source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self):
radii = self._get_user_components('radii')
if radii is None:
centers = self.components_['centers']
n_centers = centers.shape[0]
max_dist = np.max(pairwise_distances(centers))
radii = np.ones(n_centers) * max_dist / sqrt(2.0 * n_centers)
self.components_['radii'] = radii
| compute_radii | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n radii = self._get_user_components('radii')\n if radii is None:\n centers = self.components_['centers']\n n_centers = centers.shape[0]\n max_dist = np.max(pairwise_distances(centers))\n radii = np.ones(n_centers) * max_dist / sqrt(2.0 * n_centers)\n self.components_['radii'] = radii\n",
"role": "user"
},
{
"content": "compute_radii",
"role": "assistant"
}
]
|
def x(self, X, sparse, rs):
centers = self._get_user_components('centers')
if centers is None:
n_features = X.shape[1]
if sparse:
fxr = range(n_features)
cols = [X.getcol(i) for i in fxr]
min_dtype = X.dtype.type(10000000000.0)
sp_min = lambda col: np.minimum(min_dtype, np.min(col.data))
min_Xs = np.array(map(sp_min, cols))
max_dtype = X.dtype.type(-10000000000.0)
sp_max = lambda col: np.maximum(max_dtype, np.max(col.data))
max_Xs = np.array(map(sp_max, cols))
else:
min_Xs = X.min(axis=0)
max_Xs = X.max(axis=0)
spans = max_Xs - min_Xs
ctrs_size = self.n_hidden, n_features
centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size)
self.components_['centers'] = centers
| compute_centers | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, sparse, rs):\n centers = self._get_user_components('centers')\n if centers is None:\n n_features = X.shape[1]\n if sparse:\n fxr = range(n_features)\n cols = [X.getcol(i) for i in fxr]\n min_dtype = X.dtype.type(10000000000.0)\n sp_min = lambda col: np.minimum(min_dtype, np.min(col.data))\n min_Xs = np.array(map(sp_min, cols))\n max_dtype = X.dtype.type(-10000000000.0)\n sp_max = lambda col: np.maximum(max_dtype, np.max(col.data))\n max_Xs = np.array(map(sp_max, cols))\n else:\n min_Xs = X.min(axis=0)\n max_Xs = X.max(axis=0)\n spans = max_Xs - min_Xs\n ctrs_size = self.n_hidden, n_features\n centers = min_Xs + spans * rs.uniform(0.0, 1.0, ctrs_size)\n self.components_['centers'] = centers\n",
"role": "user"
},
{
"content": "compute_centers",
"role": "assistant"
}
]
|
def x(self, rs):
biases = self._get_user_components('biases')
if biases is None:
b_size = self.n_hidden
biases = rs.normal(size=b_size)
self.components_['biases'] = biases
| compute_biases | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rs):\n biases = self._get_user_components('biases')\n if biases is None:\n b_size = self.n_hidden\n biases = rs.normal(size=b_size)\n self.components_['biases'] = biases\n",
"role": "user"
},
{
"content": "compute_biases",
"role": "assistant"
}
]
|
def x(self, X, rs):
weights = self._get_user_components('weights')
if weights is None:
n_features = X.shape[1]
hw_size = n_features, self.n_hidden
weights = rs.normal(size=hw_size)
self.components_['weights'] = weights
| compute_weights | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, rs):\n weights = self._get_user_components('weights')\n if weights is None:\n n_features = X.shape[1]\n hw_size = n_features, self.n_hidden\n weights = rs.normal(size=hw_size)\n self.components_['weights'] = weights\n",
"role": "user"
},
{
"content": "compute_weights",
"role": "assistant"
}
]
|
def x(self, X):
rs = check_random_state(self.random_state)
if self._use_mlp_input:
self._compute_biases(rs)
self._compute_weights(X, rs)
if self._use_rbf_input:
self._compute_centers(X, sp.issparse(X), rs)
self._compute_radii()
| generate_components | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n rs = check_random_state(self.random_state)\n if self._use_mlp_input:\n self._compute_biases(rs)\n self._compute_weights(X, rs)\n if self._use_rbf_input:\n self._compute_centers(X, sp.issparse(X), rs)\n self._compute_radii()\n",
"role": "user"
},
{
"content": "generate_components",
"role": "assistant"
}
]
|
def x(self, X):
n_samples = X.shape[0]
mlp_acts = np.zeros((n_samples, self.n_hidden))
if self._use_mlp_input:
b = self.components_['biases']
w = self.components_['weights']
mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)
rbf_acts = np.zeros((n_samples, self.n_hidden))
if self._use_rbf_input:
radii = self.components_['radii']
centers = self.components_['centers']
scale = self.rbf_width * (1.0 - self.alpha)
rbf_acts = scale * cdist(X, centers) / radii
self.input_activations_ = mlp_acts + rbf_acts
| compute_input_activations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n n_samples = X.shape[0]\n mlp_acts = np.zeros((n_samples, self.n_hidden))\n if self._use_mlp_input:\n b = self.components_['biases']\n w = self.components_['weights']\n mlp_acts = self.alpha * (safe_sparse_dot(X, w) + b)\n rbf_acts = np.zeros((n_samples, self.n_hidden))\n if self._use_rbf_input:\n radii = self.components_['radii']\n centers = self.components_['centers']\n scale = self.rbf_width * (1.0 - self.alpha)\n rbf_acts = scale * cdist(X, centers) / radii\n self.input_activations_ = mlp_acts + rbf_acts\n",
"role": "user"
},
{
"content": "compute_input_activations",
"role": "assistant"
}
]
|
def x(self, X, sparse, rs):
super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs)
centers = self.components_['centers']
sorted_distances = np.sort(squareform(pdist(centers)))
self.dF_vals = sorted_distances[:, -1]
self.dN_vals = sorted_distances[:, 1] / 100.0
tauNum = np.log(np.log(self.grbf_lambda) / np.log(1.0 - self.grbf_lambda))
tauDenom = np.log(self.dF_vals / self.dN_vals)
self.tau_vals = tauNum / tauDenom
self._extra_args['taus'] = self.tau_vals
| compute_centers | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, sparse, rs):\n super(GRBFRandomLayer, self)._compute_centers(X, sparse, rs)\n centers = self.components_['centers']\n sorted_distances = np.sort(squareform(pdist(centers)))\n self.dF_vals = sorted_distances[:, -1]\n self.dN_vals = sorted_distances[:, 1] / 100.0\n tauNum = np.log(np.log(self.grbf_lambda) / np.log(1.0 - self.grbf_lambda))\n tauDenom = np.log(self.dF_vals / self.dN_vals)\n self.tau_vals = tauNum / tauDenom\n self._extra_args['taus'] = self.tau_vals\n",
"role": "user"
},
{
"content": "compute_centers",
"role": "assistant"
}
]
|
def x(self):
denom = pow(-np.log(self.grbf_lambda), 1.0 / self.tau_vals)
self.components_['radii'] = self.dF_vals / denom
| compute_radii | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n denom = pow(-np.log(self.grbf_lambda), 1.0 / self.tau_vals)\n self.components_['radii'] = self.dF_vals / denom\n",
"role": "user"
},
{
"content": "compute_radii",
"role": "assistant"
}
]
|
def x(self, y):
if self.regressor is None:
self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y)
else:
self.regressor.fit(self.hidden_activations_, y)
self.fitted_ = True
| fit_regression | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, y):\n if self.regressor is None:\n self.coefs_ = safe_sparse_dot(pinv2(self.hidden_activations_), y)\n else:\n self.regressor.fit(self.hidden_activations_, y)\n self.fitted_ = True\n",
"role": "user"
},
{
"content": "fit_regression",
"role": "assistant"
}
]
|
def x(self, X, y):
self.hidden_activations_ = self.hidden_layer.fit_transform(X)
self._fit_regression(as_float_array(y, copy=True))
return self
| fit | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y):\n self.hidden_activations_ = self.hidden_layer.fit_transform(X)\n self._fit_regression(as_float_array(y, copy=True))\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
]
|
def x(self):
if self.regressor is None:
preds = safe_sparse_dot(self.hidden_activations_, self.coefs_)
else:
preds = self.regressor.predict(self.hidden_activations_)
return preds
| get_predictions | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.regressor is None:\n preds = safe_sparse_dot(self.hidden_activations_, self.coefs_)\n else:\n preds = self.regressor.predict(self.hidden_activations_)\n return preds\n",
"role": "user"
},
{
"content": "get_predictions",
"role": "assistant"
}
]
|
def x(self, X):
if not self.fitted_:
raise ValueError('ELMRegressor not fitted')
self.hidden_activations_ = self.hidden_layer.transform(X)
predictions = self._get_predictions()
return predictions
| predict | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if not self.fitted_:\n raise ValueError('ELMRegressor not fitted')\n self.hidden_activations_ = self.hidden_layer.transform(X)\n predictions = self._get_predictions()\n return predictions\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
]
|
def x(self, X, y):
self.classes_ = np.unique(y)
y_bin = self.binarizer.fit_transform(y)
self.genelm_regressor_.fit(X, y_bin)
return self
| fit | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y):\n self.classes_ = np.unique(y)\n y_bin = self.binarizer.fit_transform(y)\n self.genelm_regressor_.fit(X, y_bin)\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
]
|
def x(self, X):
raw_predictions = self.decision_function(X)
class_predictions = self.binarizer.inverse_transform(raw_predictions)
return class_predictions
| predict | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n raw_predictions = self.decision_function(X)\n class_predictions = self.binarizer.inverse_transform(raw_predictions)\n return class_predictions\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
]
|
def x(self):
return RandomLayer(n_hidden=self.n_hidden, alpha=self.alpha,
random_state=self.random_state, activation_func=self.
