1, 3, 0, 3], [4, 2, 3, 0]], dm_ids) self.dm_no_ties = DistanceMatrix([[0, 1, 5, 4], [1, 0, 3, 2], [5, 3, 0, 3], [4, 2, 3, 0]], dm_ids) # Test with 3 groups of unequal size. self.grouping_unequal = ['Control', 'Treatment1', 'Treatment2', 'Treatment1', 'Control', 'Control'] # Equivalent grouping but with different labels -- groups should be # assigned different integer labels but results should be the same. self.grouping_unequal_relabeled = ['z', 42, 'abc', 42, 'z', 'z'] self.dm_unequal = DistanceMatrix( [[0.0, 1.0, 0.1, 0.5678, 1.0, 1.0], [1.0, 0.0, 0.002, 0.42, 0.998, 0.0], [0.1, 0.002, 0.0, 1.0, 0.123, 1.0], [0.5678, 0.42, 1.0, 0.0, 0.123, 0.43], [1.0, 0.998, 0.123, 0.123, 0.0, 0.5], [1.0, 0.0, 1.0, 0.43, 0.5, 0.0]], ['s1', 's2', 's3', 's4', 's5', 's6']) # Expected series index is the same across all tests. self.exp_index = ['method name', 'test statistic name', 'sample size', 'number of groups', 'test statistic', 'p-value', 'number of permutations'] # Stricter series equality testing than the default. self.assert_series_equal = partial(assert_series_equal, check_index_type=True, check_series_type=True) def test_call_ties(self): # Ensure we get the same results if we rerun the method using the same # inputs. Also ensure we get the same results if we run the method # using a grouping vector or a data frame with equivalent groupings. exp = pd.Series(index=self.exp_index, data=['PERMANOVA', 'pseudo-F', 4, 2, 2.0, 0.671, 999], name='PERMANOVA results') for _ in range(2): np.random.seed(0) obs = permanova(self.dm_ties, self.grouping_equal) self.assert_series_equal(obs, exp) for _ in range(2): np.random.seed(0) obs = permanova(self.dm_ties, self.df, column='Group') self.assert_series_equal(obs, exp) def test_call_no_ties(self): exp = pd.Series(index=self.exp_index, data=['PERMANOVA', 'pseudo-F', 4, 2, 4.4, 0.332, 999], name='PERMANOVA results') np.random.seed(0) obs = permanova(self.dm_no_ties, self.grouping_equal) self.assert_series_equal(obs, exp) def test_call_no_permutations(self): exp = pd.Series(index=self.exp_index, data=['PERMANOVA', 'pseudo-F', 4, 2, 4.4, np.nan, 0], name='PERMANOVA results') obs = permanova(self.dm_no_ties, self.grouping_equal, permutations=0) self.assert_series_equal(obs, exp) def test_call_unequal_group_sizes(self): exp = pd.Series( index=self.exp_index, data=['PERMANOVA', 'pseudo-F', 6, 3, 0.578848, 0.645, 999], name='PERMANOVA results') np.random.seed(0) obs = permanova(self.dm_unequal, self.grouping_unequal) self.assert_series_equal(obs, exp) np.random.seed(0) obs = permanova(self.dm_unequal, self.grouping_unequal_relabeled) self.assert_series_equal(obs, exp) if __name__ == '__main__': main()
bsd-3-clause
Technologicat/pydgq
doc/legtest2.py
1
12702
# -*- coding: utf-8 -*- # # Trying out the NumPy API for Legendre polynomials and Gauss--Legendre quadrature, # with an eye toward the modern hierarchical (Lobatto) basis functions for Galerkin methods # (B. Szabó, I. Babuška, Finite element analysis, John Wiley & Sons, 1991). # # JJ 2016-02-16 from __future__ import division, print_function, absolute_import import time import numpy as np import scipy.integrate import matplotlib.pyplot as plt import pylu.dgesv as dgesv class RandomPileOfTestStuff: def __init__(self, q=15, tol=1e-8): assert( q >= 2 ) # we don't have special case handling for q=1 in build_hierarchical_basis() self.q = q # max polynomial degree for Legendre polynomials; number of basis functions for hierarchical basis (as in "dG(q)") self.tol = tol # tolerance for nonzero check self.P = None # Legendre polynomials self.N = None # hierarchical basis functions (FEM, dG) self.C = None # dG mass matrix for the first-order problem u' = f(u, t) self.get_legendre_polynomials() self.build_hierarchical_basis() self.dgmass() def get_legendre_polynomials(self): q = self.q P = [] # For each degree d, get the polynomial coefficients of a Legendre series # that has only the dth degree term. Construct the corresponding Polynomial object. # # The coefficients are listed from the lowest order to highest. # for d in range(q): # d zeroes followed by a one # series_coeffs = [ 0. ] * d series_coeffs.append( 1. ) # coefficients for a standard power series 1, x, x**2, ... # c = np.polynomial.legendre.leg2poly( series_coeffs ) P.append( np.polynomial.Polynomial( c ) ) self.P = P def build_hierarchical_basis(self): assert( self.P is not None ) q = self.q P = self.P N = [] N.append( np.polynomial.Polynomial( [0.5, -0.5] ) ) # N_1, will become N[0] in the code, using Polynomial instead of explicit lambda gets us support for .deriv() N.append( np.polynomial.Polynomial( [0.5, 0.5] ) ) # N_2 for j in range(2,q): #N.append( np.sqrt( (2.*j - 1.)/2.) * P[j-1].integ(lbnd=-1, k=0) ) # surely this approach makes no numerical sense # Explicit solution, using NumPy to evaluate the sum of Legendre polynomials. # # Much better (and still fast), but not nearly as accurate as evaluating using higher precision internally. See legtest3.py. # series_coeffs = [ 0. ] * (j-2) series_coeffs.extend( [-1., 0., 1.] ) # -P_{j-2} + P_{j} c = np.polynomial.legendre.leg2poly( series_coeffs ) Nj = np.polynomial.Polynomial(c) / np.sqrt( 2. * (2.*j - 1.) ) N.append( Nj ) self.N = N # This numerical approach for generating the matrix is prone to roundoff and obsolete (not to mention stupid # since we know that most of the matrix entries should be zero); see the analytical solution in legtest3.py. # def dgmass(self): assert( self.N is not None ) q = self.q N = self.N C = np.empty( (q,q), dtype=np.float64 ) for i in range(q): for j in range(q): C[i,j] = scipy.integrate.quad( N[j].deriv(1)*N[i], -1., 1. )[0] C[ np.abs(C) < self.tol ] = 0.0 C[0,0] += 1.0 # simulate the effect of the jump term (N_1 is the only function that is nonzero at xi=-1) self.C = C def main(): # Up to q=24, the full script works despite warnings from quad() in dgmass(). # # For evaluating the hierarchical basis functions only (no dgmass()): # # q = 30, still sort of works, small deviations (1e-7) can be seen in the endpoint values of the few highest-order Nj # q = 40, almost works, high-order Nj start getting wobbly # q = 50, completely broken, out of precision # # By comparison, legtest3.py, which uses SymPy's mpmath (arbitrary precision floating point), works at least up to q=300, but is very slow. # stuff = RandomPileOfTestStuff(q=24, tol=1e-3) # From the API docs for numpy.polynomial.legendre.leggauss: # Computes the sample points and weights for Gauss-Legendre quadrature. # These sample points and weights will correctly integrate polynomials of degree 2*deg - 1 or less over the interval [-1, 1] with the weight function f(x) = 1. # # Hence, in Galerkin methods, to exactly handle a mass matrix where neither of the terms is differentiated, using affine mapping to the reference element [-1,1] # (implying piecewise constant Jacobian), we need to have # # 2*deg - 1 = 2*d # # i.e. # # deg = (2*d + 1) / 2 # # deg = int(np.ceil( (2*d + 1)/2. )) # q,w = np.polynomial.legendre.leggauss( deg ) # print( deg,(2*deg-1),q,w ) print( stuff.C ) print( np.linalg.matrix_rank(stuff.C) ) # should be full rank plt.figure(2) plt.spy(stuff.C) plt.plot( [0,stuff.q-1], [0,stuff.q-1], 'r--' ) # plt.imshow(M, interpolation="nearest", cmap="Oranges") # plt.colorbar() plt.title(r"$\mathbf{M}$") ## L,U,p = dgesv.lup(stuff.C) ## print( np.transpose(np.nonzero(L)) ) ## print( np.transpose(np.nonzero(U)) ) ## print( p ) ## plt.figure(3) ## plt.subplot(1,2, 1) ## plt.spy(L) ## plt.plot( [0,stuff.q-1], [0,stuff.q-1], 'r--' ) ### plt.imshow(L, interpolation="nearest", cmap="Oranges") ### plt.colorbar(orientation="horizontal") ## plt.title(r"$\mathbf{L}$") ## plt.subplot(1,2, 2) ## plt.spy(U) ## plt.plot( [0,stuff.q-1], [0,stuff.q-1], 'r--' ) ### plt.imshow(U, interpolation="nearest", cmap="Oranges") ### plt.colorbar(orientation="horizontal") ## plt.title(r"$\mathbf{U}$") LU,p = dgesv.lup_packed(stuff.C) plt.figure(4) plt.spy(LU) plt.plot( [0,stuff.q-1], [0,stuff.q-1], 'r--' ) plt.title(r"$\mathbf{LU}$ (packed format)") mincols,maxcols = dgesv.find_bands(LU, 1e-15) print( mincols, maxcols ) ## # old Python-based mincols, maxcols finding code ## ## # Find the smallest column index with nonzero data on each row in L. ## # ## # We can use this to "sparsify" the backsolve even though the data structure is dense. ## # ## # This assumes that each row has at least one nonzero entry (which is always the case for an invertible matrix). ## # ## Lnz = np.nonzero(L) ## mincols = [] ## rowprev = -1 ## n = len(Lnz[0]) ## i = 0 ## while i < n: ## if Lnz[0][i] != rowprev: ## mincols.append(Lnz[1][i]) ## rowprev = Lnz[0][i] ## i += 1 ## mincols = np.array( mincols, dtype=np.intc, order="C" ) ## print( L ) ## print( mincols ) ## # Find the largest column index with nonzero data on each row in U. ## # ## # We can use this to "sparsify" the backsolve even though the data structure is dense. ## # ## # This assumes that each row has at least one nonzero entry (which is always the case for an invertible matrix). ## # ## Unz = np.nonzero(U) ## maxcols = [] ## rowprev = -1 ## n = len(Unz[0]) ## i = n - 1 ## while i >= 0: ## if Unz[0][i] != rowprev: ## maxcols.append(Unz[1][i]) ## rowprev = Unz[0][i] ## i -= 1 ## maxcols.reverse() ## maxcols = np.array( maxcols, dtype=np.intc, order="C" ) ## print( U ) ## print( maxcols ) # Visualize # xx = np.linspace(-1., 1., 100001) # the good thing about the fast approach... smooth curves! plt.figure(1) plt.clf() for func in stuff.N: plt.plot( xx, func(xx) ) plt.axis('tight') a = plt.axis() plt.axis( [ a[0], a[1], a[2]*1.05, a[3]*1.05 ] ) plt.grid(b=True, which='both') plt.title('Hierarchical basis functions') # Try some operations on the original Legendre polynomials # # As long as we keep the Polynomial objects, we can multiply them the intuitive way, producing a new Polynomial: # print( stuff.P[2]*stuff.P[3] ) # => poly([ 0. 0.75 0. -3.5 0. 3.75]) # We can also differentiate them, which is useful for constructing the mass matrix: # print( stuff.P[2].deriv(1)*stuff.P[3] ) # => poly([ 0. 0. -9. 0. 15.]) # Also integration is supported. # # p.integ() returns the definite integral, as a Polynomial object, from lbnd to an unspecified upper limit x, adding the integration constant k. # The value of x is chosen when calling the resulting object. # # Legendre polynomials are L2-orthogonal on [-1,1]: print( ( (stuff.P[2]*stuff.P[2]).integ(lbnd=-1, k=0) )(1.0) ) # 2/(2 n + 1); here n = 2, so this = 2/5 = 0.4 print( ( (stuff.P[2]*stuff.P[3]).integ(lbnd=-1, k=0) )(1.0) ) # zero # The integral of dPn/dx * Pm over the interval is zero if: # # - n + m is even # - n < m (and by the previous condition, also n <= m) # # These observations are based on the L2-orthogonality and the relation # # (2 n + 1) P_n = (d/dx)( P_{n+1} - P_{n-1} ) (*) # # which can be used to get rid of the derivative. The relation (*) follows from Bonnet’s recursion formula, # # (n + 1) P_{n+1} = (2 n + 1) P_n - n P_{n-1} # # By recursive application, (*) leads to the representation # # (d/dx) P_{n+1} = (2 n + 1) P_n + ( 2 (n - 2) + 1 ) P_{n-2} + ( 2 (n - 4) + 1 ) P_{n-4} + ... # # which is guaranteed to bottom out at P_1 and P_0 (by using P_0 = 1 and P_1 = x in (*)). # # See # https://en.wikipedia.org/wiki/Legendre_polynomials#Additional_properties_of_Legendre_polynomials # print( ( (stuff.P[3].deriv(1)*stuff.P[3]).integ(lbnd=-1, k=0) )(1.0) ) # zero, n + m even print( ( (stuff.P[3].deriv(1)*stuff.P[1]).integ(lbnd=-1, k=0) )(1.0) ) # zero, n + m even print( ( (stuff.P[2].deriv(1)*stuff.P[3]).integ(lbnd=-1, k=0) )(1.0) ) # zero, n < m print( ( (stuff.P[3].deriv(1)*stuff.P[2]).integ(lbnd=-1, k=0) )(1.0) ) # nonzero (derivative of p3 contains p2, p0) # naive solve (repeat the LU decomposition process each time) # def method1(reps, A, b, x): for j in range(reps): # dgesv.solve( A, b[j,:], x ) dgesv.solve( A, b, x ) # decompose once, then solve # def method2(reps, A, b, x): LU,p = dgesv.lup_packed(A) for j in range(reps): # dgesv.solve_decomposed( LU, p, b[j,:], x ) dgesv.solve_decomposed( LU, p, b, x ) # decompose once, then solve, utilize banded structure # def method3(reps, A, b, x): LU,p = dgesv.lup_packed(A) mincols,maxcols = dgesv.find_bands(LU, 1e-15) for j in range(reps): # dgesv.solve_decomposed_banded( LU, p, mincols, maxcols, b[j,:], x ) dgesv.solve_decomposed_banded( LU, p, mincols, maxcols, b, x ) class MyTimer: t0 = None l = None def __init__(self, label=""): self.label = label def __enter__(self): self.t0 = time.time() def __exit__(self, type, value, traceback): dt = time.time() - self.t0 l = ("%s: " % self.label) if len(self.label) else "time taken: " print( "%s%gs" % (l, dt) ) if __name__ == '__main__': main() plt.show() # # Running the benchmark loop at the Python end makes the banded version look slower (for our matrix M, the C code is actually ~3x faster than the generic non-banded version), # # because a large majority of the execution time is taken up by data conversion from Python to C and back (and Python asserts, if enabled). # # # # To get reliable results on the C code only (which is a realistic use case if used from inside a Cython-accelerated solver, which is the whole point of dgesv.pyx), # # the looping must be done inside dgesv.pyx. # # # reps = 100000 # for q in range(3, 16): # stuff = RandomPileOfTestStuff(q) # n = np.shape(stuff.C)[0] ## b = np.random.uniform(0.0, 1.0, size=(reps,n)) # this makes slicing part of the performance measurement - not good # b = np.random.uniform(0.0, 1.0, size=(n,)) # x = np.empty( [n], dtype=np.float64, order="C" ) # print( "Timings for %d runs" % reps ) # with MyTimer("%dx%d naive" % (n,n)) as mt: # method1(reps, stuff.C, b, x) # with MyTimer("%dx%d decompose-once" % (n,n)) as mt: # method2(reps, stuff.C, b, x) # with MyTimer("%dx%d decompose-once-banded" % (n,n)) as mt: # method3(reps, stuff.C, b, x)
bsd-2-clause
ChanChiChoi/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
355
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
arabenjamin/scikit-learn
sklearn/preprocessing/data.py
113
56747
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.fixes import combinations_with_replacement as combinations_w_r from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, min_max_axis, inplace_row_scale) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _mean_and_std(X, axis=0, with_mean=True, with_std=True): """Compute mean and std deviation for centering, scaling. Zero valued std components are reset to 1.0 to avoid NaNs when scaling. """ X = np.asarray(X) Xr = np.rollaxis(X, axis) if with_mean: mean_ = Xr.mean(axis=0) else: mean_ = None if with_std: std_ = Xr.std(axis=0) std_ = _handle_zeros_in_scale(std_) else: std_ = None return mean_, std_ def _handle_zeros_in_scale(scale): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == 0: scale = 1. elif isinstance(scale, np.ndarray): scale[scale == 0.0] = 1.0 scale[~np.isfinite(scale)] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like or CSR matrix. The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) mean_, std_ = _mean_and_std( X, axis, with_mean=with_mean, with_std=with_std) if copy: X = X.copy() # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: Xr /= std_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # std_ is very small so that mean_2 = mean_1/std_ > 0, even if # mean_1 was close to zero. The problem is thus essentially due # to the lack of precision of mean_. A solution is then to # substract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) data_min = np.min(X, axis=0) data_range = np.max(X, axis=0) - data_min data_range = _handle_zeros_in_scale(data_range) self.scale_ = (feature_range[1] - feature_range[0]) / data_range self.min_ = feature_range[0] - data_min * self.scale_ self.data_range = data_range self.data_min = data_min return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like with shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, ensure_2d=False) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range: tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. std_ : array of floats with shape [n_features] The standard deviation for each feature in the training set. Set to one if the standard deviation is zero for a given feature. See also -------- :func:`sklearn.preprocessing.scale` to perform centering and scaling without using the ``Transformer`` object oriented API :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. """ def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : array-like or CSR matrix with shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. """ X = check_array(X, accept_sparse='csr', copy=self.copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") self.mean_ = None if self.with_std: var = mean_variance_axis(X, axis=0)[1] self.std_ = np.sqrt(var) self.std_ = _handle_zeros_in_scale(self.std_) else: self.std_ = None return self else: self.mean_, self.std_ = _mean_and_std( X, axis=0, with_mean=self.with_mean, with_std=self.with_std) return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.std_ is not None: inplace_column_scale(X, 1 / self.std_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.std_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'std_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.std_ is not None: inplace_column_scale(X, self.std_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.std_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. """ def __init__(self, copy=True): self.copy = copy def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) scales = np.maximum(np.abs(mins), np.abs(maxs)) else: scales = np.abs(X).max(axis=0) scales = np.array(scales) scales = scales.reshape(-1) self.scale_ = _handle_zeros_in_scale(scales) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : array-like or CSR matrix. The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) else: inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). """ s = MaxAbsScaler(copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the Interquartile Range (IQR). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. See also -------- :class:`sklearn.preprocessing.StandardScaler` to perform centering and scaling using mean and variance. :class:`sklearn.decomposition.RandomizedPCA` with `whiten=True` to further remove the linear correlation across features. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. http://en.wikipedia.org/wiki/Median_(statistics) http://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, ensure_2d=False, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like with shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q = np.percentile(X, (25, 75), axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, 1.0 / self.scale_) elif self.axis == 0: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like or CSR matrix. The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: if X.shape[0] == 1: inplace_row_scale(X, self.scale_) else: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like. The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- :class:`sklearn.preprocessing.RobustScaler` to perform centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0, 0, 1], [ 1, 2, 3, 4, 6, 9], [ 1, 4, 5, 16, 20, 25]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1, 0, 1, 0], [ 1, 2, 3, 6], [ 1, 4, 5, 20]]) Attributes ---------- powers_ : array, shape (n_input_features, n_output_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <example_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(np.bincount(c, minlength=self.n_input_features_) for c in combinations) def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array with shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Normalizer` to perform normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, warn_on_dtype=True, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms = norms.repeat(np.diff(X.indptr)) mask = norms != 0 X.data[mask] /= norms[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms) X /= norms[:, np.newaxis] if axis == 0: X = X.T return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- :func:`sklearn.preprocessing.normalize` equivalent function without the object oriented API """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- :class:`sklearn.preprocessing.Binarizer` to perform binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`) """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K) if copy: K = K.copy() K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : array or scipy.sparse matrix with shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : array or scipy.sparse matrix with shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo']) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ if selected == "all": return transform(X) X = check_array(X, accept_sparse='csc', copy=copy) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : maximum value for all features. - array : maximum value per feature. categorical_features: "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and two samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'float'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape=(n_samples, n_feature) Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if self.n_values == 'auto': n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those catgorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if self.n_values == 'auto': out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape=(n_samples, n_features) Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
altermarkive/Machine-Learning-Course
machine-learning-ex2/ex2/ex2_reg.py
1
10836
#!/usr/bin/env python3 import numpy as np import matplotlib import matplotlib.cm as cm # Force matplotlib to not use any X Windows backend (must be called befor importing pyplot) matplotlib.use('Agg') import matplotlib.pyplot as plt import mpl_toolkits.mplot3d import scipy.optimize as optimize import sklearn.linear_model as linear_model import sklearn.preprocessing as preprocessing def plotData(X, y, labels): #PLOTDATA Plots the data points X and y into a new figure # PLOTDATA(x,y) plots the data points with + for the positive examples # and o for the negative examples. X is assumed to be a Mx2 matrix. # Create New Figure #figure; hold on; # ====================== YOUR CODE HERE ====================== # Instructions: Plot the positive and negative examples on a # 2D plot, using the option 'k+' for the positive # examples and 'ko' for the negative examples. # pos = np.nonzero(y == 1) neg = np.nonzero(y == 0) pos_handle = plt.plot(X[pos, 0], X[pos, 1], 'k+', linewidth=2, markersize=7, label=labels[0])[0] neg_handle = plt.plot(X[neg, 0], X[neg, 1], 'ko', markerfacecolor='y', markersize=7, label=labels[1])[0] # ========================================================================= #hold off; return (pos_handle, neg_handle) def mapFeature(X1, X2): # MAPFEATURE Feature mapping function to polynomial features # # MAPFEATURE(X1, X2) maps the two input features # to quadratic features used in the regularization exercise. # # Returns a new feature array with more features, comprising of # X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc.. # # Inputs X1, X2 must be the same size # # n = X1.shape[0] # degree = 6 # out = np.ones((n, 1)).reshape((n, 1)) # for i in range(1, degree + 1): # for j in range(i + 1): # term1 = X1 ** (i - j) # term2 = X2 ** j # out = np.hstack((out, (term1 * term2).reshape((n, 1)))) data = np.c_[X1, X2] poly = preprocessing.PolynomialFeatures(6) out = poly.fit_transform(data) return out def sigmoid(z): #SIGMOID Compute sigmoid functoon # J = SIGMOID(z) computes the sigmoid of z. # You need to return the following variables correctly #g = zeros(size(z)); # ====================== YOUR CODE HERE ====================== # Instructions: Compute the sigmoid of each value of z (z can be a matrix, # vector or scalar). g = np.divide(1, (1 + np.power(np.exp(1), -z))) # ============================================================= return g def costFunctionReg(theta, X, y, lambda_value): #COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization # J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using # theta as the parameter for regularized logistic regression and the # gradient of the cost w.r.t. to the parameters. # Initialize some useful values m = y.shape[0] # number of training examples # You need to return the following variables correctly #J = 0; #grad = zeros(size(theta)); # ====================== YOUR CODE HERE ====================== # Instructions: Compute the cost of a particular choice of theta. # You should set J to the cost. # Compute the partial derivatives and set grad to the partial # derivatives of the cost w.r.t. each parameter in theta h = sigmoid(np.dot(X, theta)) cost = np.sum(np.dot(-y.T, np.log(h)) - np.dot((1 - y.T), np.log(1 - h))) J = (cost / m) + (lambda_value / (2 * m)) * np.sum(theta[1:] ** 2) extra = lambda_value * theta extra[0] = 0 grad = (np.dot(X.T, h - y) + extra) / m # ============================================================= return (J, grad) def costRegOnly(theta, X, y, lambda_value): m = y.shape[0] h = sigmoid(np.dot(X, theta)) if np.any(h <= 0) or np.any(h >= 1): return np.nan cost = np.sum(np.dot(-y.T, np.log(h)) - np.dot((1 - y.T), np.log(1 - h))) J = (cost / m) + (lambda_value / (2 * m)) * np.sum(np.power(theta[1:], 2)) return J def gradientRegOnly(theta, X, y, lambda_value): m = y.shape[0] h = sigmoid(np.dot(X, theta.reshape(-1, 1))) extra = lambda_value * theta extra[0] = 0 extra = extra.reshape(-1, 1) grad = (np.dot(X.T, h - y) + extra) / m return grad.flatten() def plotDecisionBoundary(theta, X, y, labels): #PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with #the decision boundary defined by theta # PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the # positive examples and o for the negative examples. X is assumed to be # a either # 1) Mx3 matrix, where the first column is an all-ones column for the # intercept. # 2) MxN, N>3 matrix, where the first column is all-ones # Plot Data pos_handle, neg_handle = plotData(X[:, 1:3], y, labels) #hold on if X.shape[1] <= 3: # Only need 2 points to define a line, so choose two endpoints plot_x = [np.min(X[:, 1]) - 2, np.max(X[:, 1]) + 2] # Calculate the decision boundary line plot_y = np.dot((-1.0 / theta[2]), (np.dot(theta[1], plot_x) + theta[0])) # Plot, and adjust axes for better viewing boundary_handle = plt.plot(plot_x, plot_y, label='Decision Boundary')[0] # Legend, specific for the exercise #axis([30, 100, 30, 100]) else: # Here is the grid range u = np.linspace(-1, 1.5, 50) v = np.linspace(-1, 1.5, 50) z = np.zeros((u.size, v.size)) # Evaluate z = theta*x over the grid for i in range(u.size): for j in range(v.size): z[i, j] = np.dot(mapFeature(np.array([u[i]]), np.array([v[j]])), theta) z = z.T # important to transpose z before calling contour # Plot z = 0 # Notice you need to specify the range [0, 0] u, v = np.meshgrid(u, v) boundary_handle = plt.contour(u, v, z, [0], linewidth=2).collections[0] boundary_handle.set_label('Decision Boundary') #hold off return (pos_handle, neg_handle, boundary_handle) def predict(theta, X): #PREDICT Predict whether the label is 0 or 1 using learned logistic #regression parameters theta # p = PREDICT(theta, X) computes the predictions for X using a # threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1) m = X.shape[0] # Number of training examples # You need to return the following variables correctly #p = zeros(m, 1); # ====================== YOUR CODE HERE ====================== # Instructions: Complete the following code to make predictions using # your learned logistic regression parameters. # You should set p to a vector of 0's and 1's # p = sigmoid(np.dot(X, theta)) >= 0.5 return p.astype(int) def ex2_reg(): # Machine Learning Online Class - Exercise 2: Logistic Regression # # Instructions # ------------ # # This file contains code that helps you get started on the second part # of the exercise which covers regularization with logistic regression. # # You will need to complete the following functions in this exericse: # # sigmoid.m # costFunction.m # predict.m # costFunctionReg.m # # For this exercise, you will not need to change any code in this file, # or any other files other than those mentioned above. # # Initialization #clear ; close all; clc # Load Data # The first two columns contains the X values and the third column # contains the label (y). data = np.loadtxt('ex2data2.txt', delimiter=',') X = np.reshape(data[:, 0:2], (data.shape[0], 2)) y = np.reshape(data[:, 2], (data.shape[0], 1)) pos_handle, neg_handle = plotData(X, y, ['y = 1', 'y = 0']) # Put some labels #hold on; # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') # Specified in plot order plt.legend(handles=[pos_handle, neg_handle]) plt.savefig('figure1.reg.png') # =========== Part 1: Regularized Logistic Regression ============ # In this part, you are given a dataset with data points that are not # linearly separable. However, you would still like to use logistic # regression to classify the data points. # # To do so, you introduce more features to use -- in particular, you add # polynomial features to our data matrix (similar to polynomial # regression). # # Add Polynomial Features # Note that mapFeature also adds a column of ones for us, so the intercept # term is handled X = mapFeature(X[:, 0], X[:, 1]) # Initialize fitting parameters initial_theta = np.zeros((X.shape[1], 1)) # Set regularization parameter lambda to 1 lambda_value = 1 # Compute and display initial cost and gradient for regularized logistic # regression cost, grad = costFunctionReg(initial_theta, X, y, lambda_value) print('Cost at initial theta (zeros): %f' % cost) print('Program paused. Press enter to continue.') #input() # ============= Part 2: Regularization and Accuracies ============= # Optional Exercise: # In this part, you will get to try different values of lambda and # see how regularization affects the decision coundart # # Try the following values of lambda (0, 1, 10, 100). # # How does the decision boundary change when you vary lambda? How does # the training set accuracy vary? # # Initialize fitting parameters initial_theta = np.zeros((X.shape[1], 1)) # Set regularization parameter lambda to 1 (you should vary this) lambda_value = 1 # Set Options #options = optimset('GradObj', 'on', 'MaxIter', 400); # Optimize result = optimize.minimize(costRegOnly, initial_theta, args=(X, y, lambda_value), method=None, jac=gradientRegOnly, options={"maxiter":400}) theta = result.x # Plot Boundary pos_handle, neg_handle, boundary_handle = plotDecisionBoundary(theta, X, y, ['y = 1', 'y = 0']) plt.title('lambda = %g' % lambda_value) # Labels and Legend plt.xlabel('Microchip Test 1') plt.ylabel('Microchip Test 2') plt.legend(handles=[pos_handle, neg_handle, boundary_handle]) plt.savefig('figure2.reg.png') # Compute accuracy on our training set p = predict(theta, X) print('Train Accuracy: %f' % (np.mean((p == y.flatten()).astype(int)) * 100)) if __name__ == "__main__": ex2_reg()
mit
MiroK/lega
demo/poisson_1d_fourier.py
1
5037
# # -u`` = f in (0, 2pi) with u(0) = u(2*pi) # from sympy import Symbol, integrate, pi, lambdify import lega.fourier_basis as fourier import numpy as np def get_rhs(u=None, n_max=32): '''Verify u and compute the f.''' x = Symbol('x') # We can make u as a series with n_max as highest frequency if u is None: # The constant is trown out so that the solution is perp. to nullspace basis = fourier.fourier_basis(n_max)[1:] coefs = np.random.random(len(basis)) u = sum(c*v for c, v in zip(coefs, basis)) # For given solution we need check properties else: assert abs(integrate(u, (x, 0, 2*pi))) < 1E-15 assert abs(u.subs(x, 0) - u.subs(x, 2*pi)) < 1E-15 f = -u.diff(x, 2) return u, f def solve(n, f): '''Solve the problem with n the highest frequency.''' # FFT on f x = Symbol('x') points = np.linspace(0, 2*np.pi, 2*n, endpoint=False) f = lambdify(x, f, 'numpy') F = f(points) F_hat = fourier.fft(F) # If the FFT was an exact recipe, than a way to check whether the f is # orthogonal would be to see if abs(F_hat[0]) < 1E-15 # Solve Poisson in wave numbers ks = fourier.stiffness_matrix(n) # The first coeff is 0 - orthogonality U_hat = np.r_[0, F_hat[1:]/ks[1:]] return U_hat # ----------------------------------------------------------------------------- if __name__ == '__main__': from sympy.plotting import plot from sympy import sin from math import log x = Symbol('x') # Qualitative check if False: n_max = 30 u, f = get_rhs(u=None, n_max=n_max) # Let sin(k*x) is u and we take basis as fourier_basis(k). So u should be # represented in the basis. But, fft with 2*k points will not see it. E.g. # to see sin(x) you need 3 points but we use 2. So k+1 in the basis is the # solution Uh_hat = solve(n_max+1, f) uh = fourier.fourier_function(Uh_hat) # Plot the final numerical one againt analytical plot(u-uh, (x, 0, 2*pi)) # Quantitative, smooth if False: n_max = 50 u, f = get_rhs(u=None, n_max=n_max) u_lambda = lambdify(x, u, 'numpy') # Solve with different fequencies for n in [8, 16, 32, 36, 40, 44, 48, 52, 64]: Uh_hat = solve(n, f) # Grid represent the solution Uh = fourier.ifft(Uh_hat) # Represent the solution on a fine grid m = len(Uh) points = np.linspace(0, 2*np.pi, m, endpoint=False) U = u_lambda(points) error = np.linalg.norm(U - Uh)/m if n > 8: rate = log(error/error_)/log(n_/float(n)) print n, error, rate error_ = error n_ = n uh = fourier.fourier_function(Uh_hat) # Plot the final numerical one againt analytical plot(u-uh, (x, 0, 2*pi)) # Quantitative, kink if True: u = x*(x-2*pi)*(x-pi) u, f = get_rhs(u=u) u_lambda = lambdify(x, u, 'numpy') # Solve with different fequencies for n in (2**i for i in range(5, 15)): Uh_hat = solve(n, f) # Grid represent the solution Uh = fourier.ifft(Uh_hat) # Represent the solution on a fine grid m = len(Uh) points = np.linspace(0, 2*np.pi, m, endpoint=False) U = u_lambda(points) error = np.linalg.norm(U - Uh)/m if n > 32: rate = log(error/error_)/log(n_/float(n)) print n, error, rate error_ = error n_ = n # Plot the error import matplotlib.pyplot as plt plt.figure() plt.plot(points, U, label='$u$') plt.plot(points, Uh, label='$uh$') plt.xlim((0, 2*np.pi)) plt.legend(loc='best') # Let's relate the rate of convergence (in l2 norm) to the rate with # which the coefficients of the Fourier image of f decrease F = lambdify(x, f)(points) F_hat = fourier.fft(F) # Skip constant - orthogonality F_hat_cos = F_hat[1:m/2+1] F_hat_sin = F_hat[m/2+1:] plt.figure() # The function periodically extended is odd -> no cos # plt.plot(F_hat_cos, label='$a_k$') # Spectrum is concerned with magnitude F_hat_sin = np.abs(F_hat_sin) ks = np.arange(1, len(F_hat_sin)+1) # Hide zeros not0 = np.where(F_hat_sin > 1E-14)[0] # Don't forget the action of the Laplacian plt.loglog(ks[not0], F_hat_sin[not0]/(ks[not0]**2), label='$b_k$') plt.loglog(ks, ks**(-3.), linestyle='--', label='rate 3') plt.legend(loc='best') # The message is that the rate is related to how the spectrum of f # decreases! Too lazy/busy now to find exact relation. plt.show()
mit
IFDYS/IO_MPI
view_result.py
1
6681
#!/usr/bin/env python from numpy import * from matplotlib.pyplot import * import matplotlib.pylab as pylab import os import time import re import obspy.signal from scipy import signal def read_slice(fname): with open(fname) as fslice: slice_nx,slice_ny,slice_nz = fslice.readline().split() slice_x = fslice.readline().split() slice_y = fslice.readline().split() slice_z = fslice.readline().split() slice_nx = int(slice_nx);slice_ny = int(slice_ny);slice_nz = int(slice_nz) return slice_nx,slice_ny,slice_nz def read_rec(frec): global nrec with open(frec) as fp: nrec = int(file.readline().strip('\n')) def read_par(): global nx,ny,nz,slice_nx,slice_ny,slice_nz,nt,dx,dy,dz,dt with open('par.in') as fpar: fpar.readline() dx,dy,dz,dt = fpar.readline().split() print 'dx dy dz dt: ',dx,dy,dz,dt fpar.readline() nx,ny,nz,nt = fpar.readline().split() nx = int(nx);ny = int(ny);nz = int(nz);nt=int(nt) print 'nx ny nz nt: ',nx,ny,nz,nt fpar.readline() nt_src = fpar.readline() print 'nt of src: ',nt_src fpar.readline() step_t_wavefield,step_x_wavefield = fpar.readline().split() print 'output time step and space step of wavefidld: ',step_t_wavefield,step_x_wavefield fpar.readline() step_slice = fpar.readline() print 'output step of slice: ',step_slice fpar.readline() npml_x,npml_y,npml_z= fpar.readline().split() print 'npml x y z: ',npml_x,npml_y,npml_z fpar.readline() fpar.readline() #pml m kapxmax kapymax kapzmax alpha fpar.readline() fsrc= fpar.readline().strip('\n') print 'src.in: ',fsrc fpar.readline() frec= fpar.readline().strip('\n') print 'rec.in: ',frec fpar.readline() feps = fpar.readline().strip('\n') fpar.readline() fmu = fpar.readline().strip('\n') fpar.readline() fsig= fpar.readline().strip('\n') fpar.readline() fslice= fpar.readline().strip('\n') slice_nx,slice_ny,slice_nz = read_slice(fslice) def view_slice(): xlist = os.popen('ls *xSlice*dat').readlines() ylist = os.popen('ls *ySlice*dat').readlines() zlist = os.popen('ls *zSlice*dat').readlines() i = 0 for xname in xlist: print xname yname = ylist[i] zname = zlist[i] i += 1 xdata = loadtxt(xname.strip('\n')) ydata = loadtxt(yname.strip('\n')) zdata = loadtxt(zname.strip('\n')) xslice = reshape(xdata,(slice_nx,ny,nz)) yslice = reshape(ydata,(slice_ny,nx,nz)) zslice = reshape(zdata,(slice_nz,nx,ny)) # data = reshape(data,(126,101)) clf() imshow(xslice[0]) colorbar() savefig(re.findall("^\w+",xname)[0]+".png") clf() imshow(yslice[0]) colorbar() savefig(re.findall("^\w+",yname)[0]+".png") clf() imshow(zslice[0]) colorbar() savefig(re.findall("^\w+",zname)[0]+".png") # show() # show(block=False) # time.sleep(0.5) # close() def view_gather(): global nrec,nt,zero_offset STD_gather = loadtxt('../STD_gather.dat') ilist = os.popen('ls Rank*gather*dat').readlines() ii = 0 num_name = 0 isum = [] zero_offset = [] for name in ilist: # num_gather = 0 # figure() ii = 0 isum = [] gather = loadtxt(name.strip('\n')) # if gather.max() == 0 and gather.min() == 0: # continue if shape(gather)[0] == 0: continue if shape(shape(gather))[0] == 1: isum.append(gather) plot(gather/max(abs(gather))+ii) else: for i in range(len(gather[:,0])): # num_gather += 1 if(num_name == i): data = gather[i,:]-STD_gather # data = signal.detrend(data) # n = 2**int(ceil(log2(len(data)))) # freqs = np.linspace(0, 1/double(dt)/2, n/2+1) # sp = np.fft.rfft(data,n)/n # W = abs(sp) # plot(freqs,W) # show() # # Ddata = signal.detrend(data[200:]) # # lowpass = obspy.signal.filter.lowpass(data,10000000,1.0/double(dt),corners=4,zerophase=True) # highpass = obspy.signal.filter.highpass(data,4e7,1.0/double(dt),corners=4,zerophase=True) # # result = gather[i,:] + lowpass # result = highpass # # plot(Ddata) # # plot(lowpass) # plot(result) # plot(data) zero_offset.append(data/max(abs(data))) # plot(data) # show() # zero_offset.append(result/max(result)) # plot(gather[i,:]/max(abs(gather[i,:]))+ii) isum.append(gather[i,:]/max(abs(gather[i,:]))) # print i,num_name # plot(gather[i,:]/max(abs(gather[i,:]))+ii) # ii =ii+1 num_name += 1 # show() # figure() # imshow(isum,cmap='gray',origin='lower',extent=(0,5000,0,3000),vmax=0.1, vmin=-0.1) # show() figure() imshow(zero_offset,cmap='gray',origin='lower',extent=(0,5000,0,3000)) show() # savefig('gather.png') # for i in range(len(isum)): # figure() # plot(isum[i]) # show() def prepare_RTM(): idir = './RTM/' if not os.path.exists(idir): os.mkdir(idir) os.system('cp FDTD_MPI par.in rec.in mkmodel.py ./RTM/') # os.system('cp rec.in src_RTM.in') # with file('src_RTM.in', 'aw') as fsrc: # for i in range(len(zero_offset)): # savetxt(fsrc,zero_offset[i][::-1]) with file('rec.in','r') as frec: nrec = int(frec.readline().split()[0]) fsrc=open('src_RTM.in','w') print "nrec nt: ",int(nrec),int(nt) fsrc.write("%d %d\n" % (nrec, int(nt))) fsrc.close() fsrc=open('src_RTM.in','a') for i in range(nrec): fsrc.write(frec.readline()) for i in range(nrec): savetxt(fsrc,zero_offset[i][::-1]) fsrc.close os.system('cp src_RTM.in ./RTM/src.in') read_par() os.chdir("./Output/") # view_gather() view_slice() # os.chdir("../") # prepare_RTM() #view_wavefield()
gpl-2.0
theislab/scvelo
scvelo/plotting/palettes.py
1
4858
"""Color palettes in addition to matplotlib's palettes.""" from matplotlib import cm, colors # Colorblindness adjusted vega_10 # See https://github.com/theislab/scanpy/issues/387 vega_10 = list(map(colors.to_hex, cm.tab10.colors)) vega_10_scanpy = vega_10.copy() vega_10_scanpy[2] = "#279e68" # green vega_10_scanpy[4] = "#aa40fc" # purple vega_10_scanpy[8] = "#b5bd61" # kakhi # default matplotlib 2.0 palette # see 'category20' on https://github.com/vega/vega/wiki/Scales#scale-range-literals vega_20 = list(map(colors.to_hex, cm.tab20.colors)) # reorderd, some removed, some added vega_20_scanpy = [ *vega_20[0:14:2], *vega_20[16::2], # dark without grey *vega_20[1:15:2], *vega_20[17::2], # light without grey "#ad494a", "#8c6d31", # manual additions ] vega_20_scanpy[2] = vega_10_scanpy[2] vega_20_scanpy[4] = vega_10_scanpy[4] vega_20_scanpy[7] = vega_10_scanpy[8] # kakhi shifted by missing grey default_20 = vega_20_scanpy # fmt: off # orig reference http://epub.wu.ac.at/1692/1/document.pdf zeileis_26 = [ "#023fa5", "#7d87b9", "#bec1d4", "#d6bcc0", "#bb7784", "#8e063b", "#4a6fe3", "#8595e1", "#b5bbe3", "#e6afb9", "#e07b91", "#d33f6a", "#11c638", "#8dd593", "#c6dec7", "#ead3c6", "#f0b98d", "#ef9708", "#0fcfc0", "#9cded6", "#d5eae7", "#f3e1eb", "#f6c4e1", "#f79cd4", "#7f7f7f", "#c7c7c7", "#1CE6FF", "#336600", ] default_26 = zeileis_26 # from godsnotwheregodsnot.blogspot.de/2012/09/color-distribution-methodology.html godsnot_64 = [ # "#000000", # remove the black, as often, we have black colored annotation "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059", "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87", "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80", "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100", "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F", "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09", "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66", "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C", "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81", "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00", "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700", "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329", "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C" ] default_64 = godsnot_64 # colors in addition to matplotlib's colors additional_colors = { 'gold2': '#eec900', 'firebrick3': '#cd2626', 'khaki2': '#eee685', 'slategray3': '#9fb6cd', 'palegreen3': '#7ccd7c', 'tomato2': '#ee5c42', 'grey80': '#cccccc', 'grey90': '#e5e5e5', 'wheat4': '#8b7e66', 'grey65': '#a6a6a6', 'grey10': '#1a1a1a', 'grey20': '#333333', 'grey50': '#7f7f7f', 'grey30': '#4d4d4d', 'grey40': '#666666', 'antiquewhite2': '#eedfcc', 'grey77': '#c4c4c4', 'snow4': '#8b8989', 'chartreuse3': '#66cd00', 'yellow4': '#8b8b00', 'darkolivegreen2': '#bcee68', 'olivedrab3': '#9acd32', 'azure3': '#c1cdcd', 'violetred': '#d02090', 'mediumpurple3': '#8968cd', 'purple4': '#551a8b', 'seagreen4': '#2e8b57', 'lightblue3': '#9ac0cd', 'orchid3': '#b452cd', 'indianred 3': '#cd5555', 'grey60': '#999999', 'mediumorchid1': '#e066ff', 'plum3': '#cd96cd', 'palevioletred3': '#cd6889' } # fmt: on from typing import Mapping, Sequence def _plot_color_cylce(clists: Mapping[str, Sequence[str]]): import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap, BoundaryNorm fig, axes = plt.subplots(nrows=len(clists)) # type: plt.Figure, plt.Axes fig.subplots_adjust(top=0.95, bottom=0.01, left=0.3, right=0.99) axes[0].set_title("Color Maps/Cycles", fontsize=14) for ax, (name, clist) in zip(axes, clists.items()): n = len(clist) ax.imshow( np.arange(n)[None, :].repeat(2, 0), aspect="auto", cmap=ListedColormap(clist), norm=BoundaryNorm(np.arange(n + 1) - 0.5, n), ) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3] / 2.0 fig.text(x_text, y_text, name, va="center", ha="right", fontsize=10) # Turn off all ticks & spines for ax in axes: ax.set_axis_off() fig.show() if __name__ == "__main__": _plot_color_cylce( {name: colors for name, colors in globals().items() if isinstance(colors, list)} )
bsd-3-clause
yonahbox/ardupilot
libraries/AP_Math/tools/geodesic_grid/plot.py
110
2876
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import matplotlib.patches as mpatches from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection import icosahedron as ico import grid fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim3d(-2, 2) ax.set_ylim3d(-2, 2) ax.set_zlim3d(-2, 2) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') added_polygons = set() added_sections = set() def polygons(polygons): for p in polygons: polygon(p) def polygon(polygon): added_polygons.add(polygon) def section(s): added_sections.add(s) def sections(sections): for s in sections: section(s) def show(subtriangles=False): polygons = [] facecolors = [] triangles_indexes = set() subtriangle_facecolors = ( '#CCCCCC', '#CCE5FF', '#E5FFCC', '#FFCCCC', ) if added_sections: subtriangles = True for p in added_polygons: try: i = ico.triangles.index(p) except ValueError: polygons.append(p) continue if subtriangles: sections(range(i * 4, i * 4 + 4)) else: triangles_indexes.add(i) polygons.append(p) facecolors.append('#DDDDDD') for s in added_sections: triangles_indexes.add(int(s / 4)) subtriangle_index = s % 4 polygons.append(grid.section_triangle(s)) facecolors.append(subtriangle_facecolors[subtriangle_index]) ax.add_collection3d(Poly3DCollection( polygons, facecolors=facecolors, edgecolors="#777777", )) for i in triangles_indexes: t = ico.triangles[i] mx = my = mz = 0 for x, y, z in t: mx += x my += y mz += z ax.text(mx / 2.6, my / 2.6, mz / 2.6, i, color='#444444') if subtriangles: ax.legend( handles=tuple( mpatches.Patch(color=c, label='Sub-triangle #%d' % i) for i, c in enumerate(subtriangle_facecolors) ), ) plt.show()
gpl-3.0
soylentdeen/Graffiti
src/Graffiti.py
1
20420
#!/usr/bin/python # -*- coding: utf-8 -*- """ This is the main file for launching the PyQt app. Requirements: You need Python 2 (+ matplotlib, pylab and pyfits modules), Qt4 and PyQt for this to work Description: - Graffiti.py is this Python file, must be executable. Launch the GUI using the command (in terminal): > python -i Graffiti.py - demo.ui is an XML file, modifiable/editable in a friendly user manner with - Qt Designer or Qt creator (comes with Qt installation). - demo_ui.py is the PyQt Python file, generated with the terminal command : > pyuic4 demo.ui -o demo_ui.py (pyuic4 comes with PyQt package) > python /usr/lib64/python/site-packages/PyQt4/uic/pyuic.py Graffiti.ui -o Graffiti_ui.py This command has to be typed each time the GUI is modified in order to take into account the changes in PyQt (this program). Note: Once generated DO NOT EDIT the demo_ui.py file. Only PyQtDemo.py (this file) can be edited safely. """ import sys# This module provides access to some variables used or maintained by the interpreter and to functions that interact strongly with the interpreter. It is always available. sys.path.insert(0, './lib') #Add in this python session lib path import os # enable shell commands in python. See also http://www.pythonforbeginners.com/os/pythons-os-module #try: import pyfits # See also http://www.stsci.edu/institute/software_hardware/pyfits #except: # from astropy.io import fits as pyfits #https://astropy.readthedocs.org/en/v0.3/io/fits/index.html from matplotlib.pylab import * #Usefull library for plotting stuff (pylab) from matplotlib.mlab import * #Usefull library for plotting stuff #from libfits import * #usefull stuff for reading fits # Qt4 libraries from PyQt4 import QtCore, QtGui from PyQt4.QtCore import * from PyQt4.QtGui import * # From the "automatically generated" demo_ui.py file (see above) it imports the "Ui_demo_qt" class that defines everything that was created in the Qt GUI file (demo.ui). Do NOT change anything in the demo_ui file. If you want to change something in the GUI, use Qt designer to edit the demo.ui file and re-run the command: "pyuic4 demo.ui -o demo_ui.py" again. # Note: The "Ui_demo_qt" name was choosen from the name the user put in the QMainWindow (see demo.ui) in which the pyuic4 command added Ui_ suffix. from Graffiti_ui import Ui_Graffiti #Required import pdb # Enter in the debug mode by placing : pdb.set_trace() in your program. Note ipython enables it automatically by entering %pdb # See also debug mode explanation here: # http://www.fevrierdorian.com/blog/post/2009/11/04/Un-debugger-dans-Python-pour-voir-pr%C3%A9cis%C3%A9ment-ce-qui-ce-passe-dans-son-code import VLTTools # Object created for talking to the VLT Tools - Added by C.Deen on 15 Dec 2014 import GuiTools # GUI objects - Added by C. Deen on 16 Dec 2014 """ __ __ _ ____ _ _ ___ _ | \/ | __ _(_)_ __ / ___| | | |_ _| ___| | __ _ ___ ___ | |\/| |/ _` | | '_ \ | | _| | | || | / __| |/ _` / __/ __| | | | | (_| | | | | | | |_| | |_| || | | (__| | (_| \__ \__ \ |_| |_|\__,_|_|_| |_| \____|\___/|___| \___|_|\__,_|___/___/ """ class Graffiti_ui_class( QtGui.QMainWindow ): #========================================================================================= # Here we define the class of the main Ui we will manipulate in python. #========================================================================================= def __init__( self, parent=None, aortc=None ): # This is what happens when an object of this class is called. It's a kind of init. QtGui.QWidget.__init__( self, parent ) self.aortc = aortc # aortc is the VLT Connection to the work station self.ui = Ui_Graffiti() #ui. is the GUI self.ui.setupUi( self ) # Just do it self.TTGain = False self.HOGain = False # Connects the "Take Background" button with the correct plumbing QtCore.QObject.connect( self.ui.BackgroundButton, QtCore.SIGNAL("clicked()"), self.measureBackground) self.readTipTilt() # Connect the "Tip" and "Tilt" buttons with the correct plumbing QtCore.QObject.connect( self.ui.TipButton, QtCore.SIGNAL("clicked()"), self.adjustTip) QtCore.QObject.connect( self.ui.TiltButton, QtCore.SIGNAL("clicked()"), self.adjustTilt) self.ui.group = QButtonGroup(exclusive=False) self.ui.group.addButton(self.ui.TT_GainSelector) self.ui.group.addButton(self.ui.HO_GainSelector) QtCore.QObject.connect(self.ui.TT_GainSelector, QtCore.SIGNAL("clicked()"), self.gainSelector) QtCore.QObject.connect(self.ui.HO_GainSelector, QtCore.SIGNAL("clicked()"), self.gainSelector) QtCore.QObject.connect( self.ui.SetGain, QtCore.SIGNAL("clicked()"), self.setGain) self.DM_Gui = GuiTools.DM_Gui(aortc=aortc) """ #Initialize attributes of the GUI self.ui.nbPushed = 0 # nb of times the push button was pushed self.ui.twoStateButtonStatus = "released" #Current state of 2 state button self.ui.nbItemsComboBox = 0 # Current number of items in the combo box # We group the 4 radio buttons so that when one is checked all the others are unchecked automaticallly #self.ui.group = QButtonGroup() #self.ui.group.addButton(self.ui.radioButton_1) #self.ui.group.addButton(self.ui.radioButton_2) #self.ui.group.addButton(self.ui.radioButton_3) #self.ui.group.addButton(self.ui.radioButton_4) #We connect objects with the proper signal to interact with them... QtCore.QObject.connect( self.ui.loadfitsButton, QtCore.SIGNAL("clicked()"), self.selectFITS ) #Connects "loadfitsButton" button to the "selectFITS" method self.ui.twoStateButton.setCheckable(True) self.ui.twoStateButton.clicked[bool].connect(self.twoStateButtonIsPushed) # We define the 2 state buttons here... QtCore.QObject.connect( self.ui.pushButton, QtCore.SIGNAL("clicked()"), self.theButtonIsPushed ) #Connects "pushButton" to the "theButtonIsPushed" method QtCore.QObject.connect( self.ui.plotRandom, QtCore.SIGNAL("clicked()"), self.theButtonPlotRandomIsPushed ) #Connects "plotRandom" to the "theButtonPlotRandomIsPushed" method QtCore.QObject.connect( self.ui.okButton, QtCore.SIGNAL("clicked()"), self.theButtonOKIsClicked ) #Connects "OK" button to the "theButtonOKIsClicked" method QtCore.QObject.connect( self.ui.resetCombobox, QtCore.SIGNAL("clicked()"), self.resetComboboxClicked ) #Connects "OK" button to the "theButtonOKIsClicked" method #We connect here all the radiobutton to the "radioButtonWasClicked" method QtCore.QObject.connect( self.ui.radioButton_1, QtCore.SIGNAL("clicked()"), self.radioButtonWasClicked ) QtCore.QObject.connect( self.ui.radioButton_2, QtCore.SIGNAL("clicked()"), self.radioButtonWasClicked ) QtCore.QObject.connect( self.ui.radioButton_3, QtCore.SIGNAL("clicked()"), self.radioButtonWasClicked ) QtCore.QObject.connect( self.ui.radioButton_4, QtCore.SIGNAL("clicked()"), self.radioButtonWasClicked ) #Connects the signal when the combobox is changed QtCore.QObject.connect(self.ui.ComboBox, QtCore.SIGNAL("currentIndexChanged(QString)"), self.getComboBox) #End of GUI Class initialization #""" def initialize(self): #print "Hi" updateDMPos() def measureBackground(self): print "Let's measure a background!" self.aortc.changePixelTapPoint("RAW") self.aortc.updateAcq() self.aortc.measureBackground(10) self.aortc.changePixelTapPoint("CALIB") self.aortc.updateAcq() def gainSelector(self): if(self.ui.TT_GainSelector.isChecked()): self.TTGain = True if(self.ui.HO_GainSelector.isChecked()): self.HOGain = True def setGain(self): try: gain = self.ui.Gain.text().toFloat()[0] if (gain < 1.0) & (gain > 0.0): if self.TTGain: self.aortc.set_TT_gain(-gain) if self.HOGain: self.aortc.set_HO_gain(-gain) else: print("Error! Gain must be between 1.0 and 0.0!!") except: print("Error! Parsing error!") """ _ ____ _ _ _ __ _ _ ___| |__ | __ ) _ _| |_| |_ ___ _ __ | '_ \| | | / __| '_ \| _ \| | | | __| __/ _ \| '_ \ | |_) | |_| \__ \ | | | |_) | |_| | |_| || (_) | | | | | .__/ \__,_|___/_| |_|____/ \__,_|\__|\__\___/|_| |_| |_| """ def readTipTilt(self): tip, tilt = self.aortc.get_TipTilt() self.ui.Tip_SpinBox.setValue(tip) self.ui.Tilt_SpinBox.setValue(tilt) def adjustTip(self): try: tip = self.ui.Tip_SpinBox.value() if (tip < 1.0) & (tip > -1.0): self.aortc.setTip(tip) else: print("Error! Tip must be between -1.0 and 1.0!") except: print("Error! Something's wrong with getting value from Tip_SpinBox") def adjustTilt(self): try: tilt = self.ui.Tilt_SpinBox.value() if (tilt < 1.0) & (tilt > -1.0): self.aortc.setTilt(tilt) else: print("Error! Tilt must be between -1.0 and 1.0!") except: print("Error! Something's wrong with getting value from Tilt_SpinBox") def theButtonIsPushed(self): #========================================================================================= # This method is called when the push button is clicked #========================================================================================= self.ui.nbPushed+=1 mess = "This button has been pushed %d time(s)" % self.ui.nbPushed print mess self.ui.dialogBox.setText(mess) #Shows the message in the GUI dialogbox def theButtonPlotRandomIsPushed(self): #========================================================================================= # This method is called when the plot random image in window # is clicked #========================================================================================= winnum = self.ui.winNumber.value() # Retrieves the desired window number pliInGui(np.random.rand(256,256), win=winnum) # Displays random array in the desired matplotlib embedded window """ _ _ ____ _ _ _ __ __ _ __| (_) ___ | __ ) _ _| |_| |_ ___ _ __ | '__/ _` |/ _` | |/ _ \| _ \| | | | __| __/ _ \| '_ \ | | | (_| | (_| | | (_) | |_) | |_| | |_| || (_) | | | | |_| \__,_|\__,_|_|\___/|____/ \__,_|\__|\__\___/|_| |_| """ def radioButtonWasClicked(self): #============================================================================== # This method is Called when one of the radiobuttons are clicked #============================================================================== if(self.ui.radioButton_1.isChecked()): mess = "No! God outstands. Eric does not count." elif(self.ui.radioButton_2.isChecked()): mess= "No! Even a master Jedi is not as good as him!" elif(self.ui.radioButton_3.isChecked()): mess= "Almost.... Fab is second in the list (will be 1st soon ;-) )" elif(self.ui.radioButton_4.isChecked()): mess= "Yes! Zozo = The best ;-)" else: mess="Oups I shoudn't be there..." self.ui.dialogBox.setText(mess) #Shows the message in the GUI dialogbox """ ____ _ _ ____ _ _ |___ \ ___| |_ __ _| |_ ___| __ ) _ _| |_| |_ ___ _ __ __) / __| __/ _` | __/ _ \ _ \| | | | __| __/ _ \| '_ \ / __/\__ \ || (_| | || __/ |_) | |_| | |_| || (_) | | | | |_____|___/\__\__,_|\__\___|____/ \__,_|\__|\__\___/|_| |_| """ def twoStateButtonIsPushed(self, pressed): #============================================================================== # This method is Called when the 2 state button is clicked #============================================================================== if(pressed): self.ui.twoStateButtonStatus = "pushed" #if pressed we set the twoStateButtonStatus attribute to pushed else: self.ui.twoStateButtonStatus = "released" #if pressed we set the twoStateButtonStatus attribute to released self.ui.twoStateButton.setText("2 state Button (%s)" % self.ui.twoStateButtonStatus) # update the label of the button with proper status mess = "2 state buttton is now %s" % self.ui.twoStateButtonStatus print mess self.ui.dialogBox.setText( mess ) # displays message in dialogbox """ __ _ _ ____ _ _ / _(_) | ___ / ___| ___| | ___ ___| |_ ___ _ __ | |_| | |/ _ \ \___ \ / _ \ |/ _ \/ __| __/ _ \| '__| | _| | | __/ ___) | __/ | __/ (__| || (_) | | |_| |_|_|\___| |____/ \___|_|\___|\___|\__\___/|_| """ def selectFITS(self): #============================================================================== # This method is called when the "load fits file"button is called #============================================================================== filepath = QtGui.QFileDialog.getOpenFileName( self, "Select FITS file", "./data/", "FITS files (*.fits);;All Files (*)") #Note: Use getOpenFileNames method (with a "s") to enable multiple file selection print filepath if(filepath!=''): print (str(filepath)) data = pyfits.getdata(str(filepath)) # Load fits file using the pyfits library pliInGui(data) # Displays the data in the GUI. mess = filepath+" displayed in window 1" else: mess = "No File selected skipping..." print mess self.ui.dialogBox.setText(mess) # displays message """ _ ____ ___ ___ _ __ ___ | |__ ___ | __ ) _____ __ / __/ _ \| '_ ` _ \| '_ \ / _ \| _ \ / _ \ \/ / | (_| (_) | | | | | | |_) | (_) | |_) | (_) > < \___\___/|_| |_| |_|_.__/ \___/|____/ \___/_/\_\ """ def theButtonOKIsClicked(self): #============================================================================== # This method is called when "ok" button is clicked #============================================================================== text = str(self.ui.textEdit.toPlainText()) #Get the text from the text edit Field entry self.ui.ComboBox.addItem(text)# Adds the text in combo box. Note: Use currentText() to get the current Text in the combobox mess = "Added Message: %s in Combobox" % text print mess self.ui.dialogBox.setText(mess) # prints some messages... self.ui.nbItemsComboBox += 1 # updates the "nbItemsComboBox" attribute self.ui.ComboBox.setCurrentIndex(self.ui.nbItemsComboBox-1) # sets the current item to the last one entered def resetComboboxClicked(self): #============================================================================== # This method is called when "reset ComboBox" button is clicked #============================================================================== nb = self.ui.ComboBox.count() # retrieves the nb of items in the combo box for i in range(nb): self.ui.ComboBox.removeItem(0) # removes the first item "nb" times => i.e clear all items self.ui.nbItemsComboBox = 0 #upodates the attribute def getComboBox(self): #============================================================================== # This method is called when the combo selector is changed by the user #============================================================================== currText=self.ui.ComboBox.currentText() #Retrieves the ciurrent text displayed in comboBox mess = "ComboBox changed to: %s" % currText self.ui.dialogBox.setText(mess) #displays message """ _ _ __ _ _ ___ | |_| |__ ___ _ __ ___ / _|_ _ _ __ ___| |_(_) ___ _ __ ___ / _ \| __| '_ \ / _ \ '__/ __| | |_| | | | '_ \ / __| __| |/ _ \| '_ \/ __| | (_) | |_| | | | __/ | \__ \ | _| |_| | | | | (__| |_| | (_) | | | \__ \ \___/ \__|_| |_|\___|_| |___/ |_| \__,_|_| |_|\___|\__|_|\___/|_| |_|___/ _ __ _ _ _ _ __| | ___ / _(_)_ __ (_) |_(_) ___ _ __ / _` |/ _ \ |_| | '_ \| | __| |/ _ \| '_ \ | (_| | __/ _| | | | | | |_| | (_) | | | | \__,_|\___|_| |_|_| |_|_|\__|_|\___/|_| |_| """ def updateDMPos(color='gist_earth'): exec("wp.ui.DMPlotWindow.canvas.axes.clear()") exec("wp.ui.DMPlotWindow.canvas.axes.matshow(wp.DM_Gui.pixels.transpose(), aspect='auto', origin='lower', cmap=color, vmin=-1.0, vmax=1.0)") exec("wp.ui.DMPlotWindow.canvas.axes.set_xticks([])") exec("wp.ui.DMPlotWindow.canvas.axes.set_yticks([])") exec("wp.ui.DMPlotWindow.canvas.axes.set_xticklabels([])") exec("wp.ui.DMPlotWindow.canvas.axes.set_yticklabels([])") exec("wp.ui.DMPlotWindow.canvas.draw()") for i in range(len(wp.DM_Gui.HOactuators)): x = str(wp.DM_Gui.HOactuators[i].xTextAnchor) y = str(wp.DM_Gui.HOactuators[i].yTextAnchor) txt = str(wp.DM_Gui.HOactuators[i]) exec("wp.ui.DMPlotWindow.canvas.axes.text("+x+", "+y+", '"+txt+"')") for i in range(len(wp.DM_Gui.TTactuators)): x = str(wp.DM_Gui.TTactuators[i].xTextAnchor) y = str(wp.DM_Gui.TTactuators[i].yTextAnchor) txt = str(wp.DM_Gui.TTactuators[i]) exec("wp.ui.DMPlotWindow.canvas.axes.text("+x+", "+y+", '"+txt+"')") #wp.DM_Gui.drawMap() print "updated DM Positions" #DMPos = 'junk'#aortc.get_HO_ACT_POS_REF_MAP() """ _ _ _ _ ____ ____ | | __ _ _ _ _ __ ___| |__ (_)_ __ __ _ / \ | _ \| _ \ | |/ _` | | | | '_ \ / __| '_ \| | '_ \ / _` | / _ \ | |_) | |_) | | | (_| | |_| | | | | (__| | | | | | | | (_| | / ___ \| __/| __/ |_|\__,_|\__,_|_| |_|\___|_| |_|_|_| |_|\__, | /_/ \_\_| |_| |___/ """ #============================================================================================================== # !!!!! Here we launch the MAIN PyQt application !!!!! #============================================================================================================== hostname = "aortc3" username = "ciaomgr" aortc = VLTTools.VLTConnection(hostname=hostname, username=username, simulate=False) app = QApplication([]) #Defines that the app is a Qt application wp = Graffiti_ui_class(aortc = aortc) # !!!!!!! THE GUI REALLY STARTS HERE !!!!!! wp.initialize() # Can I initialize here? wp.show() # shows the GUI (can be hidden by typing wp.hide()) print "Graffiti loaded."
