source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, lng: str) ->str: if self.data is None: return '' if isinstance(self.data, dict): firstpart = lng.split('-')[0] similar = [l for l in self.data.keys() if (l.startswith(firstpart + '-') or firstpart == l) and l != lng] if self.data.get(lng): return self.data[lng] elif self.data.get(firstpart): return self.data[firstpart] elif similar and any([self.data.get(s) for s in similar]): for s in similar: if self.data.get(s): return self.data.get(s) elif self.data.get(settings.LANGUAGE_CODE): return self.data[settings.LANGUAGE_CODE] elif len(self.data): return list(self.data.items())[0][1] else: return '' else: return str(self.data)
localize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, lng: str) ->str:\n if self.data is None:\n return ''\n if isinstance(self.data, dict):\n firstpart = lng.split('-')[0]\n similar = [l for l in self.data.keys() if (l.startswith(firstpart +\n '-') or firstpart == l) and l != lng]\n if self.data.get(lng):\n return self.data[lng]\n elif self.data.get(firstpart):\n return self.data[firstpart]\n elif similar and any([self.data.get(s) for s in similar]):\n for s in similar:\n if self.data.get(s):\n return self.data.get(s)\n elif self.data.get(settings.LANGUAGE_CODE):\n return self.data[settings.LANGUAGE_CODE]\n elif len(self.data):\n return list(self.data.items())[0][1]\n else:\n return ''\n else:\n return str(self.data)\n", "role": "user" }, { "content": "localize", "role": "assistant" } ]
def x(instance, obs): if obs.names is everything: names = list(instance._props) else: names = obs.names for name in names: if name not in instance._listeners: instance._listeners[name] = {typ: [] for typ in LISTENER_TYPES} instance._listeners[name][obs.mode] += [obs]
set_listener
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, obs):\n if obs.names is everything:\n names = list(instance._props)\n else:\n names = obs.names\n for name in names:\n if name not in instance._listeners:\n instance._listeners[name] = {typ: [] for typ in LISTENER_TYPES}\n instance._listeners[name][obs.mode] += [obs]\n", "role": "user" }, { "content": "set_listener", "role": "assistant" } ]
def x(instance, change): if change['mode'] not in listeners_disabled._quarantine and change['name' ] in instance._listeners: return instance._listeners[change['name']][change['mode']] return []
get_listeners
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(instance, change):\n if change['mode'] not in listeners_disabled._quarantine and change['name'\n ] in instance._listeners:\n return instance._listeners[change['name']][change['mode']]\n return []\n", "role": "user" }, { "content": "get_listeners", "role": "assistant" } ]
def x(names_or_instance, names=None, func=None, change_only=False): mode = 'observe_change' if change_only else 'observe_set' if names is None and func is None: return Observer(names_or_instance, mode) obs = Observer(names, mode)(func) _set_listener(names_or_instance, obs) return obs
observer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(names_or_instance, names=None, func=None, change_only=False):\n mode = 'observe_change' if change_only else 'observe_set'\n if names is None and func is None:\n return Observer(names_or_instance, mode)\n obs = Observer(names, mode)(func)\n _set_listener(names_or_instance, obs)\n return obs\n", "role": "user" }, { "content": "observer", "role": "assistant" } ]
def x(names_or_instance, names=None, func=None): if names is None and func is None: if callable(names_or_instance): return ClassValidator(names_or_instance) return Observer(names_or_instance, 'validate') val = Observer(names, 'validate')(func) _set_listener(names_or_instance, val) return val
validator
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(names_or_instance, names=None, func=None):\n if names is None and func is None:\n if callable(names_or_instance):\n return ClassValidator(names_or_instance)\n return Observer(names_or_instance, 'validate')\n val = Observer(names, 'validate')(func)\n _set_listener(names_or_instance, val)\n return val\n", "role": "user" }, { "content": "validator", "role": "assistant" } ]
def x(bases, classdict, attr, attr_dict): output = OrderedDict() output_keys = set() all_bases = [] for base in reversed(bases): if base is not object and isinstance(base, PropertyMetaclass): output_keys = output_keys.union(getattr(base, attr)) for item in reversed(base.__mro__): if item is object or not isinstance(item, PropertyMetaclass): continue if item not in all_bases: all_bases.append(item) for base in all_bases: for key, val in iteritems(getattr(base, attr)): if key in base.__dict__ and key in output_keys: output.update({key: val}) for key in classdict: if key in output: output.pop(key) output.update(attr_dict) return output
build_from_bases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(bases, classdict, attr, attr_dict):\n output = OrderedDict()\n output_keys = set()\n all_bases = []\n for base in reversed(bases):\n if base is not object and isinstance(base, PropertyMetaclass):\n output_keys = output_keys.union(getattr(base, attr))\n for item in reversed(base.__mro__):\n if item is object or not isinstance(item, PropertyMetaclass):\n continue\n if item not in all_bases:\n all_bases.append(item)\n for base in all_bases:\n for key, val in iteritems(getattr(base, attr)):\n if key in base.__dict__ and key in output_keys:\n output.update({key: val})\n for key in classdict:\n if key in output:\n output.pop(key)\n output.update(attr_dict)\n return output\n", "role": "user" }, { "content": "build_from_bases", "role": "assistant" } ]
def x(value_a, value_b): if not isinstance(value_a, HasProperties) or not isinstance(value_b, HasProperties): return value_a == value_b if getattr(value_a, '_testing_equality', False): return False value_a._testing_equality = True try: if value_a is value_b: return True if value_a.__class__ is not value_b.__class__: return False for prop in itervalues(value_a._props): prop_a = getattr(value_a, prop.name) prop_b = getattr(value_b, prop.name) if prop_a is None and prop_b is None: continue if prop_a is not None and prop_b is not None and prop.equal(prop_a, prop_b): continue return False return True finally: value_a._testing_equality = False
equal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value_a, value_b):\n if not isinstance(value_a, HasProperties) or not isinstance(value_b,\n HasProperties):\n return value_a == value_b\n if getattr(value_a, '_testing_equality', False):\n return False\n value_a._testing_equality = True\n try:\n if value_a is value_b:\n return True\n if value_a.__class__ is not value_b.__class__:\n return False\n for prop in itervalues(value_a._props):\n prop_a = getattr(value_a, prop.name)\n prop_b = getattr(value_b, prop.name)\n if prop_a is None and prop_b is None:\n continue\n if prop_a is not None and prop_b is not None and prop.equal(prop_a,\n prop_b):\n continue\n return False\n return True\n finally:\n value_a._testing_equality = False\n", "role": "user" }, { "content": "equal", "role": "assistant" } ]
def x(value, **kwargs): if not isinstance(value, HasProperties): raise ValueError( 'properties.copy may only be used to copyHasProperties instances') kwargs.update({'include_class': kwargs.get('include_class', True)}) kwargs.update({'trusted': kwargs.get('trusted', True)}) return value.__class__.deserialize(value.serialize(**kwargs), **kwargs)
copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, **kwargs):\n if not isinstance(value, HasProperties):\n raise ValueError(\n 'properties.copy may only be used to copyHasProperties instances')\n kwargs.update({'include_class': kwargs.get('include_class', True)})\n kwargs.update({'trusted': kwargs.get('trusted', True)})\n return value.__class__.deserialize(value.serialize(**kwargs), **kwargs)\n", "role": "user" }, { "content": "copy", "role": "assistant" } ]
def x(self, name=None): if name is None: for key in self._props: if isinstance(self._props[key], basic.Property): self._reset(key) return if name not in self._props: raise AttributeError( "Input name '{}' is not a known property or attribute".format(name) ) if not isinstance(self._props[name], basic.Property): raise AttributeError("Cannot reset GettableProperty '{}'".format(name)) if name in self._defaults: val = self._defaults[name] else: val = self._props[name].default if callable(val): val = val() setattr(self, name, val)
reset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name=None):\n if name is None:\n for key in self._props:\n if isinstance(self._props[key], basic.Property):\n self._reset(key)\n return\n if name not in self._props:\n raise AttributeError(\n \"Input name '{}' is not a known property or attribute\".format(name)\n )\n if not isinstance(self._props[name], basic.Property):\n raise AttributeError(\"Cannot reset GettableProperty '{}'\".format(name))\n if name in self._defaults:\n val = self._defaults[name]\n else:\n val = self._props[name].default\n if callable(val):\n val = val()\n setattr(self, name, val)\n", "role": "user" }, { "content": "reset", "role": "assistant" } ]
def x(self): if getattr(self, '_getting_validated', False): return True self._getting_validated = True self._validation_error_tuples = [] self._non_validation_error = None try: for val in itervalues(self._class_validators): try: if isinstance(val.func, string_types): valid = getattr(self, val.func)() else: valid = val.func(self) if valid is False: raise utils.ValidationError('Validation failed', None, None, self) except utils.ValidationError as val_err: self._validation_error_tuples += val_err.error_tuples except GENERIC_ERRORS as err: if not self._non_validation_error: self._non_validation_error = err if self._validation_error_tuples: self._error_hook(self._validation_error_tuples) msgs = ['Validation failed:'] msgs += [val.message for val in self._validation_error_tuples] raise utils.ValidationError(message='\n- '.join(msgs), _error_tuples=self._validation_error_tuples) if self._non_validation_error: raise self._non_validation_error return True finally: self._getting_validated = False self._validation_error_tuples = None self._non_validation_error = None
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if getattr(self, '_getting_validated', False):\n return True\n self._getting_validated = True\n self._validation_error_tuples = []\n self._non_validation_error = None\n try:\n for val in itervalues(self._class_validators):\n try:\n if isinstance(val.func, string_types):\n valid = getattr(self, val.func)()\n else:\n valid = val.func(self)\n if valid is False:\n raise utils.ValidationError('Validation failed', None,\n None, self)\n except utils.ValidationError as val_err:\n self._validation_error_tuples += val_err.error_tuples\n except GENERIC_ERRORS as err:\n if not self._non_validation_error:\n self._non_validation_error = err\n if self._validation_error_tuples:\n self._error_hook(self._validation_error_tuples)\n msgs = ['Validation failed:']\n msgs += [val.message for val in self._validation_error_tuples]\n raise utils.ValidationError(message='\\n- '.join(msgs),\n _error_tuples=self._validation_error_tuples)\n if self._non_validation_error:\n raise self._non_validation_error\n return True\n finally:\n self._getting_validated = False\n self._validation_error_tuples = None\n self._non_validation_error = None\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self): for key, prop in iteritems(self._props): try: value = self._get(key) err_msg = 'Invalid value for property {}: {}'.format(key, value) if value is not None: change = dict(name=key, previous=value, value=value, mode= 'validate') self._notify(change) if not prop.equal(value, change['value']): raise utils.ValidationError(err_msg, 'invalid', prop. name, self) if not prop.assert_valid(self): raise utils.ValidationError(err_msg, 'invalid', prop.name, self ) except utils.ValidationError as val_err: if getattr(self, '_validation_error_tuples', None) is not None: self._validation_error_tuples += val_err.error_tuples else: raise return True
validate_props
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for key, prop in iteritems(self._props):\n try:\n value = self._get(key)\n err_msg = 'Invalid value for property {}: {}'.format(key, value)\n if value is not None:\n change = dict(name=key, previous=value, value=value, mode=\n 'validate')\n self._notify(change)\n if not prop.equal(value, change['value']):\n raise utils.ValidationError(err_msg, 'invalid', prop.\n name, self)\n if not prop.assert_valid(self):\n raise utils.ValidationError(err_msg, 'invalid', prop.name, self\n )\n except utils.ValidationError as val_err:\n if getattr(self, '_validation_error_tuples', None) is not None:\n self._validation_error_tuples += val_err.error_tuples\n else:\n raise\n return True\n", "role": "user" }, { "content": "validate_props", "role": "assistant" } ]
def x(self, include_class=True, save_dynamic=False, **kwargs): if getattr(self, '_getting_serialized', False): raise utils.SelfReferenceError( 'Object contains unserializable self reference') self._getting_serialized = True try: kwargs.update({'include_class': include_class, 'save_dynamic': save_dynamic}) if save_dynamic: prop_source = self._props else: prop_source = self._backend data = ((key, self._props[key].serialize(getattr(self, key), ** kwargs)) for key in prop_source) json_dict = {k: v for k, v in data if v is not None} if include_class: json_dict.update({'__class__': self.__class__.__name__}) return json_dict finally: self._getting_serialized = False
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, include_class=True, save_dynamic=False, **kwargs):\n if getattr(self, '_getting_serialized', False):\n raise utils.SelfReferenceError(\n 'Object contains unserializable self reference')\n self._getting_serialized = True\n try:\n kwargs.update({'include_class': include_class, 'save_dynamic':\n save_dynamic})\n if save_dynamic:\n prop_source = self._props\n else:\n prop_source = self._backend\n data = ((key, self._props[key].serialize(getattr(self, key), **\n kwargs)) for key in prop_source)\n json_dict = {k: v for k, v in data if v is not None}\n if include_class:\n json_dict.update({'__class__': self.__class__.__name__})\n return json_dict\n finally:\n self._getting_serialized = False\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs): if not isinstance(value, dict): raise ValueError( 'HasProperties class {} must deserialize from dictionary, not input of type {}' .format(cls.__name__, value.__class__.__name__)) output_cls = cls._deserialize_class(input_cls_name=value.get( '__class__'), trusted=trusted, strict=strict) instance = kwargs.pop('_instance', None) if instance is not None and not isinstance(instance, output_cls): raise ValueError('Input _instance must be of class {}, not {}'. format(output_cls.__name__, instance.__class__.__name__)) state, unused = utils.filter_props(output_cls, value, True) unused.pop('__class__', None) if unused and strict: raise ValueError('Unused properties during deserialization: {}'. format(', '.join(unused))) kwargs.update({'trusted': trusted, 'strict': strict}) newstate = {} for key, val in iteritems(state): newstate[key] = output_cls._props[key].deserialize(val, **kwargs) mutable, immutable = utils.filter_props(output_cls, newstate, False) with handlers.listeners_disabled(): if instance is None: instance = output_cls(**mutable) else: for key, val in iteritems(mutable): setattr(instance, key, val) for key, val in iteritems(immutable): valid_val = output_cls._props[key].validate(instance, val) instance._backend[key] = valid_val if assert_valid and not instance.validate(): raise utils.ValidationError('Deserialized instance is not valid') return instance
deserialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):\n if not isinstance(value, dict):\n raise ValueError(\n 'HasProperties class {} must deserialize from dictionary, not input of type {}'\n .format(cls.__name__, value.__class__.__name__))\n output_cls = cls._deserialize_class(input_cls_name=value.get(\n '__class__'), trusted=trusted, strict=strict)\n instance = kwargs.pop('_instance', None)\n if instance is not None and not isinstance(instance, output_cls):\n raise ValueError('Input _instance must be of class {}, not {}'.\n format(output_cls.__name__, instance.__class__.__name__))\n state, unused = utils.filter_props(output_cls, value, True)\n unused.pop('__class__', None)\n if unused and strict:\n raise ValueError('Unused properties during deserialization: {}'.\n format(', '.join(unused)))\n kwargs.update({'trusted': trusted, 'strict': strict})\n newstate = {}\n for key, val in iteritems(state):\n newstate[key] = output_cls._props[key].deserialize(val, **kwargs)\n mutable, immutable = utils.filter_props(output_cls, newstate, False)\n with handlers.listeners_disabled():\n if instance is None:\n instance = output_cls(**mutable)\n else:\n for key, val in iteritems(mutable):\n setattr(instance, key, val)\n for key, val in iteritems(immutable):\n valid_val = output_cls._props[key].validate(instance, val)\n instance._backend[key] = valid_val\n if assert_valid and not instance.validate():\n raise utils.ValidationError('Deserialized instance is not valid')\n return instance\n", "role": "user" }, { "content": "deserialize", "role": "assistant" } ]
def x(cls, input_cls_name, trusted, strict): if not input_cls_name or input_cls_name == cls.__name__: return cls if trusted and input_cls_name in cls._REGISTRY: return cls._REGISTRY[input_cls_name] if strict: raise ValueError( 'Class name {} from deserialization input dictionary does not match input class {}' .format(input_cls_name, cls.__name__)) return cls
deserialize_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, input_cls_name, trusted, strict):\n if not input_cls_name or input_cls_name == cls.__name__:\n return cls\n if trusted and input_cls_name in cls._REGISTRY:\n return cls._REGISTRY[input_cls_name]\n if strict:\n raise ValueError(\n 'Class name {} from deserialization input dictionary does not match input class {}'\n .format(input_cls_name, cls.__name__))\n return cls\n", "role": "user" }, { "content": "deserialize_class", "role": "assistant" } ]
def x(self, status): status = Instance('', TaskStatus).validate(None, status) print('{taskname} | {percent:>3}% | {message}'.format(taskname=self. __class__.__name__, percent=int(round(100 * status.progress)), message=status.message if status.message else ''))
report_status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, status):\n status = Instance('', TaskStatus).validate(None, status)\n print('{taskname} | {percent:>3}% | {message}'.format(taskname=self.\n __class__.__name__, percent=int(round(100 * status.progress)),\n message=status.message if status.message else ''))\n", "role": "user" }, { "content": "report_status", "role": "assistant" } ]
def x(self, include_class=True, save_dynamic=False, **kwargs): registry = kwargs.pop('registry', None) if registry is None: registry = dict() if not registry: root = True registry.update({'__root__': self.uid}) else: root = False key = self.uid if key not in registry: registry.update({key: None}) registry.update({key: super(HasUID, self).serialize(registry= registry, include_class=include_class, save_dynamic= save_dynamic, **kwargs)}) if root: return registry return key
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, include_class=True, save_dynamic=False, **kwargs):\n registry = kwargs.pop('registry', None)\n if registry is None:\n registry = dict()\n if not registry:\n root = True\n registry.update({'__root__': self.uid})\n else:\n root = False\n key = self.uid\n if key not in registry:\n registry.update({key: None})\n registry.update({key: super(HasUID, self).serialize(registry=\n registry, include_class=include_class, save_dynamic=\n save_dynamic, **kwargs)})\n if root:\n return registry\n return key\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs): registry = kwargs.pop('registry', None) if registry is None: if not isinstance(value, dict): raise ValueError('HasUID must deserialize from dictionary') registry = value.copy() uid = kwargs.get('root', registry.get('__root__')) else: uid = value if uid in cls._INSTANCES and uid not in registry: return cls._INSTANCES[uid] if uid in cls._INSTANCES: raise ValueError('UID already used: {}'.format(uid)) if uid not in registry: raise ValueError('Invalid UID: {}'.format(uid)) value = registry[uid] if not isinstance(value, HasUID): try: input_class = value.get('__class__') except AttributeError: input_class = None new_cls = cls._deserialize_class(input_class, trusted, strict) new_inst = new_cls() registry.update({uid: new_inst}) super(HasUID, cls).deserialize(value=value, trusted=trusted, strict =strict, registry=registry, _instance=new_inst, **kwargs) cls._INSTANCES[uid] = registry[uid] return registry[uid]
deserialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, value, trusted=False, strict=False, assert_valid=False, **kwargs):\n registry = kwargs.pop('registry', None)\n if registry is None:\n if not isinstance(value, dict):\n raise ValueError('HasUID must deserialize from dictionary')\n registry = value.copy()\n uid = kwargs.get('root', registry.get('__root__'))\n else:\n uid = value\n if uid in cls._INSTANCES and uid not in registry:\n return cls._INSTANCES[uid]\n if uid in cls._INSTANCES:\n raise ValueError('UID already used: {}'.format(uid))\n if uid not in registry:\n raise ValueError('Invalid UID: {}'.format(uid))\n value = registry[uid]\n if not isinstance(value, HasUID):\n try:\n input_class = value.get('__class__')\n except AttributeError:\n input_class = None\n new_cls = cls._deserialize_class(input_class, trusted, strict)\n new_inst = new_cls()\n registry.update({uid: new_inst})\n super(HasUID, cls).deserialize(value=value, trusted=trusted, strict\n =strict, registry=registry, _instance=new_inst, **kwargs)\n cls._INSTANCES[uid] = registry[uid]\n return registry[uid]\n", "role": "user" }, { "content": "deserialize", "role": "assistant" } ]
def x(self, value, **kwargs): kwargs.update({'trusted': kwargs.get('trusted', False)}) if self.deserializer is not None: return self.deserializer(value, **kwargs) if value is None: return None if isinstance(value, string_types): return value if issubclass(self.instance_class, base.HasProperties): return self.instance_class.deserialize(value, **kwargs) return self.from_json(value, **kwargs)
deserialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value, **kwargs):\n kwargs.update({'trusted': kwargs.get('trusted', False)})\n if self.deserializer is not None:\n return self.deserializer(value, **kwargs)\n if value is None:\n return None\n if isinstance(value, string_types):\n return value\n if issubclass(self.instance_class, base.HasProperties):\n return self.instance_class.deserialize(value, **kwargs)\n return self.from_json(value, **kwargs)\n", "role": "user" }, { "content": "deserialize", "role": "assistant" } ]
def x(self, instance, value): if getattr(value, '__valid__', False): return value if isinstance(value, png.Image): pass else: value = super(ImagePNG, self).validate(instance, value) try: png.Reader(value).validate_signature() except png.FormatError: self.error(instance, value, extra='Open file is not PNG.') value.seek(0) output = BytesIO() output.name = self.filename output.__valid__ = True if isinstance(value, png.Image): value.save(output) else: fid = value fid.seek(0) output.write(fid.read()) fid.close() output.seek(0) return output
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, instance, value):\n if getattr(value, '__valid__', False):\n return value\n if isinstance(value, png.Image):\n pass\n else:\n value = super(ImagePNG, self).validate(instance, value)\n try:\n png.Reader(value).validate_signature()\n except png.FormatError:\n self.error(instance, value, extra='Open file is not PNG.')\n value.seek(0)\n output = BytesIO()\n output.name = self.filename\n output.__valid__ = True\n if isinstance(value, png.Image):\n value.save(output)\n else:\n fid = value\n fid.seek(0)\n output.write(fid.read())\n fid.close()\n output.seek(0)\n return output\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(value, **kwargs): b64rep = base64.b64encode(value.read()) value.seek(0) jsonrep = '{preamble}{b64}'.format(preamble=PNG_PREAMBLE, b64=b64rep. decode()) return jsonrep
to_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, **kwargs):\n b64rep = base64.b64encode(value.read())\n value.seek(0)\n jsonrep = '{preamble}{b64}'.format(preamble=PNG_PREAMBLE, b64=b64rep.\n decode())\n return jsonrep\n", "role": "user" }, { "content": "to_json", "role": "assistant" } ]
def x(value, **kwargs): if not value.startswith(PNG_PREAMBLE): raise ValueError('Not a valid base64-encoded PNG image') infile = BytesIO() rep = base64.b64decode(value[len(PNG_PREAMBLE):].encode('utf-8')) infile.write(rep) infile.seek(0) return infile
from_json
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, **kwargs):\n if not value.startswith(PNG_PREAMBLE):\n raise ValueError('Not a valid base64-encoded PNG image')\n infile = BytesIO()\n rep = base64.b64decode(value[len(PNG_PREAMBLE):].encode('utf-8'))\n infile.write(rep)\n infile.seek(0)\n return infile\n", "role": "user" }, { "content": "from_json", "role": "assistant" } ]
def x(schema, value, noun='value'): errors = schema.errors(value) if errors: error_details = '' for error in errors: if error.pointer: error_details += ' - %s: %s\n' % (error.pointer, error.message ) else: error_details += ' - %s\n' % error.message raise ValidationError('Invalid %s:\n%s' % (noun, error_details))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(schema, value, noun='value'):\n errors = schema.errors(value)\n if errors:\n error_details = ''\n for error in errors:\n if error.pointer:\n error_details += ' - %s: %s\\n' % (error.pointer, error.message\n )\n else:\n error_details += ' - %s\\n' % error.message\n raise ValidationError('Invalid %s:\\n%s' % (noun, error_details))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(kwargs, returns, is_method=False): def x(func): @wraps(func) def x(*passed_args, **passed_kwargs): max_allowed_passed_args_len = 0 if is_method and type(func) in (types.FunctionType, classmethod): max_allowed_passed_args_len = 1 if len(passed_args) > max_allowed_passed_args_len: raise PositionalError( 'You cannot call this with positional arguments.') validate(kwargs, passed_kwargs, 'keyword arguments') return_value = func(*passed_args, **passed_kwargs) validate(returns, return_value, 'return value') return return_value inner.__wrapped__ = func inner.__validated__ = True return inner return decorator
validate_call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kwargs, returns, is_method=False):\n\n def x(func):\n\n @wraps(func)\n def x(*passed_args, **passed_kwargs):\n max_allowed_passed_args_len = 0\n if is_method and type(func) in (types.FunctionType, classmethod):\n max_allowed_passed_args_len = 1\n if len(passed_args) > max_allowed_passed_args_len:\n raise PositionalError(\n 'You cannot call this with positional arguments.')\n validate(kwargs, passed_kwargs, 'keyword arguments')\n return_value = func(*passed_args, **passed_kwargs)\n validate(returns, return_value, 'return value')\n return return_value\n inner.__wrapped__ = func\n inner.__validated__ = True\n return inner\n return decorator\n", "role": "user" }, { "content": "validate_call", "role": "assistant" } ]
def x(error, pointer_or_prefix): if error.pointer: error.pointer = '{}.{}'.format(pointer_or_prefix, error.pointer) else: error.pointer = '{}'.format(pointer_or_prefix) return error
update_error_pointer
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(error, pointer_or_prefix):\n if error.pointer:\n error.pointer = '{}.{}'.format(pointer_or_prefix, error.pointer)\n else:\n error.pointer = '{}'.format(pointer_or_prefix)\n return error\n", "role": "user" }, { "content": "update_error_pointer", "role": "assistant" } ]
def x(self, contents=None, optional_keys=None, allow_extra_keys=None, description=None, replace_optional_keys=False): optional_keys = set(optional_keys or []) return Dictionary(contents=type(self.contents)((k, v) for d in (self. contents, contents) for k, v in six.iteritems(d)) if contents else self.contents, optional_keys=optional_keys if replace_optional_keys else self.optional_keys | optional_keys, allow_extra_keys=self. allow_extra_keys if allow_extra_keys is None else allow_extra_keys, description=self.description if description is None else description)
extend
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, contents=None, optional_keys=None, allow_extra_keys=None,\n description=None, replace_optional_keys=False):\n optional_keys = set(optional_keys or [])\n return Dictionary(contents=type(self.contents)((k, v) for d in (self.\n contents, contents) for k, v in six.iteritems(d)) if contents else\n self.contents, optional_keys=optional_keys if replace_optional_keys\n else self.optional_keys | optional_keys, allow_extra_keys=self.\n allow_extra_keys if allow_extra_keys is None else allow_extra_keys,\n description=self.description if description is None else description)\n", "role": "user" }, { "content": "extend", "role": "assistant" } ]
def x(self, value): if value not in self.values: return [Error(self._error_message, code=ERROR_CODE_UNKNOWN)] return []
errors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if value not in self.values:\n return [Error(self._error_message, code=ERROR_CODE_UNKNOWN)]\n return []\n", "role": "user" }, { "content": "errors", "role": "assistant" } ]
def x(self): if self.running_config.output_file: _, extension = op.splitext(self.running_config.output_file) extension = extension.replace('.', '') if extension not in self.ALLOWED_DUMP_FORMATS: raise PCException( f"Extension of dump file is not available. Allowed extensions are: {', '.join(self.ALLOWED_DUMP_FORMATS)}" ) with open(self.running_config.output_file, 'w') as f: if extension == 'csv': csv_writer = csv.writer(f) csv_writer.writerow(('# Name', 'CPE', 'CVE', 'Score', 'Summary')) csv_writer.writerows(self._to_csv()) elif extension == 'json': json.dump(self.results, f, indent=4, sort_keys=True) elif extension == 'raw': f.write(self._to_table())
dump
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.running_config.output_file:\n _, extension = op.splitext(self.running_config.output_file)\n extension = extension.replace('.', '')\n if extension not in self.ALLOWED_DUMP_FORMATS:\n raise PCException(\n f\"Extension of dump file is not available. Allowed extensions are: {', '.join(self.ALLOWED_DUMP_FORMATS)}\"\n )\n with open(self.running_config.output_file, 'w') as f:\n if extension == 'csv':\n csv_writer = csv.writer(f)\n csv_writer.writerow(('# Name', 'CPE', 'CVE', 'Score',\n 'Summary'))\n csv_writer.writerows(self._to_csv())\n elif extension == 'json':\n json.dump(self.results, f, indent=4, sort_keys=True)\n elif extension == 'raw':\n f.write(self._to_table())\n", "role": "user" }, { "content": "dump", "role": "assistant" } ]
