source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, order='in', priority='L', display=None, root=None): old_display = None if root == None: root = self.root.name if display == None: display = self.attr['display'] else: old_display = self.attr['display'] self.attr['display'] = display if priority == 'L': first_child = self.get_left_child second_child = self.get_right_child else: first_child = self.get_right_child second_child = self.get_left_child if order == 'pre': print(root) if first_child(root) is not None: if display: self.display(highlight=[root]) self.print_nodes(order, priority, display, first_child(root)) if order == 'in': print(root) if second_child(root) is not None: if display: self.display(highlight=[root]) self.print_nodes(order, priority, display, second_child(root)) if order == 'post': print(root) if display: self.display(highlight=[root]) if old_display: self.attr['display'] = old_display
print_nodes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, order='in', priority='L', display=None, root=None):\n old_display = None\n if root == None:\n root = self.root.name\n if display == None:\n display = self.attr['display']\n else:\n old_display = self.attr['display']\n self.attr['display'] = display\n if priority == 'L':\n first_child = self.get_left_child\n second_child = self.get_right_child\n else:\n first_child = self.get_right_child\n second_child = self.get_left_child\n if order == 'pre':\n print(root)\n if first_child(root) is not None:\n if display:\n self.display(highlight=[root])\n self.print_nodes(order, priority, display, first_child(root))\n if order == 'in':\n print(root)\n if second_child(root) is not None:\n if display:\n self.display(highlight=[root])\n self.print_nodes(order, priority, display, second_child(root))\n if order == 'post':\n print(root)\n if display:\n self.display(highlight=[root])\n if old_display:\n self.attr['display'] = old_display\n", "role": "user" }, { "content": "print_nodes", "role": "assistant" } ]
def x(self, root=None, display=None, priority='L'): if root == None: root = self.root self.traverse(root, display, Stack(), priority)
dfs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, root=None, display=None, priority='L'):\n if root == None:\n root = self.root\n self.traverse(root, display, Stack(), priority)\n", "role": "user" }, { "content": "dfs", "role": "assistant" } ]
def x(self, root=None, display=None, priority='L'): if root == None: root = self.root self.traverse(root, display, Queue(), priority)
bfs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, root=None, display=None, priority='L'):\n if root == None:\n root = self.root\n self.traverse(root, display, Queue(), priority)\n", "role": "user" }, { "content": "bfs", "role": "assistant" } ]
def x(self, root=None, display=None, q=Stack(), priority='L'): old_display = None if root == None: root = self.root if display == None: display = self.attr['display'] else: old_display = self.attr['display'] self.attr['display'] = display if isinstance(q, Queue): addToQ = q.enqueue removeFromQ = q.dequeue elif isinstance(q, Stack): addToQ = q.push removeFromQ = q.pop if priority == 'L': first_child = self.get_left_child second_child = self.get_right_child else: first_child = self.get_right_child second_child = self.get_left_child addToQ(root) while not q.isEmpty(): current = removeFromQ() if display: self.display(highlight=[current]) n = first_child(current) if n is not None: addToQ(n) n = second_child(current) if n is not None: addToQ(n) if old_display: self.attr['display'] = old_display
traverse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, root=None, display=None, q=Stack(), priority='L'):\n old_display = None\n if root == None:\n root = self.root\n if display == None:\n display = self.attr['display']\n else:\n old_display = self.attr['display']\n self.attr['display'] = display\n if isinstance(q, Queue):\n addToQ = q.enqueue\n removeFromQ = q.dequeue\n elif isinstance(q, Stack):\n addToQ = q.push\n removeFromQ = q.pop\n if priority == 'L':\n first_child = self.get_left_child\n second_child = self.get_right_child\n else:\n first_child = self.get_right_child\n second_child = self.get_left_child\n addToQ(root)\n while not q.isEmpty():\n current = removeFromQ()\n if display:\n self.display(highlight=[current])\n n = first_child(current)\n if n is not None:\n addToQ(n)\n n = second_child(current)\n if n is not None:\n addToQ(n)\n if old_display:\n self.attr['display'] = old_display\n", "role": "user" }, { "content": "traverse", "role": "assistant" } ]
def x(yfile): ytxt = yfile.read() mp = ModuleParser(ytxt) mst = mp.statement() submod = mst.keyword == 'submodule' import_only = True rev = '' features = [] includes = [] rec = {} for sst in mst.substatements: if not rev and sst.keyword == 'revision': rev = sst.argument elif import_only and sst.keyword in data_kws: import_only = False elif sst.keyword == 'feature': features.append(sst.argument) elif submod: continue elif sst.keyword == 'namespace': rec['namespace'] = sst.argument elif sst.keyword == 'include': rd = sst.find1('revision-date') includes.append((sst.argument, rd.argument if rd else None)) rec['import-only'] = import_only rec['features'] = features if submod: rec['revision'] = rev submodmap[mst.argument] = rec else: rec['includes'] = includes modmap[mst.argument, rev] = rec
module_entry
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(yfile):\n ytxt = yfile.read()\n mp = ModuleParser(ytxt)\n mst = mp.statement()\n submod = mst.keyword == 'submodule'\n import_only = True\n rev = ''\n features = []\n includes = []\n rec = {}\n for sst in mst.substatements:\n if not rev and sst.keyword == 'revision':\n rev = sst.argument\n elif import_only and sst.keyword in data_kws:\n import_only = False\n elif sst.keyword == 'feature':\n features.append(sst.argument)\n elif submod:\n continue\n elif sst.keyword == 'namespace':\n rec['namespace'] = sst.argument\n elif sst.keyword == 'include':\n rd = sst.find1('revision-date')\n includes.append((sst.argument, rd.argument if rd else None))\n rec['import-only'] = import_only\n rec['features'] = features\n if submod:\n rec['revision'] = rev\n submodmap[mst.argument] = rec\n else:\n rec['includes'] = includes\n modmap[mst.argument, rev] = rec\n", "role": "user" }, { "content": "module_entry", "role": "assistant" } ]
def x(self, ctype: ContentType) ->bool: return not self.check_when() or self.pattern.nullable(ctype)
nullable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ctype: ContentType) ->bool:\n return not self.check_when() or self.pattern.nullable(ctype)\n", "role": "user" }, { "content": "nullable", "role": "assistant" } ]
def x(self, x: str, ctype: ContentType) ->SchemaPattern: return self.pattern.deriv(x, ctype) if self.check_when() else NotAllowed()
deriv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return self.pattern.deriv(x, ctype) if self.check_when() else NotAllowed()\n", "role": "user" }, { "content": "deriv", "role": "assistant" } ]
def x(self, x: str, ctype: ContentType) ->SchemaPattern: return Empty() if self.name == x and self._active(ctype) else NotAllowed()
deriv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return Empty() if self.name == x and self._active(ctype) else NotAllowed()\n", "role": "user" }, { "content": "deriv", "role": "assistant" } ]
def x(self, ctype: ContentType) ->bool: return self.left.nullable(ctype) or self.right.nullable(ctype)
nullable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, ctype: ContentType) ->bool:\n return self.left.nullable(ctype) or self.right.nullable(ctype)\n", "role": "user" }, { "content": "nullable", "role": "assistant" } ]
def x(self, x: str, ctype: ContentType) ->SchemaPattern: return Alternative.combine(self.left.deriv(x, ctype), self.right.deriv( x, ctype))
deriv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return Alternative.combine(self.left.deriv(x, ctype), self.right.deriv(\n x, ctype))\n", "role": "user" }, { "content": "deriv", "role": "assistant" } ]
def x(cls, name: str, mod_path: Tuple[str]=('.',), description: str=None ) ->'DataModel': with open(name, encoding='utf-8') as infile: yltxt = infile.read() return cls(yltxt, mod_path, description)
from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, name: str, mod_path: Tuple[str]=('.',), description: str=None\n ) ->'DataModel':\n with open(name, encoding='utf-8') as infile:\n yltxt = infile.read()\n return cls(yltxt, mod_path, description)\n", "role": "user" }, { "content": "from_file", "role": "assistant" } ]
def x(self) ->str: fnames = sorted(['@'.join(m) for m in self.schema_data.modules]) return hashlib.sha1(''.join(fnames).encode('ascii')).hexdigest()
module_set_id
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->str:\n fnames = sorted(['@'.join(m) for m in self.schema_data.modules])\n return hashlib.sha1(''.join(fnames).encode('ascii')).hexdigest()\n", "role": "user" }, { "content": "module_set_id", "role": "assistant" } ]
def x(self, robj: RawObject) ->RootNode: cooked = self.schema.from_raw(robj) return RootNode(cooked, self.schema, cooked.timestamp)
from_raw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, robj: RawObject) ->RootNode:\n cooked = self.schema.from_raw(robj)\n return RootNode(cooked, self.schema, cooked.timestamp)\n", "role": "user" }, { "content": "from_raw", "role": "assistant" } ]
def x(self, path: SchemaPath) ->Optional[SchemaNode]: return self.schema.get_schema_descendant(self.schema_data.path2route(path))
get_schema_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path: SchemaPath) ->Optional[SchemaNode]:\n return self.schema.get_schema_descendant(self.schema_data.path2route(path))\n", "role": "user" }, { "content": "get_schema_node", "role": "assistant" } ]
def x(self, path: DataPath) ->Optional[DataNode]: addr = self.schema_data.path2route(path) node = self.schema for p in addr: node = node.get_data_child(*p) if node is None: return None return node
get_data_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path: DataPath) ->Optional[DataNode]:\n addr = self.schema_data.path2route(path)\n node = self.schema\n for p in addr:\n node = node.get_data_child(*p)\n if node is None:\n return None\n return node\n", "role": "user" }, { "content": "get_data_node", "role": "assistant" } ]
def x(self, no_types: bool=False, val_count: bool=False) ->str: return self.schema._ascii_tree('', no_types, val_count)
ascii_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, no_types: bool=False, val_count: bool=False) ->str:\n return self.schema._ascii_tree('', no_types, val_count)\n", "role": "user" }, { "content": "ascii_tree", "role": "assistant" } ]
def x(self) ->str: res = self.schema._node_digest() res['config'] = True return json.dumps(res)
schema_digest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->str:\n res = self.schema._node_digest()\n res['config'] = True\n return json.dumps(res)\n", "role": "user" }, { "content": "schema_digest", "role": "assistant" } ]
def x(self) ->Optional[QualName]: if self.test_string('*'): self.skip_ws() return False ident = self.yang_identifier() ws = self.skip_ws() try: next = self.peek() except EndOfInput: return ident, None if next == '(': return self._node_type(ident) if not ws and self.test_string(':'): res = self.yang_identifier(), self.sctx.schema_data.prefix2ns(ident, self.sctx.text_mid) else: res = ident, None self.skip_ws() return res
qname
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->Optional[QualName]:\n if self.test_string('*'):\n self.skip_ws()\n return False\n ident = self.yang_identifier()\n ws = self.skip_ws()\n try:\n next = self.peek()\n except EndOfInput:\n return ident, None\n if next == '(':\n return self._node_type(ident)\n if not ws and self.test_string(':'):\n res = self.yang_identifier(), self.sctx.schema_data.prefix2ns(ident,\n self.sctx.text_mid)\n else:\n res = ident, None\n self.skip_ws()\n return res\n", "role": "user" }, { "content": "qname", "role": "assistant" } ]
def x(s): if s in DOT_KEYWORDS: return False chars = [ord(c) for c in s if ord(c) > 127 or ord(c) == 0] if chars and not ID_RE_DBL_QUOTED.match(s) and not ID_RE_HTML.match(s): return True for test_re in [ID_RE_ALPHA_NUMS, ID_RE_NUM, ID_RE_DBL_QUOTED, ID_RE_HTML, ID_RE_ALPHA_NUMS_WITH_PORTS]: if test_re.match(s): return False m = ID_RE_WITH_PORT.match(s) if m: return needs_quotes(m.group(1)) or needs_quotes(m.group(2)) return True
needs_quotes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(s):\n if s in DOT_KEYWORDS:\n return False\n chars = [ord(c) for c in s if ord(c) > 127 or ord(c) == 0]\n if chars and not ID_RE_DBL_QUOTED.match(s) and not ID_RE_HTML.match(s):\n return True\n for test_re in [ID_RE_ALPHA_NUMS, ID_RE_NUM, ID_RE_DBL_QUOTED,\n ID_RE_HTML, ID_RE_ALPHA_NUMS_WITH_PORTS]:\n if test_re.match(s):\n return False\n m = ID_RE_WITH_PORT.match(s)\n if m:\n return needs_quotes(m.group(1)) or needs_quotes(m.group(2))\n return True\n", "role": "user" }, { "content": "needs_quotes", "role": "assistant" } ]
def x(ylib: str=None, path: str=None, scope: ValidationScope= ValidationScope.all, ctype: ContentType=ContentType.config, set_id: bool=False, tree: bool=False, no_types: bool=False, digest: bool=False, validate: str=None) ->int: if ylib is None: parser = argparse.ArgumentParser(prog='yangson', description= 'Validate JSON data against a YANG data model.') parser.add_argument('-V', '--version', action='version', version= f"%(prog)s {pkg_resources.get_distribution('yangson').version}") parser.add_argument('ylib', metavar='YLIB', help= 'name of the file with description of the data model in JSON-encoded YANG library format [RFC 7895]' ) parser.add_argument('-p', '--path', help= 'colon-separated list of directories to search for YANG modules') grp = parser.add_mutually_exclusive_group() grp.add_argument('-i', '--id', action='store_true', help= 'print module set id') grp.add_argument('-t', '--tree', action='store_true', help= 'print schema tree as ASCII art') grp.add_argument('-d', '--digest', action='store_true', help= 'print schema digest in JSON format') grp.add_argument('-v', '--validate', metavar='INST', help= 'name of the file with JSON-encoded instance data') parser.add_argument('-s', '--scope', choices=['syntax', 'semantics', 'all'], default='all', help= 'validation scope (default: %(default)s)') parser.add_argument('-c', '--ctype', type=str, choices=['config', 'nonconfig', 'all'], default='config', help= 'content type of the data instance (default: %(default)s)') parser.add_argument('-n', '--no-types', action='store_true', help= 'suppress type info in tree output') args = parser.parse_args() ylib: str = args.ylib path: Optional[str] = args.path scope = ValidationScope[args.scope] ctype = ContentType[args.ctype] set_id: bool = args.id tree: bool = args.tree no_types = args.no_types digest: bool = args.digest validate: str = args.validate try: with open(ylib, encoding='utf-8') as infile: yl = infile.read() except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError ) as e: print('YANG library:', str(e), file=sys.stderr) return 1 sp = path if path else os.environ.get('YANG_MODPATH', '.') try: dm = DataModel(yl, tuple(sp.split(':'))) except BadYangLibraryData as e: print('Invalid YANG library:', str(e), file=sys.stderr) return 2 except FeaturePrerequisiteError as e: print('Unsupported pre-requisite feature:', str(e), file=sys.stderr) return 2 except MultipleImplementedRevisions as e: print('Multiple implemented revisions:', str(e), file=sys.stderr) return 2 except ModuleNotFound as e: print('Module not found:', str(e), file=sys.stderr) return 2 except ModuleNotRegistered as e: print('Module not registered:', str(e), file=sys.stderr) return 2 if set_id: print(dm.module_set_id()) return 0 if tree: print(dm.ascii_tree(no_types)) return 0 if digest: print(dm.schema_digest()) return 0 if not validate: return 0 try: with open(validate, encoding='utf-8') as infile: itxt = json.load(infile) except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError ) as e: print('Instance data:', str(e), file=sys.stderr) return 1 try: i = dm.from_raw(itxt) except RawMemberError as e: print('Illegal object member:', str(e), file=sys.stderr) return 3 except RawTypeError as e: print('Invalid type:', str(e), file=sys.stderr) return 3 try: i.validate(scope, ctype) except SchemaError as e: print('Schema error:', str(e), file=sys.stderr) return 3 except SemanticError as e: print('Semantic error:', str(e), file=sys.stderr) return 3 except YangTypeError as e: print('Invalid type:', str(e), file=sys.stderr) return 3 return 0
