source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, lng: str) ->str:
if self.data is None:
return ''
if isinstance(self.data, dict):
firstpart = lng.split('-')[0]
similar = [l for l in self.data.keys() if (l.startswith(firstpart +
'-') or firstpart == l) and l != lng]
if self.data.get(lng):
return self.data[lng]
elif self.data.get(firstpart):
return self.data[firstpart]
elif similar and any([self.data.get(s) for s in similar]):
for s in similar:
if self.data.get(s):
return self.data.get(s)
elif self.data.get(settings.LANGUAGE_CODE):
return self.data[settings.LANGUAGE_CODE]
elif len(self.data):
return list(self.data.items())[0][1]
else:
return ''
else:
return str(self.data)
|
localize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, lng: str) ->str:\n if self.data is None:\n return ''\n if isinstance(self.data, dict):\n firstpart = lng.split('-')[0]\n similar = [l for l in self.data.keys() if (l.startswith(firstpart +\n '-') or firstpart == l) and l != lng]\n if self.data.get(lng):\n return self.data[lng]\n elif self.data.get(firstpart):\n return self.data[firstpart]\n elif similar and any([self.data.get(s) for s in similar]):\n for s in similar:\n if self.data.get(s):\n return self.data.get(s)\n elif self.data.get(settings.LANGUAGE_CODE):\n return self.data[settings.LANGUAGE_CODE]\n elif len(self.data):\n return list(self.data.items())[0][1]\n else:\n return ''\n else:\n return str(self.data)\n",
"role": "user"
},
{
"content": "localize",
"role": "assistant"
}
] |
def x(instance, obs):
if obs.names is everything:
names = list(instance._props)
else:
names = obs.names
for name in names:
if name not in instance._listeners:
instance._listeners[name] = {typ: [] for typ in LISTENER_TYPES}
instance._listeners[name][obs.mode] += [obs]
|
set_listener
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instance, obs):\n if obs.names is everything:\n names = list(instance._props)\n else:\n names = obs.names\n for name in names:\n if name not in instance._listeners:\n instance._listeners[name] = {typ: [] for typ in LISTENER_TYPES}\n instance._listeners[name][obs.mode] += [obs]\n",
"role": "user"
},
{
"content": "set_listener",
"role": "assistant"
}
] |
def x(instance, change):
if change['mode'] not in listeners_disabled._quarantine and change['name'
] in instance._listeners:
return instance._listeners[change['name']][change['mode']]
return []
|
get_listeners
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(instance, change):\n if change['mode'] not in listeners_disabled._quarantine and change['name'\n ] in instance._listeners:\n return instance._listeners[change['name']][change['mode']]\n return []\n",
"role": "user"
},
{
"content": "get_listeners",
"role": "assistant"
}
] |
def x(names_or_instance, names=None, func=None, change_only=False):
mode = 'observe_change' if change_only else 'observe_set'
if names is None and func is None:
return Observer(names_or_instance, mode)
obs = Observer(names, mode)(func)
_set_listener(names_or_instance, obs)
return obs
|
observer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(names_or_instance, names=None, func=None, change_only=False):\n mode = 'observe_change' if change_only else 'observe_set'\n if names is None and func is None:\n return Observer(names_or_instance, mode)\n obs = Observer(names, mode)(func)\n _set_listener(names_or_instance, obs)\n return obs\n",
"role": "user"
},
{
"content": "observer",
"role": "assistant"
}
] |
def x(names_or_instance, names=None, func=None):
if names is None and func is None:
if callable(names_or_instance):
return ClassValidator(names_or_instance)
return Observer(names_or_instance, 'validate')
val = Observer(names, 'validate')(func)
_set_listener(names_or_instance, val)
return val
|
validator
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(names_or_instance, names=None, func=None):\n if names is None and func is None:\n if callable(names_or_instance):\n return ClassValidator(names_or_instance)\n return Observer(names_or_instance, 'validate')\n val = Observer(names, 'validate')(func)\n _set_listener(names_or_instance, val)\n return val\n",
"role": "user"
},
{
"content": "validator",
"role": "assistant"
}
] |
def x(bases, classdict, attr, attr_dict):
output = OrderedDict()
output_keys = set()
all_bases = []
for base in reversed(bases):
if base is not object and isinstance(base, PropertyMetaclass):
output_keys = output_keys.union(getattr(base, attr))
for item in reversed(base.__mro__):
if item is object or not isinstance(item, PropertyMetaclass):
continue
if item not in all_bases:
all_bases.append(item)
for base in all_bases:
for key, val in iteritems(getattr(base, attr)):
if key in base.__dict__ and key in output_keys:
output.update({key: val})
for key in classdict:
if key in output:
output.pop(key)
output.update(attr_dict)
return output
|
build_from_bases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bases, classdict, attr, attr_dict):\n output = OrderedDict()\n output_keys = set()\n all_bases = []\n for base in reversed(bases):\n if base is not object and isinstance(base, PropertyMetaclass):\n output_keys = output_keys.union(getattr(base, attr))\n for item in reversed(base.__mro__):\n if item is object or not isinstance(item, PropertyMetaclass):\n continue\n if item not in all_bases:\n all_bases.append(item)\n for base in all_bases:\n for key, val in iteritems(getattr(base, attr)):\n if key in base.__dict__ and key in output_keys:\n output.update({key: val})\n for key in classdict:\n if key in output:\n output.pop(key)\n output.update(attr_dict)\n return output\n",
"role": "user"
},
{
"content": "build_from_bases",
"role": "assistant"
}
] |
def x(value_a, value_b):
if not isinstance(value_a, HasProperties) or not isinstance(value_b,
HasProperties):
return value_a == value_b
if getattr(value_a, '_testing_equality', False):
return False
value_a._testing_equality = True
try:
if value_a is value_b:
return True
if value_a.__class__ is not value_b.__class__:
return False
for prop in itervalues(value_a._props):
prop_a = getattr(value_a, prop.name)
prop_b = getattr(value_b, prop.name)
if prop_a is None and prop_b is None:
continue
if prop_a is not None and prop_b is not None and prop.equal(prop_a,
prop_b):
continue
return False
return True
finally:
value_a._testing_equality = False
|
equal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value_a, value_b):\n if not isinstance(value_a, HasProperties) or not isinstance(value_b,\n HasProperties):\n return value_a == value_b\n if getattr(value_a, '_testing_equality', False):\n return False\n value_a._testing_equality = True\n try:\n if value_a is value_b:\n return True\n if value_a.__class__ is not value_b.__class__:\n return False\n for prop in itervalues(value_a._props):\n prop_a = getattr(value_a, prop.name)\n prop_b = getattr(value_b, prop.name)\n if prop_a is None and prop_b is None:\n continue\n if prop_a is not None and prop_b is not None and prop.equal(prop_a,\n prop_b):\n continue\n return False\n return True\n finally:\n value_a._testing_equality = False\n",
"role": "user"
},
{
"content": "equal",
"role": "assistant"
}
] |
def x(value, **kwargs):
if not isinstance(value, HasProperties):
raise ValueError(
'properties.copy may only be used to copyHasProperties instances')
kwargs.update({'include_class': kwargs.get('include_class', True)})
kwargs.update({'trusted': kwargs.get('trusted', True)})
return value.__class__.deserialize(value.serialize(**kwargs), **kwargs)
|
copy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, **kwargs):\n if not isinstance(value, HasProperties):\n raise ValueError(\n 'properties.copy may only be used to copyHasProperties instances')\n kwargs.update({'include_class': kwargs.get('include_class', True)})\n kwargs.update({'trusted': kwargs.get('trusted', True)})\n return value.__class__.deserialize(value.serialize(**kwargs), **kwargs)\n",
"role": "user"
},
{
"content": "copy",
"role": "assistant"
}
] |
def x(self, name=None):
if name is None:
for key in self._props:
if isinstance(self._props[key], basic.Property):
self._reset(key)
return
if name not in self._props:
raise AttributeError(
"Input name '{}' is not a known property or attribute".format(name)
)
if not isinstance(self._props[name], basic.Property):
raise AttributeError("Cannot reset GettableProperty '{}'".format(name))
if name in self._defaults:
val = self._defaults[name]
else:
val = self._props[name].default
if callable(val):
val = val()
setattr(self, name, val)
|
reset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name=None):\n if name is None:\n for key in self._props:\n if isinstance(self._props[key], basic.Property):\n self._reset(key)\n return\n if name not in self._props:\n raise AttributeError(\n \"Input name '{}' is not a known property or attribute\".format(name)\n )\n if not isinstance(self._props[name], basic.Property):\n raise AttributeError(\"Cannot reset GettableProperty '{}'\".format(name))\n if name in self._defaults:\n val = self._defaults[name]\n else:\n val = self._props[name].default\n if callable(val):\n val = val()\n setattr(self, name, val)\n",
"role": "user"
},
{
"content": "reset",
"role": "assistant"
}
] |
def x(self):
if getattr(self, '_getting_validated', False):
return True
self._getting_validated = True
self._validation_error_tuples = []
self._non_validation_error = None
try:
for val in itervalues(self._class_validators):
try:
if isinstance(val.func, string_types):
valid = getattr(self, val.func)()
else:
valid = val.func(self)
if valid is False:
raise utils.ValidationError('Validation failed', None,
None, self)
except utils.ValidationError as val_err:
self._validation_error_tuples += val_err.error_tuples
except GENERIC_ERRORS as err:
if not self._non_validation_error:
self._non_validation_error = err
if self._validation_error_tuples:
self._error_hook(self._validation_error_tuples)
msgs = ['Validation failed:']
msgs += [val.message for val in self._validation_error_tuples]
raise utils.ValidationError(message='\n- '.join(msgs),
_error_tuples=self._validation_error_tuples)
if self._non_validation_error:
raise self._non_validation_error
return True
finally:
self._getting_validated = False
self._validation_error_tuples = None
self._non_validation_error = None
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if getattr(self, '_getting_validated', False):\n return True\n self._getting_validated = True\n self._validation_error_tuples = []\n self._non_validation_error = None\n try:\n for val in itervalues(self._class_validators):\n try:\n if isinstance(val.func, string_types):\n valid = getattr(self, val.func)()\n else:\n valid = val.func(self)\n if valid is False:\n raise utils.ValidationError('Validation failed', None,\n None, self)\n except utils.ValidationError as val_err:\n self._validation_error_tuples += val_err.error_tuples\n except GENERIC_ERRORS as err:\n if not self._non_validation_error:\n self._non_validation_error = err\n if self._validation_error_tuples:\n self._error_hook(self._validation_error_tuples)\n msgs = ['Validation failed:']\n msgs += [val.message for val in self._validation_error_tuples]\n raise utils.ValidationError(message='\\n- '.join(msgs),\n _error_tuples=self._validation_error_tuples)\n if self._non_validation_error:\n raise self._non_validation_error\n return True\n finally:\n self._getting_validated = False\n self._validation_error_tuples = None\n self._non_validation_error = None\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self):
for key, prop in iteritems(self._props):
try:
value = self._get(key)
err_msg = 'Invalid value for property {}: {}'.format(key, value)
if value is not None:
change = dict(name=key, previous=value, value=value, mode=
'validate')
self._notify(change)
if not prop.equal(value, change['value']):
raise utils.ValidationError(err_msg, 'invalid', prop.
name, self)
if not prop.assert_valid(self):
raise utils.ValidationError(err_msg, 'invalid', prop.name, self
)
except utils.ValidationError as val_err:
if getattr(self, '_validation_error_tuples', None) is not None:
self._validation_error_tuples += val_err.error_tuples
else:
raise
return True
|
validate_props
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for key, prop in iteritems(self._props):\n try:\n value = self._get(key)\n err_msg = 'Invalid value for property {}: {}'.format(key, value)\n if value is not None:\n change = dict(name=key, previous=value, value=value, mode=\n 'validate')\n self._notify(change)\n if not prop.equal(value, change['value']):\n raise utils.ValidationError(err_msg, 'invalid', prop.\n name, self)\n if not prop.assert_valid(self):\n raise utils.ValidationError(err_msg, 'invalid', prop.name, self\n )\n except utils.ValidationError as val_err:\n if getattr(self, '_validation_error_tuples', None) is not None:\n self._validation_error_tuples += val_err.error_tuples\n else:\n raise\n return True\n",
"role": "user"
},
{
"content": "validate_props",
"role": "assistant"
}
] |
def x(self, include_class=True, save_dynamic=False, **kwargs):
if getattr(self, '_getting_serialized', False):
raise utils.SelfReferenceError(
'Object contains unserializable self reference')
self._getting_serialized = True
try:
kwargs.update({'include_class': include_class, 'save_dynamic':
save_dynamic})
if save_dynamic:
prop_source = self._props
else:
prop_source = self._backend
data = ((key, self._props[key].serialize(getattr(self, key), **
kwargs)) for key in prop_source)
json_dict = {k: v for k, v in data if v is not None}
if include_class:
json_dict.update({'__class__': self.__class__.__name__})
return json_dict
finally:
self._getting_serialized = False
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, include_class=True, save_dynamic=False, **kwargs):\n if getattr(self, '_getting_serialized', False):\n raise utils.SelfReferenceError(\n 'Object contains unserializable self reference')\n self._getting_serialized = True\n try:\n kwargs.update({'include_class': include_class, 'save_dynamic':\n save_dynamic})\n if save_dynamic:\n prop_source = self._props\n else:\n prop_source = self._backend\n data = ((key, self._props[key].serialize(getattr(self, key), **\n kwargs)) for key in prop_source)\n json_dict = {k: v for k, v in data if v is not None}\n if include_class:\n json_dict.update({'__class__': self.__class__.__name__})\n return json_dict\n finally:\n self._getting_serialized = False\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):
if not isinstance(value, dict):
raise ValueError(
'HasProperties class {} must deserialize from dictionary, not input of type {}'
.format(cls.__name__, value.__class__.__name__))
output_cls = cls._deserialize_class(input_cls_name=value.get(
'__class__'), trusted=trusted, strict=strict)
instance = kwargs.pop('_instance', None)
if instance is not None and not isinstance(instance, output_cls):
raise ValueError('Input _instance must be of class {}, not {}'.
format(output_cls.__name__, instance.__class__.__name__))
state, unused = utils.filter_props(output_cls, value, True)
unused.pop('__class__', None)
if unused and strict:
raise ValueError('Unused properties during deserialization: {}'.
format(', '.join(unused)))
kwargs.update({'trusted': trusted, 'strict': strict})
newstate = {}
for key, val in iteritems(state):
newstate[key] = output_cls._props[key].deserialize(val, **kwargs)
mutable, immutable = utils.filter_props(output_cls, newstate, False)
with handlers.listeners_disabled():
if instance is None:
instance = output_cls(**mutable)
else:
for key, val in iteritems(mutable):
setattr(instance, key, val)
for key, val in iteritems(immutable):
valid_val = output_cls._props[key].validate(instance, val)
instance._backend[key] = valid_val
if assert_valid and not instance.validate():
raise utils.ValidationError('Deserialized instance is not valid')
return instance
|
deserialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):\n if not isinstance(value, dict):\n raise ValueError(\n 'HasProperties class {} must deserialize from dictionary, not input of type {}'\n .format(cls.__name__, value.__class__.__name__))\n output_cls = cls._deserialize_class(input_cls_name=value.get(\n '__class__'), trusted=trusted, strict=strict)\n instance = kwargs.pop('_instance', None)\n if instance is not None and not isinstance(instance, output_cls):\n raise ValueError('Input _instance must be of class {}, not {}'.\n format(output_cls.__name__, instance.__class__.__name__))\n state, unused = utils.filter_props(output_cls, value, True)\n unused.pop('__class__', None)\n if unused and strict:\n raise ValueError('Unused properties during deserialization: {}'.\n format(', '.join(unused)))\n kwargs.update({'trusted': trusted, 'strict': strict})\n newstate = {}\n for key, val in iteritems(state):\n newstate[key] = output_cls._props[key].deserialize(val, **kwargs)\n mutable, immutable = utils.filter_props(output_cls, newstate, False)\n with handlers.listeners_disabled():\n if instance is None:\n instance = output_cls(**mutable)\n else:\n for key, val in iteritems(mutable):\n setattr(instance, key, val)\n for key, val in iteritems(immutable):\n valid_val = output_cls._props[key].validate(instance, val)\n instance._backend[key] = valid_val\n if assert_valid and not instance.validate():\n raise utils.ValidationError('Deserialized instance is not valid')\n return instance\n",
"role": "user"
},
{
"content": "deserialize",
"role": "assistant"
}
] |
def x(cls, input_cls_name, trusted, strict):
if not input_cls_name or input_cls_name == cls.__name__:
return cls
if trusted and input_cls_name in cls._REGISTRY:
return cls._REGISTRY[input_cls_name]
if strict:
raise ValueError(
'Class name {} from deserialization input dictionary does not match input class {}'
.format(input_cls_name, cls.__name__))
return cls
|
deserialize_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, input_cls_name, trusted, strict):\n if not input_cls_name or input_cls_name == cls.__name__:\n return cls\n if trusted and input_cls_name in cls._REGISTRY:\n return cls._REGISTRY[input_cls_name]\n if strict:\n raise ValueError(\n 'Class name {} from deserialization input dictionary does not match input class {}'\n .format(input_cls_name, cls.__name__))\n return cls\n",
"role": "user"
},
{
"content": "deserialize_class",
"role": "assistant"
}
] |
def x(self, status):
status = Instance('', TaskStatus).validate(None, status)
print('{taskname} | {percent:>3}% | {message}'.format(taskname=self.