def x(patton_config: PattonRunningConfig, dependency_or_banner: str= 'dependency') ->List[str]: def x() ->str: while sys.stdin in select.select([sys.stdin], [], [], 2)[0]: line = sys.stdin.readline() if line: yield line else: return dependencies = [] if patton_config.nargs_input: if dependency_or_banner == 'banner': dependencies.append(['cli_input', patton_config.nargs_input]) else: dependencies.extend(patton_config.nargs_input) if not sys.stdin.isatty(): input_read = ''.join(list(_read_stdin())) if input_read: if dependency_or_banner == 'banner': dependencies.append(['stdin', input_read]) else: dependencies.extend(input_read.splitlines()) if patton_config.data_from_file: f = op.abspath(op.join(op.abspath(os.getcwd()), patton_config. data_from_file)) with open(f, 'r') as f: if dependency_or_banner == 'banner': dependencies.append(['file', f.read()]) else: dependencies.extend(f.read().splitlines()) if not dependencies and not patton_config.follow_checking: raise PCException( 'You need to specify andy dependency from any kind of source: stdin, file of cli' ) return dependencies
get_data_from_sources
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(patton_config: PattonRunningConfig, dependency_or_banner: str=\n 'dependency') ->List[str]:\n\n def x() ->str:\n while sys.stdin in select.select([sys.stdin], [], [], 2)[0]:\n line = sys.stdin.readline()\n if line:\n yield line\n else:\n return\n dependencies = []\n if patton_config.nargs_input:\n if dependency_or_banner == 'banner':\n dependencies.append(['cli_input', patton_config.nargs_input])\n else:\n dependencies.extend(patton_config.nargs_input)\n if not sys.stdin.isatty():\n input_read = ''.join(list(_read_stdin()))\n if input_read:\n if dependency_or_banner == 'banner':\n dependencies.append(['stdin', input_read])\n else:\n dependencies.extend(input_read.splitlines())\n if patton_config.data_from_file:\n f = op.abspath(op.join(op.abspath(os.getcwd()), patton_config.\n data_from_file))\n with open(f, 'r') as f:\n if dependency_or_banner == 'banner':\n dependencies.append(['file', f.read()])\n else:\n dependencies.extend(f.read().splitlines())\n if not dependencies and not patton_config.follow_checking:\n raise PCException(\n 'You need to specify andy dependency from any kind of source: stdin, file of cli'\n )\n return dependencies\n", "role": "user" }, { "content": "get_data_from_sources", "role": "assistant" } ]
def x(banners: List[List[str]], patton_config: PattonRunningConfig) ->Set: result = set() for source_type, source_content in banners: if source_type == 'file': result.update(nmap_file(source_content)) return result
parse_banners
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(banners: List[List[str]], patton_config: PattonRunningConfig) ->Set:\n result = set()\n for source_type, source_content in banners:\n if source_type == 'file':\n result.update(nmap_file(source_content))\n return result\n", "role": "user" }, { "content": "parse_banners", "role": "assistant" } ]
def x(dependencies: List[List[str]], patton_config: PattonRunningConfig ) ->Dict: result = {} for source_type, source_content in dependencies: parser = DEPENDENCIES_PARSERS[patton_config.source_type] if not source_content: continue if source_type == 'cli_input': fixed_source = '\n'.join(source_content) else: fixed_source = source_content result.update(parser(fixed_source, patton_config)) return result
parse_dependencies
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dependencies: List[List[str]], patton_config: PattonRunningConfig\n ) ->Dict:\n result = {}\n for source_type, source_content in dependencies:\n parser = DEPENDENCIES_PARSERS[patton_config.source_type]\n if not source_content:\n continue\n if source_type == 'cli_input':\n fixed_source = '\\n'.join(source_content)\n else:\n fixed_source = source_content\n result.update(parser(fixed_source, patton_config))\n return result\n", "role": "user" }, { "content": "parse_dependencies", "role": "assistant" } ]
def x(app): docs_path = os.path.abspath(os.path.dirname(__file__)) root_path = os.path.abspath(os.path.join(docs_path, '..')) apidoc_path = 'sphinx-apidoc' swg2rst_path = 'swg2rst' if hasattr(sys, 'real_prefix'): bin_path = os.path.abspath(os.path.join(sys.prefix, 'bin')) apidoc_path = os.path.join(bin_path, apidoc_path) swg2rst_path = os.path.join(bin_path, swg2rst_path) check_call([apidoc_path, '-o', docs_path, os.path.join(root_path, 'user_tasks'), os.path.join(root_path, 'user_tasks/migrations')]) json_path = os.path.join(docs_path, 'swagger.json') rst_path = os.path.join(docs_path, 'rest_api.rst') check_call([swg2rst_path, json_path, '-f', 'rst', '-o', rst_path])
on_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(app):\n docs_path = os.path.abspath(os.path.dirname(__file__))\n root_path = os.path.abspath(os.path.join(docs_path, '..'))\n apidoc_path = 'sphinx-apidoc'\n swg2rst_path = 'swg2rst'\n if hasattr(sys, 'real_prefix'):\n bin_path = os.path.abspath(os.path.join(sys.prefix, 'bin'))\n apidoc_path = os.path.join(bin_path, apidoc_path)\n swg2rst_path = os.path.join(bin_path, swg2rst_path)\n check_call([apidoc_path, '-o', docs_path, os.path.join(root_path,\n 'user_tasks'), os.path.join(root_path, 'user_tasks/migrations')])\n json_path = os.path.join(docs_path, 'swagger.json')\n rst_path = os.path.join(docs_path, 'rest_api.rst')\n check_call([swg2rst_path, json_path, '-f', 'rst', '-o', rst_path])\n", "role": "user" }, { "content": "on_init", "role": "assistant" } ]
def x(sender=None, body=None, **kwargs): try: task_class = import_string(sender) except ImportError: return if issubclass(task_class.__class__, UserTaskMixin): arguments_dict = task_class.arguments_as_dict(*body['args'], **body ['kwargs']) user_id = _get_user_id(arguments_dict) task_id = body['id'] if body.get('callbacks', []): return _create_chain_entry(user_id, task_id, task_class, body[ 'args'], body['kwargs'], body['callbacks']) if body.get('chord', None): return _create_chord_entry(task_id, task_class, body, user_id) parent = _get_or_create_group_parent(body, user_id) name = task_class.generate_name(arguments_dict) total_steps = task_class.calculate_total_steps(arguments_dict) UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={ 'user_id': user_id, 'parent': parent, 'name': name, 'task_class': sender, 'total_steps': total_steps}) if parent: parent.increment_total_steps(total_steps)
create_user_task
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender=None, body=None, **kwargs):\n try:\n task_class = import_string(sender)\n except ImportError:\n return\n if issubclass(task_class.__class__, UserTaskMixin):\n arguments_dict = task_class.arguments_as_dict(*body['args'], **body\n ['kwargs'])\n user_id = _get_user_id(arguments_dict)\n task_id = body['id']\n if body.get('callbacks', []):\n return _create_chain_entry(user_id, task_id, task_class, body[\n 'args'], body['kwargs'], body['callbacks'])\n if body.get('chord', None):\n return _create_chord_entry(task_id, task_class, body, user_id)\n parent = _get_or_create_group_parent(body, user_id)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={\n 'user_id': user_id, 'parent': parent, 'name': name,\n 'task_class': sender, 'total_steps': total_steps})\n if parent:\n parent.increment_total_steps(total_steps)\n", "role": "user" }, { "content": "create_user_task", "role": "assistant" } ]
def x(user_id, task_id, task_class, args, kwargs, callbacks, parent=None): LOGGER.debug(task_class) if issubclass(task_class.__class__, UserTaskMixin): arguments_dict = task_class.arguments_as_dict(*args, **kwargs) name = task_class.generate_name(arguments_dict) total_steps = task_class.calculate_total_steps(arguments_dict) parent_name = kwargs.get('user_task_name', '') with transaction.atomic(): if parent is None: parent = UserTaskStatus.objects.create(is_container=True, name=parent_name, task_class='celery.chain', task_id= str(uuid4()), total_steps=0, user_id=user_id) UserTaskStatus.objects.create(name=name, parent=parent, task_class=task_class, task_id=task_id, total_steps= total_steps, user_id=user_id) parent.increment_total_steps(total_steps) if parent_name and not parent.name: parent.set_name(parent_name) for callback in callbacks: links = callback.options.get('link', []) callback_class = import_string(callback.task) _create_chain_entry(user_id, callback.id, callback_class, callback. args, callback.kwargs, links, parent=parent)
create_chain_entry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(user_id, task_id, task_class, args, kwargs, callbacks, parent=None):\n LOGGER.debug(task_class)\n if issubclass(task_class.__class__, UserTaskMixin):\n arguments_dict = task_class.arguments_as_dict(*args, **kwargs)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n parent_name = kwargs.get('user_task_name', '')\n with transaction.atomic():\n if parent is None:\n parent = UserTaskStatus.objects.create(is_container=True,\n name=parent_name, task_class='celery.chain', task_id=\n str(uuid4()), total_steps=0, user_id=user_id)\n UserTaskStatus.objects.create(name=name, parent=parent,\n task_class=task_class, task_id=task_id, total_steps=\n total_steps, user_id=user_id)\n parent.increment_total_steps(total_steps)\n if parent_name and not parent.name:\n parent.set_name(parent_name)\n for callback in callbacks:\n links = callback.options.get('link', [])\n callback_class = import_string(callback.task)\n _create_chain_entry(user_id, callback.id, callback_class, callback.\n args, callback.kwargs, links, parent=parent)\n", "role": "user" }, { "content": "create_chain_entry", "role": "assistant" } ]
def x(task_id, task_class, message_body, user_id): args = message_body['args'] kwargs = message_body['kwargs'] arguments_dict = task_class.arguments_as_dict(*args, **kwargs) name = task_class.generate_name(arguments_dict) total_steps = task_class.calculate_total_steps(arguments_dict) parent_name = kwargs.get('user_task_name', '') chord_data = message_body['chord'] group_id = message_body['taskset'] with transaction.atomic(): group, created = UserTaskStatus.objects.get_or_create(task_id= group_id, defaults={'is_container': True, 'name': parent_name, 'task_class': 'celery.group', 'total_steps': total_steps, 'user_id': user_id}) if created: chord = UserTaskStatus.objects.create(is_container=True, name= parent_name, task_class='celery.chord', task_id=str(uuid4() ), total_steps=total_steps, user_id=user_id) group.parent = chord group.save(update_fields={'parent', 'modified'}) else: chord = None group.increment_total_steps(total_steps) if parent_name and not group.name: group.set_name(parent_name) UserTaskStatus.objects.create(name=name, parent=group, task_class= task_class, task_id=task_id, total_steps=total_steps, user_id= user_id) if not created: return task_id = chord_data['options']['task_id'] body_task = chord_data['task'] body_class = import_string(body_task).__class__ if not issubclass(body_class, UserTaskMixin): return args = chord_data['args'] kwargs = chord_data['kwargs'] arguments_dict = body_class.arguments_as_dict(*args, **kwargs) name = body_class.generate_name(arguments_dict) total_steps = body_class.calculate_total_steps(arguments_dict) UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={ 'name': name, 'parent': chord, 'task_class': body_task, 'total_steps': total_steps, 'user_id': user_id}) chord.increment_total_steps(total_steps)
create_chord_entry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(task_id, task_class, message_body, user_id):\n args = message_body['args']\n kwargs = message_body['kwargs']\n arguments_dict = task_class.arguments_as_dict(*args, **kwargs)\n name = task_class.generate_name(arguments_dict)\n total_steps = task_class.calculate_total_steps(arguments_dict)\n parent_name = kwargs.get('user_task_name', '')\n chord_data = message_body['chord']\n group_id = message_body['taskset']\n with transaction.atomic():\n group, created = UserTaskStatus.objects.get_or_create(task_id=\n group_id, defaults={'is_container': True, 'name': parent_name,\n 'task_class': 'celery.group', 'total_steps': total_steps,\n 'user_id': user_id})\n if created:\n chord = UserTaskStatus.objects.create(is_container=True, name=\n parent_name, task_class='celery.chord', task_id=str(uuid4()\n ), total_steps=total_steps, user_id=user_id)\n group.parent = chord\n group.save(update_fields={'parent', 'modified'})\n else:\n chord = None\n group.increment_total_steps(total_steps)\n if parent_name and not group.name:\n group.set_name(parent_name)\n UserTaskStatus.objects.create(name=name, parent=group, task_class=\n task_class, task_id=task_id, total_steps=total_steps, user_id=\n user_id)\n if not created:\n return\n task_id = chord_data['options']['task_id']\n body_task = chord_data['task']\n body_class = import_string(body_task).__class__\n if not issubclass(body_class, UserTaskMixin):\n return\n args = chord_data['args']\n kwargs = chord_data['kwargs']\n arguments_dict = body_class.arguments_as_dict(*args, **kwargs)\n name = body_class.generate_name(arguments_dict)\n total_steps = body_class.calculate_total_steps(arguments_dict)\n UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={\n 'name': name, 'parent': chord, 'task_class': body_task,\n 'total_steps': total_steps, 'user_id': user_id})\n chord.increment_total_steps(total_steps)\n", "role": "user" }, { "content": "create_chord_entry", "role": "assistant" } ]
def x(message_body, user_id): parent_id = message_body.get('taskset', None) if not parent_id: return None parent_class = 'celery.group' parent_name = message_body['kwargs'].get('user_task_name', '') parent, _ = UserTaskStatus.objects.get_or_create(task_id=parent_id, defaults={'is_container': True, 'name': parent_name, 'task_class': parent_class, 'total_steps': 0, 'user_id': user_id}) if parent_name and not parent.name: parent.name = parent_name parent.save(update_fields={'name', 'modified'}) return parent
get_or_create_group_parent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(message_body, user_id):\n parent_id = message_body.get('taskset', None)\n if not parent_id:\n return None\n parent_class = 'celery.group'\n parent_name = message_body['kwargs'].get('user_task_name', '')\n parent, _ = UserTaskStatus.objects.get_or_create(task_id=parent_id,\n defaults={'is_container': True, 'name': parent_name, 'task_class':\n parent_class, 'total_steps': 0, 'user_id': user_id})\n if parent_name and not parent.name:\n parent.name = parent_name\n parent.save(update_fields={'name', 'modified'})\n return parent\n", "role": "user" }, { "content": "get_or_create_group_parent", "role": "assistant" } ]
def x(arguments_dict): if 'user_id' not in arguments_dict: raise TypeError( 'Each invocation of a UserTaskMixin subclass must include the user_id' ) user_id = arguments_dict['user_id'] try: get_user_model().objects.get(pk=user_id) except (ValueError, get_user_model().DoesNotExist): raise TypeError('Invalid user_id: {}'.format(user_id)) return user_id
