source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, order='in', priority='L', display=None, root=None):
old_display = None
if root == None:
root = self.root.name
if display == None:
display = self.attr['display']
else:
old_display = self.attr['display']
self.attr['display'] = display
if priority == 'L':
first_child = self.get_left_child
second_child = self.get_right_child
else:
first_child = self.get_right_child
second_child = self.get_left_child
if order == 'pre':
print(root)
if first_child(root) is not None:
if display:
self.display(highlight=[root])
self.print_nodes(order, priority, display, first_child(root))
if order == 'in':
print(root)
if second_child(root) is not None:
if display:
self.display(highlight=[root])
self.print_nodes(order, priority, display, second_child(root))
if order == 'post':
print(root)
if display:
self.display(highlight=[root])
if old_display:
self.attr['display'] = old_display
|
print_nodes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, order='in', priority='L', display=None, root=None):\n old_display = None\n if root == None:\n root = self.root.name\n if display == None:\n display = self.attr['display']\n else:\n old_display = self.attr['display']\n self.attr['display'] = display\n if priority == 'L':\n first_child = self.get_left_child\n second_child = self.get_right_child\n else:\n first_child = self.get_right_child\n second_child = self.get_left_child\n if order == 'pre':\n print(root)\n if first_child(root) is not None:\n if display:\n self.display(highlight=[root])\n self.print_nodes(order, priority, display, first_child(root))\n if order == 'in':\n print(root)\n if second_child(root) is not None:\n if display:\n self.display(highlight=[root])\n self.print_nodes(order, priority, display, second_child(root))\n if order == 'post':\n print(root)\n if display:\n self.display(highlight=[root])\n if old_display:\n self.attr['display'] = old_display\n",
"role": "user"
},
{
"content": "print_nodes",
"role": "assistant"
}
] |
def x(self, root=None, display=None, priority='L'):
if root == None:
root = self.root
self.traverse(root, display, Stack(), priority)
|
dfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root=None, display=None, priority='L'):\n if root == None:\n root = self.root\n self.traverse(root, display, Stack(), priority)\n",
"role": "user"
},
{
"content": "dfs",
"role": "assistant"
}
] |
def x(self, root=None, display=None, priority='L'):
if root == None:
root = self.root
self.traverse(root, display, Queue(), priority)
|
bfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root=None, display=None, priority='L'):\n if root == None:\n root = self.root\n self.traverse(root, display, Queue(), priority)\n",
"role": "user"
},
{
"content": "bfs",
"role": "assistant"
}
] |
def x(self, root=None, display=None, q=Stack(), priority='L'):
old_display = None
if root == None:
root = self.root
if display == None:
display = self.attr['display']
else:
old_display = self.attr['display']
self.attr['display'] = display
if isinstance(q, Queue):
addToQ = q.enqueue
removeFromQ = q.dequeue
elif isinstance(q, Stack):
addToQ = q.push
removeFromQ = q.pop
if priority == 'L':
first_child = self.get_left_child
second_child = self.get_right_child
else:
first_child = self.get_right_child
second_child = self.get_left_child
addToQ(root)
while not q.isEmpty():
current = removeFromQ()
if display:
self.display(highlight=[current])
n = first_child(current)
if n is not None:
addToQ(n)
n = second_child(current)
if n is not None:
addToQ(n)
if old_display:
self.attr['display'] = old_display
|
traverse
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root=None, display=None, q=Stack(), priority='L'):\n old_display = None\n if root == None:\n root = self.root\n if display == None:\n display = self.attr['display']\n else:\n old_display = self.attr['display']\n self.attr['display'] = display\n if isinstance(q, Queue):\n addToQ = q.enqueue\n removeFromQ = q.dequeue\n elif isinstance(q, Stack):\n addToQ = q.push\n removeFromQ = q.pop\n if priority == 'L':\n first_child = self.get_left_child\n second_child = self.get_right_child\n else:\n first_child = self.get_right_child\n second_child = self.get_left_child\n addToQ(root)\n while not q.isEmpty():\n current = removeFromQ()\n if display:\n self.display(highlight=[current])\n n = first_child(current)\n if n is not None:\n addToQ(n)\n n = second_child(current)\n if n is not None:\n addToQ(n)\n if old_display:\n self.attr['display'] = old_display\n",
"role": "user"
},
{
"content": "traverse",
"role": "assistant"
}
] |
def x(yfile):
ytxt = yfile.read()
mp = ModuleParser(ytxt)
mst = mp.statement()
submod = mst.keyword == 'submodule'
import_only = True
rev = ''
features = []
includes = []
rec = {}
for sst in mst.substatements:
if not rev and sst.keyword == 'revision':
rev = sst.argument
elif import_only and sst.keyword in data_kws:
import_only = False
elif sst.keyword == 'feature':
features.append(sst.argument)
elif submod:
continue
elif sst.keyword == 'namespace':
rec['namespace'] = sst.argument
elif sst.keyword == 'include':
rd = sst.find1('revision-date')
includes.append((sst.argument, rd.argument if rd else None))
rec['import-only'] = import_only
rec['features'] = features
if submod:
rec['revision'] = rev
submodmap[mst.argument] = rec
else:
rec['includes'] = includes
modmap[mst.argument, rev] = rec
|
module_entry
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(yfile):\n ytxt = yfile.read()\n mp = ModuleParser(ytxt)\n mst = mp.statement()\n submod = mst.keyword == 'submodule'\n import_only = True\n rev = ''\n features = []\n includes = []\n rec = {}\n for sst in mst.substatements:\n if not rev and sst.keyword == 'revision':\n rev = sst.argument\n elif import_only and sst.keyword in data_kws:\n import_only = False\n elif sst.keyword == 'feature':\n features.append(sst.argument)\n elif submod:\n continue\n elif sst.keyword == 'namespace':\n rec['namespace'] = sst.argument\n elif sst.keyword == 'include':\n rd = sst.find1('revision-date')\n includes.append((sst.argument, rd.argument if rd else None))\n rec['import-only'] = import_only\n rec['features'] = features\n if submod:\n rec['revision'] = rev\n submodmap[mst.argument] = rec\n else:\n rec['includes'] = includes\n modmap[mst.argument, rev] = rec\n",
"role": "user"
},
{
"content": "module_entry",
"role": "assistant"
}
] |
def x(self, ctype: ContentType) ->bool:
return not self.check_when() or self.pattern.nullable(ctype)
|
nullable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ctype: ContentType) ->bool:\n return not self.check_when() or self.pattern.nullable(ctype)\n",
"role": "user"
},
{
"content": "nullable",
"role": "assistant"
}
] |
def x(self, x: str, ctype: ContentType) ->SchemaPattern:
return self.pattern.deriv(x, ctype) if self.check_when() else NotAllowed()
|
deriv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return self.pattern.deriv(x, ctype) if self.check_when() else NotAllowed()\n",
"role": "user"
},
{
"content": "deriv",
"role": "assistant"
}
] |
def x(self, x: str, ctype: ContentType) ->SchemaPattern:
return Empty() if self.name == x and self._active(ctype) else NotAllowed()
|
deriv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return Empty() if self.name == x and self._active(ctype) else NotAllowed()\n",
"role": "user"
},
{
"content": "deriv",
"role": "assistant"
}
] |
def x(self, ctype: ContentType) ->bool:
return self.left.nullable(ctype) or self.right.nullable(ctype)
|
nullable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, ctype: ContentType) ->bool:\n return self.left.nullable(ctype) or self.right.nullable(ctype)\n",
"role": "user"
},
{
"content": "nullable",
"role": "assistant"
}
] |
def x(self, x: str, ctype: ContentType) ->SchemaPattern:
return Alternative.combine(self.left.deriv(x, ctype), self.right.deriv(
x, ctype))
|
deriv
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, x: str, ctype: ContentType) ->SchemaPattern:\n return Alternative.combine(self.left.deriv(x, ctype), self.right.deriv(\n x, ctype))\n",
"role": "user"
},
{
"content": "deriv",
"role": "assistant"
}
] |
def x(cls, name: str, mod_path: Tuple[str]=('.',), description: str=None
) ->'DataModel':
with open(name, encoding='utf-8') as infile:
yltxt = infile.read()
return cls(yltxt, mod_path, description)
|
from_file
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, name: str, mod_path: Tuple[str]=('.',), description: str=None\n ) ->'DataModel':\n with open(name, encoding='utf-8') as infile:\n yltxt = infile.read()\n return cls(yltxt, mod_path, description)\n",
"role": "user"
},
{
"content": "from_file",
"role": "assistant"
}
] |
def x(self) ->str:
fnames = sorted(['@'.join(m) for m in self.schema_data.modules])
return hashlib.sha1(''.join(fnames).encode('ascii')).hexdigest()
|
module_set_id
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->str:\n fnames = sorted(['@'.join(m) for m in self.schema_data.modules])\n return hashlib.sha1(''.join(fnames).encode('ascii')).hexdigest()\n",
"role": "user"
},
{
"content": "module_set_id",
"role": "assistant"
}
] |
def x(self, robj: RawObject) ->RootNode:
cooked = self.schema.from_raw(robj)
return RootNode(cooked, self.schema, cooked.timestamp)
|
from_raw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, robj: RawObject) ->RootNode:\n cooked = self.schema.from_raw(robj)\n return RootNode(cooked, self.schema, cooked.timestamp)\n",
"role": "user"
},
{
"content": "from_raw",
"role": "assistant"
}
] |
def x(self, path: SchemaPath) ->Optional[SchemaNode]:
return self.schema.get_schema_descendant(self.schema_data.path2route(path))
|
get_schema_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path: SchemaPath) ->Optional[SchemaNode]:\n return self.schema.get_schema_descendant(self.schema_data.path2route(path))\n",
"role": "user"
},
{
"content": "get_schema_node",
"role": "assistant"
}
] |
def x(self, path: DataPath) ->Optional[DataNode]:
addr = self.schema_data.path2route(path)
node = self.schema
for p in addr:
node = node.get_data_child(*p)
if node is None:
return None
return node
|
get_data_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path: DataPath) ->Optional[DataNode]:\n addr = self.schema_data.path2route(path)\n node = self.schema\n for p in addr:\n node = node.get_data_child(*p)\n if node is None:\n return None\n return node\n",
"role": "user"
},
{
"content": "get_data_node",
"role": "assistant"
}
] |
def x(self, no_types: bool=False, val_count: bool=False) ->str:
return self.schema._ascii_tree('', no_types, val_count)
|
ascii_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, no_types: bool=False, val_count: bool=False) ->str:\n return self.schema._ascii_tree('', no_types, val_count)\n",
"role": "user"
},
{
"content": "ascii_tree",
"role": "assistant"
}
] |
def x(self) ->str:
res = self.schema._node_digest()
res['config'] = True
return json.dumps(res)
|
schema_digest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->str:\n res = self.schema._node_digest()\n res['config'] = True\n return json.dumps(res)\n",
"role": "user"
},
{
"content": "schema_digest",
"role": "assistant"
}
] |
def x(self) ->Optional[QualName]:
if self.test_string('*'):
self.skip_ws()
return False
ident = self.yang_identifier()
ws = self.skip_ws()
try:
next = self.peek()
except EndOfInput:
return ident, None
if next == '(':
return self._node_type(ident)
if not ws and self.test_string(':'):
res = self.yang_identifier(), self.sctx.schema_data.prefix2ns(ident,
self.sctx.text_mid)
else:
res = ident, None
self.skip_ws()
return res
|
qname
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->Optional[QualName]:\n if self.test_string('*'):\n self.skip_ws()\n return False\n ident = self.yang_identifier()\n ws = self.skip_ws()\n try:\n next = self.peek()\n except EndOfInput:\n return ident, None\n if next == '(':\n return self._node_type(ident)\n if not ws and self.test_string(':'):\n res = self.yang_identifier(), self.sctx.schema_data.prefix2ns(ident,\n self.sctx.text_mid)\n else:\n res = ident, None\n self.skip_ws()\n return res\n",
"role": "user"
},
{
"content": "qname",
"role": "assistant"
}
] |
def x(s):
if s in DOT_KEYWORDS:
return False
chars = [ord(c) for c in s if ord(c) > 127 or ord(c) == 0]
if chars and not ID_RE_DBL_QUOTED.match(s) and not ID_RE_HTML.match(s):
return True
for test_re in [ID_RE_ALPHA_NUMS, ID_RE_NUM, ID_RE_DBL_QUOTED,
ID_RE_HTML, ID_RE_ALPHA_NUMS_WITH_PORTS]:
if test_re.match(s):
return False
m = ID_RE_WITH_PORT.match(s)
if m:
return needs_quotes(m.group(1)) or needs_quotes(m.group(2))
return True
|
needs_quotes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(s):\n if s in DOT_KEYWORDS:\n return False\n chars = [ord(c) for c in s if ord(c) > 127 or ord(c) == 0]\n if chars and not ID_RE_DBL_QUOTED.match(s) and not ID_RE_HTML.match(s):\n return True\n for test_re in [ID_RE_ALPHA_NUMS, ID_RE_NUM, ID_RE_DBL_QUOTED,\n ID_RE_HTML, ID_RE_ALPHA_NUMS_WITH_PORTS]:\n if test_re.match(s):\n return False\n m = ID_RE_WITH_PORT.match(s)\n if m:\n return needs_quotes(m.group(1)) or needs_quotes(m.group(2))\n return True\n",
"role": "user"
},
{
"content": "needs_quotes",
"role": "assistant"
}
] |
def x(ylib: str=None, path: str=None, scope: ValidationScope=
ValidationScope.all, ctype: ContentType=ContentType.config, set_id:
bool=False, tree: bool=False, no_types: bool=False, digest: bool=False,
validate: str=None) ->int:
if ylib is None:
parser = argparse.ArgumentParser(prog='yangson', description=
'Validate JSON data against a YANG data model.')
parser.add_argument('-V', '--version', action='version', version=
f"%(prog)s {pkg_resources.get_distribution('yangson').version}")
parser.add_argument('ylib', metavar='YLIB', help=
'name of the file with description of the data model in JSON-encoded YANG library format [RFC 7895]'
)
parser.add_argument('-p', '--path', help=
'colon-separated list of directories to search for YANG modules')
grp = parser.add_mutually_exclusive_group()
grp.add_argument('-i', '--id', action='store_true', help=
'print module set id')
grp.add_argument('-t', '--tree', action='store_true', help=
'print schema tree as ASCII art')
grp.add_argument('-d', '--digest', action='store_true', help=
'print schema digest in JSON format')
grp.add_argument('-v', '--validate', metavar='INST', help=
'name of the file with JSON-encoded instance data')
parser.add_argument('-s', '--scope', choices=['syntax', 'semantics',
'all'], default='all', help=
'validation scope (default: %(default)s)')
parser.add_argument('-c', '--ctype', type=str, choices=['config',
'nonconfig', 'all'], default='config', help=
'content type of the data instance (default: %(default)s)')
parser.add_argument('-n', '--no-types', action='store_true', help=
'suppress type info in tree output')
args = parser.parse_args()
ylib: str = args.ylib
path: Optional[str] = args.path
scope = ValidationScope[args.scope]
ctype = ContentType[args.ctype]
set_id: bool = args.id
tree: bool = args.tree
no_types = args.no_types
digest: bool = args.digest
validate: str = args.validate
try:
with open(ylib, encoding='utf-8') as infile:
yl = infile.read()
except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError
) as e:
print('YANG library:', str(e), file=sys.stderr)
return 1
sp = path if path else os.environ.get('YANG_MODPATH', '.')