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ylib: str=None, path: str=None, scope: ValidationScope=\n ValidationScope.all, ctype: ContentType=ContentType.config, set_id:\n bool=False, tree: bool=False, no_types: bool=False, digest: bool=False,\n validate: str=None) ->int:\n if ylib is None:\n parser = argparse.ArgumentParser(prog='yangson', description=\n 'Validate JSON data against a YANG data model.')\n parser.add_argument('-V', '--version', action='version', version=\n f\"%(prog)s {pkg_resources.get_distribution('yangson').version}\")\n parser.add_argument('ylib', metavar='YLIB', help=\n 'name of the file with description of the data model in JSON-encoded YANG library format [RFC 7895]'\n )\n parser.add_argument('-p', '--path', help=\n 'colon-separated list of directories to search for YANG modules')\n grp = parser.add_mutually_exclusive_group()\n grp.add_argument('-i', '--id', action='store_true', help=\n 'print module set id')\n grp.add_argument('-t', '--tree', action='store_true', help=\n 'print schema tree as ASCII art')\n grp.add_argument('-d', '--digest', action='store_true', help=\n 'print schema digest in JSON format')\n grp.add_argument('-v', '--validate', metavar='INST', help=\n 'name of the file with JSON-encoded instance data')\n parser.add_argument('-s', '--scope', choices=['syntax', 'semantics',\n 'all'], default='all', help=\n 'validation scope (default: %(default)s)')\n parser.add_argument('-c', '--ctype', type=str, choices=['config',\n 'nonconfig', 'all'], default='config', help=\n 'content type of the data instance (default: %(default)s)')\n parser.add_argument('-n', '--no-types', action='store_true', help=\n 'suppress type info in tree output')\n args = parser.parse_args()\n ylib: str = args.ylib\n path: Optional[str] = args.path\n scope = ValidationScope[args.scope]\n ctype = ContentType[args.ctype]\n set_id: bool = args.id\n tree: bool = args.tree\n no_types = args.no_types\n digest: bool = args.digest\n validate: str = args.validate\n try:\n with open(ylib, encoding='utf-8') as infile:\n yl = infile.read()\n except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError\n ) as e:\n print('YANG library:', str(e), file=sys.stderr)\n return 1\n sp = path if path else os.environ.get('YANG_MODPATH', '.')\n try:\n dm = DataModel(yl, tuple(sp.split(':')))\n except BadYangLibraryData as e:\n print('Invalid YANG library:', str(e), file=sys.stderr)\n return 2\n except FeaturePrerequisiteError as e:\n print('Unsupported pre-requisite feature:', str(e), file=sys.stderr)\n return 2\n except MultipleImplementedRevisions as e:\n print('Multiple implemented revisions:', str(e), file=sys.stderr)\n return 2\n except ModuleNotFound as e:\n print('Module not found:', str(e), file=sys.stderr)\n return 2\n except ModuleNotRegistered as e:\n print('Module not registered:', str(e), file=sys.stderr)\n return 2\n if set_id:\n print(dm.module_set_id())\n return 0\n if tree:\n print(dm.ascii_tree(no_types))\n return 0\n if digest:\n print(dm.schema_digest())\n return 0\n if not validate:\n return 0\n try:\n with open(validate, encoding='utf-8') as infile:\n itxt = json.load(infile)\n except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError\n ) as e:\n print('Instance data:', str(e), file=sys.stderr)\n return 1\n try:\n i = dm.from_raw(itxt)\n except RawMemberError as e:\n print('Illegal object member:', str(e), file=sys.stderr)\n return 3\n except RawTypeError as e:\n print('Invalid type:', str(e), file=sys.stderr)\n return 3\n try:\n i.validate(scope, ctype)\n except SchemaError as e:\n print('Schema error:', str(e), file=sys.stderr)\n return 3\n except SemanticError as e:\n print('Semantic error:', str(e), file=sys.stderr)\n return 3\n except YangTypeError as e:\n print('Invalid type:', str(e), file=sys.stderr)\n return 3\n return 0\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(self): node = list() node.append(quote_if_necessary(str(self.name))) node.append(' [') flag = False for a in self.attr: flag = True node.append(a) node.append('=') node.append(quote_if_necessary(str(self.attr[a]))) node.append(', ') if flag is True: node = node[:-1] node.append(']') return ''.join(node)
to_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n node = list()\n node.append(quote_if_necessary(str(self.name)))\n node.append(' [')\n flag = False\n for a in self.attr:\n flag = True\n node.append(a)\n node.append('=')\n node.append(quote_if_necessary(str(self.attr[a])))\n node.append(', ')\n if flag is True:\n node = node[:-1]\n node.append(']')\n return ''.join(node)\n", "role": "user" }, { "content": "to_string", "role": "assistant" } ]
def x(self, name, **attr): if name in self.neighbors: raise MultipleNodeException self.neighbors[name] = list() if self.graph_type is DIRECTED_GRAPH: self.in_neighbors[name] = list() self.nodes[name] = Node(name, **attr) return self.nodes[name]
add_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, **attr):\n if name in self.neighbors:\n raise MultipleNodeException\n self.neighbors[name] = list()\n if self.graph_type is DIRECTED_GRAPH:\n self.in_neighbors[name] = list()\n self.nodes[name] = Node(name, **attr)\n return self.nodes[name]\n", "role": "user" }, { "content": "add_node", "role": "assistant" } ]
def x(self, name): if name not in self.neighbors: raise Exception('Node %s does not exist!' % str(name)) for n in self.neighbors[name]: del self.edge_attr[name, n] if self.graph_type == UNDIRECTED_GRAPH: self.neighbors[n].remove(name) else: self.in_neighbors[n].remove(name) if self.graph_type is DIRECTED_GRAPH: for n in self.in_neighbors[name]: del self.edge_attr[n, name] self.neighbors[n].remove(name) del self.neighbors[name] del self.in_neighbors[name] del self.nodes[name]
del_node
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name):\n if name not in self.neighbors:\n raise Exception('Node %s does not exist!' % str(name))\n for n in self.neighbors[name]:\n del self.edge_attr[name, n]\n if self.graph_type == UNDIRECTED_GRAPH:\n self.neighbors[n].remove(name)\n else:\n self.in_neighbors[n].remove(name)\n if self.graph_type is DIRECTED_GRAPH:\n for n in self.in_neighbors[name]:\n del self.edge_attr[n, name]\n self.neighbors[n].remove(name)\n del self.neighbors[name]\n del self.in_neighbors[name]\n del self.nodes[name]\n", "role": "user" }, { "content": "del_node", "role": "assistant" } ]
def x(self, name1, name2, **attr): if (name1, name2) in self.edge_attr: raise MultipleEdgeException if self.graph_type is UNDIRECTED_GRAPH and (name2, name1 ) in self.edge_attr: raise MultipleEdgeException self.edge_attr[name1, name2] = copy.deepcopy(DEFAULT_EDGE_ATTRIBUTES) for a in attr: self.edge_attr[name1, name2][a] = attr[a] if name1 not in self.nodes: self.add_node(name1) if name2 not in self.nodes: self.add_node(name2) self.neighbors[name1].append(name2) if self.graph_type is UNDIRECTED_GRAPH: self.neighbors[name2].append(name1) else: self.in_neighbors[name2].append(name1)
add_edge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name1, name2, **attr):\n if (name1, name2) in self.edge_attr:\n raise MultipleEdgeException\n if self.graph_type is UNDIRECTED_GRAPH and (name2, name1\n ) in self.edge_attr:\n raise MultipleEdgeException\n self.edge_attr[name1, name2] = copy.deepcopy(DEFAULT_EDGE_ATTRIBUTES)\n for a in attr:\n self.edge_attr[name1, name2][a] = attr[a]\n if name1 not in self.nodes:\n self.add_node(name1)\n if name2 not in self.nodes:\n self.add_node(name2)\n self.neighbors[name1].append(name2)\n if self.graph_type is UNDIRECTED_GRAPH:\n self.neighbors[name2].append(name1)\n else:\n self.in_neighbors[name2].append(name1)\n", "role": "user" }, { "content": "add_edge", "role": "assistant" } ]
def x(self, e): if self.graph_type is DIRECTED_GRAPH: try: del self.edge_attr[e] except KeyError: raise Exception('Edge %s does not exists!' % str(e)) self.neighbors[e[0]].remove(e[1]) self.in_neighbors[e[1]].remove(e[0]) else: try: del self.edge_attr[e] except KeyError: try: del self.edge_attr[e[1], e[0]] except KeyError: raise Exception('Edge %s does not exists!' % str(e)) self.neighbors[e[0]].remove(e[1]) self.neighbors[e[1]].remove(e[0])
del_edge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, e):\n if self.graph_type is DIRECTED_GRAPH:\n try:\n del self.edge_attr[e]\n except KeyError:\n raise Exception('Edge %s does not exists!' % str(e))\n self.neighbors[e[0]].remove(e[1])\n self.in_neighbors[e[1]].remove(e[0])\n else:\n try:\n del self.edge_attr[e]\n except KeyError:\n try:\n del self.edge_attr[e[1], e[0]]\n except KeyError:\n raise Exception('Edge %s does not exists!' % str(e))\n self.neighbors[e[0]].remove(e[1])\n self.neighbors[e[1]].remove(e[0])\n", "role": "user" }, { "content": "del_edge", "role": "assistant" } ]
def x(self, name1, name2): if self.graph_type is DIRECTED_GRAPH: return (name1, name2) in self.edge_attr else: return (name1, name2) in self.edge_attr or (name2, name1 ) in self.edge_attr
check_edge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name1, name2):\n if self.graph_type is DIRECTED_GRAPH:\n return (name1, name2) in self.edge_attr\n else:\n return (name1, name2) in self.edge_attr or (name2, name1\n ) in self.edge_attr\n", "role": "user" }, { "content": "check_edge", "role": "assistant" } ]
def x(self, n, m, attr): if self.graph_type is DIRECTED_GRAPH: return self.edge_attr[n, m][attr] else: try: return self.edge_attr[n, m][attr] except KeyError: return self.edge_attr[m, n][attr]
get_edge_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, m, attr):\n if self.graph_type is DIRECTED_GRAPH:\n return self.edge_attr[n, m][attr]\n else:\n try:\n return self.edge_attr[n, m][attr]\n except KeyError:\n return self.edge_attr[m, n][attr]\n", "role": "user" }, { "content": "get_edge_attr", "role": "assistant" } ]
def x(self, name, attr, value): self.get_node(name).set_attr(attr, value)
set_node_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, name, attr, value):\n self.get_node(name).set_attr(attr, value)\n", "role": "user" }, { "content": "set_node_attr", "role": "assistant" } ]
def x(self, n, m, attr, value): if self.graph_type is DIRECTED_GRAPH: self.edge_attr[n, m][attr] = value else: try: self.edge_attr[n, m][attr] = value except KeyError: self.edge_attr[m, n][attr] = value
set_edge_attr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, n, m, attr, value):\n if self.graph_type is DIRECTED_GRAPH:\n self.edge_attr[n, m][attr] = value\n else:\n try:\n self.edge_attr[n, m][attr] = value\n except KeyError:\n self.edge_attr[m, n][attr] = value\n", "role": "user" }, { "content": "set_edge_attr", "role": "assistant" } ]
def x(self, e): edge = list() edge.append(quote_if_necessary(str(e[0]))) edge.append(self.edge_connect_symbol) edge.append(quote_if_necessary(str(e[1]))) if len(self.edge_attr[e]) is 0: return ''.join(edge) edge.append(' [') for a in self.edge_attr[e]: edge.append(a) edge.append('=') edge.append(quote_if_necessary(str(self.edge_attr[e][a]))) edge.append(', ') edge = edge[:-1] edge.append(']') return ''.join(edge)
edge_to_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, e):\n edge = list()\n edge.append(quote_if_necessary(str(e[0])))\n edge.append(self.edge_connect_symbol)\n edge.append(quote_if_necessary(str(e[1])))\n if len(self.edge_attr[e]) is 0:\n return ''.join(edge)\n edge.append(' [')\n for a in self.edge_attr[e]:\n edge.append(a)\n edge.append('=')\n edge.append(quote_if_necessary(str(self.edge_attr[e][a])))\n edge.append(', ')\n edge = edge[:-1]\n edge.append(']')\n return ''.join(edge)\n", "role": "user" }, { "content": "edge_to_string", "role": "assistant" } ]
def x(self): graph = list() processed_edges = {} graph.append('%s %s {\n' % (self.graph_type, self.name)) for a in self.attr: if a not in GRAPH_ATTRIBUTES: continue val = self.attr[a] if val is not None: graph.append('%s=%s' % (a, quote_if_necessary(val))) else: graph.append(a) graph.append(';\n') for c in self.cluster: graph.append('subgraph cluster_%s {\n' % c) for a in self.cluster[c]['attrs']: if a == 'label': graph.append(a + '=' + quote_if_necessary(self.cluster[c][ 'attrs'][a]) + ';\n') continue graph.append(a + '=' + self.cluster[c]['attrs'][a] + ';\n') if len(self.cluster[c]['node_attrs']) != 0: graph.append('node [') for a in self.cluster[c]['node_attrs']: graph.append(a + '=' + self.cluster[c]['node_attrs'][a]) graph.append(',') if len(self.cluster[c]['node_attrs']) != 0: graph.pop() graph.append('];\n') for n in self.cluster[c]['node_list']: data = self.get_node(n).to_string() graph.append(data + ';\n') for n in self.cluster[c]['node_list']: for m in self.cluster[c]['node_list']: if self.check_edge(n, m): data = self.edge_to_string((n, m)) graph.append(data + ';\n') processed_edges[n, m] = None graph.append('}\n') for n in self.neighbors: for c in self.cluster: if n in self.cluster[c]['node_list']: break else: data = self.get_node(n).to_string() graph.append(data + ';\n') for e in self.edge_attr: if e in processed_edges: continue data = self.edge_to_string(e) graph.append(data + ';\n') graph.append('}\n') return ''.join(graph)
to_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n graph = list()\n processed_edges = {}\n graph.append('%s %s {\\n' % (self.graph_type, self.name))\n for a in self.attr:\n if a not in GRAPH_ATTRIBUTES:\n continue\n val = self.attr[a]\n if val is not None:\n graph.append('%s=%s' % (a, quote_if_necessary(val)))\n else:\n graph.append(a)\n graph.append(';\\n')\n for c in self.cluster:\n graph.append('subgraph cluster_%s {\\n' % c)\n for a in self.cluster[c]['attrs']:\n if a == 'label':\n graph.append(a + '=' + quote_if_necessary(self.cluster[c][\n 'attrs'][a]) + ';\\n')\n continue\n graph.append(a + '=' + self.cluster[c]['attrs'][a] + ';\\n')\n if len(self.cluster[c]['node_attrs']) != 0:\n graph.append('node [')\n for a in self.cluster[c]['node_attrs']:\n graph.append(a + '=' + self.cluster[c]['node_attrs'][a])\n graph.append(',')\n if len(self.cluster[c]['node_attrs']) != 0:\n graph.pop()\n graph.append('];\\n')\n for n in self.cluster[c]['node_list']:\n data = self.get_node(n).to_string()\n graph.append(data + ';\\n')\n for n in self.cluster[c]['node_list']:\n for m in self.cluster[c]['node_list']:\n if self.check_edge(n, m):\n data = self.edge_to_string((n, m))\n graph.append(data + ';\\n')\n processed_edges[n, m] = None\n graph.append('}\\n')\n for n in self.neighbors:\n for c in self.cluster:\n if n in self.cluster[c]['node_list']:\n break\n else:\n data = self.get_node(n).to_string()\n graph.append(data + ';\\n')\n for e in self.edge_attr:\n if e in processed_edges:\n continue\n data = self.edge_to_string(e)\n graph.append(data + ';\\n')\n graph.append('}\\n')\n return ''.join(graph)\n", "role": "user" }, { "content": "to_string", "role": "assistant" } ]
def x(self, display=None): if self.graph_type == DIRECTED_GRAPH: raise Exception('label_components only works for ', 'undirected graphs' ) self.num_components = 0 for n in self.get_node_list(): self.get_node(n).set_attr('component', None) for n in self.neighbors: self.get_node(n).set_attr('label', '-') for n in self.get_node_list(): if self.get_node(n).get_attr('component') == None: self.search(n, display=display, component=self.num_components, algo='DFS') self.num_components += 1
label_components
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display=None):\n if self.graph_type == DIRECTED_GRAPH:\n raise Exception('label_components only works for ', 'undirected graphs'\n )\n self.num_components = 0\n for n in self.get_node_list():\n self.get_node(n).set_attr('component', None)\n for n in self.neighbors:\n self.get_node(n).set_attr('label', '-')\n for n in self.get_node_list():\n if self.get_node(n).get_attr('component') == None:\n self.search(n, display=display, component=self.num_components,\n algo='DFS')\n self.num_components += 1\n", "role": "user" }, { "content": "label_components", "role": "assistant" } ]
def x(self): index = 0 component = 0 q = [] for n in self.get_node_list(): if self.get_node_attr(n, 'index') is None: index, component = self.strong_connect(q, n, index, component)
tarjan
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n index = 0\n component = 0\n q = []\n for n in self.get_node_list():\n if self.get_node_attr(n, 'index') is None:\n index, component = self.strong_connect(q, n, index, component)\n", "role": "user" }, { "content": "tarjan", "role": "assistant" } ]
def x(self, q, node, index, component): self.set_node_attr(node, 'index', index) self.set_node_attr(node, 'lowlink', index) index += 1 q.append(node) for m in self.get_neighbors(node): if self.get_node_attr(m, 'index') is None: index, component = self.strong_connect(q, m, index, component) self.set_node_attr(node, 'lowlink', min([self.get_node_attr( node, 'lowlink'), self.get_node_attr(m, 'lowlink')])) elif m in q: self.set_node_attr(node, 'lowlink', min([self.get_node_attr( node, 'lowlink'), self.get_node_attr(m, 'index')])) if self.get_node_attr(node, 'lowlink') == self.get_node_attr(node, 'index' ): m = q.pop() self.set_node_attr(m, 'component', component) while node != m: m = q.pop() self.set_node_attr(m, 'component', component) component += 1 self.num_components = component return index, component
strong_connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q, node, index, component):\n self.set_node_attr(node, 'index', index)\n self.set_node_attr(node, 'lowlink', index)\n index += 1\n q.append(node)\n for m in self.get_neighbors(node):\n if self.get_node_attr(m, 'index') is None:\n index, component = self.strong_connect(q, m, index, component)\n self.set_node_attr(node, 'lowlink', min([self.get_node_attr(\n node, 'lowlink'), self.get_node_attr(m, 'lowlink')]))\n elif m in q:\n self.set_node_attr(node, 'lowlink', min([self.get_node_attr(\n node, 'lowlink'), self.get_node_attr(m, 'index')]))\n if self.get_node_attr(node, 'lowlink') == self.get_node_attr(node, 'index'\n ):\n m = q.pop()\n self.set_node_attr(m, 'component', component)\n while node != m:\n m = q.pop()\n self.set_node_attr(m, 'component', component)\n component += 1\n self.num_components = component\n return index, component\n", "role": "user" }, { "content": "strong_connect", "role": "assistant" } ]
