source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(a): sqrth = math.sqrt(2) / 2 x = float(a) * sqrth z = abs(x) if z < sqrth: y = 0.5 + 0.5 * math.erf(x) else: y = 0.5 * math.erfc(z) if x > 0: y = 1 - y return y
ndtr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a):\n sqrth = math.sqrt(2) / 2\n x = float(a) * sqrth\n z = abs(x)\n if z < sqrth:\n y = 0.5 + 0.5 * math.erf(x)\n else:\n y = 0.5 * math.erfc(z)\n if x > 0:\n y = 1 - y\n return y\n", "role": "user" }, { "content": "ndtr", "role": "assistant" } ]
def x(sample1, sample2, use_continuity=True): sample = sample1.copy() for k, v in sample2.items(): sample[k] = sample.get(k, 0) + v ranks = _rank(sample) sum_of_ranks = sum([(sample1[k] * ranks[k]) for k, v in sample1.items()]) n1 = sum(sample1.values()) n2 = sum(sample2.values()) u1 = sum_of_ranks - n1 * (n1 + 1) / 2 u2 = n1 * n2 - u1 tie_correction = _tie_correct(sample) if tie_correction == 0: raise ValueError('All provided sample values are identical.') sd_u = math.sqrt(tie_correction * n1 * n2 * (n1 + n2 + 1) / 12.0) mean_rank = n1 * n2 / 2.0 + 0.5 * use_continuity z = abs((max(u1, u2) - mean_rank) / sd_u) return mwu_result(min(u1, u2), ndtr(-z))
mann_whitney_u
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sample1, sample2, use_continuity=True):\n sample = sample1.copy()\n for k, v in sample2.items():\n sample[k] = sample.get(k, 0) + v\n ranks = _rank(sample)\n sum_of_ranks = sum([(sample1[k] * ranks[k]) for k, v in sample1.items()])\n n1 = sum(sample1.values())\n n2 = sum(sample2.values())\n u1 = sum_of_ranks - n1 * (n1 + 1) / 2\n u2 = n1 * n2 - u1\n tie_correction = _tie_correct(sample)\n if tie_correction == 0:\n raise ValueError('All provided sample values are identical.')\n sd_u = math.sqrt(tie_correction * n1 * n2 * (n1 + n2 + 1) / 12.0)\n mean_rank = n1 * n2 / 2.0 + 0.5 * use_continuity\n z = abs((max(u1, u2) - mean_rank) / sd_u)\n return mwu_result(min(u1, u2), ndtr(-z))\n", "role": "user" }, { "content": "mann_whitney_u", "role": "assistant" } ]
def x(func): def x(*args, **kwargs): print('Call to deprecated function %s.' % func.__name__) return func(*args, **kwargs) newFunc.__name__ = func.__name__ newFunc.__doc__ = func.__doc__ newFunc.__dict__.update(func.__dict__) return newFunc
deprecated
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(func):\n\n def x(*args, **kwargs):\n print('Call to deprecated function %s.' % func.__name__)\n return func(*args, **kwargs)\n newFunc.__name__ = func.__name__\n newFunc.__doc__ = func.__doc__\n newFunc.__dict__.update(func.__dict__)\n return newFunc\n", "role": "user" }, { "content": "deprecated", "role": "assistant" } ]
def x(sc, app=None, build_id=None, channel=None, doc_type='saved_session', fraction=1.0, schema=None, source_name='telemetry', source_version='4', submission_date=None, version=None): if schema: print( "The 'schema' parameter is deprecated. Version 4 is now the only schema supported." ) if schema != 'v4': raise ValueError('Invalid schema version') dataset = Dataset.from_source('telemetry') filters = ('docType', doc_type), ('sourceName', source_name), ( 'sourceVersion', source_version), ('appName', app), ('appUpdateChannel' , channel), ('appVersion', version) for key, condition in filters: if condition and condition != '*': dataset = dataset.where(**{key: condition}) special_cases = dict(appBuildId=build_id, submissionDate=submission_date) def x(min_val, max_val, val): return min_val <= val <= max_val for key, value in iteritems(special_cases): if value is not None and value != '*': if isinstance(value, string_types): condition = value elif isinstance(value, (list, tuple)) and len(value) == 2: start, end = value condition = partial(range_compare, start, end) else: raise ValueError( '{} must be either a string or a 2 elements list/tuple' .format(key)) dataset = dataset.where(**{key: condition}) return dataset.records(sc, sample=fraction)
get_pings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sc, app=None, build_id=None, channel=None, doc_type='saved_session',\n fraction=1.0, schema=None, source_name='telemetry', source_version='4',\n submission_date=None, version=None):\n if schema:\n print(\n \"The 'schema' parameter is deprecated. Version 4 is now the only schema supported.\"\n )\n if schema != 'v4':\n raise ValueError('Invalid schema version')\n dataset = Dataset.from_source('telemetry')\n filters = ('docType', doc_type), ('sourceName', source_name), (\n 'sourceVersion', source_version), ('appName', app), ('appUpdateChannel'\n , channel), ('appVersion', version)\n for key, condition in filters:\n if condition and condition != '*':\n dataset = dataset.where(**{key: condition})\n special_cases = dict(appBuildId=build_id, submissionDate=submission_date)\n\n def x(min_val, max_val, val):\n return min_val <= val <= max_val\n for key, value in iteritems(special_cases):\n if value is not None and value != '*':\n if isinstance(value, string_types):\n condition = value\n elif isinstance(value, (list, tuple)) and len(value) == 2:\n start, end = value\n condition = partial(range_compare, start, end)\n else:\n raise ValueError(\n '{} must be either a string or a 2 elements list/tuple'\n .format(key))\n dataset = dataset.where(**{key: condition})\n return dataset.records(sc, sample=fraction)\n", "role": "user" }, { "content": "get_pings", "role": "assistant" } ]
def x(pings, paths, only_median=False, with_processes=False, histograms_url =None, additional_histograms=None): if isinstance(pings.first(), binary_type): pings = pings.map(lambda p: json.loads(p.decode('utf-8'))) if isinstance(paths, str): paths = [paths] if isinstance(paths, dict): paths = [(prop_name, path.split('/')) for prop_name, path in iteritems(paths)] else: paths = [(path, path.split('/')) for path in paths] return pings.map(lambda p: _get_ping_properties(p, paths, only_median, with_processes, histograms_url, additional_histograms)).filter(lambda p: p)
get_pings_properties
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pings, paths, only_median=False, with_processes=False, histograms_url\n =None, additional_histograms=None):\n if isinstance(pings.first(), binary_type):\n pings = pings.map(lambda p: json.loads(p.decode('utf-8')))\n if isinstance(paths, str):\n paths = [paths]\n if isinstance(paths, dict):\n paths = [(prop_name, path.split('/')) for prop_name, path in\n iteritems(paths)]\n else:\n paths = [(path, path.split('/')) for path in paths]\n return pings.map(lambda p: _get_ping_properties(p, paths, only_median,\n with_processes, histograms_url, additional_histograms)).filter(lambda\n p: p)\n", "role": "user" }, { "content": "get_pings_properties", "role": "assistant" } ]
def x(pings): if isinstance(pings.first(), binary_type): pings = pings.map(lambda p: json.loads(p.decode('utf-8'))) filtered = pings.filter(lambda p: 'clientID' in p or 'clientId' in p) if not filtered: raise ValueError('Missing clientID/clientId attribute.') if 'clientID' in filtered.first(): client_id = 'clientID' else: client_id = 'clientId' return filtered.map(lambda p: (p[client_id], p)).reduceByKey(lambda p1, p2: p1).map(lambda p: p[1])
get_one_ping_per_client
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pings):\n if isinstance(pings.first(), binary_type):\n pings = pings.map(lambda p: json.loads(p.decode('utf-8')))\n filtered = pings.filter(lambda p: 'clientID' in p or 'clientId' in p)\n if not filtered:\n raise ValueError('Missing clientID/clientId attribute.')\n if 'clientID' in filtered.first():\n client_id = 'clientID'\n else:\n client_id = 'clientId'\n return filtered.map(lambda p: (p[client_id], p)).reduceByKey(lambda p1,\n p2: p1).map(lambda p: p[1])\n", "role": "user" }, { "content": "get_one_ping_per_client", "role": "assistant" } ]
def x(function=None): def x(user): if not user.is_authenticated: return False if settings.ADMIN_IGNORED: raise PermissionDenied if not user.is_admin: raise PermissionDenied return True actual_decorator = user_passes_test(check_perms, login_url=_login_url) if function: return actual_decorator(function) return actual_decorator
admin_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function=None):\n\n def x(user):\n if not user.is_authenticated:\n return False\n if settings.ADMIN_IGNORED:\n raise PermissionDenied\n if not user.is_admin:\n raise PermissionDenied\n return True\n actual_decorator = user_passes_test(check_perms, login_url=_login_url)\n if function:\n return actual_decorator(function)\n return actual_decorator\n", "role": "user" }, { "content": "admin_required", "role": "assistant" } ]
def x(function=None): def x(user): if not user.is_authenticated: return False if settings.ADMIN_REQUIRED and not user.is_admin: raise PermissionDenied return True actual_decorator = user_passes_test(check_perms, login_url=_login_url) if function: return actual_decorator(function) return actual_decorator
login_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function=None):\n\n def x(user):\n if not user.is_authenticated:\n return False\n if settings.ADMIN_REQUIRED and not user.is_admin:\n raise PermissionDenied\n return True\n actual_decorator = user_passes_test(check_perms, login_url=_login_url)\n if function:\n return actual_decorator(function)\n return actual_decorator\n", "role": "user" }, { "content": "login_required", "role": "assistant" } ]
def x(function=None): def x(func): def x(machine_name, password, *args): from django_xmlrpc.decorators import AuthenticationFailedException from karaage.machines.models import Machine machine = Machine.objects.authenticate(machine_name, password) if machine is None: raise AuthenticationFailedException return func(machine, *args) if hasattr(func, '_xmlrpc_signature'): sig = func._xmlrpc_signature sig['args'] = ['string'] * 2 + sig['args'] wrapper._xmlrpc_signature = sig if func.__doc__: wrapper.__doc__ = (func.__doc__ + '\nNote: Machine authentication is required.') return wrapper if function: return actual_decorator(function) return actual_decorator
xmlrpc_machine_required
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(function=None):\n\n def x(func):\n\n def x(machine_name, password, *args):\n from django_xmlrpc.decorators import AuthenticationFailedException\n from karaage.machines.models import Machine\n machine = Machine.objects.authenticate(machine_name, password)\n if machine is None:\n raise AuthenticationFailedException\n return func(machine, *args)\n if hasattr(func, '_xmlrpc_signature'):\n sig = func._xmlrpc_signature\n sig['args'] = ['string'] * 2 + sig['args']\n wrapper._xmlrpc_signature = sig\n if func.__doc__:\n wrapper.__doc__ = (func.__doc__ +\n '\\nNote: Machine authentication is required.')\n return wrapper\n if function:\n return actual_decorator(function)\n return actual_decorator\n", "role": "user" }, { "content": "xmlrpc_machine_required", "role": "assistant" } ]
def x(self, command, ignore_errors=None): if ignore_errors is None: ignore_errors = [] cmd = [] cmd.extend(self._prefix) cmd.extend([self._path, '-iP']) cmd.extend(command) command = cmd logger.debug('Cmd %s' % command) null = open('/dev/null', 'w') retcode = subprocess.call(command, stdout=null, stderr=null) null.close() if retcode in ignore_errors: logger.debug('<-- Cmd %s returned %d (ignored)' % (command, retcode)) return if retcode: logger.error('<-- Cmd %s returned: %d (error)' % (command, retcode)) raise subprocess.CalledProcessError(retcode, command) logger.debug('<-- Returned %d (good)' % retcode) return
call
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command, ignore_errors=None):\n if ignore_errors is None:\n ignore_errors = []\n cmd = []\n cmd.extend(self._prefix)\n cmd.extend([self._path, '-iP'])\n cmd.extend(command)\n command = cmd\n logger.debug('Cmd %s' % command)\n null = open('/dev/null', 'w')\n retcode = subprocess.call(command, stdout=null, stderr=null)\n null.close()\n if retcode in ignore_errors:\n logger.debug('<-- Cmd %s returned %d (ignored)' % (command, retcode))\n return\n if retcode:\n logger.error('<-- Cmd %s returned: %d (error)' % (command, retcode))\n raise subprocess.CalledProcessError(retcode, command)\n logger.debug('<-- Returned %d (good)' % retcode)\n return\n", "role": "user" }, { "content": "call", "role": "assistant" } ]
def x(self, command): cmd = [] cmd.extend(self._prefix) cmd.extend([self._path, '-iP']) cmd.extend(command) command = cmd logger.debug('Cmd %s' % command) null = open('/dev/null', 'w') process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=null) null.close() results = [] reader = csv.reader(_input_csv(process.stdout), delimiter=str('|')) try: headers = next(reader) logger.debug('<-- headers %s' % headers) except StopIteration: logger.debug('Cmd %s headers not found' % command) headers = [] for row in reader: _output_csv(row) logger.debug('<-- row %s' % row) this_row = {} i = 0 for i in range(0, len(headers)): key = headers[i] value = row[i] this_row[key] = value results.append(this_row) process.stdout.close() retcode = process.wait() if retcode != 0: logger.error('<-- Cmd %s returned %d (error)' % (command, retcode)) raise subprocess.CalledProcessError(retcode, command) if len(headers) == 0: logger.error("Cmd %s didn't return any headers." % command) raise RuntimeError("Cmd %s didn't return any headers." % command) logger.debug('<-- Returned: %d (good)' % retcode) return results
read_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command):\n cmd = []\n cmd.extend(self._prefix)\n cmd.extend([self._path, '-iP'])\n cmd.extend(command)\n command = cmd\n logger.debug('Cmd %s' % command)\n null = open('/dev/null', 'w')\n process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=null)\n null.close()\n results = []\n reader = csv.reader(_input_csv(process.stdout), delimiter=str('|'))\n try:\n headers = next(reader)\n logger.debug('<-- headers %s' % headers)\n except StopIteration:\n logger.debug('Cmd %s headers not found' % command)\n headers = []\n for row in reader:\n _output_csv(row)\n logger.debug('<-- row %s' % row)\n this_row = {}\n i = 0\n for i in range(0, len(headers)):\n key = headers[i]\n value = row[i]\n this_row[key] = value\n results.append(this_row)\n process.stdout.close()\n retcode = process.wait()\n if retcode != 0:\n logger.error('<-- Cmd %s returned %d (error)' % (command, retcode))\n raise subprocess.CalledProcessError(retcode, command)\n if len(headers) == 0:\n logger.error(\"Cmd %s didn't return any headers.\" % command)\n raise RuntimeError(\"Cmd %s didn't return any headers.\" % command)\n logger.debug('<-- Returned: %d (good)' % retcode)\n return results\n", "role": "user" }, { "content": "read_output", "role": "assistant" } ]
def x(self, projectname): cmd = ['list', 'accounts', 'where', 'name=%s' % projectname] results = self._read_output(cmd) if len(results) == 0: return None elif len(results) > 1: logger.error("Command returned multiple results for '%s'." % projectname) raise RuntimeError("Command returned multiple results for '%s'." % projectname) the_result = results[0] the_project = the_result['Account'] if projectname.lower() != the_project.lower(): logger.error( "We expected projectname '%s' but got projectname '%s'." % ( projectname, the_project)) raise RuntimeError( "We expected projectname '%s' but got projectname '%s'." % ( projectname, the_project)) return the_result
get_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, projectname):\n cmd = ['list', 'accounts', 'where', 'name=%s' % projectname]\n results = self._read_output(cmd)\n if len(results) == 0:\n return None\n elif len(results) > 1:\n logger.error(\"Command returned multiple results for '%s'.\" %\n projectname)\n raise RuntimeError(\"Command returned multiple results for '%s'.\" %\n projectname)\n the_result = results[0]\n the_project = the_result['Account']\n if projectname.lower() != the_project.lower():\n logger.error(\n \"We expected projectname '%s' but got projectname '%s'.\" % (\n projectname, the_project))\n raise RuntimeError(\n \"We expected projectname '%s' but got projectname '%s'.\" % (\n projectname, the_project))\n return the_result\n", "role": "user" }, { "content": "get_project", "role": "assistant" } ]
def x(self, projectname): cmd = ['list', 'assoc', 'where', 'account=%s' % projectname] results = self._read_output(cmd) user_list = [] for result in results: if result['User'] != '': user_list.append(result['User']) return user_list
get_users_in_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, projectname):\n cmd = ['list', 'assoc', 'where', 'account=%s' % projectname]\n results = self._read_output(cmd)\n user_list = []\n for result in results:\n if result['User'] != '':\n user_list.append(result['User'])\n return user_list\n", "role": "user" }, { "content": "get_users_in_project", "role": "assistant" } ]