try:
dm = DataModel(yl, tuple(sp.split(':')))
except BadYangLibraryData as e:
print('Invalid YANG library:', str(e), file=sys.stderr)
return 2
except FeaturePrerequisiteError as e:
print('Unsupported pre-requisite feature:', str(e), file=sys.stderr)
return 2
except MultipleImplementedRevisions as e:
print('Multiple implemented revisions:', str(e), file=sys.stderr)
return 2
except ModuleNotFound as e:
print('Module not found:', str(e), file=sys.stderr)
return 2
except ModuleNotRegistered as e:
print('Module not registered:', str(e), file=sys.stderr)
return 2
if set_id:
print(dm.module_set_id())
return 0
if tree:
print(dm.ascii_tree(no_types))
return 0
if digest:
print(dm.schema_digest())
return 0
if not validate:
return 0
try:
with open(validate, encoding='utf-8') as infile:
itxt = json.load(infile)
except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError
) as e:
print('Instance data:', str(e), file=sys.stderr)
return 1
try:
i = dm.from_raw(itxt)
except RawMemberError as e:
print('Illegal object member:', str(e), file=sys.stderr)
return 3
except RawTypeError as e:
print('Invalid type:', str(e), file=sys.stderr)
return 3
try:
i.validate(scope, ctype)
except SchemaError as e:
print('Schema error:', str(e), file=sys.stderr)
return 3
except SemanticError as e:
print('Semantic error:', str(e), file=sys.stderr)
return 3
except YangTypeError as e:
print('Invalid type:', str(e), file=sys.stderr)
return 3
return 0
|
main
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ylib: str=None, path: str=None, scope: ValidationScope=\n ValidationScope.all, ctype: ContentType=ContentType.config, set_id:\n bool=False, tree: bool=False, no_types: bool=False, digest: bool=False,\n validate: str=None) ->int:\n if ylib is None:\n parser = argparse.ArgumentParser(prog='yangson', description=\n 'Validate JSON data against a YANG data model.')\n parser.add_argument('-V', '--version', action='version', version=\n f\"%(prog)s {pkg_resources.get_distribution('yangson').version}\")\n parser.add_argument('ylib', metavar='YLIB', help=\n 'name of the file with description of the data model in JSON-encoded YANG library format [RFC 7895]'\n )\n parser.add_argument('-p', '--path', help=\n 'colon-separated list of directories to search for YANG modules')\n grp = parser.add_mutually_exclusive_group()\n grp.add_argument('-i', '--id', action='store_true', help=\n 'print module set id')\n grp.add_argument('-t', '--tree', action='store_true', help=\n 'print schema tree as ASCII art')\n grp.add_argument('-d', '--digest', action='store_true', help=\n 'print schema digest in JSON format')\n grp.add_argument('-v', '--validate', metavar='INST', help=\n 'name of the file with JSON-encoded instance data')\n parser.add_argument('-s', '--scope', choices=['syntax', 'semantics',\n 'all'], default='all', help=\n 'validation scope (default: %(default)s)')\n parser.add_argument('-c', '--ctype', type=str, choices=['config',\n 'nonconfig', 'all'], default='config', help=\n 'content type of the data instance (default: %(default)s)')\n parser.add_argument('-n', '--no-types', action='store_true', help=\n 'suppress type info in tree output')\n args = parser.parse_args()\n ylib: str = args.ylib\n path: Optional[str] = args.path\n scope = ValidationScope[args.scope]\n ctype = ContentType[args.ctype]\n set_id: bool = args.id\n tree: bool = args.tree\n no_types = args.no_types\n digest: bool = args.digest\n validate: str = args.validate\n try:\n with open(ylib, encoding='utf-8') as infile:\n yl = infile.read()\n except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError\n ) as e:\n print('YANG library:', str(e), file=sys.stderr)\n return 1\n sp = path if path else os.environ.get('YANG_MODPATH', '.')\n try:\n dm = DataModel(yl, tuple(sp.split(':')))\n except BadYangLibraryData as e:\n print('Invalid YANG library:', str(e), file=sys.stderr)\n return 2\n except FeaturePrerequisiteError as e:\n print('Unsupported pre-requisite feature:', str(e), file=sys.stderr)\n return 2\n except MultipleImplementedRevisions as e:\n print('Multiple implemented revisions:', str(e), file=sys.stderr)\n return 2\n except ModuleNotFound as e:\n print('Module not found:', str(e), file=sys.stderr)\n return 2\n except ModuleNotRegistered as e:\n print('Module not registered:', str(e), file=sys.stderr)\n return 2\n if set_id:\n print(dm.module_set_id())\n return 0\n if tree:\n print(dm.ascii_tree(no_types))\n return 0\n if digest:\n print(dm.schema_digest())\n return 0\n if not validate:\n return 0\n try:\n with open(validate, encoding='utf-8') as infile:\n itxt = json.load(infile)\n except (FileNotFoundError, PermissionError, json.decoder.JSONDecodeError\n ) as e:\n print('Instance data:', str(e), file=sys.stderr)\n return 1\n try:\n i = dm.from_raw(itxt)\n except RawMemberError as e:\n print('Illegal object member:', str(e), file=sys.stderr)\n return 3\n except RawTypeError as e:\n print('Invalid type:', str(e), file=sys.stderr)\n return 3\n try:\n i.validate(scope, ctype)\n except SchemaError as e:\n print('Schema error:', str(e), file=sys.stderr)\n return 3\n except SemanticError as e:\n print('Semantic error:', str(e), file=sys.stderr)\n return 3\n except YangTypeError as e:\n print('Invalid type:', str(e), file=sys.stderr)\n return 3\n return 0\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(self):
node = list()
node.append(quote_if_necessary(str(self.name)))
node.append(' [')
flag = False
for a in self.attr:
flag = True
node.append(a)
node.append('=')
node.append(quote_if_necessary(str(self.attr[a])))
node.append(', ')
if flag is True:
node = node[:-1]
node.append(']')
return ''.join(node)
|
to_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n node = list()\n node.append(quote_if_necessary(str(self.name)))\n node.append(' [')\n flag = False\n for a in self.attr:\n flag = True\n node.append(a)\n node.append('=')\n node.append(quote_if_necessary(str(self.attr[a])))\n node.append(', ')\n if flag is True:\n node = node[:-1]\n node.append(']')\n return ''.join(node)\n",
"role": "user"
},
{
"content": "to_string",
"role": "assistant"
}
] |
def x(self, name, **attr):
if name in self.neighbors:
raise MultipleNodeException
self.neighbors[name] = list()
if self.graph_type is DIRECTED_GRAPH:
self.in_neighbors[name] = list()
self.nodes[name] = Node(name, **attr)
return self.nodes[name]
|
add_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, **attr):\n if name in self.neighbors:\n raise MultipleNodeException\n self.neighbors[name] = list()\n if self.graph_type is DIRECTED_GRAPH:\n self.in_neighbors[name] = list()\n self.nodes[name] = Node(name, **attr)\n return self.nodes[name]\n",
"role": "user"
},
{
"content": "add_node",
"role": "assistant"
}
] |
def x(self, name):
if name not in self.neighbors:
raise Exception('Node %s does not exist!' % str(name))
for n in self.neighbors[name]:
del self.edge_attr[name, n]
if self.graph_type == UNDIRECTED_GRAPH:
self.neighbors[n].remove(name)
else:
self.in_neighbors[n].remove(name)
if self.graph_type is DIRECTED_GRAPH:
for n in self.in_neighbors[name]:
del self.edge_attr[n, name]
self.neighbors[n].remove(name)
del self.neighbors[name]
del self.in_neighbors[name]
del self.nodes[name]
|
del_node
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n if name not in self.neighbors:\n raise Exception('Node %s does not exist!' % str(name))\n for n in self.neighbors[name]:\n del self.edge_attr[name, n]\n if self.graph_type == UNDIRECTED_GRAPH:\n self.neighbors[n].remove(name)\n else:\n self.in_neighbors[n].remove(name)\n if self.graph_type is DIRECTED_GRAPH:\n for n in self.in_neighbors[name]:\n del self.edge_attr[n, name]\n self.neighbors[n].remove(name)\n del self.neighbors[name]\n del self.in_neighbors[name]\n del self.nodes[name]\n",
"role": "user"
},
{
"content": "del_node",
"role": "assistant"
}
] |
def x(self, name1, name2, **attr):
if (name1, name2) in self.edge_attr:
raise MultipleEdgeException
if self.graph_type is UNDIRECTED_GRAPH and (name2, name1
) in self.edge_attr:
raise MultipleEdgeException
self.edge_attr[name1, name2] = copy.deepcopy(DEFAULT_EDGE_ATTRIBUTES)
for a in attr:
self.edge_attr[name1, name2][a] = attr[a]
if name1 not in self.nodes:
self.add_node(name1)
if name2 not in self.nodes:
self.add_node(name2)
self.neighbors[name1].append(name2)
if self.graph_type is UNDIRECTED_GRAPH:
self.neighbors[name2].append(name1)
else:
self.in_neighbors[name2].append(name1)
|
add_edge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name1, name2, **attr):\n if (name1, name2) in self.edge_attr:\n raise MultipleEdgeException\n if self.graph_type is UNDIRECTED_GRAPH and (name2, name1\n ) in self.edge_attr:\n raise MultipleEdgeException\n self.edge_attr[name1, name2] = copy.deepcopy(DEFAULT_EDGE_ATTRIBUTES)\n for a in attr:\n self.edge_attr[name1, name2][a] = attr[a]\n if name1 not in self.nodes:\n self.add_node(name1)\n if name2 not in self.nodes:\n self.add_node(name2)\n self.neighbors[name1].append(name2)\n if self.graph_type is UNDIRECTED_GRAPH:\n self.neighbors[name2].append(name1)\n else:\n self.in_neighbors[name2].append(name1)\n",
"role": "user"
},
{
"content": "add_edge",
"role": "assistant"
}
] |
def x(self, e):
if self.graph_type is DIRECTED_GRAPH:
try:
del self.edge_attr[e]
except KeyError:
raise Exception('Edge %s does not exists!' % str(e))
self.neighbors[e[0]].remove(e[1])
self.in_neighbors[e[1]].remove(e[0])
else:
try:
del self.edge_attr[e]
except KeyError:
try:
del self.edge_attr[e[1], e[0]]
except KeyError:
raise Exception('Edge %s does not exists!' % str(e))
self.neighbors[e[0]].remove(e[1])
self.neighbors[e[1]].remove(e[0])
|
del_edge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, e):\n if self.graph_type is DIRECTED_GRAPH:\n try:\n del self.edge_attr[e]\n except KeyError:\n raise Exception('Edge %s does not exists!' % str(e))\n self.neighbors[e[0]].remove(e[1])\n self.in_neighbors[e[1]].remove(e[0])\n else:\n try:\n del self.edge_attr[e]\n except KeyError:\n try:\n del self.edge_attr[e[1], e[0]]\n except KeyError:\n raise Exception('Edge %s does not exists!' % str(e))\n self.neighbors[e[0]].remove(e[1])\n self.neighbors[e[1]].remove(e[0])\n",
"role": "user"
},
{
"content": "del_edge",
"role": "assistant"
}
] |
def x(self, name1, name2):
if self.graph_type is DIRECTED_GRAPH:
return (name1, name2) in self.edge_attr
else:
return (name1, name2) in self.edge_attr or (name2, name1
) in self.edge_attr
|
check_edge
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name1, name2):\n if self.graph_type is DIRECTED_GRAPH:\n return (name1, name2) in self.edge_attr\n else:\n return (name1, name2) in self.edge_attr or (name2, name1\n ) in self.edge_attr\n",
"role": "user"
},
{
"content": "check_edge",
"role": "assistant"
}
] |
def x(self, n, m, attr):
if self.graph_type is DIRECTED_GRAPH:
return self.edge_attr[n, m][attr]
else:
try:
return self.edge_attr[n, m][attr]
except KeyError:
return self.edge_attr[m, n][attr]
|
get_edge_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, m, attr):\n if self.graph_type is DIRECTED_GRAPH:\n return self.edge_attr[n, m][attr]\n else:\n try:\n return self.edge_attr[n, m][attr]\n except KeyError:\n return self.edge_attr[m, n][attr]\n",
"role": "user"
},
{
"content": "get_edge_attr",
"role": "assistant"
}
] |
def x(self, name, attr, value):
self.get_node(name).set_attr(attr, value)
|
set_node_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, attr, value):\n self.get_node(name).set_attr(attr, value)\n",
"role": "user"
},
{
"content": "set_node_attr",
"role": "assistant"
}
] |
def x(self, n, m, attr, value):
if self.graph_type is DIRECTED_GRAPH:
self.edge_attr[n, m][attr] = value
else:
try:
self.edge_attr[n, m][attr] = value
except KeyError:
self.edge_attr[m, n][attr] = value
|
set_edge_attr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, n, m, attr, value):\n if self.graph_type is DIRECTED_GRAPH:\n self.edge_attr[n, m][attr] = value\n else:\n try:\n self.edge_attr[n, m][attr] = value\n except KeyError:\n self.edge_attr[m, n][attr] = value\n",
"role": "user"
},
{
"content": "set_edge_attr",
"role": "assistant"
}
] |
def x(self, e):
edge = list()
edge.append(quote_if_necessary(str(e[0])))
edge.append(self.edge_connect_symbol)
edge.append(quote_if_necessary(str(e[1])))
if len(self.edge_attr[e]) is 0:
return ''.join(edge)
edge.append(' [')
for a in self.edge_attr[e]:
edge.append(a)
edge.append('=')
edge.append(quote_if_necessary(str(self.edge_attr[e][a])))
edge.append(', ')
edge = edge[:-1]
edge.append(']')
return ''.join(edge)
|
edge_to_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, e):\n edge = list()\n edge.append(quote_if_necessary(str(e[0])))\n edge.append(self.edge_connect_symbol)\n edge.append(quote_if_necessary(str(e[1])))\n if len(self.edge_attr[e]) is 0:\n return ''.join(edge)\n edge.append(' [')\n for a in self.edge_attr[e]:\n edge.append(a)\n edge.append('=')\n edge.append(quote_if_necessary(str(self.edge_attr[e][a])))\n edge.append(', ')\n edge = edge[:-1]\n edge.append(']')\n return ''.join(edge)\n",
"role": "user"
},
{
"content": "edge_to_string",
"role": "assistant"
}
] |
def x(self):
graph = list()
processed_edges = {}
graph.append('%s %s {\n' % (self.graph_type, self.name))
for a in self.attr:
if a not in GRAPH_ATTRIBUTES:
continue
val = self.attr[a]
if val is not None:
graph.append('%s=%s' % (a, quote_if_necessary(val)))
else:
graph.append(a)
graph.append(';\n')
for c in self.cluster:
graph.append('subgraph cluster_%s {\n' % c)
for a in self.cluster[c]['attrs']:
if a == 'label':
graph.append(a + '=' + quote_if_necessary(self.cluster[c][
'attrs'][a]) + ';\n')
continue
graph.append(a + '=' + self.cluster[c]['attrs'][a] + ';\n')
if len(self.cluster[c]['node_attrs']) != 0:
graph.append('node [')
for a in self.cluster[c]['node_attrs']:
graph.append(a + '=' + self.cluster[c]['node_attrs'][a])
graph.append(',')
if len(self.cluster[c]['node_attrs']) != 0:
graph.pop()
graph.append('];\n')
for n in self.cluster[c]['node_list']:
data = self.get_node(n).to_string()
graph.append(data + ';\n')
for n in self.cluster[c]['node_list']:
for m in self.cluster[c]['node_list']:
if self.check_edge(n, m):
data = self.edge_to_string((n, m))
graph.append(data + ';\n')
processed_edges[n, m] = None
graph.append('}\n')
for n in self.neighbors:
for c in self.cluster:
if n in self.cluster[c]['node_list']:
break
else:
data = self.get_node(n).to_string()
graph.append(data + ';\n')
for e in self.edge_attr:
if e in processed_edges:
continue
data = self.edge_to_string(e)
graph.append(data + ';\n')
graph.append('}\n')
return ''.join(graph)
|
to_string
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n graph = list()\n processed_edges = {}\n graph.append('%s %s {\\n' % (self.graph_type, self.name))\n for a in self.attr:\n if a not in GRAPH_ATTRIBUTES:\n continue\n val = self.attr[a]\n if val is not None:\n graph.append('%s=%s' % (a, quote_if_necessary(val)))\n else:\n graph.append(a)\n graph.append(';\\n')\n for c in self.cluster:\n graph.append('subgraph cluster_%s {\\n' % c)\n for a in self.cluster[c]['attrs']:\n if a == 'label':\n graph.append(a + '=' + quote_if_necessary(self.cluster[c][\n 'attrs'][a]) + ';\\n')\n continue\n graph.append(a + '=' + self.cluster[c]['attrs'][a] + ';\\n')\n if len(self.cluster[c]['node_attrs']) != 0:\n graph.append('node [')\n for a in self.cluster[c]['node_attrs']:\n graph.append(a + '=' + self.cluster[c]['node_attrs'][a])\n graph.append(',')\n if len(self.cluster[c]['node_attrs']) != 0:\n graph.pop()\n graph.append('];\\n')\n for n in self.cluster[c]['node_list']:\n data = self.get_node(n).to_string()\n graph.append(data + ';\\n')\n for n in self.cluster[c]['node_list']:\n for m in self.cluster[c]['node_list']:\n if self.check_edge(n, m):\n data = self.edge_to_string((n, m))\n graph.append(data + ';\\n')\n processed_edges[n, m] = None\n graph.append('}\\n')\n for n in self.neighbors:\n for c in self.cluster:\n if n in self.cluster[c]['node_list']:\n break\n else:\n data = self.get_node(n).to_string()\n graph.append(data + ';\\n')\n for e in self.edge_attr:\n if e in processed_edges:\n continue\n data = self.edge_to_string(e)\n graph.append(data + ';\\n')\n graph.append('}\\n')\n return ''.join(graph)\n",
"role": "user"
},
{
"content": "to_string",
"role": "assistant"
}
] |
def x(self, display=None):
if self.graph_type == DIRECTED_GRAPH:
raise Exception('label_components only works for ', 'undirected graphs'
)
self.num_components = 0
for n in self.get_node_list():
self.get_node(n).set_attr('component', None)
for n in self.neighbors:
self.get_node(n).set_attr('label', '-')
for n in self.get_node_list():
if self.get_node(n).get_attr('component') == None:
self.search(n, display=display, component=self.num_components,
algo='DFS')
self.num_components += 1
|
label_components
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display=None):\n if self.graph_type == DIRECTED_GRAPH:\n raise Exception('label_components only works for ', 'undirected graphs'\n )\n self.num_components = 0\n for n in self.get_node_list():\n self.get_node(n).set_attr('component', None)\n for n in self.neighbors:\n self.get_node(n).set_attr('label', '-')\n for n in self.get_node_list():\n if self.get_node(n).get_attr('component') == None:\n self.search(n, display=display, component=self.num_components,\n algo='DFS')\n self.num_components += 1\n",
"role": "user"
},
{
"content": "label_components",
"role": "assistant"
}
] |
def x(self):
index = 0
component = 0
q = []
for n in self.get_node_list():
if self.get_node_attr(n, 'index') is None:
index, component = self.strong_connect(q, n, index, component)
|
tarjan
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n index = 0\n component = 0\n q = []\n for n in self.get_node_list():\n if self.get_node_attr(n, 'index') is None:\n index, component = self.strong_connect(q, n, index, component)\n",
"role": "user"
},
{
"content": "tarjan",
"role": "assistant"
}
] |
def x(self, q, node, index, component):
self.set_node_attr(node, 'index', index)
self.set_node_attr(node, 'lowlink', index)
index += 1
q.append(node)
for m in self.get_neighbors(node):
if self.get_node_attr(m, 'index') is None:
index, component = self.strong_connect(q, m, index, component)
self.set_node_attr(node, 'lowlink', min([self.get_node_attr(
node, 'lowlink'), self.get_node_attr(m, 'lowlink')]))
elif m in q:
self.set_node_attr(node, 'lowlink', min([self.get_node_attr(
node, 'lowlink'), self.get_node_attr(m, 'index')]))
if self.get_node_attr(node, 'lowlink') == self.get_node_attr(node, 'index'
):
m = q.pop()
self.set_node_attr(m, 'component', component)
while node != m:
m = q.pop()
self.set_node_attr(m, 'component', component)
component += 1
self.num_components = component
return index, component
|
