source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(a):
sqrth = math.sqrt(2) / 2
x = float(a) * sqrth
z = abs(x)
if z < sqrth:
y = 0.5 + 0.5 * math.erf(x)
else:
y = 0.5 * math.erfc(z)
if x > 0:
y = 1 - y
return y
|
ndtr
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n sqrth = math.sqrt(2) / 2\n x = float(a) * sqrth\n z = abs(x)\n if z < sqrth:\n y = 0.5 + 0.5 * math.erf(x)\n else:\n y = 0.5 * math.erfc(z)\n if x > 0:\n y = 1 - y\n return y\n",
"role": "user"
},
{
"content": "ndtr",
"role": "assistant"
}
] |
def x(sample1, sample2, use_continuity=True):
sample = sample1.copy()
for k, v in sample2.items():
sample[k] = sample.get(k, 0) + v
ranks = _rank(sample)
sum_of_ranks = sum([(sample1[k] * ranks[k]) for k, v in sample1.items()])
n1 = sum(sample1.values())
n2 = sum(sample2.values())
u1 = sum_of_ranks - n1 * (n1 + 1) / 2
u2 = n1 * n2 - u1
tie_correction = _tie_correct(sample)
if tie_correction == 0:
raise ValueError('All provided sample values are identical.')
sd_u = math.sqrt(tie_correction * n1 * n2 * (n1 + n2 + 1) / 12.0)
mean_rank = n1 * n2 / 2.0 + 0.5 * use_continuity
z = abs((max(u1, u2) - mean_rank) / sd_u)
return mwu_result(min(u1, u2), ndtr(-z))
|
mann_whitney_u
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sample1, sample2, use_continuity=True):\n sample = sample1.copy()\n for k, v in sample2.items():\n sample[k] = sample.get(k, 0) + v\n ranks = _rank(sample)\n sum_of_ranks = sum([(sample1[k] * ranks[k]) for k, v in sample1.items()])\n n1 = sum(sample1.values())\n n2 = sum(sample2.values())\n u1 = sum_of_ranks - n1 * (n1 + 1) / 2\n u2 = n1 * n2 - u1\n tie_correction = _tie_correct(sample)\n if tie_correction == 0:\n raise ValueError('All provided sample values are identical.')\n sd_u = math.sqrt(tie_correction * n1 * n2 * (n1 + n2 + 1) / 12.0)\n mean_rank = n1 * n2 / 2.0 + 0.5 * use_continuity\n z = abs((max(u1, u2) - mean_rank) / sd_u)\n return mwu_result(min(u1, u2), ndtr(-z))\n",
"role": "user"
},
{
"content": "mann_whitney_u",
"role": "assistant"
}
] |
def x(func):
def x(*args, **kwargs):
print('Call to deprecated function %s.' % func.__name__)
return func(*args, **kwargs)
newFunc.__name__ = func.__name__
newFunc.__doc__ = func.__doc__
newFunc.__dict__.update(func.__dict__)
return newFunc
|
deprecated
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func):\n\n def x(*args, **kwargs):\n print('Call to deprecated function %s.' % func.__name__)\n return func(*args, **kwargs)\n newFunc.__name__ = func.__name__\n newFunc.__doc__ = func.__doc__\n newFunc.__dict__.update(func.__dict__)\n return newFunc\n",
"role": "user"
},
{
"content": "deprecated",
"role": "assistant"
}
] |
def x(sc, app=None, build_id=None, channel=None, doc_type='saved_session',
fraction=1.0, schema=None, source_name='telemetry', source_version='4',
submission_date=None, version=None):
if schema:
print(
"The 'schema' parameter is deprecated. Version 4 is now the only schema supported."