def x(self, root, disc_count=0, finish_count=1, component=None, transpose= False, display=None, pred=None): if pred == None: pred = {} if display == None: display = self.attr['display'] else: self.set_display_mode(display) neighbors = self.neighbors if self.graph_type == DIRECTED_GRAPH and transpose: neighbors = self.in_neighbors self.get_node(root).set_attr('component', component) disc_count += 1 self.get_node(root).set_attr('disc_time', disc_count) self.get_node(root).set_attr('label', str(disc_count) + ',-') self.get_node(root).set_attr('color', 'blue') if root in pred: self.set_edge_attr(pred[root], root, 'color', 'green') self.display() if transpose: fTime = [] for n in neighbors[root]: fTime.append((n, self.get_node(n).get_attr('finish_time'))) neighbor_list = sorted(fTime, key=operator.itemgetter(1)) neighbor_list = list(t[0] for t in neighbor_list) neighbor_list.reverse() else: neighbor_list = neighbors[root] for i in neighbor_list: if not transpose: if self.get_node(i).get_attr('disc_time') is None: pred[i] = root disc_count, finish_count = self.dfs(i, disc_count, finish_count, component, transpose, pred=pred) elif self.get_node(i).get_attr('component') is None: disc_count, finish_count = self.dfs(i, disc_count, finish_count, component, transpose, pred=pred) self.get_node(root).set_attr('finish_time', finish_count) d_time = self.get_node(root).get_attr('disc_time') label = '"' + str(d_time) + ',' + str(finish_count) + '"' self.get_node(root).set_attr('label', label) self.get_node(root).set_attr('color', 'green') self.display() finish_count += 1 return disc_count, finish_count
dfs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, root, disc_count=0, finish_count=1, component=None, transpose=\n False, display=None, pred=None):\n if pred == None:\n pred = {}\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n neighbors = self.neighbors\n if self.graph_type == DIRECTED_GRAPH and transpose:\n neighbors = self.in_neighbors\n self.get_node(root).set_attr('component', component)\n disc_count += 1\n self.get_node(root).set_attr('disc_time', disc_count)\n self.get_node(root).set_attr('label', str(disc_count) + ',-')\n self.get_node(root).set_attr('color', 'blue')\n if root in pred:\n self.set_edge_attr(pred[root], root, 'color', 'green')\n self.display()\n if transpose:\n fTime = []\n for n in neighbors[root]:\n fTime.append((n, self.get_node(n).get_attr('finish_time')))\n neighbor_list = sorted(fTime, key=operator.itemgetter(1))\n neighbor_list = list(t[0] for t in neighbor_list)\n neighbor_list.reverse()\n else:\n neighbor_list = neighbors[root]\n for i in neighbor_list:\n if not transpose:\n if self.get_node(i).get_attr('disc_time') is None:\n pred[i] = root\n disc_count, finish_count = self.dfs(i, disc_count,\n finish_count, component, transpose, pred=pred)\n elif self.get_node(i).get_attr('component') is None:\n disc_count, finish_count = self.dfs(i, disc_count, finish_count,\n component, transpose, pred=pred)\n self.get_node(root).set_attr('finish_time', finish_count)\n d_time = self.get_node(root).get_attr('disc_time')\n label = '\"' + str(d_time) + ',' + str(finish_count) + '\"'\n self.get_node(root).set_attr('label', label)\n self.get_node(root).set_attr('color', 'green')\n self.display()\n finish_count += 1\n return disc_count, finish_count\n", "role": "user" }, { "content": "dfs", "role": "assistant" } ]
def x(self, root, display=None, component=None): self.search(root, display=display, component=component, q=Queue())
bfs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, root, display=None, component=None):\n self.search(root, display=display, component=component, q=Queue())\n", "role": "user" }, { "content": "bfs", "role": "assistant" } ]
def x(self, source, destination=None, display=None, component=None, q=None, algo='DFS', reverse=False, **kargs): if display == None: display = self.attr['display'] else: self.set_display_mode(display) if algo == 'DFS': if q is None: q = Stack() self.get_node(source).set_attr('component', component) elif algo == 'BFS' or algo == 'UnweightedSPT': if q is None: q = Queue() self.get_node(source).set_attr('component', component) elif algo == 'Dijkstra' or algo == 'Prim': if q is None: q = PriorityQueue() else: print('Unknown search algorithm...exiting') return neighbors = self.neighbors if self.graph_type == DIRECTED_GRAPH and reverse: neighbors = self.in_neighbors for i in self.get_node_list(): self.get_node(i).set_attr('label', '-') self.get_node(i).attr.pop('priority', None) self.get_node(i).set_attr('distance', None) self.get_node(i).set_attr('color', 'black') for j in neighbors[i]: if reverse: self.set_edge_attr(j, i, 'color', 'black') else: self.set_edge_attr(i, j, 'color', 'black') self.display() pred = {} self.process_edge_search(None, source, pred, q, component, algo, **kargs) found = True if source != destination: found = False while not q.isEmpty() and not found: current = q.peek() if self.get_node(current).get_attr('color') == 'green': q.remove(current) continue self.process_node_search(current, q, **kargs) self.get_node(current).set_attr('color', 'blue') if current != source: if reverse: self.set_edge_attr(current, pred[current], 'color', 'green') else: self.set_edge_attr(pred[current], current, 'color', 'green') if current == destination: found = True break self.display() for n in neighbors[current]: if self.get_node(n).get_attr('color') != 'green': if reverse: self.set_edge_attr(n, current, 'color', 'yellow') else: self.set_edge_attr(current, n, 'color', 'yellow') self.display() self.process_edge_search(current, n, pred, q, component, algo, **kargs) if reverse: self.set_edge_attr(n, current, 'color', 'black') else: self.set_edge_attr(current, n, 'color', 'black') q.remove(current) self.get_node(current).set_attr('color', 'green') self.display() if found: path = [destination] current = destination while current != source: path.insert(0, pred[current]) current = pred[current] return path if destination == None: return pred else: return None
search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, destination=None, display=None, component=None, q=None,\n algo='DFS', reverse=False, **kargs):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if algo == 'DFS':\n if q is None:\n q = Stack()\n self.get_node(source).set_attr('component', component)\n elif algo == 'BFS' or algo == 'UnweightedSPT':\n if q is None:\n q = Queue()\n self.get_node(source).set_attr('component', component)\n elif algo == 'Dijkstra' or algo == 'Prim':\n if q is None:\n q = PriorityQueue()\n else:\n print('Unknown search algorithm...exiting')\n return\n neighbors = self.neighbors\n if self.graph_type == DIRECTED_GRAPH and reverse:\n neighbors = self.in_neighbors\n for i in self.get_node_list():\n self.get_node(i).set_attr('label', '-')\n self.get_node(i).attr.pop('priority', None)\n self.get_node(i).set_attr('distance', None)\n self.get_node(i).set_attr('color', 'black')\n for j in neighbors[i]:\n if reverse:\n self.set_edge_attr(j, i, 'color', 'black')\n else:\n self.set_edge_attr(i, j, 'color', 'black')\n self.display()\n pred = {}\n self.process_edge_search(None, source, pred, q, component, algo, **kargs)\n found = True\n if source != destination:\n found = False\n while not q.isEmpty() and not found:\n current = q.peek()\n if self.get_node(current).get_attr('color') == 'green':\n q.remove(current)\n continue\n self.process_node_search(current, q, **kargs)\n self.get_node(current).set_attr('color', 'blue')\n if current != source:\n if reverse:\n self.set_edge_attr(current, pred[current], 'color', 'green')\n else:\n self.set_edge_attr(pred[current], current, 'color', 'green')\n if current == destination:\n found = True\n break\n self.display()\n for n in neighbors[current]:\n if self.get_node(n).get_attr('color') != 'green':\n if reverse:\n self.set_edge_attr(n, current, 'color', 'yellow')\n else:\n self.set_edge_attr(current, n, 'color', 'yellow')\n self.display()\n self.process_edge_search(current, n, pred, q, component,\n algo, **kargs)\n if reverse:\n self.set_edge_attr(n, current, 'color', 'black')\n else:\n self.set_edge_attr(current, n, 'color', 'black')\n q.remove(current)\n self.get_node(current).set_attr('color', 'green')\n self.display()\n if found:\n path = [destination]\n current = destination\n while current != source:\n path.insert(0, pred[current])\n current = pred[current]\n return path\n if destination == None:\n return pred\n else:\n return None\n", "role": "user" }, { "content": "search", "role": "assistant" } ]
def x(self, node, q, **kwargs): if isinstance(q, PriorityQueue): self.get_node(node).set_attr('priority', q.get_priority(node))
process_node_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node, q, **kwargs):\n if isinstance(q, PriorityQueue):\n self.get_node(node).set_attr('priority', q.get_priority(node))\n", "role": "user" }, { "content": "process_node_search", "role": "assistant" } ]
def x(self, current, neighbor, pred, q, component): if current is None: self.get_node(neighbor).set_attr('color', 'red') self.get_node(neighbor).set_attr('label', 0) q.push(neighbor, 0) self.display() self.get_node(neighbor).set_attr('color', 'black') return new_estimate = q.get_priority(current) + self.get_edge_attr(current, neighbor, 'cost') if neighbor not in pred or new_estimate < q.get_priority(neighbor): pred[neighbor] = current self.get_node(neighbor).set_attr('color', 'red') self.get_node(neighbor).set_attr('label', new_estimate) q.push(neighbor, new_estimate) self.display() self.get_node(neighbor).set_attr('color', 'black')
process_edge_dijkstra
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, current, neighbor, pred, q, component):\n if current is None:\n self.get_node(neighbor).set_attr('color', 'red')\n self.get_node(neighbor).set_attr('label', 0)\n q.push(neighbor, 0)\n self.display()\n self.get_node(neighbor).set_attr('color', 'black')\n return\n new_estimate = q.get_priority(current) + self.get_edge_attr(current,\n neighbor, 'cost')\n if neighbor not in pred or new_estimate < q.get_priority(neighbor):\n pred[neighbor] = current\n self.get_node(neighbor).set_attr('color', 'red')\n self.get_node(neighbor).set_attr('label', new_estimate)\n q.push(neighbor, new_estimate)\n self.display()\n self.get_node(neighbor).set_attr('color', 'black')\n", "role": "user" }, { "content": "process_edge_dijkstra", "role": "assistant" } ]
def x(self, current, neighbor, pred, q, component, algo, **kargs): if algo == 'Dijkstra': return self.process_edge_dijkstra(current, neighbor, pred, q, component ) if algo == 'Prim': return self.process_edge_prim(current, neighbor, pred, q, component) neighbor_node = self.get_node(neighbor) if current == None: neighbor_node.set_attr('distance', 0) if isinstance(q, PriorityQueue): q.push(neighbor, 0) else: q.push(neighbor) if component != None: neighbor_node.set_attr('component', component) neighbor_node.set_attr('label', component) else: neighbor_node.set_attr('label', 0) return if isinstance(q, PriorityQueue): current_priority = q.get_priority(neighbor) if algo == 'UnweightedSPT' or algo == 'BFS': priority = self.get_node(current).get_attr('distance') + 1 if algo == 'DFS': priority = -self.get_node(current).get_attr('distance') - 1 if current_priority is not None and priority >= current_priority: return q.push(neighbor, priority) if algo == 'UnweightedSPT' or algo == 'BFS': neighbor_node.set_attr('distance', priority) if algo == 'DFS': neighbor_node.set_attr('depth', -priority) else: distance = self.get_node(current).get_attr('distance') + 1 if (algo == 'UnweightedSPT' or algo == 'BFS' ) and neighbor_node.get_attr('distance') is not None: return neighbor_node.set_attr('distance', distance) neighbor_node.set_attr('label', str(distance)) q.push(neighbor) pred[neighbor] = current neighbor_node.set_attr('color', 'red') if component != None: neighbor_node.set_attr('component', component) neighbor_node.set_attr('label', component) self.display()
process_edge_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, current, neighbor, pred, q, component, algo, **kargs):\n if algo == 'Dijkstra':\n return self.process_edge_dijkstra(current, neighbor, pred, q, component\n )\n if algo == 'Prim':\n return self.process_edge_prim(current, neighbor, pred, q, component)\n neighbor_node = self.get_node(neighbor)\n if current == None:\n neighbor_node.set_attr('distance', 0)\n if isinstance(q, PriorityQueue):\n q.push(neighbor, 0)\n else:\n q.push(neighbor)\n if component != None:\n neighbor_node.set_attr('component', component)\n neighbor_node.set_attr('label', component)\n else:\n neighbor_node.set_attr('label', 0)\n return\n if isinstance(q, PriorityQueue):\n current_priority = q.get_priority(neighbor)\n if algo == 'UnweightedSPT' or algo == 'BFS':\n priority = self.get_node(current).get_attr('distance') + 1\n if algo == 'DFS':\n priority = -self.get_node(current).get_attr('distance') - 1\n if current_priority is not None and priority >= current_priority:\n return\n q.push(neighbor, priority)\n if algo == 'UnweightedSPT' or algo == 'BFS':\n neighbor_node.set_attr('distance', priority)\n if algo == 'DFS':\n neighbor_node.set_attr('depth', -priority)\n else:\n distance = self.get_node(current).get_attr('distance') + 1\n if (algo == 'UnweightedSPT' or algo == 'BFS'\n ) and neighbor_node.get_attr('distance') is not None:\n return\n neighbor_node.set_attr('distance', distance)\n neighbor_node.set_attr('label', str(distance))\n q.push(neighbor)\n pred[neighbor] = current\n neighbor_node.set_attr('color', 'red')\n if component != None:\n neighbor_node.set_attr('component', component)\n neighbor_node.set_attr('label', component)\n self.display()\n", "role": "user" }, { "content": "process_edge_search", "role": "assistant" } ]
def x(self, source, display=None, q=PriorityQueue()): if display == None: display = self.attr['display'] else: self.set_display_mode(display) if isinstance(q, PriorityQueue): addToQ = q.push removeFromQ = q.pop peek = q.peek isEmpty = q.isEmpty neighbors = self.get_neighbors pred = {} addToQ(source) done = False while not isEmpty() and not done: current = removeFromQ() self.set_node_attr(current, 'color', 'blue') if current != source: self.set_edge_attr(pred[current], current, 'color', 'green') self.display() for n in neighbors(current): if self.get_node_attr(n, 'color') != 'green': self.set_edge_attr(current, n, 'color', 'yellow') self.display() new_estimate = self.get_edge_attr(current, n, 'cost') if not n in pred or new_estimate < peek(n)[0]: pred[n] = current self.set_node_attr(n, 'color', 'red') self.set_node_attr(n, 'label', new_estimate) addToQ(n, new_estimate) self.display() self.set_node_attr(n, 'color', 'black') self.set_edge_attr(current, n, 'color', 'black') self.set_node_attr(current, 'color', 'green') self.display() return pred
minimum_spanning_tree_prim
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, display=None, q=PriorityQueue()):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if isinstance(q, PriorityQueue):\n addToQ = q.push\n removeFromQ = q.pop\n peek = q.peek\n isEmpty = q.isEmpty\n neighbors = self.get_neighbors\n pred = {}\n addToQ(source)\n done = False\n while not isEmpty() and not done:\n current = removeFromQ()\n self.set_node_attr(current, 'color', 'blue')\n if current != source:\n self.set_edge_attr(pred[current], current, 'color', 'green')\n self.display()\n for n in neighbors(current):\n if self.get_node_attr(n, 'color') != 'green':\n self.set_edge_attr(current, n, 'color', 'yellow')\n self.display()\n new_estimate = self.get_edge_attr(current, n, 'cost')\n if not n in pred or new_estimate < peek(n)[0]:\n pred[n] = current\n self.set_node_attr(n, 'color', 'red')\n self.set_node_attr(n, 'label', new_estimate)\n addToQ(n, new_estimate)\n self.display()\n self.set_node_attr(n, 'color', 'black')\n self.set_edge_attr(current, n, 'color', 'black')\n self.set_node_attr(current, 'color', 'green')\n self.display()\n return pred\n", "role": "user" }, { "content": "minimum_spanning_tree_prim", "role": "assistant" } ]
def x(self, display=None, components=None): if display == None: display = self.attr['display'] else: self.set_display_mode(display) if components is None: components = DisjointSet(display=display, layout='dot', optimize=False) sorted_edge_list = sorted(self.get_edge_list(), key=self.get_edge_cost) edges = [] for n in self.get_node_list(): components.add([n]) components.display() for e in sorted_edge_list: if len(edges) == len(self.get_node_list()) - 1: break self.set_edge_attr(e[0], e[1], 'color', 'yellow') self.display() if components.union(e[0], e[1]): self.set_edge_attr(e[0], e[1], 'color', 'green') self.display() edges.append(e) else: self.set_edge_attr(e[0], e[1], 'color', 'black') self.display() components.display() return edges