strong_connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q, node, index, component):\n self.set_node_attr(node, 'index', index)\n self.set_node_attr(node, 'lowlink', index)\n index += 1\n q.append(node)\n for m in self.get_neighbors(node):\n if self.get_node_attr(m, 'index') is None:\n index, component = self.strong_connect(q, m, index, component)\n self.set_node_attr(node, 'lowlink', min([self.get_node_attr(\n node, 'lowlink'), self.get_node_attr(m, 'lowlink')]))\n elif m in q:\n self.set_node_attr(node, 'lowlink', min([self.get_node_attr(\n node, 'lowlink'), self.get_node_attr(m, 'index')]))\n if self.get_node_attr(node, 'lowlink') == self.get_node_attr(node, 'index'\n ):\n m = q.pop()\n self.set_node_attr(m, 'component', component)\n while node != m:\n m = q.pop()\n self.set_node_attr(m, 'component', component)\n component += 1\n self.num_components = component\n return index, component\n",
"role": "user"
},
{
"content": "strong_connect",
"role": "assistant"
}
] |
def x(self, root, disc_count=0, finish_count=1, component=None, transpose=
False, display=None, pred=None):
if pred == None:
pred = {}
if display == None:
display = self.attr['display']
else:
self.set_display_mode(display)
neighbors = self.neighbors
if self.graph_type == DIRECTED_GRAPH and transpose:
neighbors = self.in_neighbors
self.get_node(root).set_attr('component', component)
disc_count += 1
self.get_node(root).set_attr('disc_time', disc_count)
self.get_node(root).set_attr('label', str(disc_count) + ',-')
self.get_node(root).set_attr('color', 'blue')
if root in pred:
self.set_edge_attr(pred[root], root, 'color', 'green')
self.display()
if transpose:
fTime = []
for n in neighbors[root]:
fTime.append((n, self.get_node(n).get_attr('finish_time')))
neighbor_list = sorted(fTime, key=operator.itemgetter(1))
neighbor_list = list(t[0] for t in neighbor_list)
neighbor_list.reverse()
else:
neighbor_list = neighbors[root]
for i in neighbor_list:
if not transpose:
if self.get_node(i).get_attr('disc_time') is None:
pred[i] = root
disc_count, finish_count = self.dfs(i, disc_count,
finish_count, component, transpose, pred=pred)
elif self.get_node(i).get_attr('component') is None:
disc_count, finish_count = self.dfs(i, disc_count, finish_count,
component, transpose, pred=pred)
self.get_node(root).set_attr('finish_time', finish_count)
d_time = self.get_node(root).get_attr('disc_time')
label = '"' + str(d_time) + ',' + str(finish_count) + '"'
self.get_node(root).set_attr('label', label)
self.get_node(root).set_attr('color', 'green')
self.display()
finish_count += 1
return disc_count, finish_count
|
dfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root, disc_count=0, finish_count=1, component=None, transpose=\n False, display=None, pred=None):\n if pred == None:\n pred = {}\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n neighbors = self.neighbors\n if self.graph_type == DIRECTED_GRAPH and transpose:\n neighbors = self.in_neighbors\n self.get_node(root).set_attr('component', component)\n disc_count += 1\n self.get_node(root).set_attr('disc_time', disc_count)\n self.get_node(root).set_attr('label', str(disc_count) + ',-')\n self.get_node(root).set_attr('color', 'blue')\n if root in pred:\n self.set_edge_attr(pred[root], root, 'color', 'green')\n self.display()\n if transpose:\n fTime = []\n for n in neighbors[root]:\n fTime.append((n, self.get_node(n).get_attr('finish_time')))\n neighbor_list = sorted(fTime, key=operator.itemgetter(1))\n neighbor_list = list(t[0] for t in neighbor_list)\n neighbor_list.reverse()\n else:\n neighbor_list = neighbors[root]\n for i in neighbor_list:\n if not transpose:\n if self.get_node(i).get_attr('disc_time') is None:\n pred[i] = root\n disc_count, finish_count = self.dfs(i, disc_count,\n finish_count, component, transpose, pred=pred)\n elif self.get_node(i).get_attr('component') is None:\n disc_count, finish_count = self.dfs(i, disc_count, finish_count,\n component, transpose, pred=pred)\n self.get_node(root).set_attr('finish_time', finish_count)\n d_time = self.get_node(root).get_attr('disc_time')\n label = '\"' + str(d_time) + ',' + str(finish_count) + '\"'\n self.get_node(root).set_attr('label', label)\n self.get_node(root).set_attr('color', 'green')\n self.display()\n finish_count += 1\n return disc_count, finish_count\n",
"role": "user"
},
{
"content": "dfs",
"role": "assistant"
}
] |
def x(self, root, display=None, component=None):
self.search(root, display=display, component=component, q=Queue())
|
bfs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, root, display=None, component=None):\n self.search(root, display=display, component=component, q=Queue())\n",
"role": "user"
},
{
"content": "bfs",
"role": "assistant"
}
] |
def x(self, source, destination=None, display=None, component=None, q=None,
algo='DFS', reverse=False, **kargs):
if display == None:
display = self.attr['display']
else:
self.set_display_mode(display)
if algo == 'DFS':
if q is None:
q = Stack()
self.get_node(source).set_attr('component', component)
elif algo == 'BFS' or algo == 'UnweightedSPT':
if q is None:
q = Queue()
self.get_node(source).set_attr('component', component)
elif algo == 'Dijkstra' or algo == 'Prim':
if q is None:
q = PriorityQueue()
else:
print('Unknown search algorithm...exiting')
return
neighbors = self.neighbors
if self.graph_type == DIRECTED_GRAPH and reverse:
neighbors = self.in_neighbors
for i in self.get_node_list():
self.get_node(i).set_attr('label', '-')
self.get_node(i).attr.pop('priority', None)
self.get_node(i).set_attr('distance', None)
self.get_node(i).set_attr('color', 'black')
for j in neighbors[i]:
if reverse:
self.set_edge_attr(j, i, 'color', 'black')
else:
self.set_edge_attr(i, j, 'color', 'black')
self.display()
pred = {}
self.process_edge_search(None, source, pred, q, component, algo, **kargs)
found = True
if source != destination:
found = False
while not q.isEmpty() and not found:
current = q.peek()
if self.get_node(current).get_attr('color') == 'green':
q.remove(current)
continue
self.process_node_search(current, q, **kargs)
self.get_node(current).set_attr('color', 'blue')
if current != source:
if reverse:
self.set_edge_attr(current, pred[current], 'color', 'green')
else:
self.set_edge_attr(pred[current], current, 'color', 'green')
if current == destination:
found = True
break
self.display()
for n in neighbors[current]:
if self.get_node(n).get_attr('color') != 'green':
if reverse:
self.set_edge_attr(n, current, 'color', 'yellow')
else:
self.set_edge_attr(current, n, 'color', 'yellow')
self.display()
self.process_edge_search(current, n, pred, q, component,
algo, **kargs)
if reverse:
self.set_edge_attr(n, current, 'color', 'black')
else:
self.set_edge_attr(current, n, 'color', 'black')
q.remove(current)
self.get_node(current).set_attr('color', 'green')
self.display()
if found:
path = [destination]
current = destination
while current != source:
path.insert(0, pred[current])
current = pred[current]
return path
if destination == None:
return pred
else:
return None
|
search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, destination=None, display=None, component=None, q=None,\n algo='DFS', reverse=False, **kargs):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if algo == 'DFS':\n if q is None:\n q = Stack()\n self.get_node(source).set_attr('component', component)\n elif algo == 'BFS' or algo == 'UnweightedSPT':\n if q is None:\n q = Queue()\n self.get_node(source).set_attr('component', component)\n elif algo == 'Dijkstra' or algo == 'Prim':\n if q is None:\n q = PriorityQueue()\n else:\n print('Unknown search algorithm...exiting')\n return\n neighbors = self.neighbors\n if self.graph_type == DIRECTED_GRAPH and reverse:\n neighbors = self.in_neighbors\n for i in self.get_node_list():\n self.get_node(i).set_attr('label', '-')\n self.get_node(i).attr.pop('priority', None)\n self.get_node(i).set_attr('distance', None)\n self.get_node(i).set_attr('color', 'black')\n for j in neighbors[i]:\n if reverse:\n self.set_edge_attr(j, i, 'color', 'black')\n else:\n self.set_edge_attr(i, j, 'color', 'black')\n self.display()\n pred = {}\n self.process_edge_search(None, source, pred, q, component, algo, **kargs)\n found = True\n if source != destination:\n found = False\n while not q.isEmpty() and not found:\n current = q.peek()\n if self.get_node(current).get_attr('color') == 'green':\n q.remove(current)\n continue\n self.process_node_search(current, q, **kargs)\n self.get_node(current).set_attr('color', 'blue')\n if current != source:\n if reverse:\n self.set_edge_attr(current, pred[current], 'color', 'green')\n else:\n self.set_edge_attr(pred[current], current, 'color', 'green')\n if current == destination:\n found = True\n break\n self.display()\n for n in neighbors[current]:\n if self.get_node(n).get_attr('color') != 'green':\n if reverse:\n self.set_edge_attr(n, current, 'color', 'yellow')\n else:\n self.set_edge_attr(current, n, 'color', 'yellow')\n self.display()\n self.process_edge_search(current, n, pred, q, component,\n algo, **kargs)\n if reverse:\n self.set_edge_attr(n, current, 'color', 'black')\n else:\n self.set_edge_attr(current, n, 'color', 'black')\n q.remove(current)\n self.get_node(current).set_attr('color', 'green')\n self.display()\n if found:\n path = [destination]\n current = destination\n while current != source:\n path.insert(0, pred[current])\n current = pred[current]\n return path\n if destination == None:\n return pred\n else:\n return None\n",
"role": "user"
},
{
"content": "search",
"role": "assistant"
}
] |
def x(self, node, q, **kwargs):
if isinstance(q, PriorityQueue):
self.get_node(node).set_attr('priority', q.get_priority(node))
|
process_node_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node, q, **kwargs):\n if isinstance(q, PriorityQueue):\n self.get_node(node).set_attr('priority', q.get_priority(node))\n",
"role": "user"
},
{
"content": "process_node_search",
"role": "assistant"
}
] |
def x(self, current, neighbor, pred, q, component):
if current is None:
self.get_node(neighbor).set_attr('color', 'red')
self.get_node(neighbor).set_attr('label', 0)
q.push(neighbor, 0)
self.display()
self.get_node(neighbor).set_attr('color', 'black')
return
new_estimate = q.get_priority(current) + self.get_edge_attr(current,
neighbor, 'cost')
if neighbor not in pred or new_estimate < q.get_priority(neighbor):
pred[neighbor] = current
self.get_node(neighbor).set_attr('color', 'red')
self.get_node(neighbor).set_attr('label', new_estimate)
q.push(neighbor, new_estimate)
self.display()
self.get_node(neighbor).set_attr('color', 'black')
|
process_edge_dijkstra
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, current, neighbor, pred, q, component):\n if current is None:\n self.get_node(neighbor).set_attr('color', 'red')\n self.get_node(neighbor).set_attr('label', 0)\n q.push(neighbor, 0)\n self.display()\n self.get_node(neighbor).set_attr('color', 'black')\n return\n new_estimate = q.get_priority(current) + self.get_edge_attr(current,\n neighbor, 'cost')\n if neighbor not in pred or new_estimate < q.get_priority(neighbor):\n pred[neighbor] = current\n self.get_node(neighbor).set_attr('color', 'red')\n self.get_node(neighbor).set_attr('label', new_estimate)\n q.push(neighbor, new_estimate)\n self.display()\n self.get_node(neighbor).set_attr('color', 'black')\n",
"role": "user"
},
{
"content": "process_edge_dijkstra",
"role": "assistant"
}
] |
def x(self, current, neighbor, pred, q, component, algo, **kargs):
if algo == 'Dijkstra':
return self.process_edge_dijkstra(current, neighbor, pred, q, component
)
if algo == 'Prim':
return self.process_edge_prim(current, neighbor, pred, q, component)
neighbor_node = self.get_node(neighbor)
if current == None:
neighbor_node.set_attr('distance', 0)
if isinstance(q, PriorityQueue):
q.push(neighbor, 0)
else:
q.push(neighbor)
if component != None:
neighbor_node.set_attr('component', component)
neighbor_node.set_attr('label', component)
else:
neighbor_node.set_attr('label', 0)
return
if isinstance(q, PriorityQueue):
current_priority = q.get_priority(neighbor)
if algo == 'UnweightedSPT' or algo == 'BFS':
priority = self.get_node(current).get_attr('distance') + 1
if algo == 'DFS':
priority = -self.get_node(current).get_attr('distance') - 1
if current_priority is not None and priority >= current_priority:
return
q.push(neighbor, priority)
if algo == 'UnweightedSPT' or algo == 'BFS':
neighbor_node.set_attr('distance', priority)
if algo == 'DFS':
neighbor_node.set_attr('depth', -priority)
else:
distance = self.get_node(current).get_attr('distance') + 1
if (algo == 'UnweightedSPT' or algo == 'BFS'
) and neighbor_node.get_attr('distance') is not None:
return
neighbor_node.set_attr('distance', distance)
neighbor_node.set_attr('label', str(distance))
q.push(neighbor)
pred[neighbor] = current
neighbor_node.set_attr('color', 'red')
if component != None:
neighbor_node.set_attr('component', component)
neighbor_node.set_attr('label', component)
self.display()
|
process_edge_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, current, neighbor, pred, q, component, algo, **kargs):\n if algo == 'Dijkstra':\n return self.process_edge_dijkstra(current, neighbor, pred, q, component\n )\n if algo == 'Prim':\n return self.process_edge_prim(current, neighbor, pred, q, component)\n neighbor_node = self.get_node(neighbor)\n if current == None:\n neighbor_node.set_attr('distance', 0)\n if isinstance(q, PriorityQueue):\n q.push(neighbor, 0)\n else:\n q.push(neighbor)\n if component != None:\n neighbor_node.set_attr('component', component)\n neighbor_node.set_attr('label', component)\n else:\n neighbor_node.set_attr('label', 0)\n return\n if isinstance(q, PriorityQueue):\n current_priority = q.get_priority(neighbor)\n if algo == 'UnweightedSPT' or algo == 'BFS':\n priority = self.get_node(current).get_attr('distance') + 1\n if algo == 'DFS':\n priority = -self.get_node(current).get_attr('distance') - 1\n if current_priority is not None and priority >= current_priority:\n return\n q.push(neighbor, priority)\n if algo == 'UnweightedSPT' or algo == 'BFS':\n neighbor_node.set_attr('distance', priority)\n if algo == 'DFS':\n neighbor_node.set_attr('depth', -priority)\n else:\n distance = self.get_node(current).get_attr('distance') + 1\n if (algo == 'UnweightedSPT' or algo == 'BFS'\n ) and neighbor_node.get_attr('distance') is not None:\n return\n neighbor_node.set_attr('distance', distance)\n neighbor_node.set_attr('label', str(distance))\n q.push(neighbor)\n pred[neighbor] = current\n neighbor_node.set_attr('color', 'red')\n if component != None:\n neighbor_node.set_attr('component', component)\n neighbor_node.set_attr('label', component)\n self.display()\n",
"role": "user"
},
{
"content": "process_edge_search",
"role": "assistant"
}
] |
def x(self, source, display=None, q=PriorityQueue()):
if display == None:
display = self.attr['display']
else:
self.set_display_mode(display)
if isinstance(q, PriorityQueue):
addToQ = q.push
removeFromQ = q.pop
peek = q.peek
isEmpty = q.isEmpty
neighbors = self.get_neighbors
pred = {}
addToQ(source)
done = False
while not isEmpty() and not done:
current = removeFromQ()
self.set_node_attr(current, 'color', 'blue')
if current != source:
self.set_edge_attr(pred[current], current, 'color', 'green')
self.display()
for n in neighbors(current):
if self.get_node_attr(n, 'color') != 'green':
self.set_edge_attr(current, n, 'color', 'yellow')
self.display()
new_estimate = self.get_edge_attr(current, n, 'cost')
if not n in pred or new_estimate < peek(n)[0]:
pred[n] = current
self.set_node_attr(n, 'color', 'red')
self.set_node_attr(n, 'label', new_estimate)
addToQ(n, new_estimate)
self.display()
self.set_node_attr(n, 'color', 'black')
self.set_edge_attr(current, n, 'color', 'black')
self.set_node_attr(current, 'color', 'green')
self.display()
return pred
|
minimum_spanning_tree_prim
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, display=None, q=PriorityQueue()):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if isinstance(q, PriorityQueue):\n addToQ = q.push\n removeFromQ = q.pop\n peek = q.peek\n isEmpty = q.isEmpty\n neighbors = self.get_neighbors\n pred = {}\n addToQ(source)\n done = False\n while not isEmpty() and not done:\n current = removeFromQ()\n self.set_node_attr(current, 'color', 'blue')\n if current != source:\n self.set_edge_attr(pred[current], current, 'color', 'green')\n self.display()\n for n in neighbors(current):\n if self.get_node_attr(n, 'color') != 'green':\n self.set_edge_attr(current, n, 'color', 'yellow')\n self.display()\n new_estimate = self.get_edge_attr(current, n, 'cost')\n if not n in pred or new_estimate < peek(n)[0]:\n pred[n] = current\n self.set_node_attr(n, 'color', 'red')\n self.set_node_attr(n, 'label', new_estimate)\n addToQ(n, new_estimate)\n self.display()\n self.set_node_attr(n, 'color', 'black')\n self.set_edge_attr(current, n, 'color', 'black')\n self.set_node_attr(current, 'color', 'green')\n self.display()\n return pred\n",
"role": "user"
},
{
"content": "minimum_spanning_tree_prim",
"role": "assistant"
}
] |
def x(self, display=None, components=None):
if display == None:
display = self.attr['display']
else:
self.set_display_mode(display)
if components is None:
components = DisjointSet(display=display, layout='dot', optimize=False)
sorted_edge_list = sorted(self.get_edge_list(), key=self.get_edge_cost)
edges = []
for n in self.get_node_list():
components.add([n])
components.display()
for e in sorted_edge_list:
if len(edges) == len(self.get_node_list()) - 1:
break
self.set_edge_attr(e[0], e[1], 'color', 'yellow')
self.display()
if components.union(e[0], e[1]):
self.set_edge_attr(e[0], e[1], 'color', 'green')
self.display()
edges.append(e)
else:
self.set_edge_attr(e[0], e[1], 'color', 'black')
self.display()
components.display()
return edges
|
minimum_spanning_tree_kruskal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display=None, components=None):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n if components is None:\n components = DisjointSet(display=display, layout='dot', optimize=False)\n sorted_edge_list = sorted(self.get_edge_list(), key=self.get_edge_cost)\n edges = []\n for n in self.get_node_list():\n components.add([n])\n components.display()\n for e in sorted_edge_list:\n if len(edges) == len(self.get_node_list()) - 1:\n break\n self.set_edge_attr(e[0], e[1], 'color', 'yellow')\n self.display()\n if components.union(e[0], e[1]):\n self.set_edge_attr(e[0], e[1], 'color', 'green')\n self.display()\n edges.append(e)\n else:\n self.set_edge_attr(e[0], e[1], 'color', 'black')\n self.display()\n components.display()\n return edges\n",
"role": "user"
},
{
"content": "minimum_spanning_tree_kruskal",
"role": "assistant"
}
] |
def x(self, source, sink, algo='FIFO', display=None):
if display == None:
display = self.attr['display']
else:
self.set_display_mode(display)
nl = self.get_node_list()
for n in nl:
self.set_node_attr(n, 'excess', 0)
for e in self.edge_attr:
self.edge_attr[e]['flow'] = 0
if 'capacity' in self.edge_attr[e]:
capacity = self.edge_attr[e]['capacity']
self.edge_attr[e]['label'] = str(capacity) + '/0'
else:
self.edge_attr[e]['capacity'] = INF
self.edge_attr[e]['label'] = 'INF/0'
self.display()
self.set_display_mode('off')
self.search(sink, algo='UnweightedSPT', reverse=True)
self.set_display_mode(display)
disconnect = False
for n in nl:
if self.get_node_attr(n, 'distance') is None:
disconnect = True
self.set_node_attr(n, 'distance', 2 * len(nl) + 1)
if disconnect:
print('Warning: graph contains nodes not connected to the sink...')