)
if schema != 'v4':
raise ValueError('Invalid schema version')
dataset = Dataset.from_source('telemetry')
filters = ('docType', doc_type), ('sourceName', source_name), (
'sourceVersion', source_version), ('appName', app), ('appUpdateChannel'
, channel), ('appVersion', version)
for key, condition in filters:
if condition and condition != '*':
dataset = dataset.where(**{key: condition})
special_cases = dict(appBuildId=build_id, submissionDate=submission_date)
def x(min_val, max_val, val):
return min_val <= val <= max_val
for key, value in iteritems(special_cases):
if value is not None and value != '*':
if isinstance(value, string_types):
condition = value
elif isinstance(value, (list, tuple)) and len(value) == 2:
start, end = value
condition = partial(range_compare, start, end)
else:
raise ValueError(
'{} must be either a string or a 2 elements list/tuple'
.format(key))
dataset = dataset.where(**{key: condition})
return dataset.records(sc, sample=fraction)
|
get_pings
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sc, app=None, build_id=None, channel=None, doc_type='saved_session',\n fraction=1.0, schema=None, source_name='telemetry', source_version='4',\n submission_date=None, version=None):\n if schema:\n print(\n \"The 'schema' parameter is deprecated. Version 4 is now the only schema supported.\"\n )\n if schema != 'v4':\n raise ValueError('Invalid schema version')\n dataset = Dataset.from_source('telemetry')\n filters = ('docType', doc_type), ('sourceName', source_name), (\n 'sourceVersion', source_version), ('appName', app), ('appUpdateChannel'\n , channel), ('appVersion', version)\n for key, condition in filters:\n if condition and condition != '*':\n dataset = dataset.where(**{key: condition})\n special_cases = dict(appBuildId=build_id, submissionDate=submission_date)\n\n def x(min_val, max_val, val):\n return min_val <= val <= max_val\n for key, value in iteritems(special_cases):\n if value is not None and value != '*':\n if isinstance(value, string_types):\n condition = value\n elif isinstance(value, (list, tuple)) and len(value) == 2:\n start, end = value\n condition = partial(range_compare, start, end)\n else:\n raise ValueError(\n '{} must be either a string or a 2 elements list/tuple'\n .format(key))\n dataset = dataset.where(**{key: condition})\n return dataset.records(sc, sample=fraction)\n",
"role": "user"
},
{
"content": "get_pings",
"role": "assistant"
}
] |
def x(pings, paths, only_median=False, with_processes=False, histograms_url
=None, additional_histograms=None):
if isinstance(pings.first(), binary_type):
pings = pings.map(lambda p: json.loads(p.decode('utf-8')))
if isinstance(paths, str):
paths = [paths]
if isinstance(paths, dict):
paths = [(prop_name, path.split('/')) for prop_name, path in
iteritems(paths)]
else:
paths = [(path, path.split('/')) for path in paths]
return pings.map(lambda p: _get_ping_properties(p, paths, only_median,
with_processes, histograms_url, additional_histograms)).filter(lambda
p: p)
|
get_pings_properties
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pings, paths, only_median=False, with_processes=False, histograms_url\n =None, additional_histograms=None):\n if isinstance(pings.first(), binary_type):\n pings = pings.map(lambda p: json.loads(p.decode('utf-8')))\n if isinstance(paths, str):\n paths = [paths]\n if isinstance(paths, dict):\n paths = [(prop_name, path.split('/')) for prop_name, path in\n iteritems(paths)]\n else:\n paths = [(path, path.split('/')) for path in paths]\n return pings.map(lambda p: _get_ping_properties(p, paths, only_median,\n with_processes, histograms_url, additional_histograms)).filter(lambda\n p: p)\n",
"role": "user"
},
{
"content": "get_pings_properties",
"role": "assistant"
}
] |
def x(pings):
if isinstance(pings.first(), binary_type):
pings = pings.map(lambda p: json.loads(p.decode('utf-8')))
filtered = pings.filter(lambda p: 'clientID' in p or 'clientId' in p)
if not filtered:
raise ValueError('Missing clientID/clientId attribute.')