activation_func, activation_args=self.activation_args,
user_components=self.user_components, rbf_width=self.rbf_width)
| create_random_layer | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return RandomLayer(n_hidden=self.n_hidden, alpha=self.alpha,\n random_state=self.random_state, activation_func=self.\n activation_func, activation_args=self.activation_args,\n user_components=self.user_components, rbf_width=self.rbf_width)\n",
"role": "user"
},
{
"content": "create_random_layer",
"role": "assistant"
}
]
|
def x(self, X, y):
rhl = self._create_random_layer()
self._genelm_regressor = GenELMRegressor(hidden_layer=rhl, regressor=
self.regressor)
self._genelm_regressor.fit(X, y)
return self
| fit | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y):\n rhl = self._create_random_layer()\n self._genelm_regressor = GenELMRegressor(hidden_layer=rhl, regressor=\n self.regressor)\n self._genelm_regressor.fit(X, y)\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
]
|
def x(self, X):
if self._genelm_regressor is None:
raise ValueError('SimpleELMRegressor not fitted')
return self._genelm_regressor.predict(X)
| predict | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X):\n if self._genelm_regressor is None:\n raise ValueError('SimpleELMRegressor not fitted')\n return self._genelm_regressor.predict(X)\n",
"role": "user"
},
{
"content": "predict",
"role": "assistant"
}
]
|
def x(self, X, y):
self.classes_ = np.unique(y)
y_bin = self.binarizer.fit_transform(y)
super(ELMClassifier, self).fit(X, y_bin)
return self
| fit | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y):\n self.classes_ = np.unique(y)\n y_bin = self.binarizer.fit_transform(y)\n super(ELMClassifier, self).fit(X, y_bin)\n return self\n",
"role": "user"
},
{
"content": "fit",
"role": "assistant"
}
]
|
def x(self, X, y):
from sklearn.metrics import accuracy_score
return accuracy_score(y, self.predict(X))
| score | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, X, y):\n from sklearn.metrics import accuracy_score\n return accuracy_score(y, self.predict(X))\n",
"role": "user"
},
{
"content": "score",
"role": "assistant"
}
]
|
def x(serializer):
if DRFVLIST[0] >= 3:
serializer.is_valid(raise_exception=True)
elif not serializer.is_valid():
serializers.ValidationError('The serializer raises a validation error')
| compat_serializer_check_is_valid | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(serializer):\n if DRFVLIST[0] >= 3:\n serializer.is_valid(raise_exception=True)\n elif not serializer.is_valid():\n serializers.ValidationError('The serializer raises a validation error')\n",
"role": "user"
},
{
"content": "compat_serializer_check_is_valid",
"role": "assistant"
}
]
|
def x(serializer, obj):
if DRFVLIST[0] == 3 and DRFVLIST[1] == 1:
for i in serializer.instance:
if i.id == obj.id:
return i
else:
return obj
| compat_serializer_attr | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(serializer, obj):\n if DRFVLIST[0] == 3 and DRFVLIST[1] == 1:\n for i in serializer.instance:\n if i.id == obj.id:\n return i\n else:\n return obj\n",
"role": "user"
},
{
"content": "compat_serializer_attr",
"role": "assistant"
}
]
|
def x(view, page):
if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1:
from rest_messaging.serializers import ComplexMessageSerializer
serializer = ComplexMessageSerializer(page, many=True)
return view.get_paginated_response(serializer.data)
else:
serializer = view.get_pagination_serializer(page)
return Response(serializer.data)
| compat_get_paginated_response | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(view, page):\n if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1:\n from rest_messaging.serializers import ComplexMessageSerializer\n serializer = ComplexMessageSerializer(page, many=True)\n return view.get_paginated_response(serializer.data)\n else:\n serializer = view.get_pagination_serializer(page)\n return Response(serializer.data)\n",
"role": "user"
},
{
"content": "compat_get_paginated_response",
"role": "assistant"
}
]
|
def x(cls):
if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1:
setattr(cls, 'pagination_class', MessagePagination)
return cls
else:
setattr(cls, 'paginate_by', getattr(settings,
'DJANGO_REST_MESSAGING_MESSAGES_PAGE_SIZE', 30))
return cls
| compat_pagination_messages | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls):\n if DRFVLIST[0] == 3 and DRFVLIST[1] >= 1:\n setattr(cls, 'pagination_class', MessagePagination)\n return cls\n else:\n setattr(cls, 'paginate_by', getattr(settings,\n 'DJANGO_REST_MESSAGING_MESSAGES_PAGE_SIZE', 30))\n return cls\n",
"role": "user"
},
{
"content": "compat_pagination_messages",
"role": "assistant"
}
]
|
def x(self, obj):
if self.callback is None:
return [participant.id for participant in obj.participants.all()]
else:
return self.callback(obj)
| get_participants | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj):\n if self.callback is None:\n return [participant.id for participant in obj.participants.all()]\n else:\n return self.callback(obj)\n",
"role": "user"
},
{
"content": "get_participants",
"role": "assistant"
}
]
|
def x(self, obj):
try:
o = compat_serializer_attr(self, obj)
return o.is_notification
except Exception:
return False
| get_is_notification | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj):\n try:\n o = compat_serializer_attr(self, obj)\n return o.is_notification\n except Exception:\n return False\n",
"role": "user"
},
{
"content": "get_is_notification",
"role": "assistant"
}
]
|
def x(self, obj):
try:
o = compat_serializer_attr(self, obj)
return o.readers
except Exception:
return []
| get_readers | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj):\n try:\n o = compat_serializer_attr(self, obj)\n return o.readers\n except Exception:\n return []\n",
"role": "user"
},
{
"content": "get_readers",
"role": "assistant"
}
]
|
def x(self, participant_id):
participations = Participation.objects.filter(participant__id=
participant_id).exclude(date_left__lte=now()).distinct(
).select_related('thread')
return Thread.objects.filter(id__in=[p.thread.id for p in participations]
).distinct()
| get_threads_where_participant_is_active | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, participant_id):\n participations = Participation.objects.filter(participant__id=\n participant_id).exclude(date_left__lte=now()).distinct(\n ).select_related('thread')\n return Thread.objects.filter(id__in=[p.thread.id for p in participations]\n ).distinct()\n",
"role": "user"
},
{
"content": "get_threads_where_participant_is_active",
"role": "assistant"
}
]
|
def x(self, *participant_ids):
query = Thread.objects.exclude(participation__date_left__lte=now()
).annotate(count_participants=Count('participants')).filter(
count_participants=len(participant_ids))
for participant_id in participant_ids:
query = query.filter(participants__id=participant_id)
return query.distinct()
| get_active_threads_involving_all_participants | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *participant_ids):\n query = Thread.objects.exclude(participation__date_left__lte=now()\n ).annotate(count_participants=Count('participants')).filter(\n count_participants=len(participant_ids))\n for participant_id in participant_ids:\n query = query.filter(participants__id=participant_id)\n return query.distinct()\n",
"role": "user"
},
{
"content": "get_active_threads_involving_all_participants",
"role": "assistant"
}
]
|
def x(self, request, name=None, *participant_ids):
participant_ids = list(participant_ids)
if request.rest_messaging_participant.id not in participant_ids:
participant_ids.append(request.rest_messaging_participant.id)
if len(participant_ids) < 2:
raise Exception('At least two participants are required.')
if getattr(settings,
'REST_MESSAGING_THREAD_UNIQUE_FOR_ACTIVE_RECIPIENTS', True) is True:
existing_threads = self.get_active_threads_involving_all_participants(*
participant_ids)
if len(list(existing_threads)) > 0:
return existing_threads[0]
thread = Thread.objects.create(name=name)
thread.add_participants(request, *participant_ids)
post_save.send(Thread, instance=thread, created=True,
created_and_add_participants=True, request_participant_id=request.
rest_messaging_participant.id)
return thread
| get_or_create_thread | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, name=None, *participant_ids):\n participant_ids = list(participant_ids)\n if request.rest_messaging_participant.id not in participant_ids:\n participant_ids.append(request.rest_messaging_participant.id)\n if len(participant_ids) < 2:\n raise Exception('At least two participants are required.')\n if getattr(settings,\n 'REST_MESSAGING_THREAD_UNIQUE_FOR_ACTIVE_RECIPIENTS', True) is True:\n existing_threads = self.get_active_threads_involving_all_participants(*\n participant_ids)\n if len(list(existing_threads)) > 0:\n return existing_threads[0]\n thread = Thread.objects.create(name=name)\n thread.add_participants(request, *participant_ids)\n post_save.send(Thread, instance=thread, created=True,\n created_and_add_participants=True, request_participant_id=request.\n rest_messaging_participant.id)\n return thread\n",
"role": "user"
},
{
"content": "get_or_create_thread",
"role": "assistant"
}
]
|
def x(self, sender):
h24 = now() - timedelta(days=1)
return Message.objects.filter(sender=sender, sent_at__gte=h24).count()
| return_daily_messages_count | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sender):\n h24 = now() - timedelta(days=1)\n return Message.objects.filter(sender=sender, sent_at__gte=h24).count()\n",
"role": "user"
},
{
"content": "return_daily_messages_count",
"role": "assistant"
}
]
|
def x(self, messages):
for m in messages:
readers = []
for p in m.thread.participation_set.all():
if p.date_last_check is None:
pass
elif p.date_last_check > m.sent_at:
readers.append(p.participant.id)
setattr(m, 'readers', readers)
return messages
| check_who_read | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, messages):\n for m in messages:\n readers = []\n for p in m.thread.participation_set.all():\n if p.date_last_check is None:\n pass\n elif p.date_last_check > m.sent_at:\n readers.append(p.participant.id)\n setattr(m, 'readers', readers)\n return messages\n",
"role": "user"
},
{
"content": "check_who_read",
"role": "assistant"
}
]
|
def x(self, participant_id, messages):
try:
last_check = NotificationCheck.objects.filter(participant__id=
participant_id).latest('id').date_check
except Exception:
for m in messages:
m.is_notification = True
return messages
for m in messages:
if m.sent_at > last_check and m.sender.id != participant_id:
setattr(m, 'is_notification', True)
else:
setattr(m, 'is_notification', False)
return messages
| check_is_notification | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, participant_id, messages):\n try:\n last_check = NotificationCheck.objects.filter(participant__id=\n participant_id).latest('id').date_check\n except Exception:\n for m in messages:\n m.is_notification = True\n return messages\n for m in messages:\n if m.sent_at > last_check and m.sender.id != participant_id:\n setattr(m, 'is_notification', True)\n else:\n setattr(m, 'is_notification', False)\n return messages\n",
"role": "user"