get_user_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arguments_dict):\n if 'user_id' not in arguments_dict:\n raise TypeError(\n 'Each invocation of a UserTaskMixin subclass must include the user_id'\n )\n user_id = arguments_dict['user_id']\n try:\n get_user_model().objects.get(pk=user_id)\n except (ValueError, get_user_model().DoesNotExist):\n raise TypeError('Invalid user_id: {}'.format(user_id))\n return user_id\n", "role": "user" }, { "content": "get_user_id", "role": "assistant" } ]
def x(sender=None, **kwargs): if isinstance(sender, UserTaskMixin): exception = kwargs['exception'] if not isinstance(exception, TaskCanceledException): sender.status.fail(str(exception)) user_task_stopped.send_robust(sender=UserTaskStatus, status=sender. status)
task_failed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender=None, **kwargs):\n if isinstance(sender, UserTaskMixin):\n exception = kwargs['exception']\n if not isinstance(exception, TaskCanceledException):\n sender.status.fail(str(exception))\n user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.\n status)\n", "role": "user" }, { "content": "task_failed", "role": "assistant" } ]
def x(sender=None, **kwargs): if isinstance(sender, UserTaskMixin): status = sender.status if status.state not in (UserTaskStatus.CANCELED, UserTaskStatus. FAILED, UserTaskStatus.RETRYING): status.succeed() user_task_stopped.send_robust(sender=UserTaskStatus, status=sender. status)
task_succeeded
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender=None, **kwargs):\n if isinstance(sender, UserTaskMixin):\n status = sender.status\n if status.state not in (UserTaskStatus.CANCELED, UserTaskStatus.\n FAILED, UserTaskStatus.RETRYING):\n status.succeed()\n user_task_stopped.send_robust(sender=UserTaskStatus, status=sender.\n status)\n", "role": "user" }, { "content": "task_succeeded", "role": "assistant" } ]
def x(arr, colors, values): hcolors = np.array([rgb2hcl(*i[:3]) for i in colors]) hcolors[:, 0] = np.rad2deg(np.unwrap(np.deg2rad(np.array(hcolors)[:, 0]))) channels = [np.interp(arr, np.array(values), np.array(hcolors)[:, i]) for i in range(3)] channels = list(hcl2rgb(*channels)) rest = [np.interp(arr, np.array(values), np.array(colors)[:, i + 3]) for i in range(np.array(colors).shape[1] - 3)] channels.extend(rest) try: return [np.ma.array(channel, mask=arr.mask) for channel in channels] except AttributeError: return channels
colorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, colors, values):\n hcolors = np.array([rgb2hcl(*i[:3]) for i in colors])\n hcolors[:, 0] = np.rad2deg(np.unwrap(np.deg2rad(np.array(hcolors)[:, 0])))\n channels = [np.interp(arr, np.array(values), np.array(hcolors)[:, i]) for\n i in range(3)]\n channels = list(hcl2rgb(*channels))\n rest = [np.interp(arr, np.array(values), np.array(colors)[:, i + 3]) for\n i in range(np.array(colors).shape[1] - 3)]\n channels.extend(rest)\n try:\n return [np.ma.array(channel, mask=arr.mask) for channel in channels]\n except AttributeError:\n return channels\n", "role": "user" }, { "content": "colorize", "role": "assistant" } ]
def x(arr, colors, values): new_arr = np.digitize(arr.ravel(), np.concatenate((values, [max(np. nanmax(arr), values.max()) + 1]))) new_arr -= 1 new_arr = new_arr.clip(min=0, max=len(values) - 1) try: new_arr = np.ma.array(new_arr.reshape(arr.shape), mask=arr.mask) except AttributeError: new_arr = new_arr.reshape(arr.shape) return new_arr, tuple(colors)
palettize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(arr, colors, values):\n new_arr = np.digitize(arr.ravel(), np.concatenate((values, [max(np.\n nanmax(arr), values.max()) + 1])))\n new_arr -= 1\n new_arr = new_arr.clip(min=0, max=len(values) - 1)\n try:\n new_arr = np.ma.array(new_arr.reshape(arr.shape), mask=arr.mask)\n except AttributeError:\n new_arr = new_arr.reshape(arr.shape)\n return new_arr, tuple(colors)\n", "role": "user" }, { "content": "palettize", "role": "assistant" } ]
def x(height, length, colormap): cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1)) cbar = cbar * (colormap.values.max() - colormap.values.min() ) + colormap.values.min() return colormap.colorize(cbar)
colorbar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(height, length, colormap):\n cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))\n cbar = cbar * (colormap.values.max() - colormap.values.min()\n ) + colormap.values.min()\n return colormap.colorize(cbar)\n", "role": "user" }, { "content": "colorbar", "role": "assistant" } ]
def x(height, length, colormap): cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1)) cbar = cbar * (colormap.values.max() + 1 - colormap.values.min() ) + colormap.values.min() return colormap.palettize(cbar)
palettebar
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(height, length, colormap):\n cbar = np.tile(np.arange(length) * 1.0 / (length - 1), (height, 1))\n cbar = cbar * (colormap.values.max() + 1 - colormap.values.min()\n ) + colormap.values.min()\n return colormap.palettize(cbar)\n", "role": "user" }, { "content": "palettebar", "role": "assistant" } ]
def x(self, min_val, max_val): if min_val > max_val: max_val, min_val = min_val, max_val self.values = (self.values * 1.0 - self.values.min()) / (self.values. max() - self.values.min()) * (max_val - min_val) + min_val
set_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, min_val, max_val):\n if min_val > max_val:\n max_val, min_val = min_val, max_val\n self.values = (self.values * 1.0 - self.values.min()) / (self.values.\n max() - self.values.min()) * (max_val - min_val) + min_val\n", "role": "user" }, { "content": "set_range", "role": "assistant" } ]
def x(self): self.colors = (self.colors * 1.0 - self.colors.min()) / (self.colors. max() - self.colors.min()) * 255 return dict(zip(self.values, tuple(map(tuple, self.colors))))
to_rio
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.colors = (self.colors * 1.0 - self.colors.min()) / (self.colors.\n max() - self.colors.min()) * 255\n return dict(zip(self.values, tuple(map(tuple, self.colors))))\n", "role": "user" }, { "content": "to_rio", "role": "assistant" } ]
def x(self, request, *args, **kwargs): status = self.get_object() status.cancel() serializer = StatusSerializer(status, context={'request': request}) return Response(serializer.data)
cancel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, *args, **kwargs):\n status = self.get_object()\n status.cancel()\n serializer = StatusSerializer(status, context={'request': request})\n return Response(serializer.data)\n", "role": "user" }, { "content": "cancel", "role": "assistant" } ]
def x(request): generator = schemas.SchemaGenerator(title='django-user-tasks REST API') return response.Response(generator.get_schema())
swagger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n generator = schemas.SchemaGenerator(title='django-user-tasks REST API')\n return response.Response(generator.get_schema())\n", "role": "user" }, { "content": "swagger", "role": "assistant" } ]
def x(self, data, accepted_media_type=None, renderer_context=None): if 'SWAGGER_JSON_PATH' in os.environ: with io.open(os.environ['SWAGGER_JSON_PATH'], 'rb') as f: return f.read() else: return super(ConditionalOpenAPIRenderer, self).render(data, accepted_media_type, renderer_context)
render
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data, accepted_media_type=None, renderer_context=None):\n if 'SWAGGER_JSON_PATH' in os.environ:\n with io.open(os.environ['SWAGGER_JSON_PATH'], 'rb') as f:\n return f.read()\n else:\n return super(ConditionalOpenAPIRenderer, self).render(data,\n accepted_media_type, renderer_context)\n", "role": "user" }, { "content": "render", "role": "assistant" } ]
def x(): rules.add_perm('user_tasks.view_usertaskstatus', STATUS_PERMISSION) rules.add_perm('user_tasks.cancel_usertaskstatus', STATUS_PERMISSION) rules.add_perm('user_tasks.change_usertaskstatus', rules.predicates. is_superuser) rules.add_perm('user_tasks.delete_usertaskstatus', STATUS_PERMISSION) rules.add_perm('user_tasks.view_usertaskartifact', ARTIFACT_PERMISSION) rules.add_perm('user_tasks.change_usertaskartifact', rules.predicates. is_superuser) rules.add_perm('user_tasks.delete_usertaskartifact', rules.predicates. is_superuser)
add_rules
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n rules.add_perm('user_tasks.view_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.cancel_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.change_usertaskstatus', rules.predicates.\n is_superuser)\n rules.add_perm('user_tasks.delete_usertaskstatus', STATUS_PERMISSION)\n rules.add_perm('user_tasks.view_usertaskartifact', ARTIFACT_PERMISSION)\n rules.add_perm('user_tasks.change_usertaskartifact', rules.predicates.\n is_superuser)\n rules.add_perm('user_tasks.delete_usertaskartifact', rules.predicates.\n is_superuser)\n", "role": "user" }, { "content": "add_rules", "role": "assistant" } ]
def x(self, request, queryset, view): if request.user.is_superuser: return queryset return queryset.filter(status__user=request.user)
filter_queryset
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, queryset, view):\n if request.user.is_superuser:\n return queryset\n return queryset.filter(status__user=request.user)\n", "role": "user" }, { "content": "filter_queryset", "role": "assistant" } ]
def x(value, norm=False, cat=1, tot=1, offset=0.5, hex=False): tokens = value.split() if hex: for i in range(len(tokens)): tokens[i] = _hex_to_rgb(tokens[i]) transparency = float(cat) / float(tot) + offset if transparency > 1.0: transparency = 1.0 if norm: return float(tokens[0]) / 255.0, float(tokens[1]) / 255.0, float(tokens [2]) / 255.0, transparency else: return int(tokens[0]), int(tokens[1]), int(tokens[2]), int(round( transparency * 255.0))
text_to_rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, norm=False, cat=1, tot=1, offset=0.5, hex=False):\n tokens = value.split()\n if hex:\n for i in range(len(tokens)):\n tokens[i] = _hex_to_rgb(tokens[i])\n transparency = float(cat) / float(tot) + offset\n if transparency > 1.0:\n transparency = 1.0\n if norm:\n return float(tokens[0]) / 255.0, float(tokens[1]) / 255.0, float(tokens\n [2]) / 255.0, transparency\n else:\n return int(tokens[0]), int(tokens[1]), int(tokens[2]), int(round(\n transparency * 255.0))\n", "role": "user" }, { "content": "text_to_rgb", "role": "assistant" } ]
def x(colors, position=None, bit=False): bit_rgb = np.linspace(0, 1, 256) if position == None: position = np.linspace(0, 1, len(colors)) elif len(position) != len(colors): sys.exit('position length must be the same as colors') elif position[0] != 0 or position[-1] != 1: sys.exit('position must start with 0 and end with 1') palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g, b, a) in enumerate(colors)] cmap = Colormap(*palette) return cmap
make_cmap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(colors, position=None, bit=False):\n bit_rgb = np.linspace(0, 1, 256)\n if position == None:\n position = np.linspace(0, 1, len(colors))\n elif len(position) != len(colors):\n sys.exit('position length must be the same as colors')\n elif position[0] != 0 or position[-1] != 1:\n sys.exit('position must start with 0 and end with 1')\n palette = [(i, (float(r), float(g), float(b), float(a))) for i, (r, g,\n b, a) in enumerate(colors)]\n cmap = Colormap(*palette)\n return cmap\n", "role": "user" }, { "content": "make_cmap", "role": "assistant" } ]
def x(filename, norm=False, transparency=False, hex=False): lines = [line.rstrip('\n') for line in open(filename)] _colors = [] _tot = len(lines) _index = 1 for i in lines: if transparency: _colors.append(_text_to_rgb(i, norm=norm, cat=_index, tot=_tot, hex=hex)) else: _colors.append(_text_to_rgb(i, norm=norm, hex=hex)) _index = _index + 1 return _make_cmap(_colors)
cmap_from_text
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, norm=False, transparency=False, hex=False):\n lines = [line.rstrip('\\n') for line in open(filename)]\n _colors = []\n _tot = len(lines)\n _index = 1\n for i in lines:\n if transparency:\n _colors.append(_text_to_rgb(i, norm=norm, cat=_index, tot=_tot,\n hex=hex))\n else:\n _colors.append(_text_to_rgb(i, norm=norm, hex=hex))\n _index = _index + 1\n return _make_cmap(_colors)\n", "role": "user" }, { "content": "cmap_from_text", "role": "assistant" } ]
def x(filepath): im = Pimage.open(filepath).convert('RGB') width, height = im.size _r = np.array(list(im.getdata(0))) / 255.0 _g = np.array(list(im.getdata(1))) / 255.0 _b = np.array(list(im.getdata(2))) / 255.0 _r = _r.reshape((height, width)) _g = _g.reshape((height, width)) _b = _b.reshape((height, width)) return _r, _g, _b
image2array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filepath):\n im = Pimage.open(filepath).convert('RGB')\n width, height = im.size\n _r = np.array(list(im.getdata(0))) / 255.0\n _g = np.array(list(im.getdata(1))) / 255.0\n _b = np.array(list(im.getdata(2))) / 255.0\n _r = _r.reshape((height, width))\n _g = _g.reshape((height, width))\n _b = _b.reshape((height, width))\n return _r, _g, _b\n", "role": "user" }, { "content": "image2array", "role": "assistant" } ]
def x(fformat): cases = {'jpg': 'jpeg', 'jpeg': 'jpeg', 'tif': 'tiff', 'tiff': 'tif', 'pgm': 'ppm', 'pbm': 'ppm', 'ppm': 'ppm', 'bmp': 'bmp', 'dib': 'bmp', 'gif': 'gif', 'im': 'im', 'pcx': 'pcx', 'png': 'png', 'xbm': 'xbm', 'xpm': 'xpm', 'jp2': 'jp2'} fformat = fformat.lower() try: fformat = cases[fformat] except KeyError: raise UnknownImageFormat("Unknown image format '%s'." % fformat) return fformat
check_image_format
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(fformat):\n cases = {'jpg': 'jpeg', 'jpeg': 'jpeg', 'tif': 'tiff', 'tiff': 'tif',\n 'pgm': 'ppm', 'pbm': 'ppm', 'ppm': 'ppm', 'bmp': 'bmp', 'dib':\n 'bmp', 'gif': 'gif', 'im': 'im', 'pcx': 'pcx', 'png': 'png', 'xbm':\n 'xbm', 'xpm': 'xpm', 'jp2': 'jp2'}\n fformat = fformat.lower()\n try:\n fformat = cases[fformat]\n except KeyError:\n raise UnknownImageFormat(\"Unknown image format '%s'.\" % fformat)\n return fformat\n", "role": "user" }, { "content": "check_image_format", "role": "assistant" } ]
def x(item): return isinstance(item, (list, tuple, set)) and len(item ) == 2 and not isinstance(item[0], (list, tuple, set) ) and not isinstance(item[1], (list, tuple, set))
is_pair
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(item):\n return isinstance(item, (list, tuple, set)) and len(item\n ) == 2 and not isinstance(item[0], (list, tuple, set)\n ) and not isinstance(item[1], (list, tuple, set))\n", "role": "user" }, { "content": "is_pair", "role": "assistant" } ]
def x(y__, cb_, cr_): kb_ = 0.114 kr_ = 0.299 r__ = 2 * cr_ / (1 - kr_) + y__ b__ = 2 * cb_ / (1 - kb_) + y__ g__ = (y__ - kr_ * r__ - kb_ * b__) / (1 - kr_ - kb_) return r__, g__, b__
ycbcr2rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(y__, cb_, cr_):\n kb_ = 0.114\n kr_ = 0.299\n r__ = 2 * cr_ / (1 - kr_) + y__\n b__ = 2 * cb_ / (1 - kb_) + y__\n g__ = (y__ - kr_ * r__ - kb_ * b__) / (1 - kr_ - kb_)\n return r__, g__, b__\n", "role": "user" }, { "content": "ycbcr2rgb", "role": "assistant" } ]
def x(self, chn, color_min, color_max): if isinstance(chn, np.ma.core.MaskedArray): chn_data = chn.data chn_mask = chn.mask else: chn_data = np.array(chn) chn_mask = False scaled = (chn_data - color_min) * 1.0 / (color_max - color_min) self.channels.append(np.ma.array(scaled, mask=chn_mask))