def x(self, username): cmd = ['list', 'assoc', 'where', 'user=%s' % username] results = self._read_output(cmd) project_list = [] for result in results: project_list.append(result['Account']) return project_list
get_projects_in_user
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username):\n cmd = ['list', 'assoc', 'where', 'user=%s' % username]\n results = self._read_output(cmd)\n project_list = []\n for result in results:\n project_list.append(result['Account'])\n return project_list\n", "role": "user" }, { "content": "get_projects_in_user", "role": "assistant" } ]
def x(self, account, username): default_project_name = self._null_project if account.default_project is not None: default_project_name = account.default_project.pid ds_user = self.get_user(username) if account.date_deleted is None: logger.debug('account is active') if ds_user is None: self._call(['add', 'user', 'accounts=%s' % default_project_name, 'defaultaccount=%s' % default_project_name, 'name=%s' % username]) else: self._call(['modify', 'user', 'set', 'defaultaccount=%s' % default_project_name, 'where', 'name=%s' % username]) slurm_projects = self.get_projects_in_user(username) slurm_projects = [project.lower() for project in slurm_projects] slurm_projects = set(slurm_projects) for project in account.person.projects.all(): if project.pid.lower() not in slurm_projects: self._call(['add', 'user', 'name=%s' % username, 'accounts=%s' % project.pid]) else: logger.debug('account is not active') self._delete_account(username) return
save_account
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, account, username):\n default_project_name = self._null_project\n if account.default_project is not None:\n default_project_name = account.default_project.pid\n ds_user = self.get_user(username)\n if account.date_deleted is None:\n logger.debug('account is active')\n if ds_user is None:\n self._call(['add', 'user', 'accounts=%s' % default_project_name,\n 'defaultaccount=%s' % default_project_name, 'name=%s' %\n username])\n else:\n self._call(['modify', 'user', 'set', 'defaultaccount=%s' %\n default_project_name, 'where', 'name=%s' % username])\n slurm_projects = self.get_projects_in_user(username)\n slurm_projects = [project.lower() for project in slurm_projects]\n slurm_projects = set(slurm_projects)\n for project in account.person.projects.all():\n if project.pid.lower() not in slurm_projects:\n self._call(['add', 'user', 'name=%s' % username, \n 'accounts=%s' % project.pid])\n else:\n logger.debug('account is not active')\n self._delete_account(username)\n return\n", "role": "user" }, { "content": "save_account", "role": "assistant" } ]
def x(self, username): ds_user = self.get_user(username) if ds_user is not None: self._call(['delete', 'user', 'name=%s' % username]) return
delete_account
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, username):\n ds_user = self.get_user(username)\n if ds_user is not None:\n self._call(['delete', 'user', 'name=%s' % username])\n return\n", "role": "user" }, { "content": "delete_account", "role": "assistant" } ]
def x(self, project): pid = project.pid if project.is_active: logger.debug('project is active') ds_project = self.get_project(pid) if ds_project is None: self._call(['add', 'account', 'name=%s' % pid] + self. _add_account_extra) name = self._truncate(project.name, 40) self._call(['modify', 'account', 'set', 'Description=%s' % self. _filter_string(name), 'where', 'name=%s' % pid]) self._call(['modify', 'account', 'set', 'Organization=%s' % self. _filter_string(project.institute.name), 'where', 'name=%s' % pid]) else: logger.debug('project is not active') ds_project = self.get_project(pid) if ds_project is not None: self._call(['delete', 'account', 'name=%s' % pid]) return
save_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, project):\n pid = project.pid\n if project.is_active:\n logger.debug('project is active')\n ds_project = self.get_project(pid)\n if ds_project is None:\n self._call(['add', 'account', 'name=%s' % pid] + self.\n _add_account_extra)\n name = self._truncate(project.name, 40)\n self._call(['modify', 'account', 'set', 'Description=%s' % self.\n _filter_string(name), 'where', 'name=%s' % pid])\n self._call(['modify', 'account', 'set', 'Organization=%s' % self.\n _filter_string(project.institute.name), 'where', 'name=%s' % pid])\n else:\n logger.debug('project is not active')\n ds_project = self.get_project(pid)\n if ds_project is not None:\n self._call(['delete', 'account', 'name=%s' % pid])\n return\n", "role": "user" }, { "content": "save_project", "role": "assistant" } ]
def x(self, project): pid = project.pid ds_project = self.get_project(pid) if ds_project is not None: self._call(['delete', 'account', 'name=%s' % pid]) return
delete_project
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, project):\n pid = project.pid\n ds_project = self.get_project(pid)\n if ds_project is not None:\n self._call(['delete', 'account', 'name=%s' % pid])\n return\n", "role": "user" }, { "content": "delete_project", "role": "assistant" } ]
def x(self, q, request): return Project.objects.filter(Q(pid__icontains=q) | Q(name__icontains=q))
get_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q, request):\n return Project.objects.filter(Q(pid__icontains=q) | Q(name__icontains=q))\n", "role": "user" }, { "content": "get_query", "role": "assistant" } ]
def x(self, track): from trackhub import BaseTrack if isinstance(track, BaseTrack): self.add_child(track) self._tracks.append(track) else: for t in track: self.add_child(t) self._tracks.append(t)
add_tracks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, track):\n from trackhub import BaseTrack\n if isinstance(track, BaseTrack):\n self.add_child(track)\n self._tracks.append(track)\n else:\n for t in track:\n self.add_child(t)\n self._tracks.append(t)\n", "role": "user" }, { "content": "add_tracks", "role": "assistant" } ]
def x(alpha=8, numeric=4): import string import random vowels = ['a', 'e', 'i', 'o', 'u'] consonants = [a for a in string.ascii_lowercase if a not in vowels] digits = string.digits def x(slen): ret = '' for i in range(slen): if i % 2 == 0: randid = random.randint(0, 20) ret += consonants[randid] else: randid = random.randint(0, 4) ret += vowels[randid] return ret def x(slen): ret = '' for i in range(slen): randid = random.randint(0, 9) ret += digits[randid] return ret fpl = alpha / 2 if alpha % 2: fpl = int(alpha / 2) + 1 lpl = alpha - fpl start = a_part(fpl) mid = n_part(numeric) end = a_part(lpl) return '%s%s%s' % (start, mid, end)
nicepass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(alpha=8, numeric=4):\n import string\n import random\n vowels = ['a', 'e', 'i', 'o', 'u']\n consonants = [a for a in string.ascii_lowercase if a not in vowels]\n digits = string.digits\n\n def x(slen):\n ret = ''\n for i in range(slen):\n if i % 2 == 0:\n randid = random.randint(0, 20)\n ret += consonants[randid]\n else:\n randid = random.randint(0, 4)\n ret += vowels[randid]\n return ret\n\n def x(slen):\n ret = ''\n for i in range(slen):\n randid = random.randint(0, 9)\n ret += digits[randid]\n return ret\n fpl = alpha / 2\n if alpha % 2:\n fpl = int(alpha / 2) + 1\n lpl = alpha - fpl\n start = a_part(fpl)\n mid = n_part(numeric)\n end = a_part(lpl)\n return '%s%s%s' % (start, mid, end)\n", "role": "user" }, { "content": "nicepass", "role": "assistant" } ]
def x(self, q, request): return Person.objects.filter(Q(username__icontains=q) | Q( short_name__icontains=q) | Q(full_name__icontains=q))
get_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q, request):\n return Person.objects.filter(Q(username__icontains=q) | Q(\n short_name__icontains=q) | Q(full_name__icontains=q))\n", "role": "user" }, { "content": "get_query", "role": "assistant" } ]
def x(self, q, request): return Group.objects.filter(Q(name__icontains=q) | Q( description__icontains=q))
get_query
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, q, request):\n return Group.objects.filter(Q(name__icontains=q) | Q(\n description__icontains=q))\n", "role": "user" }, { "content": "get_query", "role": "assistant" } ]
def x(self, obj): result = [escape(obj.name)] if obj.description: result.append(escape(obj.description)) return ' '.join(result)
format_match
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj):\n result = [escape(obj.name)]\n if obj.description:\n result.append(escape(obj.description))\n return ' '.join(result)\n", "role": "user" }, { "content": "format_match", "role": "assistant" } ]
def x(obj): if isinstance(obj, logging.Logger): return True else: return inspect.isclass(obj) and inspect.ismethod(getattr(obj, 'debug', None)) and inspect.ismethod(getattr(obj, 'isEnabledFor', None)) and inspect.ismethod(getattr(obj, 'setLevel', None))
loggable
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(obj):\n if isinstance(obj, logging.Logger):\n return True\n else:\n return inspect.isclass(obj) and inspect.ismethod(getattr(obj,\n 'debug', None)) and inspect.ismethod(getattr(obj,\n 'isEnabledFor', None)) and inspect.ismethod(getattr(obj,\n 'setLevel', None))\n", "role": "user" }, { "content": "loggable", "role": "assistant" } ]
def x(name, value): __mname = value.__module__ if __mname != '__main__': return '%s = <%s.%s object at 0x%x>' % (name, __mname, value. __class__.__name__, id(value)) else: return '%s = <%s object at 0x%x>' % (name, value.__class__.__name__, id(value))
formatter_self
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, value):\n __mname = value.__module__\n if __mname != '__main__':\n return '%s = <%s.%s object at 0x%x>' % (name, __mname, value.\n __class__.__name__, id(value))\n else:\n return '%s = <%s object at 0x%x>' % (name, value.__class__.__name__,\n id(value))\n", "role": "user" }, { "content": "formatter_self", "role": "assistant" } ]
def x(name, value): __mname = value.__module__ if __mname != '__main__': return "%s = <type '%s.%s'>" % (name, __mname, value.__name__) else: return "%s = <type '%s'>" % (name, value.__name__)
formatter_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, value):\n __mname = value.__module__\n if __mname != '__main__':\n return \"%s = <type '%s.%s'>\" % (name, __mname, value.__name__)\n else:\n return \"%s = <type '%s'>\" % (name, value.__name__)\n", "role": "user" }, { "content": "formatter_class", "role": "assistant" } ]
def x(name): if name in ('self', 'instance', 'this'): return af_self elif name == 'class': return af_class elif name in ('named', 'param', 'parameter'): return af_named elif name in ('default', 'optional'): return af_default elif name in ('keyword', 'pair', 'pairs'): return af_keyword else: raise ValueError('unknown trace formatter %r' % name)
get_formatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n if name in ('self', 'instance', 'this'):\n return af_self\n elif name == 'class':\n return af_class\n elif name in ('named', 'param', 'parameter'):\n return af_named\n elif name in ('default', 'optional'):\n return af_default\n elif name in ('keyword', 'pair', 'pairs'):\n return af_keyword\n else:\n raise ValueError('unknown trace formatter %r' % name)\n", "role": "user" }, { "content": "get_formatter", "role": "assistant" } ]
def x(name, func): if name in ('self', 'instance', 'this'): global af_self af_self = _formatter_self if func is None else func elif name == 'class': global af_class af_class = _formatter_class if func is None else func elif name in ('named', 'param', 'parameter'): global af_named af_named = _formatter_named if func is None else func elif name in ('default', 'optional'): global af_default af_default = _formatter_defaults if func is None else func elif name in ('anonymous', 'arbitrary', 'unnamed'): global af_anonymous af_anonymous = chop if func is None else func elif name in ('keyword', 'pair', 'pairs'): global af_keyword af_keyword = _formatter_named if func is None else func else: raise ValueError('unknown trace formatter %r' % name)
set_formatter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name, func):\n if name in ('self', 'instance', 'this'):\n global af_self\n af_self = _formatter_self if func is None else func\n elif name == 'class':\n global af_class\n af_class = _formatter_class if func is None else func\n elif name in ('named', 'param', 'parameter'):\n global af_named\n af_named = _formatter_named if func is None else func\n elif name in ('default', 'optional'):\n global af_default\n af_default = _formatter_defaults if func is None else func\n elif name in ('anonymous', 'arbitrary', 'unnamed'):\n global af_anonymous\n af_anonymous = chop if func is None else func\n elif name in ('keyword', 'pair', 'pairs'):\n global af_keyword\n af_keyword = _formatter_named if func is None else func\n else:\n raise ValueError('unknown trace formatter %r' % name)\n", "role": "user" }, { "content": "set_formatter", "role": "assistant" } ]
def x(name): global __builtin_functions if __builtin_functions is None: builtins = dict() for proto in __builtins: pos = proto.find('(') name, params, defaults = proto[:pos], list(), dict() for param in proto[pos + 1:-1].split(','): pos = param.find('=') if not pos < 0: param, value = param[:pos], param[pos + 1:] try: defaults[param] = __builtin_defaults[value] except KeyError: raise ValueError( 'builtin function %s: parameter %s: unknown default %r' % (name, param, value)) params.append(param) builtins[name] = params, defaults __builtin_functions = builtins try: params, defaults = __builtin_functions[name] except KeyError: params, defaults = tuple(), dict() __builtin_functions[name] = params, defaults print('Warning: builtin function %r is missing prototype' % name, file=sys.stderr) return len(params), params, defaults
lookup_builtin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n global __builtin_functions\n if __builtin_functions is None:\n builtins = dict()\n for proto in __builtins:\n pos = proto.find('(')\n name, params, defaults = proto[:pos], list(), dict()\n for param in proto[pos + 1:-1].split(','):\n pos = param.find('=')\n if not pos < 0:\n param, value = param[:pos], param[pos + 1:]\n try:\n defaults[param] = __builtin_defaults[value]\n except KeyError:\n raise ValueError(\n 'builtin function %s: parameter %s: unknown default %r'\n % (name, param, value))\n params.append(param)\n builtins[name] = params, defaults\n __builtin_functions = builtins\n try:\n params, defaults = __builtin_functions[name]\n except KeyError:\n params, defaults = tuple(), dict()\n __builtin_functions[name] = params, defaults\n print('Warning: builtin function %r is missing prototype' % name,\n file=sys.stderr)\n return len(params), params, defaults\n", "role": "user" }, { "content": "lookup_builtin", "role": "assistant" } ]
def x(_name): def x(_func): def x(name, value): if name is __self: return af_self(name, value) elif name is __klass: return af_class(name, value) else: return af_named(name, value) def x(*__argv, **__kwds): if not logger.isEnabledFor(logging.DEBUG) or _.value: return _func(*__argv, **__kwds) try: _.value = True params = dict(co_defaults) params.update(__kwds) params.update(zip(co_varnames, __argv)) if 'raw_password' in params: params['raw_password'] = '<censored>' position = [positional(n, params.pop(n)) for n in co_varnames[:len(__argv)]] defaults = [af_default(n, params.pop(n)) for n in co_varnames[len(__argv):]] nameless = (af_unnamed(v) for v in __argv[co_argcount:]) keywords = (af_keyword(n, params[n]) for n in sorted(params .keys())) params = ', '.join(filter(None, chain(position, defaults, nameless, keywords))) enter = [pre_enter] if params: enter.append(' ') enter.append(params) enter.append(' ') enter.append(')') leave = [pre_leave] try: logger.debug(''.join(enter)) try: try: _.value = False result = _func(*__argv, **__kwds) finally: _.value = True except Exception: ex_type, value, traceback = sys.exc_info() leave.append(' => exception thrown\n\traise ') __mname = ex_type.__module__ if __mname != '__main__': leave.append(__mname) leave.append('.') leave.append(ex_type.__name__) if value.args: leave.append('(') leave.append(', '.join(chop(v) for v in value.args) ) leave.append(')') else: leave.append('()') raise else: if result is not None: leave.append(' => ') leave.append(chop(result)) finally: logger.debug(''.join(leave)) finally: _.value = False return result __self = False __klass = False def x(x): return x __rewrap = nop if type(_func) in FunctionTypes: __cname = None elif type(_func) in MethodTypes: if _func.im_self is not None: __rewrap = classmethod __cname = _func.im_self.__name__ __klass = True else: __cname = _func.im_class.__name__ __self = True _func = _func.im_func else: return _func __module = _func.__module__ __fname = _func.__name__ if __fname in ('__init__', '__new__', '__repr__', '__str__'): return __rewrap(_func) __fqfn = list() if __module != '__main__': __fqfn.append(__module) __fqfn.append('.') if __cname is not None: __fqfn.append(__cname) __fqfn.append('.') __fqfn.append(__fname) __fqfn = ''.join(__fqfn) if type(_name) in CallableTypes: logger = get_logger_factory().get_logger(__fqfn) elif loggable(_name): logger = _name elif isinstance(_name, six.string_types): logger = get_logger_factory().get_logger(_name) else: raise ValueError( 'invalid object %r: must be a function, a method, a string or an object that implements the Logger API' % _name) pre_enter = ['>>> ', __fqfn, '('] pre_enter = ''.join(pre_enter) pre_leave = ['<<< ', __fqfn] pre_leave = ''.join(pre_leave) try: code = _func.__code__ except AttributeError: co_argcount, co_varnames, co_defaults = __lookup_builtin(_func. __name__) else: co_argcount = code.co_argcount co_varnames = code.co_varnames[:co_argcount] if _func.__defaults__: co_defaults = dict(zip(co_varnames[-len(_func.__defaults__) :], _func.__defaults__)) else: co_defaults = dict() if __klass: __klass = co_varnames[0] if __self: __self = co_varnames[0] return __rewrap(wraps(_func)(wrapper)) if type(_name) in CallableTypes: return decorator(_name) else: return decorator