__class__.__name__, percent=int(round(100 * status.progress)),
message=status.message if status.message else ''))
|
report_status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, status):\n status = Instance('', TaskStatus).validate(None, status)\n print('{taskname} | {percent:>3}% | {message}'.format(taskname=self.\n __class__.__name__, percent=int(round(100 * status.progress)),\n message=status.message if status.message else ''))\n",
"role": "user"
},
{
"content": "report_status",
"role": "assistant"
}
] |
def x(self, include_class=True, save_dynamic=False, **kwargs):
registry = kwargs.pop('registry', None)
if registry is None:
registry = dict()
if not registry:
root = True
registry.update({'__root__': self.uid})
else:
root = False
key = self.uid
if key not in registry:
registry.update({key: None})
registry.update({key: super(HasUID, self).serialize(registry=
registry, include_class=include_class, save_dynamic=
save_dynamic, **kwargs)})
if root:
return registry
return key
|
serialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, include_class=True, save_dynamic=False, **kwargs):\n registry = kwargs.pop('registry', None)\n if registry is None:\n registry = dict()\n if not registry:\n root = True\n registry.update({'__root__': self.uid})\n else:\n root = False\n key = self.uid\n if key not in registry:\n registry.update({key: None})\n registry.update({key: super(HasUID, self).serialize(registry=\n registry, include_class=include_class, save_dynamic=\n save_dynamic, **kwargs)})\n if root:\n return registry\n return key\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):
registry = kwargs.pop('registry', None)
if registry is None:
if not isinstance(value, dict):
raise ValueError('HasUID must deserialize from dictionary')
registry = value.copy()
uid = kwargs.get('root', registry.get('__root__'))
else:
uid = value
if uid in cls._INSTANCES and uid not in registry:
return cls._INSTANCES[uid]
if uid in cls._INSTANCES:
raise ValueError('UID already used: {}'.format(uid))
if uid not in registry:
raise ValueError('Invalid UID: {}'.format(uid))
value = registry[uid]
if not isinstance(value, HasUID):
try:
input_class = value.get('__class__')
except AttributeError:
input_class = None
new_cls = cls._deserialize_class(input_class, trusted, strict)
new_inst = new_cls()
registry.update({uid: new_inst})
super(HasUID, cls).deserialize(value=value, trusted=trusted, strict
=strict, registry=registry, _instance=new_inst, **kwargs)
cls._INSTANCES[uid] = registry[uid]
return registry[uid]
|
deserialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):\n registry = kwargs.pop('registry', None)\n if registry is None:\n if not isinstance(value, dict):\n raise ValueError('HasUID must deserialize from dictionary')\n registry = value.copy()\n uid = kwargs.get('root', registry.get('__root__'))\n else:\n uid = value\n if uid in cls._INSTANCES and uid not in registry:\n return cls._INSTANCES[uid]\n if uid in cls._INSTANCES:\n raise ValueError('UID already used: {}'.format(uid))\n if uid not in registry:\n raise ValueError('Invalid UID: {}'.format(uid))\n value = registry[uid]\n if not isinstance(value, HasUID):\n try:\n input_class = value.get('__class__')\n except AttributeError:\n input_class = None\n new_cls = cls._deserialize_class(input_class, trusted, strict)\n new_inst = new_cls()\n registry.update({uid: new_inst})\n super(HasUID, cls).deserialize(value=value, trusted=trusted, strict\n =strict, registry=registry, _instance=new_inst, **kwargs)\n cls._INSTANCES[uid] = registry[uid]\n return registry[uid]\n",
"role": "user"
},
{
"content": "deserialize",
"role": "assistant"
}
] |
def x(self, value, **kwargs):
kwargs.update({'trusted': kwargs.get('trusted', False)})
if self.deserializer is not None:
return self.deserializer(value, **kwargs)
if value is None:
return None
if isinstance(value, string_types):
return value
if issubclass(self.instance_class, base.HasProperties):
return self.instance_class.deserialize(value, **kwargs)
return self.from_json(value, **kwargs)
|
deserialize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value, **kwargs):\n kwargs.update({'trusted': kwargs.get('trusted', False)})\n if self.deserializer is not None:\n return self.deserializer(value, **kwargs)\n if value is None:\n return None\n if isinstance(value, string_types):\n return value\n if issubclass(self.instance_class, base.HasProperties):\n return self.instance_class.deserialize(value, **kwargs)\n return self.from_json(value, **kwargs)\n",
"role": "user"
},
{
"content": "deserialize",
"role": "assistant"
}
] |
def x(self, instance, value):
if getattr(value, '__valid__', False):
return value
if isinstance(value, png.Image):
pass
else:
value = super(ImagePNG, self).validate(instance, value)
try:
png.Reader(value).validate_signature()
except png.FormatError:
self.error(instance, value, extra='Open file is not PNG.')
value.seek(0)
output = BytesIO()
output.name = self.filename
output.__valid__ = True
if isinstance(value, png.Image):
value.save(output)
else:
fid = value
fid.seek(0)
output.write(fid.read())
fid.close()
output.seek(0)
return output
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, value):\n if getattr(value, '__valid__', False):\n return value\n if isinstance(value, png.Image):\n pass\n else:\n value = super(ImagePNG, self).validate(instance, value)\n try:\n png.Reader(value).validate_signature()\n except png.FormatError:\n self.error(instance, value, extra='Open file is not PNG.')\n value.seek(0)\n output = BytesIO()\n output.name = self.filename\n output.__valid__ = True\n if isinstance(value, png.Image):\n value.save(output)\n else:\n fid = value\n fid.seek(0)\n output.write(fid.read())\n fid.close()\n output.seek(0)\n return output\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(value, **kwargs):
b64rep = base64.b64encode(value.read())
value.seek(0)
jsonrep = '{preamble}{b64}'.format(preamble=PNG_PREAMBLE, b64=b64rep.
decode())
return jsonrep
|
to_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, **kwargs):\n b64rep = base64.b64encode(value.read())\n value.seek(0)\n jsonrep = '{preamble}{b64}'.format(preamble=PNG_PREAMBLE, b64=b64rep.\n decode())\n return jsonrep\n",
"role": "user"
},
{
"content": "to_json",
"role": "assistant"
}
] |
def x(value, **kwargs):
if not value.startswith(PNG_PREAMBLE):
raise ValueError('Not a valid base64-encoded PNG image')
infile = BytesIO()
rep = base64.b64decode(value[len(PNG_PREAMBLE):].encode('utf-8'))
infile.write(rep)
infile.seek(0)
return infile
|
from_json
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, **kwargs):\n if not value.startswith(PNG_PREAMBLE):\n raise ValueError('Not a valid base64-encoded PNG image')\n infile = BytesIO()\n rep = base64.b64decode(value[len(PNG_PREAMBLE):].encode('utf-8'))\n infile.write(rep)\n infile.seek(0)\n return infile\n",
"role": "user"
},
{
"content": "from_json",
"role": "assistant"
}
] |
def x(schema, value, noun='value'):
errors = schema.errors(value)
if errors:
error_details = ''
for error in errors:
if error.pointer:
error_details += ' - %s: %s\n' % (error.pointer, error.message
)
else:
error_details += ' - %s\n' % error.message
raise ValidationError('Invalid %s:\n%s' % (noun, error_details))
|
validate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(schema, value, noun='value'):\n errors = schema.errors(value)\n if errors:\n error_details = ''\n for error in errors:\n if error.pointer:\n error_details += ' - %s: %s\\n' % (error.pointer, error.message\n )\n else:\n error_details += ' - %s\\n' % error.message\n raise ValidationError('Invalid %s:\\n%s' % (noun, error_details))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(kwargs, returns, is_method=False):
def x(func):
@wraps(func)
def x(*passed_args, **passed_kwargs):
max_allowed_passed_args_len = 0
if is_method and type(func) in (types.FunctionType, classmethod):
max_allowed_passed_args_len = 1
if len(passed_args) > max_allowed_passed_args_len:
raise PositionalError(
'You cannot call this with positional arguments.')
validate(kwargs, passed_kwargs, 'keyword arguments')
return_value = func(*passed_args, **passed_kwargs)
validate(returns, return_value, 'return value')
return return_value
inner.__wrapped__ = func
inner.__validated__ = True
return inner
return decorator
|
validate_call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kwargs, returns, is_method=False):\n\n def x(func):\n\n @wraps(func)\n def x(*passed_args, **passed_kwargs):\n max_allowed_passed_args_len = 0\n if is_method and type(func) in (types.FunctionType, classmethod):\n max_allowed_passed_args_len = 1\n if len(passed_args) > max_allowed_passed_args_len:\n raise PositionalError(\n 'You cannot call this with positional arguments.')\n validate(kwargs, passed_kwargs, 'keyword arguments')\n return_value = func(*passed_args, **passed_kwargs)\n validate(returns, return_value, 'return value')\n return return_value\n inner.__wrapped__ = func\n inner.__validated__ = True\n return inner\n return decorator\n",
"role": "user"
},
{
"content": "validate_call",
"role": "assistant"
}
] |
def x(error, pointer_or_prefix):
if error.pointer:
error.pointer = '{}.{}'.format(pointer_or_prefix, error.pointer)
else:
error.pointer = '{}'.format(pointer_or_prefix)
return error
|
update_error_pointer
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(error, pointer_or_prefix):\n if error.pointer:\n error.pointer = '{}.{}'.format(pointer_or_prefix, error.pointer)\n else:\n error.pointer = '{}'.format(pointer_or_prefix)\n return error\n",
"role": "user"
},
{
"content": "update_error_pointer",
"role": "assistant"
}
] |
def x(self, contents=None, optional_keys=None, allow_extra_keys=None,
description=None, replace_optional_keys=False):
optional_keys = set(optional_keys or [])
return Dictionary(contents=type(self.contents)((k, v) for d in (self.
contents, contents) for k, v in six.iteritems(d)) if contents else
self.contents, optional_keys=optional_keys if replace_optional_keys
else self.optional_keys | optional_keys, allow_extra_keys=self.
allow_extra_keys if allow_extra_keys is None else allow_extra_keys,
description=self.description if description is None else description)
|
extend
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, contents=None, optional_keys=None, allow_extra_keys=None,\n description=None, replace_optional_keys=False):\n optional_keys = set(optional_keys or [])\n return Dictionary(contents=type(self.contents)((k, v) for d in (self.\n contents, contents) for k, v in six.iteritems(d)) if contents else\n self.contents, optional_keys=optional_keys if replace_optional_keys\n else self.optional_keys | optional_keys, allow_extra_keys=self.\n allow_extra_keys if allow_extra_keys is None else allow_extra_keys,\n description=self.description if description is None else description)\n",
"role": "user"
},
{
"content": "extend",
"role": "assistant"
}
] |
def x(self, value):
if value not in self.values:
return [Error(self._error_message, code=ERROR_CODE_UNKNOWN)]
return []
|
errors
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if value not in self.values:\n return [Error(self._error_message, code=ERROR_CODE_UNKNOWN)]\n return []\n",
"role": "user"
},
{
"content": "errors",
"role": "assistant"
}
] |
def x(self):
if self.running_config.output_file:
_, extension = op.splitext(self.running_config.output_file)
extension = extension.replace('.', '')
if extension not in self.ALLOWED_DUMP_FORMATS:
raise PCException(
f"Extension of dump file is not available. Allowed extensions are: {', '.join(self.ALLOWED_DUMP_FORMATS)}"
)
with open(self.running_config.output_file, 'w') as f:
if extension == 'csv':
csv_writer = csv.writer(f)
csv_writer.writerow(('# Name', 'CPE', 'CVE', 'Score',
'Summary'))
csv_writer.writerows(self._to_csv())
elif extension == 'json':
json.dump(self.results, f, indent=4, sort_keys=True)
elif extension == 'raw':
f.write(self._to_table())
|
dump
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.running_config.output_file:\n _, extension = op.splitext(self.running_config.output_file)\n extension = extension.replace('.', '')\n if extension not in self.ALLOWED_DUMP_FORMATS:\n raise PCException(\n f\"Extension of dump file is not available. Allowed extensions are: {', '.join(self.ALLOWED_DUMP_FORMATS)}\"\n )\n with open(self.running_config.output_file, 'w') as f:\n if extension == 'csv':\n csv_writer = csv.writer(f)\n csv_writer.writerow(('# Name', 'CPE', 'CVE', 'Score',\n 'Summary'))\n csv_writer.writerows(self._to_csv())\n elif extension == 'json':\n json.dump(self.results, f, indent=4, sort_keys=True)\n elif extension == 'raw':\n f.write(self._to_table())\n",
"role": "user"
},
{
"content": "dump",
"role": "assistant"
}
] |
def x(patton_config: PattonRunningConfig, dependency_or_banner: str=
'dependency') ->List[str]:
def x() ->str:
while sys.stdin in select.select([sys.stdin], [], [], 2)[0]:
line = sys.stdin.readline()
if line:
yield line
else:
return
dependencies = []
if patton_config.nargs_input:
if dependency_or_banner == 'banner':
dependencies.append(['cli_input', patton_config.nargs_input])
else:
dependencies.extend(patton_config.nargs_input)
if not sys.stdin.isatty():
input_read = ''.join(list(_read_stdin()))
if input_read:
if dependency_or_banner == 'banner':
dependencies.append(['stdin', input_read])
else:
dependencies.extend(input_read.splitlines())
if patton_config.data_from_file:
f = op.abspath(op.join(op.abspath(os.getcwd()), patton_config.