gpl-2.0
sangwook236/sangwook-library
python/test/machine_learning/keras/run_fc_densenet_using_camvid_generator.py
2
17556
# REF [paper] >> "Densely Connected Convolutional Networks", arXiv 2016. # REF [paper] >> "The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation", arXiv 2016. # REF [site] >> https://github.com/titu1994/Fully-Connected-DenseNets-Semantic-Segmentation # Path to libcudnn.so. #export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH #-------------------------------------------------------------------- import os, sys if 'posix' == os.name: swl_python_home_dir_path = '/home/sangwook/work/SWL_github/python' lib_home_dir_path = '/home/sangwook/lib_repo/python' else: swl_python_home_dir_path = 'D:/work/SWL_github/python' lib_home_dir_path = 'D:/lib_repo/python' #lib_home_dir_path = 'D:/lib_repo/python/rnd' sys.path.append(swl_python_home_dir_path + '/src') sys.path.append(lib_home_dir_path + '/Fully-Connected-DenseNets-Semantic-Segmentation_github') #os.chdir(swl_python_home_dir_path + '/test/machine_learning/keras') #-------------------- import math import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from keras import backend as K from keras import models from keras import optimizers, callbacks import densenet_fc as dc from swl.util.threading import ThreadSafeGenerator from swl.machine_learning.keras.data_generator import create_dataset_generator_using_imgaug, DatasetGeneratorUsingImgaug from swl.machine_vision.camvid_dataset import preprocess_camvid_dataset, load_camvid_dataset, create_camvid_generator_from_array, create_camvid_generator_from_directory from swl.machine_vision.camvid_dataset import get_imgaug_sequence_for_camvid #-------------------------------------------------------------------- config = tf.ConfigProto() #config.allow_soft_placement = True config.log_device_placement = True config.gpu_options.allow_growth = True #config.gpu_options.per_process_gpu_memory_fraction = 0.4 # only allocate 40% of the total memory of each GPU. sess = tf.Session(config=config) # This means that Keras will use the session we registered to initialize all variables that it creates internally. K.set_session(sess) K.set_learning_phase(0) #keras_backend = 'tf' #-------------------------------------------------------------------- # Prepare directories. output_dir_path = './result/fc_densenet_using_camvid_generator' log_dir_path = './log/fc_densenet_using_camvid_generator' model_dir_path = output_dir_path + '/model' prediction_dir_path = output_dir_path + '/prediction' train_summary_dir_path = log_dir_path + '/train' test_summary_dir_path = log_dir_path + '/test' if not os.path.exists(model_dir_path): try: os.makedirs(model_dir_path) except OSError as exception: if exception.errno != os.errno.EEXIST: raise if not os.path.exists(prediction_dir_path): try: os.makedirs(prediction_dir_path) except OSError as exception: if exception.errno != os.errno.EEXIST: raise if not os.path.exists(train_summary_dir_path): try: os.makedirs(train_summary_dir_path) except OSError as exception: if exception.errno != os.errno.EEXIST: raise if not os.path.exists(test_summary_dir_path): try: os.makedirs(test_summary_dir_path) except OSError as exception: if exception.errno != os.errno.EEXIST: raise model_checkpoint_best_filepath = model_dir_path + '/fc_densenet_using_camvid_generator_best.hdf5' # For a best model. model_checkpoint_filepath = model_dir_path + '/fc_densenet_using_camvid_generator_weight_{epoch:02d}-{val_loss:.2f}.hdf5' model_json_filepath = model_dir_path + '/fc_densenet_using_camvid_generator.json' model_weight_filepath = model_dir_path + '/fc_densenet_using_camvid_generator_weight.hdf5' #model_filepath = model_dir_path + '/fc_densenet_using_camvid_generator_epoch{}.hdf5' # For a full model. model_filepath = model_checkpoint_best_filepath #-------------------------------------------------------------------- # Parameters. np.random.seed(7) num_examples = 367 num_classes = 12 # 11 + 1. batch_size = 12 # Number of samples per gradient update. num_epochs = 1000 # Number of times to iterate over training data. steps_per_epoch = num_examples // batch_size if num_examples > 0 else 50 if steps_per_epoch < 1: steps_per_epoch = 1 shuffle = False max_queue_size = 10 workers = 4 use_multiprocessing = False #-------------------------------------------------------------------- # Prepare dataset. if 'posix' == os.name: #dataset_home_dir_path = '/home/sangwook/my_dataset' dataset_home_dir_path = '/home/HDD1/sangwook/my_dataset' else: dataset_home_dir_path = 'D:/dataset' train_image_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/train/image' train_label_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/trainannot/image' val_image_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/val/image' val_label_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/valannot/image' test_image_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/test/image' test_label_dir_path = dataset_home_dir_path + '/pattern_recognition/camvid/tmp/testannot/image' image_suffix = '' image_extension = 'png' label_suffix = '' label_extension = 'png' original_image_size = (360, 480) # (height, width). #resized_image_size = None resized_image_size = (224, 224) # (height, width). random_crop_size = None #random_crop_size = (224, 224) # (height, width). center_crop_size = None if center_crop_size is not None: image_size = center_crop_size elif random_crop_size is not None: image_size = random_crop_size elif resized_image_size is not None: image_size = resized_image_size else: image_size = original_image_size image_shape = image_size + (3,) # Provide the same seed and keyword arguments to the fit and flow methods. seed = 1 # REF [file] >> ${SWL_PYTHON_HOME}/test/machine_learning/keras/camvid_dataset_test.py dataset_generator_type = 2 if 0 == dataset_generator_type: train_images, train_labels, val_images, val_labels, test_images, test_labels, num_classes0 = load_camvid_dataset( train_image_dir_path, train_label_dir_path, val_image_dir_path, val_label_dir_path, test_image_dir_path, test_label_dir_path, data_suffix=image_suffix, data_extension=image_extension, label_suffix=label_suffix, label_extension=label_extension, width=resized_image_size[1], height=resized_image_size[0]) assert num_classes == num_classes0, '[Warning] The number of classes is unmatched.' # Preprocessing (normalization, standardization, etc). train_images, train_labels = preprocess_camvid_dataset(train_images, train_labels, num_classes) val_images, val_labels = preprocess_camvid_dataset(val_images, val_labels, num_classes) test_images, test_labels = preprocess_camvid_dataset(test_images, test_labels, num_classes) # FIXME [fix] >> A dataset generator for images(data) and labels per image. # - Images are only transformed, but labels are not transformed. train_dataset_gen, val_dataset_gen, test_dataset_gen = create_camvid_generator_from_array( train_images, train_labels, val_images, val_labels, test_images, test_labels, data_suffix=image_suffix, data_extension=image_extension, label_suffix=label_suffix, label_extension=label_extension, batch_size=batch_size, random_crop_size=random_crop_size, center_crop_size=center_crop_size, shuffle=shuffle, seed=None) elif 1 == dataset_generator_type: # NOTICE [caution] >> # - resized_image_size should be not None. # - Each input directory should contain one subdirectory per class. # - Images are loaded as either a RGB or gray color. train_dataset_gen = create_camvid_generator_from_directory(train_image_dir_path, train_label_dir_path, batch_size=batch_size, resized_image_size=resized_image_size, random_crop_size=random_crop_size, center_crop_size=center_crop_size, shuffle=shuffle, seed=seed) elif 2 == dataset_generator_type: train_images, train_labels, val_images, val_labels, test_images, test_labels, num_classes0 = load_camvid_dataset( train_image_dir_path, train_label_dir_path, val_image_dir_path, val_label_dir_path, test_image_dir_path, test_label_dir_path, data_suffix=image_suffix, data_extension=image_extension, label_suffix=label_suffix, label_extension=label_extension, width=resized_image_size[1], height=resized_image_size[0]) assert num_classes == num_classes0, '[Warning] The number of classes is unmatched.' seq = get_imgaug_sequence_for_camvid(width=image_shape[1], height=image_shape[0]) gen_type = -1 if 0 == gen_type: # NOTICE [caution] >> Not thread-safe. train_dataset_gen = create_dataset_generator_using_imgaug(seq, train_images, train_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) val_dataset_gen = create_dataset_generator_using_imgaug(seq, val_images, val_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) test_dataset_gen = create_dataset_generator_using_imgaug(seq, test_images, test_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) elif 1 == gen_type: train_dataset_gen = DatasetGeneratorUsingImgaug(seq, train_images, train_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) val_dataset_gen = DatasetGeneratorUsingImgaug(seq, val_images, val_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) test_dataset_gen = DatasetGeneratorUsingImgaug(seq, test_images, test_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset) else: train_dataset_gen = ThreadSafeGenerator(create_dataset_generator_using_imgaug(seq, train_images, train_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset)) val_dataset_gen = ThreadSafeGenerator(create_dataset_generator_using_imgaug(seq, val_images, val_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset)) test_dataset_gen = ThreadSafeGenerator(create_dataset_generator_using_imgaug(seq, test_images, test_labels, num_classes, batch_size=batch_size, shuffle=shuffle, dataset_preprocessing_function=preprocess_camvid_dataset)) else: assert dataset_generator_type < 3, 'Invalid dataset generator type.' #-------------------------------------------------------------------- # Create a FC-DenseNet model. print('Create a FC-DenseNet model.') with tf.name_scope('fc-densenet'): fc_densenet_model = dc.DenseNetFCN(image_shape, nb_dense_block=5, growth_rate=16, nb_layers_per_block=4, upsampling_type='upsampling', classes=num_classes) # Display the model summary. #fc_densenet_model.summary() #-------------------------------------------------------------------- # Prepare training. class_weighting = [ 0.2595, 0.1826, 4.5640, 0.1417, 0.5051, 0.3826, 9.6446, 1.8418, 6.6823, 6.2478, 3.0, 7.3614 ] # Learning rate scheduler. def step_decay(epoch): initial_learning_rate = 0.001 drop = 0.00001 epochs_drop = 10.0 learning_rate = initial_learning_rate * math.pow(drop, math.floor((1 + epoch) / epochs_drop)) return learning_rate # Learning schedule callback. learning_rate_callback = callbacks.LearningRateScheduler(step_decay) # Checkpoint. tensor_board_callback = callbacks.TensorBoard(log_dir=train_summary_dir_path, histogram_freq=5, write_graph=True, write_images=True) reduce_lr_on_plateau_callback = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) model_checkpoint_callback = callbacks.ModelCheckpoint(model_checkpoint_best_filepath, monitor='val_acc', verbose=2, save_best_only=True, save_weights_only=False, mode='max') #model_checkpoint_callback = callbacks.ModelCheckpoint(model_checkpoint_filepath, monitor='val_acc', verbose=2, save_best_only=False, save_weights_only=False, mode='max') # NOTICE [caution] >> Out of memory. #callback_list = [learning_rate_callback, tensor_board_callback, reduce_lr_on_plateau_callback, model_checkpoint_callback] #callback_list = [tensor_board_callback, model_checkpoint_callback] callback_list = [model_checkpoint_callback] #optimizer = optimizers.SGD(lr=0.01, decay=1.0e-7, momentum=0.95, nesterov=False) optimizer = optimizers.RMSprop(lr=1.0e-5, decay=1.0e-9, rho=0.9, epsilon=1.0e-8) #optimizer = optimizers.Adagrad(lr=0.01, decay=1.0e-7, epsilon=1.0e-8) #optimizer = optimizers.Adadelta(lr=1.0, decay=0.0, rho=0.95, epsilon=1.0e-8) #optimizer = optimizers.Adam(lr=1.0e-5, decay=1.0e-9, beta_1=0.9, beta_2=0.999, epsilon=1.0e-8) #optimizer = optimizers.Adamax(lr=0.002, decay=0.0, beta_1=0.9, beta_2=0.999, epsilon=1.0e-8) #optimizer = optimizers.Nadam(lr=0.002, schedule_decay=0.004, beta_1=0.9, beta_2=0.999, epsilon=1.0e-8) #-------------------------------------------------------------------- def display_history(history): # List all data in history. print(history.history.keys()) # Summarize history for accuracy. fig = plt.figure() plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() fig.savefig(output_dir_path + '/model_accuracy.png') plt.close(fig) # Summarize history for loss. fig = plt.figure() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show() fig.savefig(output_dir_path + '/model_loss.png') plt.close(fig) #-------------------------------------------------------------------- # Train the FC-DenseNet model. TRAINING_MODE = 0 # Start training a model. #TRAINING_MODE = 1 # Resume training a model. #TRAINING_MODE = 2 # Use a trained model. if 0 == TRAINING_MODE: initial_epoch = 0 print('Start training...') elif 1 == TRAINING_MODE: initial_epoch = 1000 print('Resume training...') elif 2 == TRAINING_MODE: initial_epoch = 0 print('Use a trained model.') else: raise Exception('Invalid TRAINING_MODE') if 1 == TRAINING_MODE or 2 == TRAINING_MODE: # Deserialize a model from JSON. #with open(model_json_filepath, 'r') as json_file: # fc_densenet_model = models.model_from_json(json_file.read()) # Deserialize weights into the model. #fc_densenet_model.load_weights(model_weight_filepath) # Load a full model. fc_densenet_model = models.load_model(model_filepath) #fc_densenet_model = models.load_model(model_filepath.format(num_epochs)) print('Restored a FC-DenseNet model.') if 0 == TRAINING_MODE or 1 == TRAINING_MODE: fc_densenet_model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) history = fc_densenet_model.fit_generator(train_dataset_gen, steps_per_epoch=steps_per_epoch, epochs=num_epochs, initial_epoch=initial_epoch, #validation_data=val_dataset_gen, validation_steps=steps_per_epoch, validation_data=test_dataset_gen, validation_steps=steps_per_epoch, #max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, class_weight=class_weighting, callbacks=callback_list, verbose=1) display_history(history) # Serialize a model to JSON. #with open(model_json_filepath, 'w') as json_file: # json_file.write(fc_densenet_model.to_json()) # Serialize weights to HDF5. #fc_densenet_model.save_weights(model_weight_filepath) # Save the model's weights. # Save a full model. #fc_densenet_model.save(model_filepath.format(num_epochs)) print('Saved a FC-DenseNet model.') if 0 == TRAINING_MODE or 1 == TRAINING_MODE: print('End training...') #-------------------------------------------------------------------- # Evaluate the FC-DenseNet model. print('Start testing...') num_test_examples = 233 steps_per_epoch = num_test_examples // batch_size if num_test_examples > 0 else 50 if steps_per_epoch < 1: steps_per_epoch = 1 test_loss, test_accuracy = fc_densenet_model.evaluate_generator(test_dataset_gen, steps=steps_per_epoch) #, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) print('Test loss = {}, test accuracy = {}'.format(test_loss, test_accuracy)) print('End testing...') #-------------------------------------------------------------------- # Predict. print('Start prediction...') predictions = fc_densenet_model.predict_generator(test_dataset_gen, steps=steps_per_epoch, verbose=0) #, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing) for idx in range(predictions.shape[0]): prediction = np.argmax(predictions[idx], axis=-1) #plt.imshow(prediction, cmap='gray') plt.imsave(prediction_dir_path + '/prediction' + str(idx) + '.jpg', prediction, cmap='gray') print('End prediction...') #-------------------------------------------------------------------- # Display. for batch_images, batch_labels in test_dataset_gen: break batch_predictions = fc_densenet_model.predict(batch_images, batch_size=batch_size, verbose=0) idx = 0 #plt.figure(figsize=(15,5)) plt.subplot(131) plt.imshow((batch_images[idx] - np.min(batch_images[idx])) / (np.max(batch_images[idx]) - np.min(batch_images[idx]))) plt.subplot(132) plt.imshow(np.argmax(batch_labels[idx], axis=-1), cmap='gray') plt.subplot(133) plt.imshow(np.argmax(batch_predictions[idx], axis=-1), cmap='gray')
gpl-2.0
jakevdp/sklearn_pycon2014
notebooks/fig_code/svm_gui.py
47
11549
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <[email protected]> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('key_press_event', self.onkeypress) canvas.mpl_connect('key_release_event', self.onkeyrelease) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.shift_down = False self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onkeypress(self, event): if event.key == "shift": self.shift_down = True def onkeyrelease(self, event): if event.key == "shift": self.shift_down = False def onclick(self, event): if event.xdata and event.ydata: if self.shift_down or event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) elif event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
rr1964/Caterpillar
anonymizedAnaylsis.py
1
6082
# -*- coding: utf-8 -*- """ Created on Thu Jul 27 15:33:30 2017 @author: Randall Reese """ # -*- coding: utf-8 -*- """ Created on Tue Jul 18 10:36:56 2017 @author: reeserd2 """ import time import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler from mpl_toolkits.mplot3d import Axes3D from sklearn.cluster import KMeans from sklearn import datasets from sklearn.decomposition import PCA from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.ensemble.partial_dependence import plot_partial_dependence, partial_dependence from patsy import dmatrices, dmatrix np.random.seed(0) #%% visitorData = pd.read_csv("anonymousData.csv") X = StandardScaler().fit_transform(visitorData[[0,1,2,3,4,5,6,7]]) #%% ### Two dimensional plotting of clustering. colors = np.array([x for x in 'grc']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans']#, 'AffinityPropagation', 'MeanShift', #'SpectralClustering', 'Ward', 'AgglomerativeClustering', #'DBSCAN', 'Birch'] fig = plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) ##ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plot_num = 1 ## estimate bandwidth for mean shift #bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # ## connectivity matrix for structured Ward #connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) ## make connectivity symmetric #connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators #ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) #two_means = cluster.MiniBatchKMeans(n_clusters=2) k_means = cluster.MiniBatchKMeans(n_clusters=3) #ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', # connectivity=connectivity) #spectral = cluster.SpectralClustering(n_clusters=2, # eigen_solver='arpack', # affinity="nearest_neighbors") #dbscan = cluster.DBSCAN(eps=.2) #affinity_propagation = cluster.AffinityPropagation(damping=.9, # preference=-200) # #average_linkage = cluster.AgglomerativeClustering( # linkage="average", affinity="cityblock", n_clusters=2, # connectivity=connectivity) # #birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ k_means]#, affinity_propagation, ms, spectral, ward, average_linkage, #dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) #if i_dataset == 0: # plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0],centers[:, 1], s=100, c=center_colors) plt.xlim(-0.3, 10) plt.ylim(-1.5, 9) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show() #%% ###Three dimensional plotting of clustering. # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) #make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) ##'spectral': cluster.SpectralClustering(n_clusters=3, eigen_solver='arpack', affinity="nearest_neighbors") estimators = {'kMeans-3': KMeans(n_clusters=3), 'Birch':cluster.Birch(n_clusters=3), 'Ward (n_cluster = 3)': cluster.AgglomerativeClustering(n_clusters=3, linkage='ward', connectivity=connectivity), 'Ward (n_cluster = 4)': cluster.AgglomerativeClustering(n_clusters=4, linkage='ward', connectivity=connectivity) } y = {} fignum = 1 for name, est in estimators.items(): fig = plt.figure(fignum, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=48, azim=134) plt.cla() est.fit(X) if hasattr(est, 'labels_'): y[name] = est.labels_.astype(np.int) else: y[name] = est.predict(X) labels = est.labels_ #ax.scatter(X[:, 1], X[:, 3], X[:, 7], c=labels.astype(np.float)) #ax.scatter(visitorData.medHitTotal, visitorData.medRevenuePerSess, visitorData.percentSessWithPurchase, c=labels.astype(np.float)) ax.scatter(visitorData.medHitTotal, visitorData['medRevenuePerSess'], visitorData.percentSessWithPurchase, c=labels.astype(np.float)) ax.text2D(0.05, 0.95, name, transform=ax.transAxes) #ax.w_xaxis.set_ticklabels([]) #ax.w_yaxis.set_ticklabels([]) #ax.w_zaxis.set_ticklabels([]) #ax.set_zlabel('% Purchase') ax.set_zlabel('Percent Sessions with Purchase') ax.set_xlabel('HitNumber') ax.set_ylabel('Revenue') fignum = fignum + 1 #%% ###PCA pca = PCA(n_components=4, svd_solver='arpack') pca.fit(X) #PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, #svd_solver='auto', tol=0.0, whiten=False) print(pca.explained_variance_ratio_) print(sum(pca.explained_variance_ratio_)) #%% pca.components_[0:1] #%% pca.components_[1:2] #%% pca.components_[2:3] #%% pca.components_[3:4] #%%
gpl-3.0
mklauser/tardis-OLD
tardis/util.py
2
13280
# Utilities for TARDIS from astropy import units as u, constants, units import numpy as np import os import yaml import logging import atomic k_B_cgs = constants.k_B.cgs.value c_cgs = constants.c.cgs.value h_cgs = constants.h.cgs.value m_e_cgs = constants.m_e.cgs.value e_charge_gauss = constants.e.gauss.value class MalformedError(Exception): pass class MalformedSpeciesError(MalformedError): def __init__(self, malformed_element_symbol): self.malformed_element_symbol = malformed_element_symbol def __str__(self): return 'Expecting a species notation (e.g. "Si 2", "Si II", "Fe IV") - supplied %s' % self.malformed_element_symbol class MalformedElementSymbolError(MalformedError): def __init__(self, malformed_element_symbol): self.malformed_element_symbol = malformed_element_symbol def __str__(self): return 'Expecting an atomic symbol (e.g. Fe) - supplied %s' % self.malformed_element_symbol class MalformedQuantityError(MalformedError): def __init__(self, malformed_quantity_string): self.malformed_quantity_string = malformed_quantity_string def __str__(self): return 'Expecting a quantity string(e.g. "5 km/s") for keyword - supplied %s' % self.malformed_quantity_string logger = logging.getLogger(__name__) synpp_default_yaml_fname = os.path.join(os.path.dirname(__file__), 'data', 'synpp_default.yaml') def int_to_roman(input): """ from http://code.activestate.com/recipes/81611-roman-numerals/ Convert an integer to Roman numerals. Examples: >>> int_to_roman(0) Traceback (most recent call last): ValueError: Argument must be between 1 and 3999 >>> int_to_roman(-1) Traceback (most recent call last): ValueError: Argument must be between 1 and 3999 >>> int_to_roman(1.5) Traceback (most recent call last): TypeError: expected integer, got <type 'float'> >>> for i in range(1, 21): print int_to_roman(i) ... I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX XX >>> print int_to_roman(2000) MM >>> print int_to_roman(1999) MCMXCIX """ input = int(input) if type(input) != type(1): raise TypeError, "expected integer, got %s" % type(input) if not 0 < input < 4000: raise ValueError, "Argument must be between 1 and 3999" ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IV','I') result = "" for i in range(len(ints)): count = int(input / ints[i]) result += nums[i] * count input -= ints[i] * count return result def roman_to_int(input): """ from http://code.activestate.com/recipes/81611-roman-numerals/ Convert a roman numeral to an integer. >>> r = range(1, 4000) >>> nums = [int_to_roman(i) for i in r] >>> ints = [roman_to_int(n) for n in nums] >>> print r == ints 1 >>> roman_to_int('VVVIV') Traceback (most recent call last): ... ValueError: input is not a valid roman numeral: VVVIV >>> roman_to_int(1) Traceback (most recent call last): ... TypeError: expected string, got <type 'int'> >>> roman_to_int('a') Traceback (most recent call last): ... ValueError: input is not a valid roman numeral: A >>> roman_to_int('IL') Traceback (most recent call last): ... ValueError: input is not a valid roman numeral: IL """ if type(input) != type(""): raise TypeError, "expected string, got %s" % type(input) input = input.upper() nums = ['M', 'D', 'C', 'L', 'X', 'V', 'I'] ints = [1000, 500, 100, 50, 10, 5, 1] places = [] for c in input: if not c in nums: raise ValueError, "input is not a valid roman numeral: %s" % input for i in range(len(input)): c = input[i] value = ints[nums.index(c)] # If the next place holds a larger number, this value is negative. try: nextvalue = ints[nums.index(input[i +1])] if nextvalue > value: value *= -1 except IndexError: # there is no next place. pass places.append(value) sum = 0 for n in places: sum += n # Easiest test for validity... if int_to_roman(sum) == input: return sum else: raise ValueError, 'input is not a valid roman numeral: %s' % input def calculate_luminosity(spec_fname, distance, wavelength_column=0, wavelength_unit=u.angstrom, flux_column=1, flux_unit=u.Unit('erg / (Angstrom cm2 s)')): #BAD STYLE change to parse quantity distance = u.Unit(distance) wavelength, flux = np.loadtxt(spec_fname, usecols=(wavelength_column, flux_column), unpack=True) flux_density = np.trapz(flux, wavelength) * (flux_unit * wavelength_unit) luminosity = (flux_density * 4 * np.pi * distance**2).to('erg/s') return luminosity.value, wavelength.min(), wavelength.max() def create_synpp_yaml(radial1d_mdl, fname, shell_no=0, lines_db=None): logger.warning('Currently only works with Si and a special setup') if not radial1d_mdl.atom_data.has_synpp_refs: raise ValueError( 'The current atom dataset does not contain the necesarry reference files (please contact the authors)') radial1d_mdl.atom_data.synpp_refs['ref_log_tau'] = -99.0 for key, value in radial1d_mdl.atom_data.synpp_refs.iterrows(): try: radial1d_mdl.atom_data.synpp_refs['ref_log_tau'].ix[key] = np.log10( radial1d_mdl.plasma_array.tau_sobolevs[0].ix[value['line_id']]) except KeyError: pass relevant_synpp_refs = radial1d_mdl.atom_data.synpp_refs[radial1d_mdl.atom_data.synpp_refs['ref_log_tau'] > -50] yaml_reference = yaml.load(file(synpp_default_yaml_fname)) if lines_db is not None: yaml_reference['opacity']['line_dir'] = os.path.join(lines_db, 'lines') yaml_reference['opacity']['line_dir'] = os.path.join(lines_db, 'refs.dat') yaml_reference['output']['min_wl'] = float(radial1d_mdl.spectrum.wavelength.to('angstrom').value.min()) yaml_reference['output']['max_wl'] = float(radial1d_mdl.spectrum.wavelength.to('angstrom').value.max()) #raise Exception("there's a problem here with units what units does synpp expect?") yaml_reference['opacity']['v_ref'] = float((radial1d_mdl.tardis_config.structure.v_inner[0].to('km/s') / (1000. * u.km / u.s)).value) yaml_reference['grid']['v_outer_max'] = float((radial1d_mdl.tardis_config.structure.v_outer[-1].to('km/s') / (1000. * u.km / u.s)).value) #pdb.set_trace() yaml_setup = yaml_reference['setups'][0] yaml_setup['ions'] = [] yaml_setup['log_tau'] = [] yaml_setup['active'] = [] yaml_setup['temp'] = [] yaml_setup['v_min'] = [] yaml_setup['v_max'] = [] yaml_setup['aux'] = [] for species, synpp_ref in relevant_synpp_refs.iterrows(): yaml_setup['ions'].append(100 * species[0] + species[1]) yaml_setup['log_tau'].append(float(synpp_ref['ref_log_tau'])) yaml_setup['active'].append(True) yaml_setup['temp'].append(yaml_setup['t_phot']) yaml_setup['v_min'].append(yaml_reference['opacity']['v_ref']) yaml_setup['v_max'].append(yaml_reference['grid']['v_outer_max']) yaml_setup['aux'].append(1e200) yaml.dump(yaml_reference, stream=file(fname, 'w'), explicit_start=True) def intensity_black_body(nu, T): """ Calculate the intensity of a black-body according to the following formula .. math:: I(\\nu, T) = \\frac{2h\\nu^3}{c^2}\frac{1}{e^{h\\nu \\beta_\\textrm{rad}} - 1} """ beta_rad = 1 / (k_B_cgs * T) return (2 * (h_cgs * nu ** 3) / (c_cgs ** 2)) / ( np.exp(h_cgs * nu * beta_rad) - 1) def savitzky_golay(y, window_size, order, deriv=0, rate=1): r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter. The Savitzky-Golay filter removes high frequency noise from data. It has the advantage of preserving the original shape and features of the signal better than other types of filtering approaches, such as moving averages techniques. Parameters ---------- y : array_like, shape (N,) the values of the time history of the signal. window_size : int the length of the window. Must be an odd integer number. order : int the order of the polynomial used in the filtering. Must be less then `window_size` - 1. deriv: int the order of the derivative to compute (default = 0 means only smoothing) Returns ------- ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative). Notes ----- The Savitzky-Golay is a type of low-pass filter, particularly suited for smoothing noisy data. The main idea behind this approach is to make for each point a least-square fit with a polynomial of high order over a odd-sized window centered at the point. Examples -------- t = np.linspace(-4, 4, 500) y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape) ysg = savitzky_golay(y, window_size=31, order=4) import matplotlib.pyplot as plt plt.plot(t, y, label='Noisy signal') plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal') plt.plot(t, ysg, 'r', label='Filtered signal') plt.legend() plt.show() References ---------- .. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639. .. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688 """ import numpy as np from math import factorial try: window_size = np.abs(np.int(window_size)) order = np.abs(np.int(order)) except ValueError, msg: raise ValueError("window_size and order have to be of type int") if window_size % 2 != 1 or window_size < 1: raise TypeError("window_size size must be a positive odd number") if window_size < order + 2: raise TypeError("window_size is too small for the polynomials order") order_range = range(order+1) half_window = (window_size -1) // 2 # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # pad the signal at the extremes with # values taken from the signal itself firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] ) lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1]) y = np.concatenate((firstvals, y, lastvals)) return np.convolve( m[::-1], y, mode='valid') def species_tuple_to_string(species_tuple, roman_numerals=True): atomic_number, ion_number = species_tuple element_symbol = atomic.atomic_number2symbol[atomic_number] if roman_numerals: roman_ion_number = int_to_roman(ion_number+1) return '%s %s' % (element_symbol, roman_ion_number) else: return '%s %d' % (element_symbol, ion_number) def species_string_to_tuple(species_string): try: element_string, ion_number_string = species_string.split() except ValueError: raise MalformedElementSymbolError(species_string) atomic_number = element_symbol2atomic_number(element_string) try: ion_number = roman_to_int(ion_number_string.strip()) except ValueError: try: ion_number = np.int64(ion_number_string) except ValueError: raise MalformedSpeciesError if ion_number > atomic_number: raise ValueError('Species given does not exist: ion number > atomic number') return atomic_number, ion_number-1 def parse_quantity(quantity_string): if not isinstance(quantity_string, basestring): raise MalformedQuantityError(quantity_string) try: value_string, unit_string = quantity_string.split() except ValueError: raise MalformedQuantityError(quantity_string) try: value = float(value_string) except ValueError: raise MalformedQuantityError(quantity_string) try: q = u.Quantity(value, unit_string) except ValueError: raise MalformedQuantityError(quantity_string) return q def element_symbol2atomic_number(element_string): reformatted_element_string = reformat_element_symbol(element_string) if reformatted_element_string not in atomic.symbol2atomic_number: raise MalformedElementSymbolError(element_string) return atomic.symbol2atomic_number[reformatted_element_string] def reformat_element_symbol(element_string): """ Reformat the string so the first letter is uppercase and all subsequent letters lowercase Parameters ---------- element_symbol: str Returns ------- reformated element symbol """ return element_string[0].upper() + element_string[1:].lower()
bsd-3-clause
oscarbranson/latools
Supplement/comparison_tools/stats.py
1
7199
import statsmodels.api as sm import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt def fmt_RSS(x): """ Calculate RSS and format as string. """ return 'RSS: {sumsq:.2f}'.format(sumsq=np.sqrt(np.nansum((x)**2))) def pairwise_reproducibility(df, plot=False): """ Calculate the reproducibility of LA-ICPMS based on unique pairs of repeat analyses. Pairwise differences are fit with a half-Cauchy distribution, and the median and 95% confidence limits are returned for each analyte. Parameters ---------- df : pandas.DataFrame A dataset plot : bool Whether or not to plot the resulting error distributions. Returns ------- pdiffs : pandas.DataFrame Unique pairwise differences for all analytes. rep_dists : dict of scipy.stats.halfcauchy Half-Cauchy distribution objects fitted to the differences. rep_stats : dict of tuples The 50% and 95% quantiles of the half-cauchy distribution. (fig, axs) : matplotlib objects The figure. If not made, returnes (None, None) placeholder """ ans = df.columns.values pdifs = [] # calculate differences between unique pairs for ind, d in df.groupby(level=0): d.index = d.index.droplevel(0) difs = [] for i, r in d.iterrows(): t = d.loc[i+1:, :] difs.append(t[ans] - r[ans]) pdifs.append(pd.concat(difs)) pdifs = pd.concat(pdifs).abs() # calculate stats rep_stats = {} rep_dists = {} errfn = stats.halfcauchy for a in ans: d = pdifs.loc[:, a].dropna().values hdist = errfn.fit(d, floc=0) rep_dists[a] = errfn(*hdist) rep_stats[a] = rep_dists[a].ppf((0.5, 0.95)) # make plot if not plot: return pdifs, rep_dists, rep_stats, (None, None) fig, axs = plt.subplots(1, len(ans), figsize=[len(ans) * 2, 2]) for a, ax in zip(ans, axs): d = pdifs.loc[:, a].dropna().values hist, edges, _ = ax.hist(d, 30) ax.plot(edges, rep_dists[a].pdf(edges) * (sum(hist) * np.mean(np.diff(edges)))) ax.set_title(a, loc='left') return pdifs, rep_dists, rep_stats, (fig, axs) def comparison_stats(df, els=['Mg', 'Sr', 'Ba', 'Al', 'Mn']): """ Compute comparison stats for test and LAtools data. Population-level similarity assessed by a Kolmogorov-Smirnov test. Individual similarity assessed by a pairwise Wilcoxon signed rank test. Trends in residuals assessed by regression analysis, where significance of the slope and intercept is determined by t-tests (both relative to zero). Parameters ---------- df : pandas.DataFrame A dataframe containing reference ('X/Ca_r'), test user ('X/Ca_t') and LAtools ('X123') data. els : list list of elements (names only) to plot. Returns ------- pandas.DataFrame """ # get corresponding analyte and ratio names As = [] Rs = [] analytes = [c for c in df.columns if ('_r' not in c) and ('_t' not in c)] ratios = [c for c in df.columns if ('_r' in c)] for e in els: if e == 'Sr': As.append('Sr88_Ca43') elif e == 'Mg': As.append('Mg24_Ca43') else: As.append([a for a in analytes if e in a][0]) Rs.append([r for r in ratios if e in r][0][:-2]) yt_stats = [] yl_stats = [] for i, (e, a) in enumerate(zip(Rs, As)): if a == 'Ba138': m = 1e3 u = '$\mu$mol/mol' else: m = 1 u = 'mmol/mol' x = df.loc[:, e + '_r'].values * m yt = df.loc[:, e + '_t'].values * m yl = df.loc[:, a].values * m yt_stats.append(summary_stats(x, yt, e)) yl_stats.append(summary_stats(x, yl, e)) yt_stats = pd.concat(yt_stats).T yl_stats = pd.concat(yl_stats).T return pd.concat([yt_stats, yl_stats], keys=['Test User', 'LAtools']).T def summary_stats(x, y, nm=None): """ Compute summary statistics for paired x, y data. Tests ----- Parameters ---------- x, y : array-like Data to compare nm : str (optional) Index value of created dataframe. Returns ------- pandas dataframe of statistics. """ # create datafrane for results if isinstance(nm, str): nm = [nm] # cols = pd.MultiIndex.from_arrays([['', 'Pairwise', 'Pairwise', cat, cat, cat, cat], # ['N', 'W', 'p', 'Median', 'IQR', 'W', 'p']]) # cols = ['Median', 'IQR', 'CI95', 'L95', 'LQ', 'UQ', 'U95', 'N', # 'Wilcoxon_stat', 'Wilcoxon_p', # 'KS_stat', 'KS_p', # 'LR_slope', 'LR_intercept', 'LR_slope_tvalue', 'LR_intercept_tvalue', 'LR_slope_p', 'LR_intercept_p', 'LR_R2adj'] # out = pd.DataFrame(index=nm, columns=cols) cols = pd.MultiIndex.from_tuples([('Residual Summary', 'N'), ('Residual Summary', 'Median'), ('Residual Summary', 'LQ'), ('Residual Summary', 'IQR'), ('Residual Summary', 'UQ'), ('Residual Regression', 'Slope'), ('Residual Regression', 'Slope t'), ('Residual Regression', 'Slope p'), ('Residual Regression', 'Intercept'), ('Residual Regression', 'Intercept t'), ('Residual Regression', 'Intercept p'), ('Residual Regression', 'R2'), ('Kolmogorov-Smirnov', 'KS'), ('Kolmogorov-Smirnov', 'p')]) out = pd.DataFrame(index=nm, columns=cols) # remove nan values ind = ~(np.isnan(x) | np.isnan(y)) x = x[ind] y = y[ind] # calculate residuals r = y - x # summary statistics cat = 'Residual Summary' out.loc[:, (cat, 'N')] = len(x) out.loc[:, (cat, 'Median')] = np.median(r) out.loc[:, [(cat, 'LQ'), (cat, 'UQ')]] = np.percentile(r, [25, 75]) out.loc[:, (cat, 'IQR')] = out.loc[:, (cat, 'UQ')] - out.loc[:, (cat, 'LQ')] # non-paired test for same distribution cat = 'Kolmogorov-Smirnov' ks = stats.ks_2samp(x, y) out.loc[:, (cat, 'KS')] = ks.statistic out.loc[:, (cat, 'p')] = ks.pvalue # regression analysis of residuals - slope should be 0, intercept should be 0 cat = 'Residual Regression' X = sm.add_constant(x) reg = sm.OLS(r, X, missing='drop') fit = reg.fit() out.loc[:, [(cat, 'Intercept'), (cat, 'Slope')]] = fit.params out.loc[:, [(cat, 'Intercept t'), (cat, 'Slope t')]] = fit.tvalues out.loc[:, (cat, 'R2')] = fit.rsquared out.loc[:, [(cat, 'Intercept p'), (cat, 'Slope p')]] = fit.pvalues return out
mit
JsNoNo/scikit-learn
sklearn/ensemble/tests/test_partial_dependence.py
365
6996
""" Testing for the partial dependence module. """ import numpy as np from numpy.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import if_matplotlib from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn import datasets # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] true_result = [-1, 1, 1] # also load the boston dataset boston = datasets.load_boston() # also load the iris dataset iris = datasets.load_iris() def test_partial_dependence_classifier(): # Test partial dependence for classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) pdp, axes = partial_dependence(clf, [0], X=X, grid_resolution=5) # only 4 grid points instead of 5 because only 4 unique X[:,0] vals assert pdp.shape == (1, 4) assert axes[0].shape[0] == 4 # now with our own grid X_ = np.asarray(X) grid = np.unique(X_[:, 0]) pdp_2, axes = partial_dependence(clf, [0], grid=grid) assert axes is None assert_array_equal(pdp, pdp_2) def test_partial_dependence_multiclass(): # Test partial dependence for multi-class classifier clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 n_classes = clf.n_classes_ pdp, axes = partial_dependence( clf, [0], X=iris.data, grid_resolution=grid_resolution) assert pdp.shape == (n_classes, grid_resolution) assert len(axes) == 1 assert axes[0].shape[0] == grid_resolution def test_partial_dependence_regressor(): # Test partial dependence for regressor clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 pdp, axes = partial_dependence( clf, [0], X=boston.data, grid_resolution=grid_resolution) assert pdp.shape == (1, grid_resolution) assert axes[0].shape[0] == grid_resolution def test_partial_dependecy_input(): # Test input validation of partial dependence. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(X, y) assert_raises(ValueError, partial_dependence, clf, [0], grid=None, X=None) assert_raises(ValueError, partial_dependence, clf, [0], grid=[0, 1], X=X) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, partial_dependence, {}, [0], X=X) # Gradient boosting estimator must be fit assert_raises(ValueError, partial_dependence, GradientBoostingClassifier(), [0], X=X) assert_raises(ValueError, partial_dependence, clf, [-1], X=X) assert_raises(ValueError, partial_dependence, clf, [100], X=X) # wrong ndim for grid grid = np.random.rand(10, 2, 1) assert_raises(ValueError, partial_dependence, clf, [0], grid=grid) @if_matplotlib def test_plot_partial_dependence(): # Test partial dependence plot function. clf = GradientBoostingRegressor(n_estimators=10, random_state=1) clf.fit(boston.data, boston.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, boston.data, [0, 1, (0, 1)], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with str features and array feature names fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=boston.feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) # check with list feature_names feature_names = boston.feature_names.tolist() fig, axs = plot_partial_dependence(clf, boston.data, ['CRIM', 'ZN', ('CRIM', 'ZN')], grid_resolution=grid_resolution, feature_names=feature_names) assert len(axs) == 3 assert all(ax.has_data for ax in axs) @if_matplotlib def test_plot_partial_dependence_input(): # Test partial dependence plot function input checks. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) # not fitted yet assert_raises(ValueError, plot_partial_dependence, clf, X, [0]) clf.fit(X, y) assert_raises(ValueError, plot_partial_dependence, clf, np.array(X)[:, :0], [0]) # first argument must be an instance of BaseGradientBoosting assert_raises(ValueError, plot_partial_dependence, {}, X, [0]) # must be larger than -1 assert_raises(ValueError, plot_partial_dependence, clf, X, [-1]) # too large feature value assert_raises(ValueError, plot_partial_dependence, clf, X, [100]) # str feature but no feature_names assert_raises(ValueError, plot_partial_dependence, clf, X, ['foobar']) # not valid features value assert_raises(ValueError, plot_partial_dependence, clf, X, [{'foo': 'bar'}]) @if_matplotlib def test_plot_partial_dependence_multiclass(): # Test partial dependence plot function on multi-class input. clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, iris.target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label=0, grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # now with symbol labels target = iris.target_names[iris.target] clf = GradientBoostingClassifier(n_estimators=10, random_state=1) clf.fit(iris.data, target) grid_resolution = 25 fig, axs = plot_partial_dependence(clf, iris.data, [0, 1], label='setosa', grid_resolution=grid_resolution) assert len(axs) == 2 assert all(ax.has_data for ax in axs) # label not in gbrt.classes_ assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], label='foobar', grid_resolution=grid_resolution) # label not provided assert_raises(ValueError, plot_partial_dependence, clf, iris.data, [0, 1], grid_resolution=grid_resolution)
bsd-3-clause
Achuth17/scikit-learn
sklearn/pipeline.py
162
21103
""" The :mod:`sklearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms and estimators. """ # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Licence: BSD from collections import defaultdict import numpy as np from scipy import sparse from .base import BaseEstimator, TransformerMixin from .externals.joblib import Parallel, delayed from .externals import six from .utils import tosequence from .utils.metaestimators import if_delegate_has_method from .externals.six import iteritems __all__ = ['Pipeline', 'FeatureUnion'] class Pipeline(BaseEstimator): """Pipeline of transforms with a final estimator. Sequentially apply a list of transforms and a final estimator. Intermediate steps of the pipeline must be 'transforms', that is, they must implement fit and transform methods. The final estimator only needs to implement fit. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. Read more in the :ref:`User Guide <pipeline>`. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform) that are chained, in the order in which they are chained, with the last object an estimator. Attributes ---------- named_steps : dict Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. Examples -------- >>> from sklearn import svm >>> from sklearn.datasets import samples_generator >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import f_regression >>> from sklearn.pipeline import Pipeline >>> # generate some data to play with >>> X, y = samples_generator.make_classification( ... n_informative=5, n_redundant=0, random_state=42) >>> # ANOVA SVM-C >>> anova_filter = SelectKBest(f_regression, k=5) >>> clf = svm.SVC(kernel='linear') >>> anova_svm = Pipeline([('anova', anova_filter), ('svc', clf)]) >>> # You can set the parameters using the names issued >>> # For instance, fit using a k of 10 in the SelectKBest >>> # and a parameter 'C' of the svm >>> anova_svm.set_params(anova__k=10, svc__C=.1).fit(X, y) ... # doctest: +ELLIPSIS Pipeline(steps=[...]) >>> prediction = anova_svm.predict(X) >>> anova_svm.score(X, y) # doctest: +ELLIPSIS 0.77... >>> # getting the selected features chosen by anova_filter >>> anova_svm.named_steps['anova'].get_support() ... # doctest: +NORMALIZE_WHITESPACE array([ True, True, True, False, False, True, False, True, True, True, False, False, True, False, True, False, False, False, False, True], dtype=bool) """ # BaseEstimator interface def __init__(self, steps): names, estimators = zip(*steps) if len(dict(steps)) != len(steps): raise ValueError("Provided step names are not unique: %s" % (names,)) # shallow copy of steps self.steps = tosequence(steps) transforms = estimators[:-1] estimator = estimators[-1] for t in transforms: if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(t, "transform")): raise TypeError("All intermediate steps of the chain should " "be transforms and implement fit and transform" " '%s' (type %s) doesn't)" % (t, type(t))) if not hasattr(estimator, "fit"): raise TypeError("Last step of chain should implement fit " "'%s' (type %s) doesn't)" % (estimator, type(estimator))) @property def _estimator_type(self): return self.steps[-1][1]._estimator_type def get_params(self, deep=True): if not deep: return super(Pipeline, self).get_params(deep=False) else: out = self.named_steps for name, step in six.iteritems(self.named_steps): for key, value in six.iteritems(step.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(Pipeline, self).get_params(deep=False)) return out @property def named_steps(self): return dict(self.steps) @property def _final_estimator(self): return self.steps[-1][1] # Estimator interface def _pre_transform(self, X, y=None, **fit_params): fit_params_steps = dict((step, {}) for step, _ in self.steps) for pname, pval in six.iteritems(fit_params): step, param = pname.split('__', 1) fit_params_steps[step][param] = pval Xt = X for name, transform in self.steps[:-1]: if hasattr(transform, "fit_transform"): Xt = transform.fit_transform(Xt, y, **fit_params_steps[name]) else: Xt = transform.fit(Xt, y, **fit_params_steps[name]) \ .transform(Xt) return Xt, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then fit the transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) self.steps[-1][-1].fit(Xt, y, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit all the transforms one after the other and transform the data, then use fit_transform on transformed data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) if hasattr(self.steps[-1][-1], 'fit_transform'): return self.steps[-1][-1].fit_transform(Xt, y, **fit_params) else: return self.steps[-1][-1].fit(Xt, y, **fit_params).transform(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict(self, X): """Applies transforms to the data, and the predict method of the final estimator. Valid only if the final estimator implements predict. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict(Xt) @if_delegate_has_method(delegate='_final_estimator') def fit_predict(self, X, y=None, **fit_params): """Applies fit_predict of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. """ Xt, fit_params = self._pre_transform(X, y, **fit_params) return self.steps[-1][-1].fit_predict(Xt, y, **fit_params) @if_delegate_has_method(delegate='_final_estimator') def predict_proba(self, X): """Applies transforms to the data, and the predict_proba method of the final estimator. Valid only if the final estimator implements predict_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def decision_function(self, X): """Applies transforms to the data, and the decision_function method of the final estimator. Valid only if the final estimator implements decision_function. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].decision_function(Xt) @if_delegate_has_method(delegate='_final_estimator') def predict_log_proba(self, X): """Applies transforms to the data, and the predict_log_proba method of the final estimator. Valid only if the final estimator implements predict_log_proba. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].predict_log_proba(Xt) @if_delegate_has_method(delegate='_final_estimator') def transform(self, X): """Applies transforms to the data, and the transform method of the final estimator. Valid only if the final estimator implements transform. Parameters ---------- X : iterable Data to predict on. Must fulfill input requirements of first step of the pipeline. """ Xt = X for name, transform in self.steps: Xt = transform.transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def inverse_transform(self, X): """Applies inverse transform to the data. Starts with the last step of the pipeline and applies ``inverse_transform`` in inverse order of the pipeline steps. Valid only if all steps of the pipeline implement inverse_transform. Parameters ---------- X : iterable Data to inverse transform. Must fulfill output requirements of the last step of the pipeline. """ if X.ndim == 1: X = X[None, :] Xt = X for name, step in self.steps[::-1]: Xt = step.inverse_transform(Xt) return Xt @if_delegate_has_method(delegate='_final_estimator') def score(self, X, y=None): """Applies transforms to the data, and the score method of the final estimator. Valid only if the final estimator implements score. Parameters ---------- X : iterable Data to score. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Targets used for scoring. Must fulfill label requirements for all steps of the pipeline. """ Xt = X for name, transform in self.steps[:-1]: Xt = transform.transform(Xt) return self.steps[-1][-1].score(Xt, y) @property def classes_(self): return self.steps[-1][-1].classes_ @property def _pairwise(self): # check if first estimator expects pairwise input return getattr(self.steps[0][1], '_pairwise', False) def _name_estimators(estimators): """Generate names for estimators.""" names = [type(estimator).__name__.lower() for estimator in estimators] namecount = defaultdict(int) for est, name in zip(estimators, names): namecount[name] += 1 for k, v in list(six.iteritems(namecount)): if v == 1: del namecount[k] for i in reversed(range(len(estimators))): name = names[i] if name in namecount: names[i] += "-%d" % namecount[name] namecount[name] -= 1 return list(zip(names, estimators)) def make_pipeline(*steps): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, they will be given names automatically based on their types. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB()) # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('gaussiannb', GaussianNB())]) Returns ------- p : Pipeline """ return Pipeline(_name_estimators(steps)) def _fit_one_transformer(transformer, X, y): return transformer.fit(X, y) def _transform_one(transformer, name, X, transformer_weights): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output return transformer.transform(X) * transformer_weights[name] return transformer.transform(X) def _fit_transform_one(transformer, name, X, y, transformer_weights, **fit_params): if transformer_weights is not None and name in transformer_weights: # if we have a weight for this transformer, muliply output if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed * transformer_weights[name], transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed * transformer_weights[name], transformer if hasattr(transformer, 'fit_transform'): X_transformed = transformer.fit_transform(X, y, **fit_params) return X_transformed, transformer else: X_transformed = transformer.fit(X, y, **fit_params).transform(X) return X_transformed, transformer class FeatureUnion(BaseEstimator, TransformerMixin): """Concatenates results of multiple transformer objects. This estimator applies a list of transformer objects in parallel to the input data, then concatenates the results. This is useful to combine several feature extraction mechanisms into a single transformer. Read more in the :ref:`User Guide <feature_union>`. Parameters ---------- transformer_list: list of (string, transformer) tuples List of transformer objects to be applied to the data. The first half of each tuple is the name of the transformer. n_jobs: int, optional Number of jobs to run in parallel (default 1). transformer_weights: dict, optional Multiplicative weights for features per transformer. Keys are transformer names, values the weights. """ def __init__(self, transformer_list, n_jobs=1, transformer_weights=None): self.transformer_list = transformer_list self.n_jobs = n_jobs self.transformer_weights = transformer_weights def get_feature_names(self): """Get feature names from all transformers. Returns ------- feature_names : list of strings Names of the features produced by transform. """ feature_names = [] for name, trans in self.transformer_list: if not hasattr(trans, 'get_feature_names'): raise AttributeError("Transformer %s does not provide" " get_feature_names." % str(name)) feature_names.extend([name + "__" + f for f in trans.get_feature_names()]) return feature_names def fit(self, X, y=None): """Fit all transformers using X. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data, used to fit transformers. """ transformers = Parallel(n_jobs=self.n_jobs)( delayed(_fit_one_transformer)(trans, X, y) for name, trans in self.transformer_list) self._update_transformer_list(transformers) return self def fit_transform(self, X, y=None, **fit_params): """Fit all transformers using X, transform the data and concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ result = Parallel(n_jobs=self.n_jobs)( delayed(_fit_transform_one)(trans, name, X, y, self.transformer_weights, **fit_params) for name, trans in self.transformer_list) Xs, transformers = zip(*result) self._update_transformer_list(transformers) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def transform(self, X): """Transform X separately by each transformer, concatenate results. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data to be transformed. Returns ------- X_t : array-like or sparse matrix, shape (n_samples, sum_n_components) hstack of results of transformers. sum_n_components is the sum of n_components (output dimension) over transformers. """ Xs = Parallel(n_jobs=self.n_jobs)( delayed(_transform_one)(trans, name, X, self.transformer_weights) for name, trans in self.transformer_list) if any(sparse.issparse(f) for f in Xs): Xs = sparse.hstack(Xs).tocsr() else: Xs = np.hstack(Xs) return Xs def get_params(self, deep=True): if not deep: return super(FeatureUnion, self).get_params(deep=False) else: out = dict(self.transformer_list) for name, trans in self.transformer_list: for key, value in iteritems(trans.get_params(deep=True)): out['%s__%s' % (name, key)] = value out.update(super(FeatureUnion, self).get_params(deep=False)) return out def _update_transformer_list(self, transformers): self.transformer_list[:] = [ (name, new) for ((name, old), new) in zip(self.transformer_list, transformers) ] # XXX it would be nice to have a keyword-only n_jobs argument to this function, # but that's not allowed in Python 2.x. def make_union(*transformers): """Construct a FeatureUnion from the given transformers. This is a shorthand for the FeatureUnion constructor; it does not require, and does not permit, naming the transformers. Instead, they will be given names automatically based on their types. It also does not allow weighting. Examples -------- >>> from sklearn.decomposition import PCA, TruncatedSVD >>> make_union(PCA(), TruncatedSVD()) # doctest: +NORMALIZE_WHITESPACE FeatureUnion(n_jobs=1, transformer_list=[('pca', PCA(copy=True, n_components=None, whiten=False)), ('truncatedsvd', TruncatedSVD(algorithm='randomized', n_components=2, n_iter=5, random_state=None, tol=0.0))], transformer_weights=None) Returns ------- f : FeatureUnion """ return FeatureUnion(_name_estimators(transformers))