trace
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(_name):\n\n def x(_func):\n\n def x(name, value):\n if name is __self:\n return af_self(name, value)\n elif name is __klass:\n return af_class(name, value)\n else:\n return af_named(name, value)\n\n def x(*__argv, **__kwds):\n if not logger.isEnabledFor(logging.DEBUG) or _.value:\n return _func(*__argv, **__kwds)\n try:\n _.value = True\n params = dict(co_defaults)\n params.update(__kwds)\n params.update(zip(co_varnames, __argv))\n if 'raw_password' in params:\n params['raw_password'] = '<censored>'\n position = [positional(n, params.pop(n)) for n in\n co_varnames[:len(__argv)]]\n defaults = [af_default(n, params.pop(n)) for n in\n co_varnames[len(__argv):]]\n nameless = (af_unnamed(v) for v in __argv[co_argcount:])\n keywords = (af_keyword(n, params[n]) for n in sorted(params\n .keys()))\n params = ', '.join(filter(None, chain(position, defaults,\n nameless, keywords)))\n enter = [pre_enter]\n if params:\n enter.append(' ')\n enter.append(params)\n enter.append(' ')\n enter.append(')')\n leave = [pre_leave]\n try:\n logger.debug(''.join(enter))\n try:\n try:\n _.value = False\n result = _func(*__argv, **__kwds)\n finally:\n _.value = True\n except Exception:\n ex_type, value, traceback = sys.exc_info()\n leave.append(' => exception thrown\\n\\traise ')\n __mname = ex_type.__module__\n if __mname != '__main__':\n leave.append(__mname)\n leave.append('.')\n leave.append(ex_type.__name__)\n if value.args:\n leave.append('(')\n leave.append(', '.join(chop(v) for v in value.args)\n )\n leave.append(')')\n else:\n leave.append('()')\n raise\n else:\n if result is not None:\n leave.append(' => ')\n leave.append(chop(result))\n finally:\n logger.debug(''.join(leave))\n finally:\n _.value = False\n return result\n __self = False\n __klass = False\n\n def x(x):\n return x\n __rewrap = nop\n if type(_func) in FunctionTypes:\n __cname = None\n elif type(_func) in MethodTypes:\n if _func.im_self is not None:\n __rewrap = classmethod\n __cname = _func.im_self.__name__\n __klass = True\n else:\n __cname = _func.im_class.__name__\n __self = True\n _func = _func.im_func\n else:\n return _func\n __module = _func.__module__\n __fname = _func.__name__\n if __fname in ('__init__', '__new__', '__repr__', '__str__'):\n return __rewrap(_func)\n __fqfn = list()\n if __module != '__main__':\n __fqfn.append(__module)\n __fqfn.append('.')\n if __cname is not None:\n __fqfn.append(__cname)\n __fqfn.append('.')\n __fqfn.append(__fname)\n __fqfn = ''.join(__fqfn)\n if type(_name) in CallableTypes:\n logger = get_logger_factory().get_logger(__fqfn)\n elif loggable(_name):\n logger = _name\n elif isinstance(_name, six.string_types):\n logger = get_logger_factory().get_logger(_name)\n else:\n raise ValueError(\n 'invalid object %r: must be a function, a method, a string or an object that implements the Logger API'\n % _name)\n pre_enter = ['>>> ', __fqfn, '(']\n pre_enter = ''.join(pre_enter)\n pre_leave = ['<<< ', __fqfn]\n pre_leave = ''.join(pre_leave)\n try:\n code = _func.__code__\n except AttributeError:\n co_argcount, co_varnames, co_defaults = __lookup_builtin(_func.\n __name__)\n else:\n co_argcount = code.co_argcount\n co_varnames = code.co_varnames[:co_argcount]\n if _func.__defaults__:\n co_defaults = dict(zip(co_varnames[-len(_func.__defaults__)\n :], _func.__defaults__))\n else:\n co_defaults = dict()\n if __klass:\n __klass = co_varnames[0]\n if __self:\n __self = co_varnames[0]\n return __rewrap(wraps(_func)(wrapper))\n if type(_name) in CallableTypes:\n return decorator(_name)\n else:\n return decorator\n", "role": "user" }, { "content": "trace", "role": "assistant" } ]
def x(decorator, obj, recursive=True): if inspect.ismodule(obj): for name, fn in inspect.getmembers(obj, inspect.isfunction): setattr(obj, name, decorator(fn)) for name, klass in inspect.getmembers(obj, inspect.isclass): attach_to_class(decorator, klass, recursive) elif inspect.isclass(obj): attach_to_class(decorator, obj, recursive)
attach
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(decorator, obj, recursive=True):\n if inspect.ismodule(obj):\n for name, fn in inspect.getmembers(obj, inspect.isfunction):\n setattr(obj, name, decorator(fn))\n for name, klass in inspect.getmembers(obj, inspect.isclass):\n attach_to_class(decorator, klass, recursive)\n elif inspect.isclass(obj):\n attach_to_class(decorator, obj, recursive)\n", "role": "user" }, { "content": "attach", "role": "assistant" } ]
def x(sender, instance, action, reverse, model, pk_set, **kwargs): if action == 'post_add': if not reverse: project = instance for person in model.objects.filter(pk__in=pk_set): log.change(person, 'Added person to project %s leaders' % project) log.change(project, 'Added person %s to project leaders' % person) else: person = instance for project in model.objects.filter(pk__in=pk_set): log.change(person, 'Added person to project %s leaders' % project) log.change(project, 'Added person %s to project leaders' % person) elif action == 'post_remove': if not reverse: project = instance for person in model.objects.filter(pk__in=pk_set): log.change(person, 'Removed person from project %s leaders' % project) log.change(project, 'Removed person %s from project leaders' % person) else: person = instance for project in model.objects.filter(pk__in=pk_set): log.change(person, 'Removed person from project %s leaders' % project) log.change(project, 'Removed person %s from project leaders' % person) elif action == 'pre_clear': if not reverse: project = instance log.change(project, 'Removed all project leaders') for person in project.leaders.all(): log.change(project, 'Removed person %s from project leaders' % person) else: person = instance log.change(person, 'Removed person from all project leaders') for project in person.leads.all(): log.change(project, 'Removed person %s from project leaders' % person)
leaders_changed
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sender, instance, action, reverse, model, pk_set, **kwargs):\n if action == 'post_add':\n if not reverse:\n project = instance\n for person in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Added person to project %s leaders' %\n project)\n log.change(project, 'Added person %s to project leaders' %\n person)\n else:\n person = instance\n for project in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Added person to project %s leaders' %\n project)\n log.change(project, 'Added person %s to project leaders' %\n person)\n elif action == 'post_remove':\n if not reverse:\n project = instance\n for person in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Removed person from project %s leaders' %\n project)\n log.change(project, \n 'Removed person %s from project leaders' % person)\n else:\n person = instance\n for project in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Removed person from project %s leaders' %\n project)\n log.change(project, \n 'Removed person %s from project leaders' % person)\n elif action == 'pre_clear':\n if not reverse:\n project = instance\n log.change(project, 'Removed all project leaders')\n for person in project.leaders.all():\n log.change(project, \n 'Removed person %s from project leaders' % person)\n else:\n person = instance\n log.change(person, 'Removed person from all project leaders')\n for project in person.leads.all():\n log.change(project, \n 'Removed person %s from project leaders' % person)\n", "role": "user" }, { "content": "leaders_changed", "role": "assistant" } ]
def x(log_list, date, machine_name, log_type): output = [] count = fail = skip = updated = 0 try: machine = Machine.objects.get(name=machine_name) except Machine.DoesNotExist: return "ERROR: Couldn't find machine named: %s" % machine_name if log_type == 'alogger': parser = AloggerParser() else: parser = get_parser(log_type) for line_no, line in enumerate(log_list): try: data = parser.line_to_dict(line) except ValueError: output.append('%d: Error reading line' % line_no) continue if data is None: skip += 1 continue required_fields = ['user', 'project', 'jobid', 'jobname', 'cpu_usage', 'cores', 'act_wall_time', 'est_wall_time', 'mem', 'vmem', 'list_pmem', 'list_mem', 'list_pvmem', 'ctime', 'qtime', 'etime', 'start'] for field in required_fields: if field not in data: output.append('line %d: %s field not given.' % (line_no, field) ) fail = fail + 1 continue try: account = Account.objects.get(username=data['user'], date_deleted__isnull=True) except Account.DoesNotExist: output.append( "line %d: Couldn't find user account for username=%s." % ( line_no, data['user'])) fail += 1 continue except Account.MultipleObjectsReturned: output.append( 'line %d: Username %s has multiple active accounts.' % ( line_no, data['user'])) fail += 1 continue if data['project'] is None: output.append('line %d: Project was not supplied.' % line_no) fail += 1 continue try: project = Project.objects.get(pid=data['project']) except Project.DoesNotExist: output.append("line %d: Couldn't find specified project %s" % ( line_no, data['project'])) fail += 1 continue if machine.mem_per_core: avail_mem_per_core = machine.mem_per_core * 1024 avail_mem_for_job = avail_mem_per_core * data['cores'] if data['list_pmem'] * data['cores'] > data['list_mem']: memory_used_per_core = data['list_pmem'] memory_used_for_job = data['list_pmem'] * data['cores'] else: memory_used_per_core = data['list_mem'] / data['cores'] memory_used_for_job = data['list_mem'] if memory_used_for_job > avail_mem_for_job: data['cpu_usage'] = ceil(memory_used_per_core / avail_mem_per_core * data['act_wall_time'] * data['cores']) data['cpu_usage'] = data['cpu_usage'] * machine.scaling_factor queue, created = Queue.objects.get_or_create(name=data['queue']) try: cpujob, created = CPUJob.objects.get_or_create(jobid=data['jobid']) cpujob.account = account cpujob.username = data['user'] cpujob.project = project cpujob.machine = machine cpujob.date = date cpujob.queue = queue cpujob.cpu_usage = data['cpu_usage'] cpujob.est_wall_time = data['est_wall_time'] cpujob.act_wall_time = data['act_wall_time'] cpujob.mem = data['mem'] cpujob.vmem = data['vmem'] cpujob.ctime = data['ctime'] cpujob.qtime = data['qtime'] cpujob.etime = data['etime'] cpujob.start = data['start'] cpujob.cores = data['cores'] cpujob.exit_status = data['exit_status'] cpujob.jobname = data['jobname'] cpujob.list_mem = data['list_mem'] cpujob.list_vmem = data['list_vmem'] cpujob.list_pmem = data['list_pmem'] cpujob.list_pvmem = data['list_pvmem'] cpujob.save() except Exception as e: output.append('line %d: Failed to insert a line - %s' % ( line_no, e)) fail += 1 continue if created: count += 1 else: updated += 1 summary = 'Inserted : %i\nUpdated : %i\nFailed : %i\nSkiped : %i' % ( count, updated, fail, skip) logger.debug('Inserted : %i' % count) logger.debug('Updated : %i' % updated) logger.debug('Failed : %i' % fail) logger.debug('Skiped : %i' % skip) return summary, output
parse_logs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(log_list, date, machine_name, log_type):\n output = []\n count = fail = skip = updated = 0\n try:\n machine = Machine.objects.get(name=machine_name)\n except Machine.DoesNotExist:\n return \"ERROR: Couldn't find machine named: %s\" % machine_name\n if log_type == 'alogger':\n parser = AloggerParser()\n else:\n parser = get_parser(log_type)\n for line_no, line in enumerate(log_list):\n try:\n data = parser.line_to_dict(line)\n except ValueError:\n output.append('%d: Error reading line' % line_no)\n continue\n if data is None:\n skip += 1\n continue\n required_fields = ['user', 'project', 'jobid', 'jobname',\n 'cpu_usage', 'cores', 'act_wall_time', 'est_wall_time', 'mem',\n 'vmem', 'list_pmem', 'list_mem', 'list_pvmem', 'ctime', 'qtime',\n 'etime', 'start']\n for field in required_fields:\n if field not in data:\n output.append('line %d: %s field not given.' % (line_no, field)\n )\n fail = fail + 1\n continue\n try:\n account = Account.objects.get(username=data['user'],\n date_deleted__isnull=True)\n except Account.DoesNotExist:\n output.append(\n \"line %d: Couldn't find user account for username=%s.\" % (\n line_no, data['user']))\n fail += 1\n continue\n except Account.MultipleObjectsReturned:\n output.append(\n 'line %d: Username %s has multiple active accounts.' % (\n line_no, data['user']))\n fail += 1\n continue\n if data['project'] is None:\n output.append('line %d: Project was not supplied.' % line_no)\n fail += 1\n continue\n try:\n project = Project.objects.get(pid=data['project'])\n except Project.DoesNotExist:\n output.append(\"line %d: Couldn't find specified project %s\" % (\n line_no, data['project']))\n fail += 1\n continue\n if machine.mem_per_core:\n avail_mem_per_core = machine.mem_per_core * 1024\n avail_mem_for_job = avail_mem_per_core * data['cores']\n if data['list_pmem'] * data['cores'] > data['list_mem']:\n memory_used_per_core = data['list_pmem']\n memory_used_for_job = data['list_pmem'] * data['cores']\n else:\n memory_used_per_core = data['list_mem'] / data['cores']\n memory_used_for_job = data['list_mem']\n if memory_used_for_job > avail_mem_for_job:\n data['cpu_usage'] = ceil(memory_used_per_core /\n avail_mem_per_core * data['act_wall_time'] * data['cores'])\n data['cpu_usage'] = data['cpu_usage'] * machine.scaling_factor\n queue, created = Queue.objects.get_or_create(name=data['queue'])\n try:\n cpujob, created = CPUJob.objects.get_or_create(jobid=data['jobid'])\n cpujob.account = account\n cpujob.username = data['user']\n cpujob.project = project\n cpujob.machine = machine\n cpujob.date = date\n cpujob.queue = queue\n cpujob.cpu_usage = data['cpu_usage']\n cpujob.est_wall_time = data['est_wall_time']\n cpujob.act_wall_time = data['act_wall_time']\n cpujob.mem = data['mem']\n cpujob.vmem = data['vmem']\n cpujob.ctime = data['ctime']\n cpujob.qtime = data['qtime']\n cpujob.etime = data['etime']\n cpujob.start = data['start']\n cpujob.cores = data['cores']\n cpujob.exit_status = data['exit_status']\n cpujob.jobname = data['jobname']\n cpujob.list_mem = data['list_mem']\n cpujob.list_vmem = data['list_vmem']\n cpujob.list_pmem = data['list_pmem']\n cpujob.list_pvmem = data['list_pvmem']\n cpujob.save()\n except Exception as e:\n output.append('line %d: Failed to insert a line - %s' % (\n line_no, e))\n fail += 1\n continue\n if created:\n count += 1\n else:\n updated += 1\n summary = 'Inserted : %i\\nUpdated : %i\\nFailed : %i\\nSkiped : %i' % (\n count, updated, fail, skip)\n logger.debug('Inserted : %i' % count)\n logger.debug('Updated : %i' % updated)\n logger.debug('Failed : %i' % fail)\n logger.debug('Skiped : %i' % skip)\n return summary, output\n", "role": "user" }, { "content": "parse_logs", "role": "assistant" } ]
def x(request): if util.is_admin(request): queryset = Application.objects.all() else: queryset = Application.objects.get_for_applicant(request.user) q_filter = ApplicationFilter(request.GET, queryset=queryset) table = ApplicationTable(q_filter.qs.order_by('-expires')) tables.RequestConfig(request).configure(table) spec = [] for name, value in six.iteritems(q_filter.form.cleaned_data): if value is not None and value != '': name = name.replace('_', ' ').capitalize() spec.append((name, value)) return render(template_name='kgapplications/application_list.html', context={'table': table, 'filter': q_filter, 'spec': spec, 'title': 'Application list'}, request=request)