data_from_file))
with open(f, 'r') as f:
if dependency_or_banner == 'banner':
dependencies.append(['file', f.read()])
else:
dependencies.extend(f.read().splitlines())
if not dependencies and not patton_config.follow_checking:
raise PCException(
'You need to specify andy dependency from any kind of source: stdin, file of cli'
)
return dependencies
|
get_data_from_sources
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(patton_config: PattonRunningConfig, dependency_or_banner: str=\n 'dependency') ->List[str]:\n\n def x() ->str:\n while sys.stdin in select.select([sys.stdin], [], [], 2)[0]:\n line = sys.stdin.readline()\n if line:\n yield line\n else:\n return\n dependencies = []\n if patton_config.nargs_input:\n if dependency_or_banner == 'banner':\n dependencies.append(['cli_input', patton_config.nargs_input])\n else:\n dependencies.extend(patton_config.nargs_input)\n if not sys.stdin.isatty():\n input_read = ''.join(list(_read_stdin()))\n if input_read:\n if dependency_or_banner == 'banner':\n dependencies.append(['stdin', input_read])\n else:\n dependencies.extend(input_read.splitlines())\n if patton_config.data_from_file:\n f = op.abspath(op.join(op.abspath(os.getcwd()), patton_config.\n data_from_file))\n with open(f, 'r') as f:\n if dependency_or_banner == 'banner':\n dependencies.append(['file', f.read()])\n else:\n dependencies.extend(f.read().splitlines())\n if not dependencies and not patton_config.follow_checking:\n raise PCException(\n 'You need to specify andy dependency from any kind of source: stdin, file of cli'\n )\n return dependencies\n",
"role": "user"
},
{
"content": "get_data_from_sources",
"role": "assistant"
}
] |
def x(banners: List[List[str]], patton_config: PattonRunningConfig) ->Set:
result = set()
for source_type, source_content in banners:
if source_type == 'file':
result.update(nmap_file(source_content))
return result
|
parse_banners
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(banners: List[List[str]], patton_config: PattonRunningConfig) ->Set:\n result = set()\n for source_type, source_content in banners:\n if source_type == 'file':\n result.update(nmap_file(source_content))\n return result\n",
"role": "user"
},
{
"content": "parse_banners",
"role": "assistant"
}
] |
def x(dependencies: List[List[str]], patton_config: PattonRunningConfig
) ->Dict:
result = {}
for source_type, source_content in dependencies:
parser = DEPENDENCIES_PARSERS[patton_config.source_type]
if not source_content:
continue
if source_type == 'cli_input':
fixed_source = '\n'.join(source_content)
else:
fixed_source = source_content
result.update(parser(fixed_source, patton_config))
return result
|
parse_dependencies
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dependencies: List[List[str]], patton_config: PattonRunningConfig\n ) ->Dict:\n result = {}\n for source_type, source_content in dependencies:\n parser = DEPENDENCIES_PARSERS[patton_config.source_type]\n if not source_content:\n continue\n if source_type == 'cli_input':\n fixed_source = '\\n'.join(source_content)\n else:\n fixed_source = source_content\n result.update(parser(fixed_source, patton_config))\n return result\n",
"role": "user"
},
{
"content": "parse_dependencies",
"role": "assistant"
}
] |
def x(app):
docs_path = os.path.abspath(os.path.dirname(__file__))
root_path = os.path.abspath(os.path.join(docs_path, '..'))
apidoc_path = 'sphinx-apidoc'
swg2rst_path = 'swg2rst'
if hasattr(sys, 'real_prefix'):
bin_path = os.path.abspath(os.path.join(sys.prefix, 'bin'))
apidoc_path = os.path.join(bin_path, apidoc_path)
swg2rst_path = os.path.join(bin_path, swg2rst_path)
check_call([apidoc_path, '-o', docs_path, os.path.join(root_path,
'user_tasks'), os.path.join(root_path, 'user_tasks/migrations')])
json_path = os.path.join(docs_path, 'swagger.json')
rst_path = os.path.join(docs_path, 'rest_api.rst')
check_call([swg2rst_path, json_path, '-f', 'rst', '-o', rst_path])
|
on_init
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(app):\n docs_path = os.path.abspath(os.path.dirname(__file__))\n root_path = os.path.abspath(os.path.join(docs_path, '..'))\n apidoc_path = 'sphinx-apidoc'\n swg2rst_path = 'swg2rst'\n if hasattr(sys, 'real_prefix'):\n bin_path = os.path.abspath(os.path.join(sys.prefix, 'bin'))\n apidoc_path = os.path.join(bin_path, apidoc_path)\n swg2rst_path = os.path.join(bin_path, swg2rst_path)\n check_call([apidoc_path, '-o', docs_path, os.path.join(root_path,\n 'user_tasks'), os.path.join(root_path, 'user_tasks/migrations')])\n json_path = os.path.join(docs_path, 'swagger.json')\n rst_path = os.path.join(docs_path, 'rest_api.rst')\n check_call([swg2rst_path, json_path, '-f', 'rst', '-o', rst_path])\n",
"role": "user"
},
{
"content": "on_init",
"role": "assistant"
}
] |
def x(sender=None, body=None, **kwargs):
try:
task_class = import_string(sender)
except ImportError:
return
if issubclass(task_class.__class__, UserTaskMixin):
arguments_dict = task_class.arguments_as_dict(*body['args'], **body
['kwargs'])
user_id = _get_user_id(arguments_dict)
task_id = body['id']
if body.get('callbacks', []):
return _create_chain_entry(user_id, task_id, task_class, body[
'args'], body['kwargs'], body['callbacks'])
if body.get('chord', None):
return _create_chord_entry(task_id, task_class, body, user_id)
parent = _get_or_create_group_parent(body, user_id)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={
'user_id': user_id, 'parent': parent, 'name': name,
'task_class': sender, 'total_steps': total_steps})
if parent:
parent.increment_total_steps(total_steps)
|
create_user_task
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender=None, body=None, **kwargs):\n try:\n task_class = import_string(sender)\n except ImportError:\n return\n if issubclass(task_class.__class__, UserTaskMixin):\n arguments_dict = task_class.arguments_as_dict(*body['args'], **body\n ['kwargs'])\n user_id = _get_user_id(arguments_dict)\n task_id = body['id']\n if body.get('callbacks', []):\n return _create_chain_entry(user_id, task_id, task_class, body[\n 'args'], body['kwargs'], body['callbacks'])\n if body.get('chord', None):\n return _create_chord_entry(task_id, task_class, body, user_id)\n parent = _get_or_create_group_parent(body, user_id)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={\n 'user_id': user_id, 'parent': parent, 'name': name,\n 'task_class': sender, 'total_steps': total_steps})\n if parent:\n parent.increment_total_steps(total_steps)\n",
"role": "user"
},
{
"content": "create_user_task",
"role": "assistant"
}
] |
def x(user_id, task_id, task_class, args, kwargs, callbacks, parent=None):
LOGGER.debug(task_class)
if issubclass(task_class.__class__, UserTaskMixin):
arguments_dict = task_class.arguments_as_dict(*args, **kwargs)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
parent_name = kwargs.get('user_task_name', '')
with transaction.atomic():
if parent is None:
parent = UserTaskStatus.objects.create(is_container=True,
name=parent_name, task_class='celery.chain', task_id=
str(uuid4()), total_steps=0, user_id=user_id)
UserTaskStatus.objects.create(name=name, parent=parent,
task_class=task_class, task_id=task_id, total_steps=
total_steps, user_id=user_id)
parent.increment_total_steps(total_steps)
if parent_name and not parent.name:
parent.set_name(parent_name)
for callback in callbacks:
links = callback.options.get('link', [])
callback_class = import_string(callback.task)
_create_chain_entry(user_id, callback.id, callback_class, callback.
args, callback.kwargs, links, parent=parent)
|
create_chain_entry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(user_id, task_id, task_class, args, kwargs, callbacks, parent=None):\n LOGGER.debug(task_class)\n if issubclass(task_class.__class__, UserTaskMixin):\n arguments_dict = task_class.arguments_as_dict(*args, **kwargs)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n parent_name = kwargs.get('user_task_name', '')\n with transaction.atomic():\n if parent is None:\n parent = UserTaskStatus.objects.create(is_container=True,\n name=parent_name, task_class='celery.chain', task_id=\n str(uuid4()), total_steps=0, user_id=user_id)\n UserTaskStatus.objects.create(name=name, parent=parent,\n task_class=task_class, task_id=task_id, total_steps=\n total_steps, user_id=user_id)\n parent.increment_total_steps(total_steps)\n if parent_name and not parent.name:\n parent.set_name(parent_name)\n for callback in callbacks:\n links = callback.options.get('link', [])\n callback_class = import_string(callback.task)\n _create_chain_entry(user_id, callback.id, callback_class, callback.\n args, callback.kwargs, links, parent=parent)\n",
"role": "user"
},
{
"content": "create_chain_entry",
"role": "assistant"
}
] |
def x(task_id, task_class, message_body, user_id):
args = message_body['args']
kwargs = message_body['kwargs']
arguments_dict = task_class.arguments_as_dict(*args, **kwargs)
name = task_class.generate_name(arguments_dict)
total_steps = task_class.calculate_total_steps(arguments_dict)
parent_name = kwargs.get('user_task_name', '')
chord_data = message_body['chord']
group_id = message_body['taskset']
with transaction.atomic():
group, created = UserTaskStatus.objects.get_or_create(task_id=
group_id, defaults={'is_container': True, 'name': parent_name,
'task_class': 'celery.group', 'total_steps': total_steps,
'user_id': user_id})
if created:
chord = UserTaskStatus.objects.create(is_container=True, name=
parent_name, task_class='celery.chord', task_id=str(uuid4()
), total_steps=total_steps, user_id=user_id)
group.parent = chord
group.save(update_fields={'parent', 'modified'})
else:
chord = None
group.increment_total_steps(total_steps)
if parent_name and not group.name:
group.set_name(parent_name)
UserTaskStatus.objects.create(name=name, parent=group, task_class=
task_class, task_id=task_id, total_steps=total_steps, user_id=
user_id)
if not created:
return
task_id = chord_data['options']['task_id']
body_task = chord_data['task']
body_class = import_string(body_task).__class__
if not issubclass(body_class, UserTaskMixin):
return
args = chord_data['args']
kwargs = chord_data['kwargs']
arguments_dict = body_class.arguments_as_dict(*args, **kwargs)
name = body_class.generate_name(arguments_dict)
total_steps = body_class.calculate_total_steps(arguments_dict)
UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={
'name': name, 'parent': chord, 'task_class': body_task,
'total_steps': total_steps, 'user_id': user_id})
chord.increment_total_steps(total_steps)
|
create_chord_entry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(task_id, task_class, message_body, user_id):\n args = message_body['args']\n kwargs = message_body['kwargs']\n arguments_dict = task_class.arguments_as_dict(*args, **kwargs)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n parent_name = kwargs.get('user_task_name', '')\n chord_data = message_body['chord']\n group_id = message_body['taskset']\n with transaction.atomic():\n group, created = UserTaskStatus.objects.get_or_create(task_id=\n group_id, defaults={'is_container': True, 'name': parent_name,\n 'task_class': 'celery.group', 'total_steps': total_steps,\n 'user_id': user_id})\n if created:\n chord = UserTaskStatus.objects.create(is_container=True, name=\n parent_name, task_class='celery.chord', task_id=str(uuid4()\n ), total_steps=total_steps, user_id=user_id)\n group.parent = chord\n group.save(update_fields={'parent', 'modified'})\n else:\n chord = None\n group.increment_total_steps(total_steps)\n if parent_name and not group.name:\n group.set_name(parent_name)\n UserTaskStatus.objects.create(name=name, parent=group, task_class=\n task_class, task_id=task_id, total_steps=total_steps, user_id=\n user_id)\n if not created:\n return\n task_id = chord_data['options']['task_id']\n body_task = chord_data['task']\n body_class = import_string(body_task).__class__\n if not issubclass(body_class, UserTaskMixin):\n return\n args = chord_data['args']\n kwargs = chord_data['kwargs']\n arguments_dict = body_class.arguments_as_dict(*args, **kwargs)\n name = body_class.generate_name(arguments_dict)\n total_steps = body_class.calculate_total_steps(arguments_dict)\n UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={\n 'name': name, 'parent': chord, 'task_class': body_task,\n 'total_steps': total_steps, 'user_id': user_id})\n chord.increment_total_steps(total_steps)\n",
"role": "user"
},
{
"content": "create_chord_entry",
"role": "assistant"
}
] |
def x(message_body, user_id):
parent_id = message_body.get('taskset', None)
if not parent_id:
return None
parent_class = 'celery.group'
parent_name = message_body['kwargs'].get('user_task_name', '')
parent, _ = UserTaskStatus.objects.get_or_create(task_id=parent_id,
defaults={'is_container': True, 'name': parent_name, 'task_class':
parent_class, 'total_steps': 0, 'user_id': user_id})
if parent_name and not parent.name:
parent.name = parent_name
parent.save(update_fields={'name', 'modified'})
return parent
|
get_or_create_group_parent
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(message_body, user_id):\n parent_id = message_body.get('taskset', None)\n if not parent_id:\n return None\n parent_class = 'celery.group'\n parent_name = message_body['kwargs'].get('user_task_name', '')\n parent, _ = UserTaskStatus.objects.get_or_create(task_id=parent_id,\n defaults={'is_container': True, 'name': parent_name, 'task_class':\n parent_class, 'total_steps': 0, 'user_id': user_id})\n if parent_name and not parent.name:\n parent.name = parent_name\n parent.save(update_fields={'name', 'modified'})\n return parent\n",
"role": "user"
},
{
"content": "get_or_create_group_parent",
"role": "assistant"
}
] |
def x(arguments_dict):
if 'user_id' not in arguments_dict:
raise TypeError(
'Each invocation of a UserTaskMixin subclass must include the user_id'
)
user_id = arguments_dict['user_id']
try:
get_user_model().objects.get(pk=user_id)
except (ValueError, get_user_model().DoesNotExist):
raise TypeError('Invalid user_id: {}'.format(user_id))
return user_id
|
get_user_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arguments_dict):\n if 'user_id' not in arguments_dict:\n raise TypeError(\n 'Each invocation of a UserTaskMixin subclass must include the user_id'\n )\n user_id = arguments_dict['user_id']\n try:\n get_user_model().objects.get(pk=user_id)\n except (ValueError, get_user_model().DoesNotExist):\n raise TypeError('Invalid user_id: {}'.format(user_id))\n return user_id\n",
"role": "user"
},
{
"content": "get_user_id",
"role": "assistant"
}
] |
def x(sender=None, **kwargs):
if isinstance(sender, UserTaskMixin):
exception = kwargs['exception']
if not isinstance(exception, TaskCanceledException):
sender.status.fail(str(exception))
user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.
status)
|
task_failed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender=None, **kwargs):\n if isinstance(sender, UserTaskMixin):\n exception = kwargs['exception']\n if not isinstance(exception, TaskCanceledException):\n sender.status.fail(str(exception))\n user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.\n status)\n",
"role": "user"
},
{
"content": "task_failed",
"role": "assistant"
}
] |
def x(sender=None, **kwargs):
if isinstance(sender, UserTaskMixin):
status = sender.status
if status.state not in (UserTaskStatus.CANCELED, UserTaskStatus.