minimum_spanning_tree_kruskal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display=None, components=None):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if components is None:\n components = DisjointSet(display=display, layout='dot', optimize=False)\n sorted_edge_list = sorted(self.get_edge_list(), key=self.get_edge_cost)\n edges = []\n for n in self.get_node_list():\n components.add([n])\n components.display()\n for e in sorted_edge_list:\n if len(edges) == len(self.get_node_list()) - 1:\n break\n self.set_edge_attr(e[0], e[1], 'color', 'yellow')\n self.display()\n if components.union(e[0], e[1]):\n self.set_edge_attr(e[0], e[1], 'color', 'green')\n self.display()\n edges.append(e)\n else:\n self.set_edge_attr(e[0], e[1], 'color', 'black')\n self.display()\n components.display()\n return edges\n", "role": "user" }, { "content": "minimum_spanning_tree_kruskal", "role": "assistant" } ]
def x(self, source, sink, algo='FIFO', display=None): if display == None: display = self.attr['display'] else: self.set_display_mode(display) nl = self.get_node_list() for n in nl: self.set_node_attr(n, 'excess', 0) for e in self.edge_attr: self.edge_attr[e]['flow'] = 0 if 'capacity' in self.edge_attr[e]: capacity = self.edge_attr[e]['capacity'] self.edge_attr[e]['label'] = str(capacity) + '/0' else: self.edge_attr[e]['capacity'] = INF self.edge_attr[e]['label'] = 'INF/0' self.display() self.set_display_mode('off') self.search(sink, algo='UnweightedSPT', reverse=True) self.set_display_mode(display) disconnect = False for n in nl: if self.get_node_attr(n, 'distance') is None: disconnect = True self.set_node_attr(n, 'distance', 2 * len(nl) + 1) if disconnect: print('Warning: graph contains nodes not connected to the sink...') if algo == 'FIFO': q = Queue() elif algo == 'SAP': q = Stack() elif algo == 'HighestLabel': q = PriorityQueue() for n in self.get_neighbors(source): capacity = self.get_edge_attr(source, n, 'capacity') self.set_edge_attr(source, n, 'flow', capacity) self.set_node_attr(n, 'excess', capacity) excess = self.get_node_attr(source, 'excess') self.set_node_attr(source, 'excess', excess - capacity) if algo == 'FIFO' or algo == 'SAP': q.push(n) elif algo == 'HighestLabel': q.push(n, -1) self.set_node_attr(source, 'distance', len(nl)) self.show_flow() while not q.isEmpty(): relabel = True current = q.peek() neighbors = self.get_neighbors(current) + self.get_in_neighbors(current ) for n in neighbors: pushed = self.process_edge_flow(source, sink, current, n, algo, q) if pushed: self.show_flow() if algo == 'FIFO': """With FIFO, we need to add the neighbors to the queue before the current is added back in or the nodes will be out of order """ if q.peek(n) is None and n != source and n != sink: q.push(n) """Keep pushing while there is excess""" if self.get_node_attr(current, 'excess') > 0: continue """If we were able to push, then there we should not relabel """ relabel = False break q.remove(current) if current != sink: if relabel: self.relabel(current) self.show_flow() if self.get_node_attr(current, 'excess') > 0: if algo == 'FIFO' or algo == 'SAP': q.push(current) elif algo == 'HighestLabel': q.push(current, -self.get_node_attr(current, 'distance')) if pushed and q.peek(n) is None and n != source: if algo == 'SAP': q.push(n) elif algo == 'HighestLabel': q.push(n, -self.get_node_attr(n, 'distance'))
max_flow_preflowpush
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, sink, algo='FIFO', display=None):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n nl = self.get_node_list()\n for n in nl:\n self.set_node_attr(n, 'excess', 0)\n for e in self.edge_attr:\n self.edge_attr[e]['flow'] = 0\n if 'capacity' in self.edge_attr[e]:\n capacity = self.edge_attr[e]['capacity']\n self.edge_attr[e]['label'] = str(capacity) + '/0'\n else:\n self.edge_attr[e]['capacity'] = INF\n self.edge_attr[e]['label'] = 'INF/0'\n self.display()\n self.set_display_mode('off')\n self.search(sink, algo='UnweightedSPT', reverse=True)\n self.set_display_mode(display)\n disconnect = False\n for n in nl:\n if self.get_node_attr(n, 'distance') is None:\n disconnect = True\n self.set_node_attr(n, 'distance', 2 * len(nl) + 1)\n if disconnect:\n print('Warning: graph contains nodes not connected to the sink...')\n if algo == 'FIFO':\n q = Queue()\n elif algo == 'SAP':\n q = Stack()\n elif algo == 'HighestLabel':\n q = PriorityQueue()\n for n in self.get_neighbors(source):\n capacity = self.get_edge_attr(source, n, 'capacity')\n self.set_edge_attr(source, n, 'flow', capacity)\n self.set_node_attr(n, 'excess', capacity)\n excess = self.get_node_attr(source, 'excess')\n self.set_node_attr(source, 'excess', excess - capacity)\n if algo == 'FIFO' or algo == 'SAP':\n q.push(n)\n elif algo == 'HighestLabel':\n q.push(n, -1)\n self.set_node_attr(source, 'distance', len(nl))\n self.show_flow()\n while not q.isEmpty():\n relabel = True\n current = q.peek()\n neighbors = self.get_neighbors(current) + self.get_in_neighbors(current\n )\n for n in neighbors:\n pushed = self.process_edge_flow(source, sink, current, n, algo, q)\n if pushed:\n self.show_flow()\n if algo == 'FIFO':\n \"\"\"With FIFO, we need to add the neighbors to the queue\n before the current is added back in or the nodes will\n be out of order\n \"\"\"\n if q.peek(n) is None and n != source and n != sink:\n q.push(n)\n \"\"\"Keep pushing while there is excess\"\"\"\n if self.get_node_attr(current, 'excess') > 0:\n continue\n \"\"\"If we were able to push, then there we should not\n relabel\n \"\"\"\n relabel = False\n break\n q.remove(current)\n if current != sink:\n if relabel:\n self.relabel(current)\n self.show_flow()\n if self.get_node_attr(current, 'excess') > 0:\n if algo == 'FIFO' or algo == 'SAP':\n q.push(current)\n elif algo == 'HighestLabel':\n q.push(current, -self.get_node_attr(current, 'distance'))\n if pushed and q.peek(n) is None and n != source:\n if algo == 'SAP':\n q.push(n)\n elif algo == 'HighestLabel':\n q.push(n, -self.get_node_attr(n, 'distance'))\n", "role": "user" }, { "content": "max_flow_preflowpush", "role": "assistant" } ]
def x(self, source, sink, i, j, algo, q): if self.get_node_attr(i, 'distance') != self.get_node_attr(j, 'distance' ) + 1: return False if (i, j) in self.edge_attr: edge = i, j capacity = self.get_edge_attr(i, j, 'capacity') mult = 1 else: edge = j, i capacity = 0 mult = -1 flow = mult * self.edge_attr[edge]['flow'] residual_capacity = capacity - flow if residual_capacity == 0: return False excess_i = self.get_node_attr(i, 'excess') excess_j = self.get_node_attr(j, 'excess') push_amount = min(excess_i, residual_capacity) self.edge_attr[edge]['flow'] = mult * (flow + push_amount) self.set_node_attr(i, 'excess', excess_i - push_amount) self.set_node_attr(j, 'excess', excess_j + push_amount) return True
process_edge_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, sink, i, j, algo, q):\n if self.get_node_attr(i, 'distance') != self.get_node_attr(j, 'distance'\n ) + 1:\n return False\n if (i, j) in self.edge_attr:\n edge = i, j\n capacity = self.get_edge_attr(i, j, 'capacity')\n mult = 1\n else:\n edge = j, i\n capacity = 0\n mult = -1\n flow = mult * self.edge_attr[edge]['flow']\n residual_capacity = capacity - flow\n if residual_capacity == 0:\n return False\n excess_i = self.get_node_attr(i, 'excess')\n excess_j = self.get_node_attr(j, 'excess')\n push_amount = min(excess_i, residual_capacity)\n self.edge_attr[edge]['flow'] = mult * (flow + push_amount)\n self.set_node_attr(i, 'excess', excess_i - push_amount)\n self.set_node_attr(j, 'excess', excess_j + push_amount)\n return True\n", "role": "user" }, { "content": "process_edge_flow", "role": "assistant" } ]
def x(self, i): min_distance = 2 * len(self.get_node_list()) + 1 for j in self.get_neighbors(i): if self.get_node_attr(j, 'distance' ) < min_distance and self.get_edge_attr(i, j, 'flow' ) < self.get_edge_attr(i, j, 'capacity'): min_distance = self.get_node_attr(j, 'distance') for j in self.get_in_neighbors(i): if self.get_node_attr(j, 'distance' ) < min_distance and self.get_edge_attr(j, i, 'flow') > 0: min_distance = self.get_node_attr(j, 'distance') self.set_node_attr(i, 'distance', min_distance + 1)
relabel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n min_distance = 2 * len(self.get_node_list()) + 1\n for j in self.get_neighbors(i):\n if self.get_node_attr(j, 'distance'\n ) < min_distance and self.get_edge_attr(i, j, 'flow'\n ) < self.get_edge_attr(i, j, 'capacity'):\n min_distance = self.get_node_attr(j, 'distance')\n for j in self.get_in_neighbors(i):\n if self.get_node_attr(j, 'distance'\n ) < min_distance and self.get_edge_attr(j, i, 'flow') > 0:\n min_distance = self.get_node_attr(j, 'distance')\n self.set_node_attr(i, 'distance', min_distance + 1)\n", "role": "user" }, { "content": "relabel", "role": "assistant" } ]
def x(self): for n in self.get_node_list(): excess = self.get_node_attr(n, 'excess') distance = self.get_node_attr(n, 'distance') self.set_node_attr(n, 'label', str(excess) + '/' + str(distance)) for neighbor in self.get_neighbors(n): capacity = self.get_edge_attr(n, neighbor, 'capacity') flow = self.get_edge_attr(n, neighbor, 'flow') if capacity == INF: self.set_edge_attr(n, neighbor, 'label', 'INF' + '/' + str( flow)) else: self.set_edge_attr(n, neighbor, 'label', str(capacity) + '/' + str(flow)) if capacity == flow: self.set_edge_attr(n, neighbor, 'color', 'red') elif flow > 0: self.set_edge_attr(n, neighbor, 'color', 'green') else: self.set_edge_attr(n, neighbor, 'color', 'black') self.display()
show_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n for n in self.get_node_list():\n excess = self.get_node_attr(n, 'excess')\n distance = self.get_node_attr(n, 'distance')\n self.set_node_attr(n, 'label', str(excess) + '/' + str(distance))\n for neighbor in self.get_neighbors(n):\n capacity = self.get_edge_attr(n, neighbor, 'capacity')\n flow = self.get_edge_attr(n, neighbor, 'flow')\n if capacity == INF:\n self.set_edge_attr(n, neighbor, 'label', 'INF' + '/' + str(\n flow))\n else:\n self.set_edge_attr(n, neighbor, 'label', str(capacity) +\n '/' + str(flow))\n if capacity == flow:\n self.set_edge_attr(n, neighbor, 'color', 'red')\n elif flow > 0:\n self.set_edge_attr(n, neighbor, 'color', 'green')\n else:\n self.set_edge_attr(n, neighbor, 'color', 'black')\n self.display()\n", "role": "user" }, { "content": "show_flow", "role": "assistant" } ]
def x(self): if self.graph_type is UNDIRECTED_GRAPH: raise Exception('residual graph is defined for directed graphs.') residual_g = Graph(type=DIRECTED_GRAPH) for e in self.get_edge_list(): capacity_e = self.get_edge_attr(e[0], e[1], 'capacity') flow_e = self.get_edge_attr(e[0], e[1], 'flow') cost_e = self.get_edge_attr(e[0], e[1], 'cost') if flow_e > 0: residual_g.add_edge(e[1], e[0], cost=-1 * cost_e, capacity=flow_e) if capacity_e - flow_e > 0: residual_g.add_edge(e[0], e[1], cost=cost_e, capacity= capacity_e - flow_e) return residual_g
create_residual_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.graph_type is UNDIRECTED_GRAPH:\n raise Exception('residual graph is defined for directed graphs.')\n residual_g = Graph(type=DIRECTED_GRAPH)\n for e in self.get_edge_list():\n capacity_e = self.get_edge_attr(e[0], e[1], 'capacity')\n flow_e = self.get_edge_attr(e[0], e[1], 'flow')\n cost_e = self.get_edge_attr(e[0], e[1], 'cost')\n if flow_e > 0:\n residual_g.add_edge(e[1], e[0], cost=-1 * cost_e, capacity=flow_e)\n if capacity_e - flow_e > 0:\n residual_g.add_edge(e[0], e[1], cost=cost_e, capacity=\n capacity_e - flow_e)\n return residual_g\n", "role": "user" }, { "content": "create_residual_graph", "role": "assistant" } ]
def x(self, display): if not self.find_feasible_flow(): return False residual_g = self.create_residual_graph() ncycle = residual_g.get_negative_cycle() while ncycle is not None: cap = residual_g.find_cycle_capacity(ncycle) self.augment_cycle(cap, ncycle) residual_g = self.create_residual_graph() ncycle = residual_g.get_negative_cycle() return True
cycle_canceling
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display):\n if not self.find_feasible_flow():\n return False\n residual_g = self.create_residual_graph()\n ncycle = residual_g.get_negative_cycle()\n while ncycle is not None:\n cap = residual_g.find_cycle_capacity(ncycle)\n self.augment_cycle(cap, ncycle)\n residual_g = self.create_residual_graph()\n ncycle = residual_g.get_negative_cycle()\n return True\n", "role": "user" }, { "content": "cycle_canceling", "role": "assistant" } ]
def x(self): nl = self.get_node_list() for i in nl: b_i = self.get_node(i).get_attr('demand') if b_i > 0: self.add_edge('s', i, capacity=b_i) elif b_i < 0: self.add_edge(i, 't', capacity=-1 * b_i) self.max_flow('s', 't', 'off') for i in self.neighbors['s']: flow = self.get_edge_attr('s', i, 'flow') capacity = self.get_edge_attr('s', i, 'capacity') if flow != capacity: self.del_node('s') self.del_node('t') return False self.del_node('s') self.del_node('t') return True
find_feasible_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nl = self.get_node_list()\n for i in nl:\n b_i = self.get_node(i).get_attr('demand')\n if b_i > 0:\n self.add_edge('s', i, capacity=b_i)\n elif b_i < 0:\n self.add_edge(i, 't', capacity=-1 * b_i)\n self.max_flow('s', 't', 'off')\n for i in self.neighbors['s']:\n flow = self.get_edge_attr('s', i, 'flow')\n capacity = self.get_edge_attr('s', i, 'capacity')\n if flow != capacity:\n self.del_node('s')\n self.del_node('t')\n return False\n self.del_node('s')\n self.del_node('t')\n return True\n", "role": "user" }, { "content": "find_feasible_flow", "role": "assistant" } ]
def x(self, basename='graph', layout=None, format='png'): if layout == None: layout = self.get_layout() f = open(basename, 'w+b') if format == 'dot': f.write(self.to_string()) else: f.write(self.create(layout, format)) f.close()
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, basename='graph', layout=None, format='png'):\n if layout == None:\n layout = self.get_layout()\n f = open(basename, 'w+b')\n if format == 'dot':\n f.write(self.to_string())\n else:\n f.write(self.create(layout, format))\n f.close()\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, layout, format, **args): tmp_fd, tmp_name = tempfile.mkstemp() tmp_file = os.fdopen(tmp_fd, 'w') tmp_file.write(self.to_string()) tmp_file.close() tmp_dir = os.path.dirname(tmp_name) try: p = subprocess.Popen([layout, '-T' + format, tmp_name], cwd=tmp_dir, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError: print( """Graphviz executable not found. Graphviz must be installed and in your search path. Please visit http://www.graphviz.org/ for information on installation. After installation, ensure that the PATH variable is properly set.""" ) return stdout_output, stderr_output = p.communicate() if p.returncode != 0: raise Exception( 'Graphviz executable terminated with status: %d. stderr follows: %s' % (p.returncode, stderr_output)) elif stderr_output: print(stderr_output) return stdout_output
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, layout, format, **args):\n tmp_fd, tmp_name = tempfile.mkstemp()\n tmp_file = os.fdopen(tmp_fd, 'w')\n tmp_file.write(self.to_string())\n tmp_file.close()\n tmp_dir = os.path.dirname(tmp_name)\n try:\n p = subprocess.Popen([layout, '-T' + format, tmp_name], cwd=tmp_dir,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n except OSError:\n print(\n \"\"\"Graphviz executable not found.\nGraphviz must be installed and in your search path.\nPlease visit http://www.graphviz.org/ for information on installation.\nAfter installation, ensure that the PATH variable is properly set.\"\"\"\n )\n return\n stdout_output, stderr_output = p.communicate()\n if p.returncode != 0:\n raise Exception(\n 'Graphviz executable terminated with status: %d. stderr follows: %s'\n % (p.returncode, stderr_output))\n elif stderr_output:\n print(stderr_output)\n return stdout_output\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, highlight=None, basename='graph', format='png', pause=True): if self.attr['display'] == 'off': return if highlight != None: for n in highlight: if not isinstance(n, Node): n = self.get_node(n) n.set_attr('color', 'red') if self.get_layout() == 'dot2tex': if self.attr['display'] != 'file': self.attr['display'] = 'file' print( "Warning: Dot2tex layout can only be used with display mode 'file'" ) print(' Automatically changing setting') if self.attr['display'] == 'file': if self.get_layout() == 'dot2tex': try: if DOT2TEX_INSTALLED: if format != 'pdf' or format != 'ps': print( 'Dot2tex only supports pdf and ps formats, falling back to pdf' ) format = 'pdf' self.set_layout('dot') tex = dot2tex.dot2tex(self.to_string(), autosize=True, texmode='math', template=DOT2TEX_TEMPLATE) else: print('Error: Dot2tex not installed.') except: try: self.set_layout('dot') self.write(basename + '.dot', self.get_layout(), 'dot') sp = subprocess.Popen('dot2tex -t math ' + basename + '.dot', stdout=subprocess.PIPE, stderr=subprocess. STDOUT) tex = sp.communicate()[0] except: print('There was an error running dot2tex.') f = open(basename + '.tex', 'w') f.write(tex) f.close() try: subprocess.call(['latex', basename]) if format == 'ps': subprocess.call(['dvips', basename]) elif format == 'pdf': subprocess.call(['pdflatex', basename]) self.set_layout('dot2tex') except: print('There was an error runing latex. Is it installed?') else: self.write(basename + '.' + format, self.get_layout(), format) return elif self.attr['display'] == 'pygame': output = self.create(self.get_layout(), format) if output is not None: im = io.StringIO(self.create(self.get_layout(), format)) picture = pygame.image.load(im, format) screen = pygame.display.set_mode(picture.get_size()) screen.blit(picture, picture.get_rect()) pygame.display.flip() while pause: e = pygame.event.poll() if e.type == pygame.KEYDOWN: break if e.type == pygame.QUIT: pause = False pygame.display.quit() else: print('Error in displaying graph. Display disabled') self.set_display_mode('off') elif self.attr['display'] == 'PIL': im = io.StringIO(self.create(self.get_layout(), format)) if PIL_INSTALLED: im2 = PIL_Image.open(im) im2.show() else: print('Error: PIL not installed. Display disabled.') self.attr['display'] = 'off' elif self.attr['display'] == 'xdot': if XDOT_INSTALLED: window = xdot.DotWindow() window.set_dotcode(self.to_string()) window.connect('destroy', gtk.main_quit) gtk.main() else: print('Error: xdot not installed. Display disabled.') self.attr['display'] = 'off' elif self.attr['display'] == 'svg': if not ETREE_INSTALLED: print( 'Error: etree not installed (display mode: svg). Display disabled.' ) self.attr['display'] = 'off' else: print('Unknown display mode: ', end=' ') print(self.attr['display']) if highlight != None: for n in highlight: if not isinstance(n, Node): n = self.get_node(n) n.set_attr('color', 'black')