if algo == 'FIFO':
q = Queue()
elif algo == 'SAP':
q = Stack()
elif algo == 'HighestLabel':
q = PriorityQueue()
for n in self.get_neighbors(source):
capacity = self.get_edge_attr(source, n, 'capacity')
self.set_edge_attr(source, n, 'flow', capacity)
self.set_node_attr(n, 'excess', capacity)
excess = self.get_node_attr(source, 'excess')
self.set_node_attr(source, 'excess', excess - capacity)
if algo == 'FIFO' or algo == 'SAP':
q.push(n)
elif algo == 'HighestLabel':
q.push(n, -1)
self.set_node_attr(source, 'distance', len(nl))
self.show_flow()
while not q.isEmpty():
relabel = True
current = q.peek()
neighbors = self.get_neighbors(current) + self.get_in_neighbors(current
)
for n in neighbors:
pushed = self.process_edge_flow(source, sink, current, n, algo, q)
if pushed:
self.show_flow()
if algo == 'FIFO':
"""With FIFO, we need to add the neighbors to the queue
before the current is added back in or the nodes will
be out of order
"""
if q.peek(n) is None and n != source and n != sink:
q.push(n)
"""Keep pushing while there is excess"""
if self.get_node_attr(current, 'excess') > 0:
continue
"""If we were able to push, then there we should not
relabel
"""
relabel = False
break
q.remove(current)
if current != sink:
if relabel:
self.relabel(current)
self.show_flow()
if self.get_node_attr(current, 'excess') > 0:
if algo == 'FIFO' or algo == 'SAP':
q.push(current)
elif algo == 'HighestLabel':
q.push(current, -self.get_node_attr(current, 'distance'))
if pushed and q.peek(n) is None and n != source:
if algo == 'SAP':
q.push(n)
elif algo == 'HighestLabel':
q.push(n, -self.get_node_attr(n, 'distance'))
|
max_flow_preflowpush
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, sink, algo='FIFO', display=None):\n if display == None:\n display = self.attr['display']\n else:\n self.set_display_mode(display)\n nl = self.get_node_list()\n for n in nl:\n self.set_node_attr(n, 'excess', 0)\n for e in self.edge_attr:\n self.edge_attr[e]['flow'] = 0\n if 'capacity' in self.edge_attr[e]:\n capacity = self.edge_attr[e]['capacity']\n self.edge_attr[e]['label'] = str(capacity) + '/0'\n else:\n self.edge_attr[e]['capacity'] = INF\n self.edge_attr[e]['label'] = 'INF/0'\n self.display()\n self.set_display_mode('off')\n self.search(sink, algo='UnweightedSPT', reverse=True)\n self.set_display_mode(display)\n disconnect = False\n for n in nl:\n if self.get_node_attr(n, 'distance') is None:\n disconnect = True\n self.set_node_attr(n, 'distance', 2 * len(nl) + 1)\n if disconnect:\n print('Warning: graph contains nodes not connected to the sink...')\n if algo == 'FIFO':\n q = Queue()\n elif algo == 'SAP':\n q = Stack()\n elif algo == 'HighestLabel':\n q = PriorityQueue()\n for n in self.get_neighbors(source):\n capacity = self.get_edge_attr(source, n, 'capacity')\n self.set_edge_attr(source, n, 'flow', capacity)\n self.set_node_attr(n, 'excess', capacity)\n excess = self.get_node_attr(source, 'excess')\n self.set_node_attr(source, 'excess', excess - capacity)\n if algo == 'FIFO' or algo == 'SAP':\n q.push(n)\n elif algo == 'HighestLabel':\n q.push(n, -1)\n self.set_node_attr(source, 'distance', len(nl))\n self.show_flow()\n while not q.isEmpty():\n relabel = True\n current = q.peek()\n neighbors = self.get_neighbors(current) + self.get_in_neighbors(current\n )\n for n in neighbors:\n pushed = self.process_edge_flow(source, sink, current, n, algo, q)\n if pushed:\n self.show_flow()\n if algo == 'FIFO':\n \"\"\"With FIFO, we need to add the neighbors to the queue\n before the current is added back in or the nodes will\n be out of order\n \"\"\"\n if q.peek(n) is None and n != source and n != sink:\n q.push(n)\n \"\"\"Keep pushing while there is excess\"\"\"\n if self.get_node_attr(current, 'excess') > 0:\n continue\n \"\"\"If we were able to push, then there we should not\n relabel\n \"\"\"\n relabel = False\n break\n q.remove(current)\n if current != sink:\n if relabel:\n self.relabel(current)\n self.show_flow()\n if self.get_node_attr(current, 'excess') > 0:\n if algo == 'FIFO' or algo == 'SAP':\n q.push(current)\n elif algo == 'HighestLabel':\n q.push(current, -self.get_node_attr(current, 'distance'))\n if pushed and q.peek(n) is None and n != source:\n if algo == 'SAP':\n q.push(n)\n elif algo == 'HighestLabel':\n q.push(n, -self.get_node_attr(n, 'distance'))\n",
"role": "user"
},
{
"content": "max_flow_preflowpush",
"role": "assistant"
}
] |
def x(self, source, sink, i, j, algo, q):
if self.get_node_attr(i, 'distance') != self.get_node_attr(j, 'distance'
) + 1:
return False
if (i, j) in self.edge_attr:
edge = i, j
capacity = self.get_edge_attr(i, j, 'capacity')
mult = 1
else:
edge = j, i
capacity = 0
mult = -1
flow = mult * self.edge_attr[edge]['flow']
residual_capacity = capacity - flow
if residual_capacity == 0:
return False
excess_i = self.get_node_attr(i, 'excess')
excess_j = self.get_node_attr(j, 'excess')
push_amount = min(excess_i, residual_capacity)
self.edge_attr[edge]['flow'] = mult * (flow + push_amount)
self.set_node_attr(i, 'excess', excess_i - push_amount)
self.set_node_attr(j, 'excess', excess_j + push_amount)
return True
|
process_edge_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, sink, i, j, algo, q):\n if self.get_node_attr(i, 'distance') != self.get_node_attr(j, 'distance'\n ) + 1:\n return False\n if (i, j) in self.edge_attr:\n edge = i, j\n capacity = self.get_edge_attr(i, j, 'capacity')\n mult = 1\n else:\n edge = j, i\n capacity = 0\n mult = -1\n flow = mult * self.edge_attr[edge]['flow']\n residual_capacity = capacity - flow\n if residual_capacity == 0:\n return False\n excess_i = self.get_node_attr(i, 'excess')\n excess_j = self.get_node_attr(j, 'excess')\n push_amount = min(excess_i, residual_capacity)\n self.edge_attr[edge]['flow'] = mult * (flow + push_amount)\n self.set_node_attr(i, 'excess', excess_i - push_amount)\n self.set_node_attr(j, 'excess', excess_j + push_amount)\n return True\n",
"role": "user"
},
{
"content": "process_edge_flow",
"role": "assistant"
}
] |
def x(self, i):
min_distance = 2 * len(self.get_node_list()) + 1
for j in self.get_neighbors(i):
if self.get_node_attr(j, 'distance'
) < min_distance and self.get_edge_attr(i, j, 'flow'
) < self.get_edge_attr(i, j, 'capacity'):
min_distance = self.get_node_attr(j, 'distance')
for j in self.get_in_neighbors(i):
if self.get_node_attr(j, 'distance'
) < min_distance and self.get_edge_attr(j, i, 'flow') > 0:
min_distance = self.get_node_attr(j, 'distance')
self.set_node_attr(i, 'distance', min_distance + 1)
|
relabel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n min_distance = 2 * len(self.get_node_list()) + 1\n for j in self.get_neighbors(i):\n if self.get_node_attr(j, 'distance'\n ) < min_distance and self.get_edge_attr(i, j, 'flow'\n ) < self.get_edge_attr(i, j, 'capacity'):\n min_distance = self.get_node_attr(j, 'distance')\n for j in self.get_in_neighbors(i):\n if self.get_node_attr(j, 'distance'\n ) < min_distance and self.get_edge_attr(j, i, 'flow') > 0:\n min_distance = self.get_node_attr(j, 'distance')\n self.set_node_attr(i, 'distance', min_distance + 1)\n",
"role": "user"
},
{
"content": "relabel",
"role": "assistant"
}
] |
def x(self):
for n in self.get_node_list():
excess = self.get_node_attr(n, 'excess')
distance = self.get_node_attr(n, 'distance')
self.set_node_attr(n, 'label', str(excess) + '/' + str(distance))
for neighbor in self.get_neighbors(n):
capacity = self.get_edge_attr(n, neighbor, 'capacity')
flow = self.get_edge_attr(n, neighbor, 'flow')
if capacity == INF:
self.set_edge_attr(n, neighbor, 'label', 'INF' + '/' + str(
flow))
else:
self.set_edge_attr(n, neighbor, 'label', str(capacity) +
'/' + str(flow))
if capacity == flow:
self.set_edge_attr(n, neighbor, 'color', 'red')
elif flow > 0:
self.set_edge_attr(n, neighbor, 'color', 'green')
else:
self.set_edge_attr(n, neighbor, 'color', 'black')
self.display()
|
show_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n for n in self.get_node_list():\n excess = self.get_node_attr(n, 'excess')\n distance = self.get_node_attr(n, 'distance')\n self.set_node_attr(n, 'label', str(excess) + '/' + str(distance))\n for neighbor in self.get_neighbors(n):\n capacity = self.get_edge_attr(n, neighbor, 'capacity')\n flow = self.get_edge_attr(n, neighbor, 'flow')\n if capacity == INF:\n self.set_edge_attr(n, neighbor, 'label', 'INF' + '/' + str(\n flow))\n else:\n self.set_edge_attr(n, neighbor, 'label', str(capacity) +\n '/' + str(flow))\n if capacity == flow:\n self.set_edge_attr(n, neighbor, 'color', 'red')\n elif flow > 0:\n self.set_edge_attr(n, neighbor, 'color', 'green')\n else:\n self.set_edge_attr(n, neighbor, 'color', 'black')\n self.display()\n",
"role": "user"
},
{
"content": "show_flow",
"role": "assistant"
}
] |
def x(self):
if self.graph_type is UNDIRECTED_GRAPH:
raise Exception('residual graph is defined for directed graphs.')
residual_g = Graph(type=DIRECTED_GRAPH)
for e in self.get_edge_list():
capacity_e = self.get_edge_attr(e[0], e[1], 'capacity')
flow_e = self.get_edge_attr(e[0], e[1], 'flow')
cost_e = self.get_edge_attr(e[0], e[1], 'cost')
if flow_e > 0:
residual_g.add_edge(e[1], e[0], cost=-1 * cost_e, capacity=flow_e)
if capacity_e - flow_e > 0:
residual_g.add_edge(e[0], e[1], cost=cost_e, capacity=
capacity_e - flow_e)
return residual_g
|
create_residual_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.graph_type is UNDIRECTED_GRAPH:\n raise Exception('residual graph is defined for directed graphs.')\n residual_g = Graph(type=DIRECTED_GRAPH)\n for e in self.get_edge_list():\n capacity_e = self.get_edge_attr(e[0], e[1], 'capacity')\n flow_e = self.get_edge_attr(e[0], e[1], 'flow')\n cost_e = self.get_edge_attr(e[0], e[1], 'cost')\n if flow_e > 0:\n residual_g.add_edge(e[1], e[0], cost=-1 * cost_e, capacity=flow_e)\n if capacity_e - flow_e > 0:\n residual_g.add_edge(e[0], e[1], cost=cost_e, capacity=\n capacity_e - flow_e)\n return residual_g\n",
"role": "user"
},
{
"content": "create_residual_graph",
"role": "assistant"
}
] |
def x(self, display):
if not self.find_feasible_flow():
return False
residual_g = self.create_residual_graph()
ncycle = residual_g.get_negative_cycle()
while ncycle is not None:
cap = residual_g.find_cycle_capacity(ncycle)
self.augment_cycle(cap, ncycle)
residual_g = self.create_residual_graph()
ncycle = residual_g.get_negative_cycle()
return True
|
cycle_canceling
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display):\n if not self.find_feasible_flow():\n return False\n residual_g = self.create_residual_graph()\n ncycle = residual_g.get_negative_cycle()\n while ncycle is not None:\n cap = residual_g.find_cycle_capacity(ncycle)\n self.augment_cycle(cap, ncycle)\n residual_g = self.create_residual_graph()\n ncycle = residual_g.get_negative_cycle()\n return True\n",
"role": "user"
},
{
"content": "cycle_canceling",
"role": "assistant"
}
] |
def x(self):
nl = self.get_node_list()
for i in nl:
b_i = self.get_node(i).get_attr('demand')
if b_i > 0:
self.add_edge('s', i, capacity=b_i)
elif b_i < 0:
self.add_edge(i, 't', capacity=-1 * b_i)
self.max_flow('s', 't', 'off')
for i in self.neighbors['s']:
flow = self.get_edge_attr('s', i, 'flow')
capacity = self.get_edge_attr('s', i, 'capacity')
if flow != capacity:
self.del_node('s')
self.del_node('t')
return False
self.del_node('s')
self.del_node('t')
return True
|
find_feasible_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nl = self.get_node_list()\n for i in nl:\n b_i = self.get_node(i).get_attr('demand')\n if b_i > 0:\n self.add_edge('s', i, capacity=b_i)\n elif b_i < 0:\n self.add_edge(i, 't', capacity=-1 * b_i)\n self.max_flow('s', 't', 'off')\n for i in self.neighbors['s']:\n flow = self.get_edge_attr('s', i, 'flow')\n capacity = self.get_edge_attr('s', i, 'capacity')\n if flow != capacity:\n self.del_node('s')\n self.del_node('t')\n return False\n self.del_node('s')\n self.del_node('t')\n return True\n",
"role": "user"
},
{
"content": "find_feasible_flow",
"role": "assistant"
}
] |
def x(self, basename='graph', layout=None, format='png'):
if layout == None:
layout = self.get_layout()
f = open(basename, 'w+b')
if format == 'dot':
f.write(self.to_string())
else:
f.write(self.create(layout, format))
f.close()
|
write
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, basename='graph', layout=None, format='png'):\n if layout == None:\n layout = self.get_layout()\n f = open(basename, 'w+b')\n if format == 'dot':\n f.write(self.to_string())\n else:\n f.write(self.create(layout, format))\n f.close()\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, layout, format, **args):
tmp_fd, tmp_name = tempfile.mkstemp()
tmp_file = os.fdopen(tmp_fd, 'w')
tmp_file.write(self.to_string())
tmp_file.close()
tmp_dir = os.path.dirname(tmp_name)
try:
p = subprocess.Popen([layout, '-T' + format, tmp_name], cwd=tmp_dir,
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except OSError:
print(
"""Graphviz executable not found.
Graphviz must be installed and in your search path.
Please visit http://www.graphviz.org/ for information on installation.
After installation, ensure that the PATH variable is properly set."""
)
return
stdout_output, stderr_output = p.communicate()
if p.returncode != 0:
raise Exception(
'Graphviz executable terminated with status: %d. stderr follows: %s'
% (p.returncode, stderr_output))
elif stderr_output:
print(stderr_output)
return stdout_output
|
create
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, layout, format, **args):\n tmp_fd, tmp_name = tempfile.mkstemp()\n tmp_file = os.fdopen(tmp_fd, 'w')\n tmp_file.write(self.to_string())\n tmp_file.close()\n tmp_dir = os.path.dirname(tmp_name)\n try:\n p = subprocess.Popen([layout, '-T' + format, tmp_name], cwd=tmp_dir,\n stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n except OSError:\n print(\n \"\"\"Graphviz executable not found.\nGraphviz must be installed and in your search path.\nPlease visit http://www.graphviz.org/ for information on installation.\nAfter installation, ensure that the PATH variable is properly set.\"\"\"\n )\n return\n stdout_output, stderr_output = p.communicate()\n if p.returncode != 0:\n raise Exception(\n 'Graphviz executable terminated with status: %d. stderr follows: %s'\n % (p.returncode, stderr_output))\n elif stderr_output:\n print(stderr_output)\n return stdout_output\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, highlight=None, basename='graph', format='png', pause=True):
if self.attr['display'] == 'off':
return
if highlight != None:
for n in highlight:
if not isinstance(n, Node):
n = self.get_node(n)
n.set_attr('color', 'red')
if self.get_layout() == 'dot2tex':
if self.attr['display'] != 'file':
self.attr['display'] = 'file'
print(
"Warning: Dot2tex layout can only be used with display mode 'file'"
)
print(' Automatically changing setting')
if self.attr['display'] == 'file':
if self.get_layout() == 'dot2tex':
try:
if DOT2TEX_INSTALLED:
if format != 'pdf' or format != 'ps':
print(
'Dot2tex only supports pdf and ps formats, falling back to pdf'
)
format = 'pdf'
self.set_layout('dot')
tex = dot2tex.dot2tex(self.to_string(), autosize=True,
texmode='math', template=DOT2TEX_TEMPLATE)
else:
print('Error: Dot2tex not installed.')
except:
try:
self.set_layout('dot')
self.write(basename + '.dot', self.get_layout(), 'dot')
sp = subprocess.Popen('dot2tex -t math ' + basename +
'.dot', stdout=subprocess.PIPE, stderr=subprocess.
STDOUT)
tex = sp.communicate()[0]
except:
print('There was an error running dot2tex.')
f = open(basename + '.tex', 'w')
f.write(tex)
f.close()
try:
subprocess.call(['latex', basename])
if format == 'ps':
subprocess.call(['dvips', basename])
elif format == 'pdf':
subprocess.call(['pdflatex', basename])
self.set_layout('dot2tex')
except:
print('There was an error runing latex. Is it installed?')
else:
self.write(basename + '.' + format, self.get_layout(), format)
return
elif self.attr['display'] == 'pygame':
output = self.create(self.get_layout(), format)
if output is not None:
im = io.StringIO(self.create(self.get_layout(), format))
picture = pygame.image.load(im, format)
screen = pygame.display.set_mode(picture.get_size())
screen.blit(picture, picture.get_rect())
pygame.display.flip()
while pause:
e = pygame.event.poll()
if e.type == pygame.KEYDOWN:
break
if e.type == pygame.QUIT:
pause = False
pygame.display.quit()
else:
print('Error in displaying graph. Display disabled')
self.set_display_mode('off')
elif self.attr['display'] == 'PIL':
im = io.StringIO(self.create(self.get_layout(), format))
if PIL_INSTALLED:
im2 = PIL_Image.open(im)
im2.show()
else:
print('Error: PIL not installed. Display disabled.')
self.attr['display'] = 'off'
elif self.attr['display'] == 'xdot':
if XDOT_INSTALLED:
window = xdot.DotWindow()
window.set_dotcode(self.to_string())
window.connect('destroy', gtk.main_quit)
gtk.main()
else:
print('Error: xdot not installed. Display disabled.')
self.attr['display'] = 'off'
elif self.attr['display'] == 'svg':
if not ETREE_INSTALLED:
print(
'Error: etree not installed (display mode: svg). Display disabled.'