FAILED, UserTaskStatus.RETRYING):
status.succeed()
user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.
status)
|
task_succeeded
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender=None, **kwargs):\n if isinstance(sender, UserTaskMixin):\n status = sender.status\n if status.state not in (UserTaskStatus.CANCELED, UserTaskStatus.\n FAILED, UserTaskStatus.RETRYING):\n status.succeed()\n user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.\n status)\n",
"role": "user"
},
{
"content": "task_succeeded",
"role": "assistant"
}
] |
def x(arr, colors, values):
hcolors = np.array([rgb2hcl(*i[:3]) for i in colors])
hcolors[:, 0] = np.rad2deg(np.unwrap(np.deg2rad(np.array(hcolors)[:, 0])))
channels = [np.interp(arr, np.array(values), np.array(hcolors)[:, i]) for
i in range(3)]
channels = list(hcl2rgb(*channels))
rest = [np.interp(arr, np.array(values), np.array(colors)[:, i + 3]) for
i in range(np.array(colors).shape[1] - 3)]
channels.extend(rest)
try:
return [np.ma.array(channel, mask=arr.mask) for channel in channels]
except AttributeError:
return channels
|
colorize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, colors, values):\n hcolors = np.array([rgb2hcl(*i[:3]) for i in colors])\n hcolors[:, 0] = np.rad2deg(np.unwrap(np.deg2rad(np.array(hcolors)[:, 0])))\n channels = [np.interp(arr, np.array(values), np.array(hcolors)[:, i]) for\n i in range(3)]\n channels = list(hcl2rgb(*channels))\n rest = [np.interp(arr, np.array(values), np.array(colors)[:, i + 3]) for\n i in range(np.array(colors).shape[1] - 3)]\n channels.extend(rest)\n try:\n return [np.ma.array(channel, mask=arr.mask) for channel in channels]\n except AttributeError:\n return channels\n",
"role": "user"
},
{
"content": "colorize",
"role": "assistant"
}
] |
def x(arr, colors, values):
new_arr = np.digitize(arr.ravel(), np.concatenate((values, [max(np.
nanmax(arr), values.max()) + 1])))
new_arr -= 1
new_arr = new_arr.clip(min=0, max=len(values) - 1)
try:
new_arr = np.ma.array(new_arr.reshape(arr.shape), mask=arr.mask)
except AttributeError:
new_arr = new_arr.reshape(arr.shape)
return new_arr, tuple(colors)
|
palettize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(arr, colors, values):\n new_arr = np.digitize(arr.ravel(), np.concatenate((values, [max(np.\n nanmax(arr), values.max()) + 1])))\n new_arr -= 1\n new_arr = new_arr.clip(min=0, max=len(values) - 1)\n try:\n new_arr = np.ma.array(new_arr.reshape(arr.shape), mask=arr.mask)\n except AttributeError:\n new_arr = new_arr.reshape(arr.shape)\n return new_arr, tuple(colors)\n",
"role": "user"
},
{
"content": "palettize",
"role": "assistant"
}
] |
def x(height, length, colormap):
cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))
cbar = cbar * (colormap.values.max() - colormap.values.min()
) + colormap.values.min()
return colormap.colorize(cbar)
|
colorbar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(height, length, colormap):\n cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))\n cbar = cbar * (colormap.values.max() - colormap.values.min()\n ) + colormap.values.min()\n return colormap.colorize(cbar)\n",
"role": "user"
},
{
"content": "colorbar",
"role": "assistant"
}
] |
def x(height, length, colormap):
cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))
cbar = cbar * (colormap.values.max() + 1 - colormap.values.min()
) + colormap.values.min()
return colormap.palettize(cbar)
|
palettebar
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(height, length, colormap):\n cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))\n cbar = cbar * (colormap.values.max() + 1 - colormap.values.min()\n ) + colormap.values.min()\n return colormap.palettize(cbar)\n",
"role": "user"
},
{
"content": "palettebar",
"role": "assistant"
}
] |
def x(self, min_val, max_val):
if min_val > max_val:
max_val, min_val = min_val, max_val
self.values = (self.values * 1.0 - self.values.min()) / (self.values.
max() - self.values.min()) * (max_val - min_val) + min_val
|
set_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, min_val, max_val):\n if min_val > max_val:\n max_val, min_val = min_val, max_val\n self.values = (self.values * 1.0 - self.values.min()) / (self.values.\n max() - self.values.min()) * (max_val - min_val) + min_val\n",
"role": "user"
},
{
"content": "set_range",
"role": "assistant"
}
] |
def x(self):
self.colors = (self.colors * 1.0 - self.colors.min()) / (self.colors.
max() - self.colors.min()) * 255
return dict(zip(self.values, tuple(map(tuple, self.colors))))
|
to_rio
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.colors = (self.colors * 1.0 - self.colors.min()) / (self.colors.\n max() - self.colors.min()) * 255\n return dict(zip(self.values, tuple(map(tuple, self.colors))))\n",
"role": "user"
},
{
"content": "to_rio",
"role": "assistant"
}
] |
def x(self, request, *args, **kwargs):
status = self.get_object()
status.cancel()
serializer = StatusSerializer(status, context={'request': request})
return Response(serializer.data)
|
cancel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, *args, **kwargs):\n status = self.get_object()\n status.cancel()\n serializer = StatusSerializer(status, context={'request': request})\n return Response(serializer.data)\n",
"role": "user"
},
{
"content": "cancel",
"role": "assistant"
}
] |
def x(request):
generator = schemas.SchemaGenerator(title='django-user-tasks REST API')
return response.Response(generator.get_schema())
|
swagger
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n generator = schemas.SchemaGenerator(title='django-user-tasks REST API')\n return response.Response(generator.get_schema())\n",
"role": "user"
},
{
"content": "swagger",
"role": "assistant"
}
] |
def x(self, data, accepted_media_type=None, renderer_context=None):
if 'SWAGGER_JSON_PATH' in os.environ:
with io.open(os.environ['SWAGGER_JSON_PATH'], 'rb') as f:
return f.read()
else:
return super(ConditionalOpenAPIRenderer, self).render(data,
accepted_media_type, renderer_context)
|
render
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data, accepted_media_type=None, renderer_context=None):\n if 'SWAGGER_JSON_PATH' in os.environ:\n with io.open(os.environ['SWAGGER_JSON_PATH'], 'rb') as f:\n return f.read()\n else:\n return super(ConditionalOpenAPIRenderer, self).render(data,\n accepted_media_type, renderer_context)\n",
"role": "user"
},
{
"content": "render",
"role": "assistant"
}
] |
def x():
rules.add_perm('user_tasks.view_usertaskstatus', STATUS_PERMISSION)
rules.add_perm('user_tasks.cancel_usertaskstatus', STATUS_PERMISSION)
rules.add_perm('user_tasks.change_usertaskstatus', rules.predicates.
is_superuser)
rules.add_perm('user_tasks.delete_usertaskstatus', STATUS_PERMISSION)
rules.add_perm('user_tasks.view_usertaskartifact', ARTIFACT_PERMISSION)
rules.add_perm('user_tasks.change_usertaskartifact', rules.predicates.
is_superuser)
rules.add_perm('user_tasks.delete_usertaskartifact', rules.predicates.
is_superuser)
|
add_rules
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n rules.add_perm('user_tasks.view_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.cancel_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.change_usertaskstatus', rules.predicates.\n is_superuser)\n rules.add_perm('user_tasks.delete_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.view_usertaskartifact', ARTIFACT_PERMISSION)\n rules.add_perm('user_tasks.change_usertaskartifact', rules.predicates.\n is_superuser)\n rules.add_perm('user_tasks.delete_usertaskartifact', rules.predicates.\n is_superuser)\n",
"role": "user"
},
{
"content": "add_rules",
"role": "assistant"
}
] |
def x(self, request, queryset, view):
if request.user.is_superuser:
return queryset
return queryset.filter(status__user=request.user)
|
filter_queryset
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, queryset, view):\n if request.user.is_superuser:\n return queryset\n return queryset.filter(status__user=request.user)\n",
"role": "user"
},
{
"content": "filter_queryset",
"role": "assistant"
}
] |
def x(value, norm=False, cat=1, tot=1, offset=0.5, hex=False):
tokens = value.split()
if hex:
for i in range(len(tokens)):
tokens[i] = _hex_to_rgb(tokens[i])
transparency = float(cat) / float(tot) + offset
if transparency > 1.0:
transparency = 1.0
if norm:
return float(tokens[0]) / 255.0, float(tokens[1]) / 255.0, float(tokens
[2]) / 255.0, transparency
else:
return int(tokens[0]), int(tokens[1]), int(tokens[2]), int(round(
transparency * 255.0))
|
text_to_rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, norm=False, cat=1, tot=1, offset=0.5, hex=False):\n tokens = value.split()\n if hex:\n for i in range(len(tokens)):\n tokens[i] = _hex_to_rgb(tokens[i])\n transparency = float(cat) / float(tot) + offset\n if transparency > 1.0:\n transparency = 1.0\n if norm:\n return float(tokens[0]) / 255.0, float(tokens[1]) / 255.0, float(tokens\n [2]) / 255.0, transparency\n else:\n return int(tokens[0]), int(tokens[1]), int(tokens[2]), int(round(\n transparency * 255.0))\n",
"role": "user"
},
{
"content": "text_to_rgb",
"role": "assistant"
}
] |
def x(colors, position=None, bit=False):
bit_rgb = np.linspace(0, 1, 256)
if position == None:
position = np.linspace(0, 1, len(colors))
elif len(position) != len(colors):
sys.exit('position length must be the same as colors')
elif position[0] != 0 or position[-1] != 1:
sys.exit('position must start with 0 and end with 1')
palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g,
b, a) in enumerate(colors)]
cmap = Colormap(*palette)
return cmap
|
make_cmap
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(colors, position=None, bit=False):\n bit_rgb = np.linspace(0, 1, 256)\n if position == None:\n position = np.linspace(0, 1, len(colors))\n elif len(position) != len(colors):\n sys.exit('position length must be the same as colors')\n elif position[0] != 0 or position[-1] != 1:\n sys.exit('position must start with 0 and end with 1')\n palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g,\n b, a) in enumerate(colors)]\n cmap = Colormap(*palette)\n return cmap\n",
"role": "user"
},
{
"content": "make_cmap",
"role": "assistant"
}
] |
def x(filename, norm=False, transparency=False, hex=False):
lines = [line.rstrip('\n') for line in open(filename)]
_colors = []
_tot = len(lines)
_index = 1
for i in lines:
if transparency:
_colors.append(_text_to_rgb(i, norm=norm, cat=_index, tot=_tot,
hex=hex))
else:
_colors.append(_text_to_rgb(i, norm=norm, hex=hex))
_index = _index + 1
return _make_cmap(_colors)
|
cmap_from_text
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, norm=False, transparency=False, hex=False):\n lines = [line.rstrip('\\n') for line in open(filename)]\n _colors = []\n _tot = len(lines)\n _index = 1\n for i in lines:\n if transparency:\n _colors.append(_text_to_rgb(i, norm=norm, cat=_index, tot=_tot,\n hex=hex))\n else:\n _colors.append(_text_to_rgb(i, norm=norm, hex=hex))\n _index = _index + 1\n return _make_cmap(_colors)\n",
"role": "user"
},
{
"content": "cmap_from_text",
"role": "assistant"
}
] |
def x(filepath):
im = Pimage.open(filepath).convert('RGB')
width, height = im.size
_r = np.array(list(im.getdata(0))) / 255.0
_g = np.array(list(im.getdata(1))) / 255.0
_b = np.array(list(im.getdata(2))) / 255.0
_r = _r.reshape((height, width))
_g = _g.reshape((height, width))
_b = _b.reshape((height, width))
return _r, _g, _b
|
image2array
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filepath):\n im = Pimage.open(filepath).convert('RGB')\n width, height = im.size\n _r = np.array(list(im.getdata(0))) / 255.0\n _g = np.array(list(im.getdata(1))) / 255.0\n _b = np.array(list(im.getdata(2))) / 255.0\n _r = _r.reshape((height, width))\n _g = _g.reshape((height, width))\n _b = _b.reshape((height, width))\n return _r, _g, _b\n",
"role": "user"
},
{
"content": "image2array",
"role": "assistant"
}
] |
def x(fformat):
cases = {'jpg': 'jpeg', 'jpeg': 'jpeg', 'tif': 'tiff', 'tiff': 'tif',
'pgm': 'ppm', 'pbm': 'ppm', 'ppm': 'ppm', 'bmp': 'bmp', 'dib':
'bmp', 'gif': 'gif', 'im': 'im', 'pcx': 'pcx', 'png': 'png', 'xbm':
'xbm', 'xpm': 'xpm', 'jp2': 'jp2'}
fformat = fformat.lower()
try:
fformat = cases[fformat]
except KeyError:
raise UnknownImageFormat("Unknown image format '%s'." % fformat)
return fformat
|
check_image_format
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fformat):\n cases = {'jpg': 'jpeg', 'jpeg': 'jpeg', 'tif': 'tiff', 'tiff': 'tif',\n 'pgm': 'ppm', 'pbm': 'ppm', 'ppm': 'ppm', 'bmp': 'bmp', 'dib':\n 'bmp', 'gif': 'gif', 'im': 'im', 'pcx': 'pcx', 'png': 'png', 'xbm':\n 'xbm', 'xpm': 'xpm', 'jp2': 'jp2'}\n fformat = fformat.lower()\n try:\n fformat = cases[fformat]\n except KeyError:\n raise UnknownImageFormat(\"Unknown image format '%s'.\" % fformat)\n return fformat\n",
"role": "user"
},
{
"content": "check_image_format",
"role": "assistant"
}
] |
def x(item):
return isinstance(item, (list, tuple, set)) and len(item
) == 2 and not isinstance(item[0], (list, tuple, set)
) and not isinstance(item[1], (list, tuple, set))
|
is_pair
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(item):\n return isinstance(item, (list, tuple, set)) and len(item\n ) == 2 and not isinstance(item[0], (list, tuple, set)\n ) and not isinstance(item[1], (list, tuple, set))\n",
"role": "user"
},
{
"content": "is_pair",
"role": "assistant"
}
] |
def x(y__, cb_, cr_):
kb_ = 0.114
kr_ = 0.299
r__ = 2 * cr_ / (1 - kr_) + y__
b__ = 2 * cb_ / (1 - kb_) + y__
g__ = (y__ - kr_ * r__ - kb_ * b__) / (1 - kr_ - kb_)
return r__, g__, b__
|
ycbcr2rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(y__, cb_, cr_):\n kb_ = 0.114\n kr_ = 0.299\n r__ = 2 * cr_ / (1 - kr_) + y__\n b__ = 2 * cb_ / (1 - kb_) + y__\n g__ = (y__ - kr_ * r__ - kb_ * b__) / (1 - kr_ - kb_)\n return r__, g__, b__\n",
"role": "user"
},
{
"content": "ycbcr2rgb",
"role": "assistant"
}
] |
def x(self, chn, color_min, color_max):
if isinstance(chn, np.ma.core.MaskedArray):
chn_data = chn.data
chn_mask = chn.mask
else:
chn_data = np.array(chn)
chn_mask = False
scaled = (chn_data - color_min) * 1.0 / (color_max - color_min)
self.channels.append(np.ma.array(scaled, mask=chn_mask))
|
add_channel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, chn, color_min, color_max):\n if isinstance(chn, np.ma.core.MaskedArray):\n chn_data = chn.data\n chn_mask = chn.mask\n else:\n chn_data = np.array(chn)\n chn_mask = False\n scaled = (chn_data - color_min) * 1.0 / (color_max - color_min)\n self.channels.append(np.ma.array(scaled, mask=chn_mask))\n",
"role": "user"
},
{
"content": "add_channel",
"role": "assistant"
}
] |
def x(self, dtype=np.uint8):
channels = []
if self.mode == 'P':
self.convert('RGB')
if self.mode == 'PA':
self.convert('RGBA')
for chn in self.channels:
if isinstance(chn, np.ma.core.MaskedArray):
final_data = chn.data.clip(0, 1) * np.iinfo(dtype).max
else:
final_data = chn.clip(0, 1) * np.iinfo(dtype).max
if np.issubdtype(dtype, np.integer):
final_data = np.round(final_data)
channels.append(np.ma.array(final_data, dtype, mask=np.ma.