},
{
"content": "check_is_notification",
"role": "assistant"
}
]
|
def x(self, participant_id, check_who_read=True, check_is_notification=True):
threads = Thread.managers.get_threads_where_participant_is_active(
participant_id).annotate(last_message_id=Max('message__id'))
messages = Message.objects.filter(id__in=[thread.last_message_id for
thread in threads]).order_by('-id').distinct().select_related('thread',
'sender')
if check_who_read is True:
messages = messages.prefetch_related('thread__participation_set',
'thread__participation_set__participant')
messages = self.check_who_read(messages)
else:
messages = messages.prefetch_related('thread__participants')
if check_is_notification is True:
messages = self.check_is_notification(participant_id, messages)
return messages
| get_lasts_messages_of_threads | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, participant_id, check_who_read=True, check_is_notification=True):\n threads = Thread.managers.get_threads_where_participant_is_active(\n participant_id).annotate(last_message_id=Max('message__id'))\n messages = Message.objects.filter(id__in=[thread.last_message_id for\n thread in threads]).order_by('-id').distinct().select_related('thread',\n 'sender')\n if check_who_read is True:\n messages = messages.prefetch_related('thread__participation_set',\n 'thread__participation_set__participant')\n messages = self.check_who_read(messages)\n else:\n messages = messages.prefetch_related('thread__participants')\n if check_is_notification is True:\n messages = self.check_is_notification(participant_id, messages)\n return messages\n",
"role": "user"
},
{
"content": "get_lasts_messages_of_threads",
"role": "assistant"
}
]
|
def x(self, participant_id, thread_id, check_who_read=True):
try:
messages = Message.objects.filter(thread__id=thread_id).order_by('-id'
).select_related('thread').prefetch_related(
'thread__participation_set',
'thread__participation_set__participant')
except Exception:
return Message.objects.none()
messages = self.check_who_read(messages)
return messages
| get_all_messages_in_thread | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, participant_id, thread_id, check_who_read=True):\n try:\n messages = Message.objects.filter(thread__id=thread_id).order_by('-id'\n ).select_related('thread').prefetch_related(\n 'thread__participation_set',\n 'thread__participation_set__participant')\n except Exception:\n return Message.objects.none()\n messages = self.check_who_read(messages)\n return messages\n",
"role": "user"
},
{
"content": "get_all_messages_in_thread",
"role": "assistant"
}
]
|
def x(self, request, *args, **kwargs):
serializer = self.get_serializer(data=compat_get_request_data(request))
compat_serializer_check_is_valid(serializer)
self.perform_create(request, serializer)
headers = self.get_success_headers(serializer.data)
return Response(serializer.data, status=status.HTTP_201_CREATED,
headers=headers)
| create | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n serializer = self.get_serializer(data=compat_get_request_data(request))\n compat_serializer_check_is_valid(serializer)\n self.perform_create(request, serializer)\n headers = self.get_success_headers(serializer.data)\n return Response(serializer.data, status=status.HTTP_201_CREATED,\n headers=headers)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
]
|
def x(self, request, pk=None):
thread = Thread.objects.get(id=pk)
self.check_object_permissions(request, thread)
try:
participation = Participation.objects.get(thread=thread,
participant=request.rest_messaging_participant)
participation.date_last_check = now()
participation.save()
serializer = self.get_serializer(thread)
return Response(serializer.data)
except Exception:
return Response(status=status.HTTP_400_BAD_REQUEST)
| mark_thread_as_read | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, pk=None):\n thread = Thread.objects.get(id=pk)\n self.check_object_permissions(request, thread)\n try:\n participation = Participation.objects.get(thread=thread,\n participant=request.rest_messaging_participant)\n participation.date_last_check = now()\n participation.save()\n serializer = self.get_serializer(thread)\n return Response(serializer.data)\n except Exception:\n return Response(status=status.HTTP_400_BAD_REQUEST)\n",
"role": "user"
},
{
"content": "mark_thread_as_read",
"role": "assistant"
}
]
|
def x(self, quoted=False):
self.p = urlparse(self.raw)
self.scheme = self.p.scheme
self.netloc = self.p.netloc
self.opath = self.p.path if not quoted else quote(self.p.path)
self.path = [x for x in self.opath.split('/') if x]
self.params = self.p.params
self.query = parse_qs(self.p.query, keep_blank_values=True)
self.fragment = self.p.fragment
| process | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, quoted=False):\n self.p = urlparse(self.raw)\n self.scheme = self.p.scheme\n self.netloc = self.p.netloc\n self.opath = self.p.path if not quoted else quote(self.p.path)\n self.path = [x for x in self.opath.split('/') if x]\n self.params = self.p.params\n self.query = parse_qs(self.p.query, keep_blank_values=True)\n self.fragment = self.p.fragment\n",
"role": "user"
},
{
"content": "process",
"role": "assistant"
}
]
|
def x(self, url, encoding=None, force_refetch=False, nocache=False, quiet=True
):
try:
if not force_refetch and self.cache is not None and url in self.cache:
logging.debug('Retrieving content from cache for {}'.format(url))
return self.cache.retrieve_blob(url, encoding)
encoded_url = WebHelper.encode_url(url)
req = Request(encoded_url, headers={'User-Agent': 'Mozilla/5.0'})
req.add_header('Accept-encoding', 'gzip, deflate')
getLogger().info('Fetching: {url} |'.format(url=url))
response = urlopen(req)
content = response.read()
if 'Content-Encoding' in response.info() and response.info().get(
'Content-Encoding') == 'gzip':
with gzip.open(BytesIO(content)) as gzfile:
content = gzfile.read()
if self.cache is not None and not nocache:
if url not in self.cache:
self.cache.insert_blob(url, content)
return content.decode(encoding) if content and encoding else content
except URLError as e:
if hasattr(e, 'reason'):
getLogger().exception('We failed to reach {}. Reason: {}'.
format(url, e.reason))
elif hasattr(e, 'code'):
getLogger().exception(
"The server couldn't fulfill the request. Error code: {}".
format(e.code))
else:
getLogger().exception('Fetching error')
if not quiet:
raise
return None
| fetch | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url, encoding=None, force_refetch=False, nocache=False, quiet=True\n ):\n try:\n if not force_refetch and self.cache is not None and url in self.cache:\n logging.debug('Retrieving content from cache for {}'.format(url))\n return self.cache.retrieve_blob(url, encoding)\n encoded_url = WebHelper.encode_url(url)\n req = Request(encoded_url, headers={'User-Agent': 'Mozilla/5.0'})\n req.add_header('Accept-encoding', 'gzip, deflate')\n getLogger().info('Fetching: {url} |'.format(url=url))\n response = urlopen(req)\n content = response.read()\n if 'Content-Encoding' in response.info() and response.info().get(\n 'Content-Encoding') == 'gzip':\n with gzip.open(BytesIO(content)) as gzfile:\n content = gzfile.read()\n if self.cache is not None and not nocache:\n if url not in self.cache:\n self.cache.insert_blob(url, content)\n return content.decode(encoding) if content and encoding else content\n except URLError as e:\n if hasattr(e, 'reason'):\n getLogger().exception('We failed to reach {}. Reason: {}'.\n format(url, e.reason))\n elif hasattr(e, 'code'):\n getLogger().exception(\n \"The server couldn't fulfill the request. Error code: {}\".\n format(e.code))\n else:\n getLogger().exception('Fetching error')\n if not quiet:\n raise\n return None\n",
"role": "user"
},
{
"content": "fetch",
"role": "assistant"
}
]
|
def x(self, url, path, force_refetch=False, nocache=False):
if os.path.isfile(path):
getLogger().info('File exists, download task skipped -> {path}'.
format(path=path))
return True
try:
getLogger().info('Downloading: {url} -> {path}'.format(url=url,
path=path))
response = self.fetch(url, force_refetch=force_refetch, nocache=nocache
)
if response is not None:
local_file = open(path, 'wb')
local_file.write(response)
local_file.close()
return True
else:
return False
except Exception as e:
if hasattr(e, 'reason'):
getLogger().exception('We failed to reach a server. Reason: %s' %
(e.reason,))
elif hasattr(e, 'code'):
getLogger().exception(
"The server couldn't fulfill the request. Error code: {code}"
.format(code=e.code))
else:
getLogger().exception('Unknown error: %s' % (e,))
return False
| download | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, url, path, force_refetch=False, nocache=False):\n if os.path.isfile(path):\n getLogger().info('File exists, download task skipped -> {path}'.\n format(path=path))\n return True\n try:\n getLogger().info('Downloading: {url} -> {path}'.format(url=url,\n path=path))\n response = self.fetch(url, force_refetch=force_refetch, nocache=nocache\n )\n if response is not None:\n local_file = open(path, 'wb')\n local_file.write(response)\n local_file.close()\n return True\n else:\n return False\n except Exception as e:\n if hasattr(e, 'reason'):\n getLogger().exception('We failed to reach a server. Reason: %s' %\n (e.reason,))\n elif hasattr(e, 'code'):\n getLogger().exception(\n \"The server couldn't fulfill the request. Error code: {code}\"\n .format(code=e.code))\n else:\n getLogger().exception('Unknown error: %s' % (e,))\n return False\n",
"role": "user"
},
{
"content": "download",
"role": "assistant"
}
]
|
def x(self) ->Optional[str]:
try:
return str(self.journey.MainStop.BasicStop.Dep.Platform.text)
except AttributeError:
return None
| platform | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[str]:\n try:\n return str(self.journey.MainStop.BasicStop.Dep.Platform.text)\n except AttributeError:\n return None\n",
"role": "user"
},
{
"content": "platform",
"role": "assistant"
}
]
|
def x(self) ->int:
try:
return int(self.journey.MainStop.BasicStop.Dep.Delay.text)
except AttributeError:
return 0
| delay | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->int:\n try:\n return int(self.journey.MainStop.BasicStop.Dep.Delay.text)\n except AttributeError:\n return 0\n",
"role": "user"
},
{
"content": "delay",
"role": "assistant"
}
]
|
def x(self) ->datetime:
departure_time = datetime.strptime(self.journey.MainStop.BasicStop.Dep.
Time.text, '%H:%M').time()
if departure_time > (self.now - timedelta(hours=1)).time():
return datetime.combine(self.now.date(), departure_time)
return datetime.combine(self.now.date() + timedelta(days=1), departure_time
)
| departure | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->datetime:\n departure_time = datetime.strptime(self.journey.MainStop.BasicStop.Dep.\n Time.text, '%H:%M').time()\n if departure_time > (self.now - timedelta(hours=1)).time():\n return datetime.combine(self.now.date(), departure_time)\n return datetime.combine(self.now.date() + timedelta(days=1), departure_time\n )\n",
"role": "user"
},
{
"content": "departure",
"role": "assistant"
}
]
|
def x(self, attribute) ->str:
attr_data = self.journey.JourneyAttributeList.JourneyAttribute[self.