if 'clientID' in filtered.first():
client_id = 'clientID'
else:
client_id = 'clientId'
return filtered.map(lambda p: (p[client_id], p)).reduceByKey(lambda p1,
p2: p1).map(lambda p: p[1])
|
get_one_ping_per_client
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pings):\n if isinstance(pings.first(), binary_type):\n pings = pings.map(lambda p: json.loads(p.decode('utf-8')))\n filtered = pings.filter(lambda p: 'clientID' in p or 'clientId' in p)\n if not filtered:\n raise ValueError('Missing clientID/clientId attribute.')\n if 'clientID' in filtered.first():\n client_id = 'clientID'\n else:\n client_id = 'clientId'\n return filtered.map(lambda p: (p[client_id], p)).reduceByKey(lambda p1,\n p2: p1).map(lambda p: p[1])\n",
"role": "user"
},
{
"content": "get_one_ping_per_client",
"role": "assistant"
}
] |
def x(function=None):
def x(user):
if not user.is_authenticated:
return False
if settings.ADMIN_IGNORED:
raise PermissionDenied
if not user.is_admin:
raise PermissionDenied
return True
actual_decorator = user_passes_test(check_perms, login_url=_login_url)
if function:
return actual_decorator(function)
return actual_decorator
|
admin_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function=None):\n\n def x(user):\n if not user.is_authenticated:\n return False\n if settings.ADMIN_IGNORED:\n raise PermissionDenied\n if not user.is_admin:\n raise PermissionDenied\n return True\n actual_decorator = user_passes_test(check_perms, login_url=_login_url)\n if function:\n return actual_decorator(function)\n return actual_decorator\n",
"role": "user"
},
{
"content": "admin_required",
"role": "assistant"
}
] |
def x(function=None):
def x(user):
if not user.is_authenticated:
return False
if settings.ADMIN_REQUIRED and not user.is_admin:
raise PermissionDenied
return True
actual_decorator = user_passes_test(check_perms, login_url=_login_url)
if function:
return actual_decorator(function)
return actual_decorator
|
login_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function=None):\n\n def x(user):\n if not user.is_authenticated:\n return False\n if settings.ADMIN_REQUIRED and not user.is_admin:\n raise PermissionDenied\n return True\n actual_decorator = user_passes_test(check_perms, login_url=_login_url)\n if function:\n return actual_decorator(function)\n return actual_decorator\n",
"role": "user"
},
{
"content": "login_required",
"role": "assistant"
}
] |
def x(function=None):
def x(func):
def x(machine_name, password, *args):
from django_xmlrpc.decorators import AuthenticationFailedException
from karaage.machines.models import Machine
machine = Machine.objects.authenticate(machine_name, password)
if machine is None:
raise AuthenticationFailedException
return func(machine, *args)
if hasattr(func, '_xmlrpc_signature'):
sig = func._xmlrpc_signature
sig['args'] = ['string'] * 2 + sig['args']
wrapper._xmlrpc_signature = sig
if func.__doc__:
wrapper.__doc__ = (func.__doc__ +
'\nNote: Machine authentication is required.')
return wrapper
if function:
return actual_decorator(function)
return actual_decorator
|
xmlrpc_machine_required
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(function=None):\n\n def x(func):\n\n def x(machine_name, password, *args):\n from django_xmlrpc.decorators import AuthenticationFailedException\n from karaage.machines.models import Machine\n machine = Machine.objects.authenticate(machine_name, password)\n if machine is None:\n raise AuthenticationFailedException\n return func(machine, *args)\n if hasattr(func, '_xmlrpc_signature'):\n sig = func._xmlrpc_signature\n sig['args'] = ['string'] * 2 + sig['args']\n wrapper._xmlrpc_signature = sig\n if func.__doc__:\n wrapper.__doc__ = (func.__doc__ +\n '\\nNote: Machine authentication is required.')\n return wrapper\n if function:\n return actual_decorator(function)\n return actual_decorator\n",
"role": "user"
},
{
"content": "xmlrpc_machine_required",
"role": "assistant"
}
] |
def x(self, command, ignore_errors=None):
if ignore_errors is None:
ignore_errors = []
cmd = []
cmd.extend(self._prefix)
cmd.extend([self._path, '-iP'])
cmd.extend(command)
command = cmd
logger.debug('Cmd %s' % command)
null = open('/dev/null', 'w')
retcode = subprocess.call(command, stdout=null, stderr=null)
null.close()
if retcode in ignore_errors:
logger.debug('<-- Cmd %s returned %d (ignored)' % (command, retcode))
return
if retcode:
logger.error('<-- Cmd %s returned: %d (error)' % (command, retcode))
raise subprocess.CalledProcessError(retcode, command)