bsd-3-clause
JT5D/scikit-learn
sklearn/covariance/tests/test_robust_covariance.py
31
3340
# Author: Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Virgile Fritsch <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.covariance import empirical_covariance, MinCovDet, \ EllipticEnvelope X = datasets.load_iris().data X_1d = X[:, 0] n_samples, n_features = X.shape def test_mcd(): """Tests the FastMCD algorithm implementation """ ### Small data set # test without outliers (random independent normal data) launch_mcd_on_dataset(100, 5, 0, 0.01, 0.1, 80) # test with a contaminated data set (medium contamination) launch_mcd_on_dataset(100, 5, 20, 0.01, 0.01, 70) # test with a contaminated data set (strong contamination) launch_mcd_on_dataset(100, 5, 40, 0.1, 0.1, 50) ### Medium data set launch_mcd_on_dataset(1000, 5, 450, 0.1, 0.1, 540) ### Large data set launch_mcd_on_dataset(1700, 5, 800, 0.1, 0.1, 870) ### 1D data set launch_mcd_on_dataset(500, 1, 100, 0.001, 0.001, 350) def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov, tol_support): rand_gen = np.random.RandomState(0) data = rand_gen.randn(n_samples, n_features) # add some outliers outliers_index = rand_gen.permutation(n_samples)[:n_outliers] outliers_offset = 10. * \ (rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5) data[outliers_index] += outliers_offset inliers_mask = np.ones(n_samples).astype(bool) inliers_mask[outliers_index] = False pure_data = data[inliers_mask] # compute MCD by fitting an object mcd_fit = MinCovDet(random_state=rand_gen).fit(data) T = mcd_fit.location_ S = mcd_fit.covariance_ H = mcd_fit.support_ # compare with the estimates learnt from the inliers error_location = np.mean((pure_data.mean(0) - T) ** 2) assert(error_location < tol_loc) error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2) assert(error_cov < tol_cov) assert(np.sum(H) >= tol_support) assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_) def test_mcd_issue1127(): # Check that the code does not break with X.shape = (3, 1) # (i.e. n_support = n_samples) rnd = np.random.RandomState(0) X = rnd.normal(size=(3, 1)) mcd = MinCovDet() mcd.fit(X) def test_outlier_detection(): rnd = np.random.RandomState(0) X = rnd.randn(100, 10) clf = EllipticEnvelope(contamination=0.1) print(clf.threshold) assert_raises(Exception, clf.predict, X) assert_raises(Exception, clf.decision_function, X) clf.fit(X) y_pred = clf.predict(X) decision = clf.decision_function(X, raw_values=True) decision_transformed = clf.decision_function(X, raw_values=False) assert_array_almost_equal( decision, clf.mahalanobis(X)) assert_array_almost_equal(clf.mahalanobis(X), clf.dist_) assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.) assert(sum(y_pred == -1) == sum(decision_transformed < 0))
bsd-3-clause
simonsfoundation/inferelator_ng
inferelator_ng/tests/test_prior.py
3
8009
import unittest from .. import prior import pandas as pd import numpy as np import subprocess class TestPrior(unittest.TestCase): def setup_test_files(self): self.motifs = [('chr1', '10', '15', 'TF1', '.', '-'), ('chr1', '18', '22', 'TF1', '.', '+'), ('chr2', '50', '56', 'TF1', '.', '+'), ('chr1', '100', '107', 'TF2', '.', '-'), ('chr1', '103', '108', 'TF3', '.', '+'), ('chr1', '150', '154', 'TF4', '.', '+')] self.tss = [('chr1', '20', '21', 'gene1', '.', '+'), ('chr1', '20', '21', 'gene2', '.', '-'), ('chr1', '120', '121', 'gene3', '.', '+')] self.genes = [('chr1', '20', '45', 'gene2', '.', '+'), ('chr1', '5', '21', 'gene1', '.', '-'), ('chr1', '120', '150', 'gene3', '.', '+')] self.target_genes = ['gene1', 'gene2', 'gene3'] self.regulators = regulators = ['TF1', 'TF2', 'TF3', 'TF4'] def test_prior_empty_tfs_and_targets_lists(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.genes, [], [], 'closest', 100) self.assertEqual(prior_object.make_prior().size, 0) def test_prior_closest_zero_distance(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest', 0) expected_prior = pd.DataFrame([[1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_closest_zero_distance_genes_with_multiple_tss_at_different_locations(self): self.setup_test_files() self.tss.append(('chr1', '100', '101', 'gene1', '.', '+'),) prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest', 0) expected_prior = pd.DataFrame([[1, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_closest_zero_distance_genes_with_multiple_tss_at_same_location(self): self.setup_test_files() self.tss.append(('chr1', '19', '20', 'gene1', '.', '+'),) prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest', 0) expected_prior = pd.DataFrame([[2, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_window_TSS_zero_distance(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'window', 0) expected_prior = pd.DataFrame([[1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_window_geneBody_zero_distance(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.genes, self.target_genes, self.regulators, 'window', 0) expected_prior = pd.DataFrame([[2, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_closestTSS_default(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest') expected_prior = pd.DataFrame([[2, 0, 0, 0], [2, 0, 0, 0], [0, 1, 1, 1]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_closestTSS_ignore_downstream(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest', ignore_downstream = True) expected_prior = pd.DataFrame([[2, 0, 0, 0], [1, 0, 0, 1], [0, 1, 1, 0]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_windowGeneBody_1000(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.genes, self.target_genes, self.regulators, 'window', 1000) expected_prior = pd.DataFrame([[2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior)) def test_prior_number_of_targets_2(self): self.setup_test_files() prior_object = prior.Prior(self.motifs, self.tss, self.target_genes, self.regulators, 'closest', number_of_targets = 2) expected_prior = pd.DataFrame([[2, 1, 1, 1], [2, 1, 1, 1], [0, 1, 1, 1]], index = ['gene1', 'gene2', 'gene3'], columns = ['TF1', 'TF2', 'TF3', 'TF4']) self.assertTrue(prior_object.make_prior().equals(expected_prior))
bsd-2-clause
tylerjereddy/scipy
tools/refguide_check.py
7
31826
#!/usr/bin/env python """ refguide_check.py [OPTIONS] [-- ARGS] Check for a Scipy submodule whether the objects in its __all__ dict correspond to the objects included in the reference guide. Example of usage:: $ python refguide_check.py optimize Note that this is a helper script to be able to check if things are missing; the output of this script does need to be checked manually. In some cases objects are left out of the refguide for a good reason (it's an alias of another function, or deprecated, or ...) Another use of this helper script is to check validity of code samples in docstrings. This is different from doctesting [we do not aim to have scipy docstrings doctestable!], this is just to make sure that code in docstrings is valid python:: $ python refguide_check.py --doctests optimize """ import copy import doctest import glob import inspect import io import os import re import shutil import sys import tempfile import warnings from argparse import ArgumentParser from contextlib import contextmanager, redirect_stderr from doctest import NORMALIZE_WHITESPACE, ELLIPSIS, IGNORE_EXCEPTION_DETAIL import docutils.core import numpy as np import sphinx from docutils.parsers.rst import directives from pkg_resources import parse_version sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..', 'doc', 'sphinxext')) from numpydoc.docscrape_sphinx import get_doc_object if parse_version(sphinx.__version__) >= parse_version('1.5'): # Enable specific Sphinx directives from sphinx.directives.other import SeeAlso, Only directives.register_directive('seealso', SeeAlso) directives.register_directive('only', Only) else: # Remove sphinx directives that don't run without Sphinx environment. # Sphinx < 1.5 installs all directives on import... directives._directives.pop('versionadded', None) directives._directives.pop('versionchanged', None) directives._directives.pop('moduleauthor', None) directives._directives.pop('sectionauthor', None) directives._directives.pop('codeauthor', None) directives._directives.pop('toctree', None) BASE_MODULE = "scipy" PUBLIC_SUBMODULES = [ 'cluster', 'cluster.hierarchy', 'cluster.vq', 'constants', 'fft', 'fftpack', 'fftpack.convolve', 'integrate', 'interpolate', 'io', 'io.arff', 'io.wavfile', 'linalg', 'linalg.blas', 'linalg.lapack', 'linalg.interpolative', 'misc', 'ndimage', 'odr', 'optimize', 'signal', 'signal.windows', 'sparse', 'sparse.csgraph', 'sparse.linalg', 'spatial', 'spatial.distance', 'spatial.transform', 'special', 'stats', 'stats.mstats', 'stats.contingency', 'stats.qmc', ] # Docs for these modules are included in the parent module OTHER_MODULE_DOCS = { 'fftpack.convolve': 'fftpack', 'io.wavfile': 'io', 'io.arff': 'io', } # these names are known to fail doctesting and we like to keep it that way # e.g. sometimes pseudocode is acceptable etc DOCTEST_SKIPLIST = set([ 'scipy.stats.kstwobign', # inaccurate cdf or ppf 'scipy.stats.levy_stable', 'scipy.special.sinc', # comes from numpy 'scipy.misc.who', # comes from numpy 'scipy.optimize.show_options', 'scipy.integrate.quad_explain', 'io.rst', # XXX: need to figure out how to deal w/ mat files ]) # these names are not required to be present in ALL despite being in # autosummary:: listing REFGUIDE_ALL_SKIPLIST = [ r'scipy\.sparse\.csgraph', r'scipy\.sparse\.linalg', r'scipy\.spatial\.distance', r'scipy\.linalg\.blas\.[sdczi].*', r'scipy\.linalg\.lapack\.[sdczi].*', ] # these names are not required to be in an autosummary:: listing # despite being in ALL REFGUIDE_AUTOSUMMARY_SKIPLIST = [ r'scipy\.special\..*_roots', # old aliases for scipy.special.*_roots r'scipy\.special\.jn', # alias for jv r'scipy\.ndimage\.sum', # alias for sum_labels r'scipy\.integrate\.simps', # alias for simpson r'scipy\.integrate\.trapz', # alias for trapezoid r'scipy\.integrate\.cumtrapz', # alias for cumulative_trapezoid r'scipy\.linalg\.solve_lyapunov', # deprecated name r'scipy\.stats\.contingency\.chi2_contingency', r'scipy\.stats\.contingency\.expected_freq', r'scipy\.stats\.contingency\.margins', r'scipy\.stats\.reciprocal', r'scipy\.stats\.trapz', # alias for trapezoid ] # deprecated windows in scipy.signal namespace for name in ('barthann', 'bartlett', 'blackmanharris', 'blackman', 'bohman', 'boxcar', 'chebwin', 'cosine', 'exponential', 'flattop', 'gaussian', 'general_gaussian', 'hamming', 'hann', 'hanning', 'kaiser', 'nuttall', 'parzen', 'triang', 'tukey'): REFGUIDE_AUTOSUMMARY_SKIPLIST.append(r'scipy\.signal\.' + name) HAVE_MATPLOTLIB = False def short_path(path, cwd=None): """ Return relative or absolute path name, whichever is shortest. """ if not isinstance(path, str): return path if cwd is None: cwd = os.getcwd() abspath = os.path.abspath(path) relpath = os.path.relpath(path, cwd) if len(abspath) <= len(relpath): return abspath return relpath def find_names(module, names_dict): # Refguide entries: # # - 3 spaces followed by function name, and maybe some spaces, some # dashes, and an explanation; only function names listed in # refguide are formatted like this (mostly, there may be some false # positives) # # - special directives, such as data and function # # - (scipy.constants only): quoted list # patterns = [ r"^\s\s\s([a-z_0-9A-Z]+)(\s+-+.*)?$", r"^\.\. (?:data|function)::\s*([a-z_0-9A-Z]+)\s*$" ] if module.__name__ == 'scipy.constants': patterns += ["^``([a-z_0-9A-Z]+)``"] patterns = [re.compile(pattern) for pattern in patterns] module_name = module.__name__ for line in module.__doc__.splitlines(): res = re.search(r"^\s*\.\. (?:currentmodule|module):: ([a-z0-9A-Z_.]+)\s*$", line) if res: module_name = res.group(1) continue for pattern in patterns: res = re.match(pattern, line) if res is not None: name = res.group(1) entry = '.'.join([module_name, name]) names_dict.setdefault(module_name, set()).add(name) break def get_all_dict(module): """Return a copy of the __all__ dict with irrelevant items removed.""" if hasattr(module, "__all__"): all_dict = copy.deepcopy(module.__all__) else: all_dict = copy.deepcopy(dir(module)) all_dict = [name for name in all_dict if not name.startswith("_")] for name in ['absolute_import', 'division', 'print_function']: try: all_dict.remove(name) except ValueError: pass # Modules are almost always private; real submodules need a separate # run of refguide_check. all_dict = [name for name in all_dict if not inspect.ismodule(getattr(module, name, None))] deprecated = [] not_deprecated = [] for name in all_dict: f = getattr(module, name, None) if callable(f) and is_deprecated(f): deprecated.append(name) else: not_deprecated.append(name) others = set(dir(module)).difference(set(deprecated)).difference(set(not_deprecated)) return not_deprecated, deprecated, others def compare(all_dict, others, names, module_name): """Return sets of objects only in __all__, refguide, or completely missing.""" only_all = set() for name in all_dict: if name not in names: for pat in REFGUIDE_AUTOSUMMARY_SKIPLIST: if re.match(pat, module_name + '.' + name): break else: only_all.add(name) only_ref = set() missing = set() for name in names: if name not in all_dict: for pat in REFGUIDE_ALL_SKIPLIST: if re.match(pat, module_name + '.' + name): if name not in others: missing.add(name) break else: only_ref.add(name) return only_all, only_ref, missing def is_deprecated(f): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("error") try: f(**{"not a kwarg":None}) except DeprecationWarning: return True except Exception: pass return False def check_items(all_dict, names, deprecated, others, module_name, dots=True): num_all = len(all_dict) num_ref = len(names) output = "" output += "Non-deprecated objects in __all__: %i\n" % num_all output += "Objects in refguide: %i\n\n" % num_ref only_all, only_ref, missing = compare(all_dict, others, names, module_name) dep_in_ref = only_ref.intersection(deprecated) only_ref = only_ref.difference(deprecated) if len(dep_in_ref) > 0: output += "Deprecated objects in refguide::\n\n" for name in sorted(deprecated): output += " " + name + "\n" if len(only_all) == len(only_ref) == len(missing) == 0: if dots: output_dot('.') return [(None, True, output)] else: if len(only_all) > 0: output += "ERROR: objects in %s.__all__ but not in refguide::\n\n" % module_name for name in sorted(only_all): output += " " + name + "\n" output += "\nThis issue can be fixed by adding these objects to\n" output += "the function listing in __init__.py for this module\n" if len(only_ref) > 0: output += "ERROR: objects in refguide but not in %s.__all__::\n\n" % module_name for name in sorted(only_ref): output += " " + name + "\n" output += "\nThis issue should likely be fixed by removing these objects\n" output += "from the function listing in __init__.py for this module\n" output += "or adding them to __all__.\n" if len(missing) > 0: output += "ERROR: missing objects::\n\n" for name in sorted(missing): output += " " + name + "\n" if dots: output_dot('F') return [(None, False, output)] def validate_rst_syntax(text, name, dots=True): if text is None: if dots: output_dot('E') return False, "ERROR: %s: no documentation" % (name,) ok_unknown_items = set([ 'mod', 'currentmodule', 'autosummary', 'data', 'obj', 'versionadded', 'versionchanged', 'module', 'class', 'meth', 'ref', 'func', 'toctree', 'moduleauthor', 'deprecated', 'sectionauthor', 'codeauthor', 'eq', 'doi', 'DOI', 'arXiv', 'arxiv' ]) # Run through docutils error_stream = io.StringIO() def resolve(name, is_label=False): return ("http://foo", name) token = '<RST-VALIDATE-SYNTAX-CHECK>' docutils.core.publish_doctree( text, token, settings_overrides = dict(halt_level=5, traceback=True, default_reference_context='title-reference', default_role='emphasis', link_base='', resolve_name=resolve, stylesheet_path='', raw_enabled=0, file_insertion_enabled=0, warning_stream=error_stream)) # Print errors, disregarding unimportant ones error_msg = error_stream.getvalue() errors = error_msg.split(token) success = True output = "" for error in errors: lines = error.splitlines() if not lines: continue m = re.match(r'.*Unknown (?:interpreted text role|directive type) "(.*)".*$', lines[0]) if m: if m.group(1) in ok_unknown_items: continue m = re.match(r'.*Error in "math" directive:.*unknown option: "label"', " ".join(lines), re.S) if m: continue output += name + lines[0] + "::\n " + "\n ".join(lines[1:]).rstrip() + "\n" success = False if not success: output += " " + "-"*72 + "\n" for lineno, line in enumerate(text.splitlines()): output += " %-4d %s\n" % (lineno+1, line) output += " " + "-"*72 + "\n\n" if dots: output_dot('.' if success else 'F') return success, output def output_dot(msg='.', stream=sys.stderr): stream.write(msg) stream.flush() def check_rest(module, names, dots=True): """ Check reStructuredText formatting of docstrings Returns: [(name, success_flag, output), ...] """ try: skip_types = (dict, str, unicode, float, int) except NameError: # python 3 skip_types = (dict, str, float, int) results = [] if module.__name__[6:] not in OTHER_MODULE_DOCS: results += [(module.__name__,) + validate_rst_syntax(inspect.getdoc(module), module.__name__, dots=dots)] for name in names: full_name = module.__name__ + '.' + name obj = getattr(module, name, None) if obj is None: results.append((full_name, False, "%s has no docstring" % (full_name,))) continue elif isinstance(obj, skip_types): continue if inspect.ismodule(obj): text = inspect.getdoc(obj) else: try: text = str(get_doc_object(obj)) except Exception: import traceback results.append((full_name, False, "Error in docstring format!\n" + traceback.format_exc())) continue m = re.search("([\x00-\x09\x0b-\x1f])", text) if m: msg = ("Docstring contains a non-printable character %r! " "Maybe forgot r\"\"\"?" % (m.group(1),)) results.append((full_name, False, msg)) continue try: src_file = short_path(inspect.getsourcefile(obj)) except TypeError: src_file = None if src_file: file_full_name = src_file + ':' + full_name else: file_full_name = full_name results.append((full_name,) + validate_rst_syntax(text, file_full_name, dots=dots)) return results ### Doctest helpers #### # the namespace to run examples in DEFAULT_NAMESPACE = {'np': np} # the namespace to do checks in CHECK_NAMESPACE = { 'np': np, 'assert_allclose': np.testing.assert_allclose, 'assert_equal': np.testing.assert_equal, # recognize numpy repr's 'array': np.array, 'matrix': np.matrix, 'int64': np.int64, 'uint64': np.uint64, 'int8': np.int8, 'int32': np.int32, 'float32': np.float32, 'float64': np.float64, 'dtype': np.dtype, 'nan': np.nan, 'NaN': np.nan, 'inf': np.inf, 'Inf': np.inf,} class DTRunner(doctest.DocTestRunner): DIVIDER = "\n" def __init__(self, item_name, checker=None, verbose=None, optionflags=0): self._item_name = item_name self._had_unexpected_error = False doctest.DocTestRunner.__init__(self, checker=checker, verbose=verbose, optionflags=optionflags) def _report_item_name(self, out, new_line=False): if self._item_name is not None: if new_line: out("\n") self._item_name = None def report_start(self, out, test, example): self._checker._source = example.source return doctest.DocTestRunner.report_start(self, out, test, example) def report_success(self, out, test, example, got): if self._verbose: self._report_item_name(out, new_line=True) return doctest.DocTestRunner.report_success(self, out, test, example, got) def report_unexpected_exception(self, out, test, example, exc_info): # Ignore name errors after failing due to an unexpected exception exception_type = exc_info[0] if self._had_unexpected_error and exception_type is NameError: return self._had_unexpected_error = True self._report_item_name(out) return super().report_unexpected_exception( out, test, example, exc_info) def report_failure(self, out, test, example, got): self._report_item_name(out) return doctest.DocTestRunner.report_failure(self, out, test, example, got) class Checker(doctest.OutputChecker): obj_pattern = re.compile(r'at 0x[0-9a-fA-F]+>') vanilla = doctest.OutputChecker() rndm_markers = {'# random', '# Random', '#random', '#Random', "# may vary"} stopwords = {'plt.', '.hist', '.show', '.ylim', '.subplot(', 'set_title', 'imshow', 'plt.show', '.axis(', '.plot(', '.bar(', '.title', '.ylabel', '.xlabel', 'set_ylim', 'set_xlim', '# reformatted', '.set_xlabel(', '.set_ylabel(', '.set_zlabel(', '.set(xlim=', '.set(ylim=', '.set(xlabel=', '.set(ylabel='} def __init__(self, parse_namedtuples=True, ns=None, atol=1e-8, rtol=1e-2): self.parse_namedtuples = parse_namedtuples self.atol, self.rtol = atol, rtol if ns is None: self.ns = dict(CHECK_NAMESPACE) else: self.ns = ns def check_output(self, want, got, optionflags): # cut it short if they are equal if want == got: return True # skip stopwords in source if any(word in self._source for word in self.stopwords): return True # skip random stuff if any(word in want for word in self.rndm_markers): return True # skip function/object addresses if self.obj_pattern.search(got): return True # ignore comments (e.g. signal.freqresp) if want.lstrip().startswith("#"): return True # try the standard doctest try: if self.vanilla.check_output(want, got, optionflags): return True except Exception: pass # OK then, convert strings to objects try: a_want = eval(want, dict(self.ns)) a_got = eval(got, dict(self.ns)) except Exception: # Maybe we're printing a numpy array? This produces invalid python # code: `print(np.arange(3))` produces "[0 1 2]" w/o commas between # values. So, reinsert commas and retry. # TODO: handle (1) abberivation (`print(np.arange(10000))`), and # (2) n-dim arrays with n > 1 s_want = want.strip() s_got = got.strip() cond = (s_want.startswith("[") and s_want.endswith("]") and s_got.startswith("[") and s_got.endswith("]")) if cond: s_want = ", ".join(s_want[1:-1].split()) s_got = ", ".join(s_got[1:-1].split()) return self.check_output(s_want, s_got, optionflags) if not self.parse_namedtuples: return False # suppose that "want" is a tuple, and "got" is smth like # MoodResult(statistic=10, pvalue=0.1). # Then convert the latter to the tuple (10, 0.1), # and then compare the tuples. try: num = len(a_want) regex = (r'[\w\d_]+\(' + ', '.join([r'[\w\d_]+=(.+)']*num) + r'\)') grp = re.findall(regex, got.replace('\n', ' ')) if len(grp) > 1: # no more than one for now return False # fold it back to a tuple got_again = '(' + ', '.join(grp[0]) + ')' return self.check_output(want, got_again, optionflags) except Exception: return False # ... and defer to numpy try: return self._do_check(a_want, a_got) except Exception: # heterog tuple, eg (1, np.array([1., 2.])) try: return all(self._do_check(w, g) for w, g in zip(a_want, a_got)) except (TypeError, ValueError): return False def _do_check(self, want, got): # This should be done exactly as written to correctly handle all of # numpy-comparable objects, strings, and heterogeneous tuples try: if want == got: return True except Exception: pass return np.allclose(want, got, atol=self.atol, rtol=self.rtol) def _run_doctests(tests, full_name, verbose, doctest_warnings): """Run modified doctests for the set of `tests`. Returns: list of [(success_flag, output), ...] """ flags = NORMALIZE_WHITESPACE | ELLIPSIS | IGNORE_EXCEPTION_DETAIL runner = DTRunner(full_name, checker=Checker(), optionflags=flags, verbose=verbose) output = io.StringIO(newline='') success = True # Redirect stderr to the stdout or output tmp_stderr = sys.stdout if doctest_warnings else output from scipy._lib._util import _fixed_default_rng @contextmanager def temp_cwd(): cwd = os.getcwd() tmpdir = tempfile.mkdtemp() try: os.chdir(tmpdir) yield tmpdir finally: os.chdir(cwd) shutil.rmtree(tmpdir) # Run tests, trying to restore global state afterward cwd = os.getcwd() with np.errstate(), np.printoptions(), temp_cwd(), \ redirect_stderr(tmp_stderr), \ _fixed_default_rng(): # try to ensure random seed is NOT reproducible np.random.seed(None) for t in tests: t.filename = short_path(t.filename, cwd) fails, successes = runner.run(t, out=output.write) if fails > 0: success = False output.seek(0) return success, output.read() def check_doctests(module, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in docstrings of the module's public symbols. Returns: list of [(item_name, success_flag, output), ...] """ if ns is None: ns = dict(DEFAULT_NAMESPACE) # Loop over non-deprecated items results = [] for name in get_all_dict(module)[0]: full_name = module.__name__ + '.' + name if full_name in DOCTEST_SKIPLIST: continue try: obj = getattr(module, name) except AttributeError: import traceback results.append((full_name, False, "Missing item!\n" + traceback.format_exc())) continue finder = doctest.DocTestFinder() try: tests = finder.find(obj, name, globs=dict(ns)) except Exception: import traceback results.append((full_name, False, "Failed to get doctests!\n" + traceback.format_exc())) continue success, output = _run_doctests(tests, full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def check_doctests_testfile(fname, verbose, ns=None, dots=True, doctest_warnings=False): """Check code in a text file. Mimic `check_doctests` above, differing mostly in test discovery. (which is borrowed from stdlib's doctest.testfile here, https://github.com/python-git/python/blob/master/Lib/doctest.py) Returns: list of [(item_name, success_flag, output), ...] Notes ----- refguide can be signalled to skip testing code by adding ``#doctest: +SKIP`` to the end of the line. If the output varies or is random, add ``# may vary`` or ``# random`` to the comment. for example >>> plt.plot(...) # doctest: +SKIP >>> random.randint(0,10) 5 # random We also try to weed out pseudocode: * We maintain a list of exceptions which signal pseudocode, * We split the text file into "blocks" of code separated by empty lines and/or intervening text. * If a block contains a marker, the whole block is then assumed to be pseudocode. It is then not being doctested. The rationale is that typically, the text looks like this: blah <BLANKLINE> >>> from numpy import some_module # pseudocode! >>> func = some_module.some_function >>> func(42) # still pseudocode 146 <BLANKLINE> blah <BLANKLINE> >>> 2 + 3 # real code, doctest it 5 """ results = [] if ns is None: ns = dict(DEFAULT_NAMESPACE) _, short_name = os.path.split(fname) if short_name in DOCTEST_SKIPLIST: return results full_name = fname with open(fname, encoding='utf-8') as f: text = f.read() PSEUDOCODE = set(['some_function', 'some_module', 'import example', 'ctypes.CDLL', # likely need compiling, skip it 'integrate.nquad(func,' # ctypes integrate tutotial ]) # split the text into "blocks" and try to detect and omit pseudocode blocks. parser = doctest.DocTestParser() good_parts = [] for part in text.split('\n\n'): tests = parser.get_doctest(part, ns, fname, fname, 0) if any(word in ex.source for word in PSEUDOCODE for ex in tests.examples): # omit it pass else: # `part` looks like a good code, let's doctest it good_parts += [part] # Reassemble the good bits and doctest them: good_text = '\n\n'.join(good_parts) tests = parser.get_doctest(good_text, ns, fname, fname, 0) success, output = _run_doctests([tests], full_name, verbose, doctest_warnings) if dots: output_dot('.' if success else 'F') results.append((full_name, success, output)) if HAVE_MATPLOTLIB: import matplotlib.pyplot as plt plt.close('all') return results def init_matplotlib(): global HAVE_MATPLOTLIB try: import matplotlib matplotlib.use('Agg') HAVE_MATPLOTLIB = True except ImportError: HAVE_MATPLOTLIB = False def main(argv): parser = ArgumentParser(usage=__doc__.lstrip()) parser.add_argument("module_names", metavar="SUBMODULES", default=[], nargs='*', help="Submodules to check (default: all public)") parser.add_argument("--doctests", action="store_true", help="Run also doctests") parser.add_argument("-v", "--verbose", action="count", default=0) parser.add_argument("--doctest-warnings", action="store_true", help="Enforce warning checking for doctests") parser.add_argument("--skip-tutorial", action="store_true", help="Skip running doctests in the tutorial.") args = parser.parse_args(argv) modules = [] names_dict = {} if args.module_names: args.skip_tutorial = True else: args.module_names = list(PUBLIC_SUBMODULES) os.environ['SCIPY_PIL_IMAGE_VIEWER'] = 'true' module_names = list(args.module_names) for name in list(module_names): if name in OTHER_MODULE_DOCS: name = OTHER_MODULE_DOCS[name] if name not in module_names: module_names.append(name) for submodule_name in module_names: module_name = BASE_MODULE + '.' + submodule_name __import__(module_name) module = sys.modules[module_name] if submodule_name not in OTHER_MODULE_DOCS: find_names(module, names_dict) if submodule_name in args.module_names: modules.append(module) dots = True success = True results = [] print("Running checks for %d modules:" % (len(modules),)) if args.doctests or not args.skip_tutorial: init_matplotlib() for module in modules: if dots: if module is not modules[0]: sys.stderr.write(' ') sys.stderr.write(module.__name__ + ' ') sys.stderr.flush() all_dict, deprecated, others = get_all_dict(module) names = names_dict.get(module.__name__, set()) mod_results = [] mod_results += check_items(all_dict, names, deprecated, others, module.__name__) mod_results += check_rest(module, set(names).difference(deprecated), dots=dots) if args.doctests: mod_results += check_doctests(module, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) for v in mod_results: assert isinstance(v, tuple), v results.append((module, mod_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() if not args.skip_tutorial: base_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), '..') tut_path = os.path.join(base_dir, 'doc', 'source', 'tutorial', '*.rst') print('\nChecking tutorial files at %s:' % os.path.relpath(tut_path, os.getcwd())) for filename in sorted(glob.glob(tut_path)): if dots: sys.stderr.write('\n') sys.stderr.write(os.path.split(filename)[1] + ' ') sys.stderr.flush() tut_results = check_doctests_testfile(filename, (args.verbose >= 2), dots=dots, doctest_warnings=args.doctest_warnings) def scratch(): pass # stub out a "module", see below scratch.__name__ = filename results.append((scratch, tut_results)) if dots: sys.stderr.write("\n") sys.stderr.flush() # Report results all_success = True for module, mod_results in results: success = all(x[1] for x in mod_results) all_success = all_success and success if success and args.verbose == 0: continue print("") print("=" * len(module.__name__)) print(module.__name__) print("=" * len(module.__name__)) print("") for name, success, output in mod_results: if name is None: if not success or args.verbose >= 1: print(output.strip()) print("") elif not success or (args.verbose >= 2 and output.strip()): print(name) print("-"*len(name)) print("") print(output.strip()) print("") if all_success: print("\nOK: refguide and doctests checks passed!") sys.exit(0) else: print("\nERROR: refguide or doctests have errors") sys.exit(1) if __name__ == '__main__': main(argv=sys.argv[1:])
bsd-3-clause
cgre-aachen/gempy
examples/tutorials/ch5_probabilistic_modeling_DEP/ch5_2_introduction_pymc3.py
1
4389
""" 5 2 - Introduction PyMC3. ========================= """ # %% # Importing GemPy import gempy as gp # Importing auxiliary libraries import os import numpy as np import matplotlib.pyplot as plt import pymc3 as pm import arviz as az from gempy.bayesian import plot_posterior as pp from importlib import reload from matplotlib.ticker import StrMethodFormatter # %% # Model definition # ---------------- # # %% # This is to make it work in sphinx gallery cwd = os.getcwd() if not 'examples' in cwd: path_dir = os.getcwd()+'/examples/tutorials/ch5_probabilistic_modeling' else: path_dir = cwd # %% geo_model = gp.load_model(r'/2-layers', path=path_dir+'/2-layers', recompile=True) # %% geo_model.modify_surface_points(2, Z=1000) gp.compute_model(geo_model) # %% def plot_geo_setting_well(): device_loc = np.array([[6e3, 0, 3700]]) p2d = gp.plot_2d(geo_model, show_topography=True, legend=False) well_1 = 3.41e3 well_2 = 3.6e3 p2d.axes[0].scatter([3e3], [well_1], marker='^', s=400, c='#71a4b3', zorder=10) p2d.axes[0].scatter([9e3], [well_2], marker='^', s=400, c='#71a4b3', zorder=10) p2d.axes[0].scatter(device_loc[:, 0], device_loc[:, 2], marker='x', s=400, c='#DA8886', zorder=10) p2d.axes[0].vlines(3e3, .5e3, well_1, linewidth=4, color='gray') p2d.axes[0].vlines(9e3, .5e3, well_2, linewidth=4, color='gray') p2d.axes[0].vlines(3e3, .5e3, well_1) p2d.axes[0].vlines(9e3, .5e3, well_2) p2d.axes[0].set_xlim(2900, 3100) plt.savefig('well.svg') plt.show() # %% plot_geo_setting_well() # Thickness measurements # ---------------------- # %% y_obs = [2.12] y_obs_list = [2.12, 2.06, 2.08, 2.05, 2.08, 2.09, 2.19, 2.07, 2.16, 2.11, 2.13, 1.92] np.random.seed(4003) # %% # Normal-several points # ~~~~~~~~~~~~~~~~~~~~~ # .. image:: /../../_static/computational_graph1.png # # %% with pm.Model() as model: mu = pm.Normal('$\mu$', 2.08, .07) sigma = pm.Gamma('$\sigma$', 0.3, 3) y = pm.Normal('$y$', mu, sigma, observed=y_obs_list) # %% mu # %% sigma # %% y # %% # Sampling # -------- # # %% with model: prior = pm.sample_prior_predictive(1000) trace = pm.sample(1000, discard_tuned_samples=False, cores=1) post = pm.sample_posterior_predictive(trace) # %% data = az.from_pymc3(trace=trace, prior=prior, posterior_predictive=post) # %% az.plot_trace(data) plt.show() # %% # Raw observations: # ^^^^^^^^^^^^^^^^^ # # %% reload(pp) p = pp.PlotPosterior(data) p.create_figure(figsize=(9, 3), joyplot=False, marginal=False) p.plot_normal_likelihood('$\mu$', '$\sigma$', '$y$', iteration=-1, hide_bell=True) p.likelihood_axes.set_xlim(1.90, 2.2) p.likelihood_axes.xaxis.set_major_formatter(StrMethodFormatter('{x:,.2f}')) for tick in p.likelihood_axes.get_xticklabels(): tick.set_rotation(45) plt.show() # %% # Final inference # ^^^^^^^^^^^^^^^ # # %% reload(pp) p = pp.PlotPosterior(data) p.create_figure(figsize=(9, 3), joyplot=False, marginal=False) p.plot_normal_likelihood('$\mu$', '$\sigma$', '$y$', iteration=-1, hide_lines=True) p.likelihood_axes.set_xlim(1.70, 2.40) p.likelihood_axes.xaxis.set_major_formatter(StrMethodFormatter('{x:,.2f}')) for tick in p.likelihood_axes.get_xticklabels(): tick.set_rotation(45) plt.show() # %% # Joyplot # ~~~~~~~ # # %% # %matplotlib inline reload(pp) p = pp.PlotPosterior(data) p.create_figure(figsize=(9, 9), joyplot=True, marginal=False, likelihood=False, n_samples=31) p.plot_joy(('$\mu$', '$\sigma$'), '$y$', iteration=14) plt.show() # %% # Join probability # ~~~~~~~~~~~~~~~~ # # %% # sphinx_gallery_thumbnail_number = 6 reload(pp) p = pp.PlotPosterior(data) p.create_figure(figsize=(9, 5), joyplot=False, marginal=True, likelihood=True) p.plot_marginal(var_names=['$\mu$', '$\sigma$'], plot_trace=False, credible_interval=.93, kind='kde') p.plot_normal_likelihood('$\mu$', '$\sigma$', '$y$', iteration=-1, hide_lines=True) p.likelihood_axes.set_xlim(1.70, 2.40) plt.show() # %% # Full plot # ~~~~~~~~~ # # %% reload(pp) p = pp.PlotPosterior(data) p.create_figure(figsize=(9, 5), joyplot=True, marginal=True, likelihood=True, n_samples=11) p.plot_posterior(['$\mu$', '$\sigma$'], ['$\mu$', '$\sigma$'], '$y$', marginal_kwargs={'plot_trace': False, 'credible_interval': .93, 'kind': 'kde'}) plt.show()
lgpl-3.0
google-research/korvapuusti
listening_test_summer_2020/analysis/data_generation/distributions.py
1
4943
# Lint as: python3 """Sampling from a SN and a uniform distribution. Functionality to sample from a Skew Normal distribution and a continuous log uniform distribution. Copyright 2020 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math from typing import Tuple import matplotlib.pyplot as plt import numpy as np import scipy.stats def calculate_shift_scaling_skewnorm(desired_variance: int, desired_mean: int, alpha: int) -> Tuple[float, float]: """Calculates the shift and scale to get a desired mean and variance. Calculate the desired scaling and shifting parameters to get a desired mean and variance from the Skew Normal Distribution. I.e., if X ∼ SN(0, 1, alpha), and Y = scale * X + shift, what scale and shift do we need to get the desired mean and variance of Y ∼ SK(shift, scale, alpha) Derived from: https://en.wikipedia.org/wiki/Skew_normal_distribution Args: desired_variance: the variance we want our variable to have desired_mean: the mean we want our variable to have alpha: the skewness parameter of the SN distribution Returns: The shift and scale parameters. """ delta = (alpha / np.sqrt(1 + alpha**2)) scaling = np.sqrt(desired_variance / (1 - (2 * delta**2) / np.pi)) shift = desired_mean - scaling * delta * np.sqrt(2 / np.pi) return shift, scaling def plot_skewed_distribution(shift: float, scale: float, path: str, num_samples=1000, alpha=-4): """Plots the distribution SN(shift, scaling**2, alpha).""" _, ax = plt.subplots(1, 1) x = np.linspace( scipy.stats.skewnorm.ppf(0.01, alpha, loc=shift, scale=scale), scipy.stats.skewnorm.ppf(0.99, alpha, loc=shift, scale=scale), 100) ax.plot( x, scipy.stats.skewnorm.pdf(x, alpha, loc=shift, scale=scale), "r-", lw=5, alpha=0.6, label="skewnorm pdf") mean, var = scipy.stats.skewnorm.stats(alpha, loc=shift, scale=scale) plt.title("SN - mean %.2f, var. %.2f, " "std.dev. %.2f" % (mean, var, np.sqrt(var))) r = scipy.stats.skewnorm.rvs(alpha, loc=shift, scale=scale, size=num_samples) ax.hist(r, density=True, histtype="stepfilled", alpha=0.2) ax.legend(loc="best", frameon=False) plt.savefig(path) return def sample_skewed_distribution(shift: float, scale: float, alpha: int, num_samples: int) -> np.ndarray: """Samples from num_samples from X ∼ SN(loc, scale**2, alpha).""" return scipy.stats.skewnorm.rvs( alpha, loc=shift, scale=scale, size=num_samples) def calculate_shift_scaling_loguniform(desired_lowerbound: int, desired_upperbound: int, log_base: int) -> Tuple[float, float]: loc = math.log(desired_lowerbound, log_base) scale = math.log(desired_upperbound, log_base) - loc return loc, scale def plot_uniform_distribution(num_samples: int, shift: float, scale: float, path: str): """Plots the distribution U[shift, shift + scale].""" _, ax = plt.subplots(1, 1) x = np.linspace(scipy.stats.uniform.ppf(0.01, loc=shift, scale=scale), scipy.stats.uniform.ppf(0.99, loc=shift, scale=scale), 100) ax.plot(x, scipy.stats.uniform.pdf(x, loc=shift, scale=scale), "r-", lw=5, alpha=0.6, label="uniform pdf") mean, var = scipy.stats.uniform.stats(moments="mv", loc=shift, scale=scale) plt.title("U - mean %.2f, var. %.2f, " "std.dev. %.2f" % (mean, var, np.sqrt(var))) r = scipy.stats.uniform.rvs(size=num_samples, loc=shift, scale=scale) ax.hist(r, density=True, histtype="stepfilled", alpha=0.2) ax.legend(loc="best", frameon=False) plt.savefig(path) return def sample_log_distribution(num_samples: int, log_base: int, shift: float, scale: float) -> np.ndarray: """Samples from a log-uniform distribution by log-scaling a uniform dist.""" sampled_values = scipy.stats.uniform.rvs( size=num_samples, loc=shift, scale=scale) return log_base**sampled_values def sample_uniform_distribution(num_samples: int, a: int, b: int): """Samples num_samples times uniformly between a and b.""" loc = a scale = b - loc return scipy.stats.uniform.rvs(size=num_samples, loc=loc, scale=scale)
apache-2.0
mne-tools/mne-tools.github.io
0.11/_downloads/plot_find_eog_artifacts.py
19
1219
""" ================== Find EOG artifacts ================== Locate peaks of EOG to spot blinks and general EOG artifacts. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample print(__doc__) data_path = sample.data_path() ############################################################################### # Set parameters raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' # Setup for reading the raw data raw = io.Raw(raw_fname) event_id = 998 eog_events = mne.preprocessing.find_eog_events(raw, event_id) # Read epochs picks = mne.pick_types(raw.info, meg=False, eeg=False, stim=False, eog=True, exclude='bads') tmin, tmax = -0.2, 0.2 epochs = mne.Epochs(raw, eog_events, event_id, tmin, tmax, picks=picks) data = epochs.get_data() print("Number of detected EOG artifacts : %d" % len(data)) ############################################################################### # Plot EOG artifacts plt.plot(1e3 * epochs.times, np.squeeze(data).T) plt.xlabel('Times (ms)') plt.ylabel('EOG (muV)') plt.show()
bsd-3-clause
zfrenchee/pandas
asv_bench/benchmarks/indexing.py
1
9903
from .pandas_vb_common import * class Int64Indexing(object): goal_time = 0.2 def setup(self): self.s = Series(np.random.rand(1000000)) def time_getitem_scalar(self): self.s[800000] def time_getitem_slice(self): self.s[:800000] def time_getitem_list_like(self): self.s[[800000]] def time_getitem_array(self): self.s[np.arange(10000)] def time_getitem_lists(self): self.s[np.arange(10000).tolist()] def time_iloc_array(self): self.s.iloc[np.arange(10000)] def time_iloc_list_like(self): self.s.iloc[[800000]] def time_iloc_scalar(self): self.s.iloc[800000] def time_iloc_slice(self): self.s.iloc[:800000] def time_ix_array(self): self.s.ix[np.arange(10000)] def time_ix_list_like(self): self.s.ix[[800000]] def time_ix_scalar(self): self.s.ix[800000] def time_ix_slice(self): self.s.ix[:800000] def time_loc_array(self): self.s.loc[np.arange(10000)] def time_loc_list_like(self): self.s.loc[[800000]] def time_loc_scalar(self): self.s.loc[800000] def time_loc_slice(self): self.s.loc[:800000] class StringIndexing(object): goal_time = 0.2 def setup(self): self.index = tm.makeStringIndex(1000000) self.s = Series(np.random.rand(1000000), index=self.index) self.lbl = self.s.index[800000] def time_getitem_label_slice(self): self.s[:self.lbl] def time_getitem_pos_slice(self): self.s[:800000] def time_get_value(self): self.s.get_value(self.lbl) class DatetimeIndexing(object): goal_time = 0.2 def setup(self): tm.N = 1000 self.ts = tm.makeTimeSeries() self.dt = self.ts.index[500] def time_getitem_scalar(self): self.ts[self.dt] class DataFrameIndexing(object): goal_time = 0.2 def setup(self): self.index = tm.makeStringIndex(1000) self.columns = tm.makeStringIndex(30) self.df = DataFrame(np.random.randn(1000, 30), index=self.index, columns=self.columns) self.idx = self.index[100] self.col = self.columns[10] self.df2 = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D']) self.indexer = (self.df2['B'] > 0) self.obj_indexer = self.indexer.astype('O') # duptes self.idx_dupe = (np.array(range(30)) * 99) self.df3 = DataFrame({'A': ([0.1] * 1000), 'B': ([1] * 1000),}) self.df3 = concat([self.df3, (2 * self.df3), (3 * self.df3)]) self.df_big = DataFrame(dict(A=(['foo'] * 1000000))) def time_get_value(self): self.df.get_value(self.idx, self.col) def time_get_value_ix(self): self.df.ix[(self.idx, self.col)] def time_getitem_scalar(self): self.df[self.col][self.idx] def time_boolean_rows(self): self.df2[self.indexer] def time_boolean_rows_object(self): self.df2[self.obj_indexer] def time_iloc_dups(self): self.df3.iloc[self.idx_dupe] def time_loc_dups(self): self.df3.loc[self.idx_dupe] def time_iloc_big(self): self.df_big.iloc[:100, 0] class IndexingMethods(object): # GH 13166 goal_time = 0.2 def setup(self): a = np.arange(100000) self.ind = pd.Float64Index(a * 4.8000000418824129e-08) self.s = Series(np.random.rand(100000)) self.ts = Series(np.random.rand(100000), index=date_range('2011-01-01', freq='S', periods=100000)) self.indexer = ([True, False, True, True, False] * 20000) def time_get_loc_float(self): self.ind.get_loc(0) def time_take_dtindex(self): self.ts.take(self.indexer) def time_take_intindex(self): self.s.take(self.indexer) class MultiIndexing(object): goal_time = 0.2 def setup(self): self.mi = MultiIndex.from_tuples([(x, y) for x in range(1000) for y in range(1000)]) self.s = Series(np.random.randn(1000000), index=self.mi) self.df = DataFrame(self.s) # slicers np.random.seed(1234) self.idx = pd.IndexSlice self.n = 100000 self.mdt = pandas.DataFrame() self.mdt['A'] = np.random.choice(range(10000, 45000, 1000), self.n) self.mdt['B'] = np.random.choice(range(10, 400), self.n) self.mdt['C'] = np.random.choice(range(1, 150), self.n) self.mdt['D'] = np.random.choice(range(10000, 45000), self.n) self.mdt['x'] = np.random.choice(range(400), self.n) self.mdt['y'] = np.random.choice(range(25), self.n) self.test_A = 25000 self.test_B = 25 self.test_C = 40 self.test_D = 35000 self.eps_A = 5000 self.eps_B = 5 self.eps_C = 5 self.eps_D = 5000 self.mdt2 = self.mdt.set_index(['A', 'B', 'C', 'D']).sortlevel() self.miint = MultiIndex.from_product( [np.arange(1000), np.arange(1000)], names=['one', 'two']) import string self.mi_large = MultiIndex.from_product( [np.arange(1000), np.arange(20), list(string.ascii_letters)], names=['one', 'two', 'three']) self.mi_med = MultiIndex.from_product( [np.arange(1000), np.arange(10), list('A')], names=['one', 'two', 'three']) self.mi_small = MultiIndex.from_product( [np.arange(100), list('A'), list('A')], names=['one', 'two', 'three']) rng = np.random.RandomState(4) size = 1 << 16 self.mi_unused_levels = pd.MultiIndex.from_arrays([ rng.randint(0, 1 << 13, size), rng.randint(0, 1 << 10, size)])[rng.rand(size) < 0.1] def time_series_xs_mi_ix(self): self.s.ix[999] def time_frame_xs_mi_ix(self): self.df.ix[999] def time_multiindex_slicers(self): self.mdt2.loc[self.idx[ (self.test_A - self.eps_A):(self.test_A + self.eps_A), (self.test_B - self.eps_B):(self.test_B + self.eps_B), (self.test_C - self.eps_C):(self.test_C + self.eps_C), (self.test_D - self.eps_D):(self.test_D + self.eps_D)], :] def time_multiindex_get_indexer(self): self.miint.get_indexer( np.array([(0, 10), (0, 11), (0, 12), (0, 13), (0, 14), (0, 15), (0, 16), (0, 17), (0, 18), (0, 19)], dtype=object)) def time_multiindex_large_get_loc(self): self.mi_large.get_loc((999, 19, 'Z')) def time_multiindex_large_get_loc_warm(self): for _ in range(1000): self.mi_large.get_loc((999, 19, 'Z')) def time_multiindex_med_get_loc(self): self.mi_med.get_loc((999, 9, 'A')) def time_multiindex_med_get_loc_warm(self): for _ in range(1000): self.mi_med.get_loc((999, 9, 'A')) def time_multiindex_string_get_loc(self): self.mi_small.get_loc((99, 'A', 'A')) def time_multiindex_small_get_loc_warm(self): for _ in range(1000): self.mi_small.get_loc((99, 'A', 'A')) def time_is_monotonic(self): self.miint.is_monotonic def time_remove_unused_levels(self): self.mi_unused_levels.remove_unused_levels() class IntervalIndexing(object): goal_time = 0.2 def setup(self): self.monotonic = Series(np.arange(1000000), index=IntervalIndex.from_breaks(np.arange(1000001))) def time_getitem_scalar(self): self.monotonic[80000] def time_loc_scalar(self): self.monotonic.loc[80000] def time_getitem_list(self): self.monotonic[80000:] def time_loc_list(self): self.monotonic.loc[80000:] class PanelIndexing(object): goal_time = 0.2 def setup(self): self.p = Panel(np.random.randn(100, 100, 100)) self.inds = range(0, 100, 10) def time_subset(self): self.p.ix[(self.inds, self.inds, self.inds)] class IndexerLookup(object): goal_time = 0.2 def setup(self): self.s = Series(range(10)) def time_lookup_iloc(self): self.s.iloc def time_lookup_ix(self): self.s.ix def time_lookup_loc(self): self.s.loc class BooleanRowSelect(object): goal_time = 0.2 def setup(self): N = 10000 np.random.seed(1234) self.df = DataFrame(np.random.randn(N, 100)) self.bool_arr = np.zeros(N, dtype=bool) self.bool_arr[:1000] = True def time_frame_boolean_row_select(self): self.df[self.bool_arr] class GetItemSingleColumn(object): goal_time = 0.2 def setup(self): np.random.seed(1234) self.df2 = DataFrame(np.random.randn(3000, 1), columns=['A']) self.df3 = DataFrame(np.random.randn(3000, 1)) def time_frame_getitem_single_column_label(self): self.df2['A'] def time_frame_getitem_single_column_int(self): self.df3[0] class AssignTimeseriesIndex(object): goal_time = 0.2 def setup(self): N = 100000 np.random.seed(1234) dx = date_range('1/1/2000', periods=N, freq='H') self.df = DataFrame(np.random.randn(N, 1), columns=['A'], index=idx) def time_frame_assign_timeseries_index(self): self.df['date'] = self.df.index class InsertColumns(object): goal_time = 0.2 def setup(self): self.N = 10**3 self.df = DataFrame(index=range(N)) def time_insert(self): np.random.seed(1234) for i in range(100): self.df.insert(0, i, np.random.randn(self.N)) def time_assign_with_setitem(self): np.random.seed(1234) for i in range(100): self.df[i] = np.random.randn(self.N)