display
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, highlight=None, basename='graph', format='png', pause=True):\n if self.attr['display'] == 'off':\n return\n if highlight != None:\n for n in highlight:\n if not isinstance(n, Node):\n n = self.get_node(n)\n n.set_attr('color', 'red')\n if self.get_layout() == 'dot2tex':\n if self.attr['display'] != 'file':\n self.attr['display'] = 'file'\n print(\n \"Warning: Dot2tex layout can only be used with display mode 'file'\"\n )\n print(' Automatically changing setting')\n if self.attr['display'] == 'file':\n if self.get_layout() == 'dot2tex':\n try:\n if DOT2TEX_INSTALLED:\n if format != 'pdf' or format != 'ps':\n print(\n 'Dot2tex only supports pdf and ps formats, falling back to pdf'\n )\n format = 'pdf'\n self.set_layout('dot')\n tex = dot2tex.dot2tex(self.to_string(), autosize=True,\n texmode='math', template=DOT2TEX_TEMPLATE)\n else:\n print('Error: Dot2tex not installed.')\n except:\n try:\n self.set_layout('dot')\n self.write(basename + '.dot', self.get_layout(), 'dot')\n sp = subprocess.Popen('dot2tex -t math ' + basename +\n '.dot', stdout=subprocess.PIPE, stderr=subprocess.\n STDOUT)\n tex = sp.communicate()[0]\n except:\n print('There was an error running dot2tex.')\n f = open(basename + '.tex', 'w')\n f.write(tex)\n f.close()\n try:\n subprocess.call(['latex', basename])\n if format == 'ps':\n subprocess.call(['dvips', basename])\n elif format == 'pdf':\n subprocess.call(['pdflatex', basename])\n self.set_layout('dot2tex')\n except:\n print('There was an error runing latex. Is it installed?')\n else:\n self.write(basename + '.' + format, self.get_layout(), format)\n return\n elif self.attr['display'] == 'pygame':\n output = self.create(self.get_layout(), format)\n if output is not None:\n im = io.StringIO(self.create(self.get_layout(), format))\n picture = pygame.image.load(im, format)\n screen = pygame.display.set_mode(picture.get_size())\n screen.blit(picture, picture.get_rect())\n pygame.display.flip()\n while pause:\n e = pygame.event.poll()\n if e.type == pygame.KEYDOWN:\n break\n if e.type == pygame.QUIT:\n pause = False\n pygame.display.quit()\n else:\n print('Error in displaying graph. Display disabled')\n self.set_display_mode('off')\n elif self.attr['display'] == 'PIL':\n im = io.StringIO(self.create(self.get_layout(), format))\n if PIL_INSTALLED:\n im2 = PIL_Image.open(im)\n im2.show()\n else:\n print('Error: PIL not installed. Display disabled.')\n self.attr['display'] = 'off'\n elif self.attr['display'] == 'xdot':\n if XDOT_INSTALLED:\n window = xdot.DotWindow()\n window.set_dotcode(self.to_string())\n window.connect('destroy', gtk.main_quit)\n gtk.main()\n else:\n print('Error: xdot not installed. Display disabled.')\n self.attr['display'] = 'off'\n elif self.attr['display'] == 'svg':\n if not ETREE_INSTALLED:\n print(\n 'Error: etree not installed (display mode: svg). Display disabled.'\n )\n self.attr['display'] = 'off'\n else:\n print('Unknown display mode: ', end=' ')\n print(self.attr['display'])\n if highlight != None:\n for n in highlight:\n if not isinstance(n, Node):\n n = self.get_node(n)\n n.set_attr('color', 'black')\n", "role": "user" }, { "content": "display", "role": "assistant" } ]
def x(self, source, sink, display=None, algo='DFS'): if display is not None: old_display = self.attr['display'] self.attr['display'] = display nl = self.get_node_list() for e in self.edge_attr: self.edge_attr[e]['flow'] = 0 if 'capacity' in self.edge_attr[e]: capacity = self.edge_attr[e]['capacity'] self.edge_attr[e]['label'] = str(capacity) + '/0' else: self.edge_attr[e]['capacity'] = INF self.edge_attr[e]['label'] = 'INF/0' while True: if algo == 'DFS': q = Stack() elif algo == 'BFS': q = Queue() q.push(source) pred = {source: None} explored = [source] for n in nl: self.get_node(n).set_attr('color', 'black') for e in self.edge_attr: if self.edge_attr[e]['flow'] == 0: self.edge_attr[e]['color'] = 'black' elif self.edge_attr[e]['flow'] == self.edge_attr[e]['capacity']: self.edge_attr[e]['color'] = 'red' else: self.edge_attr[e]['color'] = 'green' self.display() while not q.isEmpty(): current = q.peek() q.remove(current) if current == sink: break out_neighbor = self.neighbors[current] in_neighbor = self.in_neighbors[current] neighbor = out_neighbor + in_neighbor for m in neighbor: if m in explored: continue self.get_node(m).set_attr('color', 'yellow') if m in out_neighbor: self.set_edge_attr(current, m, 'color', 'yellow') available_capacity = self.get_edge_attr(current, m, 'capacity') - self.get_edge_attr(current, m, 'flow') else: self.set_edge_attr(m, current, 'color', 'yellow') available_capacity = self.get_edge_attr(m, current, 'flow') self.display() if available_capacity > 0: self.get_node(m).set_attr('color', 'blue') if m in out_neighbor: self.set_edge_attr(current, m, 'color', 'blue') else: self.set_edge_attr(m, current, 'color', 'blue') explored.append(m) pred[m] = current q.push(m) else: self.get_node(m).set_attr('color', 'black') if m in out_neighbor: if self.get_edge_attr(current, m, 'flow' ) == self.get_edge_attr(current, m, 'capacity'): self.set_edge_attr(current, m, 'color', 'red') elif self.get_edge_attr(current, m, 'flow') == 0: self.set_edge_attr(current, m, 'color', 'black') elif self.get_edge_attr(m, current, 'flow' ) == self.get_edge_attr(m, current, 'capacity'): self.set_edge_attr(m, current, 'color', 'red') elif self.get_edge_attr(m, current, 'flow') == 0: self.set_edge_attr(m, current, 'color', 'black') self.display() if sink not in pred: break current = sink min_capacity = 'infinite' while True: m = pred[current] if (m, current) in self.edge_attr: arc_capacity = self.edge_attr[m, current]['capacity'] flow = self.edge_attr[m, current]['flow'] potential = arc_capacity - flow if min_capacity == 'infinite': min_capacity = potential elif min_capacity > potential: min_capacity = potential else: potential = self.edge_attr[current, m]['flow'] if min_capacity == 'infinite': min_capacity = potential elif min_capacity > potential: min_capacity = potential if m == source: break current = m current = sink while True: m = pred[current] if (m, current) in self.edge_attr: flow = self.edge_attr[m, current]['flow'] capacity = self.edge_attr[m, current]['capacity'] new_flow = flow + min_capacity self.edge_attr[m, current]['flow'] = new_flow if capacity == INF: self.edge_attr[m, current]['label'] = 'INF' + '/' + str( new_flow) else: self.edge_attr[m, current]['label'] = str(capacity ) + '/' + str(new_flow) if new_flow == capacity: self.edge_attr[m, current]['color'] = 'red' else: self.edge_attr[m, current]['color'] = 'green' self.display() else: flow = self.edge_attr[current, m]['flow'] capacity = self.edge_attr[current, m]['capacity'] new_flow = flow - min_capacity self.edge_attr[current, m]['flow'] = new_flow if capacity == INF: self.edge_attr[current, m]['label'] = 'INF' + '/' + str( new_flow) else: self.edge_attr[current, m]['label'] = str(capacity ) + '/' + str(new_flow) if new_flow == 0: self.edge_attr[current, m]['color'] = 'red' else: self.edge_attr[current, m]['color'] = 'green' self.display() if m == source: break current = m if display is not None: self.attr['display'] = old_display
max_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, sink, display=None, algo='DFS'):\n if display is not None:\n old_display = self.attr['display']\n self.attr['display'] = display\n nl = self.get_node_list()\n for e in self.edge_attr:\n self.edge_attr[e]['flow'] = 0\n if 'capacity' in self.edge_attr[e]:\n capacity = self.edge_attr[e]['capacity']\n self.edge_attr[e]['label'] = str(capacity) + '/0'\n else:\n self.edge_attr[e]['capacity'] = INF\n self.edge_attr[e]['label'] = 'INF/0'\n while True:\n if algo == 'DFS':\n q = Stack()\n elif algo == 'BFS':\n q = Queue()\n q.push(source)\n pred = {source: None}\n explored = [source]\n for n in nl:\n self.get_node(n).set_attr('color', 'black')\n for e in self.edge_attr:\n if self.edge_attr[e]['flow'] == 0:\n self.edge_attr[e]['color'] = 'black'\n elif self.edge_attr[e]['flow'] == self.edge_attr[e]['capacity']:\n self.edge_attr[e]['color'] = 'red'\n else:\n self.edge_attr[e]['color'] = 'green'\n self.display()\n while not q.isEmpty():\n current = q.peek()\n q.remove(current)\n if current == sink:\n break\n out_neighbor = self.neighbors[current]\n in_neighbor = self.in_neighbors[current]\n neighbor = out_neighbor + in_neighbor\n for m in neighbor:\n if m in explored:\n continue\n self.get_node(m).set_attr('color', 'yellow')\n if m in out_neighbor:\n self.set_edge_attr(current, m, 'color', 'yellow')\n available_capacity = self.get_edge_attr(current, m,\n 'capacity') - self.get_edge_attr(current, m, 'flow')\n else:\n self.set_edge_attr(m, current, 'color', 'yellow')\n available_capacity = self.get_edge_attr(m, current, 'flow')\n self.display()\n if available_capacity > 0:\n self.get_node(m).set_attr('color', 'blue')\n if m in out_neighbor:\n self.set_edge_attr(current, m, 'color', 'blue')\n else:\n self.set_edge_attr(m, current, 'color', 'blue')\n explored.append(m)\n pred[m] = current\n q.push(m)\n else:\n self.get_node(m).set_attr('color', 'black')\n if m in out_neighbor:\n if self.get_edge_attr(current, m, 'flow'\n ) == self.get_edge_attr(current, m, 'capacity'):\n self.set_edge_attr(current, m, 'color', 'red')\n elif self.get_edge_attr(current, m, 'flow') == 0:\n self.set_edge_attr(current, m, 'color', 'black')\n elif self.get_edge_attr(m, current, 'flow'\n ) == self.get_edge_attr(m, current, 'capacity'):\n self.set_edge_attr(m, current, 'color', 'red')\n elif self.get_edge_attr(m, current, 'flow') == 0:\n self.set_edge_attr(m, current, 'color', 'black')\n self.display()\n if sink not in pred:\n break\n current = sink\n min_capacity = 'infinite'\n while True:\n m = pred[current]\n if (m, current) in self.edge_attr:\n arc_capacity = self.edge_attr[m, current]['capacity']\n flow = self.edge_attr[m, current]['flow']\n potential = arc_capacity - flow\n if min_capacity == 'infinite':\n min_capacity = potential\n elif min_capacity > potential:\n min_capacity = potential\n else:\n potential = self.edge_attr[current, m]['flow']\n if min_capacity == 'infinite':\n min_capacity = potential\n elif min_capacity > potential:\n min_capacity = potential\n if m == source:\n break\n current = m\n current = sink\n while True:\n m = pred[current]\n if (m, current) in self.edge_attr:\n flow = self.edge_attr[m, current]['flow']\n capacity = self.edge_attr[m, current]['capacity']\n new_flow = flow + min_capacity\n self.edge_attr[m, current]['flow'] = new_flow\n if capacity == INF:\n self.edge_attr[m, current]['label'] = 'INF' + '/' + str(\n new_flow)\n else:\n self.edge_attr[m, current]['label'] = str(capacity\n ) + '/' + str(new_flow)\n if new_flow == capacity:\n self.edge_attr[m, current]['color'] = 'red'\n else:\n self.edge_attr[m, current]['color'] = 'green'\n self.display()\n else:\n flow = self.edge_attr[current, m]['flow']\n capacity = self.edge_attr[current, m]['capacity']\n new_flow = flow - min_capacity\n self.edge_attr[current, m]['flow'] = new_flow\n if capacity == INF:\n self.edge_attr[current, m]['label'] = 'INF' + '/' + str(\n new_flow)\n else:\n self.edge_attr[current, m]['label'] = str(capacity\n ) + '/' + str(new_flow)\n if new_flow == 0:\n self.edge_attr[current, m]['color'] = 'red'\n else:\n self.edge_attr[current, m]['color'] = 'green'\n self.display()\n if m == source:\n break\n current = m\n if display is not None:\n self.attr['display'] = old_display\n", "role": "user" }, { "content": "max_flow", "role": "assistant" } ]
def x(self): nl = self.get_node_list() i = nl[0] valid, distance, nextn = self.floyd_warshall() if not valid: cycle = self.floyd_warshall_get_cycle(distance, nextn) return cycle else: return None
get_negative_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nl = self.get_node_list()\n i = nl[0]\n valid, distance, nextn = self.floyd_warshall()\n if not valid:\n cycle = self.floyd_warshall_get_cycle(distance, nextn)\n return cycle\n else:\n return None\n", "role": "user" }, { "content": "get_negative_cycle", "role": "assistant" } ]
def x(self): nl = self.get_node_list() el = self.get_edge_list() distance = {} for i in nl: for j in nl: distance[i, j] = 'infinity' for i in nl: distance[i, i] = 0 for e in el: distance[e[0], e[1]] = self.get_edge_cost(e) nextn = {} for i in nl: for j in nl: if i == j or distance[i, j] == 'infinity': nextn[i, j] = None else: nextn[i, j] = i for k in nl: for i in nl: for j in nl: if distance[i, k] == 'infinity' or distance[k, j ] == 'infinity': continue elif distance[i, j] == 'infinity': distance[i, j] = distance[i, k] + distance[k, j] nextn[i, j] = nextn[k, j] elif distance[i, j] > distance[i, k] + distance[k, j]: distance[i, j] = distance[i, k] + distance[k, j] nextn[i, j] = nextn[k, j] for i in nl: if distance[i, i] < 0: return False, distance, nextn return True, distance, nextn
floyd_warshall
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nl = self.get_node_list()\n el = self.get_edge_list()\n distance = {}\n for i in nl:\n for j in nl:\n distance[i, j] = 'infinity'\n for i in nl:\n distance[i, i] = 0\n for e in el:\n distance[e[0], e[1]] = self.get_edge_cost(e)\n nextn = {}\n for i in nl:\n for j in nl:\n if i == j or distance[i, j] == 'infinity':\n nextn[i, j] = None\n else:\n nextn[i, j] = i\n for k in nl:\n for i in nl:\n for j in nl:\n if distance[i, k] == 'infinity' or distance[k, j\n ] == 'infinity':\n continue\n elif distance[i, j] == 'infinity':\n distance[i, j] = distance[i, k] + distance[k, j]\n nextn[i, j] = nextn[k, j]\n elif distance[i, j] > distance[i, k] + distance[k, j]:\n distance[i, j] = distance[i, k] + distance[k, j]\n nextn[i, j] = nextn[k, j]\n for i in nl:\n if distance[i, i] < 0:\n return False, distance, nextn\n return True, distance, nextn\n", "role": "user" }, { "content": "floyd_warshall", "role": "assistant" } ]
def x(self, distance, nextn, i, j): if distance[i, j] == 'infinity': return None k = nextn[i, j] path = self.floyd_warshall_get_path if i == k: return [i, j] else: return path(distance, nextn, i, k) + [k] + path(distance, nextn, k, j)
floyd_warshall_get_path
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, distance, nextn, i, j):\n if distance[i, j] == 'infinity':\n return None\n k = nextn[i, j]\n path = self.floyd_warshall_get_path\n if i == k:\n return [i, j]\n else:\n return path(distance, nextn, i, k) + [k] + path(distance, nextn, k, j)\n", "role": "user" }, { "content": "floyd_warshall_get_path", "role": "assistant" } ]
def x(self, distance, nextn, element=None): nl = self.get_node_list() if element is None: for i in nl: if distance[i, i] < 0: element = i break else: raise Exception('Graph does not have a negative cycle!') elif distance[element, element] >= 0: raise Exception( 'Graph does not have a negative cycle that contains node ' + str(element) + '!') cycle = [element] k = nextn[element, element] while k not in cycle: cycle.insert(1, k) k = nextn[element, k] if k == element: return cycle else: return self.floyd_warshall_get_cycle(distance, nextn, k)
floyd_warshall_get_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, distance, nextn, element=None):\n nl = self.get_node_list()\n if element is None:\n for i in nl:\n if distance[i, i] < 0:\n element = i\n break\n else:\n raise Exception('Graph does not have a negative cycle!')\n elif distance[element, element] >= 0:\n raise Exception(\n 'Graph does not have a negative cycle that contains node ' +\n str(element) + '!')\n cycle = [element]\n k = nextn[element, element]\n while k not in cycle:\n cycle.insert(1, k)\n k = nextn[element, k]\n if k == element:\n return cycle\n else:\n return self.floyd_warshall_get_cycle(distance, nextn, k)\n", "role": "user" }, { "content": "floyd_warshall_get_cycle", "role": "assistant" } ]