logger.debug('<-- Returned %d (good)' % retcode)
return
|
call
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command, ignore_errors=None):\n if ignore_errors is None:\n ignore_errors = []\n cmd = []\n cmd.extend(self._prefix)\n cmd.extend([self._path, '-iP'])\n cmd.extend(command)\n command = cmd\n logger.debug('Cmd %s' % command)\n null = open('/dev/null', 'w')\n retcode = subprocess.call(command, stdout=null, stderr=null)\n null.close()\n if retcode in ignore_errors:\n logger.debug('<-- Cmd %s returned %d (ignored)' % (command, retcode))\n return\n if retcode:\n logger.error('<-- Cmd %s returned: %d (error)' % (command, retcode))\n raise subprocess.CalledProcessError(retcode, command)\n logger.debug('<-- Returned %d (good)' % retcode)\n return\n",
"role": "user"
},
{
"content": "call",
"role": "assistant"
}
] |
def x(self, command):
cmd = []
cmd.extend(self._prefix)
cmd.extend([self._path, '-iP'])
cmd.extend(command)
command = cmd
logger.debug('Cmd %s' % command)
null = open('/dev/null', 'w')
process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=null)
null.close()
results = []
reader = csv.reader(_input_csv(process.stdout), delimiter=str('|'))
try:
headers = next(reader)
logger.debug('<-- headers %s' % headers)
except StopIteration:
logger.debug('Cmd %s headers not found' % command)
headers = []
for row in reader:
_output_csv(row)
logger.debug('<-- row %s' % row)
this_row = {}
i = 0
for i in range(0, len(headers)):
key = headers[i]
value = row[i]
this_row[key] = value
results.append(this_row)
process.stdout.close()
retcode = process.wait()
if retcode != 0:
logger.error('<-- Cmd %s returned %d (error)' % (command, retcode))
raise subprocess.CalledProcessError(retcode, command)
if len(headers) == 0:
logger.error("Cmd %s didn't return any headers." % command)
raise RuntimeError("Cmd %s didn't return any headers." % command)
logger.debug('<-- Returned: %d (good)' % retcode)
return results
|
read_output
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command):\n cmd = []\n cmd.extend(self._prefix)\n cmd.extend([self._path, '-iP'])\n cmd.extend(command)\n command = cmd\n logger.debug('Cmd %s' % command)\n null = open('/dev/null', 'w')\n process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=null)\n null.close()\n results = []\n reader = csv.reader(_input_csv(process.stdout), delimiter=str('|'))\n try:\n headers = next(reader)\n logger.debug('<-- headers %s' % headers)\n except StopIteration:\n logger.debug('Cmd %s headers not found' % command)\n headers = []\n for row in reader:\n _output_csv(row)\n logger.debug('<-- row %s' % row)\n this_row = {}\n i = 0\n for i in range(0, len(headers)):\n key = headers[i]\n value = row[i]\n this_row[key] = value\n results.append(this_row)\n process.stdout.close()\n retcode = process.wait()\n if retcode != 0:\n logger.error('<-- Cmd %s returned %d (error)' % (command, retcode))\n raise subprocess.CalledProcessError(retcode, command)\n if len(headers) == 0:\n logger.error(\"Cmd %s didn't return any headers.\" % command)\n raise RuntimeError(\"Cmd %s didn't return any headers.\" % command)\n logger.debug('<-- Returned: %d (good)' % retcode)\n return results\n",
"role": "user"
},
{
"content": "read_output",
"role": "assistant"
}
] |
def x(self, projectname):
cmd = ['list', 'accounts', 'where', 'name=%s' % projectname]
results = self._read_output(cmd)
if len(results) == 0:
return None
elif len(results) > 1:
logger.error("Command returned multiple results for '%s'." %
projectname)
raise RuntimeError("Command returned multiple results for '%s'." %
projectname)
the_result = results[0]
the_project = the_result['Account']
if projectname.lower() != the_project.lower():
logger.error(
"We expected projectname '%s' but got projectname '%s'." % (
projectname, the_project))
raise RuntimeError(
"We expected projectname '%s' but got projectname '%s'." % (
projectname, the_project))
return the_result
|
get_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, projectname):\n cmd = ['list', 'accounts', 'where', 'name=%s' % projectname]\n results = self._read_output(cmd)\n if len(results) == 0:\n return None\n elif len(results) > 1:\n logger.error(\"Command returned multiple results for '%s'.\" %\n projectname)\n raise RuntimeError(\"Command returned multiple results for '%s'.\" %\n projectname)\n the_result = results[0]\n the_project = the_result['Account']\n if projectname.lower() != the_project.lower():\n logger.error(\n \"We expected projectname '%s' but got projectname '%s'.\" % (\n projectname, the_project))\n raise RuntimeError(\n \"We expected projectname '%s' but got projectname '%s'.\" % (\n projectname, the_project))\n return the_result\n",