getmaskarray(chn)))
if self.fill_value is not None:
fill_value = [int(col * np.iinfo(dtype).max) for col in self.fill_value
]
else:
fill_value = None
return channels, fill_value
|
finalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dtype=np.uint8):\n channels = []\n if self.mode == 'P':\n self.convert('RGB')\n if self.mode == 'PA':\n self.convert('RGBA')\n for chn in self.channels:\n if isinstance(chn, np.ma.core.MaskedArray):\n final_data = chn.data.clip(0, 1) * np.iinfo(dtype).max\n else:\n final_data = chn.clip(0, 1) * np.iinfo(dtype).max\n if np.issubdtype(dtype, np.integer):\n final_data = np.round(final_data)\n channels.append(np.ma.array(final_data, dtype, mask=np.ma.\n getmaskarray(chn)))\n if self.fill_value is not None:\n fill_value = [int(col * np.iinfo(dtype).max) for col in self.fill_value\n ]\n else:\n fill_value = None\n return channels, fill_value\n",
"role": "user"
},
{
"content": "finalize",
"role": "assistant"
}
] |
def x(self):
if self.channels == [] and not self.shape == (0, 0
) or not self.channels == [] and self.shape == (0, 0):
raise RuntimeError('Channels-shape mismatch.')
return self.channels == [] and self.shape == (0, 0)
|
is_empty
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.channels == [] and not self.shape == (0, 0\n ) or not self.channels == [] and self.shape == (0, 0):\n raise RuntimeError('Channels-shape mismatch.')\n return self.channels == [] and self.shape == (0, 0)\n",
"role": "user"
},
{
"content": "is_empty",
"role": "assistant"
}
] |
def x(self):
channels, fill_value = self._finalize()
if self.is_empty():
return Pil.new(self.mode, (0, 0))
if self.mode == 'L':
if fill_value is not None:
img = Pil.fromarray(channels[0].filled(fill_value))
else:
img = Pil.fromarray(channels[0].filled(0))
alpha = np.zeros(channels[0].shape, np.uint8)
mask = np.ma.getmaskarray(channels[0])
alpha = np.where(mask, alpha, 255)
pil_alpha = Pil.fromarray(alpha)
img = Pil.merge('LA', (img, pil_alpha))
elif self.mode == 'LA':
if fill_value is not None:
img = Pil.fromarray(channels[0].filled(fill_value))
pil_alpha = Pil.fromarray(channels[1])
else:
img = Pil.fromarray(channels[0].filled(0))
alpha = np.zeros(channels[0].shape, np.uint8)
mask = np.ma.getmaskarray(channels[0])
alpha = np.where(mask, alpha, channels[1])
pil_alpha = Pil.fromarray(alpha)
img = Pil.merge('LA', (img, pil_alpha))
elif self.mode == 'RGB':
mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]
) & np.ma.getmaskarray(channels[2])
if fill_value is not None:
pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))
pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))
pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))
img = Pil.merge('RGB', (pil_r, pil_g, pil_b))
else:
pil_r = Pil.fromarray(channels[0].filled(0))
pil_g = Pil.fromarray(channels[1].filled(0))
pil_b = Pil.fromarray(channels[2].filled(0))
alpha = np.zeros(channels[0].shape, np.uint8)
alpha = np.where(mask, alpha, 255)
pil_a = Pil.fromarray(alpha)
img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))
elif self.mode == 'RGBA':
mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]
) & np.ma.getmaskarray(channels[2]) & np.ma.getmaskarray(channels
[3])
if fill_value is not None:
pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))
pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))
pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))
pil_a = Pil.fromarray(channels[3].filled(fill_value[3]))
img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))
else:
pil_r = Pil.fromarray(channels[0].filled(0))
pil_g = Pil.fromarray(channels[1].filled(0))
pil_b = Pil.fromarray(channels[2].filled(0))
alpha = np.where(mask, 0, channels[3])
pil_a = Pil.fromarray(alpha)
img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))
else:
raise TypeError('Does not know how to use mode %s.' % self.mode)
return img
|
pil_image
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n channels, fill_value = self._finalize()\n if self.is_empty():\n return Pil.new(self.mode, (0, 0))\n if self.mode == 'L':\n if fill_value is not None:\n img = Pil.fromarray(channels[0].filled(fill_value))\n else:\n img = Pil.fromarray(channels[0].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n mask = np.ma.getmaskarray(channels[0])\n alpha = np.where(mask, alpha, 255)\n pil_alpha = Pil.fromarray(alpha)\n img = Pil.merge('LA', (img, pil_alpha))\n elif self.mode == 'LA':\n if fill_value is not None:\n img = Pil.fromarray(channels[0].filled(fill_value))\n pil_alpha = Pil.fromarray(channels[1])\n else:\n img = Pil.fromarray(channels[0].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n mask = np.ma.getmaskarray(channels[0])\n alpha = np.where(mask, alpha, channels[1])\n pil_alpha = Pil.fromarray(alpha)\n img = Pil.merge('LA', (img, pil_alpha))\n elif self.mode == 'RGB':\n mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]\n ) & np.ma.getmaskarray(channels[2])\n if fill_value is not None:\n pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))\n pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))\n pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))\n img = Pil.merge('RGB', (pil_r, pil_g, pil_b))\n else:\n pil_r = Pil.fromarray(channels[0].filled(0))\n pil_g = Pil.fromarray(channels[1].filled(0))\n pil_b = Pil.fromarray(channels[2].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n alpha = np.where(mask, alpha, 255)\n pil_a = Pil.fromarray(alpha)\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n elif self.mode == 'RGBA':\n mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]\n ) & np.ma.getmaskarray(channels[2]) & np.ma.getmaskarray(channels\n [3])\n if fill_value is not None:\n pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))\n pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))\n pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))\n pil_a = Pil.fromarray(channels[3].filled(fill_value[3]))\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n else:\n pil_r = Pil.fromarray(channels[0].filled(0))\n pil_g = Pil.fromarray(channels[1].filled(0))\n pil_b = Pil.fromarray(channels[2].filled(0))\n alpha = np.where(mask, 0, channels[3])\n pil_a = Pil.fromarray(alpha)\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n else:\n raise TypeError('Does not know how to use mode %s.' % self.mode)\n return img\n",
"role": "user"
},
{
"content": "pil_image",
"role": "assistant"
}
] |
def x(self, filename, compression=6, fformat=None, thumbnail_name=None,
thumbnail_size=None):
self.pil_save(filename, compression, fformat, thumbnail_name,
thumbnail_size)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, compression=6, fformat=None, thumbnail_name=None,\n thumbnail_size=None):\n self.pil_save(filename, compression, fformat, thumbnail_name,\n thumbnail_size)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, filename, compression=6, fformat=None, thumbnail_name=None,
thumbnail_size=None):
del compression
if self.is_empty():
raise IOError('Cannot save an empty image')
if isinstance(filename, (str, six.text_type)):
ensure_dir(filename)
fformat = fformat or os.path.splitext(filename)[1][1:4]
fformat = check_image_format(fformat)
params = {}
if fformat == 'png':
params['pnginfo'] = self._pngmeta()
if fformat == 'jpeg' and not self.fill_value:
self.fill_value = [0, 0, 0, 0]
logger.debug('No fill_value provided, setting it to 0.')
img = self.pil_image()
img.save(filename, fformat, **params)
if thumbnail_name is not None and thumbnail_size is not None:
img.thumbnail(thumbnail_size, Pil.ANTIALIAS)
img.save(thumbnail_name, fformat, **params)
|
pil_save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, compression=6, fformat=None, thumbnail_name=None,\n thumbnail_size=None):\n del compression\n if self.is_empty():\n raise IOError('Cannot save an empty image')\n if isinstance(filename, (str, six.text_type)):\n ensure_dir(filename)\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n fformat = check_image_format(fformat)\n params = {}\n if fformat == 'png':\n params['pnginfo'] = self._pngmeta()\n if fformat == 'jpeg' and not self.fill_value:\n self.fill_value = [0, 0, 0, 0]\n logger.debug('No fill_value provided, setting it to 0.')\n img = self.pil_image()\n img.save(filename, fformat, **params)\n if thumbnail_name is not None and thumbnail_size is not None:\n img.thumbnail(thumbnail_size, Pil.ANTIALIAS)\n img.save(thumbnail_name, fformat, **params)\n",
"role": "user"
},
{
"content": "pil_save",
"role": "assistant"
}
] |
def x(self):
reserved = 'interlace', 'gamma', 'dpi', 'transparency', 'aspect'
try:
tags = self.tags
except AttributeError:
tags = {}
from PIL import PngImagePlugin
meta = PngImagePlugin.PngInfo()
for k__, v__ in tags.items():
if k__ not in reserved:
meta.add_text(k__, v__, 0)
return meta
|
pngmeta
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n reserved = 'interlace', 'gamma', 'dpi', 'transparency', 'aspect'\n try:\n tags = self.tags\n except AttributeError:\n tags = {}\n from PIL import PngImagePlugin\n meta = PngImagePlugin.PngInfo()\n for k__, v__ in tags.items():\n if k__ not in reserved:\n meta.add_text(k__, v__, 0)\n return meta\n",
"role": "user"
},
{
"content": "pngmeta",
"role": "assistant"
}
] |
def x(self, alpha):
alpha = np.ma.array(alpha)
if not (alpha.shape[0] == 0 and self.shape[0] == 0
) and alpha.shape != self.shape:
raise ValueError('Alpha channel shape should match image shape')
if not self.mode.endswith('A'):
self.convert(self.mode + 'A')
if not self.is_empty():
self.channels[-1] = alpha
|
putalpha
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, alpha):\n alpha = np.ma.array(alpha)\n if not (alpha.shape[0] == 0 and self.shape[0] == 0\n ) and alpha.shape != self.shape:\n raise ValueError('Alpha channel shape should match image shape')\n if not self.mode.endswith('A'):\n self.convert(self.mode + 'A')\n if not self.is_empty():\n self.channels[-1] = alpha\n",
"role": "user"
},
{
"content": "putalpha",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('RGB', 'RGBA'))
self.channels[0], self.channels[1], self.channels[2] = rgb2ycbcr(self.
channels[0], self.channels[1], self.channels[2])
if self.fill_value is not None:
self.fill_value[0:3] = rgb2ycbcr(self.fill_value[0], self.
fill_value[1], self.fill_value[2])
self.mode = mode
|
rgb2ycbcr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('RGB', 'RGBA'))\n self.channels[0], self.channels[1], self.channels[2] = rgb2ycbcr(self.\n channels[0], self.channels[1], self.channels[2])\n if self.fill_value is not None:\n self.fill_value[0:3] = rgb2ycbcr(self.fill_value[0], self.\n fill_value[1], self.fill_value[2])\n self.mode = mode\n",
"role": "user"
},
{
"content": "rgb2ycbcr",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('YCbCr', 'YCbCrA'))
self.channels[0], self.channels[1], self.channels[2] = ycbcr2rgb(self.
channels[0], self.channels[1], self.channels[2])
if self.fill_value is not None:
self.fill_value[0:3] = ycbcr2rgb(self.fill_value[0], self.
fill_value[1], self.fill_value[2])
self.mode = mode
|
ycbcr2rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('YCbCr', 'YCbCrA'))\n self.channels[0], self.channels[1], self.channels[2] = ycbcr2rgb(self.\n channels[0], self.channels[1], self.channels[2])\n if self.fill_value is not None:\n self.fill_value[0:3] = ycbcr2rgb(self.fill_value[0], self.\n fill_value[1], self.fill_value[2])\n self.mode = mode\n",
"role": "user"
},
{
"content": "ycbcr2rgb",
"role": "assistant"
}
] |
def x(self, mode):
if self.mode.endswith('A'):
chans = self.channels[:-1]
alpha = self.channels[-1]
self._secondary_mode = self.mode[:-1]
else:
chans = self.channels
alpha = None
self._secondary_mode = self.mode
palette = []
selfmask = chans[0].mask
for chn in chans[1:]:
selfmask = np.ma.mask_or(selfmask, chn.mask)
new_chn = np.ma.zeros(self.shape, dtype=int)
color_nb = 0
for i in range(self.height):
for j in range(self.width):
current_col = tuple([chn[i, j] for chn in chans])
try:
next(idx for idx in range(len(palette)) if palette[idx] ==
current_col)
except StopIteration:
idx = color_nb
palette.append(current_col)
color_nb = color_nb + 1
new_chn[i, j] = idx
if self.fill_value is not None:
if self.mode.endswith('A'):
current_col = tuple(self.fill_value[:-1])
fill_alpha = [self.fill_value[-1]]
else:
current_col = tuple(self.fill_value)
fill_alpha = []
try:
next(idx for idx in range(len(palette)) if palette[idx] ==
current_col)
except StopIteration:
idx = color_nb
palette.append(current_col)
color_nb = color_nb + 1
self.fill_value = [idx] + fill_alpha
new_chn.mask = selfmask
self.palette = palette
if alpha is None:
self.channels = [new_chn]
else:
self.channels = [new_chn, alpha]
self.mode = mode
|
to_p
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n if self.mode.endswith('A'):\n chans = self.channels[:-1]\n alpha = self.channels[-1]\n self._secondary_mode = self.mode[:-1]\n else:\n chans = self.channels\n alpha = None\n self._secondary_mode = self.mode\n palette = []\n selfmask = chans[0].mask\n for chn in chans[1:]:\n selfmask = np.ma.mask_or(selfmask, chn.mask)\n new_chn = np.ma.zeros(self.shape, dtype=int)\n color_nb = 0\n for i in range(self.height):\n for j in range(self.width):\n current_col = tuple([chn[i, j] for chn in chans])\n try:\n next(idx for idx in range(len(palette)) if palette[idx] ==\n current_col)\n except StopIteration:\n idx = color_nb\n palette.append(current_col)\n color_nb = color_nb + 1\n new_chn[i, j] = idx\n if self.fill_value is not None:\n if self.mode.endswith('A'):\n current_col = tuple(self.fill_value[:-1])\n fill_alpha = [self.fill_value[-1]]\n else:\n current_col = tuple(self.fill_value)\n fill_alpha = []\n try:\n next(idx for idx in range(len(palette)) if palette[idx] ==\n current_col)\n except StopIteration:\n idx = color_nb\n palette.append(current_col)\n color_nb = color_nb + 1\n self.fill_value = [idx] + fill_alpha\n new_chn.mask = selfmask\n self.palette = palette\n if alpha is None:\n self.channels = [new_chn]\n else:\n self.channels = [new_chn, alpha]\n self.mode = mode\n",
"role": "user"
},
{
"content": "to_p",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('P', 'PA'))
if self.mode.endswith('A'):
alpha = self.channels[-1]
else:
alpha = None
chans = []
cdfs = []
color_chan = self.channels[0]
for i in range(len(self.palette[0])):
cdfs.append(np.zeros(len(self.palette)))
for j in range(len(self.palette)):
cdfs[i][j] = self.palette[j][i]
new_chn = np.ma.array(np.interp(color_chan, np.arange(len(self.