add_channel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, chn, color_min, color_max):\n if isinstance(chn, np.ma.core.MaskedArray):\n chn_data = chn.data\n chn_mask = chn.mask\n else:\n chn_data = np.array(chn)\n chn_mask = False\n scaled = (chn_data - color_min) * 1.0 / (color_max - color_min)\n self.channels.append(np.ma.array(scaled, mask=chn_mask))\n", "role": "user" }, { "content": "add_channel", "role": "assistant" } ]
def x(self, dtype=np.uint8): channels = [] if self.mode == 'P': self.convert('RGB') if self.mode == 'PA': self.convert('RGBA') for chn in self.channels: if isinstance(chn, np.ma.core.MaskedArray): final_data = chn.data.clip(0, 1) * np.iinfo(dtype).max else: final_data = chn.clip(0, 1) * np.iinfo(dtype).max if np.issubdtype(dtype, np.integer): final_data = np.round(final_data) channels.append(np.ma.array(final_data, dtype, mask=np.ma. getmaskarray(chn))) if self.fill_value is not None: fill_value = [int(col * np.iinfo(dtype).max) for col in self.fill_value ] else: fill_value = None return channels, fill_value
finalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, dtype=np.uint8):\n channels = []\n if self.mode == 'P':\n self.convert('RGB')\n if self.mode == 'PA':\n self.convert('RGBA')\n for chn in self.channels:\n if isinstance(chn, np.ma.core.MaskedArray):\n final_data = chn.data.clip(0, 1) * np.iinfo(dtype).max\n else:\n final_data = chn.clip(0, 1) * np.iinfo(dtype).max\n if np.issubdtype(dtype, np.integer):\n final_data = np.round(final_data)\n channels.append(np.ma.array(final_data, dtype, mask=np.ma.\n getmaskarray(chn)))\n if self.fill_value is not None:\n fill_value = [int(col * np.iinfo(dtype).max) for col in self.fill_value\n ]\n else:\n fill_value = None\n return channels, fill_value\n", "role": "user" }, { "content": "finalize", "role": "assistant" } ]
def x(self): if self.channels == [] and not self.shape == (0, 0 ) or not self.channels == [] and self.shape == (0, 0): raise RuntimeError('Channels-shape mismatch.') return self.channels == [] and self.shape == (0, 0)
is_empty
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.channels == [] and not self.shape == (0, 0\n ) or not self.channels == [] and self.shape == (0, 0):\n raise RuntimeError('Channels-shape mismatch.')\n return self.channels == [] and self.shape == (0, 0)\n", "role": "user" }, { "content": "is_empty", "role": "assistant" } ]
def x(self): channels, fill_value = self._finalize() if self.is_empty(): return Pil.new(self.mode, (0, 0)) if self.mode == 'L': if fill_value is not None: img = Pil.fromarray(channels[0].filled(fill_value)) else: img = Pil.fromarray(channels[0].filled(0)) alpha = np.zeros(channels[0].shape, np.uint8) mask = np.ma.getmaskarray(channels[0]) alpha = np.where(mask, alpha, 255) pil_alpha = Pil.fromarray(alpha) img = Pil.merge('LA', (img, pil_alpha)) elif self.mode == 'LA': if fill_value is not None: img = Pil.fromarray(channels[0].filled(fill_value)) pil_alpha = Pil.fromarray(channels[1]) else: img = Pil.fromarray(channels[0].filled(0)) alpha = np.zeros(channels[0].shape, np.uint8) mask = np.ma.getmaskarray(channels[0]) alpha = np.where(mask, alpha, channels[1]) pil_alpha = Pil.fromarray(alpha) img = Pil.merge('LA', (img, pil_alpha)) elif self.mode == 'RGB': mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1] ) & np.ma.getmaskarray(channels[2]) if fill_value is not None: pil_r = Pil.fromarray(channels[0].filled(fill_value[0])) pil_g = Pil.fromarray(channels[1].filled(fill_value[1])) pil_b = Pil.fromarray(channels[2].filled(fill_value[2])) img = Pil.merge('RGB', (pil_r, pil_g, pil_b)) else: pil_r = Pil.fromarray(channels[0].filled(0)) pil_g = Pil.fromarray(channels[1].filled(0)) pil_b = Pil.fromarray(channels[2].filled(0)) alpha = np.zeros(channels[0].shape, np.uint8) alpha = np.where(mask, alpha, 255) pil_a = Pil.fromarray(alpha) img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a)) elif self.mode == 'RGBA': mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1] ) & np.ma.getmaskarray(channels[2]) & np.ma.getmaskarray(channels [3]) if fill_value is not None: pil_r = Pil.fromarray(channels[0].filled(fill_value[0])) pil_g = Pil.fromarray(channels[1].filled(fill_value[1])) pil_b = Pil.fromarray(channels[2].filled(fill_value[2])) pil_a = Pil.fromarray(channels[3].filled(fill_value[3])) img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a)) else: pil_r = Pil.fromarray(channels[0].filled(0)) pil_g = Pil.fromarray(channels[1].filled(0)) pil_b = Pil.fromarray(channels[2].filled(0)) alpha = np.where(mask, 0, channels[3]) pil_a = Pil.fromarray(alpha) img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a)) else: raise TypeError('Does not know how to use mode %s.' % self.mode) return img
pil_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n channels, fill_value = self._finalize()\n if self.is_empty():\n return Pil.new(self.mode, (0, 0))\n if self.mode == 'L':\n if fill_value is not None:\n img = Pil.fromarray(channels[0].filled(fill_value))\n else:\n img = Pil.fromarray(channels[0].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n mask = np.ma.getmaskarray(channels[0])\n alpha = np.where(mask, alpha, 255)\n pil_alpha = Pil.fromarray(alpha)\n img = Pil.merge('LA', (img, pil_alpha))\n elif self.mode == 'LA':\n if fill_value is not None:\n img = Pil.fromarray(channels[0].filled(fill_value))\n pil_alpha = Pil.fromarray(channels[1])\n else:\n img = Pil.fromarray(channels[0].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n mask = np.ma.getmaskarray(channels[0])\n alpha = np.where(mask, alpha, channels[1])\n pil_alpha = Pil.fromarray(alpha)\n img = Pil.merge('LA', (img, pil_alpha))\n elif self.mode == 'RGB':\n mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]\n ) & np.ma.getmaskarray(channels[2])\n if fill_value is not None:\n pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))\n pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))\n pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))\n img = Pil.merge('RGB', (pil_r, pil_g, pil_b))\n else:\n pil_r = Pil.fromarray(channels[0].filled(0))\n pil_g = Pil.fromarray(channels[1].filled(0))\n pil_b = Pil.fromarray(channels[2].filled(0))\n alpha = np.zeros(channels[0].shape, np.uint8)\n alpha = np.where(mask, alpha, 255)\n pil_a = Pil.fromarray(alpha)\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n elif self.mode == 'RGBA':\n mask = np.ma.getmaskarray(channels[0]) & np.ma.getmaskarray(channels[1]\n ) & np.ma.getmaskarray(channels[2]) & np.ma.getmaskarray(channels\n [3])\n if fill_value is not None:\n pil_r = Pil.fromarray(channels[0].filled(fill_value[0]))\n pil_g = Pil.fromarray(channels[1].filled(fill_value[1]))\n pil_b = Pil.fromarray(channels[2].filled(fill_value[2]))\n pil_a = Pil.fromarray(channels[3].filled(fill_value[3]))\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n else:\n pil_r = Pil.fromarray(channels[0].filled(0))\n pil_g = Pil.fromarray(channels[1].filled(0))\n pil_b = Pil.fromarray(channels[2].filled(0))\n alpha = np.where(mask, 0, channels[3])\n pil_a = Pil.fromarray(alpha)\n img = Pil.merge('RGBA', (pil_r, pil_g, pil_b, pil_a))\n else:\n raise TypeError('Does not know how to use mode %s.' % self.mode)\n return img\n", "role": "user" }, { "content": "pil_image", "role": "assistant" } ]
def x(self, filename, compression=6, fformat=None, thumbnail_name=None, thumbnail_size=None): self.pil_save(filename, compression, fformat, thumbnail_name, thumbnail_size)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, compression=6, fformat=None, thumbnail_name=None,\n thumbnail_size=None):\n self.pil_save(filename, compression, fformat, thumbnail_name,\n thumbnail_size)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, filename, compression=6, fformat=None, thumbnail_name=None, thumbnail_size=None): del compression if self.is_empty(): raise IOError('Cannot save an empty image') if isinstance(filename, (str, six.text_type)): ensure_dir(filename) fformat = fformat or os.path.splitext(filename)[1][1:4] fformat = check_image_format(fformat) params = {} if fformat == 'png': params['pnginfo'] = self._pngmeta() if fformat == 'jpeg' and not self.fill_value: self.fill_value = [0, 0, 0, 0] logger.debug('No fill_value provided, setting it to 0.') img = self.pil_image() img.save(filename, fformat, **params) if thumbnail_name is not None and thumbnail_size is not None: img.thumbnail(thumbnail_size, Pil.ANTIALIAS) img.save(thumbnail_name, fformat, **params)
pil_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, compression=6, fformat=None, thumbnail_name=None,\n thumbnail_size=None):\n del compression\n if self.is_empty():\n raise IOError('Cannot save an empty image')\n if isinstance(filename, (str, six.text_type)):\n ensure_dir(filename)\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n fformat = check_image_format(fformat)\n params = {}\n if fformat == 'png':\n params['pnginfo'] = self._pngmeta()\n if fformat == 'jpeg' and not self.fill_value:\n self.fill_value = [0, 0, 0, 0]\n logger.debug('No fill_value provided, setting it to 0.')\n img = self.pil_image()\n img.save(filename, fformat, **params)\n if thumbnail_name is not None and thumbnail_size is not None:\n img.thumbnail(thumbnail_size, Pil.ANTIALIAS)\n img.save(thumbnail_name, fformat, **params)\n", "role": "user" }, { "content": "pil_save", "role": "assistant" } ]
def x(self): reserved = 'interlace', 'gamma', 'dpi', 'transparency', 'aspect' try: tags = self.tags except AttributeError: tags = {} from PIL import PngImagePlugin meta = PngImagePlugin.PngInfo() for k__, v__ in tags.items(): if k__ not in reserved: meta.add_text(k__, v__, 0) return meta
pngmeta
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n reserved = 'interlace', 'gamma', 'dpi', 'transparency', 'aspect'\n try:\n tags = self.tags\n except AttributeError:\n tags = {}\n from PIL import PngImagePlugin\n meta = PngImagePlugin.PngInfo()\n for k__, v__ in tags.items():\n if k__ not in reserved:\n meta.add_text(k__, v__, 0)\n return meta\n", "role": "user" }, { "content": "pngmeta", "role": "assistant" } ]
def x(self, alpha): alpha = np.ma.array(alpha) if not (alpha.shape[0] == 0 and self.shape[0] == 0 ) and alpha.shape != self.shape: raise ValueError('Alpha channel shape should match image shape') if not self.mode.endswith('A'): self.convert(self.mode + 'A') if not self.is_empty(): self.channels[-1] = alpha
putalpha
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, alpha):\n alpha = np.ma.array(alpha)\n if not (alpha.shape[0] == 0 and self.shape[0] == 0\n ) and alpha.shape != self.shape:\n raise ValueError('Alpha channel shape should match image shape')\n if not self.mode.endswith('A'):\n self.convert(self.mode + 'A')\n if not self.is_empty():\n self.channels[-1] = alpha\n", "role": "user" }, { "content": "putalpha", "role": "assistant" } ]
def x(self, mode): self._check_modes(('RGB', 'RGBA')) self.channels[0], self.channels[1], self.channels[2] = rgb2ycbcr(self. channels[0], self.channels[1], self.channels[2]) if self.fill_value is not None: self.fill_value[0:3] = rgb2ycbcr(self.fill_value[0], self. fill_value[1], self.fill_value[2]) self.mode = mode
rgb2ycbcr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('RGB', 'RGBA'))\n self.channels[0], self.channels[1], self.channels[2] = rgb2ycbcr(self.\n channels[0], self.channels[1], self.channels[2])\n if self.fill_value is not None:\n self.fill_value[0:3] = rgb2ycbcr(self.fill_value[0], self.\n fill_value[1], self.fill_value[2])\n self.mode = mode\n", "role": "user" }, { "content": "rgb2ycbcr", "role": "assistant" } ]
def x(self, mode): self._check_modes(('YCbCr', 'YCbCrA')) self.channels[0], self.channels[1], self.channels[2] = ycbcr2rgb(self. channels[0], self.channels[1], self.channels[2]) if self.fill_value is not None: self.fill_value[0:3] = ycbcr2rgb(self.fill_value[0], self. fill_value[1], self.fill_value[2]) self.mode = mode
ycbcr2rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('YCbCr', 'YCbCrA'))\n self.channels[0], self.channels[1], self.channels[2] = ycbcr2rgb(self.\n channels[0], self.channels[1], self.channels[2])\n if self.fill_value is not None:\n self.fill_value[0:3] = ycbcr2rgb(self.fill_value[0], self.\n fill_value[1], self.fill_value[2])\n self.mode = mode\n", "role": "user" }, { "content": "ycbcr2rgb", "role": "assistant" } ]
def x(self, mode): if self.mode.endswith('A'): chans = self.channels[:-1] alpha = self.channels[-1] self._secondary_mode = self.mode[:-1] else: chans = self.channels alpha = None self._secondary_mode = self.mode palette = [] selfmask = chans[0].mask for chn in chans[1:]: selfmask = np.ma.mask_or(selfmask, chn.mask) new_chn = np.ma.zeros(self.shape, dtype=int) color_nb = 0 for i in range(self.height): for j in range(self.width): current_col = tuple([chn[i, j] for chn in chans]) try: next(idx for idx in range(len(palette)) if palette[idx] == current_col) except StopIteration: idx = color_nb palette.append(current_col) color_nb = color_nb + 1 new_chn[i, j] = idx if self.fill_value is not None: if self.mode.endswith('A'): current_col = tuple(self.fill_value[:-1]) fill_alpha = [self.fill_value[-1]] else: current_col = tuple(self.fill_value) fill_alpha = [] try: next(idx for idx in range(len(palette)) if palette[idx] == current_col) except StopIteration: idx = color_nb palette.append(current_col) color_nb = color_nb + 1 self.fill_value = [idx] + fill_alpha new_chn.mask = selfmask self.palette = palette if alpha is None: self.channels = [new_chn] else: self.channels = [new_chn, alpha] self.mode = mode
to_p
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n if self.mode.endswith('A'):\n chans = self.channels[:-1]\n alpha = self.channels[-1]\n self._secondary_mode = self.mode[:-1]\n else:\n chans = self.channels\n alpha = None\n self._secondary_mode = self.mode\n palette = []\n selfmask = chans[0].mask\n for chn in chans[1:]:\n selfmask = np.ma.mask_or(selfmask, chn.mask)\n new_chn = np.ma.zeros(self.shape, dtype=int)\n color_nb = 0\n for i in range(self.height):\n for j in range(self.width):\n current_col = tuple([chn[i, j] for chn in chans])\n try:\n next(idx for idx in range(len(palette)) if palette[idx] ==\n current_col)\n except StopIteration:\n idx = color_nb\n palette.append(current_col)\n color_nb = color_nb + 1\n new_chn[i, j] = idx\n if self.fill_value is not None:\n if self.mode.endswith('A'):\n current_col = tuple(self.fill_value[:-1])\n fill_alpha = [self.fill_value[-1]]\n else:\n current_col = tuple(self.fill_value)\n fill_alpha = []\n try:\n next(idx for idx in range(len(palette)) if palette[idx] ==\n current_col)\n except StopIteration:\n idx = color_nb\n palette.append(current_col)\n color_nb = color_nb + 1\n self.fill_value = [idx] + fill_alpha\n new_chn.mask = selfmask\n self.palette = palette\n if alpha is None:\n self.channels = [new_chn]\n else:\n self.channels = [new_chn, alpha]\n self.mode = mode\n", "role": "user" }, { "content": "to_p", "role": "assistant" } ]
def x(self, mode): self._check_modes(('P', 'PA')) if self.mode.endswith('A'): alpha = self.channels[-1] else: alpha = None chans = [] cdfs = [] color_chan = self.channels[0] for i in range(len(self.palette[0])): cdfs.append(np.zeros(len(self.palette))) for j in range(len(self.palette)): cdfs[i][j] = self.palette[j][i] new_chn = np.ma.array(np.interp(color_chan, np.arange(len(self. palette)), cdfs[i]), mask=color_chan.mask) chans.append(new_chn) if self.fill_value is not None: if alpha is not None: fill_alpha = self.fill_value[-1] self.fill_value = list(self.palette[int(self.fill_value[0])]) self.fill_value += [fill_alpha] else: self.fill_value = list(self.palette[int(self.fill_value[0])]) self.mode = self._secondary_mode self.channels = chans if alpha is not None: self.channels.append(alpha) self.mode = self.mode + 'A' self.convert(mode)