)
self.attr['display'] = 'off'
else:
print('Unknown display mode: ', end=' ')
print(self.attr['display'])
if highlight != None:
for n in highlight:
if not isinstance(n, Node):
n = self.get_node(n)
n.set_attr('color', 'black')
|
display
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, highlight=None, basename='graph', format='png', pause=True):\n if self.attr['display'] == 'off':\n return\n if highlight != None:\n for n in highlight:\n if not isinstance(n, Node):\n n = self.get_node(n)\n n.set_attr('color', 'red')\n if self.get_layout() == 'dot2tex':\n if self.attr['display'] != 'file':\n self.attr['display'] = 'file'\n print(\n \"Warning: Dot2tex layout can only be used with display mode 'file'\"\n )\n print(' Automatically changing setting')\n if self.attr['display'] == 'file':\n if self.get_layout() == 'dot2tex':\n try:\n if DOT2TEX_INSTALLED:\n if format != 'pdf' or format != 'ps':\n print(\n 'Dot2tex only supports pdf and ps formats, falling back to pdf'\n )\n format = 'pdf'\n self.set_layout('dot')\n tex = dot2tex.dot2tex(self.to_string(), autosize=True,\n texmode='math', template=DOT2TEX_TEMPLATE)\n else:\n print('Error: Dot2tex not installed.')\n except:\n try:\n self.set_layout('dot')\n self.write(basename + '.dot', self.get_layout(), 'dot')\n sp = subprocess.Popen('dot2tex -t math ' + basename +\n '.dot', stdout=subprocess.PIPE, stderr=subprocess.\n STDOUT)\n tex = sp.communicate()[0]\n except:\n print('There was an error running dot2tex.')\n f = open(basename + '.tex', 'w')\n f.write(tex)\n f.close()\n try:\n subprocess.call(['latex', basename])\n if format == 'ps':\n subprocess.call(['dvips', basename])\n elif format == 'pdf':\n subprocess.call(['pdflatex', basename])\n self.set_layout('dot2tex')\n except:\n print('There was an error runing latex. Is it installed?')\n else:\n self.write(basename + '.' + format, self.get_layout(), format)\n return\n elif self.attr['display'] == 'pygame':\n output = self.create(self.get_layout(), format)\n if output is not None:\n im = io.StringIO(self.create(self.get_layout(), format))\n picture = pygame.image.load(im, format)\n screen = pygame.display.set_mode(picture.get_size())\n screen.blit(picture, picture.get_rect())\n pygame.display.flip()\n while pause:\n e = pygame.event.poll()\n if e.type == pygame.KEYDOWN:\n break\n if e.type == pygame.QUIT:\n pause = False\n pygame.display.quit()\n else:\n print('Error in displaying graph. Display disabled')\n self.set_display_mode('off')\n elif self.attr['display'] == 'PIL':\n im = io.StringIO(self.create(self.get_layout(), format))\n if PIL_INSTALLED:\n im2 = PIL_Image.open(im)\n im2.show()\n else:\n print('Error: PIL not installed. Display disabled.')\n self.attr['display'] = 'off'\n elif self.attr['display'] == 'xdot':\n if XDOT_INSTALLED:\n window = xdot.DotWindow()\n window.set_dotcode(self.to_string())\n window.connect('destroy', gtk.main_quit)\n gtk.main()\n else:\n print('Error: xdot not installed. Display disabled.')\n self.attr['display'] = 'off'\n elif self.attr['display'] == 'svg':\n if not ETREE_INSTALLED:\n print(\n 'Error: etree not installed (display mode: svg). Display disabled.'\n )\n self.attr['display'] = 'off'\n else:\n print('Unknown display mode: ', end=' ')\n print(self.attr['display'])\n if highlight != None:\n for n in highlight:\n if not isinstance(n, Node):\n n = self.get_node(n)\n n.set_attr('color', 'black')\n",
"role": "user"
},
{
"content": "display",
"role": "assistant"
}
] |
def x(self, source, sink, display=None, algo='DFS'):
if display is not None:
old_display = self.attr['display']
self.attr['display'] = display
nl = self.get_node_list()
for e in self.edge_attr:
self.edge_attr[e]['flow'] = 0
if 'capacity' in self.edge_attr[e]:
capacity = self.edge_attr[e]['capacity']
self.edge_attr[e]['label'] = str(capacity) + '/0'
else:
self.edge_attr[e]['capacity'] = INF
self.edge_attr[e]['label'] = 'INF/0'
while True:
if algo == 'DFS':
q = Stack()
elif algo == 'BFS':
q = Queue()
q.push(source)
pred = {source: None}
explored = [source]
for n in nl:
self.get_node(n).set_attr('color', 'black')
for e in self.edge_attr:
if self.edge_attr[e]['flow'] == 0:
self.edge_attr[e]['color'] = 'black'
elif self.edge_attr[e]['flow'] == self.edge_attr[e]['capacity']:
self.edge_attr[e]['color'] = 'red'
else:
self.edge_attr[e]['color'] = 'green'
self.display()
while not q.isEmpty():
current = q.peek()
q.remove(current)
if current == sink:
break
out_neighbor = self.neighbors[current]
in_neighbor = self.in_neighbors[current]
neighbor = out_neighbor + in_neighbor
for m in neighbor:
if m in explored:
continue
self.get_node(m).set_attr('color', 'yellow')
if m in out_neighbor:
self.set_edge_attr(current, m, 'color', 'yellow')
available_capacity = self.get_edge_attr(current, m,
'capacity') - self.get_edge_attr(current, m, 'flow')
else:
self.set_edge_attr(m, current, 'color', 'yellow')
available_capacity = self.get_edge_attr(m, current, 'flow')
self.display()
if available_capacity > 0:
self.get_node(m).set_attr('color', 'blue')
if m in out_neighbor:
self.set_edge_attr(current, m, 'color', 'blue')
else:
self.set_edge_attr(m, current, 'color', 'blue')
explored.append(m)
pred[m] = current
q.push(m)
else:
self.get_node(m).set_attr('color', 'black')
if m in out_neighbor:
if self.get_edge_attr(current, m, 'flow'
) == self.get_edge_attr(current, m, 'capacity'):
self.set_edge_attr(current, m, 'color', 'red')
elif self.get_edge_attr(current, m, 'flow') == 0:
self.set_edge_attr(current, m, 'color', 'black')
elif self.get_edge_attr(m, current, 'flow'
) == self.get_edge_attr(m, current, 'capacity'):
self.set_edge_attr(m, current, 'color', 'red')
elif self.get_edge_attr(m, current, 'flow') == 0:
self.set_edge_attr(m, current, 'color', 'black')
self.display()
if sink not in pred:
break
current = sink
min_capacity = 'infinite'
while True:
m = pred[current]
if (m, current) in self.edge_attr:
arc_capacity = self.edge_attr[m, current]['capacity']
flow = self.edge_attr[m, current]['flow']
potential = arc_capacity - flow
if min_capacity == 'infinite':
min_capacity = potential
elif min_capacity > potential:
min_capacity = potential
else:
potential = self.edge_attr[current, m]['flow']
if min_capacity == 'infinite':
min_capacity = potential
elif min_capacity > potential:
min_capacity = potential
if m == source:
break
current = m
current = sink
while True:
m = pred[current]
if (m, current) in self.edge_attr:
flow = self.edge_attr[m, current]['flow']
capacity = self.edge_attr[m, current]['capacity']
new_flow = flow + min_capacity
self.edge_attr[m, current]['flow'] = new_flow
if capacity == INF:
self.edge_attr[m, current]['label'] = 'INF' + '/' + str(
new_flow)
else:
self.edge_attr[m, current]['label'] = str(capacity
) + '/' + str(new_flow)
if new_flow == capacity:
self.edge_attr[m, current]['color'] = 'red'
else:
self.edge_attr[m, current]['color'] = 'green'
self.display()
else:
flow = self.edge_attr[current, m]['flow']
capacity = self.edge_attr[current, m]['capacity']
new_flow = flow - min_capacity
self.edge_attr[current, m]['flow'] = new_flow
if capacity == INF:
self.edge_attr[current, m]['label'] = 'INF' + '/' + str(
new_flow)
else:
self.edge_attr[current, m]['label'] = str(capacity
) + '/' + str(new_flow)
if new_flow == 0:
self.edge_attr[current, m]['color'] = 'red'
else:
self.edge_attr[current, m]['color'] = 'green'
self.display()
if m == source:
break
current = m
if display is not None:
self.attr['display'] = old_display
|
max_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, sink, display=None, algo='DFS'):\n if display is not None:\n old_display = self.attr['display']\n self.attr['display'] = display\n nl = self.get_node_list()\n for e in self.edge_attr:\n self.edge_attr[e]['flow'] = 0\n if 'capacity' in self.edge_attr[e]:\n capacity = self.edge_attr[e]['capacity']\n self.edge_attr[e]['label'] = str(capacity) + '/0'\n else:\n self.edge_attr[e]['capacity'] = INF\n self.edge_attr[e]['label'] = 'INF/0'\n while True:\n if algo == 'DFS':\n q = Stack()\n elif algo == 'BFS':\n q = Queue()\n q.push(source)\n pred = {source: None}\n explored = [source]\n for n in nl:\n self.get_node(n).set_attr('color', 'black')\n for e in self.edge_attr:\n if self.edge_attr[e]['flow'] == 0:\n self.edge_attr[e]['color'] = 'black'\n elif self.edge_attr[e]['flow'] == self.edge_attr[e]['capacity']:\n self.edge_attr[e]['color'] = 'red'\n else:\n self.edge_attr[e]['color'] = 'green'\n self.display()\n while not q.isEmpty():\n current = q.peek()\n q.remove(current)\n if current == sink:\n break\n out_neighbor = self.neighbors[current]\n in_neighbor = self.in_neighbors[current]\n neighbor = out_neighbor + in_neighbor\n for m in neighbor:\n if m in explored:\n continue\n self.get_node(m).set_attr('color', 'yellow')\n if m in out_neighbor:\n self.set_edge_attr(current, m, 'color', 'yellow')\n available_capacity = self.get_edge_attr(current, m,\n 'capacity') - self.get_edge_attr(current, m, 'flow')\n else:\n self.set_edge_attr(m, current, 'color', 'yellow')\n available_capacity = self.get_edge_attr(m, current, 'flow')\n self.display()\n if available_capacity > 0:\n self.get_node(m).set_attr('color', 'blue')\n if m in out_neighbor:\n self.set_edge_attr(current, m, 'color', 'blue')\n else:\n self.set_edge_attr(m, current, 'color', 'blue')\n explored.append(m)\n pred[m] = current\n q.push(m)\n else:\n self.get_node(m).set_attr('color', 'black')\n if m in out_neighbor:\n if self.get_edge_attr(current, m, 'flow'\n ) == self.get_edge_attr(current, m, 'capacity'):\n self.set_edge_attr(current, m, 'color', 'red')\n elif self.get_edge_attr(current, m, 'flow') == 0:\n self.set_edge_attr(current, m, 'color', 'black')\n elif self.get_edge_attr(m, current, 'flow'\n ) == self.get_edge_attr(m, current, 'capacity'):\n self.set_edge_attr(m, current, 'color', 'red')\n elif self.get_edge_attr(m, current, 'flow') == 0:\n self.set_edge_attr(m, current, 'color', 'black')\n self.display()\n if sink not in pred:\n break\n current = sink\n min_capacity = 'infinite'\n while True:\n m = pred[current]\n if (m, current) in self.edge_attr:\n arc_capacity = self.edge_attr[m, current]['capacity']\n flow = self.edge_attr[m, current]['flow']\n potential = arc_capacity - flow\n if min_capacity == 'infinite':\n min_capacity = potential\n elif min_capacity > potential:\n min_capacity = potential\n else:\n potential = self.edge_attr[current, m]['flow']\n if min_capacity == 'infinite':\n min_capacity = potential\n elif min_capacity > potential:\n min_capacity = potential\n if m == source:\n break\n current = m\n current = sink\n while True:\n m = pred[current]\n if (m, current) in self.edge_attr:\n flow = self.edge_attr[m, current]['flow']\n capacity = self.edge_attr[m, current]['capacity']\n new_flow = flow + min_capacity\n self.edge_attr[m, current]['flow'] = new_flow\n if capacity == INF:\n self.edge_attr[m, current]['label'] = 'INF' + '/' + str(\n new_flow)\n else:\n self.edge_attr[m, current]['label'] = str(capacity\n ) + '/' + str(new_flow)\n if new_flow == capacity:\n self.edge_attr[m, current]['color'] = 'red'\n else:\n self.edge_attr[m, current]['color'] = 'green'\n self.display()\n else:\n flow = self.edge_attr[current, m]['flow']\n capacity = self.edge_attr[current, m]['capacity']\n new_flow = flow - min_capacity\n self.edge_attr[current, m]['flow'] = new_flow\n if capacity == INF:\n self.edge_attr[current, m]['label'] = 'INF' + '/' + str(\n new_flow)\n else:\n self.edge_attr[current, m]['label'] = str(capacity\n ) + '/' + str(new_flow)\n if new_flow == 0:\n self.edge_attr[current, m]['color'] = 'red'\n else:\n self.edge_attr[current, m]['color'] = 'green'\n self.display()\n if m == source:\n break\n current = m\n if display is not None:\n self.attr['display'] = old_display\n",
"role": "user"
},
{
"content": "max_flow",
"role": "assistant"
}
] |
def x(self):
nl = self.get_node_list()
i = nl[0]
valid, distance, nextn = self.floyd_warshall()
if not valid:
cycle = self.floyd_warshall_get_cycle(distance, nextn)
return cycle
else:
return None
|
get_negative_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nl = self.get_node_list()\n i = nl[0]\n valid, distance, nextn = self.floyd_warshall()\n if not valid:\n cycle = self.floyd_warshall_get_cycle(distance, nextn)\n return cycle\n else:\n return None\n",
"role": "user"
},
{
"content": "get_negative_cycle",
"role": "assistant"
}
] |
def x(self):
nl = self.get_node_list()
el = self.get_edge_list()
distance = {}
for i in nl:
for j in nl:
distance[i, j] = 'infinity'
for i in nl:
distance[i, i] = 0
for e in el:
distance[e[0], e[1]] = self.get_edge_cost(e)
nextn = {}
for i in nl:
for j in nl:
if i == j or distance[i, j] == 'infinity':
nextn[i, j] = None
else:
nextn[i, j] = i
for k in nl:
for i in nl:
for j in nl:
if distance[i, k] == 'infinity' or distance[k, j
] == 'infinity':
continue
elif distance[i, j] == 'infinity':
distance[i, j] = distance[i, k] + distance[k, j]
nextn[i, j] = nextn[k, j]
elif distance[i, j] > distance[i, k] + distance[k, j]:
distance[i, j] = distance[i, k] + distance[k, j]
nextn[i, j] = nextn[k, j]
for i in nl:
if distance[i, i] < 0:
return False, distance, nextn
return True, distance, nextn
|
floyd_warshall
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nl = self.get_node_list()\n el = self.get_edge_list()\n distance = {}\n for i in nl:\n for j in nl:\n distance[i, j] = 'infinity'\n for i in nl:\n distance[i, i] = 0\n for e in el:\n distance[e[0], e[1]] = self.get_edge_cost(e)\n nextn = {}\n for i in nl:\n for j in nl:\n if i == j or distance[i, j] == 'infinity':\n nextn[i, j] = None\n else:\n nextn[i, j] = i\n for k in nl:\n for i in nl:\n for j in nl:\n if distance[i, k] == 'infinity' or distance[k, j\n ] == 'infinity':\n continue\n elif distance[i, j] == 'infinity':\n distance[i, j] = distance[i, k] + distance[k, j]\n nextn[i, j] = nextn[k, j]\n elif distance[i, j] > distance[i, k] + distance[k, j]:\n distance[i, j] = distance[i, k] + distance[k, j]\n nextn[i, j] = nextn[k, j]\n for i in nl:\n if distance[i, i] < 0:\n return False, distance, nextn\n return True, distance, nextn\n",
"role": "user"
},
{
"content": "floyd_warshall",
"role": "assistant"
}
] |
def x(self, distance, nextn, i, j):
if distance[i, j] == 'infinity':
return None
k = nextn[i, j]
path = self.floyd_warshall_get_path
if i == k:
return [i, j]
else:
return path(distance, nextn, i, k) + [k] + path(distance, nextn, k, j)
|
floyd_warshall_get_path
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, distance, nextn, i, j):\n if distance[i, j] == 'infinity':\n return None\n k = nextn[i, j]\n path = self.floyd_warshall_get_path\n if i == k:\n return [i, j]\n else:\n return path(distance, nextn, i, k) + [k] + path(distance, nextn, k, j)\n",
"role": "user"
},
{
"content": "floyd_warshall_get_path",
"role": "assistant"
}
] |
def x(self, distance, nextn, element=None):
nl = self.get_node_list()
if element is None:
for i in nl:
if distance[i, i] < 0:
element = i
break
else:
raise Exception('Graph does not have a negative cycle!')
elif distance[element, element] >= 0:
raise Exception(
'Graph does not have a negative cycle that contains node ' +
str(element) + '!')