palette)), cdfs[i]), mask=color_chan.mask)
chans.append(new_chn)
if self.fill_value is not None:
if alpha is not None:
fill_alpha = self.fill_value[-1]
self.fill_value = list(self.palette[int(self.fill_value[0])])
self.fill_value += [fill_alpha]
else:
self.fill_value = list(self.palette[int(self.fill_value[0])])
self.mode = self._secondary_mode
self.channels = chans
if alpha is not None:
self.channels.append(alpha)
self.mode = self.mode + 'A'
self.convert(mode)
|
from_p
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('P', 'PA'))\n if self.mode.endswith('A'):\n alpha = self.channels[-1]\n else:\n alpha = None\n chans = []\n cdfs = []\n color_chan = self.channels[0]\n for i in range(len(self.palette[0])):\n cdfs.append(np.zeros(len(self.palette)))\n for j in range(len(self.palette)):\n cdfs[i][j] = self.palette[j][i]\n new_chn = np.ma.array(np.interp(color_chan, np.arange(len(self.\n palette)), cdfs[i]), mask=color_chan.mask)\n chans.append(new_chn)\n if self.fill_value is not None:\n if alpha is not None:\n fill_alpha = self.fill_value[-1]\n self.fill_value = list(self.palette[int(self.fill_value[0])])\n self.fill_value += [fill_alpha]\n else:\n self.fill_value = list(self.palette[int(self.fill_value[0])])\n self.mode = self._secondary_mode\n self.channels = chans\n if alpha is not None:\n self.channels.append(alpha)\n self.mode = self.mode + 'A'\n self.convert(mode)\n",
"role": "user"
},
{
"content": "from_p",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('L', 'LA'))
self.channels.append(self.channels[0].copy())
self.channels.append(self.channels[0].copy())
if self.fill_value is not None:
self.fill_value = self.fill_value[:1] * 3 + self.fill_value[1:]
if self.mode == 'LA':
self.channels[1], self.channels[3] = self.channels[3], self.channels[1]
self.mode = mode
|
l2rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('L', 'LA'))\n self.channels.append(self.channels[0].copy())\n self.channels.append(self.channels[0].copy())\n if self.fill_value is not None:\n self.fill_value = self.fill_value[:1] * 3 + self.fill_value[1:]\n if self.mode == 'LA':\n self.channels[1], self.channels[3] = self.channels[3], self.channels[1]\n self.mode = mode\n",
"role": "user"
},
{
"content": "l2rgb",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('RGB', 'RGBA'))
kb_ = 0.114
kr_ = 0.299
r__ = self.channels[0]
g__ = self.channels[1]
b__ = self.channels[2]
y__ = kr_ * r__ + (1 - kr_ - kb_) * g__ + kb_ * b__
if self.fill_value is not None:
self.fill_value = [rgb2ycbcr(self.fill_value[0], self.fill_value[1],
self.fill_value[2])[0]] + self.fill_value[3:]
self.channels = [y__] + self.channels[3:]
self.mode = mode
|
rgb2l
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('RGB', 'RGBA'))\n kb_ = 0.114\n kr_ = 0.299\n r__ = self.channels[0]\n g__ = self.channels[1]\n b__ = self.channels[2]\n y__ = kr_ * r__ + (1 - kr_ - kb_) * g__ + kb_ * b__\n if self.fill_value is not None:\n self.fill_value = [rgb2ycbcr(self.fill_value[0], self.fill_value[1],\n self.fill_value[2])[0]] + self.fill_value[3:]\n self.channels = [y__] + self.channels[3:]\n self.mode = mode\n",
"role": "user"
},
{
"content": "rgb2l",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('YCbCr', 'YCbCrA'))
self.channels = [self.channels[0]] + self.channels[3:]
if self.fill_value is not None:
self.fill_value = [self.fill_value[0]] + self.fill_value[3:]
self.mode = mode
|
ycbcr2l
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('YCbCr', 'YCbCrA'))\n self.channels = [self.channels[0]] + self.channels[3:]\n if self.fill_value is not None:\n self.fill_value = [self.fill_value[0]] + self.fill_value[3:]\n self.mode = mode\n",
"role": "user"
},
{
"content": "ycbcr2l",
"role": "assistant"
}
] |
def x(self, mode):
self._check_modes(('L', 'LA'))
luma = self.channels[0]
zeros = np.ma.zeros(luma.shape)
zeros.mask = luma.mask
self.channels = [luma, zeros, zeros] + self.channels[1:]
if self.fill_value is not None:
self.fill_value = [self.fill_value[0], 0, 0] + self.fill_value[1:]
self.mode = mode
|
l2ycbcr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n self._check_modes(('L', 'LA'))\n luma = self.channels[0]\n zeros = np.ma.zeros(luma.shape)\n zeros.mask = luma.mask\n self.channels = [luma, zeros, zeros] + self.channels[1:]\n if self.fill_value is not None:\n self.fill_value = [self.fill_value[0], 0, 0] + self.fill_value[1:]\n self.mode = mode\n",
"role": "user"
},
{
"content": "l2ycbcr",
"role": "assistant"
}
] |
def x(self, mode):
if mode == self.mode:
return
if mode not in ['L', 'LA', 'RGB', 'RGBA', 'YCbCr', 'YCbCrA', 'P', 'PA']:
raise ValueError('Mode %s not recognized.' % mode)
if self.is_empty():
self.mode = mode
return
if mode == self.mode + 'A':
self.channels.append(np.ma.ones(self.channels[0].shape))
if self.fill_value is not None:
self.fill_value += [1]
self.mode = mode
elif mode + 'A' == self.mode:
self.channels = self.channels[:-1]
if self.fill_value is not None:
self.fill_value = self.fill_value[:-1]
self.mode = mode
elif mode.endswith('A') and not self.mode.endswith('A'):
self.convert(self.mode + 'A')
self.convert(mode)
elif self.mode.endswith('A') and not mode.endswith('A'):
self.convert(self.mode[:-1])
self.convert(mode)
else:
cases = {'RGB': {'YCbCr': self._rgb2ycbcr, 'L': self._rgb2l, 'P':
self._to_p}, 'RGBA': {'YCbCrA': self._rgb2ycbcr, 'LA': self.
_rgb2l, 'PA': self._to_p}, 'YCbCr': {'RGB': self._ycbcr2rgb,
'L': self._ycbcr2l, 'P': self._to_p}, 'YCbCrA': {'RGBA': self.
_ycbcr2rgb, 'LA': self._ycbcr2l, 'PA': self._to_p}, 'L': {'RGB':
self._l2rgb, 'YCbCr': self._l2ycbcr, 'P': self._to_p}, 'LA': {
'RGBA': self._l2rgb, 'YCbCrA': self._l2ycbcr, 'PA': self._to_p},
'P': {'RGB': self._from_p, 'YCbCr': self._from_p, 'L': self.
_from_p}, 'PA': {'RGBA': self._from_p, 'YCbCrA': self._from_p,
'LA': self._from_p}}
try:
cases[self.mode][mode](mode)
except KeyError:
raise ValueError('Conversion from %s to %s not implemented !' %
(self.mode, mode))
|
convert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mode):\n if mode == self.mode:\n return\n if mode not in ['L', 'LA', 'RGB', 'RGBA', 'YCbCr', 'YCbCrA', 'P', 'PA']:\n raise ValueError('Mode %s not recognized.' % mode)\n if self.is_empty():\n self.mode = mode\n return\n if mode == self.mode + 'A':\n self.channels.append(np.ma.ones(self.channels[0].shape))\n if self.fill_value is not None:\n self.fill_value += [1]\n self.mode = mode\n elif mode + 'A' == self.mode:\n self.channels = self.channels[:-1]\n if self.fill_value is not None:\n self.fill_value = self.fill_value[:-1]\n self.mode = mode\n elif mode.endswith('A') and not self.mode.endswith('A'):\n self.convert(self.mode + 'A')\n self.convert(mode)\n elif self.mode.endswith('A') and not mode.endswith('A'):\n self.convert(self.mode[:-1])\n self.convert(mode)\n else:\n cases = {'RGB': {'YCbCr': self._rgb2ycbcr, 'L': self._rgb2l, 'P':\n self._to_p}, 'RGBA': {'YCbCrA': self._rgb2ycbcr, 'LA': self.\n _rgb2l, 'PA': self._to_p}, 'YCbCr': {'RGB': self._ycbcr2rgb,\n 'L': self._ycbcr2l, 'P': self._to_p}, 'YCbCrA': {'RGBA': self.\n _ycbcr2rgb, 'LA': self._ycbcr2l, 'PA': self._to_p}, 'L': {'RGB':\n self._l2rgb, 'YCbCr': self._l2ycbcr, 'P': self._to_p}, 'LA': {\n 'RGBA': self._l2rgb, 'YCbCrA': self._l2ycbcr, 'PA': self._to_p},\n 'P': {'RGB': self._from_p, 'YCbCr': self._from_p, 'L': self.\n _from_p}, 'PA': {'RGBA': self._from_p, 'YCbCrA': self._from_p,\n 'LA': self._from_p}}\n try:\n cases[self.mode][mode](mode)\n except KeyError:\n raise ValueError('Conversion from %s to %s not implemented !' %\n (self.mode, mode))\n",
"role": "user"
},
{
"content": "convert",
"role": "assistant"
}
] |
def x(self, channels=True):
if not isinstance(channels, (tuple, list)):
channels = [channels] * len(self.channels)
for i in range(len(self.channels)):
if channels[i]:
self.channels[i] = np.ma.clip(self.channels[i], 0.0, 1.0)
|
clip
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, channels=True):\n if not isinstance(channels, (tuple, list)):\n channels = [channels] * len(self.channels)\n for i in range(len(self.channels)):\n if channels[i]:\n self.channels[i] = np.ma.clip(self.channels[i], 0.0, 1.0)\n",
"role": "user"
},
{
"content": "clip",
"role": "assistant"
}
] |
def x(self, shape):
if self.is_empty():
raise ValueError('Cannot resize an empty image')
factor = [1, 1]
zoom = [True, True]
zoom[0] = shape[0] >= self.height
zoom[1] = shape[1] >= self.width
if zoom[0]:
factor[0] = shape[0] * 1.0 / self.height
else:
factor[0] = self.height * 1.0 / shape[0]
if zoom[1]:
factor[1] = shape[1] * 1.0 / self.width
else:
factor[1] = self.width * 1.0 / shape[1]
if int(factor[0]) != factor[0] or int(factor[1]) != factor[1]:
raise ValueError('Resize not of integer factor!')
factor[0] = int(factor[0])
factor[1] = int(factor[1])
i = 0
for chn in self.channels:
if zoom[0]:
chn = chn.repeat([factor[0]] * chn.shape[0], axis=0)
else:
chn = chn[[(idx * factor[0]) for idx in range(int(self.height /
factor[0]))], :]
if zoom[1]:
self.channels[i] = chn.repeat([factor[1]] * chn.shape[1], axis=1)
else:
self.channels[i] = chn[:, [(idx * factor[1]) for idx in range(
int(self.width / factor[1]))]]
i = i + 1
self.height = self.channels[0].shape[0]
self.width = self.channels[0].shape[1]
self.shape = self.channels[0].shape
|
resize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, shape):\n if self.is_empty():\n raise ValueError('Cannot resize an empty image')\n factor = [1, 1]\n zoom = [True, True]\n zoom[0] = shape[0] >= self.height\n zoom[1] = shape[1] >= self.width\n if zoom[0]:\n factor[0] = shape[0] * 1.0 / self.height\n else:\n factor[0] = self.height * 1.0 / shape[0]\n if zoom[1]:\n factor[1] = shape[1] * 1.0 / self.width\n else:\n factor[1] = self.width * 1.0 / shape[1]\n if int(factor[0]) != factor[0] or int(factor[1]) != factor[1]:\n raise ValueError('Resize not of integer factor!')\n factor[0] = int(factor[0])\n factor[1] = int(factor[1])\n i = 0\n for chn in self.channels:\n if zoom[0]:\n chn = chn.repeat([factor[0]] * chn.shape[0], axis=0)\n else:\n chn = chn[[(idx * factor[0]) for idx in range(int(self.height /\n factor[0]))], :]\n if zoom[1]:\n self.channels[i] = chn.repeat([factor[1]] * chn.shape[1], axis=1)\n else:\n self.channels[i] = chn[:, [(idx * factor[1]) for idx in range(\n int(self.width / factor[1]))]]\n i = i + 1\n self.height = self.channels[0].shape[0]\n self.width = self.channels[0].shape[1]\n self.shape = self.channels[0].shape\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, luminance):
if self.is_empty():
return
if luminance.shape != self.channels[0].shape:
if luminance.shape[0] * 1.0 / luminance.shape[1] == self.channels[0
].shape[0] * 1.0 / self.channels[0].shape[1]:
if luminance.shape[0] > self.channels[0].shape[0]:
self.resize(luminance.shape)
else:
raise NameError('Luminance smaller than the image !')
else:
raise NameError('Not the good shape !')
mode = self.mode
if mode.endswith('A'):
self.convert('YCbCrA')
self.channels[0] = luminance
self.convert(mode)
else:
self.convert('YCbCr')
self.channels[0] = luminance
self.convert(mode)
|
replace_luminance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, luminance):\n if self.is_empty():\n return\n if luminance.shape != self.channels[0].shape:\n if luminance.shape[0] * 1.0 / luminance.shape[1] == self.channels[0\n ].shape[0] * 1.0 / self.channels[0].shape[1]:\n if luminance.shape[0] > self.channels[0].shape[0]:\n self.resize(luminance.shape)\n else:\n raise NameError('Luminance smaller than the image !')\n else:\n raise NameError('Not the good shape !')\n mode = self.mode\n if mode.endswith('A'):\n self.convert('YCbCrA')\n self.channels[0] = luminance\n self.convert(mode)\n else:\n self.convert('YCbCr')\n self.channels[0] = luminance\n self.convert(mode)\n",
"role": "user"
},
{
"content": "replace_luminance",
"role": "assistant"
}
] |
def x(self, inverse=False, gamma=1.0, stretch='no', stretch_parameters=None,
**kwargs):
self.invert(inverse)
if stretch_parameters is None:
stretch_parameters = {}
stretch_parameters.update(kwargs)
self.stretch(stretch, **stretch_parameters)
self.gamma(gamma)
|
enhance
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, inverse=False, gamma=1.0, stretch='no', stretch_parameters=None,\n **kwargs):\n self.invert(inverse)\n if stretch_parameters is None:\n stretch_parameters = {}\n stretch_parameters.update(kwargs)\n self.stretch(stretch, **stretch_parameters)\n self.gamma(gamma)\n",
"role": "user"
},
{
"content": "enhance",
"role": "assistant"
}
] |
def x(self, gamma=1.0):
if isinstance(gamma, (list, tuple, set)) and len(gamma) != len(self.
channels):
raise ValueError('Number of channels and gamma components differ.')
if isinstance(gamma, (tuple, list)):
gamma_list = list(gamma)
else:
gamma_list = [gamma] * len(self.channels)
for i in range(len(self.channels)):
gamma = float(gamma_list[i])
if gamma < 0:
raise ValueError('Gamma correction must be a positive number.')
logger.debug('Applying gamma %f', gamma)
if gamma == 1.0:
continue
if isinstance(self.channels[i], np.ma.core.MaskedArray):
if ne:
self.channels[i] = np.ma.array(ne.evaluate(
'data ** (1.0 / gamma)', local_dict={'data': self.
channels[i].data, 'gamma': gamma}), mask=self.channels[
i].mask, copy=False)
else:
self.channels[i] = np.ma.array(self.channels[i].data ** (
1.0 / gamma), mask=self.channels[i].mask, copy=False)
else:
self.channels[i] = np.where(self.channels[i] >= 0, self.
channels[i] ** (1.0 / gamma), self.channels[i])
|
gamma
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, gamma=1.0):\n if isinstance(gamma, (list, tuple, set)) and len(gamma) != len(self.\n channels):\n raise ValueError('Number of channels and gamma components differ.')\n if isinstance(gamma, (tuple, list)):\n gamma_list = list(gamma)\n else:\n gamma_list = [gamma] * len(self.channels)\n for i in range(len(self.channels)):\n gamma = float(gamma_list[i])\n if gamma < 0:\n raise ValueError('Gamma correction must be a positive number.')\n logger.debug('Applying gamma %f', gamma)\n if gamma == 1.0:\n continue\n if isinstance(self.channels[i], np.ma.core.MaskedArray):\n if ne:\n self.channels[i] = np.ma.array(ne.evaluate(\n 'data ** (1.0 / gamma)', local_dict={'data': self.\n channels[i].data, 'gamma': gamma}), mask=self.channels[\n i].mask, copy=False)\n else:\n self.channels[i] = np.ma.array(self.channels[i].data ** (\n 1.0 / gamma), mask=self.channels[i].mask, copy=False)\n else:\n self.channels[i] = np.where(self.channels[i] >= 0, self.\n channels[i] ** (1.0 / gamma), self.channels[i])\n",
"role": "user"
},
{
"content": "gamma",
"role": "assistant"
}
] |
def x(self, stretch='crude', **kwargs):
logger.debug('Applying stretch %s with parameters %s', stretch, str(kwargs)
)
ch_len = len(self.channels)
if self.mode.endswith('A'):
ch_len -= 1
if isinstance(stretch, tuple) or isinstance(stretch, list):
if len(stretch) == 2:
for i in range(ch_len):
self.stretch_linear(i, cutoffs=stretch, **kwargs)
else:
raise ValueError('Stretch tuple must have exactly two elements')
elif stretch == 'linear':
for i in range(ch_len):
self.stretch_linear(i, **kwargs)
elif stretch == 'histogram':
for i in range(ch_len):
self.stretch_hist_equalize(i, **kwargs)
elif stretch in ['crude', 'crude-stretch']:
for i in range(ch_len):
self.crude_stretch(i, **kwargs)
elif stretch in ['log', 'logarithmic']:
for i in range(ch_len):
self.stretch_logarithmic(i, **kwargs)
elif stretch == 'no':
return
elif isinstance(stretch, str):
raise ValueError('Stretching method %s not recognized.' % stretch)
else:
raise TypeError('Stretch parameter must be a string or a tuple.')