def x(self, cycle): index = 0 k = len(cycle) capacity = self.get_edge_attr(cycle[k - 1], cycle[0], 'capacity') while index < k - 1: i = cycle[index] j = cycle[index + 1] capacity_ij = self.get_edge_attr(i, j, 'capacity') if capacity > capacity_ij: capacity = capacity_ij index += 1 return capacity
find_cycle_capacity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cycle):\n index = 0\n k = len(cycle)\n capacity = self.get_edge_attr(cycle[k - 1], cycle[0], 'capacity')\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n capacity_ij = self.get_edge_attr(i, j, 'capacity')\n if capacity > capacity_ij:\n capacity = capacity_ij\n index += 1\n return capacity\n", "role": "user" }, { "content": "find_cycle_capacity", "role": "assistant" } ]
def x(self, source): pred = {} self.get_node(source).set_attr('distance', 0) pred[source] = None for n in self.neighbors: if n != source: self.get_node(n).set_attr('distance', 'inf') q = [source] while q: i = q[0] q = q[1:] for j in self.neighbors[i]: distance_j = self.get_node(j).get_attr('distance') distance_i = self.get_node(i).get_attr('distance') c_ij = self.get_edge_attr(i, j, 'cost') if distance_j > distance_i + c_ij: self.get_node(j).set_attr('distance', distance_i + c_ij) if j in pred: pred[j] = i cycle = self.label_correcting_check_cycle(j, pred) if cycle is not None: return False, cycle else: pred[j] = i if j not in q: q.append(j) return True, pred
fifo_label_correcting
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source):\n pred = {}\n self.get_node(source).set_attr('distance', 0)\n pred[source] = None\n for n in self.neighbors:\n if n != source:\n self.get_node(n).set_attr('distance', 'inf')\n q = [source]\n while q:\n i = q[0]\n q = q[1:]\n for j in self.neighbors[i]:\n distance_j = self.get_node(j).get_attr('distance')\n distance_i = self.get_node(i).get_attr('distance')\n c_ij = self.get_edge_attr(i, j, 'cost')\n if distance_j > distance_i + c_ij:\n self.get_node(j).set_attr('distance', distance_i + c_ij)\n if j in pred:\n pred[j] = i\n cycle = self.label_correcting_check_cycle(j, pred)\n if cycle is not None:\n return False, cycle\n else:\n pred[j] = i\n if j not in q:\n q.append(j)\n return True, pred\n", "role": "user" }, { "content": "fifo_label_correcting", "role": "assistant" } ]
def x(self, j, pred): labelled = {} for n in self.neighbors: labelled[n] = None current = j while current != None: if labelled[current] == j: cycle = self.label_correcting_get_cycle(j, pred) return cycle labelled[current] = j current = pred[current] return None
label_correcting_check_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, j, pred):\n labelled = {}\n for n in self.neighbors:\n labelled[n] = None\n current = j\n while current != None:\n if labelled[current] == j:\n cycle = self.label_correcting_get_cycle(j, pred)\n return cycle\n labelled[current] = j\n current = pred[current]\n return None\n", "role": "user" }, { "content": "label_correcting_check_cycle", "role": "assistant" } ]
def x(self, j, pred): cycle = [] cycle.append(j) current = pred[j] while current != j: cycle.append(current) current = pred[current] cycle.reverse() return cycle
label_correcting_get_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, j, pred):\n cycle = []\n cycle.append(j)\n current = pred[j]\n while current != j:\n cycle.append(current)\n current = pred[current]\n cycle.reverse()\n return cycle\n", "role": "user" }, { "content": "label_correcting_get_cycle", "role": "assistant" } ]
def x(self, amount, cycle): index = 0 k = len(cycle) while index < k - 1: i = cycle[index] j = cycle[index + 1] if (i, j) in self.edge_attr: flow_ij = self.edge_attr[i, j]['flow'] self.edge_attr[i, j]['flow'] = flow_ij + amount else: flow_ji = self.edge_attr[j, i]['flow'] self.edge_attr[j, i]['flow'] = flow_ji - amount index += 1 i = cycle[k - 1] j = cycle[0] if (i, j) in self.edge_attr: flow_ij = self.edge_attr[i, j]['flow'] self.edge_attr[i, j]['flow'] = flow_ij + amount else: flow_ji = self.edge_attr[j, i]['flow'] self.edge_attr[j, i]['flow'] = flow_ji - amount
augment_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, amount, cycle):\n index = 0\n k = len(cycle)\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n if (i, j) in self.edge_attr:\n flow_ij = self.edge_attr[i, j]['flow']\n self.edge_attr[i, j]['flow'] = flow_ij + amount\n else:\n flow_ji = self.edge_attr[j, i]['flow']\n self.edge_attr[j, i]['flow'] = flow_ji - amount\n index += 1\n i = cycle[k - 1]\n j = cycle[0]\n if (i, j) in self.edge_attr:\n flow_ij = self.edge_attr[i, j]['flow']\n self.edge_attr[i, j]['flow'] = flow_ij + amount\n else:\n flow_ji = self.edge_attr[j, i]['flow']\n self.edge_attr[j, i]['flow'] = flow_ji - amount\n", "role": "user" }, { "content": "augment_cycle", "role": "assistant" } ]
def x(self, display, pivot, root): if not self.find_feasible_flow(): return False t = self.simplex_find_tree() self.set_display_mode(display) self.simplex_mark_st_arcs(t) t.simplex_redraw(display, root) t.set_display_mode(display) self.display() t.simplex_search(root, 1) self.simplex_compute_potentials(t, root) while not self.simplex_optimal(t): self.display() k, l = self.simplex_select_entering_arc(t, pivot) self.simplex_mark_entering_arc(k, l) self.display() (p, q), capacity, cycle = self.simplex_determine_leaving_arc(t, k, l) self.simplex_mark_leaving_arc(p, q) self.display() self.simplex_remove_arc(t, p, q, capacity, cycle) self.display() self.simplex_mark_st_arcs(t) self.display() t.simplex_redraw(display, root) t.simplex_search(root, 1) self.simplex_compute_potentials(t, root) return True
network_simplex
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display, pivot, root):\n if not self.find_feasible_flow():\n return False\n t = self.simplex_find_tree()\n self.set_display_mode(display)\n self.simplex_mark_st_arcs(t)\n t.simplex_redraw(display, root)\n t.set_display_mode(display)\n self.display()\n t.simplex_search(root, 1)\n self.simplex_compute_potentials(t, root)\n while not self.simplex_optimal(t):\n self.display()\n k, l = self.simplex_select_entering_arc(t, pivot)\n self.simplex_mark_entering_arc(k, l)\n self.display()\n (p, q), capacity, cycle = self.simplex_determine_leaving_arc(t, k, l)\n self.simplex_mark_leaving_arc(p, q)\n self.display()\n self.simplex_remove_arc(t, p, q, capacity, cycle)\n self.display()\n self.simplex_mark_st_arcs(t)\n self.display()\n t.simplex_redraw(display, root)\n t.simplex_search(root, 1)\n self.simplex_compute_potentials(t, root)\n return True\n", "role": "user" }, { "content": "network_simplex", "role": "assistant" } ]
def x(self, t, k, l): cycle = self.simplex_identify_cycle(t, k, l) flow_kl = self.get_edge_attr(k, l, 'flow') capacity_kl = self.get_edge_attr(k, l, 'capacity') min_capacity = capacity_kl if flow_kl == capacity_kl: cycle.reverse() n = len(cycle) index = 0 t.add_edge(k, l) tel = t.get_edge_list() while index < n - 1: if (cycle[index], cycle[index + 1]) in tel: flow = self.edge_attr[cycle[index], cycle[index + 1]]['flow'] capacity = self.edge_attr[cycle[index], cycle[index + 1]][ 'capacity'] if min_capacity >= capacity - flow: candidate = cycle[index], cycle[index + 1] min_capacity = capacity - flow else: flow = self.edge_attr[cycle[index + 1], cycle[index]]['flow'] if min_capacity >= flow: candidate = cycle[index + 1], cycle[index] min_capacity = flow index += 1 if (cycle[n - 1], cycle[0]) in tel: flow = self.edge_attr[cycle[n - 1], cycle[0]]['flow'] capacity = self.edge_attr[cycle[n - 1], cycle[0]]['capacity'] if min_capacity >= capacity - flow: candidate = cycle[n - 1], cycle[0] min_capacity = capacity - flow else: flow = self.edge_attr[cycle[0], cycle[n - 1]]['flow'] if min_capacity >= flow: candidate = cycle[0], cycle[n - 1] min_capacity = flow return candidate, min_capacity, cycle
simplex_determine_leaving_arc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, k, l):\n cycle = self.simplex_identify_cycle(t, k, l)\n flow_kl = self.get_edge_attr(k, l, 'flow')\n capacity_kl = self.get_edge_attr(k, l, 'capacity')\n min_capacity = capacity_kl\n if flow_kl == capacity_kl:\n cycle.reverse()\n n = len(cycle)\n index = 0\n t.add_edge(k, l)\n tel = t.get_edge_list()\n while index < n - 1:\n if (cycle[index], cycle[index + 1]) in tel:\n flow = self.edge_attr[cycle[index], cycle[index + 1]]['flow']\n capacity = self.edge_attr[cycle[index], cycle[index + 1]][\n 'capacity']\n if min_capacity >= capacity - flow:\n candidate = cycle[index], cycle[index + 1]\n min_capacity = capacity - flow\n else:\n flow = self.edge_attr[cycle[index + 1], cycle[index]]['flow']\n if min_capacity >= flow:\n candidate = cycle[index + 1], cycle[index]\n min_capacity = flow\n index += 1\n if (cycle[n - 1], cycle[0]) in tel:\n flow = self.edge_attr[cycle[n - 1], cycle[0]]['flow']\n capacity = self.edge_attr[cycle[n - 1], cycle[0]]['capacity']\n if min_capacity >= capacity - flow:\n candidate = cycle[n - 1], cycle[0]\n min_capacity = capacity - flow\n else:\n flow = self.edge_attr[cycle[0], cycle[n - 1]]['flow']\n if min_capacity >= flow:\n candidate = cycle[0], cycle[n - 1]\n min_capacity = flow\n return candidate, min_capacity, cycle\n", "role": "user" }, { "content": "simplex_determine_leaving_arc", "role": "assistant" } ]
def x(self, t): tel = list(t.edge_attr.keys()) for e in self.get_edge_list(): flow_e = self.edge_attr[e]['flow'] capacity_e = self.edge_attr[e]['capacity'] if e in tel: if flow_e == 0: self.edge_attr[e]['color'] = 'blue' elif flow_e == capacity_e: self.edge_attr[e]['color'] = 'blue' else: self.edge_attr[e]['color'] = 'blue' elif flow_e == 0: self.edge_attr[e]['color'] = 'black' elif flow_e == capacity_e: self.edge_attr[e]['color'] = 'black' else: msg = 'Arc is not in ST but has flow between bounds.' raise Exception(msg)
simplex_mark_st_arcs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t):\n tel = list(t.edge_attr.keys())\n for e in self.get_edge_list():\n flow_e = self.edge_attr[e]['flow']\n capacity_e = self.edge_attr[e]['capacity']\n if e in tel:\n if flow_e == 0:\n self.edge_attr[e]['color'] = 'blue'\n elif flow_e == capacity_e:\n self.edge_attr[e]['color'] = 'blue'\n else:\n self.edge_attr[e]['color'] = 'blue'\n elif flow_e == 0:\n self.edge_attr[e]['color'] = 'black'\n elif flow_e == capacity_e:\n self.edge_attr[e]['color'] = 'black'\n else:\n msg = 'Arc is not in ST but has flow between bounds.'\n raise Exception(msg)\n", "role": "user" }, { "content": "simplex_mark_st_arcs", "role": "assistant" } ]
def x(self): print('printing current edge, flow, capacity') for e in self.edge_attr: if self.edge_attr[e]['flow'] != 0: print(e, str(self.edge_attr[e]['flow']).ljust(4), end=' ') print(str(self.edge_attr[e]['capacity']).ljust(4))
print_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n print('printing current edge, flow, capacity')\n for e in self.edge_attr:\n if self.edge_attr[e]['flow'] != 0:\n print(e, str(self.edge_attr[e]['flow']).ljust(4), end=' ')\n print(str(self.edge_attr[e]['capacity']).ljust(4))\n", "role": "user" }, { "content": "print_flow", "role": "assistant" } ]
def x(self, display, root): nl = self.get_node_list() el = self.get_edge_list() new = Graph(type=DIRECTED_GRAPH, layout='dot', display=display) pred_i = self.get_node(root).get_attr('pred') thread_i = self.get_node(root).get_attr('thread') depth_i = self.get_node(root).get_attr('depth') new.add_node(root, pred=pred_i, thread=thread_i, depth=depth_i) q = [root] visited = [root] while q: name = q.pop() visited.append(name) neighbors = self.neighbors[name] + self.in_neighbors[name] for n in neighbors: if n not in new.get_node_list(): pred_i = self.get_node(n).get_attr('pred') thread_i = self.get_node(n).get_attr('thread') depth_i = self.get_node(n).get_attr('depth') new.add_node(n, pred=pred_i, thread=thread_i, depth=depth_i) if (name, n) in el: if (name, n) not in new.edge_attr: new.add_edge(name, n) elif (n, name) not in new.edge_attr: new.add_edge(n, name) if n not in visited: q.append(n) for e in el: flow = self.edge_attr[e]['flow'] capacity = self.edge_attr[e]['capacity'] cost = self.edge_attr[e]['cost'] new.edge_attr[e]['flow'] = flow new.edge_attr[e]['capacity'] = capacity new.edge_attr[e]['cost'] = cost new.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost) return new
simplex_redraw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display, root):\n nl = self.get_node_list()\n el = self.get_edge_list()\n new = Graph(type=DIRECTED_GRAPH, layout='dot', display=display)\n pred_i = self.get_node(root).get_attr('pred')\n thread_i = self.get_node(root).get_attr('thread')\n depth_i = self.get_node(root).get_attr('depth')\n new.add_node(root, pred=pred_i, thread=thread_i, depth=depth_i)\n q = [root]\n visited = [root]\n while q:\n name = q.pop()\n visited.append(name)\n neighbors = self.neighbors[name] + self.in_neighbors[name]\n for n in neighbors:\n if n not in new.get_node_list():\n pred_i = self.get_node(n).get_attr('pred')\n thread_i = self.get_node(n).get_attr('thread')\n depth_i = self.get_node(n).get_attr('depth')\n new.add_node(n, pred=pred_i, thread=thread_i, depth=depth_i)\n if (name, n) in el:\n if (name, n) not in new.edge_attr:\n new.add_edge(name, n)\n elif (n, name) not in new.edge_attr:\n new.add_edge(n, name)\n if n not in visited:\n q.append(n)\n for e in el:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n new.edge_attr[e]['flow'] = flow\n new.edge_attr[e]['capacity'] = capacity\n new.edge_attr[e]['cost'] = cost\n new.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n return new\n", "role": "user" }, { "content": "simplex_redraw", "role": "assistant" } ]
def x(self, t, p, q, min_capacity, cycle): n = len(cycle) tel = list(t.edge_attr.keys()) index = 0 while index < n - 1: if (cycle[index], cycle[index + 1]) in tel: flow_e = self.edge_attr[cycle[index], cycle[index + 1]]['flow'] self.edge_attr[cycle[index], cycle[index + 1]]['flow' ] = flow_e + min_capacity else: flow_e = self.edge_attr[cycle[index + 1], cycle[index]]['flow'] self.edge_attr[cycle[index + 1], cycle[index]]['flow' ] = flow_e - min_capacity index += 1 if (cycle[n - 1], cycle[0]) in tel: flow_e = self.edge_attr[cycle[n - 1], cycle[0]]['flow'] self.edge_attr[cycle[n - 1], cycle[0]]['flow'] = flow_e + min_capacity else: flow_e = self.edge_attr[cycle[0], cycle[n - 1]]['flow'] self.edge_attr[cycle[0], cycle[n - 1]]['flow'] = flow_e - min_capacity t.del_edge((p, q)) flow_pq = self.get_edge_attr(p, q, 'flow') capacity_pq = self.get_edge_attr(p, q, 'capacity') cost_pq = self.get_edge_attr(p, q, 'cost') self.set_edge_attr(p, q, 'label', '%d/%d/%d' % (flow_pq, capacity_pq, cost_pq)) for e in t.edge_attr: flow = self.edge_attr[e]['flow'] capacity = self.edge_attr[e]['capacity'] cost = self.edge_attr[e]['cost'] t.edge_attr[e]['flow'] = flow t.edge_attr[e]['capacity'] = capacity t.edge_attr[e]['cost'] = cost t.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost) self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)
simplex_remove_arc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, p, q, min_capacity, cycle):\n n = len(cycle)\n tel = list(t.edge_attr.keys())\n index = 0\n while index < n - 1:\n if (cycle[index], cycle[index + 1]) in tel:\n flow_e = self.edge_attr[cycle[index], cycle[index + 1]]['flow']\n self.edge_attr[cycle[index], cycle[index + 1]]['flow'\n ] = flow_e + min_capacity\n else:\n flow_e = self.edge_attr[cycle[index + 1], cycle[index]]['flow']\n self.edge_attr[cycle[index + 1], cycle[index]]['flow'\n ] = flow_e - min_capacity\n index += 1\n if (cycle[n - 1], cycle[0]) in tel:\n flow_e = self.edge_attr[cycle[n - 1], cycle[0]]['flow']\n self.edge_attr[cycle[n - 1], cycle[0]]['flow'] = flow_e + min_capacity\n else:\n flow_e = self.edge_attr[cycle[0], cycle[n - 1]]['flow']\n self.edge_attr[cycle[0], cycle[n - 1]]['flow'] = flow_e - min_capacity\n t.del_edge((p, q))\n flow_pq = self.get_edge_attr(p, q, 'flow')\n capacity_pq = self.get_edge_attr(p, q, 'capacity')\n cost_pq = self.get_edge_attr(p, q, 'cost')\n self.set_edge_attr(p, q, 'label', '%d/%d/%d' % (flow_pq, capacity_pq,\n cost_pq))\n for e in t.edge_attr:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n t.edge_attr[e]['flow'] = flow\n t.edge_attr[e]['capacity'] = capacity\n t.edge_attr[e]['cost'] = cost\n t.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n", "role": "user" }, { "content": "simplex_remove_arc", "role": "assistant" } ]
def x(self, t, pivot): if pivot == 'dantzig': candidate = {} for e in self.edge_attr: if e in t.edge_attr: continue flow_ij = self.edge_attr[e]['flow'] potential_i = self.get_node(e[0]).get_attr('potential') potential_j = self.get_node(e[1]).get_attr('potential') capacity_ij = self.edge_attr[e]['capacity'] c_ij = self.edge_attr[e]['cost'] cpi_ij = c_ij - potential_i + potential_j if flow_ij == 0: if cpi_ij < 0: candidate[e] = cpi_ij elif flow_ij == capacity_ij: if cpi_ij > 0: candidate[e] = cpi_ij for e in candidate: max_c = e max_v = abs(candidate[e]) break for e in candidate: if max_v < abs(candidate[e]): max_c = e max_v = abs(candidate[e]) elif pivot == 'first_eligible': for e in self.edge_attr: if e in t.edge_attr: continue flow_ij = self.edge_attr[e]['flow'] potential_i = self.get_node(e[0]).get_attr('potential') potential_j = self.get_node(e[1]).get_attr('potential') capacity_ij = self.edge_attr[e]['capacity'] c_ij = self.edge_attr[e]['cost'] cpi_ij = c_ij - potential_i + potential_j if flow_ij == 0: if cpi_ij < 0: max_c = e max_v = abs(cpi_ij) elif flow_ij == capacity_ij: if cpi_ij > 0: max_c = e max_v = cpi_ij else: raise Exception('Unknown pivot rule.') return max_c