cycle = [element]
k = nextn[element, element]
while k not in cycle:
cycle.insert(1, k)
k = nextn[element, k]
if k == element:
return cycle
else:
return self.floyd_warshall_get_cycle(distance, nextn, k)
|
floyd_warshall_get_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, distance, nextn, element=None):\n nl = self.get_node_list()\n if element is None:\n for i in nl:\n if distance[i, i] < 0:\n element = i\n break\n else:\n raise Exception('Graph does not have a negative cycle!')\n elif distance[element, element] >= 0:\n raise Exception(\n 'Graph does not have a negative cycle that contains node ' +\n str(element) + '!')\n cycle = [element]\n k = nextn[element, element]\n while k not in cycle:\n cycle.insert(1, k)\n k = nextn[element, k]\n if k == element:\n return cycle\n else:\n return self.floyd_warshall_get_cycle(distance, nextn, k)\n",
"role": "user"
},
{
"content": "floyd_warshall_get_cycle",
"role": "assistant"
}
] |
def x(self, cycle):
index = 0
k = len(cycle)
capacity = self.get_edge_attr(cycle[k - 1], cycle[0], 'capacity')
while index < k - 1:
i = cycle[index]
j = cycle[index + 1]
capacity_ij = self.get_edge_attr(i, j, 'capacity')
if capacity > capacity_ij:
capacity = capacity_ij
index += 1
return capacity
|
find_cycle_capacity
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cycle):\n index = 0\n k = len(cycle)\n capacity = self.get_edge_attr(cycle[k - 1], cycle[0], 'capacity')\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n capacity_ij = self.get_edge_attr(i, j, 'capacity')\n if capacity > capacity_ij:\n capacity = capacity_ij\n index += 1\n return capacity\n",
"role": "user"
},
{
"content": "find_cycle_capacity",
"role": "assistant"
}
] |
def x(self, source):
pred = {}
self.get_node(source).set_attr('distance', 0)
pred[source] = None
for n in self.neighbors:
if n != source:
self.get_node(n).set_attr('distance', 'inf')
q = [source]
while q:
i = q[0]
q = q[1:]
for j in self.neighbors[i]:
distance_j = self.get_node(j).get_attr('distance')
distance_i = self.get_node(i).get_attr('distance')
c_ij = self.get_edge_attr(i, j, 'cost')
if distance_j > distance_i + c_ij:
self.get_node(j).set_attr('distance', distance_i + c_ij)
if j in pred:
pred[j] = i
cycle = self.label_correcting_check_cycle(j, pred)
if cycle is not None:
return False, cycle
else:
pred[j] = i
if j not in q:
q.append(j)
return True, pred
|
fifo_label_correcting
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source):\n pred = {}\n self.get_node(source).set_attr('distance', 0)\n pred[source] = None\n for n in self.neighbors:\n if n != source:\n self.get_node(n).set_attr('distance', 'inf')\n q = [source]\n while q:\n i = q[0]\n q = q[1:]\n for j in self.neighbors[i]:\n distance_j = self.get_node(j).get_attr('distance')\n distance_i = self.get_node(i).get_attr('distance')\n c_ij = self.get_edge_attr(i, j, 'cost')\n if distance_j > distance_i + c_ij:\n self.get_node(j).set_attr('distance', distance_i + c_ij)\n if j in pred:\n pred[j] = i\n cycle = self.label_correcting_check_cycle(j, pred)\n if cycle is not None:\n return False, cycle\n else:\n pred[j] = i\n if j not in q:\n q.append(j)\n return True, pred\n",
"role": "user"
},
{
"content": "fifo_label_correcting",
"role": "assistant"
}
] |
def x(self, j, pred):
labelled = {}
for n in self.neighbors:
labelled[n] = None
current = j
while current != None:
if labelled[current] == j:
cycle = self.label_correcting_get_cycle(j, pred)
return cycle
labelled[current] = j
current = pred[current]
return None
|
label_correcting_check_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, j, pred):\n labelled = {}\n for n in self.neighbors:\n labelled[n] = None\n current = j\n while current != None:\n if labelled[current] == j:\n cycle = self.label_correcting_get_cycle(j, pred)\n return cycle\n labelled[current] = j\n current = pred[current]\n return None\n",
"role": "user"
},
{
"content": "label_correcting_check_cycle",
"role": "assistant"
}
] |
def x(self, j, pred):
cycle = []
cycle.append(j)
current = pred[j]
while current != j:
cycle.append(current)
current = pred[current]
cycle.reverse()
return cycle
|
label_correcting_get_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, j, pred):\n cycle = []\n cycle.append(j)\n current = pred[j]\n while current != j:\n cycle.append(current)\n current = pred[current]\n cycle.reverse()\n return cycle\n",
"role": "user"
},
{
"content": "label_correcting_get_cycle",
"role": "assistant"
}
] |
def x(self, amount, cycle):
index = 0
k = len(cycle)
while index < k - 1:
i = cycle[index]
j = cycle[index + 1]
if (i, j) in self.edge_attr:
flow_ij = self.edge_attr[i, j]['flow']
self.edge_attr[i, j]['flow'] = flow_ij + amount
else:
flow_ji = self.edge_attr[j, i]['flow']
self.edge_attr[j, i]['flow'] = flow_ji - amount
index += 1
i = cycle[k - 1]
j = cycle[0]
if (i, j) in self.edge_attr:
flow_ij = self.edge_attr[i, j]['flow']
self.edge_attr[i, j]['flow'] = flow_ij + amount
else:
flow_ji = self.edge_attr[j, i]['flow']
self.edge_attr[j, i]['flow'] = flow_ji - amount
|
augment_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, amount, cycle):\n index = 0\n k = len(cycle)\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n if (i, j) in self.edge_attr:\n flow_ij = self.edge_attr[i, j]['flow']\n self.edge_attr[i, j]['flow'] = flow_ij + amount\n else:\n flow_ji = self.edge_attr[j, i]['flow']\n self.edge_attr[j, i]['flow'] = flow_ji - amount\n index += 1\n i = cycle[k - 1]\n j = cycle[0]\n if (i, j) in self.edge_attr:\n flow_ij = self.edge_attr[i, j]['flow']\n self.edge_attr[i, j]['flow'] = flow_ij + amount\n else:\n flow_ji = self.edge_attr[j, i]['flow']\n self.edge_attr[j, i]['flow'] = flow_ji - amount\n",
"role": "user"
},
{
"content": "augment_cycle",
"role": "assistant"
}
] |
def x(self, display, pivot, root):
if not self.find_feasible_flow():
return False
t = self.simplex_find_tree()
self.set_display_mode(display)
self.simplex_mark_st_arcs(t)
t.simplex_redraw(display, root)
t.set_display_mode(display)
self.display()
t.simplex_search(root, 1)
self.simplex_compute_potentials(t, root)
while not self.simplex_optimal(t):
self.display()
k, l = self.simplex_select_entering_arc(t, pivot)
self.simplex_mark_entering_arc(k, l)
self.display()
(p, q), capacity, cycle = self.simplex_determine_leaving_arc(t, k, l)
self.simplex_mark_leaving_arc(p, q)
self.display()
self.simplex_remove_arc(t, p, q, capacity, cycle)
self.display()
self.simplex_mark_st_arcs(t)
self.display()
t.simplex_redraw(display, root)
t.simplex_search(root, 1)
self.simplex_compute_potentials(t, root)
return True
|
network_simplex
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display, pivot, root):\n if not self.find_feasible_flow():\n return False\n t = self.simplex_find_tree()\n self.set_display_mode(display)\n self.simplex_mark_st_arcs(t)\n t.simplex_redraw(display, root)\n t.set_display_mode(display)\n self.display()\n t.simplex_search(root, 1)\n self.simplex_compute_potentials(t, root)\n while not self.simplex_optimal(t):\n self.display()\n k, l = self.simplex_select_entering_arc(t, pivot)\n self.simplex_mark_entering_arc(k, l)\n self.display()\n (p, q), capacity, cycle = self.simplex_determine_leaving_arc(t, k, l)\n self.simplex_mark_leaving_arc(p, q)\n self.display()\n self.simplex_remove_arc(t, p, q, capacity, cycle)\n self.display()\n self.simplex_mark_st_arcs(t)\n self.display()\n t.simplex_redraw(display, root)\n t.simplex_search(root, 1)\n self.simplex_compute_potentials(t, root)\n return True\n",
"role": "user"
},
{
"content": "network_simplex",
"role": "assistant"
}
] |
def x(self, t, k, l):
cycle = self.simplex_identify_cycle(t, k, l)
flow_kl = self.get_edge_attr(k, l, 'flow')
capacity_kl = self.get_edge_attr(k, l, 'capacity')
min_capacity = capacity_kl
if flow_kl == capacity_kl:
cycle.reverse()
n = len(cycle)
index = 0
t.add_edge(k, l)
tel = t.get_edge_list()
while index < n - 1:
if (cycle[index], cycle[index + 1]) in tel:
flow = self.edge_attr[cycle[index], cycle[index + 1]]['flow']
capacity = self.edge_attr[cycle[index], cycle[index + 1]][
'capacity']
if min_capacity >= capacity - flow:
candidate = cycle[index], cycle[index + 1]
min_capacity = capacity - flow
else:
flow = self.edge_attr[cycle[index + 1], cycle[index]]['flow']
if min_capacity >= flow:
candidate = cycle[index + 1], cycle[index]
min_capacity = flow
index += 1
if (cycle[n - 1], cycle[0]) in tel:
flow = self.edge_attr[cycle[n - 1], cycle[0]]['flow']
capacity = self.edge_attr[cycle[n - 1], cycle[0]]['capacity']
if min_capacity >= capacity - flow:
candidate = cycle[n - 1], cycle[0]
min_capacity = capacity - flow
else:
flow = self.edge_attr[cycle[0], cycle[n - 1]]['flow']
if min_capacity >= flow:
candidate = cycle[0], cycle[n - 1]
min_capacity = flow
return candidate, min_capacity, cycle
|
simplex_determine_leaving_arc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, k, l):\n cycle = self.simplex_identify_cycle(t, k, l)\n flow_kl = self.get_edge_attr(k, l, 'flow')\n capacity_kl = self.get_edge_attr(k, l, 'capacity')\n min_capacity = capacity_kl\n if flow_kl == capacity_kl:\n cycle.reverse()\n n = len(cycle)\n index = 0\n t.add_edge(k, l)\n tel = t.get_edge_list()\n while index < n - 1:\n if (cycle[index], cycle[index + 1]) in tel:\n flow = self.edge_attr[cycle[index], cycle[index + 1]]['flow']\n capacity = self.edge_attr[cycle[index], cycle[index + 1]][\n 'capacity']\n if min_capacity >= capacity - flow:\n candidate = cycle[index], cycle[index + 1]\n min_capacity = capacity - flow\n else:\n flow = self.edge_attr[cycle[index + 1], cycle[index]]['flow']\n if min_capacity >= flow:\n candidate = cycle[index + 1], cycle[index]\n min_capacity = flow\n index += 1\n if (cycle[n - 1], cycle[0]) in tel:\n flow = self.edge_attr[cycle[n - 1], cycle[0]]['flow']\n capacity = self.edge_attr[cycle[n - 1], cycle[0]]['capacity']\n if min_capacity >= capacity - flow:\n candidate = cycle[n - 1], cycle[0]\n min_capacity = capacity - flow\n else:\n flow = self.edge_attr[cycle[0], cycle[n - 1]]['flow']\n if min_capacity >= flow:\n candidate = cycle[0], cycle[n - 1]\n min_capacity = flow\n return candidate, min_capacity, cycle\n",
"role": "user"
},
{
"content": "simplex_determine_leaving_arc",
"role": "assistant"
}
] |
def x(self, t):
tel = list(t.edge_attr.keys())
for e in self.get_edge_list():
flow_e = self.edge_attr[e]['flow']
capacity_e = self.edge_attr[e]['capacity']
if e in tel:
if flow_e == 0:
self.edge_attr[e]['color'] = 'blue'
elif flow_e == capacity_e:
self.edge_attr[e]['color'] = 'blue'
else:
self.edge_attr[e]['color'] = 'blue'
elif flow_e == 0:
self.edge_attr[e]['color'] = 'black'
elif flow_e == capacity_e:
self.edge_attr[e]['color'] = 'black'
else:
msg = 'Arc is not in ST but has flow between bounds.'
raise Exception(msg)
|
simplex_mark_st_arcs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t):\n tel = list(t.edge_attr.keys())\n for e in self.get_edge_list():\n flow_e = self.edge_attr[e]['flow']\n capacity_e = self.edge_attr[e]['capacity']\n if e in tel:\n if flow_e == 0:\n self.edge_attr[e]['color'] = 'blue'\n elif flow_e == capacity_e:\n self.edge_attr[e]['color'] = 'blue'\n else:\n self.edge_attr[e]['color'] = 'blue'\n elif flow_e == 0:\n self.edge_attr[e]['color'] = 'black'\n elif flow_e == capacity_e:\n self.edge_attr[e]['color'] = 'black'\n else:\n msg = 'Arc is not in ST but has flow between bounds.'\n raise Exception(msg)\n",
"role": "user"
},
{
"content": "simplex_mark_st_arcs",
"role": "assistant"
}
] |
def x(self):
print('printing current edge, flow, capacity')
for e in self.edge_attr:
if self.edge_attr[e]['flow'] != 0:
print(e, str(self.edge_attr[e]['flow']).ljust(4), end=' ')
print(str(self.edge_attr[e]['capacity']).ljust(4))
|
print_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n print('printing current edge, flow, capacity')\n for e in self.edge_attr:\n if self.edge_attr[e]['flow'] != 0:\n print(e, str(self.edge_attr[e]['flow']).ljust(4), end=' ')\n print(str(self.edge_attr[e]['capacity']).ljust(4))\n",
"role": "user"
},
{
"content": "print_flow",
"role": "assistant"
}
] |
def x(self, display, root):
nl = self.get_node_list()
el = self.get_edge_list()
new = Graph(type=DIRECTED_GRAPH, layout='dot', display=display)
pred_i = self.get_node(root).get_attr('pred')
thread_i = self.get_node(root).get_attr('thread')
depth_i = self.get_node(root).get_attr('depth')
new.add_node(root, pred=pred_i, thread=thread_i, depth=depth_i)
q = [root]
visited = [root]
while q:
name = q.pop()
visited.append(name)
neighbors = self.neighbors[name] + self.in_neighbors[name]
for n in neighbors:
if n not in new.get_node_list():
pred_i = self.get_node(n).get_attr('pred')
thread_i = self.get_node(n).get_attr('thread')
depth_i = self.get_node(n).get_attr('depth')
new.add_node(n, pred=pred_i, thread=thread_i, depth=depth_i)
if (name, n) in el:
if (name, n) not in new.edge_attr:
new.add_edge(name, n)
elif (n, name) not in new.edge_attr:
new.add_edge(n, name)
if n not in visited:
q.append(n)
for e in el:
flow = self.edge_attr[e]['flow']
capacity = self.edge_attr[e]['capacity']
cost = self.edge_attr[e]['cost']
new.edge_attr[e]['flow'] = flow
new.edge_attr[e]['capacity'] = capacity
new.edge_attr[e]['cost'] = cost
new.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)
return new
|
simplex_redraw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display, root):\n nl = self.get_node_list()\n el = self.get_edge_list()\n new = Graph(type=DIRECTED_GRAPH, layout='dot', display=display)\n pred_i = self.get_node(root).get_attr('pred')\n thread_i = self.get_node(root).get_attr('thread')\n depth_i = self.get_node(root).get_attr('depth')\n new.add_node(root, pred=pred_i, thread=thread_i, depth=depth_i)\n q = [root]\n visited = [root]\n while q:\n name = q.pop()\n visited.append(name)\n neighbors = self.neighbors[name] + self.in_neighbors[name]\n for n in neighbors:\n if n not in new.get_node_list():\n pred_i = self.get_node(n).get_attr('pred')\n thread_i = self.get_node(n).get_attr('thread')\n depth_i = self.get_node(n).get_attr('depth')\n new.add_node(n, pred=pred_i, thread=thread_i, depth=depth_i)\n if (name, n) in el:\n if (name, n) not in new.edge_attr:\n new.add_edge(name, n)\n elif (n, name) not in new.edge_attr:\n new.add_edge(n, name)\n if n not in visited:\n q.append(n)\n for e in el:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n new.edge_attr[e]['flow'] = flow\n new.edge_attr[e]['capacity'] = capacity\n new.edge_attr[e]['cost'] = cost\n new.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n return new\n",
"role": "user"
},
{
"content": "simplex_redraw",
"role": "assistant"
}
] |
def x(self, t, p, q, min_capacity, cycle):
n = len(cycle)
tel = list(t.edge_attr.keys())
index = 0
while index < n - 1:
if (cycle[index], cycle[index + 1]) in tel:
flow_e = self.edge_attr[cycle[index], cycle[index + 1]]['flow']
self.edge_attr[cycle[index], cycle[index + 1]]['flow'
] = flow_e + min_capacity
else:
flow_e = self.edge_attr[cycle[index + 1], cycle[index]]['flow']
self.edge_attr[cycle[index + 1], cycle[index]]['flow'
] = flow_e - min_capacity
index += 1
if (cycle[n - 1], cycle[0]) in tel:
flow_e = self.edge_attr[cycle[n - 1], cycle[0]]['flow']
self.edge_attr[cycle[n - 1], cycle[0]]['flow'] = flow_e + min_capacity
else:
flow_e = self.edge_attr[cycle[0], cycle[n - 1]]['flow']
self.edge_attr[cycle[0], cycle[n - 1]]['flow'] = flow_e - min_capacity
t.del_edge((p, q))
flow_pq = self.get_edge_attr(p, q, 'flow')
capacity_pq = self.get_edge_attr(p, q, 'capacity')
cost_pq = self.get_edge_attr(p, q, 'cost')
self.set_edge_attr(p, q, 'label', '%d/%d/%d' % (flow_pq, capacity_pq,
cost_pq))
for e in t.edge_attr:
flow = self.edge_attr[e]['flow']
capacity = self.edge_attr[e]['capacity']
cost = self.edge_attr[e]['cost']
t.edge_attr[e]['flow'] = flow
t.edge_attr[e]['capacity'] = capacity
t.edge_attr[e]['cost'] = cost
t.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)
self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)
|
simplex_remove_arc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, p, q, min_capacity, cycle):\n n = len(cycle)\n tel = list(t.edge_attr.keys())\n index = 0\n while index < n - 1:\n if (cycle[index], cycle[index + 1]) in tel:\n flow_e = self.edge_attr[cycle[index], cycle[index + 1]]['flow']\n self.edge_attr[cycle[index], cycle[index + 1]]['flow'\n ] = flow_e + min_capacity\n else:\n flow_e = self.edge_attr[cycle[index + 1], cycle[index]]['flow']\n self.edge_attr[cycle[index + 1], cycle[index]]['flow'\n ] = flow_e - min_capacity\n index += 1\n if (cycle[n - 1], cycle[0]) in tel:\n flow_e = self.edge_attr[cycle[n - 1], cycle[0]]['flow']\n self.edge_attr[cycle[n - 1], cycle[0]]['flow'] = flow_e + min_capacity\n else:\n flow_e = self.edge_attr[cycle[0], cycle[n - 1]]['flow']\n self.edge_attr[cycle[0], cycle[n - 1]]['flow'] = flow_e - min_capacity\n t.del_edge((p, q))\n flow_pq = self.get_edge_attr(p, q, 'flow')\n capacity_pq = self.get_edge_attr(p, q, 'capacity')\n cost_pq = self.get_edge_attr(p, q, 'cost')\n self.set_edge_attr(p, q, 'label', '%d/%d/%d' % (flow_pq, capacity_pq,\n cost_pq))\n for e in t.edge_attr:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n t.edge_attr[e]['flow'] = flow\n t.edge_attr[e]['capacity'] = capacity\n t.edge_attr[e]['cost'] = cost\n t.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n",
"role": "user"
},
{
"content": "simplex_remove_arc",
"role": "assistant"
}
] |
def x(self, t, pivot):
if pivot == 'dantzig':
candidate = {}
for e in self.edge_attr:
if e in t.edge_attr:
continue
flow_ij = self.edge_attr[e]['flow']
potential_i = self.get_node(e[0]).get_attr('potential')
potential_j = self.get_node(e[1]).get_attr('potential')
capacity_ij = self.edge_attr[e]['capacity']
c_ij = self.edge_attr[e]['cost']
cpi_ij = c_ij - potential_i + potential_j
if flow_ij == 0:
if cpi_ij < 0:
candidate[e] = cpi_ij
elif flow_ij == capacity_ij:
if cpi_ij > 0:
candidate[e] = cpi_ij
for e in candidate:
max_c = e
max_v = abs(candidate[e])
break
for e in candidate:
if max_v < abs(candidate[e]):
max_c = e
max_v = abs(candidate[e])
elif pivot == 'first_eligible':
for e in self.edge_attr:
if e in t.edge_attr:
continue
flow_ij = self.edge_attr[e]['flow']
potential_i = self.get_node(e[0]).get_attr('potential')
potential_j = self.get_node(e[1]).get_attr('potential')
capacity_ij = self.edge_attr[e]['capacity']
c_ij = self.edge_attr[e]['cost']
cpi_ij = c_ij - potential_i + potential_j
if flow_ij == 0:
if cpi_ij < 0:
max_c = e
max_v = abs(cpi_ij)
elif flow_ij == capacity_ij:
if cpi_ij > 0:
max_c = e
max_v = cpi_ij
else:
raise Exception('Unknown pivot rule.')