from_p
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('P', 'PA'))\n if self.mode.endswith('A'):\n alpha = self.channels[-1]\n else:\n alpha = None\n chans = []\n cdfs = []\n color_chan = self.channels[0]\n for i in range(len(self.palette[0])):\n cdfs.append(np.zeros(len(self.palette)))\n for j in range(len(self.palette)):\n cdfs[i][j] = self.palette[j][i]\n new_chn = np.ma.array(np.interp(color_chan, np.arange(len(self.\n palette)), cdfs[i]), mask=color_chan.mask)\n chans.append(new_chn)\n if self.fill_value is not None:\n if alpha is not None:\n fill_alpha = self.fill_value[-1]\n self.fill_value = list(self.palette[int(self.fill_value[0])])\n self.fill_value += [fill_alpha]\n else:\n self.fill_value = list(self.palette[int(self.fill_value[0])])\n self.mode = self._secondary_mode\n self.channels = chans\n if alpha is not None:\n self.channels.append(alpha)\n self.mode = self.mode + 'A'\n self.convert(mode)\n", "role": "user" }, { "content": "from_p", "role": "assistant" } ]
def x(self, mode): self._check_modes(('L', 'LA')) self.channels.append(self.channels[0].copy()) self.channels.append(self.channels[0].copy()) if self.fill_value is not None: self.fill_value = self.fill_value[:1] * 3 + self.fill_value[1:] if self.mode == 'LA': self.channels[1], self.channels[3] = self.channels[3], self.channels[1] self.mode = mode
l2rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('L', 'LA'))\n self.channels.append(self.channels[0].copy())\n self.channels.append(self.channels[0].copy())\n if self.fill_value is not None:\n self.fill_value = self.fill_value[:1] * 3 + self.fill_value[1:]\n if self.mode == 'LA':\n self.channels[1], self.channels[3] = self.channels[3], self.channels[1]\n self.mode = mode\n", "role": "user" }, { "content": "l2rgb", "role": "assistant" } ]
def x(self, mode): self._check_modes(('RGB', 'RGBA')) kb_ = 0.114 kr_ = 0.299 r__ = self.channels[0] g__ = self.channels[1] b__ = self.channels[2] y__ = kr_ * r__ + (1 - kr_ - kb_) * g__ + kb_ * b__ if self.fill_value is not None: self.fill_value = [rgb2ycbcr(self.fill_value[0], self.fill_value[1], self.fill_value[2])[0]] + self.fill_value[3:] self.channels = [y__] + self.channels[3:] self.mode = mode
rgb2l
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('RGB', 'RGBA'))\n kb_ = 0.114\n kr_ = 0.299\n r__ = self.channels[0]\n g__ = self.channels[1]\n b__ = self.channels[2]\n y__ = kr_ * r__ + (1 - kr_ - kb_) * g__ + kb_ * b__\n if self.fill_value is not None:\n self.fill_value = [rgb2ycbcr(self.fill_value[0], self.fill_value[1],\n self.fill_value[2])[0]] + self.fill_value[3:]\n self.channels = [y__] + self.channels[3:]\n self.mode = mode\n", "role": "user" }, { "content": "rgb2l", "role": "assistant" } ]
def x(self, mode): self._check_modes(('YCbCr', 'YCbCrA')) self.channels = [self.channels[0]] + self.channels[3:] if self.fill_value is not None: self.fill_value = [self.fill_value[0]] + self.fill_value[3:] self.mode = mode
ycbcr2l
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('YCbCr', 'YCbCrA'))\n self.channels = [self.channels[0]] + self.channels[3:]\n if self.fill_value is not None:\n self.fill_value = [self.fill_value[0]] + self.fill_value[3:]\n self.mode = mode\n", "role": "user" }, { "content": "ycbcr2l", "role": "assistant" } ]
def x(self, mode): self._check_modes(('L', 'LA')) luma = self.channels[0] zeros = np.ma.zeros(luma.shape) zeros.mask = luma.mask self.channels = [luma, zeros, zeros] + self.channels[1:] if self.fill_value is not None: self.fill_value = [self.fill_value[0], 0, 0] + self.fill_value[1:] self.mode = mode
l2ycbcr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n self._check_modes(('L', 'LA'))\n luma = self.channels[0]\n zeros = np.ma.zeros(luma.shape)\n zeros.mask = luma.mask\n self.channels = [luma, zeros, zeros] + self.channels[1:]\n if self.fill_value is not None:\n self.fill_value = [self.fill_value[0], 0, 0] + self.fill_value[1:]\n self.mode = mode\n", "role": "user" }, { "content": "l2ycbcr", "role": "assistant" } ]
def x(self, mode): if mode == self.mode: return if mode not in ['L', 'LA', 'RGB', 'RGBA', 'YCbCr', 'YCbCrA', 'P', 'PA']: raise ValueError('Mode %s not recognized.' % mode) if self.is_empty(): self.mode = mode return if mode == self.mode + 'A': self.channels.append(np.ma.ones(self.channels[0].shape)) if self.fill_value is not None: self.fill_value += [1] self.mode = mode elif mode + 'A' == self.mode: self.channels = self.channels[:-1] if self.fill_value is not None: self.fill_value = self.fill_value[:-1] self.mode = mode elif mode.endswith('A') and not self.mode.endswith('A'): self.convert(self.mode + 'A') self.convert(mode) elif self.mode.endswith('A') and not mode.endswith('A'): self.convert(self.mode[:-1]) self.convert(mode) else: cases = {'RGB': {'YCbCr': self._rgb2ycbcr, 'L': self._rgb2l, 'P': self._to_p}, 'RGBA': {'YCbCrA': self._rgb2ycbcr, 'LA': self. _rgb2l, 'PA': self._to_p}, 'YCbCr': {'RGB': self._ycbcr2rgb, 'L': self._ycbcr2l, 'P': self._to_p}, 'YCbCrA': {'RGBA': self. _ycbcr2rgb, 'LA': self._ycbcr2l, 'PA': self._to_p}, 'L': {'RGB': self._l2rgb, 'YCbCr': self._l2ycbcr, 'P': self._to_p}, 'LA': { 'RGBA': self._l2rgb, 'YCbCrA': self._l2ycbcr, 'PA': self._to_p}, 'P': {'RGB': self._from_p, 'YCbCr': self._from_p, 'L': self. _from_p}, 'PA': {'RGBA': self._from_p, 'YCbCrA': self._from_p, 'LA': self._from_p}} try: cases[self.mode][mode](mode) except KeyError: raise ValueError('Conversion from %s to %s not implemented !' % (self.mode, mode))
convert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mode):\n if mode == self.mode:\n return\n if mode not in ['L', 'LA', 'RGB', 'RGBA', 'YCbCr', 'YCbCrA', 'P', 'PA']:\n raise ValueError('Mode %s not recognized.' % mode)\n if self.is_empty():\n self.mode = mode\n return\n if mode == self.mode + 'A':\n self.channels.append(np.ma.ones(self.channels[0].shape))\n if self.fill_value is not None:\n self.fill_value += [1]\n self.mode = mode\n elif mode + 'A' == self.mode:\n self.channels = self.channels[:-1]\n if self.fill_value is not None:\n self.fill_value = self.fill_value[:-1]\n self.mode = mode\n elif mode.endswith('A') and not self.mode.endswith('A'):\n self.convert(self.mode + 'A')\n self.convert(mode)\n elif self.mode.endswith('A') and not mode.endswith('A'):\n self.convert(self.mode[:-1])\n self.convert(mode)\n else:\n cases = {'RGB': {'YCbCr': self._rgb2ycbcr, 'L': self._rgb2l, 'P':\n self._to_p}, 'RGBA': {'YCbCrA': self._rgb2ycbcr, 'LA': self.\n _rgb2l, 'PA': self._to_p}, 'YCbCr': {'RGB': self._ycbcr2rgb,\n 'L': self._ycbcr2l, 'P': self._to_p}, 'YCbCrA': {'RGBA': self.\n _ycbcr2rgb, 'LA': self._ycbcr2l, 'PA': self._to_p}, 'L': {'RGB':\n self._l2rgb, 'YCbCr': self._l2ycbcr, 'P': self._to_p}, 'LA': {\n 'RGBA': self._l2rgb, 'YCbCrA': self._l2ycbcr, 'PA': self._to_p},\n 'P': {'RGB': self._from_p, 'YCbCr': self._from_p, 'L': self.\n _from_p}, 'PA': {'RGBA': self._from_p, 'YCbCrA': self._from_p,\n 'LA': self._from_p}}\n try:\n cases[self.mode][mode](mode)\n except KeyError:\n raise ValueError('Conversion from %s to %s not implemented !' %\n (self.mode, mode))\n", "role": "user" }, { "content": "convert", "role": "assistant" } ]
def x(self, channels=True): if not isinstance(channels, (tuple, list)): channels = [channels] * len(self.channels) for i in range(len(self.channels)): if channels[i]: self.channels[i] = np.ma.clip(self.channels[i], 0.0, 1.0)
clip
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, channels=True):\n if not isinstance(channels, (tuple, list)):\n channels = [channels] * len(self.channels)\n for i in range(len(self.channels)):\n if channels[i]:\n self.channels[i] = np.ma.clip(self.channels[i], 0.0, 1.0)\n", "role": "user" }, { "content": "clip", "role": "assistant" } ]
def x(self, shape): if self.is_empty(): raise ValueError('Cannot resize an empty image') factor = [1, 1] zoom = [True, True] zoom[0] = shape[0] >= self.height zoom[1] = shape[1] >= self.width if zoom[0]: factor[0] = shape[0] * 1.0 / self.height else: factor[0] = self.height * 1.0 / shape[0] if zoom[1]: factor[1] = shape[1] * 1.0 / self.width else: factor[1] = self.width * 1.0 / shape[1] if int(factor[0]) != factor[0] or int(factor[1]) != factor[1]: raise ValueError('Resize not of integer factor!') factor[0] = int(factor[0]) factor[1] = int(factor[1]) i = 0 for chn in self.channels: if zoom[0]: chn = chn.repeat([factor[0]] * chn.shape[0], axis=0) else: chn = chn[[(idx * factor[0]) for idx in range(int(self.height / factor[0]))], :] if zoom[1]: self.channels[i] = chn.repeat([factor[1]] * chn.shape[1], axis=1) else: self.channels[i] = chn[:, [(idx * factor[1]) for idx in range( int(self.width / factor[1]))]] i = i + 1 self.height = self.channels[0].shape[0] self.width = self.channels[0].shape[1] self.shape = self.channels[0].shape
resize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, shape):\n if self.is_empty():\n raise ValueError('Cannot resize an empty image')\n factor = [1, 1]\n zoom = [True, True]\n zoom[0] = shape[0] >= self.height\n zoom[1] = shape[1] >= self.width\n if zoom[0]:\n factor[0] = shape[0] * 1.0 / self.height\n else:\n factor[0] = self.height * 1.0 / shape[0]\n if zoom[1]:\n factor[1] = shape[1] * 1.0 / self.width\n else:\n factor[1] = self.width * 1.0 / shape[1]\n if int(factor[0]) != factor[0] or int(factor[1]) != factor[1]:\n raise ValueError('Resize not of integer factor!')\n factor[0] = int(factor[0])\n factor[1] = int(factor[1])\n i = 0\n for chn in self.channels:\n if zoom[0]:\n chn = chn.repeat([factor[0]] * chn.shape[0], axis=0)\n else:\n chn = chn[[(idx * factor[0]) for idx in range(int(self.height /\n factor[0]))], :]\n if zoom[1]:\n self.channels[i] = chn.repeat([factor[1]] * chn.shape[1], axis=1)\n else:\n self.channels[i] = chn[:, [(idx * factor[1]) for idx in range(\n int(self.width / factor[1]))]]\n i = i + 1\n self.height = self.channels[0].shape[0]\n self.width = self.channels[0].shape[1]\n self.shape = self.channels[0].shape\n", "role": "user" }, { "content": "resize", "role": "assistant" } ]
def x(self, luminance): if self.is_empty(): return if luminance.shape != self.channels[0].shape: if luminance.shape[0] * 1.0 / luminance.shape[1] == self.channels[0 ].shape[0] * 1.0 / self.channels[0].shape[1]: if luminance.shape[0] > self.channels[0].shape[0]: self.resize(luminance.shape) else: raise NameError('Luminance smaller than the image !') else: raise NameError('Not the good shape !') mode = self.mode if mode.endswith('A'): self.convert('YCbCrA') self.channels[0] = luminance self.convert(mode) else: self.convert('YCbCr') self.channels[0] = luminance self.convert(mode)
replace_luminance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, luminance):\n if self.is_empty():\n return\n if luminance.shape != self.channels[0].shape:\n if luminance.shape[0] * 1.0 / luminance.shape[1] == self.channels[0\n ].shape[0] * 1.0 / self.channels[0].shape[1]:\n if luminance.shape[0] > self.channels[0].shape[0]:\n self.resize(luminance.shape)\n else:\n raise NameError('Luminance smaller than the image !')\n else:\n raise NameError('Not the good shape !')\n mode = self.mode\n if mode.endswith('A'):\n self.convert('YCbCrA')\n self.channels[0] = luminance\n self.convert(mode)\n else:\n self.convert('YCbCr')\n self.channels[0] = luminance\n self.convert(mode)\n", "role": "user" }, { "content": "replace_luminance", "role": "assistant" } ]
def x(self, inverse=False, gamma=1.0, stretch='no', stretch_parameters=None, **kwargs): self.invert(inverse) if stretch_parameters is None: stretch_parameters = {} stretch_parameters.update(kwargs) self.stretch(stretch, **stretch_parameters) self.gamma(gamma)
enhance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, inverse=False, gamma=1.0, stretch='no', stretch_parameters=None,\n **kwargs):\n self.invert(inverse)\n if stretch_parameters is None:\n stretch_parameters = {}\n stretch_parameters.update(kwargs)\n self.stretch(stretch, **stretch_parameters)\n self.gamma(gamma)\n", "role": "user" }, { "content": "enhance", "role": "assistant" } ]
def x(self, gamma=1.0): if isinstance(gamma, (list, tuple, set)) and len(gamma) != len(self. channels): raise ValueError('Number of channels and gamma components differ.') if isinstance(gamma, (tuple, list)): gamma_list = list(gamma) else: gamma_list = [gamma] * len(self.channels) for i in range(len(self.channels)): gamma = float(gamma_list[i]) if gamma < 0: raise ValueError('Gamma correction must be a positive number.') logger.debug('Applying gamma %f', gamma) if gamma == 1.0: continue if isinstance(self.channels[i], np.ma.core.MaskedArray): if ne: self.channels[i] = np.ma.array(ne.evaluate( 'data ** (1.0 / gamma)', local_dict={'data': self. channels[i].data, 'gamma': gamma}), mask=self.channels[ i].mask, copy=False) else: self.channels[i] = np.ma.array(self.channels[i].data ** ( 1.0 / gamma), mask=self.channels[i].mask, copy=False) else: self.channels[i] = np.where(self.channels[i] >= 0, self. channels[i] ** (1.0 / gamma), self.channels[i])
gamma
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, gamma=1.0):\n if isinstance(gamma, (list, tuple, set)) and len(gamma) != len(self.\n channels):\n raise ValueError('Number of channels and gamma components differ.')\n if isinstance(gamma, (tuple, list)):\n gamma_list = list(gamma)\n else:\n gamma_list = [gamma] * len(self.channels)\n for i in range(len(self.channels)):\n gamma = float(gamma_list[i])\n if gamma < 0:\n raise ValueError('Gamma correction must be a positive number.')\n logger.debug('Applying gamma %f', gamma)\n if gamma == 1.0:\n continue\n if isinstance(self.channels[i], np.ma.core.MaskedArray):\n if ne:\n self.channels[i] = np.ma.array(ne.evaluate(\n 'data ** (1.0 / gamma)', local_dict={'data': self.\n channels[i].data, 'gamma': gamma}), mask=self.channels[\n i].mask, copy=False)\n else:\n self.channels[i] = np.ma.array(self.channels[i].data ** (\n 1.0 / gamma), mask=self.channels[i].mask, copy=False)\n else:\n self.channels[i] = np.where(self.channels[i] >= 0, self.\n channels[i] ** (1.0 / gamma), self.channels[i])\n", "role": "user" }, { "content": "gamma", "role": "assistant" } ]
def x(self, stretch='crude', **kwargs): logger.debug('Applying stretch %s with parameters %s', stretch, str(kwargs) ) ch_len = len(self.channels) if self.mode.endswith('A'): ch_len -= 1 if isinstance(stretch, tuple) or isinstance(stretch, list): if len(stretch) == 2: for i in range(ch_len): self.stretch_linear(i, cutoffs=stretch, **kwargs) else: raise ValueError('Stretch tuple must have exactly two elements') elif stretch == 'linear': for i in range(ch_len): self.stretch_linear(i, **kwargs) elif stretch == 'histogram': for i in range(ch_len): self.stretch_hist_equalize(i, **kwargs) elif stretch in ['crude', 'crude-stretch']: for i in range(ch_len): self.crude_stretch(i, **kwargs) elif stretch in ['log', 'logarithmic']: for i in range(ch_len): self.stretch_logarithmic(i, **kwargs) elif stretch == 'no': return elif isinstance(stretch, str): raise ValueError('Stretching method %s not recognized.' % stretch) else: raise TypeError('Stretch parameter must be a string or a tuple.')