|
stretch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stretch='crude', **kwargs):\n logger.debug('Applying stretch %s with parameters %s', stretch, str(kwargs)\n )\n ch_len = len(self.channels)\n if self.mode.endswith('A'):\n ch_len -= 1\n if isinstance(stretch, tuple) or isinstance(stretch, list):\n if len(stretch) == 2:\n for i in range(ch_len):\n self.stretch_linear(i, cutoffs=stretch, **kwargs)\n else:\n raise ValueError('Stretch tuple must have exactly two elements')\n elif stretch == 'linear':\n for i in range(ch_len):\n self.stretch_linear(i, **kwargs)\n elif stretch == 'histogram':\n for i in range(ch_len):\n self.stretch_hist_equalize(i, **kwargs)\n elif stretch in ['crude', 'crude-stretch']:\n for i in range(ch_len):\n self.crude_stretch(i, **kwargs)\n elif stretch in ['log', 'logarithmic']:\n for i in range(ch_len):\n self.stretch_logarithmic(i, **kwargs)\n elif stretch == 'no':\n return\n elif isinstance(stretch, str):\n raise ValueError('Stretching method %s not recognized.' % stretch)\n else:\n raise TypeError('Stretch parameter must be a string or a tuple.')\n",
"role": "user"
},
{
"content": "stretch",
"role": "assistant"
}
] |
def x(self, invert=True):
if isinstance(invert, (tuple, list)) and len(self.channels) != len(invert):
raise ValueError('Number of channels and invert components differ.')
logger.debug('Applying invert with parameters %s', str(invert))
if isinstance(invert, (tuple, list)):
for i, chn in enumerate(self.channels):
if invert[i]:
self.channels[i] = 1 - chn
elif invert:
for i, chn in enumerate(self.channels):
self.channels[i] = 1 - chn
|
invert
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, invert=True):\n if isinstance(invert, (tuple, list)) and len(self.channels) != len(invert):\n raise ValueError('Number of channels and invert components differ.')\n logger.debug('Applying invert with parameters %s', str(invert))\n if isinstance(invert, (tuple, list)):\n for i, chn in enumerate(self.channels):\n if invert[i]:\n self.channels[i] = 1 - chn\n elif invert:\n for i, chn in enumerate(self.channels):\n self.channels[i] = 1 - chn\n",
"role": "user"
},
{
"content": "invert",
"role": "assistant"
}
] |
def x(self, ch_nb):
logger.info('Perform a histogram equalized contrast stretch.')
if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]):
logger.warning('Nothing to stretch !')
return
arr = self.channels[ch_nb]
nwidth = 2048.0
carr = arr.compressed()
cdf = np.arange(0.0, 1.0, 1 / nwidth)
logger.debug('Make histogram bins having equal amount of data, ' +
'using numpy percentile function:')
bins = np.percentile(carr, list(cdf * 100))
res = np.ma.empty_like(arr)
res.mask = np.ma.getmaskarray(arr)
res[~res.mask] = np.interp(carr, bins, cdf)
self.channels[ch_nb] = res
|
stretch_hist_equalize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ch_nb):\n logger.info('Perform a histogram equalized contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]):\n logger.warning('Nothing to stretch !')\n return\n arr = self.channels[ch_nb]\n nwidth = 2048.0\n carr = arr.compressed()\n cdf = np.arange(0.0, 1.0, 1 / nwidth)\n logger.debug('Make histogram bins having equal amount of data, ' +\n 'using numpy percentile function:')\n bins = np.percentile(carr, list(cdf * 100))\n res = np.ma.empty_like(arr)\n res.mask = np.ma.getmaskarray(arr)\n res[~res.mask] = np.interp(carr, bins, cdf)\n self.channels[ch_nb] = res\n",
"role": "user"
},
{
"content": "stretch_hist_equalize",
"role": "assistant"
}
] |
def x(self, ch_nb, factor=100.0):
logger.debug('Perform a logarithmic contrast stretch.')
if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]
) or self.channels[ch_nb].min() == self.channels[ch_nb].max():
logger.warning('Nothing to stretch !')
return
crange = 0.0, 1.0
arr = self.channels[ch_nb]
b__ = float(crange[1] - crange[0]) / np.log(factor)
c__ = float(crange[0])
slope = (factor - 1.0) / float(arr.max() - arr.min())
arr = 1.0 + (arr - arr.min()) * slope
arr = c__ + b__ * np.log(arr)
self.channels[ch_nb] = arr
|
stretch_logarithmic
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ch_nb, factor=100.0):\n logger.debug('Perform a logarithmic contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]\n ) or self.channels[ch_nb].min() == self.channels[ch_nb].max():\n logger.warning('Nothing to stretch !')\n return\n crange = 0.0, 1.0\n arr = self.channels[ch_nb]\n b__ = float(crange[1] - crange[0]) / np.log(factor)\n c__ = float(crange[0])\n slope = (factor - 1.0) / float(arr.max() - arr.min())\n arr = 1.0 + (arr - arr.min()) * slope\n arr = c__ + b__ * np.log(arr)\n self.channels[ch_nb] = arr\n",
"role": "user"
},
{
"content": "stretch_logarithmic",
"role": "assistant"
}
] |
def x(self, ch_nb, cutoffs=(0.005, 0.005)):
logger.debug('Perform a linear contrast stretch.')
if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]
) or self.channels[ch_nb].min() == self.channels[ch_nb].max():
logger.warning('Nothing to stretch !')
return
arr = self.channels[ch_nb]
carr = arr.compressed()
logger.debug('Calculate the histogram percentiles: ')
logger.debug('Left and right percentiles: ' + str(cutoffs[0] * 100) +
' ' + str(cutoffs[1] * 100))
left, right = np.percentile(carr, [cutoffs[0] * 100, 100.0 - cutoffs[1] *
100])
delta_x = right - left
logger.debug('Interval: left=%f, right=%f width=%f', left, right, delta_x)
if delta_x > 0.0:
self.channels[ch_nb] = np.ma.array((arr - left) / delta_x, mask=arr
.mask)
else:
logger.warning('Unable to make a contrast stretch!')
|
stretch_linear
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ch_nb, cutoffs=(0.005, 0.005)):\n logger.debug('Perform a linear contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]\n ) or self.channels[ch_nb].min() == self.channels[ch_nb].max():\n logger.warning('Nothing to stretch !')\n return\n arr = self.channels[ch_nb]\n carr = arr.compressed()\n logger.debug('Calculate the histogram percentiles: ')\n logger.debug('Left and right percentiles: ' + str(cutoffs[0] * 100) +\n ' ' + str(cutoffs[1] * 100))\n left, right = np.percentile(carr, [cutoffs[0] * 100, 100.0 - cutoffs[1] *\n 100])\n delta_x = right - left\n logger.debug('Interval: left=%f, right=%f width=%f', left, right, delta_x)\n if delta_x > 0.0:\n self.channels[ch_nb] = np.ma.array((arr - left) / delta_x, mask=arr\n .mask)\n else:\n logger.warning('Unable to make a contrast stretch!')\n",
"role": "user"
},
{
"content": "stretch_linear",
"role": "assistant"
}
] |
def x(self, ch_nb, min_stretch=None, max_stretch=None):
if min_stretch is None:
min_stretch = self.channels[ch_nb].min()
if max_stretch is None:
max_stretch = self.channels[ch_nb].max()
if isinstance(min_stretch, (list, tuple)):
min_stretch = min_stretch[ch_nb]
if isinstance(max_stretch, (list, tuple)):
max_stretch = max_stretch[ch_nb]
if not self.channels[ch_nb].mask.all() and abs(max_stretch - min_stretch
) > 0:
stretched = self.channels[ch_nb].data.astype(np.float)
stretched -= min_stretch
stretched /= max_stretch - min_stretch
self.channels[ch_nb] = np.ma.array(stretched, mask=self.channels[
ch_nb].mask, copy=False)
else:
logger.warning('Nothing to stretch !')
|
crude_stretch
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ch_nb, min_stretch=None, max_stretch=None):\n if min_stretch is None:\n min_stretch = self.channels[ch_nb].min()\n if max_stretch is None:\n max_stretch = self.channels[ch_nb].max()\n if isinstance(min_stretch, (list, tuple)):\n min_stretch = min_stretch[ch_nb]\n if isinstance(max_stretch, (list, tuple)):\n max_stretch = max_stretch[ch_nb]\n if not self.channels[ch_nb].mask.all() and abs(max_stretch - min_stretch\n ) > 0:\n stretched = self.channels[ch_nb].data.astype(np.float)\n stretched -= min_stretch\n stretched /= max_stretch - min_stretch\n self.channels[ch_nb] = np.ma.array(stretched, mask=self.channels[\n ch_nb].mask, copy=False)\n else:\n logger.warning('Nothing to stretch !')\n",
"role": "user"
},
{
"content": "crude_stretch",
"role": "assistant"
}
] |
def x(self, colormap):
if self.mode not in ('L', 'LA'):
raise ValueError('Image should be grayscale to colorize')
if self.mode == 'LA':
alpha = self.channels[1]
else:
alpha = None
self.channels = colormap.colorize(self.channels[0])
if alpha is not None:
self.channels.append(alpha)
self.mode = 'RGBA'
else:
self.mode = 'RGB'
|
colorize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, colormap):\n if self.mode not in ('L', 'LA'):\n raise ValueError('Image should be grayscale to colorize')\n if self.mode == 'LA':\n alpha = self.channels[1]\n else:\n alpha = None\n self.channels = colormap.colorize(self.channels[0])\n if alpha is not None:\n self.channels.append(alpha)\n self.mode = 'RGBA'\n else:\n self.mode = 'RGB'\n",
"role": "user"
},
{
"content": "colorize",
"role": "assistant"
}
] |
def x(self, colormap):
if self.mode not in ('L', 'LA'):
raise ValueError('Image should be grayscale to colorize')
self.channels[0], self.palette = colormap.palettize(self.channels[0])
if self.mode == 'L':
self.mode = 'P'
else:
self.mode = 'PA'
|
palettize
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, colormap):\n if self.mode not in ('L', 'LA'):\n raise ValueError('Image should be grayscale to colorize')\n self.channels[0], self.palette = colormap.palettize(self.channels[0])\n if self.mode == 'L':\n self.mode = 'P'\n else:\n self.mode = 'PA'\n",
"role": "user"
},
{
"content": "palettize",
"role": "assistant"
}
] |
def x(l__, a__, b__):
def x(arr):
return np.where(arr > 6.0 / 29.0, arr ** 3, 3 * (6.0 / 29.0) * (6.0 /
29.0) * (arr - 4.0 / 29.0))
new_l = (l__ + 16.0) / 116.0
x__ = 95.047 * f_inv(new_l + a__ / 500.0)
y__ = 100.0 * f_inv(new_l)
z__ = 108.883 * f_inv(new_l - b__ / 200.0)
return x__, y__, z__
|
lab2xyz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l__, a__, b__):\n\n def x(arr):\n return np.where(arr > 6.0 / 29.0, arr ** 3, 3 * (6.0 / 29.0) * (6.0 /\n 29.0) * (arr - 4.0 / 29.0))\n new_l = (l__ + 16.0) / 116.0\n x__ = 95.047 * f_inv(new_l + a__ / 500.0)\n y__ = 100.0 * f_inv(new_l)\n z__ = 108.883 * f_inv(new_l - b__ / 200.0)\n return x__, y__, z__\n",
"role": "user"
},
{
"content": "lab2xyz",
"role": "assistant"
}
] |
def x(x__, y__, z__):
def x(arr):
return np.where(arr > 216.0 / 24389.0, arr ** (1.0 / 3.0), 1.0 /
3.0 * (29.0 / 6.0) * (29.0 / 6.0) * arr + 4.0 / 29.0)
fy_ = f__(y__ / 100.0)
l__ = 116 * fy_ - 16
a__ = 500.0 * (f__(x__ / 95.047) - fy_)
b__ = 200.0 * (fy_ - f__(z__ / 108.883))
return l__, a__, b__
|
xyz2lab
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x__, y__, z__):\n\n def x(arr):\n return np.where(arr > 216.0 / 24389.0, arr ** (1.0 / 3.0), 1.0 / \n 3.0 * (29.0 / 6.0) * (29.0 / 6.0) * arr + 4.0 / 29.0)\n fy_ = f__(y__ / 100.0)\n l__ = 116 * fy_ - 16\n a__ = 500.0 * (f__(x__ / 95.047) - fy_)\n b__ = 200.0 * (fy_ - f__(z__ / 108.883))\n return l__, a__, b__\n",
"role": "user"
},
{
"content": "xyz2lab",
"role": "assistant"
}
] |
def x(h__, c__, l__):
h_rad = np.deg2rad(h__)
l2_ = l__ * 61 + 9
angle = np.pi / 3.0 - h_rad
r__ = (l__ * 311 + 125) * c__
a__ = np.sin(angle) * r__
b__ = np.cos(angle) * r__
return l2_, a__, b__
|
hcl2lab
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(h__, c__, l__):\n h_rad = np.deg2rad(h__)\n l2_ = l__ * 61 + 9\n angle = np.pi / 3.0 - h_rad\n r__ = (l__ * 311 + 125) * c__\n a__ = np.sin(angle) * r__\n b__ = np.cos(angle) * r__\n return l2_, a__, b__\n",
"role": "user"
},
{
"content": "hcl2lab",
"role": "assistant"
}
] |
def x(l__, a__, b__):
l2_ = (l__ - 9) / 61.0
r__ = np.sqrt(a__ * a__ + b__ * b__)
s__ = r__ / (l2_ * 311 + 125)
angle = np.arctan2(a__, b__)
c__ = np.rad2deg(np.pi / 3 - angle) % 360
return c__, s__, l2_
|
lab2hcl
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(l__, a__, b__):\n l2_ = (l__ - 9) / 61.0\n r__ = np.sqrt(a__ * a__ + b__ * b__)\n s__ = r__ / (l2_ * 311 + 125)\n angle = np.arctan2(a__, b__)\n c__ = np.rad2deg(np.pi / 3 - angle) % 360\n return c__, s__, l2_\n",
"role": "user"
},
{
"content": "lab2hcl",
"role": "assistant"
}
] |
def x(r__, g__, b__):
r2_ = r__ / 255.0
g2_ = g__ / 255.0
b2_ = b__ / 255.0
def x(arr):
return np.where(arr > 0.04045, ((arr + 0.055) / 1.055) ** 2.4, arr /
12.92)
r2_ = f__(r2_) * 100
g2_ = f__(g2_) * 100
b2_ = f__(b2_) * 100
x__ = r2_ * 0.4124 + g2_ * 0.3576 + b2_ * 0.1805
y__ = r2_ * 0.2126 + g2_ * 0.7152 + b2_ * 0.0722
z__ = r2_ * 0.0193 + g2_ * 0.1192 + b2_ * 0.9505
return x__, y__, z__
|
rgb2xyz
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(r__, g__, b__):\n r2_ = r__ / 255.0\n g2_ = g__ / 255.0\n b2_ = b__ / 255.0\n\n def x(arr):\n return np.where(arr > 0.04045, ((arr + 0.055) / 1.055) ** 2.4, arr /\n 12.92)\n r2_ = f__(r2_) * 100\n g2_ = f__(g2_) * 100\n b2_ = f__(b2_) * 100\n x__ = r2_ * 0.4124 + g2_ * 0.3576 + b2_ * 0.1805\n y__ = r2_ * 0.2126 + g2_ * 0.7152 + b2_ * 0.0722\n z__ = r2_ * 0.0193 + g2_ * 0.1192 + b2_ * 0.9505\n return x__, y__, z__\n",
"role": "user"
},
{
"content": "rgb2xyz",
"role": "assistant"
}
] |
def x(x__, y__, z__):
x2_ = x__ / 100.0
y2_ = y__ / 100.0
z2_ = z__ / 100.0
r__ = x2_ * 3.2406 + y2_ * -1.5372 + z2_ * -0.4986
g__ = x2_ * -0.9689 + y2_ * 1.8758 + z2_ * 0.0415
b__ = x2_ * 0.0557 + y2_ * -0.204 + z2_ * 1.057
def x(arr):
return np.where(arr > 0.0031308, 1.055 * arr ** (1.0 / 2.4) - 0.055,
12.92 * arr)
return finv(r__) * 255, finv(g__) * 255, finv(b__) * 255
|
xyz2rgb
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x__, y__, z__):\n x2_ = x__ / 100.0\n y2_ = y__ / 100.0\n z2_ = z__ / 100.0\n r__ = x2_ * 3.2406 + y2_ * -1.5372 + z2_ * -0.4986\n g__ = x2_ * -0.9689 + y2_ * 1.8758 + z2_ * 0.0415\n b__ = x2_ * 0.0557 + y2_ * -0.204 + z2_ * 1.057\n\n def x(arr):\n return np.where(arr > 0.0031308, 1.055 * arr ** (1.0 / 2.4) - 0.055,\n 12.92 * arr)\n return finv(r__) * 255, finv(g__) * 255, finv(b__) * 255\n",
"role": "user"
},
{
"content": "xyz2rgb",
"role": "assistant"
}
] |
def x():
limit = now() - settings.USER_TASKS_MAX_AGE
UserTaskStatus.objects.filter(created__lt=limit).delete()
|
purge_old_user_tasks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n limit = now() - settings.USER_TASKS_MAX_AGE\n UserTaskStatus.objects.filter(created__lt=limit).delete()\n",
"role": "user"
},
{
"content": "purge_old_user_tasks",
"role": "assistant"
}
] |
def x(cls, *args, **kwargs):
all_args = (None,) + args
return inspect.getcallargs(cls.run, *all_args, **kwargs)
|
arguments_as_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, *args, **kwargs):\n all_args = (None,) + args\n return inspect.getcallargs(cls.run, *all_args, **kwargs)\n",
"role": "user"
},
{
"content": "arguments_as_dict",
"role": "assistant"
}
] |
def x(self):
task_id = self.request.id
try:
return UserTaskStatus.objects.get(task_id=task_id)
except UserTaskStatus.DoesNotExist:
arguments_dict = self.arguments_as_dict(*self.request.args, **self.