return max_c
|
simplex_select_entering_arc
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, pivot):\n if pivot == 'dantzig':\n candidate = {}\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n candidate[e] = cpi_ij\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n candidate[e] = cpi_ij\n for e in candidate:\n max_c = e\n max_v = abs(candidate[e])\n break\n for e in candidate:\n if max_v < abs(candidate[e]):\n max_c = e\n max_v = abs(candidate[e])\n elif pivot == 'first_eligible':\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n max_c = e\n max_v = abs(cpi_ij)\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n max_c = e\n max_v = cpi_ij\n else:\n raise Exception('Unknown pivot rule.')\n return max_c\n",
"role": "user"
},
{
"content": "simplex_select_entering_arc",
"role": "assistant"
}
] |
def x(self, t):
for e in self.edge_attr:
if e in t.edge_attr:
continue
flow_ij = self.edge_attr[e]['flow']
potential_i = self.get_node(e[0]).get_attr('potential')
potential_j = self.get_node(e[1]).get_attr('potential')
capacity_ij = self.edge_attr[e]['capacity']
c_ij = self.edge_attr[e]['cost']
cpi_ij = c_ij - potential_i + potential_j
if flow_ij == 0:
if cpi_ij < 0:
return False
elif flow_ij == capacity_ij:
if cpi_ij > 0:
return False
return True
|
simplex_optimal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t):\n for e in self.edge_attr:\n if e in t.edge_attr:\n continue\n flow_ij = self.edge_attr[e]['flow']\n potential_i = self.get_node(e[0]).get_attr('potential')\n potential_j = self.get_node(e[1]).get_attr('potential')\n capacity_ij = self.edge_attr[e]['capacity']\n c_ij = self.edge_attr[e]['cost']\n cpi_ij = c_ij - potential_i + potential_j\n if flow_ij == 0:\n if cpi_ij < 0:\n return False\n elif flow_ij == capacity_ij:\n if cpi_ij > 0:\n return False\n return True\n",
"role": "user"
},
{
"content": "simplex_optimal",
"role": "assistant"
}
] |
def x(self):
solution_g = self.get_simplex_solution_graph()
cycle = solution_g.simplex_find_cycle()
while cycle is not None:
amount = self.simplex_augment_cycle(cycle)
self.augment_cycle(amount, cycle)
solution_g = self.get_simplex_solution_graph()
cycle = solution_g.simplex_find_cycle()
while self.simplex_connect(solution_g):
pass
for e in self.edge_attr:
flow = self.edge_attr[e]['flow']
capacity = self.edge_attr[e]['capacity']
cost = self.edge_attr[e]['cost']
self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)
if e in solution_g.edge_attr:
solution_g.edge_attr[e]['flow'] = flow
solution_g.edge_attr[e]['capacity'] = capacity
solution_g.edge_attr[e]['cost'] = cost
solution_g.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity,
cost)
return solution_g
|
simplex_find_tree
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n solution_g = self.get_simplex_solution_graph()\n cycle = solution_g.simplex_find_cycle()\n while cycle is not None:\n amount = self.simplex_augment_cycle(cycle)\n self.augment_cycle(amount, cycle)\n solution_g = self.get_simplex_solution_graph()\n cycle = solution_g.simplex_find_cycle()\n while self.simplex_connect(solution_g):\n pass\n for e in self.edge_attr:\n flow = self.edge_attr[e]['flow']\n capacity = self.edge_attr[e]['capacity']\n cost = self.edge_attr[e]['cost']\n self.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity, cost)\n if e in solution_g.edge_attr:\n solution_g.edge_attr[e]['flow'] = flow\n solution_g.edge_attr[e]['capacity'] = capacity\n solution_g.edge_attr[e]['cost'] = cost\n solution_g.edge_attr[e]['label'] = '%d/%d/%d' % (flow, capacity,\n cost)\n return solution_g\n",
"role": "user"
},
{
"content": "simplex_find_tree",
"role": "assistant"
}
] |
def x(self, solution_g):
nl = solution_g.get_node_list()
current = nl[0]
pred = solution_g.simplex_search(current, current)
separated = list(pred.keys())
for n in nl:
if solution_g.get_node(n).get_attr('component') != current:
for m in separated:
if (n, m) in self.edge_attr:
solution_g.add_edge(n, m)
return True
elif (m, n) in self.edge_attr:
solution_g.add_edge(m, n)
return True
return False
|
simplex_connect
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, solution_g):\n nl = solution_g.get_node_list()\n current = nl[0]\n pred = solution_g.simplex_search(current, current)\n separated = list(pred.keys())\n for n in nl:\n if solution_g.get_node(n).get_attr('component') != current:\n for m in separated:\n if (n, m) in self.edge_attr:\n solution_g.add_edge(n, m)\n return True\n elif (m, n) in self.edge_attr:\n solution_g.add_edge(m, n)\n return True\n return False\n",
"role": "user"
},
{
"content": "simplex_connect",
"role": "assistant"
}
] |
def x(self, source, component_nr):
q = [source]
pred = {source: None}
depth = {source: 0}
sequence = []
for n in self.neighbors:
self.get_node(n).set_attr('component', None)
while q:
current = q.pop()
self.get_node(current).set_attr('component', component_nr)
sequence.append(current)
neighbors = self.in_neighbors[current] + self.neighbors[current]
for n in neighbors:
if n in pred:
continue
self.get_node(n).set_attr('component', component_nr)
pred[n] = current
depth[n] = depth[current] + 1
q.append(n)
for i in range(len(sequence) - 1):
self.get_node(sequence[i]).set_attr('thread', int(sequence[i + 1]))
self.get_node(sequence[-1]).set_attr('thread', int(sequence[0]))
for n in pred:
self.get_node(n).set_attr('pred', pred[n])
self.get_node(n).set_attr('depth', depth[n])
return pred
|
simplex_search
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, source, component_nr):\n q = [source]\n pred = {source: None}\n depth = {source: 0}\n sequence = []\n for n in self.neighbors:\n self.get_node(n).set_attr('component', None)\n while q:\n current = q.pop()\n self.get_node(current).set_attr('component', component_nr)\n sequence.append(current)\n neighbors = self.in_neighbors[current] + self.neighbors[current]\n for n in neighbors:\n if n in pred:\n continue\n self.get_node(n).set_attr('component', component_nr)\n pred[n] = current\n depth[n] = depth[current] + 1\n q.append(n)\n for i in range(len(sequence) - 1):\n self.get_node(sequence[i]).set_attr('thread', int(sequence[i + 1]))\n self.get_node(sequence[-1]).set_attr('thread', int(sequence[0]))\n for n in pred:\n self.get_node(n).set_attr('pred', pred[n])\n self.get_node(n).set_attr('depth', depth[n])\n return pred\n",
"role": "user"
},
{
"content": "simplex_search",
"role": "assistant"
}
] |
def x(self, cycle):
index = 0
k = len(cycle)
el = list(self.edge_attr.keys())
if (cycle[k - 1], cycle[0]) in el:
min_capacity = self.edge_attr[cycle[k - 1], cycle[0]]['capacity'
] - self.edge_attr[cycle[k - 1], cycle[0]]['flow']
else:
min_capacity = self.edge_attr[cycle[0], cycle[k - 1]]['flow']
while index < k - 1:
i = cycle[index]
j = cycle[index + 1]
if (i, j) in el:
capacity_ij = self.edge_attr[i, j]['capacity'] - self.edge_attr[
i, j]['flow']
else:
capacity_ij = self.edge_attr[j, i]['flow']
if min_capacity > capacity_ij:
min_capacity = capacity_ij
index += 1
return min_capacity
|
simplex_augment_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cycle):\n index = 0\n k = len(cycle)\n el = list(self.edge_attr.keys())\n if (cycle[k - 1], cycle[0]) in el:\n min_capacity = self.edge_attr[cycle[k - 1], cycle[0]]['capacity'\n ] - self.edge_attr[cycle[k - 1], cycle[0]]['flow']\n else:\n min_capacity = self.edge_attr[cycle[0], cycle[k - 1]]['flow']\n while index < k - 1:\n i = cycle[index]\n j = cycle[index + 1]\n if (i, j) in el:\n capacity_ij = self.edge_attr[i, j]['capacity'] - self.edge_attr[\n i, j]['flow']\n else:\n capacity_ij = self.edge_attr[j, i]['flow']\n if min_capacity > capacity_ij:\n min_capacity = capacity_ij\n index += 1\n return min_capacity\n",
"role": "user"
},
{
"content": "simplex_augment_cycle",
"role": "assistant"
}
] |
def x(self):
nl = self.get_node_list()
q = [nl[0]]
visited = []
depth = {nl[0]: 0}
pred = {nl[0]: None}
for n in nl:
self.get_node(n).set_attr('component', None)
component_nr = int(nl[0])
self.get_node(nl[0]).set_attr('component', component_nr)
while True:
while q:
current = q.pop()
visited.append(current)
neighbors = self.in_neighbors[current] + self.neighbors[current]
for n in neighbors:
if n == pred[current]:
continue
self.get_node(n).set_attr('component', component_nr)
if n in depth:
cycle1 = []
cycle2 = []
temp = n
while temp is not None:
cycle1.append(temp)
temp = pred[temp]
temp = current
while temp is not None:
cycle2.append(temp)
temp = pred[temp]
cycle1.pop()
cycle1.reverse()
cycle2.extend(cycle1)
return cycle2
else:
pred[n] = current
depth[n] = depth[current] + 1
if n not in visited:
q.append(n)
flag = False
for n in nl:
if self.get_node(n).get_attr('component') is None:
q.append(n)
depth = {n: 0}
pred = {n: None}
visited = []
component_nr = int(n)
self.get_node(n).set_attr('component', component_nr)
flag = True
break
if not flag:
break
return None
|
simplex_find_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n nl = self.get_node_list()\n q = [nl[0]]\n visited = []\n depth = {nl[0]: 0}\n pred = {nl[0]: None}\n for n in nl:\n self.get_node(n).set_attr('component', None)\n component_nr = int(nl[0])\n self.get_node(nl[0]).set_attr('component', component_nr)\n while True:\n while q:\n current = q.pop()\n visited.append(current)\n neighbors = self.in_neighbors[current] + self.neighbors[current]\n for n in neighbors:\n if n == pred[current]:\n continue\n self.get_node(n).set_attr('component', component_nr)\n if n in depth:\n cycle1 = []\n cycle2 = []\n temp = n\n while temp is not None:\n cycle1.append(temp)\n temp = pred[temp]\n temp = current\n while temp is not None:\n cycle2.append(temp)\n temp = pred[temp]\n cycle1.pop()\n cycle1.reverse()\n cycle2.extend(cycle1)\n return cycle2\n else:\n pred[n] = current\n depth[n] = depth[current] + 1\n if n not in visited:\n q.append(n)\n flag = False\n for n in nl:\n if self.get_node(n).get_attr('component') is None:\n q.append(n)\n depth = {n: 0}\n pred = {n: None}\n visited = []\n component_nr = int(n)\n self.get_node(n).set_attr('component', component_nr)\n flag = True\n break\n if not flag:\n break\n return None\n",
"role": "user"
},
{
"content": "simplex_find_cycle",
"role": "assistant"
}
] |
def x(self):
simplex_g = Graph(type=DIRECTED_GRAPH)
for i in self.neighbors:
simplex_g.add_node(i)
for e in self.edge_attr:
flow_e = self.edge_attr[e]['flow']
capacity_e = self.edge_attr[e]['capacity']
if flow_e > 0 and flow_e < capacity_e:
simplex_g.add_edge(e[0], e[1])
return simplex_g
|
get_simplex_solution_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n simplex_g = Graph(type=DIRECTED_GRAPH)\n for i in self.neighbors:\n simplex_g.add_node(i)\n for e in self.edge_attr:\n flow_e = self.edge_attr[e]['flow']\n capacity_e = self.edge_attr[e]['capacity']\n if flow_e > 0 and flow_e < capacity_e:\n simplex_g.add_edge(e[0], e[1])\n return simplex_g\n",
"role": "user"
},
{
"content": "get_simplex_solution_graph",
"role": "assistant"
}
] |
def x(self, t, root):
self.get_node(root).set_attr('potential', 0)
j = t.get_node(root).get_attr('thread')
while j is not root:
i = t.get_node(j).get_attr('pred')
potential_i = self.get_node(i).get_attr('potential')
if (i, j) in self.edge_attr:
c_ij = self.edge_attr[i, j]['cost']
self.get_node(j).set_attr('potential', potential_i - c_ij)
if (j, i) in self.edge_attr:
c_ji = self.edge_attr[j, i]['cost']
self.get_node(j).set_attr('potential', potential_i + c_ji)
j = t.get_node(j).get_attr('thread')
|
simplex_compute_potentials
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, root):\n self.get_node(root).set_attr('potential', 0)\n j = t.get_node(root).get_attr('thread')\n while j is not root:\n i = t.get_node(j).get_attr('pred')\n potential_i = self.get_node(i).get_attr('potential')\n if (i, j) in self.edge_attr:\n c_ij = self.edge_attr[i, j]['cost']\n self.get_node(j).set_attr('potential', potential_i - c_ij)\n if (j, i) in self.edge_attr:\n c_ji = self.edge_attr[j, i]['cost']\n self.get_node(j).set_attr('potential', potential_i + c_ji)\n j = t.get_node(j).get_attr('thread')\n",
"role": "user"
},
{
"content": "simplex_compute_potentials",
"role": "assistant"
}
] |
def x(self, t, k, l):
i = k
j = l
cycle = []
li = [k]
lj = [j]
while i is not j:
depth_i = t.get_node(i).get_attr('depth')
depth_j = t.get_node(j).get_attr('depth')
if depth_i > depth_j:
i = t.get_node(i).get_attr('pred')
li.append(i)
elif depth_i < depth_j:
j = t.get_node(j).get_attr('pred')
lj.append(j)
else:
i = t.get_node(i).get_attr('pred')
li.append(i)
j = t.get_node(j).get_attr('pred')
lj.append(j)
cycle.extend(lj)
li.pop()
li.reverse()
cycle.extend(li)
return cycle
|
simplex_identify_cycle
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, t, k, l):\n i = k\n j = l\n cycle = []\n li = [k]\n lj = [j]\n while i is not j:\n depth_i = t.get_node(i).get_attr('depth')\n depth_j = t.get_node(j).get_attr('depth')\n if depth_i > depth_j:\n i = t.get_node(i).get_attr('pred')\n li.append(i)\n elif depth_i < depth_j:\n j = t.get_node(j).get_attr('pred')\n lj.append(j)\n else:\n i = t.get_node(i).get_attr('pred')\n li.append(i)\n j = t.get_node(j).get_attr('pred')\n lj.append(j)\n cycle.extend(lj)\n li.pop()\n li.reverse()\n cycle.extend(li)\n return cycle\n",
"role": "user"
},
{
"content": "simplex_identify_cycle",
"role": "assistant"
}
] |
def x(self, display=None, **args):
if display is None:
display = self.attr['display']
if 'algo' in args:
algorithm = args['algo']
else:
algorithm = 'simplex'
if algorithm is 'simplex':
if 'root' in args:
root = args['root']
else:
for k in self.neighbors:
root = k
break
if 'pivot' in args:
if not self.network_simplex(display, args['pivot'], root):
print('problem is infeasible')
elif not self.network_simplex(display, 'dantzig', root):
print('problem is infeasible')
elif algorithm is 'cycle_canceling':
if not self.cycle_canceling(display):
print('problem is infeasible')
else:
print(args['algo'], 'is not a defined algorithm. Exiting.')
return
|
min_cost_flow
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, display=None, **args):\n if display is None:\n display = self.attr['display']\n if 'algo' in args:\n algorithm = args['algo']\n else:\n algorithm = 'simplex'\n if algorithm is 'simplex':\n if 'root' in args:\n root = args['root']\n else:\n for k in self.neighbors:\n root = k\n break\n if 'pivot' in args:\n if not self.network_simplex(display, args['pivot'], root):\n print('problem is infeasible')\n elif not self.network_simplex(display, 'dantzig', root):\n print('problem is infeasible')\n elif algorithm is 'cycle_canceling':\n if not self.cycle_canceling(display):\n print('problem is infeasible')\n else:\n print(args['algo'], 'is not a defined algorithm. Exiting.')\n return\n",
"role": "user"
},
{
"content": "min_cost_flow",
"role": "assistant"
}
] |
def x(self, numnodes=10, degree_range=(2, 4), length_range=(1, 10), density
=None, edge_format=None, node_format=None, Euclidean=False, seedInput=0,
add_labels=True, parallel_allowed=False, node_selection='closest',
scale=10, scale_cost=5):
random.seed(seedInput)
if edge_format == None:
edge_format = {'fontsize': 10, 'fontcolor': 'blue'}
if node_format == None:
node_format = {'height': 0.5, 'width': 0.5, 'fixedsize': 'true',
'fontsize': 10, 'fontcolor': 'red', 'shape': 'circle'}
if Euclidean == False:
for m in range(numnodes):
self.add_node(m, **node_format)
if degree_range is not None and density is None:
for m in range(numnodes):
degree = random.randint(degree_range[0], degree_range[1])
i = 0
while i < degree:
n = random.randint(1, numnodes - 1)
if ((m, n) not in self.edge_attr and m != n) and (
parallel_allowed or (n, m) not in self.edge_attr):
if length_range is not None:
length = random.randint(length_range[0],
length_range[1])
self.add_edge(m, n, cost=length, **edge_format)
if add_labels:
self.set_edge_attr(m, n, 'label', str(length))
else:
self.add_edge(m, n, **edge_format)
i += 1
elif density != None:
for m in range(numnodes):
if self.graph_type == DIRECTED_GRAPH:
numnodes2 = numnodes
else:
numnodes2 = m
for n in range(numnodes2):
if (parallel_allowed or (n, m) not in self.edge_attr
) and m != n:
if random.random() < density:
if length_range is not None:
length = random.randint(length_range[0],
length_range[1])
self.add_edge(m, n, cost=length, **edge_format)
if add_labels:
self.set_edge_attr(m, n, 'label', str(
length))
else:
self.add_edge(m, n, **edge_format)
else:
print('Must set either degree range or density')
else:
for m in range(numnodes):
""" Assigns random coordinates (between 1 and 20) to the nodes
"""
x = random.random() * scale
y = random.random() * scale
self.add_node(m, locationx=x, locationy=y, pos='"' + str(x) +
',' + str(y) + '!"', **node_format)
if degree_range is not None and density is None:
for m in range(numnodes):
degree = random.randint(degree_range[0], degree_range[1])
i = 0
neighbors = []
if node_selection is 'random':
while i < degree:
length = round(((self.get_node(n).get_attr(
'locationx') - self.get_node(m).get_attr(
'locationx')) ** 2 + (self.get_node(n).get_attr
('locationy') - self.get_node(m).get_attr(
'locationy')) ** 2) ** 0.5 * scale_cost, 0)
if ((m, n) not in self.edge_attr and m != n) and (
parallel_allowed or (n, m) not in self.edge_attr):
neighbors.append(random.randint(0, numnodes - 1))
self.add_edge(m, n, cost=int(length), **edge_format
)
if add_labels:
self.set_edge_attr(m, n, 'label', str(int(
length)))
i += 1
elif node_selection is 'closest':
lengths = []
for n in range(numnodes):
lengths.append((n, round(((self.get_node(n).