simplex_select_entering_arc
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, pivot):\n if pivot == 'dantzig':\n candidate = {}\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n candidate[e] = cpi_ij\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n candidate[e] = cpi_ij\n for e in candidate:\n max_c = e\n max_v = abs(candidate[e])\n break\n for e in candidate:\n if max_v < abs(candidate[e]):\n max_c = e\n max_v = abs(candidate[e])\n elif pivot == 'first_eligible':\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n max_c = e\n max_v = abs(cpi_ij)\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n max_c = e\n max_v = cpi_ij\n else:\n raise Exception('Unknown pivot rule.')\n return max_c\n", "role": "user" }, { "content": "simplex_select_entering_arc", "role": "assistant" } ]
def x(self, t): for e in self.edge_attr: if e in t.edge_attr: continue flow_ij = self.edge_attr[e]['flow'] potential_i = self.get_node(e[0]).get_attr('potential') potential_j = self.get_node(e[1]).get_attr('potential') capacity_ij = self.edge_attr[e]['capacity'] c_ij = self.edge_attr[e]['cost'] cpi_ij = c_ij - potential_i + potential_j if flow_ij == 0: if cpi_ij < 0: return False elif flow_ij == capacity_ij: if cpi_ij > 0: return False return True
simplex_optimal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t):\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n return False\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n return False\n return True\n", "role": "user" }, { "content": "simplex_optimal", "role": "assistant" } ]
def x(self): solution_g = self.get_simplex_solution_graph() cycle = solution_g.simplex_find_cycle() while cycle is not None: amount = self.simplex_augment_cycle(cycle) self.augment_cycle(amount, cycle) solution_g = self.get_simplex_solution_graph() cycle = solution_g.simplex_find_cycle() while self.simplex_connect(solution_g): pass for e in self.edge_attr: flow = self.edge_attr[e]['flow'] capacity = self.edge_attr[e]['capacity'] cost = self.edge_attr[e]['cost'] self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost) if e in solution_g.edge_attr: solution_g.edge_attr[e]['flow'] = flow solution_g.edge_attr[e]['capacity'] = capacity solution_g.edge_attr[e]['cost'] = cost solution_g.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost) return solution_g
simplex_find_tree
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n solution_g = self.get_simplex_solution_graph()\n cycle = solution_g.simplex_find_cycle()\n while cycle is not None:\n amount = self.simplex_augment_cycle(cycle)\n self.augment_cycle(amount, cycle)\n solution_g = self.get_simplex_solution_graph()\n cycle = solution_g.simplex_find_cycle()\n while self.simplex_connect(solution_g):\n pass\n for e in self.edge_attr:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n if e in solution_g.edge_attr:\n solution_g.edge_attr[e]['flow'] = flow\n solution_g.edge_attr[e]['capacity'] = capacity\n solution_g.edge_attr[e]['cost'] = cost\n solution_g.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity,\n cost)\n return solution_g\n", "role": "user" }, { "content": "simplex_find_tree", "role": "assistant" } ]
def x(self, solution_g): nl = solution_g.get_node_list() current = nl[0] pred = solution_g.simplex_search(current, current) separated = list(pred.keys()) for n in nl: if solution_g.get_node(n).get_attr('component') != current: for m in separated: if (n, m) in self.edge_attr: solution_g.add_edge(n, m) return True elif (m, n) in self.edge_attr: solution_g.add_edge(m, n) return True return False
simplex_connect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, solution_g):\n nl = solution_g.get_node_list()\n current = nl[0]\n pred = solution_g.simplex_search(current, current)\n separated = list(pred.keys())\n for n in nl:\n if solution_g.get_node(n).get_attr('component') != current:\n for m in separated:\n if (n, m) in self.edge_attr:\n solution_g.add_edge(n, m)\n return True\n elif (m, n) in self.edge_attr:\n solution_g.add_edge(m, n)\n return True\n return False\n", "role": "user" }, { "content": "simplex_connect", "role": "assistant" } ]
def x(self, source, component_nr): q = [source] pred = {source: None} depth = {source: 0} sequence = [] for n in self.neighbors: self.get_node(n).set_attr('component', None) while q: current = q.pop() self.get_node(current).set_attr('component', component_nr) sequence.append(current) neighbors = self.in_neighbors[current] + self.neighbors[current] for n in neighbors: if n in pred: continue self.get_node(n).set_attr('component', component_nr) pred[n] = current depth[n] = depth[current] + 1 q.append(n) for i in range(len(sequence) - 1): self.get_node(sequence[i]).set_attr('thread', int(sequence[i + 1])) self.get_node(sequence[-1]).set_attr('thread', int(sequence[0])) for n in pred: self.get_node(n).set_attr('pred', pred[n]) self.get_node(n).set_attr('depth', depth[n]) return pred
simplex_search
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, source, component_nr):\n q = [source]\n pred = {source: None}\n depth = {source: 0}\n sequence = []\n for n in self.neighbors:\n self.get_node(n).set_attr('component', None)\n while q:\n current = q.pop()\n self.get_node(current).set_attr('component', component_nr)\n sequence.append(current)\n neighbors = self.in_neighbors[current] + self.neighbors[current]\n for n in neighbors:\n if n in pred:\n continue\n self.get_node(n).set_attr('component', component_nr)\n pred[n] = current\n depth[n] = depth[current] + 1\n q.append(n)\n for i in range(len(sequence) - 1):\n self.get_node(sequence[i]).set_attr('thread', int(sequence[i + 1]))\n self.get_node(sequence[-1]).set_attr('thread', int(sequence[0]))\n for n in pred:\n self.get_node(n).set_attr('pred', pred[n])\n self.get_node(n).set_attr('depth', depth[n])\n return pred\n", "role": "user" }, { "content": "simplex_search", "role": "assistant" } ]
def x(self, cycle): index = 0 k = len(cycle) el = list(self.edge_attr.keys()) if (cycle[k - 1], cycle[0]) in el: min_capacity = self.edge_attr[cycle[k - 1], cycle[0]]['capacity' ] - self.edge_attr[cycle[k - 1], cycle[0]]['flow'] else: min_capacity = self.edge_attr[cycle[0], cycle[k - 1]]['flow'] while index < k - 1: i = cycle[index] j = cycle[index + 1] if (i, j) in el: capacity_ij = self.edge_attr[i, j]['capacity'] - self.edge_attr[ i, j]['flow'] else: capacity_ij = self.edge_attr[j, i]['flow'] if min_capacity > capacity_ij: min_capacity = capacity_ij index += 1 return min_capacity
simplex_augment_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cycle):\n index = 0\n k = len(cycle)\n el = list(self.edge_attr.keys())\n if (cycle[k - 1], cycle[0]) in el:\n min_capacity = self.edge_attr[cycle[k - 1], cycle[0]]['capacity'\n ] - self.edge_attr[cycle[k - 1], cycle[0]]['flow']\n else:\n min_capacity = self.edge_attr[cycle[0], cycle[k - 1]]['flow']\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n if (i, j) in el:\n capacity_ij = self.edge_attr[i, j]['capacity'] - self.edge_attr[\n i, j]['flow']\n else:\n capacity_ij = self.edge_attr[j, i]['flow']\n if min_capacity > capacity_ij:\n min_capacity = capacity_ij\n index += 1\n return min_capacity\n", "role": "user" }, { "content": "simplex_augment_cycle", "role": "assistant" } ]
def x(self): nl = self.get_node_list() q = [nl[0]] visited = [] depth = {nl[0]: 0} pred = {nl[0]: None} for n in nl: self.get_node(n).set_attr('component', None) component_nr = int(nl[0]) self.get_node(nl[0]).set_attr('component', component_nr) while True: while q: current = q.pop() visited.append(current) neighbors = self.in_neighbors[current] + self.neighbors[current] for n in neighbors: if n == pred[current]: continue self.get_node(n).set_attr('component', component_nr) if n in depth: cycle1 = [] cycle2 = [] temp = n while temp is not None: cycle1.append(temp) temp = pred[temp] temp = current while temp is not None: cycle2.append(temp) temp = pred[temp] cycle1.pop() cycle1.reverse() cycle2.extend(cycle1) return cycle2 else: pred[n] = current depth[n] = depth[current] + 1 if n not in visited: q.append(n) flag = False for n in nl: if self.get_node(n).get_attr('component') is None: q.append(n) depth = {n: 0} pred = {n: None} visited = [] component_nr = int(n) self.get_node(n).set_attr('component', component_nr) flag = True break if not flag: break return None
simplex_find_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n nl = self.get_node_list()\n q = [nl[0]]\n visited = []\n depth = {nl[0]: 0}\n pred = {nl[0]: None}\n for n in nl:\n self.get_node(n).set_attr('component', None)\n component_nr = int(nl[0])\n self.get_node(nl[0]).set_attr('component', component_nr)\n while True:\n while q:\n current = q.pop()\n visited.append(current)\n neighbors = self.in_neighbors[current] + self.neighbors[current]\n for n in neighbors:\n if n == pred[current]:\n continue\n self.get_node(n).set_attr('component', component_nr)\n if n in depth:\n cycle1 = []\n cycle2 = []\n temp = n\n while temp is not None:\n cycle1.append(temp)\n temp = pred[temp]\n temp = current\n while temp is not None:\n cycle2.append(temp)\n temp = pred[temp]\n cycle1.pop()\n cycle1.reverse()\n cycle2.extend(cycle1)\n return cycle2\n else:\n pred[n] = current\n depth[n] = depth[current] + 1\n if n not in visited:\n q.append(n)\n flag = False\n for n in nl:\n if self.get_node(n).get_attr('component') is None:\n q.append(n)\n depth = {n: 0}\n pred = {n: None}\n visited = []\n component_nr = int(n)\n self.get_node(n).set_attr('component', component_nr)\n flag = True\n break\n if not flag:\n break\n return None\n", "role": "user" }, { "content": "simplex_find_cycle", "role": "assistant" } ]
def x(self): simplex_g = Graph(type=DIRECTED_GRAPH) for i in self.neighbors: simplex_g.add_node(i) for e in self.edge_attr: flow_e = self.edge_attr[e]['flow'] capacity_e = self.edge_attr[e]['capacity'] if flow_e > 0 and flow_e < capacity_e: simplex_g.add_edge(e[0], e[1]) return simplex_g
get_simplex_solution_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n simplex_g = Graph(type=DIRECTED_GRAPH)\n for i in self.neighbors:\n simplex_g.add_node(i)\n for e in self.edge_attr:\n flow_e = self.edge_attr[e]['flow']\n capacity_e = self.edge_attr[e]['capacity']\n if flow_e > 0 and flow_e < capacity_e:\n simplex_g.add_edge(e[0], e[1])\n return simplex_g\n", "role": "user" }, { "content": "get_simplex_solution_graph", "role": "assistant" } ]
def x(self, t, root): self.get_node(root).set_attr('potential', 0) j = t.get_node(root).get_attr('thread') while j is not root: i = t.get_node(j).get_attr('pred') potential_i = self.get_node(i).get_attr('potential') if (i, j) in self.edge_attr: c_ij = self.edge_attr[i, j]['cost'] self.get_node(j).set_attr('potential', potential_i - c_ij) if (j, i) in self.edge_attr: c_ji = self.edge_attr[j, i]['cost'] self.get_node(j).set_attr('potential', potential_i + c_ji) j = t.get_node(j).get_attr('thread')
simplex_compute_potentials
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, root):\n self.get_node(root).set_attr('potential', 0)\n j = t.get_node(root).get_attr('thread')\n while j is not root:\n i = t.get_node(j).get_attr('pred')\n potential_i = self.get_node(i).get_attr('potential')\n if (i, j) in self.edge_attr:\n c_ij = self.edge_attr[i, j]['cost']\n self.get_node(j).set_attr('potential', potential_i - c_ij)\n if (j, i) in self.edge_attr:\n c_ji = self.edge_attr[j, i]['cost']\n self.get_node(j).set_attr('potential', potential_i + c_ji)\n j = t.get_node(j).get_attr('thread')\n", "role": "user" }, { "content": "simplex_compute_potentials", "role": "assistant" } ]
def x(self, t, k, l): i = k j = l cycle = [] li = [k] lj = [j] while i is not j: depth_i = t.get_node(i).get_attr('depth') depth_j = t.get_node(j).get_attr('depth') if depth_i > depth_j: i = t.get_node(i).get_attr('pred') li.append(i) elif depth_i < depth_j: j = t.get_node(j).get_attr('pred') lj.append(j) else: i = t.get_node(i).get_attr('pred') li.append(i) j = t.get_node(j).get_attr('pred') lj.append(j) cycle.extend(lj) li.pop() li.reverse() cycle.extend(li) return cycle
simplex_identify_cycle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, t, k, l):\n i = k\n j = l\n cycle = []\n li = [k]\n lj = [j]\n while i is not j:\n depth_i = t.get_node(i).get_attr('depth')\n depth_j = t.get_node(j).get_attr('depth')\n if depth_i > depth_j:\n i = t.get_node(i).get_attr('pred')\n li.append(i)\n elif depth_i < depth_j:\n j = t.get_node(j).get_attr('pred')\n lj.append(j)\n else:\n i = t.get_node(i).get_attr('pred')\n li.append(i)\n j = t.get_node(j).get_attr('pred')\n lj.append(j)\n cycle.extend(lj)\n li.pop()\n li.reverse()\n cycle.extend(li)\n return cycle\n", "role": "user" }, { "content": "simplex_identify_cycle", "role": "assistant" } ]
def x(self, display=None, **args): if display is None: display = self.attr['display'] if 'algo' in args: algorithm = args['algo'] else: algorithm = 'simplex' if algorithm is 'simplex': if 'root' in args: root = args['root'] else: for k in self.neighbors: root = k break if 'pivot' in args: if not self.network_simplex(display, args['pivot'], root): print('problem is infeasible') elif not self.network_simplex(display, 'dantzig', root): print('problem is infeasible') elif algorithm is 'cycle_canceling': if not self.cycle_canceling(display): print('problem is infeasible') else: print(args['algo'], 'is not a defined algorithm. Exiting.') return
min_cost_flow
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, display=None, **args):\n if display is None:\n display = self.attr['display']\n if 'algo' in args:\n algorithm = args['algo']\n else:\n algorithm = 'simplex'\n if algorithm is 'simplex':\n if 'root' in args:\n root = args['root']\n else:\n for k in self.neighbors:\n root = k\n break\n if 'pivot' in args:\n if not self.network_simplex(display, args['pivot'], root):\n print('problem is infeasible')\n elif not self.network_simplex(display, 'dantzig', root):\n print('problem is infeasible')\n elif algorithm is 'cycle_canceling':\n if not self.cycle_canceling(display):\n print('problem is infeasible')\n else:\n print(args['algo'], 'is not a defined algorithm. Exiting.')\n return\n", "role": "user" }, { "content": "min_cost_flow", "role": "assistant" } ]
def x(self, numnodes=10, degree_range=(2, 4), length_range=(1, 10), density =None, edge_format=None, node_format=None, Euclidean=False, seedInput=0, add_labels=True, parallel_allowed=False, node_selection='closest', scale=10, scale_cost=5): random.seed(seedInput) if edge_format == None: edge_format = {'fontsize': 10, 'fontcolor': 'blue'} if node_format == None: node_format = {'height': 0.5, 'width': 0.5, 'fixedsize': 'true', 'fontsize': 10, 'fontcolor': 'red', 'shape': 'circle'} if Euclidean == False: for m in range(numnodes): self.add_node(m, **node_format) if degree_range is not None and density is None: for m in range(numnodes): degree = random.randint(degree_range[0], degree_range[1]) i = 0 while i < degree: n = random.randint(1, numnodes - 1) if ((m, n) not in self.edge_attr and m != n) and ( parallel_allowed or (n, m) not in self.edge_attr): if length_range is not None: length = random.randint(length_range[0], length_range[1]) self.add_edge(m, n, cost=length, **edge_format) if add_labels: self.set_edge_attr(m, n, 'label', str(length)) else: self.add_edge(m, n, **edge_format) i += 1 elif density != None: for m in range(numnodes): if self.graph_type == DIRECTED_GRAPH: numnodes2 = numnodes else: numnodes2 = m for n in range(numnodes2): if (parallel_allowed or (n, m) not in self.edge_attr ) and m != n: if random.random() < density: if length_range is not None: length = random.randint(length_range[0], length_range[1]) self.add_edge(m, n, cost=length, **edge_format) if add_labels: self.set_edge_attr(m, n, 'label', str( length)) else: self.add_edge(m, n, **edge_format) else: print('Must set either degree range or density') else: for m in range(numnodes): """ Assigns random coordinates (between 1 and 20) to the nodes """ x = random.random() * scale y = random.random() * scale self.add_node(m, locationx=x, locationy=y, pos='"' + str(x) + ',' + str(y) + '!"', **node_format) if degree_range is not None and density is None: for m in range(numnodes): degree = random.randint(degree_range[0], degree_range[1]) i = 0 neighbors = [] if node_selection is 'random': while i < degree: length = round(((self.get_node(n).get_attr( 'locationx') - self.get_node(m).get_attr( 'locationx')) ** 2 + (self.get_node(n).get_attr ('locationy') - self.get_node(m).get_attr( 'locationy')) ** 2) ** 0.5 * scale_cost, 0) if ((m, n) not in self.edge_attr and m != n) and ( parallel_allowed or (n, m) not in self.edge_attr): neighbors.append(random.randint(0, numnodes - 1)) self.add_edge(m, n, cost=int(length), **edge_format ) if add_labels: self.set_edge_attr(m, n, 'label', str(int( length))) i += 1 elif node_selection is 'closest': lengths = [] for n in range(numnodes): lengths.append((n, round(((self.get_node(n). get_attr('locationx') - self.get_node(m). get_attr('locationx')) ** 2 + (self.get_node(n) .get_attr('locationy') - self.get_node(m). get_attr('locationy')) ** 2) ** 0.5 * scale_cost, 0))) lengths.sort(key=lambda l: l[1]) for i in range(degree + 1): if not (lengths[i][0] == m or self.check_edge(m, lengths[i][0])): self.add_edge(m, lengths[i][0], cost=int( lengths[i][1]), **edge_format) if add_labels: self.set_edge_attr(m, lengths[i][0], 'label', str(int(lengths[i][1]))) else: print('Unknown node selection rule...exiting') return elif density != None: for m in range(numnodes): if self.graph_type == DIRECTED_GRAPH: numnodes2 = numnodes else: numnodes2 = m for n in range(numnodes2): if (parallel_allowed or (n, m) not in self.edge_attr ) and m != n: if random.random() < density: if length_range is None: """ calculates the euclidean norm and round it to an integer """ length = round(((self.get_node(n).get_attr( 'locationx') - self.get_node(m). get_attr('locationx')) ** 2 + (self. get_node(n).get_attr('locationy') - self.get_node(m).get_attr('locationy')) ** 2) ** 0.5, 0) self.add_edge(m, n, cost=int(length), ** edge_format) if add_labels: self.set_edge_attr(m, n, 'label', str( int(length))) else: self.add_edge(m, n, **edge_format) else: print('Must set either degree range or density')