application_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if util.is_admin(request):\n queryset = Application.objects.all()\n else:\n queryset = Application.objects.get_for_applicant(request.user)\n q_filter = ApplicationFilter(request.GET, queryset=queryset)\n table = ApplicationTable(q_filter.qs.order_by('-expires'))\n tables.RequestConfig(request).configure(table)\n spec = []\n for name, value in six.iteritems(q_filter.form.cleaned_data):\n if value is not None and value != '':\n name = name.replace('_', ' ').capitalize()\n spec.append((name, value))\n return render(template_name='kgapplications/application_list.html',\n context={'table': table, 'filter': q_filter, 'spec': spec, 'title':\n 'Application list'}, request=request)\n", "role": "user" }, { "content": "application_list", "role": "assistant" } ]
def x(request): config = tables.RequestConfig(request, paginate={'per_page': 5}) person = request.user my_applications = Application.objects.get_for_applicant(person) my_applications = ApplicationTable(my_applications, prefix='mine-') config.configure(my_applications) requires_attention = Application.objects.requires_attention(request) requires_attention = ApplicationTable(requires_attention, prefix='attn-') config.configure(requires_attention) return render(template_name='kgapplications/profile_applications.html', context={'person': request.user, 'my_applications': my_applications, 'requires_attention': requires_attention}, request=request)
profile_application_list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n config = tables.RequestConfig(request, paginate={'per_page': 5})\n person = request.user\n my_applications = Application.objects.get_for_applicant(person)\n my_applications = ApplicationTable(my_applications, prefix='mine-')\n config.configure(my_applications)\n requires_attention = Application.objects.requires_attention(request)\n requires_attention = ApplicationTable(requires_attention, prefix='attn-')\n config.configure(requires_attention)\n return render(template_name='kgapplications/profile_applications.html',\n context={'person': request.user, 'my_applications': my_applications,\n 'requires_attention': requires_attention}, request=request)\n", "role": "user" }, { "content": "profile_application_list", "role": "assistant" } ]
def x(request, application_id, state=None, label=None): application = base.get_application(pk=application_id) state_machine = base.get_state_machine(application) return state_machine.process(request, application, state, label)
application_detail
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, application_id, state=None, label=None):\n application = base.get_application(pk=application_id)\n state_machine = base.get_state_machine(application)\n return state_machine.process(request, application, state, label)\n", "role": "user" }, { "content": "application_detail", "role": "assistant" } ]
def x(request, token, state=None, label=None): application = base.get_application(secret_token=token) if application.expires < datetime.datetime.now(): return render(template_name='kgapplications/common_expired.html', context={'application': application}, request=request) roles = {'is_applicant', 'is_authorised'} if request.user.is_authenticated: if request.user == application.applicant: url = base.get_url(request, application, roles, label) return HttpResponseRedirect(url) state_machine = base.get_state_machine(application) return state_machine.process(request, application, state, label, roles)
application_unauthenticated
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, token, state=None, label=None):\n application = base.get_application(secret_token=token)\n if application.expires < datetime.datetime.now():\n return render(template_name='kgapplications/common_expired.html',\n context={'application': application}, request=request)\n roles = {'is_applicant', 'is_authorised'}\n if request.user.is_authenticated:\n if request.user == application.applicant:\n url = base.get_url(request, application, roles, label)\n return HttpResponseRedirect(url)\n state_machine = base.get_state_machine(application)\n return state_machine.process(request, application, state, label, roles)\n", "role": "user" }, { "content": "application_unauthenticated", "role": "assistant" } ]
def x(institute, start, end): try: cache = InstituteCache.objects.get(institute=institute, date= datetime.date.today(), start=start, end=end) return cache.cpu_time, cache.no_jobs except InstituteCache.DoesNotExist: return 0, 0
get_institute_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(institute, start, end):\n try:\n cache = InstituteCache.objects.get(institute=institute, date=\n datetime.date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except InstituteCache.DoesNotExist:\n return 0, 0\n", "role": "user" }, { "content": "get_institute_usage", "role": "assistant" } ]
def x(project, start, end): try: cache = ProjectCache.objects.get(project=project, date=datetime. date.today(), start=start, end=end) return cache.cpu_time, cache.no_jobs except ProjectCache.DoesNotExist: return 0, 0
get_project_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(project, start, end):\n try:\n cache = ProjectCache.objects.get(project=project, date=datetime.\n date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except ProjectCache.DoesNotExist:\n return 0, 0\n", "role": "user" }, { "content": "get_project_usage", "role": "assistant" } ]
def x(person, project, start, end): try: cache = PersonCache.objects.get(person=person, project=project, date=datetime.date.today(), start=start, end=end) return cache.cpu_time, cache.no_jobs except PersonCache.DoesNotExist: return 0, 0
get_person_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(person, project, start, end):\n try:\n cache = PersonCache.objects.get(person=person, project=project,\n date=datetime.date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except PersonCache.DoesNotExist:\n return 0, 0\n", "role": "user" }, { "content": "get_person_usage", "role": "assistant" } ]
def x(machine, start, end): try: cache = MachineCache.objects.get(machine=machine, date=datetime. date.today(), start=start, end=end) return cache.cpu_time, cache.no_jobs except MachineCache.DoesNotExist: return 0, 0
get_machine_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(machine, start, end):\n try:\n cache = MachineCache.objects.get(machine=machine, date=datetime.\n date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except MachineCache.DoesNotExist:\n return 0, 0\n", "role": "user" }, { "content": "get_machine_usage", "role": "assistant" } ]
def x(start, end): cache = MachineCategoryCache.objects.get(date=datetime.date.today(), start=start, end=end) return cache
get_machine_category_usage
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(start, end):\n cache = MachineCategoryCache.objects.get(date=datetime.date.today(),\n start=start, end=end)\n return cache\n", "role": "user" }, { "content": "get_machine_category_usage", "role": "assistant" } ]
def x(email): try: applicant = Person.active.get(email=email) existing_person = True except Person.DoesNotExist: applicant = Applicant.objects.create(email=email) existing_person = False except Person.MultipleObjectsReturned: applicant = None existing_person = False return applicant, existing_person
get_applicant_from_email
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(email):\n try:\n applicant = Person.active.get(email=email)\n existing_person = True\n except Person.DoesNotExist:\n applicant = Applicant.objects.create(email=email)\n existing_person = False\n except Person.MultipleObjectsReturned:\n applicant = None\n existing_person = False\n return applicant, existing_person\n", "role": "user" }, { "content": "get_applicant_from_email", "role": "assistant" } ]
def x(request, project): form = forms.InviteUserApplicationForm(request.POST or None) if request.method == 'POST': if form.is_valid(): email = form.cleaned_data['email'] applicant, existing_person = get_applicant_from_email(email) if applicant is None: return render(template_name= 'kgapplications/project_common_invite_multiple.html', context={'form': form, 'email': email}, request=request) if existing_person and 'existing' not in request.POST: return render(template_name= 'kgapplications/project_common_invite_existing.html', context={'form': form, 'person': applicant}, request= request) application = form.save(commit=False) application.applicant = applicant application.project = project application.save() state_machine = get_application_state_machine() response = state_machine.start(request, application) return response return render(template_name= 'kgapplications/project_common_invite_other.html', context={'form': form, 'project': project}, request=request)
send_invitation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, project):\n form = forms.InviteUserApplicationForm(request.POST or None)\n if request.method == 'POST':\n if form.is_valid():\n email = form.cleaned_data['email']\n applicant, existing_person = get_applicant_from_email(email)\n if applicant is None:\n return render(template_name=\n 'kgapplications/project_common_invite_multiple.html',\n context={'form': form, 'email': email}, request=request)\n if existing_person and 'existing' not in request.POST:\n return render(template_name=\n 'kgapplications/project_common_invite_existing.html',\n context={'form': form, 'person': applicant}, request=\n request)\n application = form.save(commit=False)\n application.applicant = applicant\n application.project = project\n application.save()\n state_machine = get_application_state_machine()\n response = state_machine.start(request, application)\n return response\n return render(template_name=\n 'kgapplications/project_common_invite_other.html', context={'form':\n form, 'project': project}, request=request)\n", "role": "user" }, { "content": "send_invitation", "role": "assistant" } ]
def x(request, project_id=None): project = None if project_id is not None: project = get_object_or_404(Project, id=project_id) if project is None: if not is_admin(request): return HttpResponseForbidden('<h1>Access Denied</h1>') elif not project.can_edit(request): return HttpResponseForbidden('<h1>Access Denied</h1>') return _send_invitation(request, project)
send_invitation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request, project_id=None):\n project = None\n if project_id is not None:\n project = get_object_or_404(Project, id=project_id)\n if project is None:\n if not is_admin(request):\n return HttpResponseForbidden('<h1>Access Denied</h1>')\n elif not project.can_edit(request):\n return HttpResponseForbidden('<h1>Access Denied</h1>')\n return _send_invitation(request, project)\n", "role": "user" }, { "content": "send_invitation", "role": "assistant" } ]
def x(request): if not settings.ALLOW_REGISTRATIONS: return render(template_name= 'kgapplications/project_common_disabled.html', context={}, request=request) roles = {'is_applicant', 'is_authorised'} if not request.user.is_authenticated: attrs, _ = saml.parse_attributes(request) defaults = {'email': attrs['email']} form = forms.UnauthenticatedInviteUserApplicationForm(request.POST or None, initial=defaults) if request.method == 'POST': if form.is_valid(): email = form.cleaned_data['email'] applicant, existing_person = get_applicant_from_email(email) assert applicant is not None assert not existing_person application = ProjectApplication() application.applicant = applicant application.save() state_machine = get_application_state_machine() state_machine.start(request, application, roles) url = reverse('index') return HttpResponseRedirect(url) return render(template_name= 'kgapplications/project_common_invite_unauthenticated.html', context={'form': form}, request=request) else: if request.method == 'POST': person = request.user application = ProjectApplication() application.applicant = person application.save() state_machine = get_application_state_machine() response = state_machine.start(request, application, roles) return response return render(template_name= 'kgapplications/project_common_invite_authenticated.html', context={}, request=request)
new_application
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(request):\n if not settings.ALLOW_REGISTRATIONS:\n return render(template_name=\n 'kgapplications/project_common_disabled.html', context={},\n request=request)\n roles = {'is_applicant', 'is_authorised'}\n if not request.user.is_authenticated:\n attrs, _ = saml.parse_attributes(request)\n defaults = {'email': attrs['email']}\n form = forms.UnauthenticatedInviteUserApplicationForm(request.POST or\n None, initial=defaults)\n if request.method == 'POST':\n if form.is_valid():\n email = form.cleaned_data['email']\n applicant, existing_person = get_applicant_from_email(email)\n assert applicant is not None\n assert not existing_person\n application = ProjectApplication()\n application.applicant = applicant\n application.save()\n state_machine = get_application_state_machine()\n state_machine.start(request, application, roles)\n url = reverse('index')\n return HttpResponseRedirect(url)\n return render(template_name=\n 'kgapplications/project_common_invite_unauthenticated.html',\n context={'form': form}, request=request)\n else:\n if request.method == 'POST':\n person = request.user\n application = ProjectApplication()\n application.applicant = person\n application.save()\n state_machine = get_application_state_machine()\n response = state_machine.start(request, application, roles)\n return response\n return render(template_name=\n 'kgapplications/project_common_invite_authenticated.html',\n context={}, request=request)\n", "role": "user" }, { "content": "new_application", "role": "assistant" } ]
def x(): if sys.platform == 'win32': prefix = getattr(sys, 'real_prefix', sys.prefix) libs = os.path.join(prefix, str('libs')) return str('-L{} -lpython{}{}').format(libs, *sys.version_info[:2]) cc = subprocess.check_output(('go', 'env', 'CC')).decode('UTF-8').strip() with _tmpdir() as tmpdir: testf = os.path.join(tmpdir, 'test.c') with io.open(testf, 'w') as f: f.write('int f(int); int main(void) { return f(0); }\n') for lflag in LFLAGS: try: subprocess.check_call((cc, testf, lflag), cwd=tmpdir) return lflag except subprocess.CalledProcessError: pass else: return LFLAG_GCC
get_ldflags
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n if sys.platform == 'win32':\n prefix = getattr(sys, 'real_prefix', sys.prefix)\n libs = os.path.join(prefix, str('libs'))\n return str('-L{} -lpython{}{}').format(libs, *sys.version_info[:2])\n cc = subprocess.check_output(('go', 'env', 'CC')).decode('UTF-8').strip()\n with _tmpdir() as tmpdir:\n testf = os.path.join(tmpdir, 'test.c')\n with io.open(testf, 'w') as f:\n f.write('int f(int); int main(void) { return f(0); }\\n')\n for lflag in LFLAGS:\n try:\n subprocess.check_call((cc, testf, lflag), cwd=tmpdir)\n return lflag\n except subprocess.CalledProcessError:\n pass\n else:\n return LFLAG_GCC\n", "role": "user" }, { "content": "get_ldflags", "role": "assistant" } ]
def x(specification): feasible_configurations = specification.feasible_configurations if specification.vartype is dimod.BINARY: feasible_configurations = {tuple(2 * v - 1 for v in config): en for config, en in feasible_configurations.items()} ising_quadratic_ranges = specification.ising_quadratic_ranges quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in specification.graph.edges} bqm, gap = generate(specification.graph, feasible_configurations, specification.decision_variables, specification.ising_linear_ranges, quadratic_ranges, specification.min_classical_gap, None) try: ground = max(feasible_configurations.values()) except ValueError: ground = 0.0 return pm.PenaltyModel.from_specification(specification, bqm, gap, ground)
get_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specification):\n feasible_configurations = specification.feasible_configurations\n if specification.vartype is dimod.BINARY:\n feasible_configurations = {tuple(2 * v - 1 for v in config): en for\n config, en in feasible_configurations.items()}\n ising_quadratic_ranges = specification.ising_quadratic_ranges\n quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in\n specification.graph.edges}\n bqm, gap = generate(specification.graph, feasible_configurations,\n specification.decision_variables, specification.ising_linear_ranges,\n quadratic_ranges, specification.min_classical_gap, None)\n try:\n ground = max(feasible_configurations.values())\n except ValueError:\n ground = 0.0\n return pm.PenaltyModel.from_specification(specification, bqm, gap, ground)\n", "role": "user" }, { "content": "get_penalty_model", "role": "assistant" } ]