attr_types.index(attribute)].Attribute
attr_variants = attr_data.xpath('AttributeVariant/@type')
data = attr_data.AttributeVariant[attr_variants.index('NORMAL')].Text.pyval
return str(data)
| extract | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, attribute) ->str:\n attr_data = self.journey.JourneyAttributeList.JourneyAttribute[self.\n attr_types.index(attribute)].Attribute\n attr_variants = attr_data.xpath('AttributeVariant/@type')\n data = attr_data.AttributeVariant[attr_variants.index('NORMAL')].Text.pyval\n return str(data)\n",
"role": "user"
},
{
"content": "extract",
"role": "assistant"
}
]
|
def x(self) ->Optional[str]:
try:
return str(html.unescape(self.journey.InfoTextList.InfoText.get(
'text')))
except AttributeError:
return None
| info | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[str]:\n try:\n return str(html.unescape(self.journey.InfoTextList.InfoText.get(\n 'text')))\n except AttributeError:\n return None\n",
"role": "user"
},
{
"content": "info",
"role": "assistant"
}
]
|
def x(self) ->Optional[str]:
try:
return str(html.unescape(self.journey.InfoTextList.InfoText.get(
'textL')).replace('<br />', '\n'))
except AttributeError:
return None
| info_long | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[str]:\n try:\n return str(html.unescape(self.journey.InfoTextList.InfoText.get(\n 'textL')).replace('<br />', '\\n'))\n except AttributeError:\n return None\n",
"role": "user"
},
{
"content": "info_long",
"role": "assistant"
}
]
|
def x(self) ->List[Dict[str, Any]]:
stops: List[Dict[str, Any]] = []
for stop in self.journey.PassList.BasicStop:
index = stop.get('index')
station = stop.Location.Station.HafasName.Text.text
station_id = stop.Location.Station.ExternalId.text
stops.append({'index': index, 'stationId': station_id, 'station':
station})
return stops
| pass_list | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->List[Dict[str, Any]]:\n stops: List[Dict[str, Any]] = []\n for stop in self.journey.PassList.BasicStop:\n index = stop.get('index')\n station = stop.Location.Station.HafasName.Text.text\n station_id = stop.Location.Station.ExternalId.text\n stops.append({'index': index, 'stationId': station_id, 'station':\n station})\n return stops\n",
"role": "user"
},
{
"content": "pass_list",
"role": "assistant"
}
]
|
def x(style):
try:
import jsonschema
except ImportError:
return
try:
jsonschema.validate(style, schema)
except jsonschema.ValidationError as exc:
new_exc = StyleValidationError(exc)
new_exc.__cause__ = None
raise new_exc
| validate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(style):\n try:\n import jsonschema\n except ImportError:\n return\n try:\n jsonschema.validate(style, schema)\n except jsonschema.ValidationError as exc:\n new_exc = StyleValidationError(exc)\n new_exc.__cause__ = None\n raise new_exc\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
]
|
def x(value):
try:
keys = list(value.keys())
except AttributeError:
return 'simple'
if keys in [['lookup'], ['re_lookup'], ['interval']]:
return keys[0]
raise ValueError('Type of `value` could not be determined')
| value_type | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value):\n try:\n keys = list(value.keys())\n except AttributeError:\n return 'simple'\n if keys in [['lookup'], ['re_lookup'], ['interval']]:\n return keys[0]\n raise ValueError('Type of `value` could not be determined')\n",
"role": "user"
},
{
"content": "value_type",
"role": "assistant"
}
]
|
def x(location):
global MECAB_LOC
if not os.path.isfile(location):
logging.getLogger(__name__).warning(
'Provided mecab binary location does not exist {}'.format(location)
)
logging.getLogger(__name__).info('Mecab binary is switched to: {}'.
format(location))
MECAB_LOC = location
| register_mecab_loc | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(location):\n global MECAB_LOC\n if not os.path.isfile(location):\n logging.getLogger(__name__).warning(\n 'Provided mecab binary location does not exist {}'.format(location)\n )\n logging.getLogger(__name__).info('Mecab binary is switched to: {}'.\n format(location))\n MECAB_LOC = location\n",
"role": "user"
},
{
"content": "register_mecab_loc",
"role": "assistant"
}
]
|
def x(content, *args, **kwargs):
encoding = 'utf-8' if 'encoding' not in kwargs else kwargs['encoding']
mecab_loc = kwargs['mecab_loc'] if 'mecab_loc' in kwargs else None
if mecab_loc is None:
mecab_loc = MECAB_LOC
proc_args = [mecab_loc]
if args:
proc_args.extend(args)
output = subprocess.run(proc_args, input=content.encode(encoding),
stdout=subprocess.PIPE)
output_string = os.linesep.join(output.stdout.decode(encoding).splitlines()
)
return output_string
| run_mecab_process | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(content, *args, **kwargs):\n encoding = 'utf-8' if 'encoding' not in kwargs else kwargs['encoding']\n mecab_loc = kwargs['mecab_loc'] if 'mecab_loc' in kwargs else None\n if mecab_loc is None:\n mecab_loc = MECAB_LOC\n proc_args = [mecab_loc]\n if args:\n proc_args.extend(args)\n output = subprocess.run(proc_args, input=content.encode(encoding),\n stdout=subprocess.PIPE)\n output_string = os.linesep.join(output.stdout.decode(encoding).splitlines()\n )\n return output_string\n",
"role": "user"
},
{
"content": "run_mecab_process",
"role": "assistant"
}
]
|
def x(content, *args, **kwargs):
global MECAB_PYTHON3
if 'mecab_loc' not in kwargs and MECAB_PYTHON3 and 'MeCab' in globals():
return MeCab.Tagger(*args).parse(content)
else:
return run_mecab_process(content, *args, **kwargs)
| parse | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(content, *args, **kwargs):\n global MECAB_PYTHON3\n if 'mecab_loc' not in kwargs and MECAB_PYTHON3 and 'MeCab' in globals():\n return MeCab.Tagger(*args).parse(content)\n else:\n return run_mecab_process(content, *args, **kwargs)\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
]
|
def x(self, path_in_ipod=None, checksum=None):
if bool(path_in_ipod) == bool(checksum):
raise Exception
if not path_in_ipod:
path_in_ipod = self.audiodb.get_voice(checksum)
track = Track(self, path_in_ipod=path_in_ipod)
return track
| create_track | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path_in_ipod=None, checksum=None):\n if bool(path_in_ipod) == bool(checksum):\n raise Exception\n if not path_in_ipod:\n path_in_ipod = self.audiodb.get_voice(checksum)\n track = Track(self, path_in_ipod=path_in_ipod)\n return track\n",
"role": "user"
},
{
"content": "create_track",
"role": "assistant"
}
]
|
def x(self):
dbid = self.lldb.dbid
text, lang = self._voiceoverdb.get_text_lang(dbid)
return text, lang
| voice | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n dbid = self.lldb.dbid\n text, lang = self._voiceoverdb.get_text_lang(dbid)\n return text, lang\n",
"role": "user"
},
{
"content": "voice",
"role": "assistant"
}
]
|
def x(self, src):
if not audio.get_type(src):
raise TypeError('The type of this file is not supported.')
return super().add(src)
| add | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, src):\n if not audio.get_type(src):\n raise TypeError('The type of this file is not supported.')\n return super().add(src)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
]
|
def x(command, arguments):
if arguments is None:
arguments = []
if command.endswith('.py') or command.endswith('.pyw'):
return [sys.executable, command] + list(arguments)
else:
return [command] + list(arguments)
| get_cmd | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(command, arguments):\n if arguments is None:\n arguments = []\n if command.endswith('.py') or command.endswith('.pyw'):\n return [sys.executable, command] + list(arguments)\n else:\n return [command] + list(arguments)\n",
"role": "user"
},
{
"content": "get_cmd",
"role": "assistant"
}
]
|
def x(argv, parser, arguments):
def x(parser, arg_spec):
parser.add_argument(arg_spec.name, help=arg_spec.help)
return parser
parse_request = parser.map(lambda i: ArgumentParser(description=i.
description)).combine_latest(arguments, lambda parser, arg_def:
add_arg(parser, arg_def)).last().combine_latest(argv.to_list(), lambda
parser, args: (parser, args))
def x(observer):
def x(value):
parser, args = value
try:
args = parser.parse_args(args)
for key, value in vars(args).items():
observer.on_next(Argument(key=key, value=value))
except NameError as exc:
observer.on_error('{}\n{}'.format(exc, parser.format_help()))
return parse_request.subscribe(on_next, observer.on_error, observer
.on_completed)
return AnonymousObservable(subscribe)
| argparse | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(argv, parser, arguments):\n\n def x(parser, arg_spec):\n parser.add_argument(arg_spec.name, help=arg_spec.help)\n return parser\n parse_request = parser.map(lambda i: ArgumentParser(description=i.\n description)).combine_latest(arguments, lambda parser, arg_def:\n add_arg(parser, arg_def)).last().combine_latest(argv.to_list(), lambda\n parser, args: (parser, args))\n\n def x(observer):\n\n def x(value):\n parser, args = value\n try:\n args = parser.parse_args(args)\n for key, value in vars(args).items():\n observer.on_next(Argument(key=key, value=value))\n except NameError as exc:\n observer.on_error('{}\\n{}'.format(exc, parser.format_help()))\n return parse_request.subscribe(on_next, observer.on_error, observer\n .on_completed)\n return AnonymousObservable(subscribe)\n",
"role": "user"
},
{
"content": "argparse",
"role": "assistant"
}
]
|
def x(self, dg, dt, dt2, na=None, memlimit=-1):
if self.lib is None:
raise ValueError('Not initialized.')
import numpy as np
from .auto import ftype_np, gtype_np
from .types import isint
if dg.dtype.char != gtype_np:
raise ValueError(
'Wrong input dtype for genotype data: dg.dtype.char is ' + dg.
dtype.char + '!=' + gtype_np)
if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:
raise ValueError('Wrong input dtype for gene expression data')
if len(dg.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:
raise ValueError('Wrong input shape')
if not isint(memlimit):
raise ValueError('Wrong memlimit type')
if not (na is None or isint(na)):
raise ValueError('Wrong na type')
if na is not None and na <= 0:
raise ValueError('Input requires na>0.')
ng = dg.shape[0]
nt = dt2.shape[0]
ns = dg.shape[1]
nvx = na + 1 if na else dg.max() + 1
if nvx < 2:
raise ValueError('Invalid genotype values')
if dt.shape != dg.shape or dt2.shape[1] != ns:
raise ValueError('Wrong input shape')
if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:
raise ValueError('NaN found.')
arglist = ['const MATRIXG*', 'const MATRIXF*', 'const MATRIXF*',
'VECTORF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*',
'size_t', 'size_t']
dgr = np.require(dg, requirements=['A', 'C', 'O', 'W'])
dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])
dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])
d1 = np.require(np.zeros(ng, dtype=dt.dtype), requirements=['A', 'C',
'O', 'W'])
d2 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d3 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d4 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d5 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
args = [dgr, dtr, dt2r, d1, d2, d3, d4, d5, nvx, memlimit]
func = self.cfunc('pijs_gassist_pv', rettype='int', argtypes=arglist)
ret = func(*args)
ans = {'ret': ret, 'p1': d1, 'p2': d2, 'p3': d3, 'p4': d4, 'p5': d5}
return ans
| gassists_pv | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dg, dt, dt2, na=None, memlimit=-1):\n if self.lib is None:\n raise ValueError('Not initialized.')\n import numpy as np\n from .auto import ftype_np, gtype_np\n from .types import isint\n if dg.dtype.char != gtype_np:\n raise ValueError(\n 'Wrong input dtype for genotype data: dg.dtype.char is ' + dg.\n dtype.char + '!=' + gtype_np)\n if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:\n raise ValueError('Wrong input dtype for gene expression data')\n if len(dg.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:\n raise ValueError('Wrong input shape')\n if not isint(memlimit):\n raise ValueError('Wrong memlimit type')\n if not (na is None or isint(na)):\n raise ValueError('Wrong na type')\n if na is not None and na <= 0:\n raise ValueError('Input requires na>0.')\n ng = dg.shape[0]\n nt = dt2.shape[0]\n ns = dg.shape[1]\n nvx = na + 1 if na else dg.max() + 1\n if nvx < 2:\n raise ValueError('Invalid genotype values')\n if dt.shape != dg.shape or dt2.shape[1] != ns:\n raise ValueError('Wrong input shape')\n if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:\n raise ValueError('NaN found.')\n arglist = ['const MATRIXG*', 'const MATRIXF*', 'const MATRIXF*',\n 'VECTORF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*',\n 'size_t', 'size_t']\n dgr = np.require(dg, requirements=['A', 'C', 'O', 'W'])\n dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])\n dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])\n d1 = np.require(np.zeros(ng, dtype=dt.dtype), requirements=['A', 'C',\n 'O', 'W'])\n d2 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d3 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d4 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d5 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n args = [dgr, dtr, dt2r, d1, d2, d3, d4, d5, nvx, memlimit]\n func = self.cfunc('pijs_gassist_pv', rettype='int', argtypes=arglist)\n ret = func(*args)\n ans = {'ret': ret, 'p1': d1, 'p2': d2, 'p3': d3, 'p4': d4, 'p5': d5}\n return ans\n",
"role": "user"
},
{
"content": "gassists_pv",
"role": "assistant"
}
]
|
def x(self, dg, dt, dt2, name, na=None, nodiag=False, memlimit=-1):
if self.lib is None:
raise ValueError('Not initialized.')