bsd-3-clause
jinzishuai/learn2deeplearn
deeplearning.ai/C4.CNN/week2_DeepModelCaseStudy/hw/KerasTutorial/happyHouse.py
1
14323
#!/usr/bin/python3 # coding: utf-8 # # Keras tutorial - the Happy House # # Welcome to the first assignment of week 2. In this assignment, you will: # 1. Learn to use Keras, a high-level neural networks API (programming framework), written in Python and capable of running on top of several lower-level frameworks including TensorFlow and CNTK. # 2. See how you can in a couple of hours build a deep learning algorithm. # # Why are we using Keras? Keras was developed to enable deep learning engineers to build and experiment with different models very quickly. Just as TensorFlow is a higher-level framework than Python, Keras is an even higher-level framework and provides additional abstractions. Being able to go from idea to result with the least possible delay is key to finding good models. However, Keras is more restrictive than the lower-level frameworks, so there are some very complex models that you can implement in TensorFlow but not (without more difficulty) in Keras. That being said, Keras will work fine for many common models. # # In this exercise, you'll work on the "Happy House" problem, which we'll explain below. Let's load the required packages and solve the problem of the Happy House! # In[1]: import numpy as np from keras import layers from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D from keras.models import Model from keras.preprocessing import image from keras.utils import layer_utils from keras.utils.data_utils import get_file from keras.applications.imagenet_utils import preprocess_input import pydot from IPython.display import SVG from keras.utils.vis_utils import model_to_dot from keras.utils import plot_model from kt_utils import * import keras.backend as K K.set_image_data_format('channels_last') import matplotlib.pyplot as plt from matplotlib.pyplot import imshow #get_ipython().magic('matplotlib inline') # **Note**: As you can see, we've imported a lot of functions from Keras. You can use them easily just by calling them directly in the notebook. Ex: `X = Input(...)` or `X = ZeroPadding2D(...)`. # ## 1 - The Happy House # # For your next vacation, you decided to spend a week with five of your friends from school. It is a very convenient house with many things to do nearby. But the most important benefit is that everybody has commited to be happy when they are in the house. So anyone wanting to enter the house must prove their current state of happiness. # # <img src="images/happy-house.jpg" style="width:350px;height:270px;"> # <caption><center> <u> <font color='purple'> **Figure 1** </u><font color='purple'> : **the Happy House**</center></caption> # # # As a deep learning expert, to make sure the "Happy" rule is strictly applied, you are going to build an algorithm which that uses pictures from the front door camera to check if the person is happy or not. The door should open only if the person is happy. # # You have gathered pictures of your friends and yourself, taken by the front-door camera. The dataset is labbeled. # # <img src="images/house-members.png" style="width:550px;height:250px;"> # # Run the following code to normalize the dataset and learn about its shapes. # In[2]: X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Reshape Y_train = Y_train_orig.T Y_test = Y_test_orig.T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape)) # **Details of the "Happy" dataset**: # - Images are of shape (64,64,3) # - Training: 600 pictures # - Test: 150 pictures # # It is now time to solve the "Happy" Challenge. # ## 2 - Building a model in Keras # # Keras is very good for rapid prototyping. In just a short time you will be able to build a model that achieves outstanding results. # # Here is an example of a model in Keras: # # ```python # def model(input_shape): # # Define the input placeholder as a tensor with shape input_shape. Think of this as your input image! # X_input = Input(input_shape) # # # Zero-Padding: pads the border of X_input with zeroes # X = ZeroPadding2D((3, 3))(X_input) # # # CONV -> BN -> RELU Block applied to X # X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X) # X = BatchNormalization(axis = 3, name = 'bn0')(X) # X = Activation('relu')(X) # # # MAXPOOL # X = MaxPooling2D((2, 2), name='max_pool')(X) # # # FLATTEN X (means convert it to a vector) + FULLYCONNECTED # X = Flatten()(X) # X = Dense(1, activation='sigmoid', name='fc')(X) # # # Create model. This creates your Keras model instance, you'll use this instance to train/test the model. # model = Model(inputs = X_input, outputs = X, name='HappyModel') # # return model # ``` # # Note that Keras uses a different convention with variable names than we've previously used with numpy and TensorFlow. In particular, rather than creating and assigning a new variable on each step of forward propagation such as `X`, `Z1`, `A1`, `Z2`, `A2`, etc. for the computations for the different layers, in Keras code each line above just reassigns `X` to a new value using `X = ...`. In other words, during each step of forward propagation, we are just writing the latest value in the commputation into the same variable `X`. The only exception was `X_input`, which we kept separate and did not overwrite, since we needed it at the end to create the Keras model instance (`model = Model(inputs = X_input, ...)` above). # # **Exercise**: Implement a `HappyModel()`. This assignment is more open-ended than most. We suggest that you start by implementing a model using the architecture we suggest, and run through the rest of this assignment using that as your initial model. But after that, come back and take initiative to try out other model architectures. For example, you might take inspiration from the model above, but then vary the network architecture and hyperparameters however you wish. You can also use other functions such as `AveragePooling2D()`, `GlobalMaxPooling2D()`, `Dropout()`. # # **Note**: You have to be careful with your data's shapes. Use what you've learned in the videos to make sure your convolutional, pooling and fully-connected layers are adapted to the volumes you're applying it to. # In[3]: # GRADED FUNCTION: HappyModel def HappyModel(input_shape): """ Implementation of the HappyModel. Arguments: input_shape -- shape of the images of the dataset Returns: model -- a Model() instance in Keras """ ### START CODE HERE ### # Feel free to use the suggested outline in the text above to get started, and run through the whole # exercise (including the later portions of this notebook) once. The come back also try out other # network architectures as well. # Define the input placeholder as a tensor with shape input_shape. Think of this as your input image! X_input = Input(input_shape) # Zero-Padding: pads the border of X_input with zeroes X = ZeroPadding2D((3, 3))(X_input) # CONV -> BN -> RELU Block applied to X X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X) X = BatchNormalization(axis = 3, name = 'bn0')(X) X = Activation('relu')(X) # MAXPOOL X = MaxPooling2D((2, 2), name='max_pool')(X) # FLATTEN X (means convert it to a vector) + FULLYCONNECTED X = Flatten()(X) X = Dense(1, activation='sigmoid', name='fc')(X) # Create model. This creates your Keras model instance, you'll use this instance to train/test the model. model = Model(inputs = X_input, outputs = X, name='HappyModel') ### END CODE HERE ### return model # You have now built a function to describe your model. To train and test this model, there are four steps in Keras: # 1. Create the model by calling the function above # 2. Compile the model by calling `model.compile(optimizer = "...", loss = "...", metrics = ["accuracy"])` # 3. Train the model on train data by calling `model.fit(x = ..., y = ..., epochs = ..., batch_size = ...)` # 4. Test the model on test data by calling `model.evaluate(x = ..., y = ...)` # # If you want to know more about `model.compile()`, `model.fit()`, `model.evaluate()` and their arguments, refer to the official [Keras documentation](https://keras.io/models/model/). # # **Exercise**: Implement step 1, i.e. create the model. # In[5]: ### START CODE HERE ### (1 line) happyModel = HappyModel(X_train[0,:,:,:].shape) ### END CODE HERE ### # **Exercise**: Implement step 2, i.e. compile the model to configure the learning process. Choose the 3 arguments of `compile()` wisely. Hint: the Happy Challenge is a binary classification problem. # In[7]: ### START CODE HERE ### (1 line) happyModel.compile(optimizer = "Adam", loss = "binary_crossentropy", metrics = ["accuracy"]) ### END CODE HERE ### # **Exercise**: Implement step 3, i.e. train the model. Choose the number of epochs and the batch size. # In[8]: ### START CODE HERE ### (1 line) happyModel.fit(x = X_train, y = Y_train, epochs = 10, batch_size = 20) ### END CODE HERE ### # Note that if you run `fit()` again, the `model` will continue to train with the parameters it has already learnt instead of reinitializing them. # # **Exercise**: Implement step 4, i.e. test/evaluate the model. # In[9]: ### START CODE HERE ### (1 line) preds = happyModel.evaluate(x = X_test, y = Y_test) ### END CODE HERE ### print() print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1])) # If your `happyModel()` function worked, you should have observed much better than random-guessing (50%) accuracy on the train and test sets. To pass this assignment, you have to get at least 75% accuracy. # # To give you a point of comparison, our model gets around **95% test accuracy in 40 epochs** (and 99% train accuracy) with a mini batch size of 16 and "adam" optimizer. But our model gets decent accuracy after just 2-5 epochs, so if you're comparing different models you can also train a variety of models on just a few epochs and see how they compare. # # If you have not yet achieved 75% accuracy, here're some things you can play around with to try to achieve it: # # - Try using blocks of CONV->BATCHNORM->RELU such as: # ```python # X = Conv2D(32, (3, 3), strides = (1, 1), name = 'conv0')(X) # X = BatchNormalization(axis = 3, name = 'bn0')(X) # X = Activation('relu')(X) # ``` # until your height and width dimensions are quite low and your number of channels quite large (≈32 for example). You are encoding useful information in a volume with a lot of channels. You can then flatten the volume and use a fully-connected layer. # - You can use MAXPOOL after such blocks. It will help you lower the dimension in height and width. # - Change your optimizer. We find Adam works well. # - If the model is struggling to run and you get memory issues, lower your batch_size (12 is usually a good compromise) # - Run on more epochs, until you see the train accuracy plateauing. # # Even if you have achieved 75% accuracy, please feel free to keep playing with your model to try to get even better results. # # **Note**: If you perform hyperparameter tuning on your model, the test set actually becomes a dev set, and your model might end up overfitting to the test (dev) set. But just for the purpose of this assignment, we won't worry about that here. # # ## 3 - Conclusion # # Congratulations, you have solved the Happy House challenge! # # Now, you just need to link this model to the front-door camera of your house. We unfortunately won't go into the details of how to do that here. # <font color='blue'> # **What we would like you to remember from this assignment:** # - Keras is a tool we recommend for rapid prototyping. It allows you to quickly try out different model architectures. Are there any applications of deep learning to your daily life that you'd like to implement using Keras? # - Remember how to code a model in Keras and the four steps leading to the evaluation of your model on the test set. Create->Compile->Fit/Train->Evaluate/Test. # ## 4 - Test with your own image (Optional) # # Congratulations on finishing this assignment. You can now take a picture of your face and see if you could enter the Happy House. To do that: # 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. # 2. Add your image to this Jupyter Notebook's directory, in the "images" folder # 3. Write your image's name in the following code # 4. Run the code and check if the algorithm is right (0 is unhappy, 1 is happy)! # # The training/test sets were quite similar; for example, all the pictures were taken against the same background (since a front door camera is always mounted in the same position). This makes the problem easier, but a model trained on this data may or may not work on your own data. But feel free to give it a try! # In[10]: ### START CODE HERE ### img_path = 'images/my_image.jpg' ### END CODE HERE ### img = image.load_img(img_path, target_size=(64, 64)) imshow(img) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print(happyModel.predict(x)) # ## 5 - Other useful functions in Keras (Optional) # # Two other basic features of Keras that you'll find useful are: # - `model.summary()`: prints the details of your layers in a table with the sizes of its inputs/outputs # - `plot_model()`: plots your graph in a nice layout. You can even save it as ".png" using SVG() if you'd like to share it on social media ;). It is saved in "File" then "Open..." in the upper bar of the notebook. # # Run the following code. # In[11]: happyModel.summary() # In[12]: plot_model(happyModel, to_file='HappyModel.png') SVG(model_to_dot(happyModel).create(prog='dot', format='svg')) # In[ ]:
gpl-3.0
csiu/promi2
code/plots.py
1
13523
#!/usr/bin/env python # Author: csiu # Created: 2015-04-24 import argparse from ConfigParser import SafeConfigParser import re import os import sys import pandas as pd import rpy2.robjects as robjects from rpy2.robjects.packages import importr from rpy2.robjects.lib import ggplot2 from rpy2.robjects import r from utils import get_value_from_keycolonvalue_list, ensure_dir import label as lb usage = """Generate plots (pie + histogram) with R via rpy2 Depends on: - pandas (python module) - rpy2 (python module) - ggplot2 (R package) """ def _check_labelling(infile, labelfile): ## simple check with open(infile) as f: for l in f: info = l.strip().split('\t')[8].split(';') label = get_value_from_keycolonvalue_list('mirna_label', info) if label == '': isLabelled = False else: isLabelled = True break if isLabelled: return infile else: print '## No labelling is found, proceed with labelling...' outfile = '%s.label' % infile lb.main(infile, labelfile, outfile) return outfile def _verify_valid_distance(infile): out_good = infile + '.validdistance' out_bad = infile + '.badpair' with open(out_bad, 'w') as outB: with open(out_good, 'w') as outG: with open(infile) as f: for l in f: l = l.strip().split('\t') info = l[8].split(';') d = get_value_from_keycolonvalue_list('distance', info) if d == 'NA': chrom = l[0] start = l[3] stop = l[4] strand = l[6] mirna = get_value_from_keycolonvalue_list('mirna_query', info) badpair = 'chr%s:%s..%s,%s\t%s' % (chrom, start, stop, strand, mirna) outB.write(badpair + '\n') else: outG.write('\t'.join(l) + '\n') if os.stat(out_bad).st_size != 0: print "## There are some bad positions in your input file:" print "## chromosome or strand differences between TSS and miRNA pair" print out_bad else: os.remove(out_bad) return out_good def _filterPredictionsByClass_reformat2gff(infile, outdir, keep='prom'): outfile = os.path.join(outdir, os.path.basename(infile)+'.filtered') with open(outfile, 'w') as out: with open(infile) as f: for l in f: l = l.strip().split('\t') classlabel = l[13] if classlabel == keep: newinfo = ';'.join([l[8], 'prior_prom:' + l[9], 'prior_back:' + l[10], 'prob_prom:' + l[11], 'prob_back:' + l[12], 'class:' + classlabel]) newline = '\t'.join(l[0:8] + [newinfo]) out.write(newline + '\n') return outfile def _read_dat(gff_infile): dat = {} n = 0 with open(gff_infile) as f: for l in f: n += 1 l = l.strip().split('\t') chrom = l[0] tstart = l[3] tstop = l[4] strand = l[6] tss = ','.join([chrom, tstart, tstop, strand]) info = l[8].split(';') mirbase_id = get_value_from_keycolonvalue_list('mirbase_id', info) mstart = get_value_from_keycolonvalue_list('mirna_start', info) mstop = get_value_from_keycolonvalue_list('mirna_start', info) label = get_value_from_keycolonvalue_list('mirna_label', info) if label == '': label = 'NA' mirna = ','.join([chrom, mstart, mstop, strand]) features = l[7].split(';') corr = get_value_from_keycolonvalue_list('corr', features) if get_value_from_keycolonvalue_list('mirna_prox', features) != 0: distance = get_value_from_keycolonvalue_list('distance', info) if distance == '': distance = 0 dat[n] = [tss, mirna, mirbase_id, label, distance, abs(float(distance)), corr] dat = pd.DataFrame.from_dict(dat, orient='index') dat.columns = ['tss', 'mirna', 'mirbase_id', 'label', 'Distance', 'distance', 'correlation'] return dat def _item_findClosestPartner(dat, item, ignoreCorr): df = dat[dat['label'] != 'NA'] ## remove invalid pairs xindex = [] for i in df[item].unique(): subm = df[df[item] == i] ## min distance submd = subm[subm['distance'] == subm['distance'].min()] if ignoreCorr: l = submd else: ## absmax correlation l = submd['correlation'].astype(float).abs() l = l[l == l.max()] xindex.append(l.index[0]) return dat[dat.index.isin(xindex)] def _plt_percountr(dat, independentpdf=False, fname='xpercount.pdf'): def _filt_dat(dat, item, getlabel=True): df = pd.DataFrame(dat[item].value_counts()) df.columns = ['count'] if getlabel: df['label'] = [list(dat[dat[item] == i]['label'])[0] for i in df.index] n = len(df) mx = max(df['count']) return df, n, mx dat = dat[dat['label'] != 'NA'] ## NUMBER OF MIRNA PER TSS df, n, mx = _filt_dat(dat, 'tss', False) df = {'count': robjects.IntVector(df['count'])} df = robjects.DataFrame(df) pt = ggplot2.ggplot(df) + \ ggplot2.geom_histogram(binwidth=1, origin=-.5, alpha=.5, position="identity") + \ ggplot2.xlim(-.5, mx+1) + \ ggplot2.aes_string(x='count') + \ ggplot2.ggtitle('TSS [Total = %s]' % n) + \ ggplot2.labs(x='Number of miRNA per TSS (max = %s)' % mx) pt_den = ggplot2.ggplot(df) + \ ggplot2.aes_string(x='count', y='..density..') + \ ggplot2.geom_density(binwidth=1, alpha=.5, origin=-.5) + \ ggplot2.geom_histogram(binwidth=1, alpha=.33, position='identity', origin=-.5) + \ ggplot2.ggtitle('TSS [Total = %s]' % n) + \ ggplot2.labs(x='Number of miRNA per TSS (max = %s)' % mx) ## NUMBER OF TSS PER MIRNA df, n, mx = _filt_dat(dat, 'mirna') df = {'count': robjects.IntVector(df['count']), 'label': robjects.StrVector(df['label']) } df = robjects.DataFrame(df) _pm = ggplot2.ggplot(df) + \ ggplot2.geom_histogram(binwidth=1, origin=-.5, alpha=.5, position="identity") + \ ggplot2.xlim(-.5, mx+1) + \ ggplot2.ggtitle('miRNA [Total = %s]' % n) _pm_den = ggplot2.ggplot(df) + \ ggplot2.geom_density(binwidth=1, alpha=.5, origin=-.5) + \ ggplot2.geom_histogram(binwidth=1, alpha=.33, position='identity', origin=-.5) + \ ggplot2.ggtitle('miRNA [Total = %s]' % n) ## not split by label pm = _pm + ggplot2.aes_string(x='count') pm_den = _pm_den + ggplot2.aes_string(x='count', y='..density..') ## split by label pms = _pm + ggplot2.aes_string(x='count', fill='label') pm_dens = _pm_den + ggplot2.aes_string(x='count', fill='label', y='..density..') ## add xlabelling (need to be added after aes_string) _xlab = ggplot2.labs(x='Number of TSS per miRNA (max = %s)' % mx) pm += _xlab pm_den += _xlab pms += _xlab pm_dens += _xlab if independentpdf: grdevices = importr('grDevices') grdevices.pdf(fname) pt.plot() pt_den.plot() pm.plot() pm_den.plot() pms.plot() pm_dens.plot() grdevices.dev_off() else: pt.plot() pt_den.plot() pm.plot() pm_den.plot() pms.plot() pm_dens.plot() return def _plt_distr(dat, col, title='', splitBy_pfill=True, pfill='label', independentpdf=False, fname='xdistr.pdf'): df = dat[dat[pfill] != 'NA'] ## remove invalid pairs n = len(df) df = {col: robjects.FloatVector(list(df[col])), pfill: robjects.StrVector(list(df[pfill]))} df = robjects.DataFrame(df) pp = ggplot2.ggplot(df) + \ ggplot2.ggtitle('%s [Total = %s]' % (title, n)) ## Plot1: counts if splitBy_pfill: p1 = pp + ggplot2.aes_string(x=col, fill=pfill) else: p1 = pp + ggplot2.aes_string(x=col) ## Plot2: density if splitBy_pfill: p2 = pp + ggplot2.aes_string(x=col, fill=pfill, y='..density..') else: p2 = pp + ggplot2.aes_string(x=col, y='..density..') p2 = p2 + ggplot2.geom_density(alpha=.5, origin=-500) if col == 'distance': p1 = p1 + \ ggplot2.geom_histogram(binwidth=1000, alpha=.5, position='identity', origin=-500) + \ ggplot2.xlim(-1000, 51000) p2 = p2 + \ ggplot2.geom_histogram(binwidth=1000, alpha=.33, position='identity', origin=-500) + \ ggplot2.xlim(-1000, 51000) else: p1 = p1 + \ ggplot2.geom_histogram(alpha=.5, position='identity') p2 = p2 + \ ggplot2.geom_histogram(alpha=.33, position='identity') if col == 'correlation': p1 = p1 + ggplot2.xlim(-1.1, 1.1) p2 = p2 + ggplot2.xlim(-1.1, 1.1) if independentpdf: grdevices = importr('grDevices') grdevices.pdf(file=fname) p1.plot() p2.plot() grdevices.dev_off() else: p1.plot() p2.plot() return def _plt_pier(dat, title='', rm_na=False, col='label', independentpdf=False, fname='xpire.pdf'): x = dat[col] if rm_na: x = x[x != 'NA'] x = x.value_counts() _sum = sum(x) r.assign('n', len(x)) slices = robjects.FloatVector(x) pct = ['%0.1f%%' % float(float(i)*100/_sum) for i in x] lbls = ['%s %s' % i for i in zip(x.index, pct)] lbls = robjects.StrVector(lbls) ggcolors = r(''' gg_color_hue <- function(n){ hues = seq(15, 375, length=n+1) hcl(h=hues, l=65, c=100)[1:n] } rev(gg_color_hue(n)) ''') if independentpdf: grdevices = importr('grDevices') grdevices.pdf(pdf) r.pie(slices, labels=lbls, init_angle=90, col=ggcolors, main=title) r.text(-1, -1, '[Total = %s]' % _sum) if independentpdf: grdevices.dev_off() return def main(infile, outdir, config): outdir = os.path.abspath(outdir) ensure_dir(outdir, False) cparser = SafeConfigParser() cparser.read(config) labelfile = cparser.get('configs', 'labelfile') infile = _check_labelling(infile, labelfile) infile = _verify_valid_distance(infile) infile = _filterPredictionsByClass_reformat2gff(infile, outdir) bname = os.path.basename(infile) pdf_rplots = os.path.join(outdir, bname + '.plots.pdf') dat = _read_dat(infile) if all(dat['correlation'] == ''): ignoreCorr = True else: ignoreCorr = False dat_mirna = _item_findClosestPartner(dat, 'mirna', ignoreCorr) dat_tss = _item_findClosestPartner(dat, 'tss', ignoreCorr) print '## Generating plot file...' grdevices = importr('grDevices') grdevices.pdf(file=pdf_rplots) _plt_pier(dat, 'All predicted TSS-miRNA pairs', True) _plt_distr(dat, 'distance', 'All predicted tss-miRNA pairs', False) _plt_distr(dat, 'distance', 'All predicted tss-miRNA pairs') if not ignoreCorr: _plt_distr(dat, 'correlation', 'All predicted tss-miRNA pairs', False) _plt_distr(dat, 'correlation', 'All predicted tss-miRNA pairs') _plt_percountr(dat) _plt_pier(dat_tss, 'TSS (label from closest miRNA)') _plt_distr(dat_tss, 'distance', 'TSS to closest miRNA', False) _plt_distr(dat_tss, 'distance', 'TSS to closest miRNA') if not ignoreCorr: _plt_distr(dat_tss, 'correlation', 'TSS to closest miRNA', False) _plt_distr(dat_tss, 'correlation', 'TSS to closest miRNA') _plt_pier(dat_mirna, 'miRNA') _plt_distr(dat_mirna, 'distance', 'miRNA to closest TSS', False) _plt_distr(dat_mirna, 'distance', 'miRNA to closest TSS') if not ignoreCorr: _plt_distr(dat_mirna, 'correlation', 'miRNA to closest TSS', False) _plt_distr(dat_mirna, 'correlation', 'miRNA to closest TSS') grdevices.dev_off() print '## Plot file:' print pdf_rplots return pdf_rplots if __name__ == '__main__': parser = argparse.ArgumentParser(description=usage, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', '--infile', dest='infile', required=True, help='''path to input file; e.g. output of "label.py" "mirna_label:" should be contained in the info column (9)''') parser.add_argument('-o', '--outdir', dest='outdir', default='../Testout-plot', help='''specify path to output directory''') parser.add_argument('-c', '--config', dest='config', default='config.ini', help='path to config file; default="config.ini"') ##get at the arguments args = parser.parse_args() ## do something.. main(args.infile, args.outdir, args.config)
mit
ssh0/growing-string
triangular_lattice/growing_string.py
1
19450
#!/usr/bin/env python # -*- coding:utf-8 -*- # # written by Shotaro Fujimoto # 2016-07-12 from __future__ import print_function from triangular import LatticeTriangular as LT import matplotlib.pyplot as plt import matplotlib.tri as tri import matplotlib.cm as cm import matplotlib.animation as animation from base import Main as base from strings import String import numpy as np import operator import pprint pp = pprint.PrettyPrinter(indent=4) class Main(base): """任意に設定したstringの近傍点に点を追加し成長させるモデル グラフ上で左端と右端に固定されたstringの近傍点を探索,ランダム(後には曲げ 弾性による重み付けの効果を追加)に選択し,stringを成長させていくモデル """ def __init__(self, Lx=40, Ly=40, boundary={'h': 'periodic', 'v': 'periodic'}, size=[5, 4, 10, 12], plot=True, plot_surface=True, save_image=False, save_video=False, filename_image="", filename_video="", frames=1000, beta = 2., interval=1, weight_const=0.5, strings=None, pre_function=None, post_function=None): """Init function of Main class. Lx (int (even)): 格子のx方向(グラフではy軸)の格子点数 Ly (int (even)): 格子のy方向(グラフではx軸)の格子点数 """ # Create triangular lattice with given parameters # self.lattice = LT(np.zeros((Lx, Ly), dtype=np.int), # scale=float(max(Lx, Ly)), boundary=boundary) self.lattice = LT( np.zeros((Lx, Ly), dtype=np.int), scale=float(max(Lx, Ly)), boundary=boundary ) self.lattice_X = self.lattice.coordinates_x.reshape( self.lattice.Lx, self.lattice.Ly ) self.lattice_Y = self.lattice.coordinates_y.reshape( self.lattice.Lx, self.lattice.Ly ) self.occupied = np.zeros((Lx, Ly), dtype=np.bool) self.number_of_lines = Lx if strings is None: # Put the strings to the lattice self.strings = self.create_random_strings(len(size), size) else: self.strings = [String(self.lattice, **st) for st in strings] for string in self.strings: self.occupied[string.pos_x, string.pos_y] = True self.plot = plot self.plot_surface = plot_surface self.save_image = save_image self.save_video = save_video if self.save_image: if filename_image == "": raise AttributeError("`filename_image` is empty.") else: self.filename_image = filename_image if self.save_video: if self.plot: raise AttributeError("`save` and `plot` method can't be set both True.") if filename_video == "": raise AttributeError("`filename_video` is empty.") else: self.filename_video = filename_video self.interval = interval self.frames = frames # 逆温度 self.beta = beta # self.beta = 100. # まっすぐ(≒低温極限) # self.beta = 10. # まっすぐ # self.beta = 0. # 高温極限 # self.beta = 5. # 中間的 self.weight_const = weight_const self.bonding_pairs = {i: {} for i in range(len(self.strings))} for key in self.bonding_pairs.keys(): value = self.get_bonding_pairs( s=self.strings[key], # indexes=[[0, len(self.strings[key].pos)]] index_start=0, index_stop=len(self.strings[key].pos) ) # TODO: 隣接点がないとき,全体のシミュレーションを終了する # if len(value) == 0: # return False self.bonding_pairs[key] = value # pp.pprint(self.bonding_pairs) # print(self.strings[0].pos) # pp.pprint(self.bonding_pairs[0]) # pp.pprint(self.bonding_pairs) # return None self.pre_function = pre_function self.post_function = post_function self.pre_func_res = [] self.post_func_res = [] # Plot triangular-lattice points, string on it, and so on if self.plot: self.plot_all() self.start_animation() elif self.save_video: self.plot_all() self.start_animation(filename=self.filename_video) else: t = 0 while t < self.frames: try: self.update() t += 1 except StopIteration: break if self.save_image: if not self.__dict__.has_key('fig'): self.plot_all() self.fig.savefig(self.filename_image) plt.close() # print("Image file is successfully saved at '%s'." % filename_image) def _update_dict(self, dict, key, value): if dict.has_key(key): dict[key].append(value) else: dict[key] = [value] def dot(self, v, w): """0〜5で表された6つのベクトルの内積を計算する。 v, w (int): ベクトル(0〜5の整数で表す)""" if (w + 6 - v) % 6 == 0: return 1. elif (w + 6 - v) % 6 == 1 or (w + 6 - v) % 6 == 5: return 0.5 elif (w + 6 - v) % 6 == 2 or (w + 6 - v) % 6 == 4: return -0.5 elif (w + 6 - v) % 6 == 3: return -1. def plot_all(self): """軸の設定,三角格子の描画,線分描画要素の用意などを行う ここからFuncAnimationを使ってアニメーション表示を行うようにする """ self.fig, self.ax = plt.subplots(figsize=(8, 8)) lattice_X = self.lattice.coordinates_x lattice_Y = self.lattice.coordinates_y X_min, X_max = min(lattice_X) - 0.1, max(lattice_X) + 0.1 Y_min, Y_max = min(lattice_Y) - 0.1, max(lattice_Y) + 0.1 self.ax.set_xlim([X_min, X_max]) self.ax.set_ylim([Y_min, Y_max]) self.ax.set_xticklabels([]) self.ax.set_yticklabels([]) self.ax.set_aspect('equal') ## if the lattice size exceeds 200, don't draw triangular lattice. if max(self.lattice.Lx, self.lattice.Ly) < 200: triang = tri.Triangulation(lattice_X, lattice_Y) self.ax.triplot(triang, color='#d5d5d5', lw=0.5) self.lines = [self.ax.plot([], [], linestyle='-', color='black', markerfacecolor='black', markeredgecolor='black')[0] for i in range(self.number_of_lines)] if self.plot_surface: # self._num_surface = 1 # self.lines.append(self.ax.plot([], [], '.', color='#ff0000')[0]) self._num_surface = 9 self.lines += [self.ax.plot([], [], '.', )[0] for i in range(self._num_surface)] self.plot_string() def start_animation(self, filename=""): if self.__dict__.has_key('frames'): frames = self.frames else: frames = 1000 def init_func(*arg): return self.lines ani = animation.FuncAnimation(self.fig, self.update, frames=frames, init_func=init_func, interval=self.interval, blit=True, repeat=False) if filename != "": try: ani.save(filename, codec="libx264", bitrate=-1, fps=30) except: print("Can't saved.") else: print("Animation is successfully saved at '%s'." % filename) else: plt.show() def plot_string(self): """self.strings内に格納されているStringを参照し,グラフ上に図示する """ # print self.string.pos, self.string.vec i = 0 # to count how many line2D object for s in self.strings: start = 0 for j, pos1, pos2 in zip(range(len(s.pos) - 1), s.pos[:-1], s.pos[1:]): dist_x = abs(self.lattice_X[pos1[0], pos1[1]] - self.lattice_X[pos2[0], pos2[1]]) dist_y = abs(self.lattice_Y[pos1[0], pos1[1]] - self.lattice_Y[pos2[0], pos2[1]]) # print j, pos1, pos2 # print dist_x, dist_y # sqrt(2^{2} + (1/2)^{2}) ~ 2.06 if dist_x > 2.1 * self.lattice.dx or dist_y > 2.1 * self.lattice.dx: x = s.pos_x[start:j + 1] y = s.pos_y[start:j + 1] X = [self.lattice_X[_x, _y] for _x, _y in zip(x, y)] Y = [self.lattice_Y[_x, _y] for _x, _y in zip(x, y)] self.lines[i].set_data(X, Y) start = j + 1 i += 1 else: x = s.pos_x[start:] y = s.pos_y[start:] X = [self.lattice_X[_x, _y] for _x, _y in zip(x, y)] Y = [self.lattice_Y[_x, _y] for _x, _y in zip(x, y)] self.lines[i].set_data(X, Y) i += 1 num_plot_surface = 0 if self.plot_surface: if self._num_surface == 1: num_plot_surface = 1 neighbors = [] for bonding_pairs in self.bonding_pairs.values(): # print(bonding_pairs) for pos in bonding_pairs.keys(): neighbors.append(pos) neighbors = list(np.array(neighbors).T) # print(neighbors) X, Y = self.lattice_X[neighbors], self.lattice_Y[neighbors] # print(X, Y) self.lines[-1].set_data(X, Y) # === else: w = {} for bonding_pairs in self.bonding_pairs.values(): # print(bonding_pairs) for pos, bps in bonding_pairs.items(): for bp, _w in bps: if w.has_key(_w): w[_w].append(pos) else: w[_w] = [pos,] num_plot_surface = len(w) # W = sorted(w.keys(), reverse=True) sum_w = np.sum([len(w[_w]) for _w in w.keys()]) W = [(_w, (_w * len(w[_w])) / sum_w) for _w in w.keys()] ave_W = np.average(W, axis=0)[1] min_W = np.exp(self.beta * (-2.5)) /sum_w max_W = np.exp(self.beta * 2.5) /sum_w for k, (wi, _w) in enumerate(W): neighbors = list(np.array(w[wi]).T) X, Y = self.lattice_X[neighbors], self.lattice_Y[neighbors] self.lines[-(k + 1)].set_data(X, Y) ## color setting dw = _w - ave_W if min_W == ave_W: _c = 0.5 elif dw < 0: _c = (0.5 / (ave_W - min_W)) * (_w - min_W) else: _c = (0.5 / (max_W - ave_W)) * dw + 0.5 self.lines[-(k + 1)].set_color(cm.plasma(_c)) # 最終的に,iの数だけ線を引けばよくなる # それ以上のオブジェクトはリセット if self.plot_surface: max_obj = len(self.lines) - num_plot_surface else: max_obj = len(self.lines) for j in range(i, max_obj): self.lines[j].set_data([], []) return self.lines def update(self, num=0): """FuncAnimationから各フレームごとに呼び出される関数 1時間ステップの間に行う計算はすべてここに含まれる。 """ # update each string for i, s in enumerate(self.strings): if self.pre_function is not None: self.pre_func_res.append(self.pre_function(self, i, s)) ret = self.update_each_string(i) if self.post_function is not None: self.post_func_res.append(self.post_function(self, i, s)) if self.plot or self.save_video: return self.plot_string() def update_each_string(self, key): X = self.get_neighbor_xy(key) if not X: raise StopIteration # print(X) s = self.strings[key] # update positions if len(X) == 4: i, r_rev, nx, ny = X s.x, s.y = nx, ny s.insert(0, r_rev) x, y = s.pos_x[0], s.pos_y[0] elif len(X) == 2: i, r = X s.insert(i + 1, r) x, y = s.pos_x[-1], s.pos_y[-1] else: i, r, r_rev = X s.vec[i] = r s.insert(i + 1, r_rev) x, y = s.pos_x[i + 1], s.pos_y[i + 1] self.occupied[x, y] = True # print("== start == (%d, %d)" % (x, y)) # pp.pprint(self.bonding_pairs[key]) for k, bonding_pairs in self.bonding_pairs.items(): if bonding_pairs.has_key((x, y)): del self.bonding_pairs[k][(x, y)] # print("del self.bonding_pairs[%d][(%d, %d)]" % (k, x, y)) # pp.pprint(self.bonding_pairs[key]) index_start = i index_stop = len(s.pos) # print(index_start, index_stop) self.cleanup_bonding_pairs( key=key, index_start=index_start, index_stop=index_stop ) value = self.get_bonding_pairs( s=self.strings[key], index_start=index_start, index_stop=index_stop ) # pp.pprint(value) # pp.pprint(self.bonding_pairs[key]) for k, v in value.items(): if self.bonding_pairs[key].has_key(k): self.bonding_pairs[key][k] += v else: self.bonding_pairs[key][k] = v # pp.pprint(self.bonding_pairs[key]) # print("== end ==") # pp.pprint(self.strings[key].pos) # pp.pprint(self.bonding_pairs[key].keys()) def cleanup_bonding_pairs(self, key, index_start, index_stop): rang = range(index_start, index_stop) for pos, l in self.bonding_pairs[key].items(): tmp = [l[i] for i, (bp, w) in enumerate(l) if not bp[0] in rang] if len(tmp) == 0: del self.bonding_pairs[key][pos] else: self.bonding_pairs[key][pos] = tmp def get_neighbor_xy(self, key): """Stringクラスのインスタンスsの隣接する非占有格子点の座標を取得する s (String): 対象とするStringクラスのインスタンス """ if len(self.bonding_pairs[key]) == 0: return False # bonding_pairsの選ばれやすさを適切に重みを付けて評価 weights = [] bonding_pairs = [] for (pair, w) in reduce(operator.add, self.bonding_pairs[key].values()): bonding_pairs.append(pair) weights.append(w) weights = np.array(weights) weights = weights / np.sum(weights) # print(weights) choiced_index = np.random.choice(range(len(weights)), p=weights) # print(bonding_pairs[choiced_index]) return bonding_pairs[choiced_index] def calc_weight(self, s, i, r_i=None, r_rev=None): """ベクトルの内積を元に,Boltzmann分布に従って成長点選択の重みを決定 """ if (i == 1) and (not s.loop): w = self.dot(r_rev, s.vec[i]) - self.dot(s.vec[0], s.vec[1]) \ - self.weight_const elif (i == len(s.pos) - 1) and (not s.loop): w = self.dot(s.vec[i - 2], r_i) - \ self.dot(s.vec[i - 2], s.vec[i - 1]) - self.weight_const else: # w = self.dot(s.vec[i - 2], r_i) + self.dot(r_rev, s.vec[i % len(s.vec)]) w = (self.dot(s.vec[i - 2], r_i) + \ self.dot(r_rev, s.vec[i % len(s.vec)])) \ - (self.dot(s.vec[i - 2], s.vec[i - 1]) + \ self.dot(s.vec[i - 1], s.vec[i % len(s.vec)])) \ - self.weight_const W = np.exp(self.beta * w) return W def get_bonding_pairs(self, s, index_start, index_stop): bonding_pairs = {} neighbors_dict = {} rang = range(index_start, index_stop) if s.loop and (0 in rang): rang.append(0) for i in rang: x, y = s.pos[i] nnx, nny = self.lattice.neighbor_of(x, y) for r in [0, 1, 2, 3, 4, 5]: nx, ny = nnx[r], nny[r] if self.occupied[nx, ny] or nx == -1 or ny == -1: continue r_rev = (r + 3) % 6 if not neighbors_dict.has_key((nx, ny)): if not s.loop: if i == 0: w = self.dot(r_rev, s.vec[0]) W = np.exp(self.beta * w) self._update_dict(bonding_pairs, (nx, ny), [[0, r_rev, nx, ny], W]) elif i == len(s.pos) - 1: w = self.dot(s.vec[i - 1], r) W = np.exp(self.beta * w) self._update_dict(bonding_pairs, (nx, ny), [[i, r], W]) neighbors_dict[(nx, ny)] = [(i, r),] else: if neighbors_dict[(nx, ny)][-1][0] == i - 1: r_i = neighbors_dict[(nx, ny)][-1][1] W = self.calc_weight(s, i, r_i, r_rev) self._update_dict(bonding_pairs, (nx, ny), [[i - 1, r_i, r_rev], W]) neighbors_dict[(nx, ny)].append((i, r)) return bonding_pairs if __name__ == '__main__': # import timeit # print(timeit.timeit("Main(Lx=1000, Ly=1000, size=[3,] * 1, \ # strings=[{'id': 1, 'x': 250, 'y': 500, 'vec': [0, 4]}], \ # plot=False)", # setup="from __main__ import Main", # number=10 # )) L = 100 main= Main(Lx=L, Ly=L, size=[3,] * 1, frames=1000, beta=3., plot=True, plot_surface=False, interval=0, strings=[{'id': 1, 'x': L/4, 'y': L/2, 'vec': [0, 4]}] # strings=[{'id': 1, 'x': L/4, 'y': L/2, 'vec': [0, 4, 2]}] )
mit
pradyu1993/scikit-learn
examples/linear_model/plot_sparse_recovery.py
2
7106
""" ============================================================ Sparse recovery: feature selection for sparse linear models ============================================================ Given a small number of observations, we want to recover which features of X are relevant to explain y. For this :ref:`sparse linear models <l1_feature_selection>` can outperform standard statistical tests if the true model is sparse, i.e. if a small fraction of the features are relevant. As detailed in :ref:`the compressive sensing notes <compressive_sensing>`, the ability of L1-based approach to identify the relevant variables depends on the sparsity of the ground truth, the number of samples, the number of features, the conditionning of the design matrix on the signal subspace, the amount of noise, and the absolute value of the smallest non-zero coefficient [Wainwright2006] (http://statistics.berkeley.edu/tech-reports/709.pdf). Here we keep all parameters constant and vary the conditionning of the design matrix. For a well-conditionned design matrix (small mutual incoherence) we are exactly in compressive sensing conditions (i.i.d Gaussian sensing matrix), and L1-recovery with the Lasso performs very well. For an ill-conditionned matrix (high mutual incoherence), regressors are very correlated, and the Lasso randomly selects one. However, randomized-Lasso can recover the ground truth well. In each situation, we first vary the alpha parameter setting the sparsity of the estimated model and look at the stability scores of the randomized Lasso. This analysis, knowing the ground truth, shows an optimal regime in which relevant features stand out from the irrelevant ones. If alpha is chosen too small, non-relevant variables enter the model. On the opposite, if alpha is selected too large, the Lasso is equivalent to stepwise regression, and thus brings no advantage over a univariate F-test. In a second time, we set alpha and compare the performance of different feature selection methods, using the area under curve (AUC) of the precision-recall. """ print __doc__ # Author: Alexandre Gramfort and Gael Varoquaux # License: BSD import pylab as pl import numpy as np from scipy import linalg from sklearn.linear_model import RandomizedLasso, lasso_stability_path, \ LassoLarsCV from sklearn.feature_selection import f_regression from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, precision_recall_curve from sklearn.ensemble import ExtraTreesRegressor from sklearn.utils.extmath import pinvh def mutual_incoherence(X_relevant, X_irelevant): """Mutual incoherence, as defined by formula (26a) of [Wainwright2006]. """ projector = np.dot( np.dot(X_irelevant.T, X_relevant), pinvh(np.dot(X_relevant.T, X_relevant)) ) return np.max(np.abs(projector).sum(axis=1)) for conditionning in (1, 1e-4): ########################################################################### # Simulate regression data with a correlated design n_features = 501 n_relevant_features = 3 noise_level = .2 coef_min = .2 # The Donoho-Tanner phase transition is around n_samples=25: below we # will completely fail to recover in the well-conditionned case n_samples = 25 block_size = n_relevant_features rng = np.random.RandomState(42) # The coefficients of our model coef = np.zeros(n_features) coef[:n_relevant_features] = coef_min + rng.rand(n_relevant_features) # The correlation of our design: variables correlated by blocs of 3 corr = np.zeros((n_features, n_features)) for i in range(0, n_features, block_size): corr[i:i + block_size, i:i + block_size] = 1 - conditionning corr.flat[::n_features + 1] = 1 corr = linalg.cholesky(corr) # Our design X = rng.normal(size=(n_samples, n_features)) X = np.dot(X, corr) # Keep [Wainwright2006] (26c) constant X[:n_relevant_features] /= np.abs( linalg.svdvals(X[:n_relevant_features])).max() X = StandardScaler().fit_transform(X.copy()) # The output variable y = np.dot(X, coef) y /= np.std(y) # We scale the added noise as a function of the average correlation # between the design and the output variable y += noise_level * rng.normal(size=n_samples) mi = mutual_incoherence(X[:, :n_relevant_features], X[:, n_relevant_features:]) ########################################################################### # Plot stability selection path, using a high eps for early stopping # of the path, to save computation time alpha_grid, scores_path = lasso_stability_path(X, y, random_state=42, eps=0.05) pl.figure() # We plot the path as a function of alpha/alpha_max to the power 1/3: the # power 1/3 scales the path less brutally than the log, and enables to # see the progression along the path hg = pl.plot(alpha_grid[1:] ** .333, scores_path[coef != 0].T[1:], 'r') hb = pl.plot(alpha_grid[1:] ** .333, scores_path[coef == 0].T[1:], 'k') ymin, ymax = pl.ylim() pl.xlabel(r'$(\alpha / \alpha_{max})^{1/3}$') pl.ylabel('Stability score: proportion of times selected') pl.title('Stability Scores Path - Mutual incoherence: %.1f' % mi) pl.axis('tight') pl.legend((hg[0], hb[0]), ('relevant features', 'irrelevant features'), loc='best') ########################################################################### # Plot the estimated stability scores for a given alpha # Use 6-fold cross-validation rather than the default 3-fold: it leads to # a better choice of alpha: lars_cv = LassoLarsCV(cv=6).fit(X, y) # Run the RandomizedLasso: we use a paths going down to .1*alpha_max # to avoid exploring the regime in which very noisy variables enter # the model alphas = np.linspace(lars_cv.alphas_[0], .1 * lars_cv.alphas_[0], 6) clf = RandomizedLasso(alpha=alphas, random_state=42).fit(X, y) trees = ExtraTreesRegressor(100, compute_importances=True).fit(X, y) # Compare with F-score F, _ = f_regression(X, y) pl.figure() for name, score in [('F-test', F), ('Stability selection', clf.scores_), ('Lasso coefs', np.abs(lars_cv.coef_)), ('Trees', trees.feature_importances_), ]: precision, recall, thresholds = precision_recall_curve(coef != 0, score) pl.semilogy(np.maximum(score / np.max(score), 1e-4), label="%s. AUC: %.3f" % (name, auc(recall, precision))) pl.plot(np.where(coef != 0)[0], [2e-4] * n_relevant_features, 'mo', label="Ground truth") pl.xlabel("Features") pl.ylabel("Score") # Plot only the 100 first coefficients pl.xlim(0, 100) pl.legend(loc='best') pl.title('Feature selection scores - Mutual incoherence: %.1f' % mi) pl.show()
bsd-3-clause
cbrnr/scot
doc/sphinxext/inheritance_diagram.py
4
13650
""" Defines a docutils directive for inserting inheritance diagrams. Provide the directive with one or more classes or modules (separated by whitespace). For modules, all of the classes in that module will be used. Example:: Given the following classes: class A: pass class B(A): pass class C(A): pass class D(B, C): pass class E(B): pass .. inheritance-diagram: D E Produces a graph like the following: A / \ B C / \ / E D The graph is inserted as a PNG+image map into HTML and a PDF in LaTeX. """ import inspect import os import re import subprocess try: from hashlib import md5 except ImportError: from md5 import md5 from docutils.nodes import Body, Element from docutils.parsers.rst import directives from sphinx.roles import xfileref_role def my_import(name): """Module importer - taken from the python documentation. This function allows importing names with dots in them.""" mod = __import__(name) components = name.split('.') for comp in components[1:]: mod = getattr(mod, comp) return mod class DotException(Exception): pass class InheritanceGraph(object): """ Given a list of classes, determines the set of classes that they inherit from all the way to the root "object", and then is able to generate a graphviz dot graph from them. """ def __init__(self, class_names, show_builtins=False): """ *class_names* is a list of child classes to show bases from. If *show_builtins* is True, then Python builtins will be shown in the graph. """ self.class_names = class_names self.classes = self._import_classes(class_names) self.all_classes = self._all_classes(self.classes) if len(self.all_classes) == 0: raise ValueError("No classes found for inheritance diagram") self.show_builtins = show_builtins py_sig_re = re.compile(r'''^([\w.]*\.)? # class names (\w+) \s* $ # optionally arguments ''', re.VERBOSE) def _import_class_or_module(self, name): """ Import a class using its fully-qualified *name*. """ try: path, base = self.py_sig_re.match(name).groups() except: raise ValueError( "Invalid class or module '%s' specified for inheritance diagram" % name) fullname = (path or '') + base path = (path and path.rstrip('.')) if not path: path = base try: module = __import__(path, None, None, []) # We must do an import of the fully qualified name. Otherwise if a # subpackage 'a.b' is requested where 'import a' does NOT provide # 'a.b' automatically, then 'a.b' will not be found below. This # second call will force the equivalent of 'import a.b' to happen # after the top-level import above. my_import(fullname) except ImportError: raise ValueError( "Could not import class or module '%s' specified for inheritance diagram" % name) try: todoc = module for comp in fullname.split('.')[1:]: todoc = getattr(todoc, comp) except AttributeError: raise ValueError( "Could not find class or module '%s' specified for inheritance diagram" % name) # If a class, just return it if inspect.isclass(todoc): return [todoc] elif inspect.ismodule(todoc): classes = [] for cls in todoc.__dict__.values(): if inspect.isclass(cls) and cls.__module__ == todoc.__name__: classes.append(cls) return classes raise ValueError( "'%s' does not resolve to a class or module" % name) def _import_classes(self, class_names): """ Import a list of classes. """ classes = [] for name in class_names: classes.extend(self._import_class_or_module(name)) return classes def _all_classes(self, classes): """ Return a list of all classes that are ancestors of *classes*. """ all_classes = {} def recurse(cls): all_classes[cls] = None for c in cls.__bases__: if c not in all_classes: recurse(c) for cls in classes: recurse(cls) return all_classes.keys() def class_name(self, cls, parts=0): """ Given a class object, return a fully-qualified name. This works for things I've tested in matplotlib so far, but may not be completely general. """ module = cls.__module__ if module == '__builtin__': fullname = cls.__name__ else: fullname = "%s.%s" % (module, cls.__name__) if parts == 0: return fullname name_parts = fullname.split('.') return '.'.join(name_parts[-parts:]) def get_all_class_names(self): """ Get all of the class names involved in the graph. """ return [self.class_name(x) for x in self.all_classes] # These are the default options for graphviz default_graph_options = { "rankdir": "LR", "size": '"8.0, 12.0"' } default_node_options = { "shape": "box", "fontsize": 10, "height": 0.25, "fontname": "Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans", "style": '"setlinewidth(0.5)"' } default_edge_options = { "arrowsize": 0.5, "style": '"setlinewidth(0.5)"' } def _format_node_options(self, options): return ','.join(["%s=%s" % x for x in options.items()]) def _format_graph_options(self, options): return ''.join(["%s=%s;\n" % x for x in options.items()]) def generate_dot(self, fd, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Generate a graphviz dot graph from the classes that were passed in to __init__. *fd* is a Python file-like object to write to. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls *graph_options*, *node_options*, *edge_options* are dictionaries containing key/value pairs to pass on as graphviz properties. """ g_options = self.default_graph_options.copy() g_options.update(graph_options) n_options = self.default_node_options.copy() n_options.update(node_options) e_options = self.default_edge_options.copy() e_options.update(edge_options) fd.write('digraph %s {\n' % name) fd.write(self._format_graph_options(g_options)) for cls in self.all_classes: if not self.show_builtins and cls in __builtins__.values(): continue name = self.class_name(cls, parts) # Write the node this_node_options = n_options.copy() url = urls.get(self.class_name(cls)) if url is not None: this_node_options['URL'] = '"%s"' % url fd.write(' "%s" [%s];\n' % (name, self._format_node_options(this_node_options))) # Write the edges for base in cls.__bases__: if not self.show_builtins and base in __builtins__.values(): continue base_name = self.class_name(base, parts) fd.write(' "%s" -> "%s" [%s];\n' % (base_name, name, self._format_node_options(e_options))) fd.write('}\n') def run_dot(self, args, name, parts=0, urls={}, graph_options={}, node_options={}, edge_options={}): """ Run graphviz 'dot' over this graph, returning whatever 'dot' writes to stdout. *args* will be passed along as commandline arguments. *name* is the name of the graph *urls* is a dictionary mapping class names to http urls Raises DotException for any of the many os and installation-related errors that may occur. """ try: dot = subprocess.Popen(['dot'] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, close_fds=True) except OSError: raise DotException("Could not execute 'dot'. Are you sure you have 'graphviz' installed?") except ValueError: raise DotException("'dot' called with invalid arguments") except: raise DotException("Unexpected error calling 'dot'") self.generate_dot(dot.stdin, name, parts, urls, graph_options, node_options, edge_options) dot.stdin.close() result = dot.stdout.read() returncode = dot.wait() if returncode != 0: raise DotException("'dot' returned the errorcode %d" % returncode) return result class inheritance_diagram(Body, Element): """ A docutils node to use as a placeholder for the inheritance diagram. """ pass def inheritance_diagram_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): """ Run when the inheritance_diagram directive is first encountered. """ node = inheritance_diagram() class_names = arguments # Create a graph starting with the list of classes graph = InheritanceGraph(class_names) # Create xref nodes for each target of the graph's image map and # add them to the doc tree so that Sphinx can resolve the # references to real URLs later. These nodes will eventually be # removed from the doctree after we're done with them. for name in graph.get_all_class_names(): refnodes, x = xfileref_role( 'class', ':class:`%s`' % name, name, 0, state) node.extend(refnodes) # Store the graph object so we can use it to generate the # dot file later node['graph'] = graph # Store the original content for use as a hash node['parts'] = options.get('parts', 0) node['content'] = " ".join(class_names) return [node] def get_graph_hash(node): return md5(node['content'] + str(node['parts'])).hexdigest()[-10:] def html_output_graph(self, node): """ Output the graph for HTML. This will insert a PNG with clickable image map. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash path = '_images' dest_path = os.path.join(setup.app.builder.outdir, path) if not os.path.exists(dest_path): os.makedirs(dest_path) png_path = os.path.join(dest_path, name + ".png") path = setup.app.builder.imgpath # Create a mapping from fully-qualified class names to URLs. urls = {} for child in node: if child.get('refuri') is not None: urls[child['reftitle']] = child.get('refuri') elif child.get('refid') is not None: urls[child['reftitle']] = '#' + child.get('refid') # These arguments to dot will save a PNG file to disk and write # an HTML image map to stdout. image_map = graph.run_dot(['-Tpng', '-o%s' % png_path, '-Tcmapx'], name, parts, urls) return ('<img src="%s/%s.png" usemap="#%s" class="inheritance"/>%s' % (path, name, name, image_map)) def latex_output_graph(self, node): """ Output the graph for LaTeX. This will insert a PDF. """ graph = node['graph'] parts = node['parts'] graph_hash = get_graph_hash(node) name = "inheritance%s" % graph_hash dest_path = os.path.abspath(os.path.join(setup.app.builder.outdir, '_images')) if not os.path.exists(dest_path): os.makedirs(dest_path) pdf_path = os.path.abspath(os.path.join(dest_path, name + ".pdf")) graph.run_dot(['-Tpdf', '-o%s' % pdf_path], name, parts, graph_options={'size': '"6.0,6.0"'}) return '\n\\includegraphics{%s}\n\n' % pdf_path def visit_inheritance_diagram(inner_func): """ This is just a wrapper around html/latex_output_graph to make it easier to handle errors and insert warnings. """ def visitor(self, node): try: content = inner_func(self, node) except DotException as e: # Insert the exception as a warning in the document warning = self.document.reporter.warning(str(e), line=node.line) warning.parent = node node.children = [warning] else: source = self.document.attributes['source'] self.body.append(content) node.children = [] return visitor def do_nothing(self, node): pass def setup(app): setup.app = app setup.confdir = app.confdir app.add_node( inheritance_diagram, latex=(visit_inheritance_diagram(latex_output_graph), do_nothing), html=(visit_inheritance_diagram(html_output_graph), do_nothing)) app.add_directive( 'inheritance-diagram', inheritance_diagram_directive, False, (1, 100, 0), parts = directives.nonnegative_int)