request.kwargs)
name = self.generate_name(arguments_dict)
task_class = '.'.join([self.__class__.__module__, self.__class__.
__name__])
total_steps = self.calculate_total_steps(arguments_dict)
user_id = arguments_dict['user_id']
return UserTaskStatus.objects.get_or_create(task_id=task_id,
defaults={'user_id': user_id, 'name': name, 'task_class':
task_class, 'total_steps': total_steps})[0]
|
status
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n task_id = self.request.id\n try:\n return UserTaskStatus.objects.get(task_id=task_id)\n except UserTaskStatus.DoesNotExist:\n arguments_dict = self.arguments_as_dict(*self.request.args, **self.\n request.kwargs)\n name = self.generate_name(arguments_dict)\n task_class = '.'.join([self.__class__.__module__, self.__class__.\n __name__])\n total_steps = self.calculate_total_steps(arguments_dict)\n user_id = arguments_dict['user_id']\n return UserTaskStatus.objects.get_or_create(task_id=task_id,\n defaults={'user_id': user_id, 'name': name, 'task_class':\n task_class, 'total_steps': total_steps})[0]\n",
"role": "user"
},
{
"content": "status",
"role": "assistant"
}
] |
def x(data):
from rasterio.enums import ColorInterp as ci
modes = {'L': [ci.gray], 'LA': [ci.gray, ci.alpha], 'YCbCr': [ci.Y, ci.
Cb, ci.Cr], 'YCbCrA': [ci.Y, ci.Cb, ci.Cr, ci.alpha]}
try:
mode = ''.join(data['bands'].values)
return modes[mode]
except KeyError:
colors = {'R': ci.red, 'G': ci.green, 'B': ci.blue, 'A': ci.alpha,
'C': ci.cyan, 'M': ci.magenta, 'Y': ci.yellow, 'H': ci.hue, 'S':
ci.saturation, 'L': ci.lightness, 'K': ci.black}
return [colors[band] for band in data['bands'].values]
|
color_interp
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n from rasterio.enums import ColorInterp as ci\n modes = {'L': [ci.gray], 'LA': [ci.gray, ci.alpha], 'YCbCr': [ci.Y, ci.\n Cb, ci.Cr], 'YCbCrA': [ci.Y, ci.Cb, ci.Cr, ci.alpha]}\n try:\n mode = ''.join(data['bands'].values)\n return modes[mode]\n except KeyError:\n colors = {'R': ci.red, 'G': ci.green, 'B': ci.blue, 'A': ci.alpha,\n 'C': ci.cyan, 'M': ci.magenta, 'Y': ci.yellow, 'H': ci.hue, 'S':\n ci.saturation, 'L': ci.lightness, 'K': ci.black}\n return [colors[band] for band in data['bands'].values]\n",
"role": "user"
},
{
"content": "color_interp",
"role": "assistant"
}
] |
def x(data):
if not hasattr(data, 'dims'):
raise TypeError("Data must have a 'dims' attribute.")
data = data.copy()
if 'y' not in data.dims or 'x' not in data.dims:
if data.ndim != 2:
raise ValueError("Data must have a 'y' and 'x' dimension")
if 'y' not in data.dims:
old_dim = [d for d in data.dims if d != 'x'][0]
data = data.rename({old_dim: 'y'})
if 'x' not in data.dims:
old_dim = [d for d in data.dims if d != 'y'][0]
data = data.rename({old_dim: 'x'})
if 'bands' not in data.dims:
if data.ndim <= 2:
data = data.expand_dims('bands')
data['bands'] = ['L']
else:
raise ValueError("No 'bands' dimension provided.")
return data
|
correct_dims
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n if not hasattr(data, 'dims'):\n raise TypeError(\"Data must have a 'dims' attribute.\")\n data = data.copy()\n if 'y' not in data.dims or 'x' not in data.dims:\n if data.ndim != 2:\n raise ValueError(\"Data must have a 'y' and 'x' dimension\")\n if 'y' not in data.dims:\n old_dim = [d for d in data.dims if d != 'x'][0]\n data = data.rename({old_dim: 'y'})\n if 'x' not in data.dims:\n old_dim = [d for d in data.dims if d != 'y'][0]\n data = data.rename({old_dim: 'x'})\n if 'bands' not in data.dims:\n if data.ndim <= 2:\n data = data.expand_dims('bands')\n data['bands'] = ['L']\n else:\n raise ValueError(\"No 'bands' dimension provided.\")\n return data\n",
"role": "user"
},
{
"content": "correct_dims",
"role": "assistant"
}
] |
def x(self, filename, fformat=None, fill_value=None, compute=True,
keep_palette=False, cmap=None, **format_kwargs):
fformat = fformat or os.path.splitext(filename)[1][1:4]
if fformat in ('tif', 'jp2') and rasterio:
return self.rio_save(filename, fformat=fformat, fill_value=
fill_value, compute=compute, keep_palette=keep_palette, cmap=
cmap, **format_kwargs)
else:
return self.pil_save(filename, fformat, fill_value, compute=compute,
**format_kwargs)
|
save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, fformat=None, fill_value=None, compute=True,\n keep_palette=False, cmap=None, **format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n if fformat in ('tif', 'jp2') and rasterio:\n return self.rio_save(filename, fformat=fformat, fill_value=\n fill_value, compute=compute, keep_palette=keep_palette, cmap=\n cmap, **format_kwargs)\n else:\n return self.pil_save(filename, fformat, fill_value, compute=compute,\n **format_kwargs)\n",
"role": "user"
},
{
"content": "save",
"role": "assistant"
}
] |
def x(self, filename, fformat=None, fill_value=None, dtype=np.uint8,
compute=True, tags=None, keep_palette=False, cmap=None, **format_kwargs):
fformat = fformat or os.path.splitext(filename)[1][1:4]
drivers = {'jpg': 'JPEG', 'png': 'PNG', 'tif': 'GTiff', 'jp2':
'JP2OpenJPEG'}
driver = drivers.get(fformat, fformat)
if tags is None:
tags = {}
data, mode = self.finalize(fill_value, dtype=dtype, keep_palette=
keep_palette, cmap=cmap)
data = data.transpose('bands', 'y', 'x')
data.attrs = self.data.attrs
crs = None
gcps = None
transform = None
if driver in ['GTiff', 'JP2OpenJPEG']:
if not np.issubdtype(data.dtype, np.floating):
format_kwargs.setdefault('compress', 'DEFLATE')
photometric_map = {'RGB': 'RGB', 'RGBA': 'RGB', 'CMYK': 'CMYK',
'CMYKA': 'CMYK', 'YCBCR': 'YCBCR', 'YCBCRA': 'YCBCR'}
if mode.upper() in photometric_map:
format_kwargs.setdefault('photometric', photometric_map[mode.
upper()])
try:
crs = rasterio.crs.CRS(data.attrs['area'].proj_dict)
west, south, east, north = data.attrs['area'].area_extent
height, width = data.sizes['y'], data.sizes['x']
transform = rasterio.transform.from_bounds(west, south, east,
north, width, height)
except KeyError:
logger.info("Couldn't create geotransform")
except AttributeError:
try:
gcps = data.attrs['area'].lons.attrs['gcps']
crs = data.attrs['area'].lons.attrs['crs']
except KeyError:
logger.info("Couldn't create geotransform")
if 'start_time' in data.attrs:
stime = data.attrs['start_time']
stime_str = stime.strftime('%Y:%m:%d %H:%M:%S')
tags.setdefault('TIFFTAG_DATETIME', stime_str)
elif driver == 'JPEG' and 'A' in mode:
raise ValueError('JPEG does not support alpha')
r_file = RIOFile(filename, 'w', driver=driver, width=data.sizes['x'],
height=data.sizes['y'], count=data.sizes['bands'], dtype=dtype,
nodata=fill_value, crs=crs, transform=transform, gcps=gcps, **
format_kwargs)
r_file.open()
if not keep_palette:
r_file.colorinterp = color_interp(data)
r_file.rfile.update_tags(**tags)
if keep_palette and cmap is not None:
if data.dtype != 'uint8':
raise ValueError('Rasterio only supports 8-bit colormaps')
try:
from trollimage.colormap import Colormap
cmap = cmap.to_rio() if isinstance(cmap, Colormap) else cmap
r_file.rfile.write_colormap(1, cmap)
except AttributeError:
raise ValueError('Colormap is not formatted correctly')
if compute:
res = da.store(data.data, r_file)
r_file.close()
return res
return data.data, r_file
|
rio_save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, fformat=None, fill_value=None, dtype=np.uint8,\n compute=True, tags=None, keep_palette=False, cmap=None, **format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n drivers = {'jpg': 'JPEG', 'png': 'PNG', 'tif': 'GTiff', 'jp2':\n 'JP2OpenJPEG'}\n driver = drivers.get(fformat, fformat)\n if tags is None:\n tags = {}\n data, mode = self.finalize(fill_value, dtype=dtype, keep_palette=\n keep_palette, cmap=cmap)\n data = data.transpose('bands', 'y', 'x')\n data.attrs = self.data.attrs\n crs = None\n gcps = None\n transform = None\n if driver in ['GTiff', 'JP2OpenJPEG']:\n if not np.issubdtype(data.dtype, np.floating):\n format_kwargs.setdefault('compress', 'DEFLATE')\n photometric_map = {'RGB': 'RGB', 'RGBA': 'RGB', 'CMYK': 'CMYK',\n 'CMYKA': 'CMYK', 'YCBCR': 'YCBCR', 'YCBCRA': 'YCBCR'}\n if mode.upper() in photometric_map:\n format_kwargs.setdefault('photometric', photometric_map[mode.\n upper()])\n try:\n crs = rasterio.crs.CRS(data.attrs['area'].proj_dict)\n west, south, east, north = data.attrs['area'].area_extent\n height, width = data.sizes['y'], data.sizes['x']\n transform = rasterio.transform.from_bounds(west, south, east,\n north, width, height)\n except KeyError:\n logger.info(\"Couldn't create geotransform\")\n except AttributeError:\n try:\n gcps = data.attrs['area'].lons.attrs['gcps']\n crs = data.attrs['area'].lons.attrs['crs']\n except KeyError:\n logger.info(\"Couldn't create geotransform\")\n if 'start_time' in data.attrs:\n stime = data.attrs['start_time']\n stime_str = stime.strftime('%Y:%m:%d %H:%M:%S')\n tags.setdefault('TIFFTAG_DATETIME', stime_str)\n elif driver == 'JPEG' and 'A' in mode:\n raise ValueError('JPEG does not support alpha')\n r_file = RIOFile(filename, 'w', driver=driver, width=data.sizes['x'],\n height=data.sizes['y'], count=data.sizes['bands'], dtype=dtype,\n nodata=fill_value, crs=crs, transform=transform, gcps=gcps, **\n format_kwargs)\n r_file.open()\n if not keep_palette:\n r_file.colorinterp = color_interp(data)\n r_file.rfile.update_tags(**tags)\n if keep_palette and cmap is not None:\n if data.dtype != 'uint8':\n raise ValueError('Rasterio only supports 8-bit colormaps')\n try:\n from trollimage.colormap import Colormap\n cmap = cmap.to_rio() if isinstance(cmap, Colormap) else cmap\n r_file.rfile.write_colormap(1, cmap)\n except AttributeError:\n raise ValueError('Colormap is not formatted correctly')\n if compute:\n res = da.store(data.data, r_file)\n r_file.close()\n return res\n return data.data, r_file\n",
"role": "user"
},
{
"content": "rio_save",
"role": "assistant"
}
] |
def x(self, filename, fformat=None, fill_value=None, compute=True, **
format_kwargs):
fformat = fformat or os.path.splitext(filename)[1][1:4]
fformat = check_image_format(fformat)
if fformat == 'png':
format_kwargs['pnginfo'] = self._pngmeta()
img = self.pil_image(fill_value, compute=False)
delay = img.save(filename, fformat, **format_kwargs)
if compute:
return delay.compute()
return delay
|
pil_save
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, filename, fformat=None, fill_value=None, compute=True, **\n format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n fformat = check_image_format(fformat)\n if fformat == 'png':\n format_kwargs['pnginfo'] = self._pngmeta()\n img = self.pil_image(fill_value, compute=False)\n delay = img.save(filename, fformat, **format_kwargs)\n if compute:\n return delay.compute()\n return delay\n",
"role": "user"
},
{
"content": "pil_save",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.