import numpy as np
from .auto import ftype_np, gtype_np
from .types import isint
if dg.dtype.char != gtype_np:
raise ValueError(
'Wrong input dtype for genotype data: dg.dtype.char is ' + dg.
dtype.char + '!=' + gtype_np)
if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:
raise ValueError('Wrong input dtype for gene expression data')
if len(dg.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:
raise ValueError('Wrong input shape')
if type(nodiag) is not bool:
raise ValueError('Wrong nodiag type')
if not isint(memlimit):
raise ValueError('Wrong memlimit type')
if not (na is None or isint(na)):
raise ValueError('Wrong na type')
if na is not None and na <= 0:
raise ValueError('Input requires na>0.')
ng = dg.shape[0]
nt = dt2.shape[0]
ns = dg.shape[1]
nvx = na + 1 if na else dg.max() + 1
nd = 1 if nodiag else 0
if nvx < 2:
raise ValueError('Invalid genotype values')
if dt.shape != dg.shape or dt2.shape[1] != ns:
raise ValueError('Wrong input shape')
if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:
raise ValueError('NaN found.')
func = self.cfunc(name, rettype='int', argtypes=['const MATRIXG*',
'const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'size_t', 'byte',
'size_t'])
d = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
dgr = np.require(dg, requirements=['A', 'C', 'O', 'W'])
dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])
dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])
ret = func(dgr, dtr, dt2r, d, nvx, nd, memlimit)
ans = {'ret': ret, 'p': d}
return ans
| gassist_any | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dg, dt, dt2, name, na=None, nodiag=False, memlimit=-1):\n if self.lib is None:\n raise ValueError('Not initialized.')\n import numpy as np\n from .auto import ftype_np, gtype_np\n from .types import isint\n if dg.dtype.char != gtype_np:\n raise ValueError(\n 'Wrong input dtype for genotype data: dg.dtype.char is ' + dg.\n dtype.char + '!=' + gtype_np)\n if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:\n raise ValueError('Wrong input dtype for gene expression data')\n if len(dg.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:\n raise ValueError('Wrong input shape')\n if type(nodiag) is not bool:\n raise ValueError('Wrong nodiag type')\n if not isint(memlimit):\n raise ValueError('Wrong memlimit type')\n if not (na is None or isint(na)):\n raise ValueError('Wrong na type')\n if na is not None and na <= 0:\n raise ValueError('Input requires na>0.')\n ng = dg.shape[0]\n nt = dt2.shape[0]\n ns = dg.shape[1]\n nvx = na + 1 if na else dg.max() + 1\n nd = 1 if nodiag else 0\n if nvx < 2:\n raise ValueError('Invalid genotype values')\n if dt.shape != dg.shape or dt2.shape[1] != ns:\n raise ValueError('Wrong input shape')\n if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:\n raise ValueError('NaN found.')\n func = self.cfunc(name, rettype='int', argtypes=['const MATRIXG*',\n 'const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'size_t', 'byte',\n 'size_t'])\n d = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n dgr = np.require(dg, requirements=['A', 'C', 'O', 'W'])\n dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])\n dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])\n ret = func(dgr, dtr, dt2r, d, nvx, nd, memlimit)\n ans = {'ret': ret, 'p': d}\n return ans\n",
"role": "user"
},
{
"content": "gassist_any",
"role": "assistant"
}
]
|
def x(self, dg, dt, dt2, na=None, nodiag=False, memlimit=-1):
return _gassist_any(self, dg, dt, dt2, 'pij_gassist', na=na, nodiag=
nodiag, memlimit=memlimit)
| gassist | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dg, dt, dt2, na=None, nodiag=False, memlimit=-1):\n return _gassist_any(self, dg, dt, dt2, 'pij_gassist', na=na, nodiag=\n nodiag, memlimit=memlimit)\n",
"role": "user"
},
{
"content": "gassist",
"role": "assistant"
}
]
|
def x(self, dc, dt, dt2, name, nodiag=False, memlimit=-1):
if self.lib is None:
raise ValueError('Not initialized.')
import numpy as np
from .auto import ftype_np
from .types import isint
if (dc.dtype.char != ftype_np or dt.dtype.char != ftype_np or dt2.dtype
.char != ftype_np):
raise ValueError('Wrong input dtype for gene expression data')
if len(dc.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:
raise ValueError('Wrong input shape')
if type(nodiag) is not bool:
raise ValueError('Wrong nodiag type')
if not isint(memlimit):
raise ValueError('Wrong memlimit type')
ng = dc.shape[0]
nt = dt2.shape[0]
ns = dc.shape[1]
nd = 1 if nodiag else 0
if dt.shape != dc.shape or dt2.shape[1] != ns:
raise ValueError('Wrong input shape')
if np.isnan(dc).sum() + np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:
raise ValueError('NaN found.')
arglist = ['const MATRIXF*', 'const MATRIXF*', 'const MATRIXF*',
'VECTORF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'byte',
'size_t']
names = name
dcr = np.require(dc, requirements=['A', 'C', 'O', 'W'])
dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])
dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])
d1 = np.require(np.zeros(ng, dtype=dt.dtype), requirements=['A', 'C',
'O', 'W'])
d2 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d3 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d4 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
d5 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
args = [dcr, dtr, dt2r, d1, d2, d3, d4, d5, nd, memlimit]
func = self.cfunc(names, rettype='int', argtypes=arglist)
ret = func(*args)
ans = {'ret': ret, 'p1': d1, 'p2': d2, 'p3': d3, 'p4': d4, 'p5': d5}
return ans
| cassists_any | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dc, dt, dt2, name, nodiag=False, memlimit=-1):\n if self.lib is None:\n raise ValueError('Not initialized.')\n import numpy as np\n from .auto import ftype_np\n from .types import isint\n if (dc.dtype.char != ftype_np or dt.dtype.char != ftype_np or dt2.dtype\n .char != ftype_np):\n raise ValueError('Wrong input dtype for gene expression data')\n if len(dc.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:\n raise ValueError('Wrong input shape')\n if type(nodiag) is not bool:\n raise ValueError('Wrong nodiag type')\n if not isint(memlimit):\n raise ValueError('Wrong memlimit type')\n ng = dc.shape[0]\n nt = dt2.shape[0]\n ns = dc.shape[1]\n nd = 1 if nodiag else 0\n if dt.shape != dc.shape or dt2.shape[1] != ns:\n raise ValueError('Wrong input shape')\n if np.isnan(dc).sum() + np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:\n raise ValueError('NaN found.')\n arglist = ['const MATRIXF*', 'const MATRIXF*', 'const MATRIXF*',\n 'VECTORF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'MATRIXF*', 'byte',\n 'size_t']\n names = name\n dcr = np.require(dc, requirements=['A', 'C', 'O', 'W'])\n dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])\n dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])\n d1 = np.require(np.zeros(ng, dtype=dt.dtype), requirements=['A', 'C',\n 'O', 'W'])\n d2 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d3 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d4 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n d5 = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n args = [dcr, dtr, dt2r, d1, d2, d3, d4, d5, nd, memlimit]\n func = self.cfunc(names, rettype='int', argtypes=arglist)\n ret = func(*args)\n ans = {'ret': ret, 'p1': d1, 'p2': d2, 'p3': d3, 'p4': d4, 'p5': d5}\n return ans\n",
"role": "user"
},
{
"content": "cassists_any",
"role": "assistant"
}
]
|
def x(self, dc, dt, dt2, nodiag=False, memlimit=-1):
return _cassists_any(self, dc, dt, dt2, 'pijs_cassist', nodiag=nodiag,
memlimit=memlimit)
| cassists | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dc, dt, dt2, nodiag=False, memlimit=-1):\n return _cassists_any(self, dc, dt, dt2, 'pijs_cassist', nodiag=nodiag,\n memlimit=memlimit)\n",
"role": "user"
},
{
"content": "cassists",
"role": "assistant"
}
]
|
def x(self, dc, dt, dt2, name, nodiag=False, memlimit=-1):
if self.lib is None:
raise ValueError('Not initialized.')
import numpy as np
from .auto import ftype_np
from .types import isint
if (dc.dtype.char != ftype_np or dt.dtype.char != ftype_np or dt2.dtype
.char != ftype_np):
raise ValueError('Wrong input dtype for gene expression data')
if len(dc.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:
raise ValueError('Wrong input shape')
if type(nodiag) is not bool:
raise ValueError('Wrong nodiag type')
if not isint(memlimit):
raise ValueError('Wrong memlimit type')
ng = dc.shape[0]
nt = dt2.shape[0]
ns = dc.shape[1]
nd = 1 if nodiag else 0
if dt.shape != dc.shape or dt2.shape[1] != ns:
raise ValueError('Wrong input shape')
if np.isnan(dc).sum() + np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:
raise ValueError('NaN found.')