def x(cur, feasible_configurations, encoded_data=None): if encoded_data is None: encoded_data = {} if 'num_variables' not in encoded_data: encoded_data['num_variables'] = len(next(iter(feasible_configurations)) ) if 'num_feasible_configurations' not in encoded_data: encoded_data['num_feasible_configurations'] = len( feasible_configurations) if ('feasible_configurations' not in encoded_data or 'energies' not in encoded_data): encoded = {_serialize_config(config): en for config, en in feasible_configurations.items()} configs, energies = zip(*sorted(encoded.items())) encoded_data['feasible_configurations'] = json.dumps(configs, separators=(',', ':')) encoded_data['energies'] = json.dumps(energies, separators=(',', ':')) insert = """ INSERT OR IGNORE INTO feasible_configurations( num_variables, num_feasible_configurations, feasible_configurations, energies) VALUES ( :num_variables, :num_feasible_configurations, :feasible_configurations, :energies); """ cur.execute(insert, encoded_data)
insert_feasible_configurations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur, feasible_configurations, encoded_data=None):\n if encoded_data is None:\n encoded_data = {}\n if 'num_variables' not in encoded_data:\n encoded_data['num_variables'] = len(next(iter(feasible_configurations))\n )\n if 'num_feasible_configurations' not in encoded_data:\n encoded_data['num_feasible_configurations'] = len(\n feasible_configurations)\n if ('feasible_configurations' not in encoded_data or 'energies' not in\n encoded_data):\n encoded = {_serialize_config(config): en for config, en in\n feasible_configurations.items()}\n configs, energies = zip(*sorted(encoded.items()))\n encoded_data['feasible_configurations'] = json.dumps(configs,\n separators=(',', ':'))\n encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))\n insert = \"\"\"\n INSERT OR IGNORE INTO feasible_configurations(\n num_variables,\n num_feasible_configurations,\n feasible_configurations,\n energies)\n VALUES (\n :num_variables,\n :num_feasible_configurations,\n :feasible_configurations,\n :energies);\n \"\"\"\n cur.execute(insert, encoded_data)\n", "role": "user" }, { "content": "insert_feasible_configurations", "role": "assistant" } ]
def x(cur): select = """ SELECT num_variables, feasible_configurations, energies FROM feasible_configurations """ for num_variables, feasible_configurations, energies in cur.execute(select ): configs = json.loads(feasible_configurations) energies = json.loads(energies) yield {_decode_config(config, num_variables): energy for config, energy in zip(configs, energies)}
iter_feasible_configurations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur):\n select = \"\"\"\n SELECT num_variables, feasible_configurations, energies\n FROM feasible_configurations\n \"\"\"\n for num_variables, feasible_configurations, energies in cur.execute(select\n ):\n configs = json.loads(feasible_configurations)\n energies = json.loads(energies)\n yield {_decode_config(config, num_variables): energy for config,\n energy in zip(configs, energies)}\n", "role": "user" }, { "content": "iter_feasible_configurations", "role": "assistant" } ]
def x(c, num_variables): def x(c): n = 1 << num_variables - 1 for __ in range(num_variables): yield 1 if c & n else -1 n >>= 1 return tuple(bits(c))
decode_config
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(c, num_variables):\n\n def x(c):\n n = 1 << num_variables - 1\n for __ in range(num_variables):\n yield 1 if c & n else -1\n n >>= 1\n return tuple(bits(c))\n", "role": "user" }, { "content": "decode_config", "role": "assistant" } ]
def x(cur, nodelist, edgelist, linear, quadratic, offset, encoded_data=None): if encoded_data is None: encoded_data = {} insert_graph(cur, nodelist, edgelist, encoded_data=encoded_data) if 'linear_biases' not in encoded_data: encoded_data['linear_biases'] = _serialize_linear_biases(linear, nodelist) if 'quadratic_biases' not in encoded_data: encoded_data['quadratic_biases'] = _serialize_quadratic_biases( quadratic, edgelist) if 'offset' not in encoded_data: encoded_data['offset'] = offset if 'max_quadratic_bias' not in encoded_data: encoded_data['max_quadratic_bias'] = max(itervalues(quadratic)) if 'min_quadratic_bias' not in encoded_data: encoded_data['min_quadratic_bias'] = min(itervalues(quadratic)) if 'max_linear_bias' not in encoded_data: encoded_data['max_linear_bias'] = max(itervalues(linear)) if 'min_linear_bias' not in encoded_data: encoded_data['min_linear_bias'] = min(itervalues(linear)) insert = """ INSERT OR IGNORE INTO ising_model( linear_biases, quadratic_biases, offset, max_quadratic_bias, min_quadratic_bias, max_linear_bias, min_linear_bias, graph_id) SELECT :linear_biases, :quadratic_biases, :offset, :max_quadratic_bias, :min_quadratic_bias, :max_linear_bias, :min_linear_bias, graph.id FROM graph WHERE num_nodes = :num_nodes AND num_edges = :num_edges AND edges = :edges; """ cur.execute(insert, encoded_data)
insert_ising_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur, nodelist, edgelist, linear, quadratic, offset, encoded_data=None):\n if encoded_data is None:\n encoded_data = {}\n insert_graph(cur, nodelist, edgelist, encoded_data=encoded_data)\n if 'linear_biases' not in encoded_data:\n encoded_data['linear_biases'] = _serialize_linear_biases(linear,\n nodelist)\n if 'quadratic_biases' not in encoded_data:\n encoded_data['quadratic_biases'] = _serialize_quadratic_biases(\n quadratic, edgelist)\n if 'offset' not in encoded_data:\n encoded_data['offset'] = offset\n if 'max_quadratic_bias' not in encoded_data:\n encoded_data['max_quadratic_bias'] = max(itervalues(quadratic))\n if 'min_quadratic_bias' not in encoded_data:\n encoded_data['min_quadratic_bias'] = min(itervalues(quadratic))\n if 'max_linear_bias' not in encoded_data:\n encoded_data['max_linear_bias'] = max(itervalues(linear))\n if 'min_linear_bias' not in encoded_data:\n encoded_data['min_linear_bias'] = min(itervalues(linear))\n insert = \"\"\"\n INSERT OR IGNORE INTO ising_model(\n linear_biases,\n quadratic_biases,\n offset,\n max_quadratic_bias,\n min_quadratic_bias,\n max_linear_bias,\n min_linear_bias,\n graph_id)\n SELECT\n :linear_biases,\n :quadratic_biases,\n :offset,\n :max_quadratic_bias,\n :min_quadratic_bias,\n :max_linear_bias,\n :min_linear_bias,\n graph.id\n FROM graph WHERE\n num_nodes = :num_nodes AND\n num_edges = :num_edges AND\n edges = :edges;\n \"\"\"\n cur.execute(insert, encoded_data)\n", "role": "user" }, { "content": "insert_ising_model", "role": "assistant" } ]
def x(linear, nodelist): linear_bytes = struct.pack('<' + 'd' * len(linear), *[linear[i] for i in nodelist]) return base64.b64encode(linear_bytes).decode('utf-8')
serialize_linear_biases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(linear, nodelist):\n linear_bytes = struct.pack('<' + 'd' * len(linear), *[linear[i] for i in\n nodelist])\n return base64.b64encode(linear_bytes).decode('utf-8')\n", "role": "user" }, { "content": "serialize_linear_biases", "role": "assistant" } ]
def x(quadratic, edgelist): quadratic_list = [(quadratic[u, v] if (u, v) in quadratic else quadratic[v, u]) for u, v in edgelist] quadratic_bytes = struct.pack('<' + 'd' * len(quadratic), *quadratic_list) return base64.b64encode(quadratic_bytes).decode('utf-8')
serialize_quadratic_biases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quadratic, edgelist):\n quadratic_list = [(quadratic[u, v] if (u, v) in quadratic else\n quadratic[v, u]) for u, v in edgelist]\n quadratic_bytes = struct.pack('<' + 'd' * len(quadratic), *quadratic_list)\n return base64.b64encode(quadratic_bytes).decode('utf-8')\n", "role": "user" }, { "content": "serialize_quadratic_biases", "role": "assistant" } ]
def x(cur): select = """ SELECT linear_biases, quadratic_biases, num_nodes, edges, offset FROM ising_model, graph WHERE graph.id = ising_model.graph_id; """ for linear_biases, quadratic_biases, num_nodes, edges, offset in cur.execute( select): nodelist = list(range(num_nodes)) edgelist = json.loads(edges) yield nodelist, edgelist, _decode_linear_biases(linear_biases, nodelist ), _decode_quadratic_biases(quadratic_biases, edgelist), offset
iter_ising_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur):\n select = \"\"\"\n SELECT linear_biases, quadratic_biases, num_nodes, edges, offset\n FROM ising_model, graph\n WHERE graph.id = ising_model.graph_id;\n \"\"\"\n for linear_biases, quadratic_biases, num_nodes, edges, offset in cur.execute(\n select):\n nodelist = list(range(num_nodes))\n edgelist = json.loads(edges)\n yield nodelist, edgelist, _decode_linear_biases(linear_biases, nodelist\n ), _decode_quadratic_biases(quadratic_biases, edgelist), offset\n", "role": "user" }, { "content": "iter_ising_model", "role": "assistant" } ]
def x(linear_string, nodelist): linear_bytes = base64.b64decode(linear_string) return dict(zip(nodelist, struct.unpack('<' + 'd' * (len(linear_bytes) // 8), linear_bytes)))
decode_linear_biases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(linear_string, nodelist):\n linear_bytes = base64.b64decode(linear_string)\n return dict(zip(nodelist, struct.unpack('<' + 'd' * (len(linear_bytes) //\n 8), linear_bytes)))\n", "role": "user" }, { "content": "decode_linear_biases", "role": "assistant" } ]
def x(quadratic_string, edgelist): quadratic_bytes = base64.b64decode(quadratic_string) return {tuple(edge): bias for edge, bias in zip(edgelist, struct.unpack ('<' + 'd' * (len(quadratic_bytes) // 8), quadratic_bytes))}
decode_quadratic_biases
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quadratic_string, edgelist):\n quadratic_bytes = base64.b64decode(quadratic_string)\n return {tuple(edge): bias for edge, bias in zip(edgelist, struct.unpack\n ('<' + 'd' * (len(quadratic_bytes) // 8), quadratic_bytes))}\n", "role": "user" }, { "content": "decode_quadratic_biases", "role": "assistant" } ]
def x(cur, penalty_model): encoded_data = {} linear, quadratic, offset = penalty_model.model.to_ising() nodelist = sorted(linear) edgelist = sorted(sorted(edge) for edge in penalty_model.graph.edges) insert_graph(cur, nodelist, edgelist, encoded_data) insert_feasible_configurations(cur, penalty_model. feasible_configurations, encoded_data) insert_ising_model(cur, nodelist, edgelist, linear, quadratic, offset, encoded_data) encoded_data['decision_variables'] = json.dumps(penalty_model. decision_variables, separators=(',', ':')) encoded_data['classical_gap'] = penalty_model.classical_gap encoded_data['ground_energy'] = penalty_model.ground_energy insert = """ INSERT OR IGNORE INTO penalty_model( decision_variables, classical_gap, ground_energy, feasible_configurations_id, ising_model_id) SELECT :decision_variables, :classical_gap, :ground_energy, feasible_configurations.id, ising_model.id FROM feasible_configurations, ising_model, graph WHERE graph.edges = :edges AND graph.num_nodes = :num_nodes AND ising_model.graph_id = graph.id AND ising_model.linear_biases = :linear_biases AND ising_model.quadratic_biases = :quadratic_biases AND ising_model.offset = :offset AND feasible_configurations.num_variables = :num_variables AND feasible_configurations.num_feasible_configurations = :num_feasible_configurations AND feasible_configurations.feasible_configurations = :feasible_configurations AND feasible_configurations.energies = :energies; """ cur.execute(insert, encoded_data)
insert_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur, penalty_model):\n encoded_data = {}\n linear, quadratic, offset = penalty_model.model.to_ising()\n nodelist = sorted(linear)\n edgelist = sorted(sorted(edge) for edge in penalty_model.graph.edges)\n insert_graph(cur, nodelist, edgelist, encoded_data)\n insert_feasible_configurations(cur, penalty_model.\n feasible_configurations, encoded_data)\n insert_ising_model(cur, nodelist, edgelist, linear, quadratic, offset,\n encoded_data)\n encoded_data['decision_variables'] = json.dumps(penalty_model.\n decision_variables, separators=(',', ':'))\n encoded_data['classical_gap'] = penalty_model.classical_gap\n encoded_data['ground_energy'] = penalty_model.ground_energy\n insert = \"\"\"\n INSERT OR IGNORE INTO penalty_model(\n decision_variables,\n classical_gap,\n ground_energy,\n feasible_configurations_id,\n ising_model_id)\n SELECT\n :decision_variables,\n :classical_gap,\n :ground_energy,\n feasible_configurations.id,\n ising_model.id\n FROM feasible_configurations, ising_model, graph\n WHERE\n graph.edges = :edges AND\n graph.num_nodes = :num_nodes AND\n ising_model.graph_id = graph.id AND\n ising_model.linear_biases = :linear_biases AND\n ising_model.quadratic_biases = :quadratic_biases AND\n ising_model.offset = :offset AND\n feasible_configurations.num_variables = :num_variables AND\n feasible_configurations.num_feasible_configurations = :num_feasible_configurations AND\n feasible_configurations.feasible_configurations = :feasible_configurations AND\n feasible_configurations.energies = :energies;\n \"\"\"\n cur.execute(insert, encoded_data)\n", "role": "user" }, { "content": "insert_penalty_model", "role": "assistant" } ]
def x(cur, specification): encoded_data = {} nodelist = sorted(specification.graph) edgelist = sorted(sorted(edge) for edge in specification.graph.edges) encoded_data['num_nodes'] = len(nodelist) encoded_data['num_edges'] = len(edgelist) encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':')) encoded_data['num_variables'] = len(next(iter(specification. feasible_configurations))) encoded_data['num_feasible_configurations'] = len(specification. feasible_configurations) encoded = {_serialize_config(config): en for config, en in specification.feasible_configurations.items()} configs, energies = zip(*sorted(encoded.items())) encoded_data['feasible_configurations'] = json.dumps(configs, separators=(',', ':')) encoded_data['energies'] = json.dumps(energies, separators=(',', ':')) encoded_data['decision_variables'] = json.dumps(specification. decision_variables, separators=(',', ':')) encoded_data['classical_gap'] = json.dumps(specification. min_classical_gap, separators=(',', ':')) select = """ SELECT linear_biases, quadratic_biases, offset, decision_variables, classical_gap, ground_energy FROM penalty_model_view WHERE -- graph: num_nodes = :num_nodes AND num_edges = :num_edges AND edges = :edges AND -- feasible_configurations: num_variables = :num_variables AND num_feasible_configurations = :num_feasible_configurations AND feasible_configurations = :feasible_configurations AND energies = :energies AND -- decision variables: decision_variables = :decision_variables AND -- we could apply filters based on the energy ranges but in practice this seems slower classical_gap >= :classical_gap ORDER BY classical_gap DESC; """ for row in cur.execute(select, encoded_data): linear = _decode_linear_biases(row['linear_biases'], nodelist) quadratic = _decode_quadratic_biases(row['quadratic_biases'], edgelist) model = dimod.BinaryQuadraticModel(linear, quadratic, row['offset'], dimod.SPIN) yield pm.PenaltyModel.from_specification(specification, model, row[ 'classical_gap'], row['ground_energy'])
iter_penalty_model_from_specification
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cur, specification):\n encoded_data = {}\n nodelist = sorted(specification.graph)\n edgelist = sorted(sorted(edge) for edge in specification.graph.edges)\n encoded_data['num_nodes'] = len(nodelist)\n encoded_data['num_edges'] = len(edgelist)\n encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':'))\n encoded_data['num_variables'] = len(next(iter(specification.\n feasible_configurations)))\n encoded_data['num_feasible_configurations'] = len(specification.\n feasible_configurations)\n encoded = {_serialize_config(config): en for config, en in\n specification.feasible_configurations.items()}\n configs, energies = zip(*sorted(encoded.items()))\n encoded_data['feasible_configurations'] = json.dumps(configs,\n separators=(',', ':'))\n encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))\n encoded_data['decision_variables'] = json.dumps(specification.\n decision_variables, separators=(',', ':'))\n encoded_data['classical_gap'] = json.dumps(specification.\n min_classical_gap, separators=(',', ':'))\n select = \"\"\"\n SELECT\n linear_biases,\n quadratic_biases,\n offset,\n decision_variables,\n classical_gap,\n ground_energy\n FROM penalty_model_view\n WHERE\n -- graph:\n num_nodes = :num_nodes AND\n num_edges = :num_edges AND\n edges = :edges AND\n -- feasible_configurations:\n num_variables = :num_variables AND\n num_feasible_configurations = :num_feasible_configurations AND\n feasible_configurations = :feasible_configurations AND\n energies = :energies AND\n -- decision variables:\n decision_variables = :decision_variables AND\n -- we could apply filters based on the energy ranges but in practice this seems slower\n classical_gap >= :classical_gap\n ORDER BY classical_gap DESC;\n \"\"\"\n for row in cur.execute(select, encoded_data):\n linear = _decode_linear_biases(row['linear_biases'], nodelist)\n quadratic = _decode_quadratic_biases(row['quadratic_biases'], edgelist)\n model = dimod.BinaryQuadraticModel(linear, quadratic, row['offset'],\n dimod.SPIN)\n yield pm.PenaltyModel.from_specification(specification, model, row[\n 'classical_gap'], row['ground_energy'])\n", "role": "user" }, { "content": "iter_penalty_model_from_specification", "role": "assistant" } ]