get_attr('locationx') - self.get_node(m).
get_attr('locationx')) ** 2 + (self.get_node(n)
.get_attr('locationy') - self.get_node(m).
get_attr('locationy')) ** 2) ** 0.5 *
scale_cost, 0)))
lengths.sort(key=lambda l: l[1])
for i in range(degree + 1):
if not (lengths[i][0] == m or self.check_edge(m,
lengths[i][0])):
self.add_edge(m, lengths[i][0], cost=int(
lengths[i][1]), **edge_format)
if add_labels:
self.set_edge_attr(m, lengths[i][0],
'label', str(int(lengths[i][1])))
else:
print('Unknown node selection rule...exiting')
return
elif density != None:
for m in range(numnodes):
if self.graph_type == DIRECTED_GRAPH:
numnodes2 = numnodes
else:
numnodes2 = m
for n in range(numnodes2):
if (parallel_allowed or (n, m) not in self.edge_attr
) and m != n:
if random.random() < density:
if length_range is None:
""" calculates the euclidean norm and round it
to an integer """
length = round(((self.get_node(n).get_attr(
'locationx') - self.get_node(m).
get_attr('locationx')) ** 2 + (self.
get_node(n).get_attr('locationy') -
self.get_node(m).get_attr('locationy')) **
2) ** 0.5, 0)
self.add_edge(m, n, cost=int(length), **
edge_format)
if add_labels:
self.set_edge_attr(m, n, 'label', str(
int(length)))
else:
self.add_edge(m, n, **edge_format)
else:
print('Must set either degree range or density')
|
random
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, numnodes=10, degree_range=(2, 4), length_range=(1, 10), density\n =None, edge_format=None, node_format=None, Euclidean=False, seedInput=0,\n add_labels=True, parallel_allowed=False, node_selection='closest',\n scale=10, scale_cost=5):\n random.seed(seedInput)\n if edge_format == None:\n edge_format = {'fontsize': 10, 'fontcolor': 'blue'}\n if node_format == None:\n node_format = {'height': 0.5, 'width': 0.5, 'fixedsize': 'true',\n 'fontsize': 10, 'fontcolor': 'red', 'shape': 'circle'}\n if Euclidean == False:\n for m in range(numnodes):\n self.add_node(m, **node_format)\n if degree_range is not None and density is None:\n for m in range(numnodes):\n degree = random.randint(degree_range[0], degree_range[1])\n i = 0\n while i < degree:\n n = random.randint(1, numnodes - 1)\n if ((m, n) not in self.edge_attr and m != n) and (\n parallel_allowed or (n, m) not in self.edge_attr):\n if length_range is not None:\n length = random.randint(length_range[0],\n length_range[1])\n self.add_edge(m, n, cost=length, **edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(length))\n else:\n self.add_edge(m, n, **edge_format)\n i += 1\n elif density != None:\n for m in range(numnodes):\n if self.graph_type == DIRECTED_GRAPH:\n numnodes2 = numnodes\n else:\n numnodes2 = m\n for n in range(numnodes2):\n if (parallel_allowed or (n, m) not in self.edge_attr\n ) and m != n:\n if random.random() < density:\n if length_range is not None:\n length = random.randint(length_range[0],\n length_range[1])\n self.add_edge(m, n, cost=length, **edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(\n length))\n else:\n self.add_edge(m, n, **edge_format)\n else:\n print('Must set either degree range or density')\n else:\n for m in range(numnodes):\n \"\"\" Assigns random coordinates (between 1 and 20) to the nodes\n \"\"\"\n x = random.random() * scale\n y = random.random() * scale\n self.add_node(m, locationx=x, locationy=y, pos='\"' + str(x) +\n ',' + str(y) + '!\"', **node_format)\n if degree_range is not None and density is None:\n for m in range(numnodes):\n degree = random.randint(degree_range[0], degree_range[1])\n i = 0\n neighbors = []\n if node_selection is 'random':\n while i < degree:\n length = round(((self.get_node(n).get_attr(\n 'locationx') - self.get_node(m).get_attr(\n 'locationx')) ** 2 + (self.get_node(n).get_attr\n ('locationy') - self.get_node(m).get_attr(\n 'locationy')) ** 2) ** 0.5 * scale_cost, 0)\n if ((m, n) not in self.edge_attr and m != n) and (\n parallel_allowed or (n, m) not in self.edge_attr):\n neighbors.append(random.randint(0, numnodes - 1))\n self.add_edge(m, n, cost=int(length), **edge_format\n )\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(int(\n length)))\n i += 1\n elif node_selection is 'closest':\n lengths = []\n for n in range(numnodes):\n lengths.append((n, round(((self.get_node(n).\n get_attr('locationx') - self.get_node(m).\n get_attr('locationx')) ** 2 + (self.get_node(n)\n .get_attr('locationy') - self.get_node(m).\n get_attr('locationy')) ** 2) ** 0.5 *\n scale_cost, 0)))\n lengths.sort(key=lambda l: l[1])\n for i in range(degree + 1):\n if not (lengths[i][0] == m or self.check_edge(m,\n lengths[i][0])):\n self.add_edge(m, lengths[i][0], cost=int(\n lengths[i][1]), **edge_format)\n if add_labels:\n self.set_edge_attr(m, lengths[i][0],\n 'label', str(int(lengths[i][1])))\n else:\n print('Unknown node selection rule...exiting')\n return\n elif density != None:\n for m in range(numnodes):\n if self.graph_type == DIRECTED_GRAPH:\n numnodes2 = numnodes\n else:\n numnodes2 = m\n for n in range(numnodes2):\n if (parallel_allowed or (n, m) not in self.edge_attr\n ) and m != n:\n if random.random() < density:\n if length_range is None:\n \"\"\" calculates the euclidean norm and round it\n to an integer \"\"\"\n length = round(((self.get_node(n).get_attr(\n 'locationx') - self.get_node(m).\n get_attr('locationx')) ** 2 + (self.\n get_node(n).get_attr('locationy') -\n self.get_node(m).get_attr('locationy')) **\n 2) ** 0.5, 0)\n self.add_edge(m, n, cost=int(length), **\n edge_format)\n if add_labels:\n self.set_edge_attr(m, n, 'label', str(\n int(length)))\n else:\n self.add_edge(m, n, **edge_format)\n else:\n print('Must set either degree range or density')\n",
"role": "user"
},
{
"content": "random",
"role": "assistant"
}
] |
def x(self, damping_factor=0.85, max_iterations=100, min_delta=1e-05):
nodes = self.get_node_list()
graph_size = len(nodes)
if graph_size == 0:
return {}
min_value = old_div(1.0 - damping_factor, graph_size)
pagerank = dict.fromkeys(nodes, old_div(1.0, graph_size))
for _ in range(max_iterations):
diff = 0
for node in nodes:
rank = min_value
for referring_page in self.get_in_neighbors(node):
rank += damping_factor * pagerank[referring_page] / len(self
.get_neighbors(referring_page))
diff += abs(pagerank[node] - rank)
pagerank[node] = rank
if diff < min_delta:
break
return pagerank
|
page_rank
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, damping_factor=0.85, max_iterations=100, min_delta=1e-05):\n nodes = self.get_node_list()\n graph_size = len(nodes)\n if graph_size == 0:\n return {}\n min_value = old_div(1.0 - damping_factor, graph_size)\n pagerank = dict.fromkeys(nodes, old_div(1.0, graph_size))\n for _ in range(max_iterations):\n diff = 0\n for node in nodes:\n rank = min_value\n for referring_page in self.get_in_neighbors(node):\n rank += damping_factor * pagerank[referring_page] / len(self\n .get_neighbors(referring_page))\n diff += abs(pagerank[node] - rank)\n pagerank[node] = rank\n if diff < min_delta:\n break\n return pagerank\n",
"role": "user"
},
{
"content": "page_rank",
"role": "assistant"
}
] |
def x(self):
degree = {}
if self.attr['type'] is not DIRECTED_GRAPH:
for n in self.get_node_list():
degree[n] = len(self.get_neighbors(n))
return degree
else:
for n in self.get_node_list():
degree[n] = len(self.get_in_neighbors(n)) + len(self.
get_out_neighbors(n))
|
get_degrees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n for n in self.get_node_list():\n degree[n] = len(self.get_neighbors(n))\n return degree\n else:\n for n in self.get_node_list():\n degree[n] = len(self.get_in_neighbors(n)) + len(self.\n get_out_neighbors(n))\n",
"role": "user"
},
{
"content": "get_degrees",
"role": "assistant"
}
] |
def x(self):
degree = {}
if self.attr['type'] is not DIRECTED_GRAPH:
print('This function only works for directed graphs')
return
for n in self.get_node_list():
degree[n] = len(self.get_in_neighbors(n))
return degree
|
get_in_degrees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n print('This function only works for directed graphs')\n return\n for n in self.get_node_list():\n degree[n] = len(self.get_in_neighbors(n))\n return degree\n",
"role": "user"
},
{
"content": "get_in_degrees",
"role": "assistant"
}
] |
def x(self):
degree = {}
if self.attr['type'] is not DIRECTED_GRAPH:
print('This function only works for directed graphs')
return
for n in self.get_node_list():
degree[n] = len(self.get_out_neighbors(n))
return degree
|
get_out_degrees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n degree = {}\n if self.attr['type'] is not DIRECTED_GRAPH:\n print('This function only works for directed graphs')\n return\n for n in self.get_node_list():\n degree[n] = len(self.get_out_neighbors(n))\n return degree\n",
"role": "user"
},
{
"content": "get_out_degrees",
"role": "assistant"
}
] |
def x(self):
if self.attr['type'] is not UNDIRECTED_GRAPH:
print('This function only works for undirected graphs')
return
diameter = 'infinity'
eccentricity_n = 0
for n in self.get_node_list():
for m in self.get_node_list():
path_n_m = self.search(n, destination=m, algo='BFS')
if path_n_m is None:
return 'infinity'
distance_n_m = len(path_n_m) - 1
if distance_n_m > eccentricity_n:
eccentricity_n = distance_n_m
if diameter is 'infinity' or eccentricity_n > diameter:
diameter = eccentricity_n
return diameter
|
get_diameter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.attr['type'] is not UNDIRECTED_GRAPH:\n print('This function only works for undirected graphs')\n return\n diameter = 'infinity'\n eccentricity_n = 0\n for n in self.get_node_list():\n for m in self.get_node_list():\n path_n_m = self.search(n, destination=m, algo='BFS')\n if path_n_m is None:\n return 'infinity'\n distance_n_m = len(path_n_m) - 1\n if distance_n_m > eccentricity_n:\n eccentricity_n = distance_n_m\n if diameter is 'infinity' or eccentricity_n > diameter:\n diameter = eccentricity_n\n return diameter\n",
"role": "user"
},
{
"content": "get_diameter",
"role": "assistant"
}
] |
def x(self, node_list, cluster_attrs={}, node_attrs={}):
if 'name' in cluster_attrs:
if 'name' in self.cluster:
raise Exception('A cluster with name %s already exists!' %
cluster_attrs['name'])
else:
name = cluster_attrs['name']
else:
name = 'c%d' % self.attr['cluster_count']
self.attr['cluster_count'] += 1
cluster_attrs['name'] = name
self.cluster[name] = {'node_list': node_list, 'attrs': copy.deepcopy(
cluster_attrs), 'node_attrs': copy.deepcopy(node_attrs)}
|
create_cluster
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node_list, cluster_attrs={}, node_attrs={}):\n if 'name' in cluster_attrs:\n if 'name' in self.cluster:\n raise Exception('A cluster with name %s already exists!' %\n cluster_attrs['name'])\n else:\n name = cluster_attrs['name']\n else:\n name = 'c%d' % self.attr['cluster_count']\n self.attr['cluster_count'] += 1\n cluster_attrs['name'] = name\n self.cluster[name] = {'node_list': node_list, 'attrs': copy.deepcopy(\n cluster_attrs), 'node_attrs': copy.deepcopy(node_attrs)}\n",
"role": "user"
},
{
"content": "create_cluster",
"role": "assistant"
}
] |
def x(self, aList):
self.add_node(aList[0])
for i in range(1, len(aList)):
self.add_edge(aList[i], aList[0])
self.sizes[aList[0]] = len(aList)
|
add
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, aList):\n self.add_node(aList[0])\n for i in range(1, len(aList)):\n self.add_edge(aList[i], aList[0])\n self.sizes[aList[0]] = len(aList)\n",
"role": "user"
},
{
"content": "add",
"role": "assistant"
}
] |
def x(self, i, j):
roots = self.find(i), self.find(j)
if roots[0] == roots[1]:
return False
if self.sizes[roots[0]] <= self.sizes[roots[1]] or not self.optimize:
self.add_edge(roots[0], roots[1])
self.sizes[roots[1]] += self.sizes[roots[0]]
return True
else:
self.add_edge(roots[1], roots[0])
self.sizes[roots[0]] += self.sizes[roots[1]]
return True
|
union
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i, j):\n roots = self.find(i), self.find(j)\n if roots[0] == roots[1]:\n return False\n if self.sizes[roots[0]] <= self.sizes[roots[1]] or not self.optimize:\n self.add_edge(roots[0], roots[1])\n self.sizes[roots[1]] += self.sizes[roots[0]]\n return True\n else:\n self.add_edge(roots[1], roots[0])\n self.sizes[roots[0]] += self.sizes[roots[1]]\n return True\n",
"role": "user"
},
{
"content": "union",
"role": "assistant"
}
] |
def x(self, i):
current = i
edge_list = []
while len(self.get_neighbors(current)) != 0:
successor = self.get_neighbors(current)[0]
edge_list.append((current, successor))
current = successor
if self.optimize:
for e in edge_list:
if e[1] != current:
self.del_edge((e[0], e[1]))
self.add_edge(e[0], current)
return current
|
find
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, i):\n current = i\n edge_list = []\n while len(self.get_neighbors(current)) != 0:\n successor = self.get_neighbors(current)[0]\n edge_list.append((current, successor))\n current = successor\n if self.optimize:\n for e in edge_list:\n if e[1] != current:\n self.del_edge((e[0], e[1]))\n self.add_edge(e[0], current)\n return current\n",
"role": "user"
},
{
"content": "find",
"role": "assistant"
}
] |
def x(self, node: InstanceNode) ->XPathValue:
return self._eval(XPathContext(node, node, 1, 1))
|
evaluate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, node: InstanceNode) ->XPathValue:\n return self._eval(XPathContext(node, node, 1, 1))\n",
"role": "user"
},
{
"content": "evaluate",
"role": "assistant"
}
] |
def x(self, raw: RawScalar) ->Optional[ScalarValue]:
if isinstance(raw, str):
return raw
|
from_raw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, raw: RawScalar) ->Optional[ScalarValue]:\n if isinstance(raw, str):\n return raw\n",
"role": "user"
},
{
"content": "from_raw",
"role": "assistant"
}
] |
def x(self, text: str) ->ScalarValue:
res = self.parse_value(text)
if res is None:
raise InvalidArgument(text)
return res
|
from_yang
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text: str) ->ScalarValue:\n res = self.parse_value(text)\n if res is None:\n raise InvalidArgument(text)\n return res\n",
"role": "user"
},
{
"content": "from_yang",
"role": "assistant"
}
] |
def x(self, stmt: Statement, sctx: SchemaContext) ->None:
self._handle_restrictions(stmt, sctx)
|
handle_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stmt: Statement, sctx: SchemaContext) ->None:\n self._handle_restrictions(stmt, sctx)\n",
"role": "user"
},
{
"content": "handle_properties",
"role": "assistant"
}
] |
def x(self, config: bool) ->Dict[str, Any]:
res = {'base': self.yang_type()}
if self.name is not None:
res['derived'] = self.name
return res
|
type_digest
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, config: bool) ->Dict[str, Any]:\n res = {'base': self.yang_type()}\n if self.name is not None:\n res['derived'] = self.name\n return res\n",
"role": "user"
},
{
"content": "type_digest",
"role": "assistant"
}
] |
def x(self) ->List[Tuple[str, int]]:
return sorted(self.bit.items(), key=lambda x: x[1])
|
sorted_bits
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self) ->List[Tuple[str, int]]:\n return sorted(self.bit.items(), key=lambda x: x[1])\n",
"role": "user"
},
{
"content": "sorted_bits",
"role": "assistant"
}
] |
def x(self, val: Tuple[str]) ->int:
res = 0
try:
for b in val:
res += 1 << self.bit[b]
except KeyError:
return None
return res
|
as_int
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, val: Tuple[str]) ->int:\n res = 0\n try:\n for b in val:\n res += 1 << self.bit[b]\n except KeyError:\n return None\n return res\n",
"role": "user"
},
{
"content": "as_int",
"role": "assistant"
}
] |
def x(self, stmt: Statement, sctx: SchemaContext) ->None:
nextpos = 0
for bst in stmt.find_all('bit'):
if not sctx.schema_data.if_features(bst, sctx.text_mid):
continue
label = bst.argument
pst = bst.find1('position')
if pst:
pos = int(pst.argument)
self.bit[label] = pos
if pos > nextpos:
nextpos = pos
else:
self.bit[label] = nextpos
nextpos += 1
|
handle_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, stmt: Statement, sctx: SchemaContext) ->None:\n nextpos = 0\n for bst in stmt.find_all('bit'):\n if not sctx.schema_data.if_features(bst, sctx.text_mid):\n continue\n label = bst.argument\n pst = bst.find1('position')\n if pst:\n pos = int(pst.argument)\n self.bit[label] = pos\n if pos > nextpos:\n nextpos = pos\n else:\n self.bit[label] = nextpos\n nextpos += 1\n",
"role": "user"
},
{
"content": "handle_properties",
"role": "assistant"
}
] |
def x(self, raw: RawScalar) ->Optional[bool]:
if isinstance(raw, bool):
return raw
|
from_raw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, raw: RawScalar) ->Optional[bool]:\n if isinstance(raw, bool):\n return raw\n",
"role": "user"
},
{
"content": "from_raw",
"role": "assistant"
}
] |
def x(self, text: str) ->Optional[bool]:
if text == 'true':
return True
if text == 'false':
return False
|
parse_value
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text: str) ->Optional[bool]:\n if text == 'true':\n return True\n if text == 'false':\n return False\n",
"role": "user"
},
{
"content": "parse_value",
"role": "assistant"
}
] |
def x(self, raw: RawScalar) ->Optional[bytes]:
try:
return base64.b64decode(raw, validate=True)
except TypeError:
return None
|
from_raw
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, raw: RawScalar) ->Optional[bytes]:\n try:\n return base64.b64decode(raw, validate=True)\n except TypeError:\n return None\n",
"role": "user"
},
{
"content": "from_raw",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.