mit
ikaee/bfr-attendant
facerecognitionlibrary/jni-build/jni/include/tensorflow/examples/skflow/multioutput_regression.py
9
2552
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This example uses the same data as one here: http://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html Instead of DecisionTree a 2-layer Deep Neural Network with RELU activations is used. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from tensorflow.contrib import learn # Create random dataset. rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T # Fit regression DNN models. regressors = [] options = [[2], [10, 10], [20, 20]] for hidden_units in options: def tanh_dnn(X, y): features = learn.ops.dnn(X, hidden_units=hidden_units, activation=learn.tf.tanh) return learn.models.linear_regression(features, y) regressor = learn.TensorFlowEstimator(model_fn=tanh_dnn, n_classes=0, steps=500, learning_rate=0.1, batch_size=100) regressor.fit(X, y) score = mean_squared_error(regressor.predict(X), y) print("Mean Squared Error for {0}: {1:f}".format(str(hidden_units), score)) regressors.append(regressor) # Predict on new random Xs. X_test = np.arange(-100.0, 100.0, 0.1)[:, np.newaxis] y_1 = regressors[0].predict(X_test) y_2 = regressors[1].predict(X_test) y_3 = regressors[2].predict(X_test) # Plot the results plt.figure() plt.scatter(y[:, 0], y[:, 1], c="k", label="data") plt.scatter(y_1[:, 0], y_1[:, 1], c="g", label="hidden_units{}".format(str(options[0]))) plt.scatter(y_2[:, 0], y_2[:, 1], c="r", label="hidden_units{}".format(str(options[1]))) plt.scatter(y_3[:, 0], y_3[:, 1], c="b", label="hidden_units{}".format(str(options[2]))) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("data") plt.ylabel("target") plt.title("Multi-output DNN Regression") plt.legend() plt.show()
apache-2.0
Titan-C/scikit-learn
examples/feature_selection/plot_permutation_test_for_classification.py
62
2295
""" ================================================================= Test with permutations the significance of a classification score ================================================================= In order to test if a classification score is significative a technique in repeating the classification procedure after randomizing, permuting, the labels. The p-value is then given by the percentage of runs for which the score obtained is greater than the classification score obtained in the first place. """ # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import permutation_test_score from sklearn import datasets # ############################################################################# # Loading a dataset iris = datasets.load_iris() X = iris.data y = iris.target n_classes = np.unique(y).size # Some noisy data not correlated random = np.random.RandomState(seed=0) E = random.normal(size=(len(X), 2200)) # Add noisy data to the informative features for make the task harder X = np.c_[X, E] svm = SVC(kernel='linear') cv = StratifiedKFold(2) score, permutation_scores, pvalue = permutation_test_score( svm, X, y, scoring="accuracy", cv=cv, n_permutations=100, n_jobs=1) print("Classification score %s (pvalue : %s)" % (score, pvalue)) # ############################################################################# # View histogram of permutation scores plt.hist(permutation_scores, 20, label='Permutation scores', edgecolor='black') ylim = plt.ylim() # BUG: vlines(..., linestyle='--') fails on older versions of matplotlib # plt.vlines(score, ylim[0], ylim[1], linestyle='--', # color='g', linewidth=3, label='Classification Score' # ' (pvalue %s)' % pvalue) # plt.vlines(1.0 / n_classes, ylim[0], ylim[1], linestyle='--', # color='k', linewidth=3, label='Luck') plt.plot(2 * [score], ylim, '--g', linewidth=3, label='Classification Score' ' (pvalue %s)' % pvalue) plt.plot(2 * [1. / n_classes], ylim, '--k', linewidth=3, label='Luck') plt.ylim(ylim) plt.legend() plt.xlabel('Score') plt.show()
bsd-3-clause
yunque/sms-tools
lectures/08-Sound-transformations/plots-code/stftMorph-frame.py
21
2700
import numpy as np import time, os, sys import matplotlib.pyplot as plt from scipy.signal import hamming, resample sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF import math (fs, x1) = UF.wavread('../../../sounds/orchestra.wav') (fs, x2) = UF.wavread('../../../sounds/speech-male.wav') w1 = np.hamming(1024) N1 = 1024 H1 = 256 w2 = np.hamming(1024) N2 = 1024 smoothf = .1 balancef = .7 M1 = w1.size # size of analysis window hM1_1 = int(math.floor((M1+1)/2)) # half analysis window size by rounding hM1_2 = int(math.floor(M1/2)) # half analysis window size by floor M2 = w2.size # size of analysis window hM2_1 = int(math.floor((M2+1)/2)) # half analysis window size by rounding hM2_2 = int(math.floor(M2/2)) # half analysis window size by floor2 loc1 = 14843 loc2 = 9294 x1 = x1[loc1-hM1_1:loc1+hM1_2] x2 = x2[loc2-hM2_1:loc2+hM2_2] mX1, pX1 = DFT.dftAnal(x1, w1, N1) # compute dft mX2, pX2 = DFT.dftAnal(x2, w2, N2) # compute dft # morph mX2smooth = resample(np.maximum(-200, mX2), mX2.size*smoothf) # smooth spectrum of second sound mX2 = resample(mX2smooth, mX2.size) mY = balancef * mX2 + (1-balancef) * mX1 # generate output spectrum #-----synthesis----- y = DFT.dftSynth(mY, pX1, M1) * sum(w1) # overlap-add to generate output sound mY1, pY1 = DFT.dftAnal(y, w1, M1) # overlap-add to generate output sound plt.figure(1, figsize=(12, 9)) plt.subplot(321) plt.plot(np.arange(N1)/float(fs), x1*w1, 'b', lw=1.5) plt.axis([0, N1/float(fs), min(x1*w1), max(x1*w1)]) plt.title('x1 (orchestra.wav)') plt.subplot(323) plt.plot(fs*np.arange(mX1.size)/float(mX1.size), mX1-max(mX1), 'r', lw=1.5, label = 'mX1') plt.plot(fs*np.arange(mX2.size)/float(mX2.size), mX2-max(mX2), 'k', lw=1.5, label='mX2') plt.legend(prop={'size':10}) plt.axis([0,fs/4.0,-70,2]) plt.title('mX1 + mX2 (speech-male.wav)') plt.subplot(325) plt.plot(fs*np.arange(pX1.size)/float(pX1.size), pX1, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pX1),20]) plt.title('pX1') plt.subplot(322) plt.plot(np.arange(N1)/float(fs), y, 'b', lw=1.5) plt.axis([0, float(N1)/fs, min(y), max(y)]) plt.title('y') plt.subplot(324) plt.plot(fs*np.arange(mY1.size)/float(mY1.size), mY1-max(mY1), 'r', lw=1.5) plt.axis([0,fs/4.0,-70,2]) plt.title('mY') plt.subplot(326) plt.plot(fs*np.arange(pY1.size)/float(pY1.size), pY1, 'c', lw=1.5) plt.axis([0,fs/4.0,min(pY1),6]) plt.title('pY') plt.tight_layout() plt.savefig('stftMorph-frame.png') plt.show()
agpl-3.0
probml/pyprobml
scripts/kmeansYeastDemo.py
1
1963
from scipy.io import loadmat from sklearn.cluster import KMeans import matplotlib.pyplot as plt import pyprobml_utils as pml from matplotlib import cm from matplotlib.colors import ListedColormap,LinearSegmentedColormap data = loadmat('/pyprobml/data/yeastData310.mat') # dictionary containing 'X', 'genes', 'times' X = data['X'] # Cluster yeast data using Kmeans kmeans = KMeans(n_clusters=16,random_state=0,algorithm='full').fit(X) times = data['times'] X = X.transpose() labels = kmeans.labels_ clu_cen = kmeans.cluster_centers_ clusters = [[] for i in range(0,16)] for (i,l) in enumerate(labels): clusters[l].append(i) times = times.reshape((7,)) # Visualizing all the time series assigned to each cluster for l in range(0,16): plt.subplot(4,4,l+1) if clusters[l] != []: plt.plot(times,X[:,clusters[l]]) plt.suptitle("K-Means Clustering of Profiles") plt.savefig("/pyprobml/figures/yeastKmeans16.pdf", dpi=300) plt.show() # Visualizing the 16 cluster centers as prototypical time series. for l in range(0,16): plt.subplot(4,4,l+1).axis('off') plt.plot(times,clu_cen[l,:]) plt.suptitle("K-Means centroids") plt.savefig("/pyprobml/figures/clusterYeastKmeansCentroids16.pdf", dpi=300) plt.show() # yeast gene expression data plotted as a time series plt.plot(times,X,'o-') plt.title('yeast microarray data') plt.xlabel('time') plt.ylabel('genes') plt.xlim([0,max(times)]) plt.xticks(ticks=times,labels=times) plt.savefig("/pyprobml/figures/yeastTimeSeries.pdf", dpi=300) plt.show() # yeast gene expression data plotted as a heat map basic_cols=['#66ff00', '#000000', '#FF0000'] # green-black-red my_cmap=LinearSegmentedColormap.from_list('mycmap', basic_cols) plt.xticks(ticks=[i+0.5 for i in range(0,7)],labels=times) plt.pcolormesh(X.transpose(),cmap=my_cmap) plt.title('yeast microarray data') plt.xlabel('time') plt.ylabel('genes') plt.colorbar() plt.savefig("/pyprobml/figures/yeastHeatMap.pdf", dpi=300)
mit
endolith/scipy
scipy/stats/_distn_infrastructure.py
5
135895
# # Author: Travis Oliphant 2002-2011 with contributions from # SciPy Developers 2004-2011 # from scipy._lib._util import getfullargspec_no_self as _getfullargspec import sys import keyword import re import types import warnings import inspect from itertools import zip_longest from scipy._lib import doccer from scipy._lib._util import _lazywhere from ._distr_params import distcont, distdiscrete from scipy._lib._util import check_random_state from scipy.special import (comb, chndtr, entr, xlogy, ive) # for root finding for continuous distribution ppf, and max likelihood # estimation from scipy import optimize # for functions of continuous distributions (e.g. moments, entropy, cdf) from scipy import integrate # to approximate the pdf of a continuous distribution given its cdf from scipy.misc import derivative # for scipy.stats.entropy. Attempts to import just that function or file # have cause import problems from scipy import stats from numpy import (arange, putmask, ravel, ones, shape, ndarray, zeros, floor, logical_and, log, sqrt, place, argmax, vectorize, asarray, nan, inf, isinf, NINF, empty) import numpy as np from ._constants import _XMAX # These are the docstring parts used for substitution in specific # distribution docstrings docheaders = {'methods': """\nMethods\n-------\n""", 'notes': """\nNotes\n-----\n""", 'examples': """\nExamples\n--------\n"""} _doc_rvs = """\ rvs(%(shapes)s, loc=0, scale=1, size=1, random_state=None) Random variates. """ _doc_pdf = """\ pdf(x, %(shapes)s, loc=0, scale=1) Probability density function. """ _doc_logpdf = """\ logpdf(x, %(shapes)s, loc=0, scale=1) Log of the probability density function. """ _doc_pmf = """\ pmf(k, %(shapes)s, loc=0, scale=1) Probability mass function. """ _doc_logpmf = """\ logpmf(k, %(shapes)s, loc=0, scale=1) Log of the probability mass function. """ _doc_cdf = """\ cdf(x, %(shapes)s, loc=0, scale=1) Cumulative distribution function. """ _doc_logcdf = """\ logcdf(x, %(shapes)s, loc=0, scale=1) Log of the cumulative distribution function. """ _doc_sf = """\ sf(x, %(shapes)s, loc=0, scale=1) Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate). """ _doc_logsf = """\ logsf(x, %(shapes)s, loc=0, scale=1) Log of the survival function. """ _doc_ppf = """\ ppf(q, %(shapes)s, loc=0, scale=1) Percent point function (inverse of ``cdf`` --- percentiles). """ _doc_isf = """\ isf(q, %(shapes)s, loc=0, scale=1) Inverse survival function (inverse of ``sf``). """ _doc_moment = """\ moment(n, %(shapes)s, loc=0, scale=1) Non-central moment of order n """ _doc_stats = """\ stats(%(shapes)s, loc=0, scale=1, moments='mv') Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). """ _doc_entropy = """\ entropy(%(shapes)s, loc=0, scale=1) (Differential) entropy of the RV. """ _doc_fit = """\ fit(data) Parameter estimates for generic data. See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the keyword arguments. """ _doc_expect = """\ expect(func, args=(%(shapes_)s), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. """ _doc_expect_discrete = """\ expect(func, args=(%(shapes_)s), loc=0, lb=None, ub=None, conditional=False) Expected value of a function (of one argument) with respect to the distribution. """ _doc_median = """\ median(%(shapes)s, loc=0, scale=1) Median of the distribution. """ _doc_mean = """\ mean(%(shapes)s, loc=0, scale=1) Mean of the distribution. """ _doc_var = """\ var(%(shapes)s, loc=0, scale=1) Variance of the distribution. """ _doc_std = """\ std(%(shapes)s, loc=0, scale=1) Standard deviation of the distribution. """ _doc_interval = """\ interval(alpha, %(shapes)s, loc=0, scale=1) Endpoints of the range that contains fraction alpha [0, 1] of the distribution """ _doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf, _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf, _doc_logsf, _doc_ppf, _doc_isf, _doc_moment, _doc_stats, _doc_entropy, _doc_fit, _doc_expect, _doc_median, _doc_mean, _doc_var, _doc_std, _doc_interval]) _doc_default_longsummary = """\ As an instance of the `rv_continuous` class, `%(name)s` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution. """ _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = %(name)s(%(shapes)s, loc=0, scale=1) - Frozen RV object with the same methods but holding the given shape, location, and scale fixed. """ _doc_default_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate the first four moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability density function (``pdf``): >>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s), 100) >>> ax.plot(x, %(name)s.pdf(x, %(shapes)s), ... 'r-', lw=5, alpha=0.6, label='%(name)s pdf') Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a "frozen" RV object holding the given parameters fixed. Freeze the distribution and display the frozen ``pdf``: >>> rv = %(name)s(%(shapes)s) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf') Check accuracy of ``cdf`` and ``ppf``: >>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s) >>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) And compare the histogram: >>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show() """ _doc_default_locscale = """\ The probability density above is defined in the "standardized" form. To shift and/or scale the distribution use the ``loc`` and ``scale`` parameters. Specifically, ``%(name)s.pdf(x, %(shapes)s, loc, scale)`` is identically equivalent to ``%(name)s.pdf(y, %(shapes)s) / scale`` with ``y = (x - loc) / scale``. Note that shifting the location of a distribution does not make it a "noncentral" distribution; noncentral generalizations of some distributions are available in separate classes. """ _doc_default = ''.join([_doc_default_longsummary, _doc_allmethods, '\n', _doc_default_example]) _doc_default_before_notes = ''.join([_doc_default_longsummary, _doc_allmethods]) docdict = { 'rvs': _doc_rvs, 'pdf': _doc_pdf, 'logpdf': _doc_logpdf, 'cdf': _doc_cdf, 'logcdf': _doc_logcdf, 'sf': _doc_sf, 'logsf': _doc_logsf, 'ppf': _doc_ppf, 'isf': _doc_isf, 'stats': _doc_stats, 'entropy': _doc_entropy, 'fit': _doc_fit, 'moment': _doc_moment, 'expect': _doc_expect, 'interval': _doc_interval, 'mean': _doc_mean, 'std': _doc_std, 'var': _doc_var, 'median': _doc_median, 'allmethods': _doc_allmethods, 'longsummary': _doc_default_longsummary, 'frozennote': _doc_default_frozen_note, 'example': _doc_default_example, 'default': _doc_default, 'before_notes': _doc_default_before_notes, 'after_notes': _doc_default_locscale } # Reuse common content between continuous and discrete docs, change some # minor bits. docdict_discrete = docdict.copy() docdict_discrete['pmf'] = _doc_pmf docdict_discrete['logpmf'] = _doc_logpmf docdict_discrete['expect'] = _doc_expect_discrete _doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf', 'ppf', 'isf', 'stats', 'entropy', 'expect', 'median', 'mean', 'var', 'std', 'interval'] for obj in _doc_disc_methods: docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '') _doc_disc_methods_err_varname = ['cdf', 'logcdf', 'sf', 'logsf'] for obj in _doc_disc_methods_err_varname: docdict_discrete[obj] = docdict_discrete[obj].replace('(x, ', '(k, ') docdict_discrete.pop('pdf') docdict_discrete.pop('logpdf') _doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods]) docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods docdict_discrete['longsummary'] = _doc_default_longsummary.replace( 'rv_continuous', 'rv_discrete') _doc_default_frozen_note = """ Alternatively, the object may be called (as a function) to fix the shape and location parameters returning a "frozen" discrete RV object: rv = %(name)s(%(shapes)s, loc=0) - Frozen RV object with the same methods but holding the given shape and location fixed. """ docdict_discrete['frozennote'] = _doc_default_frozen_note _doc_default_discrete_example = """\ Examples -------- >>> from scipy.stats import %(name)s >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) Calculate the first four moments: %(set_vals_stmt)s >>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk') Display the probability mass function (``pmf``): >>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s), ... %(name)s.ppf(0.99, %(shapes)s)) >>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf') >>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5) Alternatively, the distribution object can be called (as a function) to fix the shape and location. This returns a "frozen" RV object holding the given parameters fixed. Freeze the distribution and display the frozen ``pmf``: >>> rv = %(name)s(%(shapes)s) >>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, ... label='frozen pmf') >>> ax.legend(loc='best', frameon=False) >>> plt.show() Check accuracy of ``cdf`` and ``ppf``: >>> prob = %(name)s.cdf(x, %(shapes)s) >>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s)) True Generate random numbers: >>> r = %(name)s.rvs(%(shapes)s, size=1000) """ _doc_default_discrete_locscale = """\ The probability mass function above is defined in the "standardized" form. To shift distribution use the ``loc`` parameter. Specifically, ``%(name)s.pmf(k, %(shapes)s, loc)`` is identically equivalent to ``%(name)s.pmf(k - loc, %(shapes)s)``. """ docdict_discrete['example'] = _doc_default_discrete_example docdict_discrete['after_notes'] = _doc_default_discrete_locscale _doc_default_before_notes = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods']]) docdict_discrete['before_notes'] = _doc_default_before_notes _doc_default_disc = ''.join([docdict_discrete['longsummary'], docdict_discrete['allmethods'], docdict_discrete['frozennote'], docdict_discrete['example']]) docdict_discrete['default'] = _doc_default_disc # clean up all the separate docstring elements, we do not need them anymore for obj in [s for s in dir() if s.startswith('_doc_')]: exec('del ' + obj) del obj def _moment(data, n, mu=None): if mu is None: mu = data.mean() return ((data - mu)**n).mean() def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args): if (n == 0): return 1.0 elif (n == 1): if mu is None: val = moment_func(1, *args) else: val = mu elif (n == 2): if mu2 is None or mu is None: val = moment_func(2, *args) else: val = mu2 + mu*mu elif (n == 3): if g1 is None or mu2 is None or mu is None: val = moment_func(3, *args) else: mu3 = g1 * np.power(mu2, 1.5) # 3rd central moment val = mu3+3*mu*mu2+mu*mu*mu # 3rd non-central moment elif (n == 4): if g1 is None or g2 is None or mu2 is None or mu is None: val = moment_func(4, *args) else: mu4 = (g2+3.0)*(mu2**2.0) # 4th central moment mu3 = g1*np.power(mu2, 1.5) # 3rd central moment val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu else: val = moment_func(n, *args) return val def _skew(data): """ skew is third central moment / variance**(1.5) """ data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m3 = ((data - mu)**3).mean() return m3 / np.power(m2, 1.5) def _kurtosis(data): """kurtosis is fourth central moment / variance**2 - 3.""" data = np.ravel(data) mu = data.mean() m2 = ((data - mu)**2).mean() m4 = ((data - mu)**4).mean() return m4 / m2**2 - 3 def _fit_determine_optimizer(optimizer): if not callable(optimizer) and isinstance(optimizer, str): if not optimizer.startswith('fmin_'): optimizer = "fmin_"+optimizer if optimizer == 'fmin_': optimizer = 'fmin' try: optimizer = getattr(optimize, optimizer) except AttributeError as e: raise ValueError("%s is not a valid optimizer" % optimizer) from e return optimizer # Frozen RV class class rv_frozen: def __init__(self, dist, *args, **kwds): self.args = args self.kwds = kwds # create a new instance self.dist = dist.__class__(**dist._updated_ctor_param()) shapes, _, _ = self.dist._parse_args(*args, **kwds) self.a, self.b = self.dist._get_support(*shapes) @property def random_state(self): return self.dist._random_state @random_state.setter def random_state(self, seed): self.dist._random_state = check_random_state(seed) def pdf(self, x): # raises AttributeError in frozen discrete distribution return self.dist.pdf(x, *self.args, **self.kwds) def logpdf(self, x): return self.dist.logpdf(x, *self.args, **self.kwds) def cdf(self, x): return self.dist.cdf(x, *self.args, **self.kwds) def logcdf(self, x): return self.dist.logcdf(x, *self.args, **self.kwds) def ppf(self, q): return self.dist.ppf(q, *self.args, **self.kwds) def isf(self, q): return self.dist.isf(q, *self.args, **self.kwds) def rvs(self, size=None, random_state=None): kwds = self.kwds.copy() kwds.update({'size': size, 'random_state': random_state}) return self.dist.rvs(*self.args, **kwds) def sf(self, x): return self.dist.sf(x, *self.args, **self.kwds) def logsf(self, x): return self.dist.logsf(x, *self.args, **self.kwds) def stats(self, moments='mv'): kwds = self.kwds.copy() kwds.update({'moments': moments}) return self.dist.stats(*self.args, **kwds) def median(self): return self.dist.median(*self.args, **self.kwds) def mean(self): return self.dist.mean(*self.args, **self.kwds) def var(self): return self.dist.var(*self.args, **self.kwds) def std(self): return self.dist.std(*self.args, **self.kwds) def moment(self, n): return self.dist.moment(n, *self.args, **self.kwds) def entropy(self): return self.dist.entropy(*self.args, **self.kwds) def pmf(self, k): return self.dist.pmf(k, *self.args, **self.kwds) def logpmf(self, k): return self.dist.logpmf(k, *self.args, **self.kwds) def interval(self, alpha): return self.dist.interval(alpha, *self.args, **self.kwds) def expect(self, func=None, lb=None, ub=None, conditional=False, **kwds): # expect method only accepts shape parameters as positional args # hence convert self.args, self.kwds, also loc/scale # See the .expect method docstrings for the meaning of # other parameters. a, loc, scale = self.dist._parse_args(*self.args, **self.kwds) if isinstance(self.dist, rv_discrete): return self.dist.expect(func, a, loc, lb, ub, conditional, **kwds) else: return self.dist.expect(func, a, loc, scale, lb, ub, conditional, **kwds) def support(self): return self.dist.support(*self.args, **self.kwds) def argsreduce(cond, *args): """Clean arguments to: 1. Ensure all arguments are iterable (arrays of dimension at least one 2. If cond != True and size > 1, ravel(args[i]) where ravel(condition) is True, in 1D. Return list of processed arguments. Examples -------- >>> rng = np.random.default_rng() >>> A = rng.random((4, 5)) >>> B = 2 >>> C = rng.random((1, 5)) >>> cond = np.ones(A.shape) >>> [A1, B1, C1] = argsreduce(cond, A, B, C) >>> A1.shape (4, 5) >>> B1.shape (1,) >>> C1.shape (1, 5) >>> cond[2,:] = 0 >>> [A1, B1, C1] = argsreduce(cond, A, B, C) >>> A1.shape (15,) >>> B1.shape (1,) >>> C1.shape (15,) """ # some distributions assume arguments are iterable. newargs = np.atleast_1d(*args) # np.atleast_1d returns an array if only one argument, or a list of arrays # if more than one argument. if not isinstance(newargs, list): newargs = [newargs, ] if np.all(cond): # Nothing to do return newargs s = cond.shape # np.extract returns flattened arrays, which are not broadcastable together # unless they are either the same size or size == 1. return [(arg if np.size(arg) == 1 else np.extract(cond, np.broadcast_to(arg, s))) for arg in newargs] parse_arg_template = """ def _parse_args(self, %(shape_arg_str)s %(locscale_in)s): return (%(shape_arg_str)s), %(locscale_out)s def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None): return self._argcheck_rvs(%(shape_arg_str)s %(locscale_out)s, size=size) def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'): return (%(shape_arg_str)s), %(locscale_out)s, moments """ # Both the continuous and discrete distributions depend on ncx2. # The function name ncx2 is an abbreviation for noncentral chi squared. def _ncx2_log_pdf(x, df, nc): # We use (xs**2 + ns**2)/2 = (xs - ns)**2/2 + xs*ns, and include the # factor of exp(-xs*ns) into the ive function to improve numerical # stability at large values of xs. See also `rice.pdf`. df2 = df/2.0 - 1.0 xs, ns = np.sqrt(x), np.sqrt(nc) res = xlogy(df2/2.0, x/nc) - 0.5*(xs - ns)**2 corr = ive(df2, xs*ns) / 2.0 # Return res + np.log(corr) avoiding np.log(0) return _lazywhere( corr > 0, (res, corr), f=lambda r, c: r + np.log(c), fillvalue=-np.inf) def _ncx2_pdf(x, df, nc): # Copy of _ncx2_log_pdf avoiding np.log(0) when corr = 0 df2 = df/2.0 - 1.0 xs, ns = np.sqrt(x), np.sqrt(nc) res = xlogy(df2/2.0, x/nc) - 0.5*(xs - ns)**2 corr = ive(df2, xs*ns) / 2.0 return np.exp(res) * corr def _ncx2_cdf(x, df, nc): return chndtr(x, df, nc) class rv_generic: """Class which encapsulates common functionality between rv_discrete and rv_continuous. """ def __init__(self, seed=None): super().__init__() # figure out if _stats signature has 'moments' keyword sig = _getfullargspec(self._stats) self._stats_has_moments = ((sig.varkw is not None) or ('moments' in sig.args) or ('moments' in sig.kwonlyargs)) self._random_state = check_random_state(seed) # For historical reasons, `size` was made an attribute that was read # inside _rvs(). The code is being changed so that 'size' # is an argument # to self._rvs(). However some external (non-SciPy) distributions # have not # been updated. Maintain backwards compatibility by checking if # the self._rvs() signature has the 'size' keyword, or a **kwarg, # and if not set self._size inside self.rvs() # before calling self._rvs(). argspec = inspect.getfullargspec(self._rvs) self._rvs_uses_size_attribute = (argspec.varkw is None and 'size' not in argspec.args and 'size' not in argspec.kwonlyargs) # Warn on first use only self._rvs_size_warned = False @property def random_state(self): """Get or set the generator object for generating random variates. If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. """ return self._random_state @random_state.setter def random_state(self, seed): self._random_state = check_random_state(seed) def __setstate__(self, state): try: self.__dict__.update(state) # attaches the dynamically created methods on each instance. # if a subclass overrides rv_generic.__setstate__, or implements # it's own _attach_methods, then it must make sure that # _attach_argparser_methods is called. self._attach_methods() except ValueError: # reconstitute an old pickle scipy<1.6, that contains # (_ctor_param, random_state) as state self._ctor_param = state[0] self._random_state = state[1] self.__init__() def _attach_methods(self): """Attaches dynamically created methods to the rv_* instance. This method must be overridden by subclasses, and must itself call _attach_argparser_methods. This method is called in __init__ in subclasses, and in __setstate__ """ raise NotImplementedError def _attach_argparser_methods(self): """ Generates the argument-parsing functions dynamically and attaches them to the instance. Should be called from `_attach_methods`, typically in __init__ and during unpickling (__setstate__) """ ns = {} exec(self._parse_arg_template, ns) # NB: attach to the instance, not class for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']: setattr(self, name, types.MethodType(ns[name], self)) def _construct_argparser( self, meths_to_inspect, locscale_in, locscale_out): """Construct the parser string for the shape arguments. This method should be called in __init__ of a class for each distribution. It creates the `_parse_arg_template` attribute that is then used by `_attach_argparser_methods` to dynamically create and attach the `_parse_args`, `_parse_args_stats`, `_parse_args_rvs` methods to the instance. If self.shapes is a non-empty string, interprets it as a comma-separated list of shape parameters. Otherwise inspects the call signatures of `meths_to_inspect` and constructs the argument-parsing functions from these. In this case also sets `shapes` and `numargs`. """ if self.shapes: # sanitize the user-supplied shapes if not isinstance(self.shapes, str): raise TypeError('shapes must be a string.') shapes = self.shapes.replace(',', ' ').split() for field in shapes: if keyword.iskeyword(field): raise SyntaxError('keywords cannot be used as shapes.') if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field): raise SyntaxError( 'shapes must be valid python identifiers') else: # find out the call signatures (_pdf, _cdf etc), deduce shape # arguments. Generic methods only have 'self, x', any further args # are shapes. shapes_list = [] for meth in meths_to_inspect: shapes_args = _getfullargspec(meth) # NB does not contain self args = shapes_args.args[1:] # peel off 'x', too if args: shapes_list.append(args) # *args or **kwargs are not allowed w/automatic shapes if shapes_args.varargs is not None: raise TypeError( '*args are not allowed w/out explicit shapes') if shapes_args.varkw is not None: raise TypeError( '**kwds are not allowed w/out explicit shapes') if shapes_args.kwonlyargs: raise TypeError( 'kwonly args are not allowed w/out explicit shapes') if shapes_args.defaults is not None: raise TypeError('defaults are not allowed for shapes') if shapes_list: shapes = shapes_list[0] # make sure the signatures are consistent for item in shapes_list: if item != shapes: raise TypeError('Shape arguments are inconsistent.') else: shapes = [] # have the arguments, construct the method from template shapes_str = ', '.join(shapes) + ', ' if shapes else '' # NB: not None dct = dict(shape_arg_str=shapes_str, locscale_in=locscale_in, locscale_out=locscale_out, ) # this string is used by _attach_argparser_methods self._parse_arg_template = parse_arg_template % dct self.shapes = ', '.join(shapes) if shapes else None if not hasattr(self, 'numargs'): # allows more general subclassing with *args self.numargs = len(shapes) def _construct_doc(self, docdict, shapes_vals=None): """Construct the instance docstring with string substitutions.""" tempdict = docdict.copy() tempdict['name'] = self.name or 'distname' tempdict['shapes'] = self.shapes or '' if shapes_vals is None: shapes_vals = () vals = ', '.join('%.3g' % val for val in shapes_vals) tempdict['vals'] = vals tempdict['shapes_'] = self.shapes or '' if self.shapes and self.numargs == 1: tempdict['shapes_'] += ',' if self.shapes: tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals) else: tempdict['set_vals_stmt'] = '' if self.shapes is None: # remove shapes from call parameters if there are none for item in ['default', 'before_notes']: tempdict[item] = tempdict[item].replace( "\n%(shapes)s : array_like\n shape parameters", "") for i in range(2): if self.shapes is None: # necessary because we use %(shapes)s in two forms (w w/o ", ") self.__doc__ = self.__doc__.replace("%(shapes)s, ", "") try: self.__doc__ = doccer.docformat(self.__doc__, tempdict) except TypeError as e: raise Exception("Unable to construct docstring for " "distribution \"%s\": %s" % (self.name, repr(e))) from e # correct for empty shapes self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')') def _construct_default_doc(self, longname=None, extradoc=None, docdict=None, discrete='continuous'): """Construct instance docstring from the default template.""" if longname is None: longname = 'A' if extradoc is None: extradoc = '' if extradoc.startswith('\n\n'): extradoc = extradoc[2:] self.__doc__ = ''.join(['%s %s random variable.' % (longname, discrete), '\n\n%(before_notes)s\n', docheaders['notes'], extradoc, '\n%(example)s']) self._construct_doc(docdict) def freeze(self, *args, **kwds): """Freeze the distribution for the given arguments. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution. Should include all the non-optional arguments, may include ``loc`` and ``scale``. Returns ------- rv_frozen : rv_frozen instance The frozen distribution. """ return rv_frozen(self, *args, **kwds) def __call__(self, *args, **kwds): return self.freeze(*args, **kwds) __call__.__doc__ = freeze.__doc__ # The actual calculation functions (no basic checking need be done) # If these are defined, the others won't be looked at. # Otherwise, the other set can be defined. def _stats(self, *args, **kwds): return None, None, None, None # Noncentral moments (also known as the moment about the origin). # Expressed in LaTeX, munp would be $\mu'_{n}$, i.e. "mu-sub-n-prime". # The primed mu is a widely used notation for the noncentral moment. def _munp(self, n, *args): # Silence floating point warnings from integration. with np.errstate(all='ignore'): vals = self.generic_moment(n, *args) return vals def _argcheck_rvs(self, *args, **kwargs): # Handle broadcasting and size validation of the rvs method. # Subclasses should not have to override this method. # The rule is that if `size` is not None, then `size` gives the # shape of the result (integer values of `size` are treated as # tuples with length 1; i.e. `size=3` is the same as `size=(3,)`.) # # `args` is expected to contain the shape parameters (if any), the # location and the scale in a flat tuple (e.g. if there are two # shape parameters `a` and `b`, `args` will be `(a, b, loc, scale)`). # The only keyword argument expected is 'size'. size = kwargs.get('size', None) all_bcast = np.broadcast_arrays(*args) def squeeze_left(a): while a.ndim > 0 and a.shape[0] == 1: a = a[0] return a # Eliminate trivial leading dimensions. In the convention # used by numpy's random variate generators, trivial leading # dimensions are effectively ignored. In other words, when `size` # is given, trivial leading dimensions of the broadcast parameters # in excess of the number of dimensions in size are ignored, e.g. # >>> np.random.normal([[1, 3, 5]], [[[[0.01]]]], size=3) # array([ 1.00104267, 3.00422496, 4.99799278]) # If `size` is not given, the exact broadcast shape is preserved: # >>> np.random.normal([[1, 3, 5]], [[[[0.01]]]]) # array([[[[ 1.00862899, 3.00061431, 4.99867122]]]]) # all_bcast = [squeeze_left(a) for a in all_bcast] bcast_shape = all_bcast[0].shape bcast_ndim = all_bcast[0].ndim if size is None: size_ = bcast_shape else: size_ = tuple(np.atleast_1d(size)) # Check compatibility of size_ with the broadcast shape of all # the parameters. This check is intended to be consistent with # how the numpy random variate generators (e.g. np.random.normal, # np.random.beta) handle their arguments. The rule is that, if size # is given, it determines the shape of the output. Broadcasting # can't change the output size. # This is the standard broadcasting convention of extending the # shape with fewer dimensions with enough dimensions of length 1 # so that the two shapes have the same number of dimensions. ndiff = bcast_ndim - len(size_) if ndiff < 0: bcast_shape = (1,)*(-ndiff) + bcast_shape elif ndiff > 0: size_ = (1,)*ndiff + size_ # This compatibility test is not standard. In "regular" broadcasting, # two shapes are compatible if for each dimension, the lengths are the # same or one of the lengths is 1. Here, the length of a dimension in # size_ must not be less than the corresponding length in bcast_shape. ok = all([bcdim == 1 or bcdim == szdim for (bcdim, szdim) in zip(bcast_shape, size_)]) if not ok: raise ValueError("size does not match the broadcast shape of " "the parameters. %s, %s, %s" % (size, size_, bcast_shape)) param_bcast = all_bcast[:-2] loc_bcast = all_bcast[-2] scale_bcast = all_bcast[-1] return param_bcast, loc_bcast, scale_bcast, size_ # These are the methods you must define (standard form functions) # NB: generic _pdf, _logpdf, _cdf are different for # rv_continuous and rv_discrete hence are defined in there def _argcheck(self, *args): """Default check for correct values on args and keywords. Returns condition array of 1's where arguments are correct and 0's where they are not. """ cond = 1 for arg in args: cond = logical_and(cond, (asarray(arg) > 0)) return cond def _get_support(self, *args, **kwargs): """Return the support of the (unscaled, unshifted) distribution. *Must* be overridden by distributions which have support dependent upon the shape parameters of the distribution. Any such override *must not* set or change any of the class members, as these members are shared amongst all instances of the distribution. Parameters ---------- arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- a, b : numeric (float, or int or +/-np.inf) end-points of the distribution's support for the specified shape parameters. """ return self.a, self.b def _support_mask(self, x, *args): a, b = self._get_support(*args) with np.errstate(invalid='ignore'): return (a <= x) & (x <= b) def _open_support_mask(self, x, *args): a, b = self._get_support(*args) with np.errstate(invalid='ignore'): return (a < x) & (x < b) def _rvs(self, *args, size=None, random_state=None): # This method must handle size being a tuple, and it must # properly broadcast *args and size. size might be # an empty tuple, which means a scalar random variate is to be # generated. # Use basic inverse cdf algorithm for RV generation as default. U = random_state.uniform(size=size) Y = self._ppf(U, *args) return Y def _logcdf(self, x, *args): with np.errstate(divide='ignore'): return log(self._cdf(x, *args)) def _sf(self, x, *args): return 1.0-self._cdf(x, *args) def _logsf(self, x, *args): with np.errstate(divide='ignore'): return log(self._sf(x, *args)) def _ppf(self, q, *args): return self._ppfvec(q, *args) def _isf(self, q, *args): return self._ppf(1.0-q, *args) # use correct _ppf for subclasses # These are actually called, and should not be overwritten if you # want to keep error checking. def rvs(self, *args, **kwds): """Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional Scale parameter (default=1). size : int or tuple of ints, optional Defining number of random variates (default is 1). random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- rvs : ndarray or scalar Random variates of given `size`. """ discrete = kwds.pop('discrete', None) rndm = kwds.pop('random_state', None) args, loc, scale, size = self._parse_args_rvs(*args, **kwds) cond = logical_and(self._argcheck(*args), (scale >= 0)) if not np.all(cond): raise ValueError("Domain error in arguments.") if np.all(scale == 0): return loc*ones(size, 'd') # extra gymnastics needed for a custom random_state if rndm is not None: random_state_saved = self._random_state random_state = check_random_state(rndm) else: random_state = self._random_state # Maintain backwards compatibility by setting self._size # for distributions that still need it. if self._rvs_uses_size_attribute: if not self._rvs_size_warned: warnings.warn( f'The signature of {self._rvs} does not contain ' f'a "size" keyword. Such signatures are deprecated.', np.VisibleDeprecationWarning) self._rvs_size_warned = True self._size = size self._random_state = random_state vals = self._rvs(*args) else: vals = self._rvs(*args, size=size, random_state=random_state) vals = vals * scale + loc # do not forget to restore the _random_state if rndm is not None: self._random_state = random_state_saved # Cast to int if discrete if discrete: if size == (): vals = int(vals) else: vals = vals.astype(int) return vals def stats(self, *args, **kwds): """Some statistics of the given RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional (continuous RVs only) scale parameter (default=1) moments : str, optional composed of letters ['mvsk'] defining which moments to compute: 'm' = mean, 'v' = variance, 's' = (Fisher's) skew, 'k' = (Fisher's) kurtosis. (default is 'mv') Returns ------- stats : sequence of requested moments. """ args, loc, scale, moments = self._parse_args_stats(*args, **kwds) # scale = 1 by construction for discrete RVs loc, scale = map(asarray, (loc, scale)) args = tuple(map(asarray, args)) cond = self._argcheck(*args) & (scale > 0) & (loc == loc) output = [] default = np.full(shape(cond), fill_value=self.badvalue) # Use only entries that are valid in calculation if np.any(cond): goodargs = argsreduce(cond, *(args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] if self._stats_has_moments: mu, mu2, g1, g2 = self._stats(*goodargs, **{'moments': moments}) else: mu, mu2, g1, g2 = self._stats(*goodargs) if g1 is None: mu3 = None else: if mu2 is None: mu2 = self._munp(2, *goodargs) if g2 is None: # (mu2**1.5) breaks down for nan and inf mu3 = g1 * np.power(mu2, 1.5) if 'm' in moments: if mu is None: mu = self._munp(1, *goodargs) out0 = default.copy() place(out0, cond, mu * scale + loc) output.append(out0) if 'v' in moments: if mu2 is None: mu2p = self._munp(2, *goodargs) if mu is None: mu = self._munp(1, *goodargs) # if mean is inf then var is also inf with np.errstate(invalid='ignore'): mu2 = np.where(np.isfinite(mu), mu2p - mu**2, np.inf) out0 = default.copy() place(out0, cond, mu2 * scale * scale) output.append(out0) if 's' in moments: if g1 is None: mu3p = self._munp(3, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu with np.errstate(invalid='ignore'): mu3 = (-mu*mu - 3*mu2)*mu + mu3p g1 = mu3 / np.power(mu2, 1.5) out0 = default.copy() place(out0, cond, g1) output.append(out0) if 'k' in moments: if g2 is None: mu4p = self._munp(4, *goodargs) if mu is None: mu = self._munp(1, *goodargs) if mu2 is None: mu2p = self._munp(2, *goodargs) mu2 = mu2p - mu * mu if mu3 is None: mu3p = self._munp(3, *goodargs) with np.errstate(invalid='ignore'): mu3 = (-mu * mu - 3 * mu2) * mu + mu3p with np.errstate(invalid='ignore'): mu4 = ((-mu**2 - 6*mu2) * mu - 4*mu3)*mu + mu4p g2 = mu4 / mu2**2.0 - 3.0 out0 = default.copy() place(out0, cond, g2) output.append(out0) else: # no valid args output = [default.copy() for _ in moments] if len(output) == 1: return output[0] else: return tuple(output) def entropy(self, *args, **kwds): """Differential entropy of the RV. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). scale : array_like, optional (continuous distributions only). Scale parameter (default=1). Notes ----- Entropy is defined base `e`: >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5))) >>> np.allclose(drv.entropy(), np.log(2.0)) True """ args, loc, scale = self._parse_args(*args, **kwds) # NB: for discrete distributions scale=1 by construction in _parse_args loc, scale = map(asarray, (loc, scale)) args = tuple(map(asarray, args)) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) output = zeros(shape(cond0), 'd') place(output, (1-cond0), self.badvalue) goodargs = argsreduce(cond0, scale, *args) goodscale = goodargs[0] goodargs = goodargs[1:] place(output, cond0, self.vecentropy(*goodargs) + log(goodscale)) return output def moment(self, n, *args, **kwds): """n-th order non-central moment of distribution. Parameters ---------- n : int, n >= 1 Order of moment. arg1, arg2, arg3,... : float The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) """ args, loc, scale = self._parse_args(*args, **kwds) if not (self._argcheck(*args) and (scale > 0)): return nan if (floor(n) != n): raise ValueError("Moment must be an integer.") if (n < 0): raise ValueError("Moment must be positive.") mu, mu2, g1, g2 = None, None, None, None if (n > 0) and (n < 5): if self._stats_has_moments: mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]} else: mdict = {} mu, mu2, g1, g2 = self._stats(*args, **mdict) val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args) # Convert to transformed X = L + S*Y # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n) if loc == 0: return scale**n * val else: result = 0 fac = float(scale) / float(loc) for k in range(n): valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args) result += comb(n, k, exact=True)*(fac**k) * valk result += fac**n * val return result * loc**n def median(self, *args, **kwds): """Median of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter, Default is 0. scale : array_like, optional Scale parameter, Default is 1. Returns ------- median : float The median of the distribution. See Also -------- rv_discrete.ppf Inverse of the CDF """ return self.ppf(0.5, *args, **kwds) def mean(self, *args, **kwds): """Mean of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- mean : float the mean of the distribution """ kwds['moments'] = 'm' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def var(self, *args, **kwds): """Variance of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- var : float the variance of the distribution """ kwds['moments'] = 'v' res = self.stats(*args, **kwds) if isinstance(res, ndarray) and res.ndim == 0: return res[()] return res def std(self, *args, **kwds): """Standard deviation of the distribution. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- std : float standard deviation of the distribution """ kwds['moments'] = 'v' res = sqrt(self.stats(*args, **kwds)) return res def interval(self, alpha, *args, **kwds): """Confidence interval with equal areas around the median. Parameters ---------- alpha : array_like of float Probability that an rv will be drawn from the returned range. Each value should be in the range [0, 1]. arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, Default is 0. scale : array_like, optional scale parameter, Default is 1. Returns ------- a, b : ndarray of float end-points of range that contain ``100 * alpha %`` of the rv's possible values. """ alpha = asarray(alpha) if np.any((alpha > 1) | (alpha < 0)): raise ValueError("alpha must be between 0 and 1 inclusive") q1 = (1.0-alpha)/2 q2 = (1.0+alpha)/2 a = self.ppf(q1, *args, **kwds) b = self.ppf(q2, *args, **kwds) return a, b def support(self, *args, **kwargs): """Support of the distribution. Parameters ---------- arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional location parameter, Default is 0. scale : array_like, optional scale parameter, Default is 1. Returns ------- a, b : array_like end-points of the distribution's support. """ args, loc, scale = self._parse_args(*args, **kwargs) arrs = np.broadcast_arrays(*args, loc, scale) args, loc, scale = arrs[:-2], arrs[-2], arrs[-1] cond = self._argcheck(*args) & (scale > 0) _a, _b = self._get_support(*args) if cond.all(): return _a * scale + loc, _b * scale + loc elif cond.ndim == 0: return self.badvalue, self.badvalue # promote bounds to at least float to fill in the badvalue _a, _b = np.asarray(_a).astype('d'), np.asarray(_b).astype('d') out_a, out_b = _a * scale + loc, _b * scale + loc place(out_a, 1-cond, self.badvalue) place(out_b, 1-cond, self.badvalue) return out_a, out_b def _get_fixed_fit_value(kwds, names): """ Given names such as `['f0', 'fa', 'fix_a']`, check that there is at most one non-None value in `kwds` associaed with those names. Return that value, or None if none of the names occur in `kwds`. As a side effect, all occurrences of those names in `kwds` are removed. """ vals = [(name, kwds.pop(name)) for name in names if name in kwds] if len(vals) > 1: repeated = [name for name, val in vals] raise ValueError("fit method got multiple keyword arguments to " "specify the same fixed parameter: " + ', '.join(repeated)) return vals[0][1] if vals else None # continuous random variables: implement maybe later # # hf --- Hazard Function (PDF / SF) # chf --- Cumulative hazard function (-log(SF)) # psf --- Probability sparsity function (reciprocal of the pdf) in # units of percent-point-function (as a function of q). # Also, the derivative of the percent-point function. class rv_continuous(rv_generic): """A generic continuous random variable class meant for subclassing. `rv_continuous` is a base class to construct specific distribution classes and instances for continuous random variables. It cannot be used directly as a distribution. Parameters ---------- momtype : int, optional The type of generic moment calculation to use: 0 for pdf, 1 (default) for ppf. a : float, optional Lower bound of the support of the distribution, default is minus infinity. b : float, optional Upper bound of the support of the distribution, default is plus infinity. xtol : float, optional The tolerance for fixed point calculation for generic ppf. badvalue : float, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example ``"m, n"`` for a distribution that takes two integers as the two shape arguments for all its methods. If not provided, shape parameters will be inferred from the signature of the private methods, ``_pdf`` and ``_cdf`` of the instance. extradoc : str, optional, deprecated This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Methods ------- rvs pdf logpdf cdf logcdf sf logsf ppf isf moment stats entropy expect median mean std var interval __call__ fit fit_loc_scale nnlf support Notes ----- Public methods of an instance of a distribution class (e.g., ``pdf``, ``cdf``) check their arguments and pass valid arguments to private, computational methods (``_pdf``, ``_cdf``). For ``pdf(x)``, ``x`` is valid if it is within the support of the distribution. Whether a shape parameter is valid is decided by an ``_argcheck`` method (which defaults to checking that its arguments are strictly positive.) **Subclassing** New random variables can be defined by subclassing the `rv_continuous` class and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized to location 0 and scale 1). If positive argument checking is not correct for your RV then you will also need to re-define the ``_argcheck`` method. For most of the scipy.stats distributions, the support interval doesn't depend on the shape parameters. ``x`` being in the support interval is equivalent to ``self.a <= x <= self.b``. If either of the endpoints of the support do depend on the shape parameters, then i) the distribution must implement the ``_get_support`` method; and ii) those dependent endpoints must be omitted from the distribution's call to the ``rv_continuous`` initializer. Correct, but potentially slow defaults exist for the remaining methods but for speed and/or accuracy you can over-ride:: _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf The default method ``_rvs`` relies on the inverse of the cdf, ``_ppf``, applied to a uniform random variate. In order to generate random variates efficiently, either the default ``_ppf`` needs to be overwritten (e.g. if the inverse cdf can expressed in an explicit form) or a sampling method needs to be implemented in a custom ``_rvs`` method. If possible, you should override ``_isf``, ``_sf`` or ``_logsf``. The main reason would be to improve numerical accuracy: for example, the survival function ``_sf`` is computed as ``1 - _cdf`` which can result in loss of precision if ``_cdf(x)`` is close to one. **Methods that can be overwritten by subclasses** :: _rvs _pdf _cdf _sf _ppf _isf _stats _munp _entropy _argcheck _get_support There are additional (internal and private) generic methods that can be useful for cross-checking and for debugging, but might work in all cases when directly called. A note on ``shapes``: subclasses need not specify them explicitly. In this case, `shapes` will be automatically deduced from the signatures of the overridden methods (`pdf`, `cdf` etc). If, for some reason, you prefer to avoid relying on introspection, you can specify ``shapes`` explicitly as an argument to the instance constructor. **Frozen Distributions** Normally, you must provide shape parameters (and, optionally, location and scale parameters to each call of a method of a distribution. Alternatively, the object may be called (as a function) to fix the shape, location, and scale parameters returning a "frozen" continuous RV object: rv = generic(<shape(s)>, loc=0, scale=1) `rv_frozen` object with the same methods but holding the given shape, location, and scale fixed **Statistics** Statistics are computed using numerical integration by default. For speed you can redefine this using ``_stats``: - take shape parameters and return mu, mu2, g1, g2 - If you can't compute one of these, return it as None - Can also be defined with a keyword argument ``moments``, which is a string composed of "m", "v", "s", and/or "k". Only the components appearing in string should be computed and returned in the order "m", "v", "s", or "k" with missing values returned as None. Alternatively, you can override ``_munp``, which takes ``n`` and shape parameters and returns the n-th non-central moment of the distribution. Examples -------- To create a new Gaussian distribution, we would do the following: >>> from scipy.stats import rv_continuous >>> class gaussian_gen(rv_continuous): ... "Gaussian distribution" ... def _pdf(self, x): ... return np.exp(-x**2 / 2.) / np.sqrt(2.0 * np.pi) >>> gaussian = gaussian_gen(name='gaussian') ``scipy.stats`` distributions are *instances*, so here we subclass `rv_continuous` and create an instance. With this, we now have a fully functional distribution with all relevant methods automagically generated by the framework. Note that above we defined a standard normal distribution, with zero mean and unit variance. Shifting and scaling of the distribution can be done by using ``loc`` and ``scale`` parameters: ``gaussian.pdf(x, loc, scale)`` essentially computes ``y = (x - loc) / scale`` and ``gaussian._pdf(y) / scale``. """ def __init__(self, momtype=1, a=None, b=None, xtol=1e-14, badvalue=None, name=None, longname=None, shapes=None, extradoc=None, seed=None): super().__init__(seed) # save the ctor parameters, cf generic freeze self._ctor_param = dict( momtype=momtype, a=a, b=b, xtol=xtol, badvalue=badvalue, name=name, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan if name is None: name = 'Distribution' self.badvalue = badvalue self.name = name self.a = a self.b = b if a is None: self.a = -inf if b is None: self.b = inf self.xtol = xtol self.moment_type = momtype self.shapes = shapes self.extradoc = extradoc self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf], locscale_in='loc=0, scale=1', locscale_out='loc, scale') self._attach_methods() if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if sys.flags.optimize < 2: # Skip adding docstrings if interpreter is run with -OO if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc, docdict=docdict, discrete='continuous') else: dct = dict(distcont) self._construct_doc(docdict, dct.get(self.name)) def __getstate__(self): dct = self.__dict__.copy() # these methods will be remade in __setstate__ # _random_state attribute is taken care of by rv_generic attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs", "_cdfvec", "_ppfvec", "vecentropy", "generic_moment"] [dct.pop(attr, None) for attr in attrs] return dct def _attach_methods(self): """ Attaches dynamically created methods to the rv_continuous instance. """ # _attach_methods is responsible for calling _attach_argparser_methods self._attach_argparser_methods() # nin correction self._ppfvec = vectorize(self._ppf_single, otypes='d') self._ppfvec.nin = self.numargs + 1 self.vecentropy = vectorize(self._entropy, otypes='d') self._cdfvec = vectorize(self._cdf_single, otypes='d') self._cdfvec.nin = self.numargs + 1 if self.moment_type == 0: self.generic_moment = vectorize(self._mom0_sc, otypes='d') else: self.generic_moment = vectorize(self._mom1_sc, otypes='d') # Because of the *args argument of _mom0_sc, vectorize cannot count the # number of arguments correctly. self.generic_moment.nin = self.numargs + 1 def _updated_ctor_param(self): """Return the current version of _ctor_param, possibly updated by user. Used by freezing. Keep this in sync with the signature of __init__. """ dct = self._ctor_param.copy() dct['a'] = self.a dct['b'] = self.b dct['xtol'] = self.xtol dct['badvalue'] = self.badvalue dct['name'] = self.name dct['shapes'] = self.shapes dct['extradoc'] = self.extradoc return dct def _ppf_to_solve(self, x, q, *args): return self.cdf(*(x, )+args)-q def _ppf_single(self, q, *args): factor = 10. left, right = self._get_support(*args) if np.isinf(left): left = min(-factor, right) while self._ppf_to_solve(left, q, *args) > 0.: left, right = left * factor, left # left is now such that cdf(left) <= q # if right has changed, then cdf(right) > q if np.isinf(right): right = max(factor, left) while self._ppf_to_solve(right, q, *args) < 0.: left, right = right, right * factor # right is now such that cdf(right) >= q return optimize.brentq(self._ppf_to_solve, left, right, args=(q,)+args, xtol=self.xtol) # moment from definition def _mom_integ0(self, x, m, *args): return x**m * self.pdf(x, *args) def _mom0_sc(self, m, *args): _a, _b = self._get_support(*args) return integrate.quad(self._mom_integ0, _a, _b, args=(m,)+args)[0] # moment calculated using ppf def _mom_integ1(self, q, m, *args): return (self.ppf(q, *args))**m def _mom1_sc(self, m, *args): return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0] def _pdf(self, x, *args): return derivative(self._cdf, x, dx=1e-5, args=args, order=5) # Could also define any of these def _logpdf(self, x, *args): return log(self._pdf(x, *args)) def _cdf_single(self, x, *args): _a, _b = self._get_support(*args) return integrate.quad(self._pdf, _a, x, args=args)[0] def _cdf(self, x, *args): return self._cdfvec(x, *args) # generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined # in rv_generic def pdf(self, x, *args, **kwds): """Probability density function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- pdf : ndarray Probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._support_mask(x, *args) & (scale > 0) cond = cond0 & cond1 output = zeros(shape(cond), dtyp) putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if np.any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._pdf(*goodargs) / scale) if output.ndim == 0: return output[()] return output def logpdf(self, x, *args, **kwds): """Log of the probability density function at x of the given RV. This uses a more numerically accurate calculation if available. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logpdf : array_like Log of the probability density function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._support_mask(x, *args) & (scale > 0) cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) putmask(output, (1-cond0)+np.isnan(x), self.badvalue) if np.any(cond): goodargs = argsreduce(cond, *((x,)+args+(scale,))) scale, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._logpdf(*goodargs) - log(scale)) if output.ndim == 0: return output[()] return output def cdf(self, x, *args, **kwds): """ Cumulative distribution function of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- cdf : ndarray Cumulative distribution function evaluated at `x` """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._open_support_mask(x, *args) & (scale > 0) cond2 = (x >= np.asarray(_b)) & cond0 cond = cond0 & cond1 output = zeros(shape(cond), dtyp) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if np.any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._cdf(*goodargs)) if output.ndim == 0: return output[()] return output def logcdf(self, x, *args, **kwds): """Log of the cumulative distribution function at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._open_support_mask(x, *args) & (scale > 0) cond2 = (x >= _b) & cond0 cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if np.any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self, x, *args, **kwds): """Survival function (1 - `cdf`) at x of the given RV. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- sf : array_like Survival function evaluated at x """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._open_support_mask(x, *args) & (scale > 0) cond2 = cond0 & (x <= _a) cond = cond0 & cond1 output = zeros(shape(cond), dtyp) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 1.0) if np.any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._sf(*goodargs)) if output.ndim == 0: return output[()] return output def logsf(self, x, *args, **kwds): """Log of the survival function of the given RV. Returns the log of the "survival function," defined as (1 - `cdf`), evaluated at `x`. Parameters ---------- x : array_like quantiles arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- logsf : ndarray Log of the survival function evaluated at `x`. """ args, loc, scale = self._parse_args(*args, **kwds) x, loc, scale = map(asarray, (x, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) dtyp = np.find_common_type([x.dtype, np.float64], []) x = np.asarray((x - loc)/scale, dtype=dtyp) cond0 = self._argcheck(*args) & (scale > 0) cond1 = self._open_support_mask(x, *args) & (scale > 0) cond2 = cond0 & (x <= _a) cond = cond0 & cond1 output = empty(shape(cond), dtyp) output.fill(NINF) place(output, (1-cond0)+np.isnan(x), self.badvalue) place(output, cond2, 0.0) if np.any(cond): goodargs = argsreduce(cond, *((x,)+args)) place(output, cond, self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self, q, *args, **kwds): """Percent point function (inverse of `cdf`) at q of the given RV. Parameters ---------- q : array_like lower tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : array_like quantile corresponding to the lower tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 0) cond3 = cond0 & (q == 1) cond = cond0 & cond1 output = np.full(shape(cond), fill_value=self.badvalue) lower_bound = _a * scale + loc upper_bound = _b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if np.any(cond): # call only if at least 1 entry goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._ppf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def isf(self, q, *args, **kwds): """Inverse survival function (inverse of `sf`) at q of the given RV. Parameters ---------- q : array_like upper tail probability arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional location parameter (default=0) scale : array_like, optional scale parameter (default=1) Returns ------- x : ndarray or scalar Quantile corresponding to the upper tail probability q. """ args, loc, scale = self._parse_args(*args, **kwds) q, loc, scale = map(asarray, (q, loc, scale)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc) cond1 = (0 < q) & (q < 1) cond2 = cond0 & (q == 1) cond3 = cond0 & (q == 0) cond = cond0 & cond1 output = np.full(shape(cond), fill_value=self.badvalue) lower_bound = _a * scale + loc upper_bound = _b * scale + loc place(output, cond2, argsreduce(cond2, lower_bound)[0]) place(output, cond3, argsreduce(cond3, upper_bound)[0]) if np.any(cond): goodargs = argsreduce(cond, *((q,)+args+(scale, loc))) scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2] place(output, cond, self._isf(*goodargs) * scale + loc) if output.ndim == 0: return output[()] return output def _nnlf(self, x, *args): return -np.sum(self._logpdf(x, *args), axis=0) def _unpack_loc_scale(self, theta): try: loc = theta[-2] scale = theta[-1] args = tuple(theta[:-2]) except IndexError as e: raise ValueError("Not enough input arguments.") from e return loc, scale, args def nnlf(self, theta, x): """Negative loglikelihood function. Notes ----- This is ``-sum(log pdf(x, theta), axis=0)`` where `theta` are the parameters (including loc and scale). """ loc, scale, args = self._unpack_loc_scale(theta) if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) n_log_scale = len(x) * log(scale) if np.any(~self._support_mask(x, *args)): return inf return self._nnlf(x, *args) + n_log_scale def _nnlf_and_penalty(self, x, args): cond0 = ~self._support_mask(x, *args) n_bad = np.count_nonzero(cond0, axis=0) if n_bad > 0: x = argsreduce(~cond0, x)[0] logpdf = self._logpdf(x, *args) finite_logpdf = np.isfinite(logpdf) n_bad += np.sum(~finite_logpdf, axis=0) if n_bad > 0: penalty = n_bad * log(_XMAX) * 100 return -np.sum(logpdf[finite_logpdf], axis=0) + penalty return -np.sum(logpdf, axis=0) def _penalized_nnlf(self, theta, x): """Penalized negative loglikelihood function. i.e., - sum (log pdf(x, theta), axis=0) + penalty where theta are the parameters (including loc and scale) """ loc, scale, args = self._unpack_loc_scale(theta) if not self._argcheck(*args) or scale <= 0: return inf x = asarray((x-loc) / scale) n_log_scale = len(x) * log(scale) return self._nnlf_and_penalty(x, args) + n_log_scale def _fitstart(self, data, args=None): """Starting point for fit (shape arguments + loc + scale).""" if args is None: args = (1.0,)*self.numargs loc, scale = self._fit_loc_scale_support(data, *args) return args + (loc, scale) def _reduce_func(self, args, kwds, data=None): """ Return the (possibly reduced) function to optimize in order to find MLE estimates for the .fit method. """ # Convert fixed shape parameters to the standard numeric form: e.g. for # stats.beta, shapes='a, b'. To fix `a`, the caller can give a value # for `f0`, `fa` or 'fix_a'. The following converts the latter two # into the first (numeric) form. shapes = [] if self.shapes: shapes = self.shapes.replace(',', ' ').split() for j, s in enumerate(shapes): key = 'f' + str(j) names = [key, 'f' + s, 'fix_' + s] val = _get_fixed_fit_value(kwds, names) if val is not None: kwds[key] = val args = list(args) Nargs = len(args) fixedn = [] names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale'] x0 = [] for n, key in enumerate(names): if key in kwds: fixedn.append(n) args[n] = kwds.pop(key) else: x0.append(args[n]) methods = {"mle", "mm"} method = kwds.pop('method', "mle").lower() if method == "mm": n_params = len(shapes) + 2 - len(fixedn) exponents = (np.arange(1, n_params+1))[:, np.newaxis] data_moments = np.sum(data[None, :]**exponents/len(data), axis=1) def objective(theta, x): return self._moment_error(theta, x, data_moments) elif method == "mle": objective = self._penalized_nnlf else: raise ValueError("Method '{0}' not available; must be one of {1}" .format(method, methods)) if len(fixedn) == 0: func = objective restore = None else: if len(fixedn) == Nargs: raise ValueError( "All parameters fixed. There is nothing to optimize.") def restore(args, theta): # Replace with theta for all numbers not in fixedn # This allows the non-fixed values to vary, but # we still call self.nnlf with all parameters. i = 0 for n in range(Nargs): if n not in fixedn: args[n] = theta[i] i += 1 return args def func(theta, x): newtheta = restore(args[:], theta) return objective(newtheta, x) return x0, func, restore, args def _moment_error(self, theta, x, data_moments): loc, scale, args = self._unpack_loc_scale(theta) if not self._argcheck(*args) or scale <= 0: return inf dist_moments = np.array([self.moment(i+1, *args, loc=loc, scale=scale) for i in range(len(data_moments))]) if np.any(np.isnan(dist_moments)): raise ValueError("Method of moments encountered a non-finite " "distribution moment and cannot continue. " "Consider trying method='MLE'.") return (((data_moments - dist_moments) / np.maximum(np.abs(data_moments), 1e-8))**2).sum() def fit(self, data, *args, **kwds): """ Return estimates of shape (if applicable), location, and scale parameters from data. The default estimation method is Maximum Likelihood Estimation (MLE), but Method of Moments (MM) is also available. Starting estimates for the fit are given by input arguments; for any arguments not provided with starting estimates, ``self._fitstart(data)`` is called to generate such. One can hold some parameters fixed to specific values by passing in keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters) and ``floc`` and ``fscale`` (for location and scale parameters, respectively). Parameters ---------- data : array_like Data to use in estimating the distribution parameters. arg1, arg2, arg3,... : floats, optional Starting value(s) for any shape-characterizing arguments (those not provided will be determined by a call to ``_fitstart(data)``). No default value. kwds : floats, optional - `loc`: initial guess of the distribution's location parameter. - `scale`: initial guess of the distribution's scale parameter. Special keyword arguments are recognized as holding certain parameters fixed: - f0...fn : hold respective shape parameters fixed. Alternatively, shape parameters to fix can be specified by name. For example, if ``self.shapes == "a, b"``, ``fa`` and ``fix_a`` are equivalent to ``f0``, and ``fb`` and ``fix_b`` are equivalent to ``f1``. - floc : hold location parameter fixed to specified value. - fscale : hold scale parameter fixed to specified value. - optimizer : The optimizer to use. The optimizer must take ``func``, and starting position as the first two arguments, plus ``args`` (for extra arguments to pass to the function to be optimized) and ``disp=0`` to suppress output as keyword arguments. - method : The method to use. The default is "MLE" (Maximum Likelihood Estimate); "MM" (Method of Moments) is also available. Returns ------- parameter_tuple : tuple of floats Estimates for any shape parameters (if applicable), followed by those for location and scale. For most random variables, shape statistics will be returned, but there are exceptions (e.g. ``norm``). Notes ----- With ``method="MLE"`` (default), the fit is computed by minimizing the negative log-likelihood function. A large, finite penalty (rather than infinite negative log-likelihood) is applied for observations beyond the support of the distribution. With ``method="MM"``, the fit is computed by minimizing the L2 norm of the relative errors between the first *k* raw (about zero) data moments and the corresponding distribution moments, where *k* is the number of non-fixed parameters. More precisely, the objective function is:: (((data_moments - dist_moments) / np.maximum(np.abs(data_moments), 1e-8))**2).sum() where the constant ``1e-8`` avoids division by zero in case of vanishing data moments. Typically, this error norm can be reduced to zero. Note that the standard method of moments can produce parameters for which some data are outside the support of the fitted distribution; this implementation does nothing to prevent this. For either method, the returned answer is not guaranteed to be globally optimal; it may only be locally optimal, or the optimization may fail altogether. If the data contain any of ``np.nan``, ``np.inf``, or ``-np.inf``, the `fit` method will raise a ``RuntimeError``. Examples -------- Generate some data to fit: draw random variates from the `beta` distribution >>> from scipy.stats import beta >>> a, b = 1., 2. >>> x = beta.rvs(a, b, size=1000) Now we can fit all four parameters (``a``, ``b``, ``loc`` and ``scale``): >>> a1, b1, loc1, scale1 = beta.fit(x) We can also use some prior knowledge about the dataset: let's keep ``loc`` and ``scale`` fixed: >>> a1, b1, loc1, scale1 = beta.fit(x, floc=0, fscale=1) >>> loc1, scale1 (0, 1) We can also keep shape parameters fixed by using ``f``-keywords. To keep the zero-th shape parameter ``a`` equal 1, use ``f0=1`` or, equivalently, ``fa=1``: >>> a1, b1, loc1, scale1 = beta.fit(x, fa=1, floc=0, fscale=1) >>> a1 1 Not all distributions return estimates for the shape parameters. ``norm`` for example just returns estimates for location and scale: >>> from scipy.stats import norm >>> x = norm.rvs(a, b, size=1000, random_state=123) >>> loc1, scale1 = norm.fit(x) >>> loc1, scale1 (0.92087172783841631, 2.0015750750324668) """ data = np.asarray(data) method = kwds.get('method', "mle").lower() # memory for method of moments Narg = len(args) if Narg > self.numargs: raise TypeError("Too many input arguments.") if not np.isfinite(data).all(): raise RuntimeError("The data contains non-finite values.") start = [None]*2 if (Narg < self.numargs) or not ('loc' in kwds and 'scale' in kwds): # get distribution specific starting locations start = self._fitstart(data) args += start[Narg:-2] loc = kwds.pop('loc', start[-2]) scale = kwds.pop('scale', start[-1]) args += (loc, scale) x0, func, restore, args = self._reduce_func(args, kwds, data=data) optimizer = kwds.pop('optimizer', optimize.fmin) # convert string to function in scipy.optimize optimizer = _fit_determine_optimizer(optimizer) # by now kwds must be empty, since everybody took what they needed if kwds: raise TypeError("Unknown arguments: %s." % kwds) # In some cases, method of moments can be done with fsolve/root # instead of an optimizer, but sometimes no solution exists, # especially when the user fixes parameters. Minimizing the sum # of squares of the error generalizes to these cases. vals = optimizer(func, x0, args=(ravel(data),), disp=0) obj = func(vals, data) if restore is not None: vals = restore(args, vals) vals = tuple(vals) loc, scale, shapes = self._unpack_loc_scale(vals) if not (np.all(self._argcheck(*shapes)) and scale > 0): raise Exception("Optimization converged to parameters that are " "outside the range allowed by the distribution.") if method == 'mm': if not np.isfinite(obj): raise Exception("Optimization failed: either a data moment " "or fitted distribution moment is " "non-finite.") return vals def _fit_loc_scale_support(self, data, *args): """Estimate loc and scale parameters from data accounting for support. Parameters ---------- data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data. """ data = np.asarray(data) # Estimate location and scale according to the method of moments. loc_hat, scale_hat = self.fit_loc_scale(data, *args) # Compute the support according to the shape parameters. self._argcheck(*args) _a, _b = self._get_support(*args) a, b = _a, _b support_width = b - a # If the support is empty then return the moment-based estimates. if support_width <= 0: return loc_hat, scale_hat # Compute the proposed support according to the loc and scale # estimates. a_hat = loc_hat + a * scale_hat b_hat = loc_hat + b * scale_hat # Use the moment-based estimates if they are compatible with the data. data_a = np.min(data) data_b = np.max(data) if a_hat < data_a and data_b < b_hat: return loc_hat, scale_hat # Otherwise find other estimates that are compatible with the data. data_width = data_b - data_a rel_margin = 0.1 margin = data_width * rel_margin # For a finite interval, both the location and scale # should have interesting values. if support_width < np.inf: loc_hat = (data_a - a) - margin scale_hat = (data_width + 2 * margin) / support_width return loc_hat, scale_hat # For a one-sided interval, use only an interesting location parameter. if a > -np.inf: return (data_a - a) - margin, 1 elif b < np.inf: return (data_b - b) + margin, 1 else: raise RuntimeError def fit_loc_scale(self, data, *args): """ Estimate loc and scale parameters from data using 1st and 2nd moments. Parameters ---------- data : array_like Data to fit. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- Lhat : float Estimated location parameter for the data. Shat : float Estimated scale parameter for the data. """ mu, mu2 = self.stats(*args, **{'moments': 'mv'}) tmp = asarray(data) muhat = tmp.mean() mu2hat = tmp.var() Shat = sqrt(mu2hat / mu2) Lhat = muhat - Shat*mu if not np.isfinite(Lhat): Lhat = 0 if not (np.isfinite(Shat) and (0 < Shat)): Shat = 1 return Lhat, Shat def _entropy(self, *args): def integ(x): val = self._pdf(x, *args) return entr(val) # upper limit is often inf, so suppress warnings when integrating _a, _b = self._get_support(*args) with np.errstate(over='ignore'): h = integrate.quad(integ, _a, _b)[0] if not np.isnan(h): return h else: # try with different limits if integration problems low, upp = self.ppf([1e-10, 1. - 1e-10], *args) if np.isinf(_b): upper = upp else: upper = _b if np.isinf(_a): lower = low else: lower = _a return integrate.quad(integ, lower, upper)[0] def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds): """Calculate expected value of a function with respect to the distribution by numerical integration. The expected value of a function ``f(x)`` with respect to a distribution ``dist`` is defined as:: ub E[f(x)] = Integral(f(x) * dist.pdf(x)), lb where ``ub`` and ``lb`` are arguments and ``x`` has the ``dist.pdf(x)`` distribution. If the bounds ``lb`` and ``ub`` correspond to the support of the distribution, e.g. ``[-inf, inf]`` in the default case, then the integral is the unrestricted expectation of ``f(x)``. Also, the function ``f(x)`` may be defined such that ``f(x)`` is ``0`` outside a finite interval in which case the expectation is calculated within the finite range ``[lb, ub]``. Parameters ---------- func : callable, optional Function for which integral is calculated. Takes only one argument. The default is the identity mapping f(x) = x. args : tuple, optional Shape parameters of the distribution. loc : float, optional Location parameter (default=0). scale : float, optional Scale parameter (default=1). lb, ub : scalar, optional Lower and upper bound for integration. Default is set to the support of the distribution. conditional : bool, optional If True, the integral is corrected by the conditional probability of the integration interval. The return value is the expectation of the function, conditional on being in the given interval. Default is False. Additional keyword arguments are passed to the integration routine. Returns ------- expect : float The calculated expected value. Notes ----- The integration behavior of this function is inherited from `scipy.integrate.quad`. Neither this function nor `scipy.integrate.quad` can verify whether the integral exists or is finite. For example ``cauchy(0).mean()`` returns ``np.nan`` and ``cauchy(0).expect()`` returns ``0.0``. The function is not vectorized. Examples -------- To understand the effect of the bounds of integration consider >>> from scipy.stats import expon >>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0) 0.6321205588285578 This is close to >>> expon(1).cdf(2.0) - expon(1).cdf(0.0) 0.6321205588285577 If ``conditional=True`` >>> expon(1).expect(lambda x: 1, lb=0.0, ub=2.0, conditional=True) 1.0000000000000002 The slight deviation from 1 is due to numerical integration. """ lockwds = {'loc': loc, 'scale': scale} self._argcheck(*args) _a, _b = self._get_support(*args) if func is None: def fun(x, *args): return x * self.pdf(x, *args, **lockwds) else: def fun(x, *args): return func(x) * self.pdf(x, *args, **lockwds) if lb is None: lb = loc + _a * scale if ub is None: ub = loc + _b * scale if conditional: invfac = (self.sf(lb, *args, **lockwds) - self.sf(ub, *args, **lockwds)) else: invfac = 1.0 kwds['args'] = args # Silence floating point warnings from integration. with np.errstate(all='ignore'): vals = integrate.quad(fun, lb, ub, **kwds)[0] / invfac return vals # Helpers for the discrete distributions def _drv2_moment(self, n, *args): """Non-central moment of discrete distribution.""" def fun(x): return np.power(x, n) * self._pmf(x, *args) _a, _b = self._get_support(*args) return _expect(fun, _a, _b, self.ppf(0.5, *args), self.inc) def _drv2_ppfsingle(self, q, *args): # Use basic bisection algorithm _a, _b = self._get_support(*args) b = _b a = _a if isinf(b): # Be sure ending point is > q b = int(max(100*q, 10)) while 1: if b >= _b: qb = 1.0 break qb = self._cdf(b, *args) if (qb < q): b += 10 else: break else: qb = 1.0 if isinf(a): # be sure starting point < q a = int(min(-100*q, -10)) while 1: if a <= _a: qb = 0.0 break qa = self._cdf(a, *args) if (qa > q): a -= 10 else: break else: qa = self._cdf(a, *args) while 1: if (qa == q): return a if (qb == q): return b if b <= a+1: if qa > q: return a else: return b c = int((a+b)/2.0) qc = self._cdf(c, *args) if (qc < q): if a != c: a = c else: raise RuntimeError('updating stopped, endless loop') qa = qc elif (qc > q): if b != c: b = c else: raise RuntimeError('updating stopped, endless loop') qb = qc else: return c # Must over-ride one of _pmf or _cdf or pass in # x_k, p(x_k) lists in initialization class rv_discrete(rv_generic): """A generic discrete random variable class meant for subclassing. `rv_discrete` is a base class to construct specific distribution classes and instances for discrete random variables. It can also be used to construct an arbitrary distribution defined by a list of support points and corresponding probabilities. Parameters ---------- a : float, optional Lower bound of the support of the distribution, default: 0 b : float, optional Upper bound of the support of the distribution, default: plus infinity moment_tol : float, optional The tolerance for the generic calculation of moments. values : tuple of two array_like, optional ``(xk, pk)`` where ``xk`` are integers and ``pk`` are the non-zero probabilities between 0 and 1 with ``sum(pk) = 1``. ``xk`` and ``pk`` must have the same shape. inc : integer, optional Increment for the support of the distribution. Default is 1. (other values have not been tested) badvalue : float, optional The value in a result arrays that indicates a value that for which some argument restriction is violated, default is np.nan. name : str, optional The name of the instance. This string is used to construct the default example for distributions. longname : str, optional This string is used as part of the first line of the docstring returned when a subclass has no docstring of its own. Note: `longname` exists for backwards compatibility, do not use for new subclasses. shapes : str, optional The shape of the distribution. For example "m, n" for a distribution that takes two integers as the two shape arguments for all its methods If not provided, shape parameters will be inferred from the signatures of the private methods, ``_pmf`` and ``_cdf`` of the instance. extradoc : str, optional This string is used as the last part of the docstring returned when a subclass has no docstring of its own. Note: `extradoc` exists for backwards compatibility, do not use for new subclasses. seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Methods ------- rvs pmf logpmf cdf logcdf sf logsf ppf isf moment stats entropy expect median mean std var interval __call__ support Notes ----- This class is similar to `rv_continuous`. Whether a shape parameter is valid is decided by an ``_argcheck`` method (which defaults to checking that its arguments are strictly positive.) The main differences are: - the support of the distribution is a set of integers - instead of the probability density function, ``pdf`` (and the corresponding private ``_pdf``), this class defines the *probability mass function*, `pmf` (and the corresponding private ``_pmf``.) - scale parameter is not defined. To create a new discrete distribution, we would do the following: >>> from scipy.stats import rv_discrete >>> class poisson_gen(rv_discrete): ... "Poisson distribution" ... def _pmf(self, k, mu): ... return exp(-mu) * mu**k / factorial(k) and create an instance:: >>> poisson = poisson_gen(name="poisson") Note that above we defined the Poisson distribution in the standard form. Shifting the distribution can be done by providing the ``loc`` parameter to the methods of the instance. For example, ``poisson.pmf(x, mu, loc)`` delegates the work to ``poisson._pmf(x-loc, mu)``. **Discrete distributions from a list of probabilities** Alternatively, you can construct an arbitrary discrete rv defined on a finite set of values ``xk`` with ``Prob{X=xk} = pk`` by using the ``values`` keyword argument to the `rv_discrete` constructor. Examples -------- Custom made discrete distribution: >>> from scipy import stats >>> xk = np.arange(7) >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.0, 0.2) >>> custm = stats.rv_discrete(name='custm', values=(xk, pk)) >>> >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1) >>> ax.plot(xk, custm.pmf(xk), 'ro', ms=12, mec='r') >>> ax.vlines(xk, 0, custm.pmf(xk), colors='r', lw=4) >>> plt.show() Random number generation: >>> R = custm.rvs(size=100) """ def __new__(cls, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8, values=None, inc=1, longname=None, shapes=None, extradoc=None, seed=None): if values is not None: # dispatch to a subclass return super(rv_discrete, cls).__new__(rv_sample) else: # business as usual return super(rv_discrete, cls).__new__(cls) def __init__(self, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8, values=None, inc=1, longname=None, shapes=None, extradoc=None, seed=None): super().__init__(seed) # cf generic freeze self._ctor_param = dict( a=a, b=b, name=name, badvalue=badvalue, moment_tol=moment_tol, values=values, inc=inc, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan self.badvalue = badvalue self.a = a self.b = b self.moment_tol = moment_tol self.inc = inc self.shapes = shapes if values is not None: raise ValueError("rv_discrete.__init__(..., values != None, ...)") self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf], locscale_in='loc=0', # scale=1 for discrete RVs locscale_out='loc, 1') self._attach_methods() self._construct_docstrings(name, longname, extradoc) def __getstate__(self): dct = self.__dict__.copy() # these methods will be remade in __setstate__ attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs", "_cdfvec", "_ppfvec", "generic_moment"] [dct.pop(attr, None) for attr in attrs] return dct def _attach_methods(self): """Attaches dynamically created methods to the rv_discrete instance.""" self._cdfvec = vectorize(self._cdf_single, otypes='d') self.vecentropy = vectorize(self._entropy) # _attach_methods is responsible for calling _attach_argparser_methods self._attach_argparser_methods() # nin correction needs to be after we know numargs # correct nin for generic moment vectorization _vec_generic_moment = vectorize(_drv2_moment, otypes='d') _vec_generic_moment.nin = self.numargs + 2 self.generic_moment = types.MethodType(_vec_generic_moment, self) # correct nin for ppf vectorization _vppf = vectorize(_drv2_ppfsingle, otypes='d') _vppf.nin = self.numargs + 2 self._ppfvec = types.MethodType(_vppf, self) # now that self.numargs is defined, we can adjust nin self._cdfvec.nin = self.numargs + 1 def _construct_docstrings(self, name, longname, extradoc): if name is None: name = 'Distribution' self.name = name self.extradoc = extradoc # generate docstring for subclass instances if longname is None: if name[0] in ['aeiouAEIOU']: hstr = "An " else: hstr = "A " longname = hstr + name if sys.flags.optimize < 2: # Skip adding docstrings if interpreter is run with -OO if self.__doc__ is None: self._construct_default_doc(longname=longname, extradoc=extradoc, docdict=docdict_discrete, discrete='discrete') else: dct = dict(distdiscrete) self._construct_doc(docdict_discrete, dct.get(self.name)) # discrete RV do not have the scale parameter, remove it self.__doc__ = self.__doc__.replace( '\n scale : array_like, ' 'optional\n scale parameter (default=1)', '') def _updated_ctor_param(self): """Return the current version of _ctor_param, possibly updated by user. Used by freezing. Keep this in sync with the signature of __init__. """ dct = self._ctor_param.copy() dct['a'] = self.a dct['b'] = self.b dct['badvalue'] = self.badvalue dct['moment_tol'] = self.moment_tol dct['inc'] = self.inc dct['name'] = self.name dct['shapes'] = self.shapes dct['extradoc'] = self.extradoc return dct def _nonzero(self, k, *args): return floor(k) == k def _pmf(self, k, *args): return self._cdf(k, *args) - self._cdf(k-1, *args) def _logpmf(self, k, *args): return log(self._pmf(k, *args)) def _cdf_single(self, k, *args): _a, _b = self._get_support(*args) m = arange(int(_a), k+1) return np.sum(self._pmf(m, *args), axis=0) def _cdf(self, x, *args): k = floor(x) return self._cdfvec(k, *args) # generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic def rvs(self, *args, **kwargs): """Random variates of given type. Parameters ---------- arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). size : int or tuple of ints, optional Defining number of random variates (Default is 1). Note that `size` has to be given as keyword, not as positional argument. random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- rvs : ndarray or scalar Random variates of given `size`. """ kwargs['discrete'] = True return super().rvs(*args, **kwargs) def pmf(self, k, *args, **kwds): """Probability mass function at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information) loc : array_like, optional Location parameter (default=0). Returns ------- pmf : array_like Probability mass function evaluated at k """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k <= _b) & self._nonzero(k, *args) cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0) + np.isnan(k), self.badvalue) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._pmf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logpmf(self, k, *args, **kwds): """Log of the probability mass function at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter. Default is 0. Returns ------- logpmf : array_like Log of the probability mass function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k <= _b) & self._nonzero(k, *args) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logpmf(*goodargs)) if output.ndim == 0: return output[()] return output def cdf(self, k, *args, **kwds): """Cumulative distribution function of the given RV. Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- cdf : ndarray Cumulative distribution function evaluated at `k`. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k < _b) cond2 = (k >= _b) cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, cond2*(cond0 == cond0), 1.0) place(output, (1-cond0) + np.isnan(k), self.badvalue) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._cdf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logcdf(self, k, *args, **kwds): """Log of the cumulative distribution function at k of the given RV. Parameters ---------- k : array_like, int Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- logcdf : array_like Log of the cumulative distribution function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray((k-loc)) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k < _b) cond2 = (k >= _b) cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2*(cond0 == cond0), 0.0) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logcdf(*goodargs)) if output.ndim == 0: return output[()] return output def sf(self, k, *args, **kwds): """Survival function (1 - `cdf`) at k of the given RV. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- sf : array_like Survival function evaluated at k. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k < _b) cond2 = (k < _a) & cond0 cond = cond0 & cond1 output = zeros(shape(cond), 'd') place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2, 1.0) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, np.clip(self._sf(*goodargs), 0, 1)) if output.ndim == 0: return output[()] return output def logsf(self, k, *args, **kwds): """Log of the survival function of the given RV. Returns the log of the "survival function," defined as 1 - `cdf`, evaluated at `k`. Parameters ---------- k : array_like Quantiles. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- logsf : ndarray Log of the survival function evaluated at `k`. """ args, loc, _ = self._parse_args(*args, **kwds) k, loc = map(asarray, (k, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) k = asarray(k-loc) cond0 = self._argcheck(*args) cond1 = (k >= _a) & (k < _b) cond2 = (k < _a) & cond0 cond = cond0 & cond1 output = empty(shape(cond), 'd') output.fill(NINF) place(output, (1-cond0) + np.isnan(k), self.badvalue) place(output, cond2, 0.0) if np.any(cond): goodargs = argsreduce(cond, *((k,)+args)) place(output, cond, self._logsf(*goodargs)) if output.ndim == 0: return output[()] return output def ppf(self, q, *args, **kwds): """Percent point function (inverse of `cdf`) at q of the given RV. Parameters ---------- q : array_like Lower tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- k : array_like Quantile corresponding to the lower tail probability, q. """ args, loc, _ = self._parse_args(*args, **kwds) q, loc = map(asarray, (q, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q == 1) & cond0 cond = cond0 & cond1 output = np.full(shape(cond), fill_value=self.badvalue, dtype='d') # output type 'd' to handle nin and inf place(output, (q == 0)*(cond == cond), _a-1 + loc) place(output, cond2, _b + loc) if np.any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] place(output, cond, self._ppf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def isf(self, q, *args, **kwds): """Inverse survival function (inverse of `sf`) at q of the given RV. Parameters ---------- q : array_like Upper tail probability. arg1, arg2, arg3,... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). loc : array_like, optional Location parameter (default=0). Returns ------- k : ndarray or scalar Quantile corresponding to the upper tail probability, q. """ args, loc, _ = self._parse_args(*args, **kwds) q, loc = map(asarray, (q, loc)) args = tuple(map(asarray, args)) _a, _b = self._get_support(*args) cond0 = self._argcheck(*args) & (loc == loc) cond1 = (q > 0) & (q < 1) cond2 = (q == 1) & cond0 cond3 = (q == 0) & cond0 cond = cond0 & cond1 # same problem as with ppf; copied from ppf and changed output = np.full(shape(cond), fill_value=self.badvalue, dtype='d') # output type 'd' to handle nin and inf lower_bound = _a - 1 + loc upper_bound = _b + loc place(output, cond2*(cond == cond), lower_bound) place(output, cond3*(cond == cond), upper_bound) # call place only if at least 1 valid argument if np.any(cond): goodargs = argsreduce(cond, *((q,)+args+(loc,))) loc, goodargs = goodargs[-1], goodargs[:-1] # PB same as ticket 766 place(output, cond, self._isf(*goodargs) + loc) if output.ndim == 0: return output[()] return output def _entropy(self, *args): if hasattr(self, 'pk'): return stats.entropy(self.pk) else: _a, _b = self._get_support(*args) return _expect(lambda x: entr(self.pmf(x, *args)), _a, _b, self.ppf(0.5, *args), self.inc) def expect(self, func=None, args=(), loc=0, lb=None, ub=None, conditional=False, maxcount=1000, tolerance=1e-10, chunksize=32): """ Calculate expected value of a function with respect to the distribution for discrete distribution by numerical summation. Parameters ---------- func : callable, optional Function for which the expectation value is calculated. Takes only one argument. The default is the identity mapping f(k) = k. args : tuple, optional Shape parameters of the distribution. loc : float, optional Location parameter. Default is 0. lb, ub : int, optional Lower and upper bound for the summation, default is set to the support of the distribution, inclusive (``lb <= k <= ub``). conditional : bool, optional If true then the expectation is corrected by the conditional probability of the summation interval. The return value is the expectation of the function, `func`, conditional on being in the given interval (k such that ``lb <= k <= ub``). Default is False. maxcount : int, optional Maximal number of terms to evaluate (to avoid an endless loop for an infinite sum). Default is 1000. tolerance : float, optional Absolute tolerance for the summation. Default is 1e-10. chunksize : int, optional Iterate over the support of a distributions in chunks of this size. Default is 32. Returns ------- expect : float Expected value. Notes ----- For heavy-tailed distributions, the expected value may or may not exist, depending on the function, `func`. If it does exist, but the sum converges slowly, the accuracy of the result may be rather low. For instance, for ``zipf(4)``, accuracy for mean, variance in example is only 1e-5. increasing `maxcount` and/or `chunksize` may improve the result, but may also make zipf very slow. The function is not vectorized. """ if func is None: def fun(x): # loc and args from outer scope return (x+loc)*self._pmf(x, *args) else: def fun(x): # loc and args from outer scope return func(x+loc)*self._pmf(x, *args) # used pmf because _pmf does not check support in randint and there # might be problems(?) with correct self.a, self.b at this stage maybe # not anymore, seems to work now with _pmf _a, _b = self._get_support(*args) if lb is None: lb = _a else: lb = lb - loc # convert bound for standardized distribution if ub is None: ub = _b else: ub = ub - loc # convert bound for standardized distribution if conditional: invfac = self.sf(lb-1, *args) - self.sf(ub, *args) else: invfac = 1.0 if isinstance(self, rv_sample): res = self._expect(fun, lb, ub) return res / invfac # iterate over the support, starting from the median x0 = self.ppf(0.5, *args) res = _expect(fun, lb, ub, x0, self.inc, maxcount, tolerance, chunksize) return res / invfac def _expect(fun, lb, ub, x0, inc, maxcount=1000, tolerance=1e-10, chunksize=32): """Helper for computing the expectation value of `fun`.""" # short-circuit if the support size is small enough if (ub - lb) <= chunksize: supp = np.arange(lb, ub+1, inc) vals = fun(supp) return np.sum(vals) # otherwise, iterate starting from x0 if x0 < lb: x0 = lb if x0 > ub: x0 = ub count, tot = 0, 0. # iterate over [x0, ub] inclusive for x in _iter_chunked(x0, ub+1, chunksize=chunksize, inc=inc): count += x.size delta = np.sum(fun(x)) tot += delta if abs(delta) < tolerance * x.size: break if count > maxcount: warnings.warn('expect(): sum did not converge', RuntimeWarning) return tot # iterate over [lb, x0) for x in _iter_chunked(x0-1, lb-1, chunksize=chunksize, inc=-inc): count += x.size delta = np.sum(fun(x)) tot += delta if abs(delta) < tolerance * x.size: break if count > maxcount: warnings.warn('expect(): sum did not converge', RuntimeWarning) break return tot def _iter_chunked(x0, x1, chunksize=4, inc=1): """Iterate from x0 to x1 in chunks of chunksize and steps inc. x0 must be finite, x1 need not be. In the latter case, the iterator is infinite. Handles both x0 < x1 and x0 > x1. In the latter case, iterates downwards (make sure to set inc < 0.) >>> [x for x in _iter_chunked(2, 5, inc=2)] [array([2, 4])] >>> [x for x in _iter_chunked(2, 11, inc=2)] [array([2, 4, 6, 8]), array([10])] >>> [x for x in _iter_chunked(2, -5, inc=-2)] [array([ 2, 0, -2, -4])] >>> [x for x in _iter_chunked(2, -9, inc=-2)] [array([ 2, 0, -2, -4]), array([-6, -8])] """ if inc == 0: raise ValueError('Cannot increment by zero.') if chunksize <= 0: raise ValueError('Chunk size must be positive; got %s.' % chunksize) s = 1 if inc > 0 else -1 stepsize = abs(chunksize * inc) x = x0 while (x - x1) * inc < 0: delta = min(stepsize, abs(x - x1)) step = delta * s supp = np.arange(x, x + step, inc) x += step yield supp class rv_sample(rv_discrete): """A 'sample' discrete distribution defined by the support and values. The ctor ignores most of the arguments, only needs the `values` argument. """ def __init__(self, a=0, b=inf, name=None, badvalue=None, moment_tol=1e-8, values=None, inc=1, longname=None, shapes=None, extradoc=None, seed=None): super(rv_discrete, self).__init__(seed) if values is None: raise ValueError("rv_sample.__init__(..., values=None,...)") # cf generic freeze self._ctor_param = dict( a=a, b=b, name=name, badvalue=badvalue, moment_tol=moment_tol, values=values, inc=inc, longname=longname, shapes=shapes, extradoc=extradoc, seed=seed) if badvalue is None: badvalue = nan self.badvalue = badvalue self.moment_tol = moment_tol self.inc = inc self.shapes = shapes self.vecentropy = self._entropy xk, pk = values if np.shape(xk) != np.shape(pk): raise ValueError("xk and pk must have the same shape.") if np.less(pk, 0.0).any(): raise ValueError("All elements of pk must be non-negative.") if not np.allclose(np.sum(pk), 1): raise ValueError("The sum of provided pk is not 1.") indx = np.argsort(np.ravel(xk)) self.xk = np.take(np.ravel(xk), indx, 0) self.pk = np.take(np.ravel(pk), indx, 0) self.a = self.xk[0] self.b = self.xk[-1] self.qvals = np.cumsum(self.pk, axis=0) self.shapes = ' ' # bypass inspection self._construct_argparser(meths_to_inspect=[self._pmf], locscale_in='loc=0', # scale=1 for discrete RVs locscale_out='loc, 1') self._attach_methods() self._construct_docstrings(name, longname, extradoc) def __getstate__(self): dct = self.__dict__.copy() # these methods will be remade in rv_generic.__setstate__, # which calls rv_generic._attach_methods attrs = ["_parse_args", "_parse_args_stats", "_parse_args_rvs"] [dct.pop(attr, None) for attr in attrs] return dct def _attach_methods(self): """Attaches dynamically created argparser methods.""" self._attach_argparser_methods() def _get_support(self, *args): """Return the support of the (unscaled, unshifted) distribution. Parameters ---------- arg1, arg2, ... : array_like The shape parameter(s) for the distribution (see docstring of the instance object for more information). Returns ------- a, b : numeric (float, or int or +/-np.inf) end-points of the distribution's support. """ return self.a, self.b def _pmf(self, x): return np.select([x == k for k in self.xk], [np.broadcast_arrays(p, x)[0] for p in self.pk], 0) def _cdf(self, x): xx, xxk = np.broadcast_arrays(x[:, None], self.xk) indx = np.argmax(xxk > xx, axis=-1) - 1 return self.qvals[indx] def _ppf(self, q): qq, sqq = np.broadcast_arrays(q[..., None], self.qvals) indx = argmax(sqq >= qq, axis=-1) return self.xk[indx] def _rvs(self, size=None, random_state=None): # Need to define it explicitly, otherwise .rvs() with size=None # fails due to explicit broadcasting in _ppf U = random_state.uniform(size=size) if size is None: U = np.array(U, ndmin=1) Y = self._ppf(U)[0] else: Y = self._ppf(U) return Y def _entropy(self): return stats.entropy(self.pk) def generic_moment(self, n): n = asarray(n) return np.sum(self.xk**n[np.newaxis, ...] * self.pk, axis=0) def _expect(self, fun, lb, ub, *args, **kwds): # ignore all args, just do a brute force summation supp = self.xk[(lb <= self.xk) & (self.xk <= ub)] vals = fun(supp) return np.sum(vals) def _check_shape(argshape, size): """ This is a utility function used by `_rvs()` in the class geninvgauss_gen. It compares the tuple argshape to the tuple size. Parameters ---------- argshape : tuple of integers Shape of the arguments. size : tuple of integers or integer Size argument of rvs(). Returns ------- The function returns two tuples, scalar_shape and bc. scalar_shape : tuple Shape to which the 1-d array of random variates returned by _rvs_scalar() is converted when it is copied into the output array of _rvs(). bc : tuple of booleans bc is an tuple the same length as size. bc[j] is True if the data associated with that index is generated in one call of _rvs_scalar(). """ scalar_shape = [] bc = [] for argdim, sizedim in zip_longest(argshape[::-1], size[::-1], fillvalue=1): if sizedim > argdim or (argdim == sizedim == 1): scalar_shape.append(sizedim) bc.append(True) else: bc.append(False) return tuple(scalar_shape[::-1]), tuple(bc[::-1]) def get_distribution_names(namespace_pairs, rv_base_class): """Collect names of statistical distributions and their generators. Parameters ---------- namespace_pairs : sequence A snapshot of (name, value) pairs in the namespace of a module. rv_base_class : class The base class of random variable generator classes in a module. Returns ------- distn_names : list of strings Names of the statistical distributions. distn_gen_names : list of strings Names of the generators of the statistical distributions. Note that these are not simply the names of the statistical distributions, with a _gen suffix added. """ distn_names = [] distn_gen_names = [] for name, value in namespace_pairs: if name.startswith('_'): continue if name.endswith('_gen') and issubclass(value, rv_base_class): distn_gen_names.append(name) if isinstance(value, rv_base_class): distn_names.append(name) return distn_names, distn_gen_names
bsd-3-clause