def x(cls, specification, model, classical_gap, ground_energy): return cls(specification.graph, specification.decision_variables, specification.feasible_configurations, specification.vartype, model, classical_gap, ground_energy, ising_linear_ranges=specification. ising_linear_ranges, ising_quadratic_ranges=specification. ising_quadratic_ranges)
from_specification
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, specification, model, classical_gap, ground_energy):\n return cls(specification.graph, specification.decision_variables,\n specification.feasible_configurations, specification.vartype, model,\n classical_gap, ground_energy, ising_linear_ranges=specification.\n ising_linear_ranges, ising_quadratic_ranges=specification.\n ising_quadratic_ranges)\n", "role": "user" }, { "content": "from_specification", "role": "assistant" } ]
def x(self, mapping, inplace=True): if inplace: Specification.relabel_variables(self, mapping, inplace=True) self.model.relabel_variables(mapping, inplace=True) return self else: spec = Specification.relabel_variables(self, mapping, inplace=False) model = self.model.relabel_variables(mapping, inplace=False) return PenaltyModel.from_specification(spec, model, self. classical_gap, self.ground_energy)
relabel_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mapping, inplace=True):\n if inplace:\n Specification.relabel_variables(self, mapping, inplace=True)\n self.model.relabel_variables(mapping, inplace=True)\n return self\n else:\n spec = Specification.relabel_variables(self, mapping, inplace=False)\n model = self.model.relabel_variables(mapping, inplace=False)\n return PenaltyModel.from_specification(spec, model, self.\n classical_gap, self.ground_energy)\n", "role": "user" }, { "content": "relabel_variables", "role": "assistant" } ]
def x(specification, database=None): if not _is_index_labelled(specification.graph): relabel_applied = True mapping, inverse_mapping = _graph_canonicalization(specification.graph) specification = specification.relabel_variables(mapping, inplace=False) else: relabel_applied = False if database is None: conn = cache_connect() else: conn = cache_connect(database) with conn as cur: try: widget = next(iter_penalty_model_from_specification(cur, specification)) except StopIteration: widget = None conn.close() if widget is None: raise pm.MissingPenaltyModel( 'no penalty model with the given specification found in cache') if relabel_applied: widget.relabel_variables(inverse_mapping, inplace=True) return widget
get_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specification, database=None):\n if not _is_index_labelled(specification.graph):\n relabel_applied = True\n mapping, inverse_mapping = _graph_canonicalization(specification.graph)\n specification = specification.relabel_variables(mapping, inplace=False)\n else:\n relabel_applied = False\n if database is None:\n conn = cache_connect()\n else:\n conn = cache_connect(database)\n with conn as cur:\n try:\n widget = next(iter_penalty_model_from_specification(cur,\n specification))\n except StopIteration:\n widget = None\n conn.close()\n if widget is None:\n raise pm.MissingPenaltyModel(\n 'no penalty model with the given specification found in cache')\n if relabel_applied:\n widget.relabel_variables(inverse_mapping, inplace=True)\n return widget\n", "role": "user" }, { "content": "get_penalty_model", "role": "assistant" } ]
def x(penalty_model, database=None): if not _is_index_labelled(penalty_model.graph): mapping, __ = _graph_canonicalization(penalty_model.graph) penalty_model = penalty_model.relabel_variables(mapping, inplace=False) if database is None: conn = cache_connect() else: conn = cache_connect(database) with conn as cur: insert_penalty_model(cur, penalty_model) conn.close()
cache_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(penalty_model, database=None):\n if not _is_index_labelled(penalty_model.graph):\n mapping, __ = _graph_canonicalization(penalty_model.graph)\n penalty_model = penalty_model.relabel_variables(mapping, inplace=False)\n if database is None:\n conn = cache_connect()\n else:\n conn = cache_connect(database)\n with conn as cur:\n insert_penalty_model(cur, penalty_model)\n conn.close()\n", "role": "user" }, { "content": "cache_penalty_model", "role": "assistant" } ]
def x(specification): for factory in iter_factories(): try: pm = factory(specification) except ImpossiblePenaltyModel as e: raise e except FactoryException: continue for cache in iter_caches(): cache(pm) return pm return None
get_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specification):\n for factory in iter_factories():\n try:\n pm = factory(specification)\n except ImpossiblePenaltyModel as e:\n raise e\n except FactoryException:\n continue\n for cache in iter_caches():\n cache(pm)\n return pm\n return None\n", "role": "user" }, { "content": "get_penalty_model", "role": "assistant" } ]
def x(): factories = (entry.load() for entry in iter_entry_points( FACTORY_ENTRYPOINT)) for factory in sorted(factories, key=lambda f: getattr(f, 'priority', - 1000), reverse=True): yield factory
iter_factories
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n factories = (entry.load() for entry in iter_entry_points(\n FACTORY_ENTRYPOINT))\n for factory in sorted(factories, key=lambda f: getattr(f, 'priority', -\n 1000), reverse=True):\n yield factory\n", "role": "user" }, { "content": "iter_factories", "role": "assistant" } ]
def x(graph, table, decision, linear_energy_ranges=None, quadratic_energy_ranges=None, min_classical_gap=2, precision=7, max_decision=8, max_variables=10, return_auxiliary=False): if not isinstance(graph, nx.Graph): raise TypeError('expected input graph to be a NetworkX Graph.') if not set().union(*table).issubset({-1, 1}): raise ValueError('expected table to be spin-valued') if not isinstance(decision, list): decision = list(decision) if not all(v in graph for v in decision): raise ValueError( 'given graph does not match the variable labels in decision variables' ) num_var = len(decision) if any(len(config) != num_var for config in table): raise ValueError( 'number of decision variables does not match all of the entires in the table' ) if len(decision) > max_decision: raise ValueError( 'The table is too large. Note that larger models can be built by setting max_decision to a higher number, but generation could be extremely slow.' ) if len(graph) > max_variables: raise ValueError( 'The graph is too large. Note that larger models can be built by setting max_variables to a higher number, but generation could be extremely slow.' ) if linear_energy_ranges is None: linear_energy_ranges = defaultdict(lambda : (-2, 2)) if quadratic_energy_ranges is None: quadratic_energy_ranges = defaultdict(lambda : (-1, 1)) if not isinstance(table, Mapping): table = {config: (0.0) for config in table} h, J, offset, gap, aux = _generate_ising(graph, table, decision, min_classical_gap, linear_energy_ranges, quadratic_energy_ranges) bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN) bqm.add_variables_from((v, round(bias, precision)) for v, bias in h.items() ) bqm.add_interactions_from((u, v, round(bias, precision)) for (u, v), bias in J.items()) bqm.add_offset(round(offset, precision)) if return_auxiliary: return bqm, round(gap, precision), aux else: return bqm, round(gap, precision)
generate_bqm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, table, decision, linear_energy_ranges=None,\n quadratic_energy_ranges=None, min_classical_gap=2, precision=7,\n max_decision=8, max_variables=10, return_auxiliary=False):\n if not isinstance(graph, nx.Graph):\n raise TypeError('expected input graph to be a NetworkX Graph.')\n if not set().union(*table).issubset({-1, 1}):\n raise ValueError('expected table to be spin-valued')\n if not isinstance(decision, list):\n decision = list(decision)\n if not all(v in graph for v in decision):\n raise ValueError(\n 'given graph does not match the variable labels in decision variables'\n )\n num_var = len(decision)\n if any(len(config) != num_var for config in table):\n raise ValueError(\n 'number of decision variables does not match all of the entires in the table'\n )\n if len(decision) > max_decision:\n raise ValueError(\n 'The table is too large. Note that larger models can be built by setting max_decision to a higher number, but generation could be extremely slow.'\n )\n if len(graph) > max_variables:\n raise ValueError(\n 'The graph is too large. Note that larger models can be built by setting max_variables to a higher number, but generation could be extremely slow.'\n )\n if linear_energy_ranges is None:\n linear_energy_ranges = defaultdict(lambda : (-2, 2))\n if quadratic_energy_ranges is None:\n quadratic_energy_ranges = defaultdict(lambda : (-1, 1))\n if not isinstance(table, Mapping):\n table = {config: (0.0) for config in table}\n h, J, offset, gap, aux = _generate_ising(graph, table, decision,\n min_classical_gap, linear_energy_ranges, quadratic_energy_ranges)\n bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)\n bqm.add_variables_from((v, round(bias, precision)) for v, bias in h.items()\n )\n bqm.add_interactions_from((u, v, round(bias, precision)) for (u, v),\n bias in J.items())\n bqm.add_offset(round(offset, precision))\n if return_auxiliary:\n return bqm, round(gap, precision), aux\n else:\n return bqm, round(gap, precision)\n", "role": "user" }, { "content": "generate_bqm", "role": "assistant" } ]
def x(specification): feasible_configurations = specification.feasible_configurations if specification.vartype is dimod.BINARY: feasible_configurations = {tuple(2 * v - 1 for v in config): en for config, en in iteritems(feasible_configurations)} ising_quadratic_ranges = specification.ising_quadratic_ranges quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in specification.graph.edges} try: bqm, gap = generate_bqm(specification.graph, feasible_configurations, specification.decision_variables, linear_energy_ranges=specification.ising_linear_ranges, quadratic_energy_ranges=quadratic_ranges, min_classical_gap= specification.min_classical_gap) except ValueError: raise pm.exceptions.FactoryException( 'Specification is for too large of a model') return pm.PenaltyModel.from_specification(specification, bqm, gap, 0.0)
get_penalty_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(specification):\n feasible_configurations = specification.feasible_configurations\n if specification.vartype is dimod.BINARY:\n feasible_configurations = {tuple(2 * v - 1 for v in config): en for\n config, en in iteritems(feasible_configurations)}\n ising_quadratic_ranges = specification.ising_quadratic_ranges\n quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in\n specification.graph.edges}\n try:\n bqm, gap = generate_bqm(specification.graph,\n feasible_configurations, specification.decision_variables,\n linear_energy_ranges=specification.ising_linear_ranges,\n quadratic_energy_ranges=quadratic_ranges, min_classical_gap=\n specification.min_classical_gap)\n except ValueError:\n raise pm.exceptions.FactoryException(\n 'Specification is for too large of a model')\n return pm.PenaltyModel.from_specification(specification, bqm, gap, 0.0)\n", "role": "user" }, { "content": "get_penalty_model", "role": "assistant" } ]
def x(linear_ranges, graph): if linear_ranges is None: linear_ranges = {} for v in graph: if v in linear_ranges: linear_ranges[v] = Specification._check_range(linear_ranges[v]) else: linear_ranges[v] = [-2, 2] return linear_ranges
check_ising_linear_ranges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(linear_ranges, graph):\n if linear_ranges is None:\n linear_ranges = {}\n for v in graph:\n if v in linear_ranges:\n linear_ranges[v] = Specification._check_range(linear_ranges[v])\n else:\n linear_ranges[v] = [-2, 2]\n return linear_ranges\n", "role": "user" }, { "content": "check_ising_linear_ranges", "role": "assistant" } ]
def x(quad_ranges, graph): if quad_ranges is None: quad_ranges = {} for u in graph: if u not in quad_ranges: quad_ranges[u] = {} for u, neighbors in iteritems(quad_ranges): for v, rang in iteritems(neighbors): rang = Specification._check_range(rang) if u in quad_ranges[v]: if quad_ranges[u][v] != quad_ranges[v][u]: raise ValueError( 'mismatched ranges for ising_quadratic_ranges') quad_ranges[v][u] = quad_ranges[u][v] = rang for u, v in graph.edges: if u not in quad_ranges[v]: quad_ranges[u][v] = quad_ranges[v][u] = [-1, 1] return quad_ranges
check_ising_quadratic_ranges
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(quad_ranges, graph):\n if quad_ranges is None:\n quad_ranges = {}\n for u in graph:\n if u not in quad_ranges:\n quad_ranges[u] = {}\n for u, neighbors in iteritems(quad_ranges):\n for v, rang in iteritems(neighbors):\n rang = Specification._check_range(rang)\n if u in quad_ranges[v]:\n if quad_ranges[u][v] != quad_ranges[v][u]:\n raise ValueError(\n 'mismatched ranges for ising_quadratic_ranges')\n quad_ranges[v][u] = quad_ranges[u][v] = rang\n for u, v in graph.edges:\n if u not in quad_ranges[v]:\n quad_ranges[u][v] = quad_ranges[v][u] = [-1, 1]\n return quad_ranges\n", "role": "user" }, { "content": "check_ising_quadratic_ranges", "role": "assistant" } ]
def x(range_): try: if not isinstance(range_, list): range_ = list(range_) min_, max_ = range_ except (ValueError, TypeError): raise TypeError( 'each range in ising_linear_ranges should be a list of length 2.') if not isinstance(min_, Number) or not isinstance(max_, Number ) or min_ > max_: raise ValueError( 'each range in ising_linear_ranges should be a 2-tuple (min, max) where min <= max' ) return range_
check_range
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(range_):\n try:\n if not isinstance(range_, list):\n range_ = list(range_)\n min_, max_ = range_\n except (ValueError, TypeError):\n raise TypeError(\n 'each range in ising_linear_ranges should be a list of length 2.')\n if not isinstance(min_, Number) or not isinstance(max_, Number\n ) or min_ > max_:\n raise ValueError(\n 'each range in ising_linear_ranges should be a 2-tuple (min, max) where min <= max'\n )\n return range_\n", "role": "user" }, { "content": "check_range", "role": "assistant" } ]
def x(self, mapping, inplace=True): graph = self.graph ising_linear_ranges = self.ising_linear_ranges ising_quadratic_ranges = self.ising_quadratic_ranges try: old_labels = set(iterkeys(mapping)) new_labels = set(itervalues(mapping)) except TypeError: raise ValueError('mapping targets must be hashable objects') for v in new_labels: if v in graph and v not in old_labels: raise ValueError( 'A variable cannot be relabeled "{}" without also relabeling the existing variable of the same name' .format(v)) if not inplace: return Specification(nx.relabel_nodes(graph, mapping, copy=True), tuple(mapping.get(v, v) for v in self.decision_variables), self .feasible_configurations, vartype=self.vartype, ising_linear_ranges={mapping.get(v, v): ising_linear_ranges[v] for v in graph}, ising_quadratic_ranges={mapping.get(v, v): { mapping.get(u, u): r for u, r in iteritems(neighbors)} for v, neighbors in iteritems(ising_quadratic_ranges)}) else: shared = old_labels & new_labels if shared: counter = itertools.count(2 * len(self)) old_to_intermediate = {} intermediate_to_new = {} for old, new in iteritems(mapping): if old == new: continue if old in new_labels or new in old_labels: lbl = next(counter) while lbl in new_labels or lbl in old_labels: lbl = next(counter) old_to_intermediate[old] = lbl intermediate_to_new[lbl] = new else: old_to_intermediate[old] = new Specification.relabel_variables(self, old_to_intermediate, inplace=True) Specification.relabel_variables(self, intermediate_to_new, inplace=True) return self nx.relabel_nodes(self.graph, mapping, copy=False) self.decision_variables = tuple(mapping.get(v, v) for v in self. decision_variables) for v in old_labels: if v in mapping: ising_linear_ranges[mapping[v]] = ising_linear_ranges[v] del ising_linear_ranges[v] for neighbors in itervalues(ising_quadratic_ranges): for v in list(neighbors): if v in mapping: neighbors[mapping[v]] = neighbors[v] del neighbors[v] for v in old_labels: if v in mapping: ising_quadratic_ranges[mapping[v]] = ising_quadratic_ranges[v] del ising_quadratic_ranges[v] return self