func = self.cfunc(name, rettype='int', argtypes=['const MATRIXF*',
'const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'byte', 'size_t'])
d = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
dcr = np.require(dc, requirements=['A', 'C', 'O', 'W'])
dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])
dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])
ret = func(dcr, dtr, dt2r, d, nd, memlimit)
ans = {'ret': ret, 'p': d}
return ans
| cassist_any | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dc, dt, dt2, name, nodiag=False, memlimit=-1):\n if self.lib is None:\n raise ValueError('Not initialized.')\n import numpy as np\n from .auto import ftype_np\n from .types import isint\n if (dc.dtype.char != ftype_np or dt.dtype.char != ftype_np or dt2.dtype\n .char != ftype_np):\n raise ValueError('Wrong input dtype for gene expression data')\n if len(dc.shape) != 2 or len(dt.shape) != 2 or len(dt2.shape) != 2:\n raise ValueError('Wrong input shape')\n if type(nodiag) is not bool:\n raise ValueError('Wrong nodiag type')\n if not isint(memlimit):\n raise ValueError('Wrong memlimit type')\n ng = dc.shape[0]\n nt = dt2.shape[0]\n ns = dc.shape[1]\n nd = 1 if nodiag else 0\n if dt.shape != dc.shape or dt2.shape[1] != ns:\n raise ValueError('Wrong input shape')\n if np.isnan(dc).sum() + np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:\n raise ValueError('NaN found.')\n func = self.cfunc(name, rettype='int', argtypes=['const MATRIXF*',\n 'const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'byte', 'size_t'])\n d = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n dcr = np.require(dc, requirements=['A', 'C', 'O', 'W'])\n dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])\n dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])\n ret = func(dcr, dtr, dt2r, d, nd, memlimit)\n ans = {'ret': ret, 'p': d}\n return ans\n",
"role": "user"
},
{
"content": "cassist_any",
"role": "assistant"
}
]
|
def x(self, dc, dt, dt2, nodiag=False, memlimit=-1):
return _cassist_any(self, dc, dt, dt2, 'pij_cassist', nodiag=nodiag,
memlimit=memlimit)
| cassist | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dc, dt, dt2, nodiag=False, memlimit=-1):\n return _cassist_any(self, dc, dt, dt2, 'pij_cassist', nodiag=nodiag,\n memlimit=memlimit)\n",
"role": "user"
},
{
"content": "cassist",
"role": "assistant"
}
]
|
def x(self, dt, dt2, memlimit=-1):
if self.lib is None:
raise ValueError('Not initialized.')
import numpy as np
from .auto import ftype_np, gtype_np
from .types import isint
if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:
raise ValueError('Wrong input dtype for gene expression data')
if len(dt.shape) != 2 or len(dt2.shape) != 2:
raise ValueError('Wrong input shape')
if not isint(memlimit):
raise ValueError('Wrong memlimit type')
ng = dt.shape[0]
nt = dt2.shape[0]
ns = dt.shape[1]
if dt2.shape[1] != ns:
raise ValueError('Wrong input shape')
if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:
raise ValueError('NaN found.')
dp = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',
'C', 'O', 'W'])
dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])
dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])
arglist = ['const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'size_t']
args = [dtr, dt2r, dp, memlimit]
func = self.cfunc('pij_rank_pv', rettype='int', argtypes=arglist)
ret = func(*args)
ans = {'ret': ret, 'p': dp}
return ans
| rank_pv | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dt, dt2, memlimit=-1):\n if self.lib is None:\n raise ValueError('Not initialized.')\n import numpy as np\n from .auto import ftype_np, gtype_np\n from .types import isint\n if dt.dtype.char != ftype_np or dt2.dtype.char != ftype_np:\n raise ValueError('Wrong input dtype for gene expression data')\n if len(dt.shape) != 2 or len(dt2.shape) != 2:\n raise ValueError('Wrong input shape')\n if not isint(memlimit):\n raise ValueError('Wrong memlimit type')\n ng = dt.shape[0]\n nt = dt2.shape[0]\n ns = dt.shape[1]\n if dt2.shape[1] != ns:\n raise ValueError('Wrong input shape')\n if np.isnan(dt).sum() + np.isnan(dt2).sum() > 0:\n raise ValueError('NaN found.')\n dp = np.require(np.zeros((ng, nt), dtype=dt.dtype), requirements=['A',\n 'C', 'O', 'W'])\n dtr = np.require(dt, requirements=['A', 'C', 'O', 'W'])\n dt2r = np.require(dt2, requirements=['A', 'C', 'O', 'W'])\n arglist = ['const MATRIXF*', 'const MATRIXF*', 'MATRIXF*', 'size_t']\n args = [dtr, dt2r, dp, memlimit]\n func = self.cfunc('pij_rank_pv', rettype='int', argtypes=arglist)\n ret = func(*args)\n ans = {'ret': ret, 'p': dp}\n return ans\n",
"role": "user"
},
{
"content": "rank_pv",
"role": "assistant"
}
]
|
def x(phi, *n):
phi = np.ravel(phi)
n = np.asarray(n)
i_n_phi = np.zeros((n.size, phi.size), dtype=complex)
np.outer(n, phi, out=i_n_phi.imag)
qn = np.exp(i_n_phi, out=i_n_phi).sum(axis=1)
if qn.size == 1:
qn = qn[0]
return qn
| qn | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(phi, *n):\n phi = np.ravel(phi)\n n = np.asarray(n)\n i_n_phi = np.zeros((n.size, phi.size), dtype=complex)\n np.outer(n, phi, out=i_n_phi.imag)\n qn = np.exp(i_n_phi, out=i_n_phi).sum(axis=1)\n if qn.size == 1:\n qn = qn[0]\n return qn\n",
"role": "user"
},
{
"content": "qn",
"role": "assistant"
}
]
|
def x(self, n, k, error=False):
self._calculate_corr(n, k)
corr_nk = self._corr[n][k]
if error:
self._calculate_corr_err(n, k)
return corr_nk, self._corr_err[n][k]
else:
return corr_nk
| correlation | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, k, error=False):\n self._calculate_corr(n, k)\n corr_nk = self._corr[n][k]\n if error:\n self._calculate_corr_err(n, k)\n return corr_nk, self._corr_err[n][k]\n else:\n return corr_nk\n",
"role": "user"
},
{
"content": "correlation",
"role": "assistant"
}
]
|
def x(self, n, k, error=False):
corr_nk = self.correlation(n, k, error=error)
if k == 2:
return corr_nk
elif k == 4:
corr_n2 = self.correlation(n, 2)
return corr_nk - 2 * corr_n2 * corr_n2
| cumulant | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, k, error=False):\n corr_nk = self.correlation(n, k, error=error)\n if k == 2:\n return corr_nk\n elif k == 4:\n corr_n2 = self.correlation(n, 2)\n return corr_nk - 2 * corr_n2 * corr_n2\n",
"role": "user"
},
{
"content": "cumulant",
"role": "assistant"
}
]
|
def x(self, n, k, error=False, imaginary='nan'):
cnk = self.cumulant(n, k, error=error)
if error:
cnk, cnk_err = cnk
vnk_to_k = self._cnk_prefactor[k] * cnk
kinv = 1 / k
if vnk_to_k >= 0:
vnk = vnk_to_k ** kinv
elif imaginary == 'negative':
vnk = -1 * (-vnk_to_k) ** kinv
elif imaginary == 'zero':
vnk = 0.0
else:
warnings.warn('Imaginary flow: returning NaN.', RuntimeWarning)
vnk = float('nan')
if k == 2 and error:
return vnk, 0.5 / np.sqrt(abs(cnk)) * cnk_err
else:
return vnk
| flow | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, k, error=False, imaginary='nan'):\n cnk = self.cumulant(n, k, error=error)\n if error:\n cnk, cnk_err = cnk\n vnk_to_k = self._cnk_prefactor[k] * cnk\n kinv = 1 / k\n if vnk_to_k >= 0:\n vnk = vnk_to_k ** kinv\n elif imaginary == 'negative':\n vnk = -1 * (-vnk_to_k) ** kinv\n elif imaginary == 'zero':\n vnk = 0.0\n else:\n warnings.warn('Imaginary flow: returning NaN.', RuntimeWarning)\n vnk = float('nan')\n if k == 2 and error:\n return vnk, 0.5 / np.sqrt(abs(cnk)) * cnk_err\n else:\n return vnk\n",
"role": "user"
},
{
"content": "flow",
"role": "assistant"
}
]
|
def x(self, phi):
pdf = np.inner(self._vn, np.cos(np.outer(phi, self._n)))
pdf *= 2.0
pdf += 1.0
return pdf
| pdf | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, phi):\n pdf = np.inner(self._vn, np.cos(np.outer(phi, self._n)))\n pdf *= 2.0\n pdf += 1.0\n return pdf\n",
"role": "user"
},
{
"content": "pdf",
"role": "assistant"
}
]
|
def x(M):
return np.random.uniform(-np.pi, np.pi, M)
| uniform_phi | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(M):\n return np.random.uniform(-np.pi, np.pi, M)\n",
"role": "user"
},
{
"content": "uniform_phi",
"role": "assistant"
}
]
|
def x(self, phi):
if self._n is None:
pdf = np.empty_like(phi)
pdf.fill(0.5 / np.pi)
return pdf
phi = np.asarray(phi)
pdf = self._pdf(phi)
pdf /= 2.0 * np.pi
return pdf
| pdf | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, phi):\n if self._n is None:\n pdf = np.empty_like(phi)\n pdf.fill(0.5 / np.pi)\n return pdf\n phi = np.asarray(phi)\n pdf = self._pdf(phi)\n pdf /= 2.0 * np.pi\n return pdf\n",
"role": "user"
},
{
"content": "pdf",
"role": "assistant"
}
]
|
def x(self, multiplicity):
if self._n is None:
return self._uniform_phi(multiplicity)
N = 0
phi = np.empty(multiplicity)
pdf_max = 1 + 2 * self._vn.sum()
while N < multiplicity:
n_remaining = multiplicity - N
n_to_sample = int(1.03 * pdf_max * n_remaining)
phi_chunk = self._uniform_phi(n_to_sample)
phi_chunk = phi_chunk[self._pdf(phi_chunk) > np.random.uniform(0,
pdf_max, n_to_sample)]
K = min(phi_chunk.size, n_remaining)
phi[N:N + K] = phi_chunk[:K]
N += K
return phi
| sample | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, multiplicity):\n if self._n is None:\n return self._uniform_phi(multiplicity)\n N = 0\n phi = np.empty(multiplicity)\n pdf_max = 1 + 2 * self._vn.sum()\n while N < multiplicity:\n n_remaining = multiplicity - N\n n_to_sample = int(1.03 * pdf_max * n_remaining)\n phi_chunk = self._uniform_phi(n_to_sample)\n phi_chunk = phi_chunk[self._pdf(phi_chunk) > np.random.uniform(0,\n pdf_max, n_to_sample)]\n K = min(phi_chunk.size, n_remaining)\n phi[N:N + K] = phi_chunk[:K]\n N += K\n return phi\n",
"role": "user"
},
{
"content": "sample",
"role": "assistant"
}
]
|
def x(obj, *args, **kwargs):
return json.dumps(obj, *args, cls=TypelessSONEncoder, ensure_ascii=
False, **kwargs)
| dumps | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj, *args, **kwargs):\n return json.dumps(obj, *args, cls=TypelessSONEncoder, ensure_ascii=\n False, **kwargs)\n",
"role": "user"
},
{
"content": "dumps",
"role": "assistant"
}
]
|
def x(source, target, __silent, *fields, **field_map):