Sentient07/scikit-learn
sklearn/decomposition/tests/test_sparse_pca.py
63
6459
# Author: Vlad Niculae # License: BSD 3 clause import sys import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import if_safe_multiprocessing_with_blas from sklearn.decomposition import SparsePCA, MiniBatchSparsePCA from sklearn.utils import check_random_state def generate_toy_data(n_components, n_samples, image_size, random_state=None): n_features = image_size[0] * image_size[1] rng = check_random_state(random_state) U = rng.randn(n_samples, n_components) V = rng.randn(n_components, n_features) centers = [(3, 3), (6, 7), (8, 1)] sz = [1, 2, 1] for k in range(n_components): img = np.zeros(image_size) xmin, xmax = centers[k][0] - sz[k], centers[k][0] + sz[k] ymin, ymax = centers[k][1] - sz[k], centers[k][1] + sz[k] img[xmin:xmax][:, ymin:ymax] = 1.0 V[k, :] = img.ravel() # Y is defined by : Y = UV + noise Y = np.dot(U, V) Y += 0.1 * rng.randn(Y.shape[0], Y.shape[1]) # Add noise return Y, U, V # SparsePCA can be a bit slow. To avoid having test times go up, we # test different aspects of the code in the same test def test_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) spca = SparsePCA(n_components=8, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition spca = SparsePCA(n_components=13, random_state=rng) U = spca.fit_transform(X) assert_equal(spca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_fit_transform(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) # Test that CD gives similar results spca_lasso = SparsePCA(n_components=3, method='cd', random_state=0, alpha=alpha) spca_lasso.fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_) # Test that deprecated ridge_alpha parameter throws warning warning_msg = "The ridge_alpha parameter on transform()" assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=0.01) assert_warns_message(DeprecationWarning, warning_msg, spca_lars.transform, Y, ridge_alpha=None) @if_safe_multiprocessing_with_blas def test_fit_transform_parallel(): alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = SparsePCA(n_components=3, method='lars', alpha=alpha, random_state=0) spca_lars.fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs spca = SparsePCA(n_components=3, n_jobs=2, method='lars', alpha=alpha, random_state=0).fit(Y) U2 = spca.transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) def test_transform_nan(): # Test that SparsePCA won't return NaN when there is 0 feature in all # samples. rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array Y[:, 0] = 0 estimator = SparsePCA(n_components=8) assert_false(np.any(np.isnan(estimator.fit_transform(Y)))) def test_fit_transform_tall(): rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 65, (8, 8), random_state=rng) # tall array spca_lars = SparsePCA(n_components=3, method='lars', random_state=rng) U1 = spca_lars.fit_transform(Y) spca_lasso = SparsePCA(n_components=3, method='cd', random_state=rng) U2 = spca_lasso.fit(Y).transform(Y) assert_array_almost_equal(U1, U2) def test_initialization(): rng = np.random.RandomState(0) U_init = rng.randn(5, 3) V_init = rng.randn(3, 4) model = SparsePCA(n_components=3, U_init=U_init, V_init=V_init, max_iter=0, random_state=rng) model.fit(rng.randn(5, 4)) assert_array_equal(model.components_, V_init) def test_mini_batch_correct_shapes(): rng = np.random.RandomState(0) X = rng.randn(12, 10) pca = MiniBatchSparsePCA(n_components=8, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (8, 10)) assert_equal(U.shape, (12, 8)) # test overcomplete decomposition pca = MiniBatchSparsePCA(n_components=13, random_state=rng) U = pca.fit_transform(X) assert_equal(pca.components_.shape, (13, 10)) assert_equal(U.shape, (12, 13)) def test_mini_batch_fit_transform(): raise SkipTest("skipping mini_batch_fit_transform.") alpha = 1 rng = np.random.RandomState(0) Y, _, _ = generate_toy_data(3, 10, (8, 8), random_state=rng) # wide array spca_lars = MiniBatchSparsePCA(n_components=3, random_state=0, alpha=alpha).fit(Y) U1 = spca_lars.transform(Y) # Test multiple CPUs if sys.platform == 'win32': # fake parallelism for win32 import sklearn.externals.joblib.parallel as joblib_par _mp = joblib_par.multiprocessing joblib_par.multiprocessing = None try: U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) finally: joblib_par.multiprocessing = _mp else: # we can efficiently use parallelism U2 = MiniBatchSparsePCA(n_components=3, n_jobs=2, alpha=alpha, random_state=0).fit(Y).transform(Y) assert_true(not np.all(spca_lars.components_ == 0)) assert_array_almost_equal(U1, U2) # Test that CD gives similar results spca_lasso = MiniBatchSparsePCA(n_components=3, method='cd', alpha=alpha, random_state=0).fit(Y) assert_array_almost_equal(spca_lasso.components_, spca_lars.components_)
bsd-3-clause
bigdataelephants/scikit-learn
sklearn/datasets/species_distributions.py
24
7871
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: BSD 3 clause from io import BytesIO from os import makedirs from os.path import join from os.path import exists try: # Python 2 from urllib2 import urlopen PY2 = True except ImportError: # Python 3 from urllib.request import urlopen PY2 = False import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """Load a coverage file from an open file object. This will return a numpy array of the given dtype """ header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header[b'NODATA_value'] if nodata != -9999: print(nodata) M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Parameters ---------- F : file object CSV file open in byte mode. Returns ------- rec : np.ndarray record array representing the data """ if PY2: # Numpy recarray wants Python 2 str but not unicode names = F.readline().strip().split(',') else: # Numpy recarray wants Python 3 str but not bytes... names = F.readline().decode('ascii').strip().split(',') rec = np.loadtxt(F, skiprows=0, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns -------- The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print('Downloading species data from %s to %s' % (SAMPLES_URL, data_home)) X = np.load(BytesIO(urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = BytesIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print('Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home)) X = np.load(BytesIO(urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = BytesIO(X[f]) print(' - converting', f) coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
bsd-3-clause
RyanCarey/abm-platform
plot.py
1
3482
#from __future__ import print_function from numpy import * import matplotlib.pyplot as plt exec(open('unpickle.py').read()) ### old ### def load_turn(filenames,turn, length): filenames = list(copy(filenames)) positions = [] while filenames: data = load(filenames.pop()) if len(data)==length: # check that data has reached full length without error cells = array(data[turn]['alive_cells']) positions.append(cells[:,[1,2,-1]]) return positions def load_all_turns(filenames, length): # prevent mutation of filenames list filenames = list(copy(filenames)) b = [] for i in range(length): b.append(load_turn(filenames,i, length)) return b def load_all(filenames): data = [] for name in filenames: data.append(load(name)) out = [i[1:] for i in data] #extract cell information for i in range(len(out)): for j in range(len(out[i])): out[i][j] = out[i][j]['alive_cells'] for i in range(len(out)): for j in range(len(out[i])): for k in range(len(out[i][j])): # extract positions out[i][j][k] = array(out[i][j][k][1:3]) out[i][j] = vstack(out[i][j]) return out def remove_duds(data): for i in range(len(data)): for j in range(len(data[i])): for k in range(len(data[i][j])): try: out = data[i][j][k][1:3] except: print(i,j,k) break return out def boxplot(data, title, labels): fig = plt.figure() ax = fig.add_subplot(111) bp = ax.boxplot([i[:,0] for i in data]) ax.set_title(title) ax.set_xlabel('Iterations') ax.set_ylabel('Horizontal location') ax.set_xticklabels(labels) plt.show() return def stacking(data): for i in range(len(data)): for j in range(len(data[i])): data[i][j] = vstack(data[i][j]) return data def without_duds(data): return data[array([len(i)==10 for i in data])] def combine(data): data = array(data) data = vstack((i for i in data)).astype(float) return data def histogram(stems, progs, title): #plots histogram of cell locations bins = linspace(0,30,30) # the histogram of the data plt.hist(stems, bins, alpha=0.5, label='stem cells') plt.hist(progs, bins, alpha=0.5, label='progenitor cells') plt.legend(loc='upper right') plt.xlabel('X-ordinate') plt.ylabel('Cell count') plt.title(title) plt.axis([0, 30, 0, 60]) plt.grid(True) plt.show() def autolabel(rects, ax): # attach some text labels for rect in rects: height = rect.get_height() ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height), ha='center', va='bottom') def barchart(data): ind = np.arange(len(data)) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(ind, menMeans, width, color='r', yerr=menStd) # add some text for labels, title and axes ticks ax.set_ylabel('Scores') ax.set_title('Scores by group and gender') ax.set_xticks(ind+width) ax.set_xticklabels( ('0', '500', '1000', '1500', '2000','2500') ) autolabel(rects1,ax) plt.show() def linegraph(stems,progs, title): xaxis = arange(0,5250,250) fig = plt.figure() ax = fig.add_subplot(111) plt.plot(xaxis,progs,linewidth=2) plt.plot(xaxis,stems,linewidth=2.0) ax.set_title(title) ax.set_xlabel('Iterations') ax.set_ylabel('Population Size') plt.legend(["Stem cells","Progenitor cells"],loc='upper left') plt.show()
mit
SvichkarevAnatoly/Course-Python-Bioinformatics
semester2/task10/exercise1.py
1
3895
import numpy import matplotlib.pyplot as plot from sklearn import ensemble, tree from sklearn.cross_validation import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix data = open('glass.data.csv') # arrange data into list for labels and list of lists for attributes xList = [] for line in data: # split on comma row = line.strip().split(",") xList.append(row) glassNames = numpy.array(['RI', 'Na', 'Mg', 'Al', 'Si', 'K', 'Ca', 'Ba', 'Fe', 'Type']) # Separate attributes and labels xNum = [] labels = [] for row in xList: labels.append(row.pop()) l = len(row) # eliminate ID attrRow = [float(row[i]) for i in range(1, l)] xNum.append(attrRow) # number of rows and columns in x matrix nrows = len(xNum) ncols = len(xNum[1]) # Labels are integers from 1 to 7 with no examples of 4. # gb requires consecutive integers starting at 0 newLabels = [] labelSet = set(labels) labelList = list(labelSet) labelList.sort() nlabels = len(labelList) for l in labels: index = labelList.index(l) newLabels.append(index) # Drawing 30% test sample may not preserve population proportions # stratified sampling by labels. xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == 0] yTemp = [newLabels[i] for i in range(nrows) if newLabels[i] == 0] xTrain, xTest, yTrain, yTest = train_test_split(xTemp, yTemp, test_size=0.30, random_state=531) for iLabel in range(1, len(labelList)): # segregate x and y according to labels xTemp = [xNum[i] for i in range(nrows) if newLabels[i] == iLabel] yTemp = [newLabels[i] for i in range(nrows) if \ newLabels[i] == iLabel] # form train and test sets on segregated subset of examples xTrainTemp, xTestTemp, yTrainTemp, yTestTemp = train_test_split( xTemp, yTemp, test_size=0.30, random_state=531) # accumulate xTrain = numpy.append(xTrain, xTrainTemp, axis=0) xTest = numpy.append(xTest, xTestTemp, axis=0) yTrain = numpy.append(yTrain, yTrainTemp, axis=0) yTest = numpy.append(yTest, yTestTemp, axis=0) missCLassError = [] nTreeList = range(50, 2000, 50) depth = 1 for iTrees in nTreeList: maxFeat = 4 # try tweaking glassRFModel = ensemble.RandomForestClassifier(n_estimators=iTrees, max_depth=depth, max_features=maxFeat, oob_score=False, random_state=531) glassRFModel.fit(xTrain, yTrain) # Accumulate auc on test set prediction = glassRFModel.predict(xTest) correct = accuracy_score(yTest, prediction) missCLassError.append(1.0 - correct) print "Missclassification Error for max_depth = " + str(depth) print(missCLassError[-1]) # generate confusion matrix pList = prediction.tolist() confusionMat = confusion_matrix(yTest, pList) print('') print("Confusion Matrix") print(confusionMat) # plot training and test errors vs number of trees in ensemble plot.plot(nTreeList, missCLassError) plot.xlabel('Number of Trees in Ensemble') plot.ylabel('Missclassification Error Rate') # plot.show() plot.savefig("mer" + str(depth) + "depth.png") plot.close() # Plot feature importance featureImportance = glassRFModel.feature_importances_ # normalize by max importance featureImportance = featureImportance / featureImportance.max() # plot variable importance idxSorted = numpy.argsort(featureImportance) barPos = numpy.arange(idxSorted.shape[0]) + .5 plot.barh(barPos, featureImportance[idxSorted], align='center') plot.yticks(barPos, glassNames[idxSorted]) plot.xlabel('Variable Importance') # plot.show() plot.savefig("varImp" + str(depth) + "depth.png") # save first 2 tree with open("tree1Ex1.dot", 'w') as f1: f1 = tree.export_graphviz(glassRFModel.estimators_[0], out_file=f1) with open("tree2Ex1.dot", 'w') as f2: f2 = tree.export_graphviz(glassRFModel.estimators_[1], out_file=f2)
gpl-2.0
krez13/scikit-learn
doc/datasets/mldata_fixture.py
367
1183
"""Fixture module to skip the datasets loading when offline Mock urllib2 access to mldata.org and create a temporary data folder. """ from os import makedirs from os.path import join import numpy as np import tempfile import shutil from sklearn import datasets from sklearn.utils.testing import install_mldata_mock from sklearn.utils.testing import uninstall_mldata_mock def globs(globs): # Create a temporary folder for the data fetcher global custom_data_home custom_data_home = tempfile.mkdtemp() makedirs(join(custom_data_home, 'mldata')) globs['custom_data_home'] = custom_data_home return globs def setup_module(): # setup mock urllib2 module to avoid downloading from mldata.org install_mldata_mock({ 'mnist-original': { 'data': np.empty((70000, 784)), 'label': np.repeat(np.arange(10, dtype='d'), 7000), }, 'iris': { 'data': np.empty((150, 4)), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, }) def teardown_module(): uninstall_mldata_mock() shutil.rmtree(custom_data_home)
bsd-3-clause
rishikksh20/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
39
5425
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
VariationalResearch/Polaron
finitemom.py
1
11668
from polrabi.staticfm import * import matplotlib import matplotlib.pyplot as plt from scipy import interpolate import os # from timeit import default_timer as timer # # INITIALIZATION dirpath = os.path.dirname(os.path.realpath(__file__)) matplotlib.rcParams.update({'font.size': 12, 'text.usetex': True}) gBB = 0.05 mI = 1 mB = 1 n0 = 1 nuV = nu(gBB) DPMax = mI * nuV res = aSi0(gBB, mI, mB, n0) # # ZERO MOMENTUM # aIBi_vals = np.linspace(-1, 1, 1000) # aSi_v = aSi0(gBB, mI, mB, n0) # E_vals = Eup(0, 0, aIBi_vals, aSi_v, mI, mB, n0) # # compare with MATLAB values -- note: biggest discrepancy is near resonance where values are off by < 0.1 (understandable) # Edat = np.genfromtxt('zm.dat', delimiter=',') # mask = np.abs(Edat - E_vals) > 1e-2 # print(aIBi_vals[mask]) # fig, ax = plt.subplots() # ax.plot(aIBi_vals, E_vals, 'k-') # ax.set_ylim([-50, 50]) # ax.set_xlabel('Inverse Scattering Length ($a_{IB}^{-1}$)') # ax.set_ylabel('Energy') # ax.set_title('Polaron Energy at Zero Momentum (static case - no rabi drive)') # plt.show() # # INTERPOLATION # Nsteps = 1e3 # createSpline(Nsteps, gBB, mI, mB, n0) aSi_tck = np.load('aSi_spline.npy') PBint_tck = np.load('PBint_spline.npy') # DP_max = mI * nuV # DPv = np.linspace(0, DP_max, 100) # fig, ax = plt.subplots() # ax.plot(DPv, aSi_interp(DPv, aSi_tck), 'k-') # ax.plot(DPv, PB_interp(DPv, -4, gBB, mI, mB, n0, aSi_tck, PBint_tck), 'b-') # plt.show() # # DP GRID # aIBiVals = np.linspace(-10, 10, 100) # PcVals = PCrit(aIBiVals, gBB, mI, mB, n0) # grid = [] # for ind, aIBi in enumerate(aIBiVals): # step = 0.1 * mI * nuV # PVals = np.arange(0.1 * mI * nuV, 0.95 * PcVals[ind], step) # grid.append((aIBi, PVals)) # points = [] # DPg = 0 # for ind, vertsec in enumerate(grid): # (aIBi, PVals) = vertsec # for P in PVals: # DP_stable = DP_interp(DPg, P, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # if (DP_stable == -1 or DP_stable > DPMax): # print([aIBi, P, DP_stable]) # break # points.append([aIBi, P, DP_stable]) # pointsarray = np.array(points) # np.savetxt("aIB_P_DP_points.csv", pointsarray) # # DATA PROCESSING # points = np.genfromtxt('aIB_P_DP_points.csv', delimiter=' ') # aIBip = points[:, 0] # Pp = points[:, 1] # DPp = points[:, 2] # aSip = aSi_interp(DPp, aSi_tck) # PBp = PB_interp(DPp, aIBip, gBB, mI, mB, n0, aSi_tck, PBint_tck) # Ep = Eup(Pp, PBp, aIBip, aSip, mI, mB, n0) # rMp = rMass(Pp, PBp, mI) # # aIBi, P, DP, aSi, PB, E, rM # dat = np.concatenate((points, aSip[:, np.newaxis], PBp[:, np.newaxis], Ep[:, np.newaxis], rMp[:, np.newaxis]), axis=1) # np.savetxt("fmdat.csv", dat) # # IMPURITY MOMENTUM VS. INTERACTIONS # aIBiVals = np.linspace(-10, 10, 100) # Pc_min = PCrit(np.amin(aIBiVals), gBB, mI, mB, n0) # PVals = np.linspace(0.1 * mI * nuV, 0.95 * Pc_min, 4) # fig, ax = plt.subplots() # colortyp = np.array(['r', 'g', 'b', 'y', 'c', 'm', 'y', 'k']) # ax.plot(aIBiVals, np.zeros(aIBiVals.size), 'k', label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%d$' % 0) # DPg = 0 # for indp, P in enumerate(PVals): # DPVals = np.zeros(aIBiVals.size) # for inda, aIBi in enumerate(aIBiVals): # DP_stable = DP_interp(DPg, P, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # if (DP_stable == -1 or DP_stable > DPMax): # print([aIBi, P, DP_stable]) # DPVals[inda] = float('nan') # else: # DPVals[inda] = DP_stable # mask = ~np.isnan(DPVals) # DPValsC = DPVals[mask] # aIBiValsC = aIBiVals[mask] # DP_tck = interpolate.splrep(aIBiValsC, DPValsC, s=0) # DP_int = interpolate.splev(aIBiVals, DP_tck, der=0) # Pnorm = P / Pc_min # ax.plot(aIBiVals, DP_int / DPMax, colortyp[indp], label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%.2f$' % Pnorm) # ax.legend() # ax.set_xlabel(r'Scattering Length ($a_{IB}^{-1}$)') # ax.set_ylabel(r'Impurity Momentum ($\frac{\Delta P}{m_{I}\nu_{s}}$)') # ax.set_title('Impurity Momentum vs Interactions') # plt.show() # # fig.savefig('impuritymom.pdf') # # EFFECTIVE MASS VS. INTERACTIONS # aIBiVals = np.linspace(-10, 10, 100) # P = 0.1 * mI * nuV # fig, ax = plt.subplots() # DPg = 0 # PBVals = np.zeros(aIBiVals.size) # for inda, aIBi in enumerate(aIBiVals): # DP_stable = DP_interp(DPg, P, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # if (DP_stable == -1 or DP_stable > DPMax): # print([aIBi, P, DP_stable]) # PBVals[inda] = float('nan') # else: # PBVals[inda] = PB_interp(DP_stable, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # mask = ~np.isnan(PBVals) # PBValsC = PBVals[mask] # aIBiValsC = aIBiVals[mask] # ax.plot(aIBiVals, rMass(P, PBVals, mI) / mI, 'b', label=r'$P=0.1 m_{I}\nu_{s}$') # ax.legend() # ax.set_xlabel(r'Scattering Length ($a_{IB}^{-1}$)') # ax.set_ylabel(r'Mass ($\frac{M_{pol}}{m_{I}}=\frac{P}{P-P_{B}}$)') # ax.set_title('Effective Mass vs Interactions') # plt.show() # # NUMBER OF EXCITATIONS, Z-FACTOR, ENERGY VS INTERACTION STRENGTH # aIBiVals = np.linspace(-10, 10, 100) # Pc_min = PCrit(np.amin(aIBiVals), gBB, mI, mB, n0) # PVals = np.linspace(0.1 * mI * nuV, 0.95 * Pc_min, 4) # fig, ax = plt.subplots() # fig2, ax2 = plt.subplots() # fig3, ax3 = plt.subplots() # colortyp = np.array(['r', 'g', 'b', 'y', 'c', 'm', 'y', 'k']) # # ax.plot(aIBiVals, np.zeros(aIBiVals.size), 'k', label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%d$' % 0) # DPg = 0 # for indp, P in enumerate(PVals): # NBVals = np.zeros(aIBiVals.size) # qpVals = np.zeros(aIBiVals.size) # EVals = np.zeros(aIBiVals.size) # for inda, aIBi in enumerate(aIBiVals): # DP_stable = DP_interp(DPg, P, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # if (DP_stable == -1 or DP_stable > DPMax): # print([aIBi, P, DP_stable]) # qpVals[inda] = float('nan') # NBVals[inda] = float('nan') # EVals[inda] = float('nan') # else: # aSi = aSi_interp(DP_stable, aSi_tck) # PB = PB_interp(DP_stable, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) # NBVals[inda] = num_phonons(aIBi, aSi, gBB, mI, mB, n0) # qpVals[inda] = qp_residue(aIBi, aSi, gBB, mI, mB, n0) # EVals[inda] = Eup(P, PB, aIBi, aSi, mI, mB, n0) # mask = ~np.isnan(NBVals) # NBValsC = NBVals[mask] # qpValsC = qpVals[mask] # aIBiValsC = aIBiVals[mask] # EValsC = EVals[mask] # qp_tck = interpolate.splrep(aIBiValsC, qpValsC, s=0) # qp_int = interpolate.splev(aIBiVals, qp_tck, der=0) # Pnorm = P / Pc_min # ax.plot(aIBiVals, NBVals, colortyp[indp], label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%.2f$' % Pnorm) # ax2.plot(aIBiVals, qp_int, colortyp[indp], label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%.2f$' % Pnorm) # ax3.plot(aIBiVals, EVals, colortyp[indp], label=r'$\frac{P}{P_{crit}(a_{IB}^{-1}=-10)}=%.2f$' % Pnorm) # ax.legend() # ax.set_xlabel(r'Scattering Length ($a_{IB}^{-1}$)') # ax.set_ylabel(r'Number of Phonons ($N_{ph}$)') # ax.set_title('Number of Phonons vs Interactions') # ax2.legend() # ax2.set_xlabel(r'Scattering Length ($a_{IB}^{-1}$)') # ax2.set_ylabel(r'Quasiparticle Residue ($e^{-\frac{1}{2}N_{ph}}$)') # ax2.set_title('Quasiparticle Residue vs Interactions') # ax3.legend() # ax3.set_xlabel(r'Scattering Length ($a_{IB}^{-1}$)') # ax3.set_ylabel(r'Energy)') # ax3.set_title('Energy vs Interactions') # plt.show() # fig.savefig('impuritymom.pdf') # # ENERGY VS MOMENTUM # aIBi, P, DP, aSi, PB, E, rM # aIBiVals = -1 * np.array([0.25, 1, 3, 5, 10]) aIBiVals = -1 * np.array([2]) # aIBiVals = np.array([-5, res - 0.3, res + 0.3, 5]) # fig, ax = plt.subplots() # fign, axn = plt.subplots() colortyp = np.array(['r', 'g', 'b', 'y', 'c', 'm', 'y', 'k']) E1 = [] E2 = [] DPg = 0 for inda, aIBi in enumerate(aIBiVals): Pc = PCrit(aIBi, gBB, mI, mB, n0) PVals = np.linspace(0.1 * mI * nuV, 0.95 * Pc, 100) EVals = np.zeros(PVals.size) for indp, P in enumerate(PVals): DP_stable = DP_interp(DPg, P, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) if (DP_stable == -1 or DP_stable > DPMax): print([aIBi, P, DP_stable]) EVals[indp] = float('nan') else: aSi = aSi_interp(DP_stable, aSi_tck) PB = PB_interp(DP_stable, aIBi, gBB, mI, mB, n0, aSi_tck, PBint_tck) EVals[indp] = Eup(P, PB, aIBi, aSi, mI, mB, n0) mask = ~np.isnan(EVals) EValsC = EVals[mask] PValsC = PVals[mask] a0 = aSi0(gBB, mI, mB, n0) E0 = Eup(0, 0, aIBi, a0, mI, mB, n0) E_tck = interpolate.splrep(PValsC, EValsC - E0, s=0) E_int = interpolate.splev(PVals, E_tck, der=0) E1_int = interpolate.splev(PVals, E_tck, der=1) # E1_tck = interpolate.splrep(PVals, E1_int, s=0) E2_int = interpolate.splev(PVals, E_tck, der=2) E1.append((PVals / Pc, E1_int)) E2.append((PVals / Pc, E2_int)) # ax.plot(PValsC, EValsC - E0, colortyp[inda], label=r'$a_{IB}^{-1}=%.2f$' % aIBi) # axn.plot(PValsC / Pc, EValsC - E0, colortyp[inda], label=r'$a_{IB}^{-1}=%.2f$' % aIBi) # create data to be saved (giant file to be saved later) # PdVec = np.concatenate((aIBi * np.ones(1), PValsC)) # EdVec = np.concatenate((aIBi * np.ones(1), EValsC)) # if(inda == 0): # Edat = np.concatenate((PdVec[:, np.newaxis], EdVec[:, np.newaxis]), axis=1) # else: # Edat = np.concatenate((Edat, PdVec[:, np.newaxis], EdVec[:, np.newaxis]), axis=1) # save data to file each time instead of one giant file Edat = np.concatenate((PValsC[:, np.newaxis], EValsC[:, np.newaxis]), axis=1) np.savetxt(dirpath + '/fmEdata/fmEP_aIBi_%.2f.dat' % (aIBi), Edat) # np.savetxt("Edat.csv", Edat) # ax.legend() # ax.set_xlabel('Momentum ($P$)') # ax.set_ylabel('Energy ($E-E(P=0)$)') # ax.set_title('Energy vs Momentum') # axn.legend() # axn.set_xlabel(r'Momentum ($\frac{P}{P_{crit}(a_{IB})}$)') # axn.set_ylabel('Energy ($E-E(P=0)$)') # axn.set_title('Energy vs Momentum') # fig2, ax2 = plt.subplots() # (Pnorm, E1Vals) = E1[0] # (Pnorm, E2Vals) = E2[0] # ax2.plot(Pnorm, E1Vals, colortyp[0], label=r'$\frac{\partial E}{\partial P}$') # ax2.plot(Pnorm, E2Vals, colortyp[1], label=r'$\frac{\partial^{2} E}{\partial P^{2}}$') # ax2.legend() # ax2.set_xlabel(r'Momentum ($\frac{P}{P_{crit}(a_{IB})}$)') # ax2.set_ylabel('Energy Derivatives') # ax2.set_title(r'Energy Behavior for $a_{IB}^{-1}=%.2f$' % aIBiVals[0]) # fig3, ax3 = plt.subplots() # (Pnorm, E1Vals) = E1[-2] # (Pnorm, E2Vals) = E2[-2] # ax3.plot(Pnorm, E1Vals, colortyp[0], label=r'$\frac{\partial E}{\partial P}$') # ax3.plot(Pnorm, E2Vals, colortyp[1], label=r'$\frac{\partial^{2} E}{\partial P^{2}}$') # ax3.legend() # ax3.set_xlabel(r'Momentum ($\frac{P}{P_{crit}(a_{IB})}$)') # ax3.set_ylabel('Energy Derivatives') # ax3.set_title(r'Energy Behavior for $a_{IB}^{-1}=%.2f$' % aIBiVals[-2]) # fig4, ax4 = plt.subplots() # fig5, ax5 = plt.subplots() # for ind, aIBi in enumerate(aIBiVals): # (Pnorm, E1Vals) = E1[ind] # (Pnorm, E2Vals) = E2[ind] # ax4.plot(Pnorm, E1Vals, colortyp[ind], label='$a_{IB}^{-1}=%.2f$' % aIBi) # ax5.plot(Pnorm, E2Vals / E2Vals[0], colortyp[ind], label='$a_{IB}^{-1}=%.2f$' % aIBi) # ax4.legend() # ax4.set_xlabel(r'Momentum ($\frac{P}{P_{crit}(a_{IB})}$)') # ax4.set_ylabel(r'$\frac{\partial E}{\partial P}$') # ax4.set_title(r'First Derivative of Energy') # ax5.legend() # ax5.set_xlabel(r'Momentum ($\frac{P}{P_{crit}(a_{IB})}$)') # ax5.set_ylabel(r'$M_{P}\frac{\partial^{2} E}{\partial P^{2}}$') # ax5.set_title(r'Second Derivative of Energy') # ax5.set_xlim([0, 1]) # ax5.set_ylim([0, 1]) # plt.show() # fig.savefig('impuritymom.pdf')
mit
sumspr/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
tensorflow/probability
tensorflow_probability/python/sts/internal/seasonality_util.py
1
9383
# Copyright 2021 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for inferring and representing seasonality.""" import collections import enum import numpy as np import tensorflow as tf from tensorflow_probability.python.internal import prefer_static as ps class SeasonTypes(enum.Enum): SECOND_OF_MINUTE = 0, MINUTE_OF_HOUR = 1, HOUR_OF_DAY = 2, DAY_OF_WEEK = 3 MONTH_OF_YEAR = 4 SeasonConversion = collections.namedtuple( 'SeasonConversion', ['num', 'duration']) _SEASONAL_PROTOTYPES = collections.OrderedDict({ SeasonTypes.SECOND_OF_MINUTE: SeasonConversion(num=60, duration=1), SeasonTypes.MINUTE_OF_HOUR: SeasonConversion(num=60, duration=60), SeasonTypes.HOUR_OF_DAY: SeasonConversion(num=24, duration=3600), SeasonTypes.DAY_OF_WEEK: SeasonConversion(num=7, duration=86400) }) def create_seasonal_structure(frequency, num_steps, min_cycles=2): """Creates a set of suitable seasonal structures for a time series. Args: frequency: a Pandas `pd.DateOffset` instance. num_steps: Python `int` number of steps at the given frequency. min_cycles: Python `int` minimum number of cycles to include an effect. Returns: A dictionary of SeasonConversion instances representing different seasonal components. Example 1: For data.index.freq: pd.DateOffset(hours=1) Seasonal components: { SeasonTypes.HOUR_OF_DAY: SeasonConversion(num=24, duration=1), SeasonTypes.DAY_OF_WEEK: SeasonConversion(num=7, duration=24) } Example 2: For data.index.freq: pd.DateOffset(seconds=30) Seasonal components: { SeasonTypes.SECOND_OF_MINUTE: SeasonConversion(num=2, duration=1), SeasonTypes.MINUTE_OF_HOUR: SeasonConversion(num=60, duration=2), SeasonTypes.HOUR_OF_DAY: SeasonConversion(num=24, duration=120), SeasonTypes.DAY_OF_WEEK: SeasonConversion(num=7, duration=2880) } If the frequency is N times per year, for integer 2 <= N <= 12 (e.g., 12 for monthly or 4 for quarterly), then a fixed structure of (N, 1) will be created. """ num_periods = periods_per_year(frequency) if num_periods is not None: # Fixed structure for monthly or quarterly data. return { SeasonTypes.MONTH_OF_YEAR: SeasonConversion(num=num_periods, duration=1) } # Compute seasonal components by cycling through _SEASONAL_PROTOTYPES and # filter out None components. components = { # pylint: disable=g-complex-comprehension k: make_component(v, frequency=frequency, num_steps=num_steps, min_cycles=min_cycles) for k, v in _SEASONAL_PROTOTYPES.items()} return {k: v for (k, v) in components.items() if v is not None} def make_component(season_tuple, frequency, num_steps, min_cycles=2): """Make a seasonal component from a template component. This is a helper function to the _create_seasonal_structure() method. It takes a SeasonConversion instance from _SEASONAL_PROTOTYPES and creates a seasonal component based on the number of observations `num_steps` in the data and the time series frequency `freq_sec`. A custom seasonal component is created if it fulfills 4 conditions: Condition 1: time series must cover at least _MIN_CYCLES full cycles. Condition 2: full cycle must be a multiple of the granularity. Condition 3: if the season is longer than the granularity, it must be a multiple of the granularity. Condition 4: number of seasons must be greater than 1. Args: season_tuple: an `SeasonConversion` instance the number of seasons, and season duration for a template seasonal component e.g. (60, 1) for seconds-of-minute or (60, 60) for minute-of-hour. See _SEASONAL_PROTOTYPES for more details. frequency: a `pd.DateOffset` instance. num_steps: Python `int` number of steps at the given frequency. min_cycles: Python `int` minimum number of cycles to include an effect. Returns: An `SeasonConversion` instance, where num and duration is the inferred structure for the seasonal component. If a seasonal component can not be created it returns None for that component. """ freq_sec = freq_to_seconds(frequency) if not freq_sec: return None num_seasons = season_tuple.num duration_seconds = season_tuple.duration # None component returned if no component can be created below. component = None # Condition 1: time series must cover at least _MIN_CYCLES full cycles. minimum_observations = ((num_seasons * duration_seconds * min_cycles) / freq_sec) cond1 = num_steps >= minimum_observations # Condition 2: full cycle must be a multiple of the granularity. cond2 = (num_seasons * duration_seconds) % freq_sec == 0 # Condition 3: if the season is longer than the granularity, it must be a # multiple of the granularity. cond3 = ((duration_seconds <= freq_sec) or (duration_seconds % freq_sec == 0)) if cond1 and cond2 and cond3: nseasons = min(num_seasons * duration_seconds / freq_sec, num_seasons) season_duration = max(duration_seconds / freq_sec, 1) # Condition 4: number of seasons must be greater than 1. cond4 = ((nseasons > 1) and (nseasons <= num_seasons)) if cond4: component = SeasonConversion( num=int(nseasons), duration=int(season_duration)) return component def _design_matrix_for_one_seasonal_effect(num_steps, duration, period, dtype): current_period = np.int32(np.arange(num_steps) / duration) % period return np.transpose([ ps.where(current_period == p, # pylint: disable=g-complex-comprehension ps.ones([], dtype=dtype), ps.zeros([], dtype=dtype)) for p in range(period)]) def build_fixed_effects(num_steps, seasonal_structure=None, covariates=None, dtype=tf.float32): """Builds a design matrix treating seasonality as fixed-effects regression.""" if seasonal_structure is None: seasonal_structure = {} if seasonal_structure: design_matrix = ps.concat( [ _design_matrix_for_one_seasonal_effect( num_steps, seasonal_effect.duration, seasonal_effect.num, dtype) for seasonal_effect in seasonal_structure.values() ], axis=-1) else: design_matrix = ps.ones([num_steps, 1], dtype=dtype) if covariates: design_matrix = ps.concat( [design_matrix] + [tf.convert_to_tensor(x)[..., :num_steps, :] for x in covariates], axis=-1) return design_matrix def freq_to_seconds(freq): """Converts time series DateOffset frequency to seconds.""" if not freq: return None if not is_fixed_duration(freq): return None freq_secs = 0. for kwds_unit, kwds_value in freq.kwds.items(): switch_to_seconds = { 'weeks': kwds_value * 60 * 60 * 24 * 7, 'days': kwds_value * 60 * 60 * 24, 'hours': kwds_value * 60 * 60, 'minutes': kwds_value * 60, 'seconds': kwds_value } freq_secs += switch_to_seconds[kwds_unit] return freq_secs def periods_per_year(frequency): """Counts number of steps that equal a year, if defined and 2 <= N <= 12.""" # pylint: disable=unused-import,g-import-not-at-top import pandas as pd # Defer import to avoid a package-level Pandas dep. # pylint: enable=unused-import,g-import-not-at-top if is_fixed_duration(frequency): return None # No fixed duration divides both leap and non-leap years. start = pd.Timestamp('1900-01-01') # Align the start date with any constraints imposed by the frequency, e.g., # `pd.offsets.MonthEnd()`. start = (start + frequency) - frequency end = start + pd.DateOffset(years=1) for num_steps in range(2, 13): if start + num_steps * frequency == end: return num_steps return None def is_fixed_duration(frequency): """Determines if a `pd.DateOffset` represents a fixed number of seconds.""" # pylint: disable=unused-import,g-import-not-at-top import pandas as pd # Defer import to avoid a package-level Pandas dep. # pylint: enable=unused-import,g-import-not-at-top # Most Pandas offsets define `self.nanos` if and only if they are # fixed-duration (this is checked below), but `pd.DateOffset` doesn't do # this for some reason, so handle this case explicitly. if type(frequency) == pd.DateOffset: # pylint: disable=unidiomatic-typecheck if frequency.kwds.get('months', 0) != 0: return False if frequency.kwds.get('years', 0) != 0: return False return True # Handle custom frequencies like `pd.offsets.MonthsEnd()`. try: frequency.nanos except ValueError: return False return True
apache-2.0
yousrabk/mne-python
examples/visualization/plot_topo_customized.py
17
1914
""" ======================================== Plot custom topographies for MEG sensors ======================================== This example exposes the `iter_topography` function that makes it very easy to generate custom sensor topography plots. Here we will plot the power spectrum of each channel on a topographic layout. """ # Author: Denis A. Engemann <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne.viz import iter_topography from mne import io from mne.time_frequency import compute_raw_psd from mne.datasets import sample print(__doc__) data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' raw = io.Raw(raw_fname, preload=True) raw.filter(1, 20) picks = mne.pick_types(raw.info, meg=True, exclude=[]) tmin, tmax = 0, 120 # use the first 120s of data fmin, fmax = 2, 20 # look at frequencies between 2 and 20Hz n_fft = 2048 # the FFT size (n_fft). Ideally a power of 2 psds, freqs = compute_raw_psd(raw, picks=picks, tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax) psds = 20 * np.log10(psds) # scale to dB def my_callback(ax, ch_idx): """ This block of code is executed once you click on one of the channel axes in the plot. To work with the viz internals, this function should only take two parameters, the axis and the channel or data index. """ ax.plot(freqs, psds[ch_idx], color='red') ax.set_xlabel = 'Frequency (Hz)' ax.set_ylabel = 'Power (dB)' for ax, idx in iter_topography(raw.info, fig_facecolor='white', axis_facecolor='white', axis_spinecolor='white', on_pick=my_callback): ax.plot(psds[idx], color='red') plt.gcf().suptitle('Power spectral densities') plt.show()
bsd-3-clause
mugizico/scikit-learn
examples/plot_multioutput_face_completion.py
330
3019
""" ============================================== Face completion with a multi-output estimators ============================================== This example shows the use of multi-output estimator to complete images. The goal is to predict the lower half of a face given its upper half. The first column of images shows true faces. The next columns illustrate how extremely randomized trees, k nearest neighbors, linear regression and ridge regression complete the lower half of those faces. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import fetch_olivetti_faces from sklearn.utils.validation import check_random_state from sklearn.ensemble import ExtraTreesRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV # Load the faces datasets data = fetch_olivetti_faces() targets = data.target data = data.images.reshape((len(data.images), -1)) train = data[targets < 30] test = data[targets >= 30] # Test on independent people # Test on a subset of people n_faces = 5 rng = check_random_state(4) face_ids = rng.randint(test.shape[0], size=(n_faces, )) test = test[face_ids, :] n_pixels = data.shape[1] X_train = train[:, :np.ceil(0.5 * n_pixels)] # Upper half of the faces y_train = train[:, np.floor(0.5 * n_pixels):] # Lower half of the faces X_test = test[:, :np.ceil(0.5 * n_pixels)] y_test = test[:, np.floor(0.5 * n_pixels):] # Fit estimators ESTIMATORS = { "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32, random_state=0), "K-nn": KNeighborsRegressor(), "Linear regression": LinearRegression(), "Ridge": RidgeCV(), } y_test_predict = dict() for name, estimator in ESTIMATORS.items(): estimator.fit(X_train, y_train) y_test_predict[name] = estimator.predict(X_test) # Plot the completed faces image_shape = (64, 64) n_cols = 1 + len(ESTIMATORS) plt.figure(figsize=(2. * n_cols, 2.26 * n_faces)) plt.suptitle("Face completion with multi-output estimators", size=16) for i in range(n_faces): true_face = np.hstack((X_test[i], y_test[i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 1, title="true faces") sub.axis("off") sub.imshow(true_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") for j, est in enumerate(sorted(ESTIMATORS)): completed_face = np.hstack((X_test[i], y_test_predict[est][i])) if i: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j) else: sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j, title=est) sub.axis("off") sub.imshow(completed_face.reshape(image_shape), cmap=plt.cm.gray, interpolation="nearest") plt.show()
bsd-3-clause
Reslix/AutoArxiv
autoarxiv/warden/scripts/article_sorting.py
1
3550
""" For the time being, the most important heuristic for determining article priority will be based on the presence of authors """ from sklearn import svm from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from warden.models import AuthorRating, ArticleRating class AuthorRank: """ Given a member and a set of articles, return articles rated on author ratings. The more authors per article that have a good rating, the higher the article rating. """ @classmethod def rank(cls, member, articles): author_ratings = AuthorRating.objects.filter(member=member) authors = {x.author: x.rating for x in author_ratings} ranks = {} for article in articles: a = article.authors.all() ranks[article] = sum([authors.get(author, 0) for author in a]) return ranks class CompositeRank: """ Given a member and a set of articles, return articles rated on a set of article criteria: Basically everything, including a composite author rating. The weights will be learned. For now, only the abstracts of articles will be used to reduce the dimensionality of the problem space. TODO: 1. autoencoder feature learning using pytorch into collaborative filtering 2. bayesian something something 3. category rating learning """ def rank(self, member, articles): ranks = {} labeled = list(ArticleRating.objects.filter(member=member)) if len(labeled) > 0: labeled_text = [rating.article.abstract for rating in labeled] labeled_authors = [rating.article.authors.all() for rating in labeled] labels = [rating.rating for rating in labeled] unlabeled_text = [article.abstract for article in articles] model, count_vect, tfidf_transformer = self.train_model(labeled_text, labels) predictions = self.predict(model, count_vect, tfidf_transformer, unlabeled_text) author_rating = {} for label, l_authors in zip(labels, labeled_authors): for author in l_authors: if author in author_rating: author_rating[author] += label else: author_rating[author] = label author_pred = [sum([author_rating.get(author, 0) for author in article.authors.all()]) for article in articles] for article, author_pred, prediction in zip(articles, author_pred, predictions): ranks[article] = (author_pred, prediction) else: ranks = {article: (0, 0) for article in articles} return ranks def predict(self, model, count_vect, tfidf_transformer, text): counts = count_vect.transform(text) tfidf = tfidf_transformer.transform(counts) return model.predict(tfidf) def train_model(self, text, labels): """ This is a SVM that uses tfidf vectors as features. In the future, we want to use a more sophisticated model for recommendation, but this should suffice on naive examples (there's no basis for this assumption). :param text: :return: """ clf = svm.SVR() count_vect = CountVectorizer() tfidf_transformer = TfidfTransformer() counts = count_vect.fit_transform(text) tfidf = tfidf_transformer.fit_transform(counts) clf.fit(tfidf, labels) return clf, count_vect, tfidf_transformer
mit
ddebrunner/streamsx.topology
samples/python/topology/scikit-learn/digit_predict.py
2
1105
# Licensed Materials - Property of IBM # Copyright IBM Corp. 2018 import os from sklearn.externals import joblib import streamsx.ec class DigitPredictor(object): """ Callable class that loads the model from a file in its context manager methods. """ def __init__(self, model_path): # Note this method is only called when the topology is # declared to create a instance to use in the map function. self.model_path = model_path self.clf = None def __call__(self, image): """Predict the digit from the image. """ return {'image':image, 'digit':self.clf.predict(image.reshape(1,-1))[0]} def __enter__(self): """Load the model from a file. """ # Called at runtime in the IBM Streams job before # this instance starts processing tuples. self.clf = joblib.load( os.path.join(streamsx.ec.get_application_directory(), self.model_path)) def __exit__(self, exc_type, exc_value, traceback): # __enter__ and __exit__ must both be defined. pass
apache-2.0
sinhrks/numpy
numpy/lib/npyio.py
42
71218
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Note that generators must return byte strings in Python 3k. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, or generator. " "(got %s instead)" % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-3-clause
XiaoxiaoLiu/morphology_analysis
utilities/global_feature_calculation.py
1
4097
import os import scipy.stats import numpy import matplotlib.pylab as pl import pandas as pd # program path on this machine #=================================================================== #blastneuron_DIR = "/home/xiaoxiaol/work/src/blastneuron" blastneuron_DIR = "/Users/xiaoxiaoliu/work/src/blastneuron" PRUNE_SHORT_BRANCH = blastneuron_DIR + "/bin/prune_short_branch" PRE_PROCESSING = blastneuron_DIR + "/bin/pre_processing" NEURON_RETRIEVE = blastneuron_DIR + "/bin/neuron_retrieve" BATCH_COMPUTE = blastneuron_DIR + "/bin/batch_compute" # compute faetures V3D="/Users/xiaoxiaoliu/work/v3d/v3d_external/bin/vaa3d64.app/Contents/MacOS/vaa3d64" #V3D="/local1/xiaoxiaol/work/v3d/v3d_external/bin/vaa3d" data_DIR = '/Volumes/mat/xiaoxiaol/data/lims2/nr_june_25_filter_aligned/apical' original_data_linker_file = data_DIR+'/original/mylinker.ano' # will be genereated preprocessed_data_linker_file = data_DIR+'/preprocessed/mylinker.ano' feature_file = data_DIR + '/preprocessed/prep_features.nfb' #=================================================================== def prune(inputswc_fn, outputswc_fn): cmd = 'cd '+data_DIR+'/pruned/' os.system(cmd) cmd = PRUNE_SHORT_BRANCH + " -i "+inputswc_fn + " -o "+outputswc_fn os.system(cmd) print cmd return def preprocessing(inputswc_fn, outputswc_fn): cmd = 'cd '+data_DIR+'/preprocessed/' os.system(cmd) cmd = PRE_PROCESSING+ " -i "+inputswc_fn + " -o "+outputswc_fn os.system(cmd) return def neuronretrive(inputswc_fn, feature_fn, result_fn, retrieve_number, logfile): cmd = NEURON_RETRIEVE + " -d " + feature_fn + " -q " +inputswc_fn + " -n "+ \ str(retrieve_number) +" -o "+result_fn+" -m 1,3" + " >" + logfile print cmd os.system(cmd) return def featurecomputing(input_linker_fn, feature_fn): cmd = 'cd '+data_DIR+'/preprocessed/' os.system(cmd) cmd = BATCH_COMPUTE + " -i "+input_linker_fn + " -o " + feature_fn os.system(cmd) print cmd return #def genLinkerFile(swcDir, linker_file): # cmd = V3D + " -x linker_file_gen -f linker -i "+ swcDir +" -o "+ linker_file +" -p 1" # print cmd # os.system(cmd) # return def removeLinkerFilePath(inputLinkFile, outputLinkFile): with open(outputLinkFile, 'w') as out_f: with open (inputLinkFile,'r') as in_f: for inline in in_f: outline = 'SWCFILE=' + inline.split('/')[-1] out_f.write(outline) in_f.close() out_f.close() return def genLinkerFileFromList(listCSVFile, linkFile): df = pd.read_csv(listCSVFile, sep=',',header=0) fns = df.orca_path with open(linkFile, 'w') as f: for i in range(len(fns)): line = "SWCFILE="+fns[i]+'\n' f.write(line) f.close() return def pullListFromDB(outputFolder): #outputListCSVFile = outputFolder +'/list.csv' # copy data to local disk? return #================================================================================================== def main(): #TODO: pullListFromDB() update from lims2 to grab all neuron reconstructions into list.csv #genLinkerFileFromList(data_DIR+'/list.csv', original_data_linker_file) if not os.path.exists(data_DIR+'/pruned'): os.mkdir(data_DIR+'/pruned') if not os.path.exists(data_DIR+'/preprocessed'): os.mkdir(data_DIR+'/preprocessed') with open(original_data_linker_file,'r') as f: for line in f: input_swc_path = data_DIR+'/original/'+ (line.strip()).split('=')[1] #SWCFILE=* swc_fn = input_swc_path.split('/')[-1] print swc_fn pruned_swc_fn = data_DIR+'/pruned/'+ swc_fn prune(input_swc_path, pruned_swc_fn) preprocessed_swc_fn = data_DIR+'/preprocessed/'+ swc_fn preprocessing(pruned_swc_fn, preprocessed_swc_fn) #removeLinkerFilePath(original_data_linker_file, preprocessed_data_linker_file) ##batch computing featurecomputing(preprocessed_data_linker_file,feature_file) if __name__ == "__main__": main()
gpl-3.0
JonasWallin/BayesFlow
src/HMres.py
1
12303