"role": "user"
},
{
"content": "get_project",
"role": "assistant"
}
] |
def x(self, projectname):
cmd = ['list', 'assoc', 'where', 'account=%s' % projectname]
results = self._read_output(cmd)
user_list = []
for result in results:
if result['User'] != '':
user_list.append(result['User'])
return user_list
|
get_users_in_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, projectname):\n cmd = ['list', 'assoc', 'where', 'account=%s' % projectname]\n results = self._read_output(cmd)\n user_list = []\n for result in results:\n if result['User'] != '':\n user_list.append(result['User'])\n return user_list\n",
"role": "user"
},
{
"content": "get_users_in_project",
"role": "assistant"
}
] |
def x(self, username):
cmd = ['list', 'assoc', 'where', 'user=%s' % username]
results = self._read_output(cmd)
project_list = []
for result in results:
project_list.append(result['Account'])
return project_list
|
get_projects_in_user
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username):\n cmd = ['list', 'assoc', 'where', 'user=%s' % username]\n results = self._read_output(cmd)\n project_list = []\n for result in results:\n project_list.append(result['Account'])\n return project_list\n",
"role": "user"
},
{
"content": "get_projects_in_user",
"role": "assistant"
}
] |
def x(self, account, username):
default_project_name = self._null_project
if account.default_project is not None:
default_project_name = account.default_project.pid
ds_user = self.get_user(username)
if account.date_deleted is None:
logger.debug('account is active')
if ds_user is None:
self._call(['add', 'user', 'accounts=%s' % default_project_name,
'defaultaccount=%s' % default_project_name, 'name=%s' %
username])
else:
self._call(['modify', 'user', 'set', 'defaultaccount=%s' %
default_project_name, 'where', 'name=%s' % username])
slurm_projects = self.get_projects_in_user(username)
slurm_projects = [project.lower() for project in slurm_projects]
slurm_projects = set(slurm_projects)
for project in account.person.projects.all():
if project.pid.lower() not in slurm_projects:
self._call(['add', 'user', 'name=%s' % username,
'accounts=%s' % project.pid])
else:
logger.debug('account is not active')
self._delete_account(username)
return
|
save_account
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, account, username):\n default_project_name = self._null_project\n if account.default_project is not None:\n default_project_name = account.default_project.pid\n ds_user = self.get_user(username)\n if account.date_deleted is None:\n logger.debug('account is active')\n if ds_user is None:\n self._call(['add', 'user', 'accounts=%s' % default_project_name,\n 'defaultaccount=%s' % default_project_name, 'name=%s' %\n username])\n else:\n self._call(['modify', 'user', 'set', 'defaultaccount=%s' %\n default_project_name, 'where', 'name=%s' % username])\n slurm_projects = self.get_projects_in_user(username)\n slurm_projects = [project.lower() for project in slurm_projects]\n slurm_projects = set(slurm_projects)\n for project in account.person.projects.all():\n if project.pid.lower() not in slurm_projects:\n self._call(['add', 'user', 'name=%s' % username, \n 'accounts=%s' % project.pid])\n else:\n logger.debug('account is not active')\n self._delete_account(username)\n return\n",
"role": "user"
},
{
"content": "save_account",
"role": "assistant"
}
] |
def x(self, username):
ds_user = self.get_user(username)
if ds_user is not None:
self._call(['delete', 'user', 'name=%s' % username])
return
|
delete_account
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, username):\n ds_user = self.get_user(username)\n if ds_user is not None:\n self._call(['delete', 'user', 'name=%s' % username])\n return\n",
"role": "user"
},
{
"content": "delete_account",
"role": "assistant"
}
] |
def x(self, project):
pid = project.pid
if project.is_active:
logger.debug('project is active')
ds_project = self.get_project(pid)
if ds_project is None:
self._call(['add', 'account', 'name=%s' % pid] + self.
_add_account_extra)
name = self._truncate(project.name, 40)
self._call(['modify', 'account', 'set', 'Description=%s' % self.
_filter_string(name), 'where', 'name=%s' % pid])
self._call(['modify', 'account', 'set', 'Organization=%s' % self.