stretch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stretch='crude', **kwargs):\n logger.debug('Applying stretch %s with parameters %s', stretch, str(kwargs)\n )\n ch_len = len(self.channels)\n if self.mode.endswith('A'):\n ch_len -= 1\n if isinstance(stretch, tuple) or isinstance(stretch, list):\n if len(stretch) == 2:\n for i in range(ch_len):\n self.stretch_linear(i, cutoffs=stretch, **kwargs)\n else:\n raise ValueError('Stretch tuple must have exactly two elements')\n elif stretch == 'linear':\n for i in range(ch_len):\n self.stretch_linear(i, **kwargs)\n elif stretch == 'histogram':\n for i in range(ch_len):\n self.stretch_hist_equalize(i, **kwargs)\n elif stretch in ['crude', 'crude-stretch']:\n for i in range(ch_len):\n self.crude_stretch(i, **kwargs)\n elif stretch in ['log', 'logarithmic']:\n for i in range(ch_len):\n self.stretch_logarithmic(i, **kwargs)\n elif stretch == 'no':\n return\n elif isinstance(stretch, str):\n raise ValueError('Stretching method %s not recognized.' % stretch)\n else:\n raise TypeError('Stretch parameter must be a string or a tuple.')\n", "role": "user" }, { "content": "stretch", "role": "assistant" } ]
def x(self, invert=True): if isinstance(invert, (tuple, list)) and len(self.channels) != len(invert): raise ValueError('Number of channels and invert components differ.') logger.debug('Applying invert with parameters %s', str(invert)) if isinstance(invert, (tuple, list)): for i, chn in enumerate(self.channels): if invert[i]: self.channels[i] = 1 - chn elif invert: for i, chn in enumerate(self.channels): self.channels[i] = 1 - chn
invert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, invert=True):\n if isinstance(invert, (tuple, list)) and len(self.channels) != len(invert):\n raise ValueError('Number of channels and invert components differ.')\n logger.debug('Applying invert with parameters %s', str(invert))\n if isinstance(invert, (tuple, list)):\n for i, chn in enumerate(self.channels):\n if invert[i]:\n self.channels[i] = 1 - chn\n elif invert:\n for i, chn in enumerate(self.channels):\n self.channels[i] = 1 - chn\n", "role": "user" }, { "content": "invert", "role": "assistant" } ]
def x(self, ch_nb): logger.info('Perform a histogram equalized contrast stretch.') if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]): logger.warning('Nothing to stretch !') return arr = self.channels[ch_nb] nwidth = 2048.0 carr = arr.compressed() cdf = np.arange(0.0, 1.0, 1 / nwidth) logger.debug('Make histogram bins having equal amount of data, ' + 'using numpy percentile function:') bins = np.percentile(carr, list(cdf * 100)) res = np.ma.empty_like(arr) res.mask = np.ma.getmaskarray(arr) res[~res.mask] = np.interp(carr, bins, cdf) self.channels[ch_nb] = res
stretch_hist_equalize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ch_nb):\n logger.info('Perform a histogram equalized contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]):\n logger.warning('Nothing to stretch !')\n return\n arr = self.channels[ch_nb]\n nwidth = 2048.0\n carr = arr.compressed()\n cdf = np.arange(0.0, 1.0, 1 / nwidth)\n logger.debug('Make histogram bins having equal amount of data, ' +\n 'using numpy percentile function:')\n bins = np.percentile(carr, list(cdf * 100))\n res = np.ma.empty_like(arr)\n res.mask = np.ma.getmaskarray(arr)\n res[~res.mask] = np.interp(carr, bins, cdf)\n self.channels[ch_nb] = res\n", "role": "user" }, { "content": "stretch_hist_equalize", "role": "assistant" } ]
def x(self, ch_nb, factor=100.0): logger.debug('Perform a logarithmic contrast stretch.') if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb] ) or self.channels[ch_nb].min() == self.channels[ch_nb].max(): logger.warning('Nothing to stretch !') return crange = 0.0, 1.0 arr = self.channels[ch_nb] b__ = float(crange[1] - crange[0]) / np.log(factor) c__ = float(crange[0]) slope = (factor - 1.0) / float(arr.max() - arr.min()) arr = 1.0 + (arr - arr.min()) * slope arr = c__ + b__ * np.log(arr) self.channels[ch_nb] = arr
stretch_logarithmic
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ch_nb, factor=100.0):\n logger.debug('Perform a logarithmic contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]\n ) or self.channels[ch_nb].min() == self.channels[ch_nb].max():\n logger.warning('Nothing to stretch !')\n return\n crange = 0.0, 1.0\n arr = self.channels[ch_nb]\n b__ = float(crange[1] - crange[0]) / np.log(factor)\n c__ = float(crange[0])\n slope = (factor - 1.0) / float(arr.max() - arr.min())\n arr = 1.0 + (arr - arr.min()) * slope\n arr = c__ + b__ * np.log(arr)\n self.channels[ch_nb] = arr\n", "role": "user" }, { "content": "stretch_logarithmic", "role": "assistant" } ]
def x(self, ch_nb, cutoffs=(0.005, 0.005)): logger.debug('Perform a linear contrast stretch.') if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb] ) or self.channels[ch_nb].min() == self.channels[ch_nb].max(): logger.warning('Nothing to stretch !') return arr = self.channels[ch_nb] carr = arr.compressed() logger.debug('Calculate the histogram percentiles: ') logger.debug('Left and right percentiles: ' + str(cutoffs[0] * 100) + ' ' + str(cutoffs[1] * 100)) left, right = np.percentile(carr, [cutoffs[0] * 100, 100.0 - cutoffs[1] * 100]) delta_x = right - left logger.debug('Interval: left=%f, right=%f width=%f', left, right, delta_x) if delta_x > 0.0: self.channels[ch_nb] = np.ma.array((arr - left) / delta_x, mask=arr .mask) else: logger.warning('Unable to make a contrast stretch!')
stretch_linear
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ch_nb, cutoffs=(0.005, 0.005)):\n logger.debug('Perform a linear contrast stretch.')\n if self.channels[ch_nb].size == np.ma.count_masked(self.channels[ch_nb]\n ) or self.channels[ch_nb].min() == self.channels[ch_nb].max():\n logger.warning('Nothing to stretch !')\n return\n arr = self.channels[ch_nb]\n carr = arr.compressed()\n logger.debug('Calculate the histogram percentiles: ')\n logger.debug('Left and right percentiles: ' + str(cutoffs[0] * 100) +\n ' ' + str(cutoffs[1] * 100))\n left, right = np.percentile(carr, [cutoffs[0] * 100, 100.0 - cutoffs[1] *\n 100])\n delta_x = right - left\n logger.debug('Interval: left=%f, right=%f width=%f', left, right, delta_x)\n if delta_x > 0.0:\n self.channels[ch_nb] = np.ma.array((arr - left) / delta_x, mask=arr\n .mask)\n else:\n logger.warning('Unable to make a contrast stretch!')\n", "role": "user" }, { "content": "stretch_linear", "role": "assistant" } ]
def x(self, ch_nb, min_stretch=None, max_stretch=None): if min_stretch is None: min_stretch = self.channels[ch_nb].min() if max_stretch is None: max_stretch = self.channels[ch_nb].max() if isinstance(min_stretch, (list, tuple)): min_stretch = min_stretch[ch_nb] if isinstance(max_stretch, (list, tuple)): max_stretch = max_stretch[ch_nb] if not self.channels[ch_nb].mask.all() and abs(max_stretch - min_stretch ) > 0: stretched = self.channels[ch_nb].data.astype(np.float) stretched -= min_stretch stretched /= max_stretch - min_stretch self.channels[ch_nb] = np.ma.array(stretched, mask=self.channels[ ch_nb].mask, copy=False) else: logger.warning('Nothing to stretch !')
crude_stretch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ch_nb, min_stretch=None, max_stretch=None):\n if min_stretch is None:\n min_stretch = self.channels[ch_nb].min()\n if max_stretch is None:\n max_stretch = self.channels[ch_nb].max()\n if isinstance(min_stretch, (list, tuple)):\n min_stretch = min_stretch[ch_nb]\n if isinstance(max_stretch, (list, tuple)):\n max_stretch = max_stretch[ch_nb]\n if not self.channels[ch_nb].mask.all() and abs(max_stretch - min_stretch\n ) > 0:\n stretched = self.channels[ch_nb].data.astype(np.float)\n stretched -= min_stretch\n stretched /= max_stretch - min_stretch\n self.channels[ch_nb] = np.ma.array(stretched, mask=self.channels[\n ch_nb].mask, copy=False)\n else:\n logger.warning('Nothing to stretch !')\n", "role": "user" }, { "content": "crude_stretch", "role": "assistant" } ]
def x(self, colormap): if self.mode not in ('L', 'LA'): raise ValueError('Image should be grayscale to colorize') if self.mode == 'LA': alpha = self.channels[1] else: alpha = None self.channels = colormap.colorize(self.channels[0]) if alpha is not None: self.channels.append(alpha) self.mode = 'RGBA' else: self.mode = 'RGB'
colorize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, colormap):\n if self.mode not in ('L', 'LA'):\n raise ValueError('Image should be grayscale to colorize')\n if self.mode == 'LA':\n alpha = self.channels[1]\n else:\n alpha = None\n self.channels = colormap.colorize(self.channels[0])\n if alpha is not None:\n self.channels.append(alpha)\n self.mode = 'RGBA'\n else:\n self.mode = 'RGB'\n", "role": "user" }, { "content": "colorize", "role": "assistant" } ]
def x(self, colormap): if self.mode not in ('L', 'LA'): raise ValueError('Image should be grayscale to colorize') self.channels[0], self.palette = colormap.palettize(self.channels[0]) if self.mode == 'L': self.mode = 'P' else: self.mode = 'PA'
palettize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, colormap):\n if self.mode not in ('L', 'LA'):\n raise ValueError('Image should be grayscale to colorize')\n self.channels[0], self.palette = colormap.palettize(self.channels[0])\n if self.mode == 'L':\n self.mode = 'P'\n else:\n self.mode = 'PA'\n", "role": "user" }, { "content": "palettize", "role": "assistant" } ]
def x(l__, a__, b__): def x(arr): return np.where(arr > 6.0 / 29.0, arr ** 3, 3 * (6.0 / 29.0) * (6.0 / 29.0) * (arr - 4.0 / 29.0)) new_l = (l__ + 16.0) / 116.0 x__ = 95.047 * f_inv(new_l + a__ / 500.0) y__ = 100.0 * f_inv(new_l) z__ = 108.883 * f_inv(new_l - b__ / 200.0) return x__, y__, z__
lab2xyz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l__, a__, b__):\n\n def x(arr):\n return np.where(arr > 6.0 / 29.0, arr ** 3, 3 * (6.0 / 29.0) * (6.0 /\n 29.0) * (arr - 4.0 / 29.0))\n new_l = (l__ + 16.0) / 116.0\n x__ = 95.047 * f_inv(new_l + a__ / 500.0)\n y__ = 100.0 * f_inv(new_l)\n z__ = 108.883 * f_inv(new_l - b__ / 200.0)\n return x__, y__, z__\n", "role": "user" }, { "content": "lab2xyz", "role": "assistant" } ]
def x(x__, y__, z__): def x(arr): return np.where(arr > 216.0 / 24389.0, arr ** (1.0 / 3.0), 1.0 / 3.0 * (29.0 / 6.0) * (29.0 / 6.0) * arr + 4.0 / 29.0) fy_ = f__(y__ / 100.0) l__ = 116 * fy_ - 16 a__ = 500.0 * (f__(x__ / 95.047) - fy_) b__ = 200.0 * (fy_ - f__(z__ / 108.883)) return l__, a__, b__
xyz2lab
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x__, y__, z__):\n\n def x(arr):\n return np.where(arr > 216.0 / 24389.0, arr ** (1.0 / 3.0), 1.0 / \n 3.0 * (29.0 / 6.0) * (29.0 / 6.0) * arr + 4.0 / 29.0)\n fy_ = f__(y__ / 100.0)\n l__ = 116 * fy_ - 16\n a__ = 500.0 * (f__(x__ / 95.047) - fy_)\n b__ = 200.0 * (fy_ - f__(z__ / 108.883))\n return l__, a__, b__\n", "role": "user" }, { "content": "xyz2lab", "role": "assistant" } ]
def x(h__, c__, l__): h_rad = np.deg2rad(h__) l2_ = l__ * 61 + 9 angle = np.pi / 3.0 - h_rad r__ = (l__ * 311 + 125) * c__ a__ = np.sin(angle) * r__ b__ = np.cos(angle) * r__ return l2_, a__, b__
hcl2lab
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(h__, c__, l__):\n h_rad = np.deg2rad(h__)\n l2_ = l__ * 61 + 9\n angle = np.pi / 3.0 - h_rad\n r__ = (l__ * 311 + 125) * c__\n a__ = np.sin(angle) * r__\n b__ = np.cos(angle) * r__\n return l2_, a__, b__\n", "role": "user" }, { "content": "hcl2lab", "role": "assistant" } ]
def x(l__, a__, b__): l2_ = (l__ - 9) / 61.0 r__ = np.sqrt(a__ * a__ + b__ * b__) s__ = r__ / (l2_ * 311 + 125) angle = np.arctan2(a__, b__) c__ = np.rad2deg(np.pi / 3 - angle) % 360 return c__, s__, l2_
lab2hcl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(l__, a__, b__):\n l2_ = (l__ - 9) / 61.0\n r__ = np.sqrt(a__ * a__ + b__ * b__)\n s__ = r__ / (l2_ * 311 + 125)\n angle = np.arctan2(a__, b__)\n c__ = np.rad2deg(np.pi / 3 - angle) % 360\n return c__, s__, l2_\n", "role": "user" }, { "content": "lab2hcl", "role": "assistant" } ]
def x(r__, g__, b__): r2_ = r__ / 255.0 g2_ = g__ / 255.0 b2_ = b__ / 255.0 def x(arr): return np.where(arr > 0.04045, ((arr + 0.055) / 1.055) ** 2.4, arr / 12.92) r2_ = f__(r2_) * 100 g2_ = f__(g2_) * 100 b2_ = f__(b2_) * 100 x__ = r2_ * 0.4124 + g2_ * 0.3576 + b2_ * 0.1805 y__ = r2_ * 0.2126 + g2_ * 0.7152 + b2_ * 0.0722 z__ = r2_ * 0.0193 + g2_ * 0.1192 + b2_ * 0.9505 return x__, y__, z__
rgb2xyz
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(r__, g__, b__):\n r2_ = r__ / 255.0\n g2_ = g__ / 255.0\n b2_ = b__ / 255.0\n\n def x(arr):\n return np.where(arr > 0.04045, ((arr + 0.055) / 1.055) ** 2.4, arr /\n 12.92)\n r2_ = f__(r2_) * 100\n g2_ = f__(g2_) * 100\n b2_ = f__(b2_) * 100\n x__ = r2_ * 0.4124 + g2_ * 0.3576 + b2_ * 0.1805\n y__ = r2_ * 0.2126 + g2_ * 0.7152 + b2_ * 0.0722\n z__ = r2_ * 0.0193 + g2_ * 0.1192 + b2_ * 0.9505\n return x__, y__, z__\n", "role": "user" }, { "content": "rgb2xyz", "role": "assistant" } ]