random
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, numnodes=10, degree_range=(2, 4), length_range=(1, 10), density\n =None, edge_format=None, node_format=None, Euclidean=False, seedInput=0,\n add_labels=True, parallel_allowed=False, node_selection='closest',\n scale=10, scale_cost=5):\n random.seed(seedInput)\n if edge_format == None:\n edge_format = {'fontsize': 10, 'fontcolor': 'blue'}\n if node_format == None:\n node_format = {'height': 0.5, 'width': 0.5, 'fixedsize': 'true',\n 'fontsize': 10, 'fontcolor': 'red', 'shape': 'circle'}\n if Euclidean == False:\n for m in range(numnodes):\n self.add_node(m, **node_format)\n if degree_range is not None and density is None:\n for m in range(numnodes):\n degree = random.randint(degree_range[0], degree_range[1])\n i = 0\n while i < degree:\n n = random.randint(1, numnodes - 1)\n if ((m, n) not in self.edge_attr and m != n) and (\n parallel_allowed or (n, m) not in self.edge_attr):\n if length_range is not None:\n length = random.randint(length_range[0],\n length_range[1])\n self.add_edge(m, n, cost=length, **edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(length))\n else:\n self.add_edge(m, n, **edge_format)\n i += 1\n elif density != None:\n for m in range(numnodes):\n if self.graph_type == DIRECTED_GRAPH:\n numnodes2 = numnodes\n else:\n numnodes2 = m\n for n in range(numnodes2):\n if (parallel_allowed or (n, m) not in self.edge_attr\n ) and m != n:\n if random.random() < density:\n if length_range is not None:\n length = random.randint(length_range[0],\n length_range[1])\n self.add_edge(m, n, cost=length, **edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(\n length))\n else:\n self.add_edge(m, n, **edge_format)\n else:\n print('Must set either degree range or density')\n else:\n for m in range(numnodes):\n \"\"\" Assigns random coordinates (between 1 and 20) to the nodes\n \"\"\"\n x = random.random() * scale\n y = random.random() * scale\n self.add_node(m, locationx=x, locationy=y, pos='\"' + str(x) +\n ',' + str(y) + '!\"', **node_format)\n if degree_range is not None and density is None:\n for m in range(numnodes):\n degree = random.randint(degree_range[0], degree_range[1])\n i = 0\n neighbors = []\n if node_selection is 'random':\n while i < degree:\n length = round(((self.get_node(n).get_attr(\n 'locationx') - self.get_node(m).get_attr(\n 'locationx')) ** 2 + (self.get_node(n).get_attr\n ('locationy') - self.get_node(m).get_attr(\n 'locationy')) ** 2) ** 0.5 * scale_cost, 0)\n if ((m, n) not in self.edge_attr and m != n) and (\n parallel_allowed or (n, m) not in self.edge_attr):\n neighbors.append(random.randint(0, numnodes - 1))\n self.add_edge(m, n, cost=int(length), **edge_format\n )\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(int(\n length)))\n i += 1\n elif node_selection is 'closest':\n lengths = []\n for n in range(numnodes):\n lengths.append((n, round(((self.get_node(n).\n get_attr('locationx') - self.get_node(m).\n get_attr('locationx')) ** 2 + (self.get_node(n)\n .get_attr('locationy') - self.get_node(m).\n get_attr('locationy')) ** 2) ** 0.5 *\n scale_cost, 0)))\n lengths.sort(key=lambda l: l[1])\n for i in range(degree + 1):\n if not (lengths[i][0] == m or self.check_edge(m,\n lengths[i][0])):\n self.add_edge(m, lengths[i][0], cost=int(\n lengths[i][1]), **edge_format)\n if add_labels:\n self.set_edge_attr(m, lengths[i][0],\n 'label', str(int(lengths[i][1])))\n else:\n print('Unknown node selection rule...exiting')\n return\n elif density != None:\n for m in range(numnodes):\n if self.graph_type == DIRECTED_GRAPH:\n numnodes2 = numnodes\n else:\n numnodes2 = m\n for n in range(numnodes2):\n if (parallel_allowed or (n, m) not in self.edge_attr\n ) and m != n:\n if random.random() < density:\n if length_range is None:\n \"\"\" calculates the euclidean norm and round it\n to an integer \"\"\"\n length = round(((self.get_node(n).get_attr(\n 'locationx') - self.get_node(m).\n get_attr('locationx')) ** 2 + (self.\n get_node(n).get_attr('locationy') -\n self.get_node(m).get_attr('locationy')) **\n 2) ** 0.5, 0)\n self.add_edge(m, n, cost=int(length), **\n edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(\n int(length)))\n else:\n self.add_edge(m, n, **edge_format)\n else:\n print('Must set either degree range or density')\n", "role": "user" }, { "content": "random", "role": "assistant" } ]
def x(self, damping_factor=0.85, max_iterations=100, min_delta=1e-05): nodes = self.get_node_list() graph_size = len(nodes) if graph_size == 0: return {} min_value = old_div(1.0 - damping_factor, graph_size) pagerank = dict.fromkeys(nodes, old_div(1.0, graph_size)) for _ in range(max_iterations): diff = 0 for node in nodes: rank = min_value for referring_page in self.get_in_neighbors(node): rank += damping_factor * pagerank[referring_page] / len(self .get_neighbors(referring_page)) diff += abs(pagerank[node] - rank) pagerank[node] = rank if diff < min_delta: break return pagerank
page_rank
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, damping_factor=0.85, max_iterations=100, min_delta=1e-05):\n nodes = self.get_node_list()\n graph_size = len(nodes)\n if graph_size == 0:\n return {}\n min_value = old_div(1.0 - damping_factor, graph_size)\n pagerank = dict.fromkeys(nodes, old_div(1.0, graph_size))\n for _ in range(max_iterations):\n diff = 0\n for node in nodes:\n rank = min_value\n for referring_page in self.get_in_neighbors(node):\n rank += damping_factor * pagerank[referring_page] / len(self\n .get_neighbors(referring_page))\n diff += abs(pagerank[node] - rank)\n pagerank[node] = rank\n if diff < min_delta:\n break\n return pagerank\n", "role": "user" }, { "content": "page_rank", "role": "assistant" } ]
def x(self): degree = {} if self.attr['type'] is not DIRECTED_GRAPH: for n in self.get_node_list(): degree[n] = len(self.get_neighbors(n)) return degree else: for n in self.get_node_list(): degree[n] = len(self.get_in_neighbors(n)) + len(self. get_out_neighbors(n))
get_degrees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n for n in self.get_node_list():\n degree[n] = len(self.get_neighbors(n))\n return degree\n else:\n for n in self.get_node_list():\n degree[n] = len(self.get_in_neighbors(n)) + len(self.\n get_out_neighbors(n))\n", "role": "user" }, { "content": "get_degrees", "role": "assistant" } ]
def x(self): degree = {} if self.attr['type'] is not DIRECTED_GRAPH: print('This function only works for directed graphs') return for n in self.get_node_list(): degree[n] = len(self.get_in_neighbors(n)) return degree
get_in_degrees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n print('This function only works for directed graphs')\n return\n for n in self.get_node_list():\n degree[n] = len(self.get_in_neighbors(n))\n return degree\n", "role": "user" }, { "content": "get_in_degrees", "role": "assistant" } ]
def x(self): degree = {} if self.attr['type'] is not DIRECTED_GRAPH: print('This function only works for directed graphs') return for n in self.get_node_list(): degree[n] = len(self.get_out_neighbors(n)) return degree
get_out_degrees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n print('This function only works for directed graphs')\n return\n for n in self.get_node_list():\n degree[n] = len(self.get_out_neighbors(n))\n return degree\n", "role": "user" }, { "content": "get_out_degrees", "role": "assistant" } ]
def x(self): if self.attr['type'] is not UNDIRECTED_GRAPH: print('This function only works for undirected graphs') return diameter = 'infinity' eccentricity_n = 0 for n in self.get_node_list(): for m in self.get_node_list(): path_n_m = self.search(n, destination=m, algo='BFS') if path_n_m is None: return 'infinity' distance_n_m = len(path_n_m) - 1 if distance_n_m > eccentricity_n: eccentricity_n = distance_n_m if diameter is 'infinity' or eccentricity_n > diameter: diameter = eccentricity_n return diameter
get_diameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if self.attr['type'] is not UNDIRECTED_GRAPH:\n print('This function only works for undirected graphs')\n return\n diameter = 'infinity'\n eccentricity_n = 0\n for n in self.get_node_list():\n for m in self.get_node_list():\n path_n_m = self.search(n, destination=m, algo='BFS')\n if path_n_m is None:\n return 'infinity'\n distance_n_m = len(path_n_m) - 1\n if distance_n_m > eccentricity_n:\n eccentricity_n = distance_n_m\n if diameter is 'infinity' or eccentricity_n > diameter:\n diameter = eccentricity_n\n return diameter\n", "role": "user" }, { "content": "get_diameter", "role": "assistant" } ]
def x(self, node_list, cluster_attrs={}, node_attrs={}): if 'name' in cluster_attrs: if 'name' in self.cluster: raise Exception('A cluster with name %s already exists!' % cluster_attrs['name']) else: name = cluster_attrs['name'] else: name = 'c%d' % self.attr['cluster_count'] self.attr['cluster_count'] += 1 cluster_attrs['name'] = name self.cluster[name] = {'node_list': node_list, 'attrs': copy.deepcopy( cluster_attrs), 'node_attrs': copy.deepcopy(node_attrs)}
create_cluster
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node_list, cluster_attrs={}, node_attrs={}):\n if 'name' in cluster_attrs:\n if 'name' in self.cluster:\n raise Exception('A cluster with name %s already exists!' %\n cluster_attrs['name'])\n else:\n name = cluster_attrs['name']\n else:\n name = 'c%d' % self.attr['cluster_count']\n self.attr['cluster_count'] += 1\n cluster_attrs['name'] = name\n self.cluster[name] = {'node_list': node_list, 'attrs': copy.deepcopy(\n cluster_attrs), 'node_attrs': copy.deepcopy(node_attrs)}\n", "role": "user" }, { "content": "create_cluster", "role": "assistant" } ]
def x(self, aList): self.add_node(aList[0]) for i in range(1, len(aList)): self.add_edge(aList[i], aList[0]) self.sizes[aList[0]] = len(aList)
add
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, aList):\n self.add_node(aList[0])\n for i in range(1, len(aList)):\n self.add_edge(aList[i], aList[0])\n self.sizes[aList[0]] = len(aList)\n", "role": "user" }, { "content": "add", "role": "assistant" } ]
def x(self, i, j): roots = self.find(i), self.find(j) if roots[0] == roots[1]: return False if self.sizes[roots[0]] <= self.sizes[roots[1]] or not self.optimize: self.add_edge(roots[0], roots[1]) self.sizes[roots[1]] += self.sizes[roots[0]] return True else: self.add_edge(roots[1], roots[0]) self.sizes[roots[0]] += self.sizes[roots[1]] return True
union
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i, j):\n roots = self.find(i), self.find(j)\n if roots[0] == roots[1]:\n return False\n if self.sizes[roots[0]] <= self.sizes[roots[1]] or not self.optimize:\n self.add_edge(roots[0], roots[1])\n self.sizes[roots[1]] += self.sizes[roots[0]]\n return True\n else:\n self.add_edge(roots[1], roots[0])\n self.sizes[roots[0]] += self.sizes[roots[1]]\n return True\n", "role": "user" }, { "content": "union", "role": "assistant" } ]
def x(self, i): current = i edge_list = [] while len(self.get_neighbors(current)) != 0: successor = self.get_neighbors(current)[0] edge_list.append((current, successor)) current = successor if self.optimize: for e in edge_list: if e[1] != current: self.del_edge((e[0], e[1])) self.add_edge(e[0], current) return current
find
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, i):\n current = i\n edge_list = []\n while len(self.get_neighbors(current)) != 0:\n successor = self.get_neighbors(current)[0]\n edge_list.append((current, successor))\n current = successor\n if self.optimize:\n for e in edge_list:\n if e[1] != current:\n self.del_edge((e[0], e[1]))\n self.add_edge(e[0], current)\n return current\n", "role": "user" }, { "content": "find", "role": "assistant" } ]
def x(self, node: InstanceNode) ->XPathValue: return self._eval(XPathContext(node, node, 1, 1))
evaluate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, node: InstanceNode) ->XPathValue:\n return self._eval(XPathContext(node, node, 1, 1))\n", "role": "user" }, { "content": "evaluate", "role": "assistant" } ]
def x(self, raw: RawScalar) ->Optional[ScalarValue]: if isinstance(raw, str): return raw
from_raw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, raw: RawScalar) ->Optional[ScalarValue]:\n if isinstance(raw, str):\n return raw\n", "role": "user" }, { "content": "from_raw", "role": "assistant" } ]
def x(self, text: str) ->ScalarValue: res = self.parse_value(text) if res is None: raise InvalidArgument(text) return res
from_yang
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text: str) ->ScalarValue:\n res = self.parse_value(text)\n if res is None:\n raise InvalidArgument(text)\n return res\n", "role": "user" }, { "content": "from_yang", "role": "assistant" } ]
def x(self, stmt: Statement, sctx: SchemaContext) ->None: self._handle_restrictions(stmt, sctx)
handle_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stmt: Statement, sctx: SchemaContext) ->None:\n self._handle_restrictions(stmt, sctx)\n", "role": "user" }, { "content": "handle_properties", "role": "assistant" } ]
def x(self, config: bool) ->Dict[str, Any]: res = {'base': self.yang_type()} if self.name is not None: res['derived'] = self.name return res
type_digest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, config: bool) ->Dict[str, Any]:\n res = {'base': self.yang_type()}\n if self.name is not None:\n res['derived'] = self.name\n return res\n", "role": "user" }, { "content": "type_digest", "role": "assistant" } ]
def x(self) ->List[Tuple[str, int]]: return sorted(self.bit.items(), key=lambda x: x[1])
sorted_bits
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self) ->List[Tuple[str, int]]:\n return sorted(self.bit.items(), key=lambda x: x[1])\n", "role": "user" }, { "content": "sorted_bits", "role": "assistant" } ]
def x(self, val: Tuple[str]) ->int: res = 0 try: for b in val: res += 1 << self.bit[b] except KeyError: return None return res
as_int
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, val: Tuple[str]) ->int:\n res = 0\n try:\n for b in val:\n res += 1 << self.bit[b]\n except KeyError:\n return None\n return res\n", "role": "user" }, { "content": "as_int", "role": "assistant" } ]
def x(self, stmt: Statement, sctx: SchemaContext) ->None: nextpos = 0 for bst in stmt.find_all('bit'): if not sctx.schema_data.if_features(bst, sctx.text_mid): continue label = bst.argument pst = bst.find1('position') if pst: pos = int(pst.argument) self.bit[label] = pos if pos > nextpos: nextpos = pos else: self.bit[label] = nextpos nextpos += 1
handle_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, stmt: Statement, sctx: SchemaContext) ->None:\n nextpos = 0\n for bst in stmt.find_all('bit'):\n if not sctx.schema_data.if_features(bst, sctx.text_mid):\n continue\n label = bst.argument\n pst = bst.find1('position')\n if pst:\n pos = int(pst.argument)\n self.bit[label] = pos\n if pos > nextpos:\n nextpos = pos\n else:\n self.bit[label] = nextpos\n nextpos += 1\n", "role": "user" }, { "content": "handle_properties", "role": "assistant" } ]
def x(self, raw: RawScalar) ->Optional[bool]: if isinstance(raw, bool): return raw
from_raw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, raw: RawScalar) ->Optional[bool]:\n if isinstance(raw, bool):\n return raw\n", "role": "user" }, { "content": "from_raw", "role": "assistant" } ]
def x(self, text: str) ->Optional[bool]: if text == 'true': return True if text == 'false': return False
parse_value
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text: str) ->Optional[bool]:\n if text == 'true':\n return True\n if text == 'false':\n return False\n", "role": "user" }, { "content": "parse_value", "role": "assistant" } ]
def x(self, raw: RawScalar) ->Optional[bytes]: try: return base64.b64decode(raw, validate=True) except TypeError: return None
from_raw
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, raw: RawScalar) ->Optional[bytes]:\n try:\n return base64.b64decode(raw, validate=True)\n except TypeError:\n return None\n", "role": "user" }, { "content": "from_raw", "role": "assistant" } ]