source_dict = source.__dict__ if hasattr(source, '__dict__') else source
if not fields:
fields = source_dict.keys()
for f in fields:
if f not in source_dict and __silent:
continue
target_f = f if f not in field_map else field_map[f]
setattr(target, target_f, source_dict[f])
| flex_update_obj | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(source, target, __silent, *fields, **field_map):\n source_dict = source.__dict__ if hasattr(source, '__dict__') else source\n if not fields:\n fields = source_dict.keys()\n for f in fields:\n if f not in source_dict and __silent:\n continue\n target_f = f if f not in field_map else field_map[f]\n setattr(target, target_f, source_dict[f])\n",
"role": "user"
},
{
"content": "flex_update_obj",
"role": "assistant"
}
]
|
def x(cls, obj_data=None, *fields, **field_map):
if not fields:
fields = obj_data.keys()
try:
kwargs = {field(f, field_map): obj_data[f] for f in fields if f in
obj_data}
obj = cls(**kwargs)
except:
getLogger().exception("Couldn't use kwargs to construct object")
obj = cls()
update_obj(obj_data, obj, *fields, **field_map)
return obj
| to_obj | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, obj_data=None, *fields, **field_map):\n if not fields:\n fields = obj_data.keys()\n try:\n kwargs = {field(f, field_map): obj_data[f] for f in fields if f in\n obj_data}\n obj = cls(**kwargs)\n except:\n getLogger().exception(\"Couldn't use kwargs to construct object\")\n obj = cls()\n update_obj(obj_data, obj, *fields, **field_map)\n return obj\n",
"role": "user"
},
{
"content": "to_obj",
"role": "assistant"
}
]
|
def x(text):
if text is None:
raise ValueError('text cannot be None')
for c in text:
if c not in HIRAGANA and c not in KATAKANA:
return False
return True
| is_kana | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text):\n if text is None:\n raise ValueError('text cannot be None')\n for c in text:\n if c not in HIRAGANA and c not in KATAKANA:\n return False\n return True\n",
"role": "user"
},
{
"content": "is_kana",
"role": "assistant"
}
]
|
def x(text, **kwargs):
mecab_out = _internal_mecab_parse(text, **kwargs).splitlines()
tokens = [MeCabToken.parse(x) for x in mecab_out]
return MeCabSent(text, tokens)
| txt2mecab | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(text, **kwargs):\n mecab_out = _internal_mecab_parse(text, **kwargs).splitlines()\n tokens = [MeCabToken.parse(x) for x in mecab_out]\n return MeCabSent(text, tokens)\n",
"role": "user"
},
{
"content": "txt2mecab",
"role": "assistant"
}
]
|
def x(lines, **kwargs):
sents = []
for line in lines:
sent = txt2mecab(line, **kwargs)
sents.append(sent)
return sents
| lines2mecab | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lines, **kwargs):\n sents = []\n for line in lines:\n sent = txt2mecab(line, **kwargs)\n sents.append(sent)\n return sents\n",
"role": "user"
},
{
"content": "lines2mecab",
"role": "assistant"
}
]
|
def x(mtokens, raw='', auto_strip=True):
sents = []
bucket = []
cfrom = 0
cto = 0
token_cfrom = 0
logger = getLogger()
logger.debug('raw text: {}'.format(raw))
logger.debug('tokens: {}'.format(mtokens))
for t in mtokens:
if t.is_eos:
continue
token_cfrom = raw.find(t.surface, cto)
cto = token_cfrom + len(t.surface)
logger.debug('processing token {} <{}:{}>'.format(t, token_cfrom, cto))
bucket.append(t)
if t.pos == '記号' and t.sc1 == '句点':
sent_text = raw[cfrom:cto]
getLogger().debug('sent_text = {} | <{}:{}>'.format(sent_text,
cfrom, cto))
if auto_strip:
sent_text = sent_text.strip()
sents.append(MeCabSent(sent_text, bucket))
logger.debug('Found a sentence: {}'.format(sent_text))
cfrom = cto
bucket = []
if bucket:
logger.debug('Bucket is not empty: {}'.format(bucket))
sent_text = raw[cfrom:cto]
logger.debug('remaining text: {} [{}:{}]'.format(sent_text, cfrom, cto)
)
if auto_strip:
sent_text = sent_text.strip()
sents.append(MeCabSent(sent_text, bucket))
return sents
| tokenize_sent | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(mtokens, raw='', auto_strip=True):\n sents = []\n bucket = []\n cfrom = 0\n cto = 0\n token_cfrom = 0\n logger = getLogger()\n logger.debug('raw text: {}'.format(raw))\n logger.debug('tokens: {}'.format(mtokens))\n for t in mtokens:\n if t.is_eos:\n continue\n token_cfrom = raw.find(t.surface, cto)\n cto = token_cfrom + len(t.surface)\n logger.debug('processing token {} <{}:{}>'.format(t, token_cfrom, cto))\n bucket.append(t)\n if t.pos == '記号' and t.sc1 == '句点':\n sent_text = raw[cfrom:cto]\n getLogger().debug('sent_text = {} | <{}:{}>'.format(sent_text,\n cfrom, cto))\n if auto_strip:\n sent_text = sent_text.strip()\n sents.append(MeCabSent(sent_text, bucket))\n logger.debug('Found a sentence: {}'.format(sent_text))\n cfrom = cto\n bucket = []\n if bucket:\n logger.debug('Bucket is not empty: {}'.format(bucket))\n sent_text = raw[cfrom:cto]\n logger.debug('remaining text: {} [{}:{}]'.format(sent_text, cfrom, cto)\n )\n if auto_strip:\n sent_text = sent_text.strip()\n sents.append(MeCabSent(sent_text, bucket))\n return sents\n",
"role": "user"
},
{
"content": "tokenize_sent",
"role": "assistant"
}
]
|
def x(content, splitlines=True, format=None, **kwargs):
sents = DekoText.parse(content, splitlines=splitlines, **kwargs)
doc = []
final = sents
if format == 'html':
for sent in sents:
doc.append(sent.to_ruby())
final = '<br/>\n'.join(doc)
elif format == 'csv':
for sent in sents:
doc.append('\n'.join([x.to_csv() for x in sent]) + '\n')
final = '\n'.join(doc)
elif format == 'txt':
final = '\n'.join([str(x) for x in sents])
return final
| analyse | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(content, splitlines=True, format=None, **kwargs):\n sents = DekoText.parse(content, splitlines=splitlines, **kwargs)\n doc = []\n final = sents\n if format == 'html':\n for sent in sents:\n doc.append(sent.to_ruby())\n final = '<br/>\\n'.join(doc)\n elif format == 'csv':\n for sent in sents:\n doc.append('\\n'.join([x.to_csv() for x in sent]) + '\\n')\n final = '\\n'.join(doc)\n elif format == 'txt':\n final = '\\n'.join([str(x) for x in sents])\n return final\n",
"role": "user"
},
{
"content": "analyse",
"role": "assistant"
}
]
|
def x(self):
parts = [self.pos]
if self.sc1 and self.sc1 != '*':
parts.append(self.sc1)
if self.sc2 and self.sc2 != '*':
parts.append(self.sc2)
return '-'.join(parts)
| pos3 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n parts = [self.pos]\n if self.sc1 and self.sc1 != '*':\n parts.append(self.sc1)\n if self.sc2 and self.sc2 != '*':\n parts.append(self.sc2)\n return '-'.join(parts)\n",
"role": "user"
},
{
"content": "pos3",
"role": "assistant"
}
]
|
def x(self):
if self.need_ruby():
surface = self.surface
reading = self.reading_hira()
return '<ruby><rb>{sur}</rb><rt>{read}</rt></ruby>'.format(sur=
surface, read=reading)
elif self.is_eos:
return ''
else:
return self.surface
| to_ruby | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.need_ruby():\n surface = self.surface\n reading = self.reading_hira()\n return '<ruby><rb>{sur}</rb><rt>{read}</rt></ruby>'.format(sur=\n surface, read=reading)\n elif self.is_eos:\n return ''\n else:\n return self.surface\n",
"role": "user"
},
{
"content": "to_ruby",
"role": "assistant"
}
]
|
def x(self, sentence_text, **kwargs):
sent = MeCabSent.parse(sentence_text, **kwargs)
self.sents.append(sent)
return sent
| add | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, sentence_text, **kwargs):\n sent = MeCabSent.parse(sentence_text, **kwargs)\n self.sents.append(sent)\n return sent\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
]
|
def x(s, encoding='utf-8', strings_only=False, errors='strict'):
if isinstance(s, six.text_type):
return s
if strings_only and not isinstance(s, six.string_types):
return s
if not isinstance(s, six.string_types):
if hasattr(s, '__unicode__'):
s = s.__unicode__()
elif six.PY3:
if isinstance(s, six.binary_type):
s = six.text_type(s, encoding, errors)
else:
s = six.text_type(s)
else:
s = six.text_type(six.binary_type(s), encoding, errors)
else:
s = s.decode(encoding, errors)
return s
| smart_text | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, encoding='utf-8', strings_only=False, errors='strict'):\n if isinstance(s, six.text_type):\n return s\n if strings_only and not isinstance(s, six.string_types):\n return s\n if not isinstance(s, six.string_types):\n if hasattr(s, '__unicode__'):\n s = s.__unicode__()\n elif six.PY3:\n if isinstance(s, six.binary_type):\n s = six.text_type(s, encoding, errors)\n else:\n s = six.text_type(s)\n else:\n s = six.text_type(six.binary_type(s), encoding, errors)\n else:\n s = s.decode(encoding, errors)\n return s\n",
"role": "user"
},
{
"content": "smart_text",
"role": "assistant"
}
]
|
def x(s, encoding='utf-8', strings_only=False, errors='strict'):
if isinstance(s, six.binary_type):
if encoding == 'utf-8':
return s
else:
return s.decode('utf-8', errors).encode(encoding, errors)
if strings_only and not isinstance(s, six.text_type):
return s
if not isinstance(s, six.string_types):
try:
if six.PY3:
return six.text_type(s).encode(encoding)
else:
return six.binary_type(s)
except UnicodeEncodeError:
return six.text_type(s).encode(encoding, errors)
else:
return s.encode(encoding, errors)
| smart_bytes | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, encoding='utf-8', strings_only=False, errors='strict'):\n if isinstance(s, six.binary_type):\n if encoding == 'utf-8':\n return s\n else:\n return s.decode('utf-8', errors).encode(encoding, errors)\n if strings_only and not isinstance(s, six.text_type):\n return s\n if not isinstance(s, six.string_types):\n try:\n if six.PY3:\n return six.text_type(s).encode(encoding)\n else:\n return six.binary_type(s)\n except UnicodeEncodeError:\n return six.text_type(s).encode(encoding, errors)\n else:\n return s.encode(encoding, errors)\n",
"role": "user"
},
{
"content": "smart_bytes",
"role": "assistant"
}
]
|
def x(self, response, accepts):
graph = self.get_graph(response)
if graph is not None:
mimetype, format = self.format_selector.decide(accepts, graph.