# -*- coding: utf-8 -*- """ Created on Mon Aug 18 18:35:14 2014 @author: johnsson """ from __future__ import division import os from mpi4py import MPI import numpy as np import json import matplotlib.pyplot as plt from .HMplot import HMplot from .HMlog import HMlogB, HMElog from .PurePython.GMM import mixture from .utils.dat_util import load_fcdata, sampnames_scattered from .utils.results_mem_efficient import Mres, Traces, MimicSample, Components, MetaData from .utils.initialization.distributed_data import DataMPI from .utils.initialization.EM import EMD_to_generated_from_model from .exceptions import BadQualityError class HMres(Mres): """ Class for processing results from MCMC simulation, e.g. for merging and computing dip test """ def __init__(self, hmlog, hmlog_burn, data, meta_data, comm=MPI.COMM_WORLD, maxnbrsucocol=7): self.comm = comm self.rank = comm.Get_rank() if self.rank == 0: self.noise_class = hmlog.noise_class if self.noise_class: self.p_noise = hmlog.prob_sim_mean[:, hmlog.K] self.noise_mu = hmlog.noise_mu self.noise_sigma = hmlog.noise_sigma else: self.p_noise = None self.meta_data = MetaData(meta_data) self.meta_data.sort(hmlog.names) self.names = self.meta_data.samp['names'] self.data = [data[j] for j in self.meta_data.order] super(HMres, self).__init__(hmlog.d, hmlog.K, hmlog.prob_sim_mean[:, :hmlog.K], hmlog.classif_freq, self.p_noise, hmlog.sim, maxnbrsucocol) self.sim = hmlog.sim self.active_komp = hmlog.active_komp self.traces = Traces(hmlog_burn, hmlog) self.mimics = {} #print("hmlog.savesampnames = {}".format(hmlog.savesampnames)) for i, name in enumerate(hmlog.savesampnames): j = hmlog.names.index(name) self.mimics[name] = MimicSample(self.data[j], name, hmlog.Y_sim[i], 'BHM_MCMC') datapooled = np.vstack(data)[np.random.choice(range(sum([dat.shape[0] for dat in data])), hmlog.Y_pooled_sim.shape[0], replace=False), :] self.mimics['pooled'] = MimicSample(datapooled, 'pooled', hmlog.Y_pooled_sim, 'BHM_MCMC') self.components = Components(hmlog, self.p) self.plot = HMplot(self) self.quality = {} self.mergeind = self.mergeind # make all attributes have same mergeind @classmethod def load(cls, savedir, data_kws, comm=MPI.COMM_SELF, no_postproc=False, verbose=True): hmlog_burn = HMlogB.load(savedir, comm=comm) hmlog = HMElog.load(savedir, comm=comm) hmlog.prob_sim_mean *= hmlog.active_komp # compensate for reweighting in HMlog.postproc metadata = data_kws.copy() marker_lab = metadata.pop('marker_lab') ext = metadata.pop('ext') loadfilef = metadata.pop('loadfilef') if 'datadir' in metadata: datadir = metadata.pop('datadir') data = load_fcdata([datadir], ext, loadfilef, sampnames=hmlog.names, comm=comm, **metadata) else: datadirs = metadata.pop('datadirs') data = load_fcdata(datadirs, ext, loadfilef, sampnames=hmlog.names, comm=comm, **metadata) names = hmlog.names metadata.update(marker_lab=marker_lab, samp={'names': names}) if verbose: print("metadata = {}".format(metadata)) res = cls(hmlog, hmlog_burn, data, metadata, comm=comm) if not no_postproc: try: if verbose: print("savedir = {}".format(savedir)) with open(os.path.join(savedir, 'postproc_results.json'), 'r') as f: postproc_res = json.load(f) except IOError: pass else: for attr in ['_earth_movers_distance_to_generated', 'pdiplist']: try: setattr(res, attr, np.load(os.path.join(savedir, attr+'.npy'))) except IOError: pass for attr in postproc_res: setattr(res, attr, postproc_res[attr]) return res def save(self, savedir): if self.rank == 0: savedict = {} for attr in ['mergeind', 'postproc_par', '_emd_dims', 'quality', 'merged']: try: savedict[attr] = getattr(self, attr) except AttributeError: pass with open(os.path.join(savedir, 'postproc_results.json'), 'w') as f: json.dump(savedict, f) for attr in ['_earth_movers_distance_to_generated', 'pdiplist']: try: np.save(os.path.join(savedir, attr+'.npy'), getattr(self, attr)) except AttributeError: pass @Mres.mergeind.setter def mergeind(self, mergeind): Mres.mergeind.fset(self, mergeind) if hasattr(self, 'components'): self.components.mergeind = self._mergeind self.components.suco_ord = self.suco_ord self.components.comp_ord = self.comp_ord self.components.suco_colors = self.suco_colors self.components.comp_colors = self.comp_colors if hasattr(self, 'traces'): self.traces.comp_ord = self.comp_ord # def check_active_komp(self): # if ((self.active_komp > 0.05)*(self.active_komp < 0.95)).any(): # self.quality['ok_active_komp'] = False # raise BadQualityError('Active components not in ok range') # else: # self.quality['ok_active_komp'] = True def check_convergence(self): if 'convergence' in self.quality: if self.quality['convergence'] == 'no': raise BadQualityError('No convergence') else: return self.traces.plot.all(fig=plt.figure(figsize=(18, 4)), yscale=True) self.traces.plot.nu() self.traces.plot.nu_sigma() plt.show() print("Are trace plots ok? (y/n)") while 1: ans = raw_input() if ans.lower() == 'y': self.quality['convergence'] = 'yes' break if ans.lower() == 'n': self.quality['convergence'] = 'no' raise BadQualityError('Trace plots not ok') print("Bad answer. Are trace plots ok? (y/n)") def check_noise(self, noise_lim=0.01): if self.noise_class: self.quality['max_p_noise'] = np.max(self.p_noise) if (self.p_noise > noise_lim).any(): raise BadQualityError('Too high noise level') def check_outliers(self): bh_out = np.sum(self.components.get_latent_bhattacharyya_overlap_quotient() < 1) eu_out = np.sum(self.components.get_center_distance_quotient() < 1) self.quality['outliers'] = {'bhat': bh_out, 'eucl_loc': eu_out} if bh_out+eu_out > 0: raise BadQualityError('Not closest to own latent component, bhat: {}, eu: {}'.format( bh_out, eu_out)) def check_dip(self, savedir=None, tol=20): self.get_pdip() fig_dip = self.plot.pdip() fig_dip_summary = self.plot.pdip_summary() if not savedir is None: fig_dip.savefig(os.path.join(savedir, 'dip.pdf'), type='pdf', transparent=False, bbox_inches='tight') fig_dip_summary.savefig(os.path.join(savedir, 'dip_summary.pdf'), type='pdf', transparent=False, bbox_inches='tight') else: plt.show() if (np.sum(np.array(self.get_pdip(suco=True)) < 0.28)) > tol: raise BadQualityError('Too many pdip not ok') def check_emd(self, N=5, savedir=None): emd, emd_dim = self.earth_movers_distance_to_generated() self.quality['emd'] = {'min': np.min(emd), 'max': np.max(emd), 'median': np.median(emd)} fig, ax = plt.subplots(figsize=(15, 4)) im = ax.imshow(emd.T, interpolation='None') plt.colorbar(im, orientation='horizontal') top_N = zip(*np.unravel_index(np.argpartition(-emd.ravel(), N)[:N], emd.shape)) fig_fit, axs = plt.subplots(N, 4, figsize=(15, 15)) for i, (j, i_dim) in enumerate(top_N): self.plot.component_fit([emd_dim[i_dim]], name=self.names[j], axs=axs[i, :].reshape(1, -1)) if not savedir is None: fig.savefig(os.path.join(savedir, 'emd.pdf'), type='pdf', transparent=False, bbox_inches='tight') fig_fit.savefig(os.path.join(savedir, 'fit_max_emd.pdf'), type='pdf', transparent=False, bbox_inches='tight') else: plt.show() def check_quality(self, savedir=None, N_emd=5, noise_lim=0.01): #self.check_active_komp() self.check_noise(noise_lim) #self.check_convergence() self.check_outliers() self.check_dip(savedir) self.check_emd(N_emd, savedir) def merge(self, method, thr, **mmfArgs): if self.rank == 0: if method == 'bhat': super(HMres, self).greedy_merge(self.components.get_median_bh_overlap, thr, **mmfArgs) super(HMres, self).self.gclean() else: super(HMres, self).merge(method, thr, **mmfArgs) #self.components.mergeind = self.mergeind #self.plot = HMplot(self, self.meta_data.marker_lab) for i in range(self.comm.Get_size()): self.comm.send(self.mergeind, dest=i, tag=2) else: self.mergeind = self.comm.recv(source=0, tag=2) self.postproc_par = {'method': method, 'thr': thr, 'mmfArgs': mmfArgs} def get_bh_distance_to_own_latent(self): return self.components.get_bh_distance_to_own_latent() def get_center_dist(self): return self.components.get_center_dist() def get_mix(self, j, debug=False): active = self.active_komp[j, :] > 0.05 mus = [self.components.mupers[j, k, :] for k in range(self.K) if active[k]] Sigmas = [self.components.Sigmapers[j, k, :, :] for k in range(self.K) if active[k]] ps = [self.components.p[j, k] for k in range(self.K) if active[k]] if self.noise_class: mus.append(self.noise_mu) Sigmas.append(self.noise_sigma) ps.append(self.p_noise[j]) if debug: print("np.sum(ps) = {}".format(np.sum(ps))) ps /= np.sum(ps) # renormalizing return mus, Sigmas, np.array(ps) def generate_from_mix(self, j, N): mus, Sigmas, ps = self.get_mix(j) return mixture.simulate_mixture(mus, Sigmas, ps, N) @property def K_active(self): return np.sum(np.sum(self.active_komp > 0.05, axis=0) > 0) def earth_movers_distance_to_generated(self, gamma=1): if hasattr(self, '_earth_movers_distance_to_generated'): return self._earth_movers_distance_to_generated, self._emd_dims emds = [] dims = [(i, j) for i in range(self.d) for j in range(i+1, self.d)] for j, dat in enumerate(self.data): mus, Sigmas, ps = self.get_mix(j) N_synsamp = int(dat.shape[0]//10) emds.append( np.array(EMD_to_generated_from_model( DataMPI(MPI.COMM_SELF, [dat]), mus, Sigmas, ps, N_synsamp, gamma=gamma, nbins=50, dims=dims)) * (1./N_synsamp)) print("\r EMD computed for {} samples".format(j+1),) print("\r ",) print("") self._earth_movers_distance_to_generated = np.vstack(emds) self._emd_dims = dims print("dims = {}".format(dims)) return self._earth_movers_distance_to_generated, self._emd_dims
gpl-2.0
yavalvas/yav_com
build/matplotlib/doc/mpl_examples/shapes_and_collections/artist_reference.py
6
2838
""" Reference for matplotlib artists This example displays several of matplotlib's graphics primitives (artists) drawn using matplotlib API. A full list of artists and the documentation is available at http://matplotlib.org/api/artist_api.html. Copyright (c) 2010, Bartosz Telenczuk BSD License """ import matplotlib.pyplot as plt; plt.rcdefaults() import numpy as np import matplotlib.pyplot as plt import matplotlib.path as mpath import matplotlib.lines as mlines import matplotlib.patches as mpatches from matplotlib.collections import PatchCollection def label(xy, text): y = xy[1] - 0.15 # shift y-value for label so that it's below the artist plt.text(xy[0], y, text, ha="center", family='sans-serif', size=14) fig, ax = plt.subplots() # create 3x3 grid to plot the artists grid = np.mgrid[0.2:0.8:3j, 0.2:0.8:3j].reshape(2, -1).T patches = [] # add a circle circle = mpatches.Circle(grid[0], 0.1,ec="none") patches.append(circle) label(grid[0], "Circle") # add a rectangle rect = mpatches.Rectangle(grid[1] - [0.025, 0.05], 0.05, 0.1, ec="none") patches.append(rect) label(grid[1], "Rectangle") # add a wedge wedge = mpatches.Wedge(grid[2], 0.1, 30, 270, ec="none") patches.append(wedge) label(grid[2], "Wedge") # add a Polygon polygon = mpatches.RegularPolygon(grid[3], 5, 0.1) patches.append(polygon) label(grid[3], "Polygon") #add an ellipse ellipse = mpatches.Ellipse(grid[4], 0.2, 0.1) patches.append(ellipse) label(grid[4], "Ellipse") #add an arrow arrow = mpatches.Arrow(grid[5, 0]-0.05, grid[5, 1]-0.05, 0.1, 0.1, width=0.1) patches.append(arrow) label(grid[5], "Arrow") # add a path patch Path = mpath.Path path_data = [ (Path.MOVETO, [ 0.018, -0.11 ]), (Path.CURVE4, [-0.031, -0.051]), (Path.CURVE4, [-0.115, 0.073]), (Path.CURVE4, [-0.03 , 0.073]), (Path.LINETO, [-0.011, 0.039]), (Path.CURVE4, [ 0.043, 0.121]), (Path.CURVE4, [ 0.075, -0.005]), (Path.CURVE4, [ 0.035, -0.027]), (Path.CLOSEPOLY, [0.018, -0.11]) ] codes, verts = zip(*path_data) path = mpath.Path(verts + grid[6], codes) patch = mpatches.PathPatch(path) patches.append(patch) label(grid[6], "PathPatch") # add a fancy box fancybox = mpatches.FancyBboxPatch( grid[7] - [0.025, 0.05], 0.05, 0.1, boxstyle=mpatches.BoxStyle("Round", pad=0.02)) patches.append(fancybox) label(grid[7], "FancyBoxPatch") # add a line x,y = np.array([[-0.06, 0.0, 0.1], [0.05, -0.05, 0.05]]) line = mlines.Line2D(x + grid[8, 0], y + grid[8, 1], lw=5., alpha=0.3) label(grid[8], "Line2D") colors = np.linspace(0, 1, len(patches)) collection = PatchCollection(patches, cmap=plt.cm.hsv, alpha=0.3) collection.set_array(np.array(colors)) ax.add_collection(collection) ax.add_line(line) plt.subplots_adjust(left=0, right=1, bottom=0, top=1) plt.axis('equal') plt.axis('off') plt.show()
mit
lenovor/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
249
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
flowmatters/veneer-py
setup.py
2
1672
RELEASE = True import codecs from setuptools import setup, find_packages import sys, os classifiers = """\ Development Status :: 5 - Production/Stable Environment :: Console Intended Audience :: Developers Intended Audience :: Science/Research License :: OSI Approved :: ISC License (ISCL) Operating System :: OS Independent Programming Language :: Python Topic :: Scientific/Engineering Topic :: Software Development :: Libraries :: Python Modules """ version = '0.1' HERE = os.path.abspath(os.path.dirname(__file__)) def read(*parts): """ Build an absolute path from *parts* and and return the contents of the resulting file. Assume UTF-8 encoding. """ with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f: return f.read() setup( name='veneer-py', version=version, description="Support for scripting eWater Source models through the Veneer (RESTful HTTP) plugin", packages=["veneer"], long_description=read("README.md"), classifiers=filter(None, classifiers.split("\n")), keywords='hydrology ewater veneer scripting http rest', author='Joel Rahman', author_email='[email protected]', url='https://github.com/flowmatters/veneer-py', #download_url = "http://cheeseshop.python.org/packages/source/p/Puppy/Puppy-%s.tar.gz" % version, license='ISC', py_modules=['veneer'], include_package_data=True, zip_safe=True, test_suite = 'nose.collector', install_requires=[ 'numpy', 'pandas' ], extras_require={ 'test': ['nose'], }, )
isc
dimkal/mne-python
tutorials/plot_cluster_stats_time_frequency.py
16
5437
""" .. _tut_stats_cluster_sensor_2samp_tfr: ========================================================================= Non-parametric between conditions cluster statistic on single trial power ========================================================================= This script shows how to compare clusters in time-frequency power estimates between conditions. It uses a non-parametric statistical procedure based on permutations and cluster level statistics. The procedure consists in: - extracting epochs for 2 conditions - compute single trial power estimates - baseline line correct the power estimates (power ratios) - compute stats to see if the power estimates are significantly different between conditions. """ # Authors: Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.time_frequency import single_trial_power from mne.stats import permutation_cluster_test from mne.datasets import sample print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif' event_id = 1 tmin = -0.2 tmax = 0.5 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.read_events(event_fname) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # picks MEG gradiometers picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True, stim=False, include=include, exclude='bads') ch_name = raw.info['ch_names'][picks[0]] # Load condition 1 reject = dict(grad=4000e-13, eog=150e-6) event_id = 1 epochs_condition_1 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) data_condition_1 = epochs_condition_1.get_data() # as 3D matrix data_condition_1 *= 1e13 # change unit to fT / cm # Load condition 2 event_id = 2 epochs_condition_2 = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) data_condition_2 = epochs_condition_2.get_data() # as 3D matrix data_condition_2 *= 1e13 # change unit to fT / cm # Take only one channel data_condition_1 = data_condition_1[:, 97:98, :] data_condition_2 = data_condition_2[:, 97:98, :] # Time vector times = 1e3 * epochs_condition_1.times # change unit to ms # Factor to downsample the temporal dimension of the PSD computed by # single_trial_power. Decimation occurs after frequency decomposition and can # be used to reduce memory usage (and possibly comptuational time of downstream # operations such as nonparametric statistics) if you don't need high # spectrotemporal resolution. decim = 2 frequencies = np.arange(7, 30, 3) # define frequencies of interest sfreq = raw.info['sfreq'] # sampling in Hz n_cycles = 1.5 epochs_power_1 = single_trial_power(data_condition_1, sfreq=sfreq, frequencies=frequencies, n_cycles=n_cycles, decim=decim) epochs_power_2 = single_trial_power(data_condition_2, sfreq=sfreq, frequencies=frequencies, n_cycles=n_cycles, decim=decim) epochs_power_1 = epochs_power_1[:, 0, :, :] # only 1 channel to get 3D matrix epochs_power_2 = epochs_power_2[:, 0, :, :] # only 1 channel to get 3D matrix # Compute ratio with baseline power (be sure to correct time vector with # decimation factor) baseline_mask = times[::decim] < 0 epochs_baseline_1 = np.mean(epochs_power_1[:, :, baseline_mask], axis=2) epochs_power_1 /= epochs_baseline_1[..., np.newaxis] epochs_baseline_2 = np.mean(epochs_power_2[:, :, baseline_mask], axis=2) epochs_power_2 /= epochs_baseline_2[..., np.newaxis] ############################################################################### # Compute statistic threshold = 6.0 T_obs, clusters, cluster_p_values, H0 = \ permutation_cluster_test([epochs_power_1, epochs_power_2], n_permutations=100, threshold=threshold, tail=0) ############################################################################### # View time-frequency plots plt.clf() plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 1, 1) evoked_contrast = np.mean(data_condition_1, 0) - np.mean(data_condition_2, 0) plt.plot(times, evoked_contrast.T) plt.title('Contrast of evoked response (%s)' % ch_name) plt.xlabel('time (ms)') plt.ylabel('Magnetic Field (fT/cm)') plt.xlim(times[0], times[-1]) plt.ylim(-100, 200) plt.subplot(2, 1, 2) # Create new stats image with only significant clusters T_obs_plot = np.nan * np.ones_like(T_obs) for c, p_val in zip(clusters, cluster_p_values): if p_val <= 0.05: T_obs_plot[c] = T_obs[c] plt.imshow(T_obs, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', cmap='RdBu_r') plt.imshow(T_obs_plot, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', cmap='RdBu_r') plt.xlabel('time (ms)') plt.ylabel('Frequency (Hz)') plt.title('Induced power (%s)' % ch_name) plt.show()
bsd-3-clause
jreback/pandas
pandas/io/excel/_openpyxl.py
1
16191
from typing import TYPE_CHECKING, Dict, List, Optional import numpy as np from pandas._typing import FilePathOrBuffer, Scalar, StorageOptions from pandas.compat._optional import import_optional_dependency from pandas.io.excel._base import BaseExcelReader, ExcelWriter from pandas.io.excel._util import validate_freeze_panes if TYPE_CHECKING: from openpyxl.descriptors.serialisable import Serialisable class OpenpyxlWriter(ExcelWriter): engine = "openpyxl" supported_extensions = (".xlsx", ".xlsm") def __init__( self, path, engine=None, mode: str = "w", storage_options: StorageOptions = None, **engine_kwargs, ): # Use the openpyxl module as the Excel writer. from openpyxl.workbook import Workbook super().__init__( path, mode=mode, storage_options=storage_options, **engine_kwargs ) # ExcelWriter replaced "a" by "r+" to allow us to first read the excel file from # the file and later write to it if "r+" in self.mode: # Load from existing workbook from openpyxl import load_workbook self.book = load_workbook(self.handles.handle) else: # Create workbook object with default optimized_write=True. self.book = Workbook() if self.book.worksheets: self.book.remove(self.book.worksheets[0]) def save(self): """ Save workbook to disk. """ self.book.save(self.handles.handle) @classmethod def _convert_to_style_kwargs(cls, style_dict: dict) -> Dict[str, "Serialisable"]: """ Convert a style_dict to a set of kwargs suitable for initializing or updating-on-copy an openpyxl v2 style object. Parameters ---------- style_dict : dict A dict with zero or more of the following keys (or their synonyms). 'font' 'fill' 'border' ('borders') 'alignment' 'number_format' 'protection' Returns ------- style_kwargs : dict A dict with the same, normalized keys as ``style_dict`` but each value has been replaced with a native openpyxl style object of the appropriate class. """ _style_key_map = {"borders": "border"} style_kwargs: Dict[str, Serialisable] = {} for k, v in style_dict.items(): if k in _style_key_map: k = _style_key_map[k] _conv_to_x = getattr(cls, f"_convert_to_{k}", lambda x: None) new_v = _conv_to_x(v) if new_v: style_kwargs[k] = new_v return style_kwargs @classmethod def _convert_to_color(cls, color_spec): """ Convert ``color_spec`` to an openpyxl v2 Color object. Parameters ---------- color_spec : str, dict A 32-bit ARGB hex string, or a dict with zero or more of the following keys. 'rgb' 'indexed' 'auto' 'theme' 'tint' 'index' 'type' Returns ------- color : openpyxl.styles.Color """ from openpyxl.styles import Color if isinstance(color_spec, str): return Color(color_spec) else: return Color(**color_spec) @classmethod def _convert_to_font(cls, font_dict): """ Convert ``font_dict`` to an openpyxl v2 Font object. Parameters ---------- font_dict : dict A dict with zero or more of the following keys (or their synonyms). 'name' 'size' ('sz') 'bold' ('b') 'italic' ('i') 'underline' ('u') 'strikethrough' ('strike') 'color' 'vertAlign' ('vertalign') 'charset' 'scheme' 'family' 'outline' 'shadow' 'condense' Returns ------- font : openpyxl.styles.Font """ from openpyxl.styles import Font _font_key_map = { "sz": "size", "b": "bold", "i": "italic", "u": "underline", "strike": "strikethrough", "vertalign": "vertAlign", } font_kwargs = {} for k, v in font_dict.items(): if k in _font_key_map: k = _font_key_map[k] if k == "color": v = cls._convert_to_color(v) font_kwargs[k] = v return Font(**font_kwargs) @classmethod def _convert_to_stop(cls, stop_seq): """ Convert ``stop_seq`` to a list of openpyxl v2 Color objects, suitable for initializing the ``GradientFill`` ``stop`` parameter. Parameters ---------- stop_seq : iterable An iterable that yields objects suitable for consumption by ``_convert_to_color``. Returns ------- stop : list of openpyxl.styles.Color """ return map(cls._convert_to_color, stop_seq) @classmethod def _convert_to_fill(cls, fill_dict): """ Convert ``fill_dict`` to an openpyxl v2 Fill object. Parameters ---------- fill_dict : dict A dict with one or more of the following keys (or their synonyms), 'fill_type' ('patternType', 'patterntype') 'start_color' ('fgColor', 'fgcolor') 'end_color' ('bgColor', 'bgcolor') or one or more of the following keys (or their synonyms). 'type' ('fill_type') 'degree' 'left' 'right' 'top' 'bottom' 'stop' Returns ------- fill : openpyxl.styles.Fill """ from openpyxl.styles import GradientFill, PatternFill _pattern_fill_key_map = { "patternType": "fill_type", "patterntype": "fill_type", "fgColor": "start_color", "fgcolor": "start_color", "bgColor": "end_color", "bgcolor": "end_color", } _gradient_fill_key_map = {"fill_type": "type"} pfill_kwargs = {} gfill_kwargs = {} for k, v in fill_dict.items(): pk = gk = None if k in _pattern_fill_key_map: pk = _pattern_fill_key_map[k] if k in _gradient_fill_key_map: gk = _gradient_fill_key_map[k] if pk in ["start_color", "end_color"]: v = cls._convert_to_color(v) if gk == "stop": v = cls._convert_to_stop(v) if pk: pfill_kwargs[pk] = v elif gk: gfill_kwargs[gk] = v else: pfill_kwargs[k] = v gfill_kwargs[k] = v try: return PatternFill(**pfill_kwargs) except TypeError: return GradientFill(**gfill_kwargs) @classmethod def _convert_to_side(cls, side_spec): """ Convert ``side_spec`` to an openpyxl v2 Side object. Parameters ---------- side_spec : str, dict A string specifying the border style, or a dict with zero or more of the following keys (or their synonyms). 'style' ('border_style') 'color' Returns ------- side : openpyxl.styles.Side """ from openpyxl.styles import Side _side_key_map = {"border_style": "style"} if isinstance(side_spec, str): return Side(style=side_spec) side_kwargs = {} for k, v in side_spec.items(): if k in _side_key_map: k = _side_key_map[k] if k == "color": v = cls._convert_to_color(v) side_kwargs[k] = v return Side(**side_kwargs) @classmethod def _convert_to_border(cls, border_dict): """ Convert ``border_dict`` to an openpyxl v2 Border object. Parameters ---------- border_dict : dict A dict with zero or more of the following keys (or their synonyms). 'left' 'right' 'top' 'bottom' 'diagonal' 'diagonal_direction' 'vertical' 'horizontal' 'diagonalUp' ('diagonalup') 'diagonalDown' ('diagonaldown') 'outline' Returns ------- border : openpyxl.styles.Border """ from openpyxl.styles import Border _border_key_map = {"diagonalup": "diagonalUp", "diagonaldown": "diagonalDown"} border_kwargs = {} for k, v in border_dict.items(): if k in _border_key_map: k = _border_key_map[k] if k == "color": v = cls._convert_to_color(v) if k in ["left", "right", "top", "bottom", "diagonal"]: v = cls._convert_to_side(v) border_kwargs[k] = v return Border(**border_kwargs) @classmethod def _convert_to_alignment(cls, alignment_dict): """ Convert ``alignment_dict`` to an openpyxl v2 Alignment object. Parameters ---------- alignment_dict : dict A dict with zero or more of the following keys (or their synonyms). 'horizontal' 'vertical' 'text_rotation' 'wrap_text' 'shrink_to_fit' 'indent' Returns ------- alignment : openpyxl.styles.Alignment """ from openpyxl.styles import Alignment return Alignment(**alignment_dict) @classmethod def _convert_to_number_format(cls, number_format_dict): """ Convert ``number_format_dict`` to an openpyxl v2.1.0 number format initializer. Parameters ---------- number_format_dict : dict A dict with zero or more of the following keys. 'format_code' : str Returns ------- number_format : str """ return number_format_dict["format_code"] @classmethod def _convert_to_protection(cls, protection_dict): """ Convert ``protection_dict`` to an openpyxl v2 Protection object. Parameters ---------- protection_dict : dict A dict with zero or more of the following keys. 'locked' 'hidden' Returns ------- """ from openpyxl.styles import Protection return Protection(**protection_dict) def write_cells( self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None ): # Write the frame cells using openpyxl. sheet_name = self._get_sheet_name(sheet_name) _style_cache: Dict[str, Dict[str, Serialisable]] = {} if sheet_name in self.sheets: wks = self.sheets[sheet_name] else: wks = self.book.create_sheet() wks.title = sheet_name self.sheets[sheet_name] = wks if validate_freeze_panes(freeze_panes): wks.freeze_panes = wks.cell( row=freeze_panes[0] + 1, column=freeze_panes[1] + 1 ) for cell in cells: xcell = wks.cell( row=startrow + cell.row + 1, column=startcol + cell.col + 1 ) xcell.value, fmt = self._value_with_fmt(cell.val) if fmt: xcell.number_format = fmt style_kwargs: Optional[Dict[str, Serialisable]] = {} if cell.style: key = str(cell.style) style_kwargs = _style_cache.get(key) if style_kwargs is None: style_kwargs = self._convert_to_style_kwargs(cell.style) _style_cache[key] = style_kwargs if style_kwargs: for k, v in style_kwargs.items(): setattr(xcell, k, v) if cell.mergestart is not None and cell.mergeend is not None: wks.merge_cells( start_row=startrow + cell.row + 1, start_column=startcol + cell.col + 1, end_column=startcol + cell.mergeend + 1, end_row=startrow + cell.mergestart + 1, ) # When cells are merged only the top-left cell is preserved # The behaviour of the other cells in a merged range is # undefined if style_kwargs: first_row = startrow + cell.row + 1 last_row = startrow + cell.mergestart + 1 first_col = startcol + cell.col + 1 last_col = startcol + cell.mergeend + 1 for row in range(first_row, last_row + 1): for col in range(first_col, last_col + 1): if row == first_row and col == first_col: # Ignore first cell. It is already handled. continue xcell = wks.cell(column=col, row=row) for k, v in style_kwargs.items(): setattr(xcell, k, v) class OpenpyxlReader(BaseExcelReader): def __init__( self, filepath_or_buffer: FilePathOrBuffer, storage_options: StorageOptions = None, ) -> None: """ Reader using openpyxl engine. Parameters ---------- filepath_or_buffer : string, path object or Workbook Object to be parsed. storage_options : dict, optional passed to fsspec for appropriate URLs (see ``_get_filepath_or_buffer``) """ import_optional_dependency("openpyxl") super().__init__(filepath_or_buffer, storage_options=storage_options) @property def _workbook_class(self): from openpyxl import Workbook return Workbook def load_workbook(self, filepath_or_buffer: FilePathOrBuffer): from openpyxl import load_workbook return load_workbook( filepath_or_buffer, read_only=True, data_only=True, keep_links=False ) def close(self): # https://stackoverflow.com/questions/31416842/ # openpyxl-does-not-close-excel-workbook-in-read-only-mode self.book.close() super().close() @property def sheet_names(self) -> List[str]: return self.book.sheetnames def get_sheet_by_name(self, name: str): return self.book[name] def get_sheet_by_index(self, index: int): return self.book.worksheets[index] def _convert_cell(self, cell, convert_float: bool) -> Scalar: from openpyxl.cell.cell import TYPE_BOOL, TYPE_ERROR, TYPE_NUMERIC if cell.is_date: return cell.value elif cell.data_type == TYPE_ERROR: return np.nan elif cell.data_type == TYPE_BOOL: return bool(cell.value) elif cell.value is None: return "" # compat with xlrd elif cell.data_type == TYPE_NUMERIC: # GH5394 if convert_float: val = int(cell.value) if val == cell.value: return val else: return float(cell.value) return cell.value def get_sheet_data(self, sheet, convert_float: bool) -> List[List[Scalar]]: data: List[List[Scalar]] = [] for row in sheet.rows: data.append([self._convert_cell(cell, convert_float) for cell in row]) return data
bsd-3-clause
lshain-android-source/external-chromium_org
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
154
8545
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe, skip_if_missing=False): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) crash_service_path = os.path.join(browser_dir, crash_service_exe) if skip_if_missing and not os.path.exists(crash_service_path): return proc = subprocess.Popen([crash_service_path, '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). # Skip if missing, since in win64 builds crash_service.exe is 64-bit # and crash_service64.exe does not exist. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe', skip_if_missing=True) # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
rmhyman/DataScience
Lesson3/gradient_descent_subway_data.py
1
4610
import numpy as np import pandas from sklearn.linear_model import SGDRegressor """ In this question, you need to: 1) Implement the linear_regression() procedure using gradient descent. You can use the SGDRegressor class from sklearn, since this class uses gradient descent. 2) Select features (in the predictions procedure) and make predictions. """ def normalize_features(features): ''' Returns the means and standard deviations of the given features, along with a normalized feature matrix. ''' means = np.mean(features, axis=0) std_devs = np.std(features, axis=0) normalized_features = (features - means) / std_devs return means, std_devs, normalized_features def recover_params(means, std_devs, norm_intercept, norm_params): ''' Recovers the weights for a linear model given parameters that were fitted using normalized features. Takes the means and standard deviations of the original features, along with the intercept and parameters computed using the normalized features, and returns the intercept and parameters that correspond to the original features. ''' intercept = norm_intercept - np.sum(means * norm_params / std_devs) params = norm_params / std_devs return intercept, params def linear_regression(features, values): """ Perform linear regression given a data set with an arbitrary number of features. """ #features = sm.add_constant(features) model = SGDRegressor(n_iter=30) #normalize_res = normalize_features(features) model.fit(features,values) ########################### ### YOUR CODE GOES HERE ### ########################### intercept = model.intercept_ params = model.coef_ return intercept, params def predictions(dataframe): ''' The NYC turnstile data is stored in a pandas dataframe called weather_turnstile. Using the information stored in the dataframe, let's predict the ridership of the NYC subway using linear regression with gradient descent. You can download the complete turnstile weather dataframe here: https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv Your prediction should have a R^2 value of 0.40 or better. You need to experiment using various input features contained in the dataframe. We recommend that you don't use the EXITSn_hourly feature as an input to the linear model because we cannot use it as a predictor: we cannot use exits counts as a way to predict entry counts. Note: Due to the memory and CPU limitation of our Amazon EC2 instance, we will give you a random subset (~50%) of the data contained in turnstile_data_master_with_weather.csv. You are encouraged to experiment with this exercise on your own computer, locally. If you receive a "server has encountered an error" message, that means you are hitting the 30-second limit that's placed on running your program. Try using a smaller number of features or fewer iterations. ''' ################################ MODIFY THIS SECTION ##################################### # Select features. You should modify this section to try different features! # # We've selected rain, precipi, Hour, meantempi, and UNIT (as a dummy) to start you off. # # See this page for more info about dummy variables: # # http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html # ########################################################################################## features = dataframe[['rain', 'precipi', 'Hour', 'meantempi']] dummy_units = pandas.get_dummies(dataframe['UNIT'], prefix='unit') features = features.join(dummy_units) # Values values = dataframe['ENTRIESn_hourly'] # Get numpy arrays features_array = features.values values_array = values.values means, std_devs, normalized_features_array = normalize_features(features_array) # Perform gradient descent norm_intercept, norm_params = linear_regression(normalized_features_array, values_array) intercept, params = recover_params(means, std_devs, norm_intercept, norm_params) predictions = intercept + np.dot(features_array, params) # The following line would be equivalent: # predictions = norm_intercept + np.dot(normalized_features_array, norm_params) return predictions
mit
maximus009/kaggle-galaxies
check_label_constraints.py
7
2424
""" This file evaluates all constraints on the training labels as stipulated on the 'decision tree' page, and reports when they are violated. It uses only the source CSV file for the sake of reproducibility. """ import numpy as np import pandas as pd TOLERANCE = 0.00001 # 0.01 # only absolute errors greater than this are reported. # TRAIN_LABELS_PATH = "data/raw/solutions_training.csv" TRAIN_LABELS_PATH = "data/raw/training_solutions_rev1.csv" d = pd.read_csv(TRAIN_LABELS_PATH) targets = d.as_matrix()[:, 1:].astype('float32') ids = d.as_matrix()[:, 0].astype('int32') # separate out the questions for convenience questions = [ targets[:, 0:3], # 1.1 - 1.3, targets[:, 3:5], # 2.1 - 2.2 targets[:, 5:7], # 3.1 - 3.2 targets[:, 7:9], # 4.1 - 4.2 targets[:, 9:13], # 5.1 - 5.4 targets[:, 13:15], # 6.1 - 6.2 targets[:, 15:18], # 7.1 - 7.3 targets[:, 18:25], # 8.1 - 8.7 targets[:, 25:28], # 9.1 - 9.3 targets[:, 28:31], # 10.1 - 10.3 targets[:, 31:37], # 11.1 - 11.6 ] # there is one constraint for each question. # the sums of all answers for each of the questions should be equal to these numbers. sums = [ np.ones(targets.shape[0]), # 1, # Q1 questions[0][:, 1], # Q2 questions[1][:, 1], # Q3 questions[1][:, 1], # Q4 questions[1][:, 1], # Q5 np.ones(targets.shape[0]), # 1, # Q6 questions[0][:, 0], # Q7 questions[5][:, 0], # Q8 questions[1][:, 0], # Q9 questions[3][:, 0], # Q10 questions[3][:, 0], # Q11 ] num_total_violations = 0 affected_ids = set() for k, desired_sums in enumerate(sums): print "QUESTION %d" % (k + 1) actual_sums = questions[k].sum(1) difference = abs(desired_sums - actual_sums) indices_violated = difference > TOLERANCE ids_violated = ids[indices_violated] num_violations = len(ids_violated) if num_violations > 0: print "%d constraint violations." % num_violations num_total_violations += num_violations for id_violated, d_s, a_s in zip(ids_violated, desired_sums[indices_violated], actual_sums[indices_violated]): print "violated by %d, sum should be %.6f but it is %.6f" % (id_violated, d_s, a_s) affected_ids.add(id_violated) else: print "No constraint violations." print print print "%d violations in total." % num_total_violations print "%d data points violate constraints." % len(affected_ids)
bsd-3-clause
airanmehr/bio
Scripts/HLI/Kyrgyz/poly.py
1
1397
import numpy as np; import seaborn as sns np.set_printoptions(linewidth=200, precision=5, suppress=True) import pandas as pd; from matplotlib.backends.backend_pdf import PdfPages pd.options.display.max_rows = 20; pd.options.display.expand_frame_repr = False import pylab as plt; import os; home = os.path.expanduser('~') + '/' import Utils.Util as utl import Utils.Estimate as est import Utils.Plots as pplt import matplotlib as mpl mpl.rcParams['text.usetex']=False path='/Users/airanmehr/Downloads/PolygenicAdaptationCode-master/Example/Genome_Data/' def genome(): a=pd.read_csv(path+'genome.file.txt',sep='\t');col=a.columns[0].split();a=a.reset_index();a.columns=col;a=a.drop_duplicates().rename(columns={'CHR':'CHROM'}) b=a[['CHROM','POS','BVAL']].drop_duplicates().set_index(['CHROM','POS']).BVAL.astype(int) pplt.Manhattan(b) return b b=genome() a=pd.read_csv(path+'match.file.txt',sep='\t',comment='#');col=a.columns[0].split();a=a.reset_index();a.columns=col;a=a.drop_duplicates().rename(columns={'CHR':'CHROM'}) (a.sort_values('SNP').values!=b[b.CLST=='French'].sort_values('SNP').values).sum() b.BVAL.value_counts().size c=pd.concat([a[a.IMP==0].BVAL.value_counts(),a[a.IMP==1].BVAL.value_counts()],1) c[c.isnull().sum(1)>0] c path='/Users/airanmehr/Downloads/PolygenicAdaptationCode-master/Example/Trait_Data/' a=pd.read_csv(path+'height.txt',sep='\t',comment='#') a
mit
pravsripad/jumeg
jumeg/base/jumeg_badchannel_table.py
2
14572
#!/usr/bin/env python3 # -+-coding: utf-8 -+- """ """ #-------------------------------------------- # Authors: Frank Boers <[email protected]> # #-------------------------------------------- # Date: 15.05.19 #-------------------------------------------- # License: BSD (3-clause) #-------------------------------------------- # Updates #-------------------------------------------- import os,logging import pandas as pd from jumeg.base.jumeg_base import jumeg_base from jumeg.base.jumeg_logger import get_logger logger = get_logger() __version__="2020.04.20.001" class JuMEG_BadChannelTable(object): """ CLS to store noisy/bad channel information for all files within an experiment HDF5format id,scan,filename,file path, bads Example: -------- from jumeg.base.jumeg_badchannel_table import JuMEG_BadChannelTable BCT = JuMEG_BadChannelTable(verbose=True) BCT.open(path=path,fname=fname,overwrite=False) id = "123456" scan = "FREEVIEW01" fname = "$JUMEG_TEST_DATA/mne/211747/FREEVIEW01/180109_0955/1/211747_FREEVIEW01_180109_0955_1_c,rfDC,meeg-raw.fif" bads = "MEG 007,MEG 142,MEG 156,RFM 011" BCT.set_bads(id=id,scan=scan,fname=fname,bads=bads) BCT.show() fname = "$JUMEG_TEST_DATA/mne/211747/FREEVIEW01/180109_0955/1/211747_FREEVIEW01_180109_0955_2_c,rfDC,meeg-raw.fif" bads = "MEG 107,MEG 242,MEG 256,RFM 012" BCT.set_bads(id=id,scan=scan,fname=fname,bads=bads) BCT.show() BCT.set_bads(id=id,scan=scan,fname=fname,bads="NIX") BCT.show() print("bads: {}".format( BCT.get_badslist(fname=fname) )) """ def __init__(self,**kwargs): self._HDF = None self._fname = None self.verbose = False self.postfix = 'bads' self.extention = ".hdf5" self._update_from_kwargs(**kwargs) def _update_from_kwargs(self,**kwargs): #self._fname = kwargs.get("filename",self._fname) self.postfix = kwargs.get("postfix",self.postfix) self.extention = kwargs.get("extention",self.extention) self.verbose = kwargs.get("verbose",self.verbose) def update(self,**kwargs): self._update_from_kwargs(**kwargs) #--- HDFobj @property def HDF(self): return self._HDF @property def is_open(self): try: if self.HDF.is_open: return True except: logger.error(" HDFobj is not open !!!\n") return False #--- HDFobj filename @property def filename(self): return self._fname #--- def update_filename(self,path=None,fname=None,postfix=None,extention=None): """ make filename from fname and path remove file extention add postfix and extention mkdir if not exist :param path: :param fname: :param postfix: :param extention: :return: hdf fullfilename """ if fname: self._fname = os.path.expandvars(os.path.expanduser(fname)) self._fname = os.path.splitext( fname )[0] + "_" + self.postfix + self.extention if path: try: path = os.path.expandvars(os.path.expanduser(path)) os.makedirs(path,exist_ok=True) self._fname = os.path.join(path,self._fname) except: logger.exception(" can not create HDF directory path: {}".format(path) + " HDF file: {}".format(self._fname)) return None if self.verbose: logger.info(" -> setting HDF file name to: {}".format(self.filename)) return self._fname #--- init output pandas HDF obj def init(self,fhdf=None,path=None,fname=None,overwrite=False): """create pandas HDF5-Obj and file Parameters ---------- fhdf : hdf5 filename <None> fname : fif-filename <None> hdf_path : path to hdf file <None> if None use fif-file path overwrite: will overwrite existing output file <False> Returns --------- pandas.HDFobj """ if not fhdf: fhdf = self.update_filename(fname=fname,path=path) if (os.path.exists(fhdf) and overwrite): if self.verbose: logger.info("---> HDF file overwriting : {}".format(fhdf)) self.close() os.remove(fhdf) # return pd.HDFStore( fhdf,format='table' ) not usefull with float16 !! ???? try: self._HDF = None self._HDF = pd.HDFStore(fhdf) if self.verbose: logger.info("---> HDF file created: {}".format(fhdf)) except: logger.exception(" error open or creating HDFobj; e.g.: release lock?" + " -> HDF filename: {}".format(fhdf)) if self.verbose: logger.info("---> Open HDF file: {}".format(self.HDF.filename)) return self._HDF def open(self,fhdf=None,path=None,fname=None,overwrite=False): """ open HDF file; pandas HDF5-Obj if exists and not overwrite if fhdf use fhdf as fullfilename else construct filename and mkdir from path and fname Parameters ---------- fhdf : hdf5 filename or, fname : fif-filename or overwrite: <False> Returns --------- pandas.HDFStore obj """ return self.init(fhdf=fhdf,path=path,fname=fname,overwrite=overwrite) def close(self): if self.is_open: if self.verbose: logging.debug(" -> HDF closing: {}".format(self.HDF.filename)) self._HDF.close() def reset_key(self,k): if kf in self.HDF.keys(): self.HDF.remove(k) return k def list_keys_from_node(self,node): """ get key list from HDF node Parameters ---------- node: HDFobj node e.g: for node in HDFobj.keys(): HDFobj["/epcher/M100"] Returns --------- key list from node Example: --------- self.hdf_obj_list_keys_from_node("/epocher") [condition1,condition2 ... conditionN ] """ return self.HDF.get_node(node)._v_groups.keys() def get_dataframe(self,key): """ get pandas dataframe from HDFobj Parameters ---------- key: full dataframe key </node + /key ... + /keyN> Returns ---------- pandas dataframe Example ---------- df = self.hdf_obj_get_dataframe("/epocher/M100") """ return self.HDF.get(self.key2hdfkey(key)) def set_dataframe(self,data=None,key=None): """set dataframe in HDFobj for key Parameters ---------- data: pandas dataframe key : full dataframe key </node + /key ... + /keyN> Returns ---------- None Example ---------- self.hdf_obj_set_dataframe(data=<M100-dataframe>,key="/epocher/M100") """ self.HDF[key] = data def obj_get_attributes(self,HStorer=None,key=None,attr=None): """ Parameters ---------- HStorer: Hdf Storer Obj, to get information from attribute dict <None> if None : use self.HDFobj key : full dataframe key </node + /key ... + /keyN> <None> attr : name of attribute dictionary Returns ---------- attribute parameter as dictionary Example ---------- my_attribut_dict = self.hdf_obj_get_attributes(key="/epocher/M100",attr="epocher_parameter") epocher_parameter = self.hdf_obj_get_attributes(key=ep_key,attr=self.hdf_obj_attribute_epocher) """ if HStorer: try: if HStorer.is_exists: return HStorer.get_storer(key).attrs[attr] except: logger.exception("ERROR in hdf_obj_get_attributes => can not store key attributes no such Storer-Obj" + "HDF : {}\n".format(self.HDF.filename) + "key : {}\n".format(key) + "Attr: {}\n".format(attr)) return elif self.is_open: return self.HDF.get_storer(key).attrs[attr] def update_dataframe(self,df,key=None,reset=True,**storer_attrs): """store & update data[frame] and user attributes to HDFobj call <hdf_obj_store_attributes> to update user attributes in HDFobj Parameters ---------- df : pandas DataFrame or Panel key : node name <None attrs: user atributes <**storer_attr> reset: will reset/clear dataframe first <True> """ #-- avoid error in python3 pandas HDF e.g: STI 13 => STI-13 if not self.is_open: return None #--- fist clean HDF df & parameter if reset: self.reset_key(key) #--- copy dataframe to HDF self.HDF[key] = df #--- update attributes e.g. save dicts like parameter,info ... # return self.store_attributes(key=key,**storer_attrs) def bads2list(self,bads,sep=","): """ :param bads: :param sep: :return: """ if not bads: return [] elif isinstance(bads,str): return bads.split(sep) return bads def get_key(self,id=None,scan=None,fname=None): """ :param id: :param scan: :param fname: :return: key e.g: id + "/" + scan + "/" + run_name Example: -------- input : fname = 123456_FREEVIEW01_200108_0955_1_c,rfDC,meeg-raw.fif output: 123456/FREEVIEW01/123456_FREEVIEW01_200108_0955_1 """ pdf_name = "_".join(os.path.basename(fname).split("_")[0:-1]) id = id if id else pdf_name.split("_")[0] scan = scan if scan else pdf_name.split("_")[1] return id + "/" + scan + "/" + pdf_name def get_bads(self,id=None,scan=None,fname=None,key=None): """ :param id: :param scan: :param fname: :return: """ if not self.is_open: return if not key: if not fname: return key = self.get_key(id=id,scan=scan,fname=fname) try: return self.HDF[key] except: logger.exception("\n".join(["---> ERROR can not get bads from HDF:" " -> filename: {}".format(fname), " -> bads : {}".format(bads), " -> HDF key : {}".format(key), " -> HDf file: {}".format(self.HDF.filename)])) def get_badslist(self,**kwargs): """ :param id: :param scan: :param fname: :return: """ s = self.get_bads(**kwargs) if isinstance(s,pd.Series): return s.tolist() def set_bads(self,id=None,scan=None,fname=None,bads=None): """ set list of bads in HDF as pd.Series build HDF key : id + "/" + scan + "/" + pdf_name :param id: :param scan: :param fname: (full)filename :param bads: string or list of strings :return: Example: -------- id = "123456" scan = "FREEVIEW01" fname = "$JUMEG_TEST_DATA/mne/123456/FREEVIEW01/180109_0955/1/123456_FREEVIEW01_180109_0955_1_c,rfDC,meeg-raw.fif bads = "MEG 007,MEG 142,MEG 156,RFM 011" BCT.set_bads(fname=fname,bads=bads) BCT.set_bads(id=id,scan=scan,fname=fname,bads=bads) """ if not self.is_open: return if not fname : return key = self.get_key(id=id,scan=scan,fname=fname) try: self.HDF[key] = pd.Series( self.bads2list(bads) ) # ["MEG 007","MEG 142","MEG 156","RFM 011"] except: logger.exception("\n".join(["---> ERROR can not set bads in HDF:" " -> filename: {}".format(fname), " -> bads : {}".format(bads), " -> HDF key : {}".format(key), " -> HDf file: {}".format(self.HDF.filename)])) self.HDF.flush() def show(self): if self.is_open: msg=[] for key in self.HDF.keys(): msg.append(" -> {} : {}".format(key,self.get_badslist(key=key))) logger.info( "\n".join(msg)) def update_bads_in_hdf(fhdf=None,bads=None,path=None,fname=None,overwrite=False,verbose=False): """ :param fhdf :param path: :param fname: :param overwrite: :param verbose: :return: """ BCT = JuMEG_BadChannelTable(verbose=True) BCT.open(fhdf=fhdf,path=path,fname=fname,overwrite=overwrite) BCT.set_bads(fname=fname,bads=bads) BCT.close() #--- test def _test(): path = "$JUMEG_TEST_DATA/mne" fname = "FREEVIEW01" BCT = JuMEG_BadChannelTable(verbose=True) BCT.open(path=path,fname=fname,overwrite=True) id = "123456" scan = "FREEVIEW01" fname = "$JUMEG_TEST_DATA/mne/211747/FREEVIEW01/180109_0955/1/211747_FREEVIEW01_180109_0955_1_c,rfDC,meeg-raw.fif" bads = "MEG 007,MEG 142,MEG 156,RFM 011" BCT.set_bads(id=id,scan=scan,fname=fname,bads=bads) BCT.show() fname = "$JUMEG_TEST_DATA/mne/211747/FREEVIEW01/180109_0955/1/211747_FREEVIEW01_180109_0955_2_c,rfDC,meeg-raw.fif" BCT.set_bads(id=id,scan=scan,fname=fname,bads=bads) BCT.show() BCT.set_bads(id=id,scan=scan,fname=fname,bads="NIX") BCT.show() print("bads: {}".format( BCT.get_badslist(fname=fname) )) BCT.close() if __name__ == "__main__": #--- init/update logger logger=jumeg_logger.setup_script_logging(logger=logger,level=logging.DEBUG) _test()
bsd-3-clause
chadnetzer/numpy-gaurdro
doc/example.py
11
3503
"""This is the docstring for the example.py module. Modules names should have short, all-lowercase names. The module name may have underscores if this improves readability. Every module should have a docstring at the very top of the file. The module's docstring may extend over multiple lines. If your docstring does extend over multiple lines, the closing three quotation marks must be on a line by itself, preferably preceeded by a blank line. """ import os # standard library imports first # Do NOT import using *, e.g. from numpy import * # # Import the module using # # import numpy # # instead or import individual functions as needed, e.g # # from numpy import array, zeros # # If you prefer the use of abbreviated module names, we suggest the # convention used by NumPy itself:: import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.pyplot as plt # These abbreviated names are not to be used in docstrings; users must # be able to paste and execute docstrings after importing only the # numpy module itself, unabbreviated. from my_module import my_func, other_func def foo(var1, var2, long_var_name='hi') : r"""A one-line summary that does not use variable names or the function name. Several sentences providing an extended description. Refer to variables using back-ticks, e.g. `var`. Parameters ---------- var1 : array_like Array_like means all those objects -- lists, nested lists, etc. -- that can be converted to an array. We can also refer to variables like `var1`. var2 : int The type above can either refer to an actual Python type (e.g. ``int``), or describe the type of the variable in more detail, e.g. ``(N,) ndarray`` or ``array_like``. Long_variable_name : {'hi', 'ho'}, optional Choices in brackets, default first when optional. Returns ------- describe : type Explanation output : type Explanation tuple : type Explanation items : type even more explaining Other Parameters ---------------- only_seldom_used_keywords : type Explanation common_parameters_listed_above : type Explanation Raises ------ BadException Because you shouldn't have done that. See Also -------- otherfunc : relationship (optional) newfunc : Relationship (optional), which could be fairly long, in which case the line wraps here. thirdfunc, fourthfunc, fifthfunc Notes ----- Notes about the implementation algorithm (if needed). This can have multiple paragraphs. You may include some math: .. math:: X(e^{j\omega } ) = x(n)e^{ - j\omega n} And even use a greek symbol like :math:`omega` inline. References ---------- Cite the relevant literature, e.g. [1]_. You may also cite these references in the notes section above. .. [1] O. McNoleg, "The integration of GIS, remote sensing, expert systems and adaptive co-kriging for environmental habitat modelling of the Highland Haggis using object-oriented, fuzzy-logic and neural-network techniques," Computers & Geosciences, vol. 22, pp. 585-588, 1996. Examples -------- These are written in doctest format, and should illustrate how to use the function. >>> a=[1,2,3] >>> print [x + 3 for x in a] [4, 5, 6] >>> print "a\n\nb" a b """ pass
bsd-3-clause