relabel_variables
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mapping, inplace=True):\n graph = self.graph\n ising_linear_ranges = self.ising_linear_ranges\n ising_quadratic_ranges = self.ising_quadratic_ranges\n try:\n old_labels = set(iterkeys(mapping))\n new_labels = set(itervalues(mapping))\n except TypeError:\n raise ValueError('mapping targets must be hashable objects')\n for v in new_labels:\n if v in graph and v not in old_labels:\n raise ValueError(\n 'A variable cannot be relabeled \"{}\" without also relabeling the existing variable of the same name'\n .format(v))\n if not inplace:\n return Specification(nx.relabel_nodes(graph, mapping, copy=True),\n tuple(mapping.get(v, v) for v in self.decision_variables), self\n .feasible_configurations, vartype=self.vartype,\n ising_linear_ranges={mapping.get(v, v): ising_linear_ranges[v] for\n v in graph}, ising_quadratic_ranges={mapping.get(v, v): {\n mapping.get(u, u): r for u, r in iteritems(neighbors)} for v,\n neighbors in iteritems(ising_quadratic_ranges)})\n else:\n shared = old_labels & new_labels\n if shared:\n counter = itertools.count(2 * len(self))\n old_to_intermediate = {}\n intermediate_to_new = {}\n for old, new in iteritems(mapping):\n if old == new:\n continue\n if old in new_labels or new in old_labels:\n lbl = next(counter)\n while lbl in new_labels or lbl in old_labels:\n lbl = next(counter)\n old_to_intermediate[old] = lbl\n intermediate_to_new[lbl] = new\n else:\n old_to_intermediate[old] = new\n Specification.relabel_variables(self, old_to_intermediate,\n inplace=True)\n Specification.relabel_variables(self, intermediate_to_new,\n inplace=True)\n return self\n nx.relabel_nodes(self.graph, mapping, copy=False)\n self.decision_variables = tuple(mapping.get(v, v) for v in self.\n decision_variables)\n for v in old_labels:\n if v in mapping:\n ising_linear_ranges[mapping[v]] = ising_linear_ranges[v]\n del ising_linear_ranges[v]\n for neighbors in itervalues(ising_quadratic_ranges):\n for v in list(neighbors):\n if v in mapping:\n neighbors[mapping[v]] = neighbors[v]\n del neighbors[v]\n for v in old_labels:\n if v in mapping:\n ising_quadratic_ranges[mapping[v]] = ising_quadratic_ranges[v]\n del ising_quadratic_ranges[v]\n return self\n", "role": "user" }, { "content": "relabel_variables", "role": "assistant" } ]
def x(dictionary, tuple_key, default_value): u, v = tuple_key tuple1 = dictionary.get((u, v), None) tuple2 = dictionary.get((v, u), None) return tuple1 or tuple2 or default_value
get_item
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(dictionary, tuple_key, default_value):\n u, v = tuple_key\n tuple1 = dictionary.get((u, v), None)\n tuple2 = dictionary.get((v, u), None)\n return tuple1 or tuple2 or default_value\n", "role": "user" }, { "content": "get_item", "role": "assistant" } ]
def x(spin_states, nodes, edges, offset_weight, gap_weight): if len(spin_states) == 0: return None n_states = len(spin_states) m_linear = len(nodes) m_quadratic = len(edges) matrix = np.empty((n_states, m_linear + m_quadratic + 2)) if spin_states.ndim == 1: spin_states = np.expand_dims(spin_states, 1) matrix[:, :m_linear] = spin_states node_indices = dict(zip(nodes, range(m_linear))) for j, (u, v) in enumerate(edges): u_ind = node_indices[u] v_ind = node_indices[v] matrix[:, j + m_linear] = np.multiply(matrix[:, u_ind], matrix[:, v_ind]) matrix[:, -2] = offset_weight matrix[:, -1] = gap_weight return matrix
get_lp_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spin_states, nodes, edges, offset_weight, gap_weight):\n if len(spin_states) == 0:\n return None\n n_states = len(spin_states)\n m_linear = len(nodes)\n m_quadratic = len(edges)\n matrix = np.empty((n_states, m_linear + m_quadratic + 2))\n if spin_states.ndim == 1:\n spin_states = np.expand_dims(spin_states, 1)\n matrix[:, :m_linear] = spin_states\n node_indices = dict(zip(nodes, range(m_linear)))\n for j, (u, v) in enumerate(edges):\n u_ind = node_indices[u]\n v_ind = node_indices[v]\n matrix[:, j + m_linear] = np.multiply(matrix[:, u_ind], matrix[:,\n v_ind])\n matrix[:, -2] = offset_weight\n matrix[:, -1] = gap_weight\n return matrix\n", "role": "user" }, { "content": "get_lp_matrix", "role": "assistant" } ]
def x(graph, table, decision_variables, linear_energy_ranges=None, quadratic_energy_ranges=None, min_classical_gap=2): if len(graph) != len(decision_variables): raise ValueError( 'Penaltymodel-lp does not handle problems with auxiliary variables' ) if not linear_energy_ranges: linear_energy_ranges = {} if not quadratic_energy_ranges: quadratic_energy_ranges = {} nodes = decision_variables edges = graph.edges m_linear = len(nodes) m_quadratic = len(edges) n_noted = len(table) n_unnoted = 2 ** m_linear - n_noted noted_states = table.keys() if isinstance(table, dict) else table noted_states = list(noted_states) noted_matrix = _get_lp_matrix(np.asarray(noted_states), nodes, edges, 1, 0) spin_states = product([-1, 1], repeat=m_linear) if m_linear > 1 else [-1, 1 ] unnoted_states = [state for state in spin_states if state not in noted_states] unnoted_matrix = _get_lp_matrix(np.asarray(unnoted_states), nodes, edges, 1, -1) if unnoted_matrix is not None: unnoted_matrix *= -1 if isinstance(table, dict): noted_bound = np.asarray([table[state] for state in noted_states]) unnoted_bound = np.full((n_unnoted, 1), -1 * max(table.values())) else: noted_bound = np.zeros((n_noted, 1)) unnoted_bound = np.zeros((n_unnoted, 1)) linear_range = MIN_LINEAR_BIAS, MAX_LINEAR_BIAS quadratic_range = MIN_QUADRATIC_BIAS, MAX_QUADRATIC_BIAS bounds = [linear_energy_ranges.get(node, linear_range) for node in nodes] bounds += [get_item(quadratic_energy_ranges, edge, quadratic_range) for edge in edges] max_gap = 2 * sum(max(abs(lbound), abs(ubound)) for lbound, ubound in bounds) bounds.append((None, None)) bounds.append((min_classical_gap, max_gap)) cost_weights = np.zeros((1, m_linear + m_quadratic + 2)) cost_weights[0, -1] = -1 result = linprog(cost_weights.flatten(), A_eq=noted_matrix, b_eq= noted_bound, A_ub=unnoted_matrix, b_ub=unnoted_bound, bounds=bounds) if not result.success: raise ValueError('Penaltymodel-lp is unable to find a solution.') x = result.x h = x[:m_linear] j = x[m_linear:-2] offset = x[-2] gap = x[-1] if gap <= 0: raise ValueError('Penaltymodel-lp is unable to find a solution.') bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN) bqm.add_variables_from((v, bias) for v, bias in zip(nodes, h)) bqm.add_interactions_from((u, v, bias) for (u, v), bias in zip(edges, j)) bqm.add_offset(offset) return bqm, gap
generate_bqm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, table, decision_variables, linear_energy_ranges=None,\n quadratic_energy_ranges=None, min_classical_gap=2):\n if len(graph) != len(decision_variables):\n raise ValueError(\n 'Penaltymodel-lp does not handle problems with auxiliary variables'\n )\n if not linear_energy_ranges:\n linear_energy_ranges = {}\n if not quadratic_energy_ranges:\n quadratic_energy_ranges = {}\n nodes = decision_variables\n edges = graph.edges\n m_linear = len(nodes)\n m_quadratic = len(edges)\n n_noted = len(table)\n n_unnoted = 2 ** m_linear - n_noted\n noted_states = table.keys() if isinstance(table, dict) else table\n noted_states = list(noted_states)\n noted_matrix = _get_lp_matrix(np.asarray(noted_states), nodes, edges, 1, 0)\n spin_states = product([-1, 1], repeat=m_linear) if m_linear > 1 else [-1, 1\n ]\n unnoted_states = [state for state in spin_states if state not in\n noted_states]\n unnoted_matrix = _get_lp_matrix(np.asarray(unnoted_states), nodes,\n edges, 1, -1)\n if unnoted_matrix is not None:\n unnoted_matrix *= -1\n if isinstance(table, dict):\n noted_bound = np.asarray([table[state] for state in noted_states])\n unnoted_bound = np.full((n_unnoted, 1), -1 * max(table.values()))\n else:\n noted_bound = np.zeros((n_noted, 1))\n unnoted_bound = np.zeros((n_unnoted, 1))\n linear_range = MIN_LINEAR_BIAS, MAX_LINEAR_BIAS\n quadratic_range = MIN_QUADRATIC_BIAS, MAX_QUADRATIC_BIAS\n bounds = [linear_energy_ranges.get(node, linear_range) for node in nodes]\n bounds += [get_item(quadratic_energy_ranges, edge, quadratic_range) for\n edge in edges]\n max_gap = 2 * sum(max(abs(lbound), abs(ubound)) for lbound, ubound in\n bounds)\n bounds.append((None, None))\n bounds.append((min_classical_gap, max_gap))\n cost_weights = np.zeros((1, m_linear + m_quadratic + 2))\n cost_weights[0, -1] = -1\n result = linprog(cost_weights.flatten(), A_eq=noted_matrix, b_eq=\n noted_bound, A_ub=unnoted_matrix, b_ub=unnoted_bound, bounds=bounds)\n if not result.success:\n raise ValueError('Penaltymodel-lp is unable to find a solution.')\n x = result.x\n h = x[:m_linear]\n j = x[m_linear:-2]\n offset = x[-2]\n gap = x[-1]\n if gap <= 0:\n raise ValueError('Penaltymodel-lp is unable to find a solution.')\n bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)\n bqm.add_variables_from((v, bias) for v, bias in zip(nodes, h))\n bqm.add_interactions_from((u, v, bias) for (u, v), bias in zip(edges, j))\n bqm.add_offset(offset)\n return bqm, gap\n", "role": "user" }, { "content": "generate_bqm", "role": "assistant" } ]
def x(graph, feasible_configurations, decision_variables, linear_energy_ranges, quadratic_energy_ranges, min_classical_gap, smt_solver_name=None): if len(graph) == 0: return dimod.BinaryQuadraticModel.empty(dimod.SPIN), float('inf') table = Table(graph, decision_variables, linear_energy_ranges, quadratic_energy_ranges) for config in itertools.product((-1, 1), repeat=len(decision_variables)): spins = dict(zip(decision_variables, config)) if config in feasible_configurations: table.set_energy(spins, feasible_configurations[config]) else: if isinstance(feasible_configurations, dict ) and feasible_configurations: highest_feasible_energy = max(feasible_configurations.values()) else: highest_feasible_energy = 0 table.set_energy_upperbound(spins, highest_feasible_energy) with Solver(smt_solver_name) as solver: for assertion in table.assertions: solver.add_assertion(assertion) gap_assertion = table.gap_bound_assertion(min_classical_gap) solver.add_assertion(gap_assertion) if solver.solve(): model = solver.get_model() gmin = min_classical_gap gmax = sum(max(abs(r) for r in linear_energy_ranges[v]) for v in graph) gmax += sum(max(abs(r) for r in quadratic_energy_ranges[u, v]) for u, v in graph.edges) gmax *= 2 g = max(2.0, gmin) while abs(gmax - gmin) >= MAX_GAP_DELTA: solver.push() gap_assertion = table.gap_bound_assertion(g) solver.add_assertion(gap_assertion) if solver.solve(): model = solver.get_model() gmin = float(model.get_py_value(table.gap)) else: solver.pop() gmax = g g = min(gmin + 0.1, (gmax + gmin) / 2) else: raise ImpossiblePenaltyModel('Model cannot be built') classical_gap = float(model.get_py_value(table.gap)) if len(decision_variables) == len(graph) and decision_variables and len( feasible_configurations) == 2 ** len(decision_variables): classical_gap = float('inf') return table.theta.to_bqm(model), classical_gap
generate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(graph, feasible_configurations, decision_variables,\n linear_energy_ranges, quadratic_energy_ranges, min_classical_gap,\n smt_solver_name=None):\n if len(graph) == 0:\n return dimod.BinaryQuadraticModel.empty(dimod.SPIN), float('inf')\n table = Table(graph, decision_variables, linear_energy_ranges,\n quadratic_energy_ranges)\n for config in itertools.product((-1, 1), repeat=len(decision_variables)):\n spins = dict(zip(decision_variables, config))\n if config in feasible_configurations:\n table.set_energy(spins, feasible_configurations[config])\n else:\n if isinstance(feasible_configurations, dict\n ) and feasible_configurations:\n highest_feasible_energy = max(feasible_configurations.values())\n else:\n highest_feasible_energy = 0\n table.set_energy_upperbound(spins, highest_feasible_energy)\n with Solver(smt_solver_name) as solver:\n for assertion in table.assertions:\n solver.add_assertion(assertion)\n gap_assertion = table.gap_bound_assertion(min_classical_gap)\n solver.add_assertion(gap_assertion)\n if solver.solve():\n model = solver.get_model()\n gmin = min_classical_gap\n gmax = sum(max(abs(r) for r in linear_energy_ranges[v]) for v in\n graph)\n gmax += sum(max(abs(r) for r in quadratic_energy_ranges[u, v]) for\n u, v in graph.edges)\n gmax *= 2\n g = max(2.0, gmin)\n while abs(gmax - gmin) >= MAX_GAP_DELTA:\n solver.push()\n gap_assertion = table.gap_bound_assertion(g)\n solver.add_assertion(gap_assertion)\n if solver.solve():\n model = solver.get_model()\n gmin = float(model.get_py_value(table.gap))\n else:\n solver.pop()\n gmax = g\n g = min(gmin + 0.1, (gmax + gmin) / 2)\n else:\n raise ImpossiblePenaltyModel('Model cannot be built')\n classical_gap = float(model.get_py_value(table.gap))\n if len(decision_variables) == len(graph) and decision_variables and len(\n feasible_configurations) == 2 ** len(decision_variables):\n classical_gap = float('inf')\n return table.theta.to_bqm(model), classical_gap\n", "role": "user" }, { "content": "generate", "role": "assistant" } ]
def x(x, max_denominator=1000000): f = Fraction(x).limit_denominator(max_denominator) return Real((f.numerator, f.denominator))
limitReal
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, max_denominator=1000000):\n f = Fraction(x).limit_denominator(max_denominator)\n return Real((f.numerator, f.denominator))\n", "role": "user" }, { "content": "limitReal", "role": "assistant" } ]
def x(cls, graph, linear_energy_ranges, quadratic_energy_ranges): get_env().enable_infix_notation = True theta = cls.empty(dimod.SPIN) theta.add_offset(Symbol('offset', REAL)) def x(v): bias = Symbol('h_{}'.format(v), REAL) min_, max_ = linear_energy_ranges[v] theta.assertions.add(LE(bias, limitReal(max_))) theta.assertions.add(GE(bias, limitReal(min_))) return bias def x(u, v): bias = Symbol('J_{},{}'.format(u, v), REAL) if (v, u) in quadratic_energy_ranges: min_, max_ = quadratic_energy_ranges[v, u] else: min_, max_ = quadratic_energy_ranges[u, v] theta.assertions.add(LE(bias, limitReal(max_))) theta.assertions.add(GE(bias, limitReal(min_))) return bias for v in graph.nodes: theta.add_variable(v, Linear(v)) for u, v in graph.edges: theta.add_interaction(u, v, Quadratic(u, v)) return theta
from_graph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, graph, linear_energy_ranges, quadratic_energy_ranges):\n get_env().enable_infix_notation = True\n theta = cls.empty(dimod.SPIN)\n theta.add_offset(Symbol('offset', REAL))\n\n def x(v):\n bias = Symbol('h_{}'.format(v), REAL)\n min_, max_ = linear_energy_ranges[v]\n theta.assertions.add(LE(bias, limitReal(max_)))\n theta.assertions.add(GE(bias, limitReal(min_)))\n return bias\n\n def x(u, v):\n bias = Symbol('J_{},{}'.format(u, v), REAL)\n if (v, u) in quadratic_energy_ranges:\n min_, max_ = quadratic_energy_ranges[v, u]\n else:\n min_, max_ = quadratic_energy_ranges[u, v]\n theta.assertions.add(LE(bias, limitReal(max_)))\n theta.assertions.add(GE(bias, limitReal(min_)))\n return bias\n for v in graph.nodes:\n theta.add_variable(v, Linear(v))\n for u, v in graph.edges:\n theta.add_interaction(u, v, Quadratic(u, v))\n return theta\n", "role": "user" }, { "content": "from_graph", "role": "assistant" } ]
def x(self, model): linear = ((v, float(model.get_py_value(bias))) for v, bias in self. linear.items()) quadratic = ((u, v, float(model.get_py_value(bias))) for (u, v), bias in self.quadratic.items()) offset = float(model.get_py_value(self.offset)) return dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.SPIN)
to_bqm
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, model):\n linear = ((v, float(model.get_py_value(bias))) for v, bias in self.\n linear.items())\n quadratic = ((u, v, float(model.get_py_value(bias))) for (u, v), bias in\n self.quadratic.items())\n offset = float(model.get_py_value(self.offset))\n return dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.SPIN)\n", "role": "user" }, { "content": "to_bqm", "role": "assistant" } ]
def x(spin, bias): if not isinstance(spin, int): raise TypeError('spin must be an int') if spin == -1: return Times(Real((-1, 1)), bias) elif spin == 1: return bias else: raise ValueError('expected spins to be -1., or 1.')