context_aware)
if mimetype is None:
return self.make_406_response()
if 'text' in mimetype:
mimetype = mimetype + '; charset=utf-8'
serialized = graph.serialize(format=format)
response = self.make_new_response(response, mimetype, serialized)
return response
else:
return response
| output | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, response, accepts):\n graph = self.get_graph(response)\n if graph is not None:\n mimetype, format = self.format_selector.decide(accepts, graph.\n context_aware)\n if mimetype is None:\n return self.make_406_response()\n if 'text' in mimetype:\n mimetype = mimetype + '; charset=utf-8'\n serialized = graph.serialize(format=format)\n response = self.make_new_response(response, mimetype, serialized)\n return response\n else:\n return response\n",
"role": "user"
},
{
"content": "output",
"role": "assistant"
}
]
|
def x(self, view):
from functools import wraps
@wraps(view)
def x(*args, **kwargs):
response = view(*args, **kwargs)
accept = self.get_accept()
return self.output(response, accept)
return decorated
| decorate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, view):\n from functools import wraps\n\n @wraps(view)\n def x(*args, **kwargs):\n response = view(*args, **kwargs)\n accept = self.get_accept()\n return self.output(response, accept)\n return decorated\n",
"role": "user"
},
{
"content": "decorate",
"role": "assistant"
}
]
|
def x(self, n):
ny, nx = self._profile.shape
xmax, ymax = self._xymax
xcm, ycm = self._cm
Y, X = np.mgrid[ymax:-ymax:1.0j * ny, -xmax:xmax:1.0j * nx]
X -= xcm
Y -= ycm
Rsq = X * X + Y * Y
if n == 1:
W = np.sqrt(Rsq, out=Rsq)
elif n == 2:
W = Rsq
else:
if n & 1:
W = np.sqrt(Rsq)
else:
W = np.copy(Rsq)
for _ in range(int((n - 1) / 2)):
W *= Rsq
W *= self._profile
i_n_phi = np.zeros_like(X, dtype=complex)
np.arctan2(Y, X, out=i_n_phi.imag)
i_n_phi.imag *= n
exp_phi = np.exp(i_n_phi, out=i_n_phi)
exp_phi *= W
return abs(exp_phi.sum()) / W.sum()
| ecc | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n):\n ny, nx = self._profile.shape\n xmax, ymax = self._xymax\n xcm, ycm = self._cm\n Y, X = np.mgrid[ymax:-ymax:1.0j * ny, -xmax:xmax:1.0j * nx]\n X -= xcm\n Y -= ycm\n Rsq = X * X + Y * Y\n if n == 1:\n W = np.sqrt(Rsq, out=Rsq)\n elif n == 2:\n W = Rsq\n else:\n if n & 1:\n W = np.sqrt(Rsq)\n else:\n W = np.copy(Rsq)\n for _ in range(int((n - 1) / 2)):\n W *= Rsq\n W *= self._profile\n i_n_phi = np.zeros_like(X, dtype=complex)\n np.arctan2(Y, X, out=i_n_phi.imag)\n i_n_phi.imag *= n\n exp_phi = np.exp(i_n_phi, out=i_n_phi)\n exp_phi *= W\n return abs(exp_phi.sum()) / W.sum()\n",
"role": "user"
},
{
"content": "ecc",
"role": "assistant"
}
]
|
def x(self, var, default=None):
try:
return self.__get(var)
except (KeyError, IndexError):
return default
| get | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, var, default=None):\n try:\n return self.__get(var)\n except (KeyError, IndexError):\n return default\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
]
|
def x(self, var, value, index=None):
current = self.__get(var)
if not isinstance(current, list):
raise KeyError('%s: is not a list' % var)
if index is None:
current.append(value)
else:
current.insert(index, value)
if self.auto_save:
self.save()
| insert | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, var, value, index=None):\n current = self.__get(var)\n if not isinstance(current, list):\n raise KeyError('%s: is not a list' % var)\n if index is None:\n current.append(value)\n else:\n current.insert(index, value)\n if self.auto_save:\n self.save()\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
]
|
def x(self):
s = set()
for config in self.__configs:
s |= config.keys()
return s
| keys | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n s = set()\n for config in self.__configs:\n s |= config.keys()\n return s\n",
"role": "user"
},
{
"content": "keys",
"role": "assistant"
}
]
|
def x(self):
self.flush()
self.stream.close()
logging.StreamHandler.close(self)
| close | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.flush()\n self.stream.close()\n logging.StreamHandler.close(self)\n",
"role": "user"
},
{
"content": "close",
"role": "assistant"
}
]
|
def x(self, record):
try:
if self.shouldRollover(record):
self.doRollover()
FileHandler.emit(self, record)
except (KeyboardInterrupt, SystemExit):
raise
except Exception:
self.handleError(record)
| emit | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n try:\n if self.shouldRollover(record):\n self.doRollover()\n FileHandler.emit(self, record)\n except (KeyboardInterrupt, SystemExit):\n raise\n except Exception:\n self.handleError(record)\n",
"role": "user"
},
{
"content": "emit",
"role": "assistant"
}
]
|
def x(self):
self.stream.close()
try:
if self.backupCount > 0:
tmp_location = '%s.0' % self.baseFilename
os.rename(self.baseFilename, tmp_location)
for i in range(self.backupCount - 1, 0, -1):
sfn = '%s.%d' % (self.baseFilename, i)
dfn = '%s.%d' % (self.baseFilename, i + 1)
if os.path.exists(sfn):
if os.path.exists(dfn):
os.remove(dfn)
os.rename(sfn, dfn)
dfn = self.baseFilename + '.1'
if os.path.exists(dfn):
os.remove(dfn)
os.rename(tmp_location, dfn)
except Exception:
pass
finally:
self.stream = WindowsFile(self.baseFilename, 'a', self.encoding)
| doRollover | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.stream.close()\n try:\n if self.backupCount > 0:\n tmp_location = '%s.0' % self.baseFilename\n os.rename(self.baseFilename, tmp_location)\n for i in range(self.backupCount - 1, 0, -1):\n sfn = '%s.%d' % (self.baseFilename, i)\n dfn = '%s.%d' % (self.baseFilename, i + 1)\n if os.path.exists(sfn):\n if os.path.exists(dfn):\n os.remove(dfn)\n os.rename(sfn, dfn)\n dfn = self.baseFilename + '.1'\n if os.path.exists(dfn):\n os.remove(dfn)\n os.rename(tmp_location, dfn)\n except Exception:\n pass\n finally:\n self.stream = WindowsFile(self.baseFilename, 'a', self.encoding)\n",
"role": "user"
},
{
"content": "doRollover",
"role": "assistant"
}
]
|
def x(self, record):
if self.maxBytes > 0:
msg = '%s\n' % self.format(record)
self.stream.seek(0, 2)
if self.stream.tell() + len(msg) >= self.maxBytes:
return 1
return 0
| shouldRollover | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, record):\n if self.maxBytes > 0:\n msg = '%s\\n' % self.format(record)\n self.stream.seek(0, 2)\n if self.stream.tell() + len(msg) >= self.maxBytes:\n return 1\n return 0\n",
"role": "user"
},
{
"content": "shouldRollover",
"role": "assistant"
}
]
|
def x(s, posix=True):
if isinstance(s, six.binary_type):
s = s.decode('utf-8')
return shlex.split(s, posix=posix)
| split | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s, posix=True):\n if isinstance(s, six.binary_type):\n s = s.decode('utf-8')\n return shlex.split(s, posix=posix)\n",
"role": "user"
},
{
"content": "split",
"role": "assistant"
}
]
|
def x(path, matcher='*', dirs=False, files=True):
if callable(matcher):
def x(items):
return list(filter(matcher, items))
else:
def x(items):
return fnmatch.filter(items, matcher)
for root, directories, filenames in os.walk(os.path.abspath(path)):
to_match = []
if dirs:
to_match.extend(directories)
if files:
to_match.extend(filenames)
for item in fnmatcher(to_match):
yield os.path.join(root, item)
| search | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, matcher='*', dirs=False, files=True):\n if callable(matcher):\n\n def x(items):\n return list(filter(matcher, items))\n else:\n\n def x(items):\n return fnmatch.filter(items, matcher)\n for root, directories, filenames in os.walk(os.path.abspath(path)):\n to_match = []\n if dirs:\n to_match.extend(directories)\n if files:\n to_match.extend(filenames)\n for item in fnmatcher(to_match):\n yield os.path.join(root, item)\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
]
|
def x(directory):
directory = os.path.abspath(directory)
logger.info('chdir -> %s' % directory)
try:
if not os.path.isdir(directory):
logger.error('chdir -> %s failed! Directory does not exist!',
directory)
return False
os.chdir(directory)
return True
except Exception as e:
logger.error('chdir -> %s failed! %s' % (directory, e))
return False
| chdir | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory):\n directory = os.path.abspath(directory)\n logger.info('chdir -> %s' % directory)\n try:\n if not os.path.isdir(directory):\n logger.error('chdir -> %s failed! Directory does not exist!',\n directory)\n return False\n os.chdir(directory)\n return True\n except Exception as e:\n logger.error('chdir -> %s failed! %s' % (directory, e))\n return False\n",
"role": "user"
},
{
"content": "chdir",
"role": "assistant"
}
]
|
def x(directory, create=False):
current = os.getcwd()
directory = os.path.abspath(directory)
if os.path.isdir(directory) or create and mkdir(directory):
logger.info('goto -> %s', directory)
os.chdir(directory)
try:
yield True
finally:
logger.info('goto <- %s', directory)
os.chdir(current)
else:
logger.info(
'goto(%s) - directory does not exist, or cannot be created.',
directory)
yield False
| goto | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(directory, create=False):\n current = os.getcwd()\n directory = os.path.abspath(directory)\n if os.path.isdir(directory) or create and mkdir(directory):\n logger.info('goto -> %s', directory)\n os.chdir(directory)\n try:\n yield True\n finally:\n logger.info('goto <- %s', directory)\n os.chdir(current)\n else:\n logger.info(\n 'goto(%s) - directory does not exist, or cannot be created.',\n directory)\n yield False\n",
"role": "user"
},
{
"content": "goto",
"role": "assistant"
}
]
|
def x(path, mode=493, delete=False):
logger.info('mkdir: %s' % path)
if os.path.isdir(path):
if not delete:
return True
if not remove(path):
return False
try:
os.makedirs(path, mode)
return True
except Exception:
logger.exception('Failed to mkdir: %s' % path)
return False
| mkdir | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(path, mode=493, delete=False):\n logger.info('mkdir: %s' % path)\n if os.path.isdir(path):\n if not delete:\n return True\n if not remove(path):\n return False\n try:\n os.makedirs(path, mode)\n return True\n except Exception:\n logger.exception('Failed to mkdir: %s' % path)\n return False\n",
"role": "user"
},
{
"content": "mkdir",
"role": "assistant"
}
]
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.