def x(x__, y__, z__): x2_ = x__ / 100.0 y2_ = y__ / 100.0 z2_ = z__ / 100.0 r__ = x2_ * 3.2406 + y2_ * -1.5372 + z2_ * -0.4986 g__ = x2_ * -0.9689 + y2_ * 1.8758 + z2_ * 0.0415 b__ = x2_ * 0.0557 + y2_ * -0.204 + z2_ * 1.057 def x(arr): return np.where(arr > 0.0031308, 1.055 * arr ** (1.0 / 2.4) - 0.055, 12.92 * arr) return finv(r__) * 255, finv(g__) * 255, finv(b__) * 255
xyz2rgb
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x__, y__, z__):\n x2_ = x__ / 100.0\n y2_ = y__ / 100.0\n z2_ = z__ / 100.0\n r__ = x2_ * 3.2406 + y2_ * -1.5372 + z2_ * -0.4986\n g__ = x2_ * -0.9689 + y2_ * 1.8758 + z2_ * 0.0415\n b__ = x2_ * 0.0557 + y2_ * -0.204 + z2_ * 1.057\n\n def x(arr):\n return np.where(arr > 0.0031308, 1.055 * arr ** (1.0 / 2.4) - 0.055,\n 12.92 * arr)\n return finv(r__) * 255, finv(g__) * 255, finv(b__) * 255\n", "role": "user" }, { "content": "xyz2rgb", "role": "assistant" } ]
def x(): limit = now() - settings.USER_TASKS_MAX_AGE UserTaskStatus.objects.filter(created__lt=limit).delete()
purge_old_user_tasks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n limit = now() - settings.USER_TASKS_MAX_AGE\n UserTaskStatus.objects.filter(created__lt=limit).delete()\n", "role": "user" }, { "content": "purge_old_user_tasks", "role": "assistant" } ]
def x(cls, *args, **kwargs): all_args = (None,) + args return inspect.getcallargs(cls.run, *all_args, **kwargs)
arguments_as_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, *args, **kwargs):\n all_args = (None,) + args\n return inspect.getcallargs(cls.run, *all_args, **kwargs)\n", "role": "user" }, { "content": "arguments_as_dict", "role": "assistant" } ]
def x(self): task_id = self.request.id try: return UserTaskStatus.objects.get(task_id=task_id) except UserTaskStatus.DoesNotExist: arguments_dict = self.arguments_as_dict(*self.request.args, **self. request.kwargs) name = self.generate_name(arguments_dict) task_class = '.'.join([self.__class__.__module__, self.__class__. __name__]) total_steps = self.calculate_total_steps(arguments_dict) user_id = arguments_dict['user_id'] return UserTaskStatus.objects.get_or_create(task_id=task_id, defaults={'user_id': user_id, 'name': name, 'task_class': task_class, 'total_steps': total_steps})[0]
status
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n task_id = self.request.id\n try:\n return UserTaskStatus.objects.get(task_id=task_id)\n except UserTaskStatus.DoesNotExist:\n arguments_dict = self.arguments_as_dict(*self.request.args, **self.\n request.kwargs)\n name = self.generate_name(arguments_dict)\n task_class = '.'.join([self.__class__.__module__, self.__class__.\n __name__])\n total_steps = self.calculate_total_steps(arguments_dict)\n user_id = arguments_dict['user_id']\n return UserTaskStatus.objects.get_or_create(task_id=task_id,\n defaults={'user_id': user_id, 'name': name, 'task_class':\n task_class, 'total_steps': total_steps})[0]\n", "role": "user" }, { "content": "status", "role": "assistant" } ]
def x(data): from rasterio.enums import ColorInterp as ci modes = {'L': [ci.gray], 'LA': [ci.gray, ci.alpha], 'YCbCr': [ci.Y, ci. Cb, ci.Cr], 'YCbCrA': [ci.Y, ci.Cb, ci.Cr, ci.alpha]} try: mode = ''.join(data['bands'].values) return modes[mode] except KeyError: colors = {'R': ci.red, 'G': ci.green, 'B': ci.blue, 'A': ci.alpha, 'C': ci.cyan, 'M': ci.magenta, 'Y': ci.yellow, 'H': ci.hue, 'S': ci.saturation, 'L': ci.lightness, 'K': ci.black} return [colors[band] for band in data['bands'].values]
color_interp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n from rasterio.enums import ColorInterp as ci\n modes = {'L': [ci.gray], 'LA': [ci.gray, ci.alpha], 'YCbCr': [ci.Y, ci.\n Cb, ci.Cr], 'YCbCrA': [ci.Y, ci.Cb, ci.Cr, ci.alpha]}\n try:\n mode = ''.join(data['bands'].values)\n return modes[mode]\n except KeyError:\n colors = {'R': ci.red, 'G': ci.green, 'B': ci.blue, 'A': ci.alpha,\n 'C': ci.cyan, 'M': ci.magenta, 'Y': ci.yellow, 'H': ci.hue, 'S':\n ci.saturation, 'L': ci.lightness, 'K': ci.black}\n return [colors[band] for band in data['bands'].values]\n", "role": "user" }, { "content": "color_interp", "role": "assistant" } ]
def x(data): if not hasattr(data, 'dims'): raise TypeError("Data must have a 'dims' attribute.") data = data.copy() if 'y' not in data.dims or 'x' not in data.dims: if data.ndim != 2: raise ValueError("Data must have a 'y' and 'x' dimension") if 'y' not in data.dims: old_dim = [d for d in data.dims if d != 'x'][0] data = data.rename({old_dim: 'y'}) if 'x' not in data.dims: old_dim = [d for d in data.dims if d != 'y'][0] data = data.rename({old_dim: 'x'}) if 'bands' not in data.dims: if data.ndim <= 2: data = data.expand_dims('bands') data['bands'] = ['L'] else: raise ValueError("No 'bands' dimension provided.") return data
correct_dims
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n if not hasattr(data, 'dims'):\n raise TypeError(\"Data must have a 'dims' attribute.\")\n data = data.copy()\n if 'y' not in data.dims or 'x' not in data.dims:\n if data.ndim != 2:\n raise ValueError(\"Data must have a 'y' and 'x' dimension\")\n if 'y' not in data.dims:\n old_dim = [d for d in data.dims if d != 'x'][0]\n data = data.rename({old_dim: 'y'})\n if 'x' not in data.dims:\n old_dim = [d for d in data.dims if d != 'y'][0]\n data = data.rename({old_dim: 'x'})\n if 'bands' not in data.dims:\n if data.ndim <= 2:\n data = data.expand_dims('bands')\n data['bands'] = ['L']\n else:\n raise ValueError(\"No 'bands' dimension provided.\")\n return data\n", "role": "user" }, { "content": "correct_dims", "role": "assistant" } ]
def x(self, filename, fformat=None, fill_value=None, compute=True, keep_palette=False, cmap=None, **format_kwargs): fformat = fformat or os.path.splitext(filename)[1][1:4] if fformat in ('tif', 'jp2') and rasterio: return self.rio_save(filename, fformat=fformat, fill_value= fill_value, compute=compute, keep_palette=keep_palette, cmap= cmap, **format_kwargs) else: return self.pil_save(filename, fformat, fill_value, compute=compute, **format_kwargs)
save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, fformat=None, fill_value=None, compute=True,\n keep_palette=False, cmap=None, **format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n if fformat in ('tif', 'jp2') and rasterio:\n return self.rio_save(filename, fformat=fformat, fill_value=\n fill_value, compute=compute, keep_palette=keep_palette, cmap=\n cmap, **format_kwargs)\n else:\n return self.pil_save(filename, fformat, fill_value, compute=compute,\n **format_kwargs)\n", "role": "user" }, { "content": "save", "role": "assistant" } ]
def x(self, filename, fformat=None, fill_value=None, dtype=np.uint8, compute=True, tags=None, keep_palette=False, cmap=None, **format_kwargs): fformat = fformat or os.path.splitext(filename)[1][1:4] drivers = {'jpg': 'JPEG', 'png': 'PNG', 'tif': 'GTiff', 'jp2': 'JP2OpenJPEG'} driver = drivers.get(fformat, fformat) if tags is None: tags = {} data, mode = self.finalize(fill_value, dtype=dtype, keep_palette= keep_palette, cmap=cmap) data = data.transpose('bands', 'y', 'x') data.attrs = self.data.attrs crs = None gcps = None transform = None if driver in ['GTiff', 'JP2OpenJPEG']: if not np.issubdtype(data.dtype, np.floating): format_kwargs.setdefault('compress', 'DEFLATE') photometric_map = {'RGB': 'RGB', 'RGBA': 'RGB', 'CMYK': 'CMYK', 'CMYKA': 'CMYK', 'YCBCR': 'YCBCR', 'YCBCRA': 'YCBCR'} if mode.upper() in photometric_map: format_kwargs.setdefault('photometric', photometric_map[mode. upper()]) try: crs = rasterio.crs.CRS(data.attrs['area'].proj_dict) west, south, east, north = data.attrs['area'].area_extent height, width = data.sizes['y'], data.sizes['x'] transform = rasterio.transform.from_bounds(west, south, east, north, width, height) except KeyError: logger.info("Couldn't create geotransform") except AttributeError: try: gcps = data.attrs['area'].lons.attrs['gcps'] crs = data.attrs['area'].lons.attrs['crs'] except KeyError: logger.info("Couldn't create geotransform") if 'start_time' in data.attrs: stime = data.attrs['start_time'] stime_str = stime.strftime('%Y:%m:%d %H:%M:%S') tags.setdefault('TIFFTAG_DATETIME', stime_str) elif driver == 'JPEG' and 'A' in mode: raise ValueError('JPEG does not support alpha') r_file = RIOFile(filename, 'w', driver=driver, width=data.sizes['x'], height=data.sizes['y'], count=data.sizes['bands'], dtype=dtype, nodata=fill_value, crs=crs, transform=transform, gcps=gcps, ** format_kwargs) r_file.open() if not keep_palette: r_file.colorinterp = color_interp(data) r_file.rfile.update_tags(**tags) if keep_palette and cmap is not None: if data.dtype != 'uint8': raise ValueError('Rasterio only supports 8-bit colormaps') try: from trollimage.colormap import Colormap cmap = cmap.to_rio() if isinstance(cmap, Colormap) else cmap r_file.rfile.write_colormap(1, cmap) except AttributeError: raise ValueError('Colormap is not formatted correctly') if compute: res = da.store(data.data, r_file) r_file.close() return res return data.data, r_file
rio_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, fformat=None, fill_value=None, dtype=np.uint8,\n compute=True, tags=None, keep_palette=False, cmap=None, **format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n drivers = {'jpg': 'JPEG', 'png': 'PNG', 'tif': 'GTiff', 'jp2':\n 'JP2OpenJPEG'}\n driver = drivers.get(fformat, fformat)\n if tags is None:\n tags = {}\n data, mode = self.finalize(fill_value, dtype=dtype, keep_palette=\n keep_palette, cmap=cmap)\n data = data.transpose('bands', 'y', 'x')\n data.attrs = self.data.attrs\n crs = None\n gcps = None\n transform = None\n if driver in ['GTiff', 'JP2OpenJPEG']:\n if not np.issubdtype(data.dtype, np.floating):\n format_kwargs.setdefault('compress', 'DEFLATE')\n photometric_map = {'RGB': 'RGB', 'RGBA': 'RGB', 'CMYK': 'CMYK',\n 'CMYKA': 'CMYK', 'YCBCR': 'YCBCR', 'YCBCRA': 'YCBCR'}\n if mode.upper() in photometric_map:\n format_kwargs.setdefault('photometric', photometric_map[mode.\n upper()])\n try:\n crs = rasterio.crs.CRS(data.attrs['area'].proj_dict)\n west, south, east, north = data.attrs['area'].area_extent\n height, width = data.sizes['y'], data.sizes['x']\n transform = rasterio.transform.from_bounds(west, south, east,\n north, width, height)\n except KeyError:\n logger.info(\"Couldn't create geotransform\")\n except AttributeError:\n try:\n gcps = data.attrs['area'].lons.attrs['gcps']\n crs = data.attrs['area'].lons.attrs['crs']\n except KeyError:\n logger.info(\"Couldn't create geotransform\")\n if 'start_time' in data.attrs:\n stime = data.attrs['start_time']\n stime_str = stime.strftime('%Y:%m:%d %H:%M:%S')\n tags.setdefault('TIFFTAG_DATETIME', stime_str)\n elif driver == 'JPEG' and 'A' in mode:\n raise ValueError('JPEG does not support alpha')\n r_file = RIOFile(filename, 'w', driver=driver, width=data.sizes['x'],\n height=data.sizes['y'], count=data.sizes['bands'], dtype=dtype,\n nodata=fill_value, crs=crs, transform=transform, gcps=gcps, **\n format_kwargs)\n r_file.open()\n if not keep_palette:\n r_file.colorinterp = color_interp(data)\n r_file.rfile.update_tags(**tags)\n if keep_palette and cmap is not None:\n if data.dtype != 'uint8':\n raise ValueError('Rasterio only supports 8-bit colormaps')\n try:\n from trollimage.colormap import Colormap\n cmap = cmap.to_rio() if isinstance(cmap, Colormap) else cmap\n r_file.rfile.write_colormap(1, cmap)\n except AttributeError:\n raise ValueError('Colormap is not formatted correctly')\n if compute:\n res = da.store(data.data, r_file)\n r_file.close()\n return res\n return data.data, r_file\n", "role": "user" }, { "content": "rio_save", "role": "assistant" } ]
def x(self, filename, fformat=None, fill_value=None, compute=True, ** format_kwargs): fformat = fformat or os.path.splitext(filename)[1][1:4] fformat = check_image_format(fformat) if fformat == 'png': format_kwargs['pnginfo'] = self._pngmeta() img = self.pil_image(fill_value, compute=False) delay = img.save(filename, fformat, **format_kwargs) if compute: return delay.compute() return delay
pil_save
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, filename, fformat=None, fill_value=None, compute=True, **\n format_kwargs):\n fformat = fformat or os.path.splitext(filename)[1][1:4]\n fformat = check_image_format(fformat)\n if fformat == 'png':\n format_kwargs['pnginfo'] = self._pngmeta()\n img = self.pil_image(fill_value, compute=False)\n delay = img.save(filename, fformat, **format_kwargs)\n if compute:\n return delay.compute()\n return delay\n", "role": "user" }, { "content": "pil_save", "role": "assistant" } ]