SpinTimes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(spin, bias):\n if not isinstance(spin, int):\n raise TypeError('spin must be an int')\n if spin == -1:\n return Times(Real((-1, 1)), bias)\n elif spin == 1:\n return bias\n else:\n raise ValueError('expected spins to be -1., or 1.')\n", "role": "user" }, { "content": "SpinTimes", "role": "assistant" } ]
def x(theta, decision_variables): auxiliary_variables = set(n for n in theta.linear if n not in decision_variables) adj = {v: {u for u in theta.adj[v] if u in auxiliary_variables} for v in theta.adj if v in auxiliary_variables} tw, order = dnx.treewidth_branch_and_bound(adj) ancestors = {} for n in order: ancestors[n] = set(adj[n]) neighbors = adj[n] for u, v in itertools.combinations(neighbors, 2): adj[u].add(v) adj[v].add(u) for v in neighbors: adj[v].discard(n) del adj[n] roots = {} nodes = {v: {} for v in ancestors} for vidx in range(len(order) - 1, -1, -1): v = order[vidx] if ancestors[v]: for u in order[vidx + 1:]: if u in ancestors[v]: nodes[u][v] = nodes[v] break else: roots[v] = nodes[v] return roots, ancestors
elimination_trees
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(theta, decision_variables):\n auxiliary_variables = set(n for n in theta.linear if n not in\n decision_variables)\n adj = {v: {u for u in theta.adj[v] if u in auxiliary_variables} for v in\n theta.adj if v in auxiliary_variables}\n tw, order = dnx.treewidth_branch_and_bound(adj)\n ancestors = {}\n for n in order:\n ancestors[n] = set(adj[n])\n neighbors = adj[n]\n for u, v in itertools.combinations(neighbors, 2):\n adj[u].add(v)\n adj[v].add(u)\n for v in neighbors:\n adj[v].discard(n)\n del adj[n]\n roots = {}\n nodes = {v: {} for v in ancestors}\n for vidx in range(len(order) - 1, -1, -1):\n v = order[vidx]\n if ancestors[v]:\n for u in order[vidx + 1:]:\n if u in ancestors[v]:\n nodes[u][v] = nodes[v]\n break\n else:\n roots[v] = nodes[v]\n return roots, ancestors\n", "role": "user" }, { "content": "elimination_trees", "role": "assistant" } ]
def x(self, spins): subtheta = self.theta.copy() subtheta.fix_variables(spins) trees = self._trees if not trees: assert not subtheta.linear and not subtheta.quadratic return subtheta.offset energy = Plus(self.message_upperbound(trees, {}, subtheta), subtheta.offset ) return energy
energy_upperbound
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spins):\n subtheta = self.theta.copy()\n subtheta.fix_variables(spins)\n trees = self._trees\n if not trees:\n assert not subtheta.linear and not subtheta.quadratic\n return subtheta.offset\n energy = Plus(self.message_upperbound(trees, {}, subtheta), subtheta.offset\n )\n return energy\n", "role": "user" }, { "content": "energy_upperbound", "role": "assistant" } ]
def x(self, spins, break_aux_symmetry=True): subtheta = self.theta.copy() subtheta.fix_variables(spins) av = next(self._auxvar_counter) auxvars = {v: Symbol('aux{}_{}'.format(av, v), BOOL) for v in subtheta. linear} if break_aux_symmetry and av == 0: self.assertions.update(set(auxvars.values())) trees = self._trees if not trees: assert not subtheta.linear and not subtheta.quadratic return subtheta.offset energy = Plus(self.message(trees, {}, subtheta, auxvars), subtheta.offset) return energy
energy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spins, break_aux_symmetry=True):\n subtheta = self.theta.copy()\n subtheta.fix_variables(spins)\n av = next(self._auxvar_counter)\n auxvars = {v: Symbol('aux{}_{}'.format(av, v), BOOL) for v in subtheta.\n linear}\n if break_aux_symmetry and av == 0:\n self.assertions.update(set(auxvars.values()))\n trees = self._trees\n if not trees:\n assert not subtheta.linear and not subtheta.quadratic\n return subtheta.offset\n energy = Plus(self.message(trees, {}, subtheta, auxvars), subtheta.offset)\n return energy\n", "role": "user" }, { "content": "energy", "role": "assistant" } ]
def x(self, tree, spins, subtheta, auxvars): energy_sources = set() for v, children in tree.items(): aux = auxvars[v] assert all(u in spins for u in self._ancestors[v]) def x(): yield subtheta.linear[v] for u, bias in subtheta.adj[v].items(): if u in spins: yield SpinTimes(spins[u], bias) plus_energy = Plus(energy_contributions()) minus_energy = SpinTimes(-1, plus_energy) if children: spins[v] = 1 plus_energy = Plus(plus_energy, self.message(children, spins, subtheta, auxvars)) spins[v] = -1 minus_energy = Plus(minus_energy, self.message(children, spins, subtheta, auxvars)) del spins[v] m = FreshSymbol(REAL) ancestor_aux = {(auxvars[u] if spins[u] > 0 else Not(auxvars[u])) for u in self._ancestors[v]} plus_aux = And({aux}.union(ancestor_aux)) minus_aux = And({Not(aux)}.union(ancestor_aux)) self.assertions.update({LE(m, plus_energy), LE(m, minus_energy), Implies(plus_aux, GE(m, plus_energy)), Implies(minus_aux, GE(m, minus_energy))}) energy_sources.add(m) return Plus(energy_sources)
message
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tree, spins, subtheta, auxvars):\n energy_sources = set()\n for v, children in tree.items():\n aux = auxvars[v]\n assert all(u in spins for u in self._ancestors[v])\n\n def x():\n yield subtheta.linear[v]\n for u, bias in subtheta.adj[v].items():\n if u in spins:\n yield SpinTimes(spins[u], bias)\n plus_energy = Plus(energy_contributions())\n minus_energy = SpinTimes(-1, plus_energy)\n if children:\n spins[v] = 1\n plus_energy = Plus(plus_energy, self.message(children, spins,\n subtheta, auxvars))\n spins[v] = -1\n minus_energy = Plus(minus_energy, self.message(children, spins,\n subtheta, auxvars))\n del spins[v]\n m = FreshSymbol(REAL)\n ancestor_aux = {(auxvars[u] if spins[u] > 0 else Not(auxvars[u])) for\n u in self._ancestors[v]}\n plus_aux = And({aux}.union(ancestor_aux))\n minus_aux = And({Not(aux)}.union(ancestor_aux))\n self.assertions.update({LE(m, plus_energy), LE(m, minus_energy),\n Implies(plus_aux, GE(m, plus_energy)), Implies(minus_aux, GE(m,\n minus_energy))})\n energy_sources.add(m)\n return Plus(energy_sources)\n", "role": "user" }, { "content": "message", "role": "assistant" } ]
def x(self, tree, spins, subtheta): energy_sources = set() for v, subtree in tree.items(): assert all(u in spins for u in self._ancestors[v]) def x(): yield subtheta.linear[v] for u, bias in subtheta.adj[v].items(): if u in spins: yield Times(limitReal(spins[u]), bias) energy = Plus(energy_contributions()) if subtree: spins[v] = 1.0 plus = self.message_upperbound(subtree, spins, subtheta) spins[v] = -1.0 minus = self.message_upperbound(subtree, spins, subtheta) del spins[v] else: plus = minus = limitReal(0.0) m = FreshSymbol(REAL) self.assertions.update({LE(m, Plus(energy, plus)), LE(m, Plus(Times (energy, limitReal(-1.0)), minus))}) energy_sources.add(m) return Plus(energy_sources)
message_upperbound
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, tree, spins, subtheta):\n energy_sources = set()\n for v, subtree in tree.items():\n assert all(u in spins for u in self._ancestors[v])\n\n def x():\n yield subtheta.linear[v]\n for u, bias in subtheta.adj[v].items():\n if u in spins:\n yield Times(limitReal(spins[u]), bias)\n energy = Plus(energy_contributions())\n if subtree:\n spins[v] = 1.0\n plus = self.message_upperbound(subtree, spins, subtheta)\n spins[v] = -1.0\n minus = self.message_upperbound(subtree, spins, subtheta)\n del spins[v]\n else:\n plus = minus = limitReal(0.0)\n m = FreshSymbol(REAL)\n self.assertions.update({LE(m, Plus(energy, plus)), LE(m, Plus(Times\n (energy, limitReal(-1.0)), minus))})\n energy_sources.add(m)\n return Plus(energy_sources)\n", "role": "user" }, { "content": "message_upperbound", "role": "assistant" } ]
def x(self, spins, target_energy): spin_energy = self.energy(spins) self.assertions.add(Equals(spin_energy, limitReal(target_energy)))
set_energy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spins, target_energy):\n spin_energy = self.energy(spins)\n self.assertions.add(Equals(spin_energy, limitReal(target_energy)))\n", "role": "user" }, { "content": "set_energy", "role": "assistant" } ]
def x(self, spins, offset=0): spin_energy = self.energy_upperbound(spins) self.assertions.add(GE(spin_energy, self.gap + offset))
set_energy_upperbound
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, spins, offset=0):\n spin_energy = self.energy_upperbound(spins)\n self.assertions.add(GE(spin_energy, self.gap + offset))\n", "role": "user" }, { "content": "set_energy_upperbound", "role": "assistant" } ]
def x(self): next_poll = time.time() while True: next_poll += self._poll_period timeout = next_poll - time.time() if timeout < 0: timeout = 0 try: return self._stop_queue.get(timeout=timeout) except TimeoutError: pass try: self.handle_changes(self.client.get_changes()) except Exception: self.log.exception('Error while getting changes')
poll_loop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n next_poll = time.time()\n while True:\n next_poll += self._poll_period\n timeout = next_poll - time.time()\n if timeout < 0:\n timeout = 0\n try:\n return self._stop_queue.get(timeout=timeout)\n except TimeoutError:\n pass\n try:\n self.handle_changes(self.client.get_changes())\n except Exception:\n self.log.exception('Error while getting changes')\n", "role": "user" }, { "content": "poll_loop", "role": "assistant" } ]
def x(name): split = re.findall('[A-Z]?[a-z0-9]+|[A-Z]+(?=[A-Z]|$)', name) ret = ' '.join(split) ret = ret[0].upper() + ret[1:] return ret
camel_to_title
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n split = re.findall('[A-Z]?[a-z0-9]+|[A-Z]+(?=[A-Z]|$)', name)\n ret = ' '.join(split)\n ret = ret[0].upper() + ret[1:]\n return ret\n", "role": "user" }, { "content": "camel_to_title", "role": "assistant" } ]
def x(name): ret = ''.join(x.title() for x in name.split('_')) ret = ret[0].lower() + ret[1:] return ret
snake_to_camel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n ret = ''.join(x.title() for x in name.split('_'))\n ret = ret[0].lower() + ret[1:]\n return ret\n", "role": "user" }, { "content": "snake_to_camel", "role": "assistant" } ]
def x(self): d = OrderedDict() if self.typeid: d['typeid'] = self.typeid for k in self.call_types: d[k] = serialize_object(getattr(self, k)) return d
to_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n d = OrderedDict()\n if self.typeid:\n d['typeid'] = self.typeid\n for k in self.call_types:\n d[k] = serialize_object(getattr(self, k))\n return d\n", "role": "user" }, { "content": "to_dict", "role": "assistant" } ]
def x(cls, d, ignore=()): filtered = {} for k, v in d.items(): if k == 'typeid': assert v == cls.typeid, 'Dict has typeid %s but %s has typeid %s' % ( v, cls, cls.typeid) elif k not in ignore: filtered[k] = v try: inst = cls(**filtered) except TypeError as e: raise TypeError('%s raised error: %s' % (cls.typeid, str(e))) return inst
from_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, d, ignore=()):\n filtered = {}\n for k, v in d.items():\n if k == 'typeid':\n assert v == cls.typeid, 'Dict has typeid %s but %s has typeid %s' % (\n v, cls, cls.typeid)\n elif k not in ignore:\n filtered[k] = v\n try:\n inst = cls(**filtered)\n except TypeError as e:\n raise TypeError('%s raised error: %s' % (cls.typeid, str(e)))\n return inst\n", "role": "user" }, { "content": "from_dict", "role": "assistant" } ]
def x(cls, typeid): def x(subclass): cls._subcls_lookup[typeid] = subclass subclass.typeid = typeid return subclass return decorator
register_subclass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, typeid):\n\n def x(subclass):\n cls._subcls_lookup[typeid] = subclass\n subclass.typeid = typeid\n return subclass\n return decorator\n", "role": "user" }, { "content": "register_subclass", "role": "assistant" } ]
def x(cls, d): try: typeid = d['typeid'] except KeyError: raise FieldError('typeid not present in keys %s' % list(d)) subclass = cls._subcls_lookup.get(typeid, None) if not subclass: raise FieldError("'%s' not a valid typeid" % typeid) else: return subclass
lookup_subclass
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, d):\n try:\n typeid = d['typeid']\n except KeyError:\n raise FieldError('typeid not present in keys %s' % list(d))\n subclass = cls._subcls_lookup.get(typeid, None)\n if not subclass:\n raise FieldError(\"'%s' not a valid typeid\" % typeid)\n else:\n return subclass\n", "role": "user" }, { "content": "lookup_subclass", "role": "assistant" } ]
def x(self, timeout=None): assert self.state == STOPPED, 'Process already started' self.state = STARTING should_publish = self._start_controllers(self._controllers.values(), timeout) if should_publish: self._publish_controllers(timeout) self.state = STARTED
start
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout=None):\n assert self.state == STOPPED, 'Process already started'\n self.state = STARTING\n should_publish = self._start_controllers(self._controllers.values(),\n timeout)\n if should_publish:\n self._publish_controllers(timeout)\n self.state = STARTED\n", "role": "user" }, { "content": "start", "role": "assistant" } ]
def x(self, timeout=None): assert self.state == STARTED, 'Process not started' self.state = STOPPING self._run_hook(ProcessStopHook, timeout=timeout) for s in self._spawned: if not s.ready(): self.log.debug('Waiting for %s *%s **%s', s._function, s._args, s._kwargs) s.wait(timeout=timeout) self._spawned = [] self._controllers = OrderedDict() self._unpublished = set() self.state = STOPPED self.log.debug('Done process.stop()')
stop
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, timeout=None):\n assert self.state == STARTED, 'Process not started'\n self.state = STOPPING\n self._run_hook(ProcessStopHook, timeout=timeout)\n for s in self._spawned:\n if not s.ready():\n self.log.debug('Waiting for %s *%s **%s', s._function, s._args,\n s._kwargs)\n s.wait(timeout=timeout)\n self._spawned = []\n self._controllers = OrderedDict()\n self._unpublished = set()\n self.state = STOPPED\n self.log.debug('Done process.stop()')\n", "role": "user" }, { "content": "stop", "role": "assistant" } ]
def x(self, function, *args, **kwargs): assert self.state != STOPPED, "Can't spawn when process stopped" spawned = Spawned(function, args, kwargs) self._spawned.append(spawned) self._spawn_count += 1 if self._spawn_count > SPAWN_CLEAR_COUNT: self._clear_spawn_list() return spawned
spawn
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, function, *args, **kwargs):\n assert self.state != STOPPED, \"Can't spawn when process stopped\"\n spawned = Spawned(function, args, kwargs)\n self._spawned.append(spawned)\n self._spawn_count += 1\n if self._spawn_count > SPAWN_CLEAR_COUNT:\n self._clear_spawn_list()\n return spawned\n", "role": "user" }, { "content": "spawn", "role": "assistant" } ]
def x(self, controller, timeout=None): assert controller.mri not in self._controllers, 'Controller already exists for %s' % controller.mri self._controllers[controller.mri] = controller controller.setup(self) if self.state: should_publish = self._start_controllers([controller], timeout) if self.state == STARTED and should_publish: self._publish_controllers(timeout)
add_controller
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, controller, timeout=None):\n assert controller.mri not in self._controllers, 'Controller already exists for %s' % controller.mri\n self._controllers[controller.mri] = controller\n controller.setup(self)\n if self.state:\n should_publish = self._start_controllers([controller], timeout)\n if self.state == STARTED and should_publish:\n self._publish_controllers(timeout)\n", "role": "user" }, { "content": "add_controller", "role": "assistant" } ]
def x(self, mri): controller = self.get_controller(mri) block = controller.block_view() return block
block_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, mri):\n controller = self.get_controller(mri)\n block = controller.block_view()\n return block\n", "role": "user" }, { "content": "block_view", "role": "assistant" } ]
def x(self, _, info): with self._lock: self._block.meta.set_label(info.title)
update_title
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, _, info):\n with self._lock:\n self._block.meta.set_label(info.title)\n", "role": "user" }, { "content": "update_title", "role": "assistant" } ]