_filter_string(project.institute.name), 'where', 'name=%s' % pid])
else:
logger.debug('project is not active')
ds_project = self.get_project(pid)
if ds_project is not None:
self._call(['delete', 'account', 'name=%s' % pid])
return
|
save_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, project):\n pid = project.pid\n if project.is_active:\n logger.debug('project is active')\n ds_project = self.get_project(pid)\n if ds_project is None:\n self._call(['add', 'account', 'name=%s' % pid] + self.\n _add_account_extra)\n name = self._truncate(project.name, 40)\n self._call(['modify', 'account', 'set', 'Description=%s' % self.\n _filter_string(name), 'where', 'name=%s' % pid])\n self._call(['modify', 'account', 'set', 'Organization=%s' % self.\n _filter_string(project.institute.name), 'where', 'name=%s' % pid])\n else:\n logger.debug('project is not active')\n ds_project = self.get_project(pid)\n if ds_project is not None:\n self._call(['delete', 'account', 'name=%s' % pid])\n return\n",
"role": "user"
},
{
"content": "save_project",
"role": "assistant"
}
] |
def x(self, project):
pid = project.pid
ds_project = self.get_project(pid)
if ds_project is not None:
self._call(['delete', 'account', 'name=%s' % pid])
return
|
delete_project
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, project):\n pid = project.pid\n ds_project = self.get_project(pid)\n if ds_project is not None:\n self._call(['delete', 'account', 'name=%s' % pid])\n return\n",
"role": "user"
},
{
"content": "delete_project",
"role": "assistant"
}
] |
def x(self, q, request):
return Project.objects.filter(Q(pid__icontains=q) | Q(name__icontains=q))
|
get_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q, request):\n return Project.objects.filter(Q(pid__icontains=q) | Q(name__icontains=q))\n",
"role": "user"
},
{
"content": "get_query",
"role": "assistant"
}
] |
def x(self, track):
from trackhub import BaseTrack
if isinstance(track, BaseTrack):
self.add_child(track)
self._tracks.append(track)
else:
for t in track:
self.add_child(t)
self._tracks.append(t)
|
add_tracks
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, track):\n from trackhub import BaseTrack\n if isinstance(track, BaseTrack):\n self.add_child(track)\n self._tracks.append(track)\n else:\n for t in track:\n self.add_child(t)\n self._tracks.append(t)\n",
"role": "user"
},
{
"content": "add_tracks",
"role": "assistant"
}
] |
def x(alpha=8, numeric=4):
import string
import random
vowels = ['a', 'e', 'i', 'o', 'u']
consonants = [a for a in string.ascii_lowercase if a not in vowels]
digits = string.digits
def x(slen):
ret = ''
for i in range(slen):
if i % 2 == 0:
randid = random.randint(0, 20)
ret += consonants[randid]
else:
randid = random.randint(0, 4)
ret += vowels[randid]
return ret
def x(slen):
ret = ''
for i in range(slen):
randid = random.randint(0, 9)
ret += digits[randid]
return ret
fpl = alpha / 2
if alpha % 2:
fpl = int(alpha / 2) + 1
lpl = alpha - fpl
start = a_part(fpl)
mid = n_part(numeric)
end = a_part(lpl)
return '%s%s%s' % (start, mid, end)
|
nicepass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(alpha=8, numeric=4):\n import string\n import random\n vowels = ['a', 'e', 'i', 'o', 'u']\n consonants = [a for a in string.ascii_lowercase if a not in vowels]\n digits = string.digits\n\n def x(slen):\n ret = ''\n for i in range(slen):\n if i % 2 == 0:\n randid = random.randint(0, 20)\n ret += consonants[randid]\n else:\n randid = random.randint(0, 4)\n ret += vowels[randid]\n return ret\n\n def x(slen):\n ret = ''\n for i in range(slen):\n randid = random.randint(0, 9)\n ret += digits[randid]\n return ret\n fpl = alpha / 2\n if alpha % 2:\n fpl = int(alpha / 2) + 1\n lpl = alpha - fpl\n start = a_part(fpl)\n mid = n_part(numeric)\n end = a_part(lpl)\n return '%s%s%s' % (start, mid, end)\n",
"role": "user"
},
{
"content": "nicepass",
"role": "assistant"
}
] |
def x(self, q, request):
return Person.objects.filter(Q(username__icontains=q) | Q(
short_name__icontains=q) | Q(full_name__icontains=q))
|
get_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q, request):\n return Person.objects.filter(Q(username__icontains=q) | Q(\n short_name__icontains=q) | Q(full_name__icontains=q))\n",
"role": "user"
},
{
"content": "get_query",
"role": "assistant"
}
] |
def x(self, q, request):
return Group.objects.filter(Q(name__icontains=q) | Q(
description__icontains=q))
|
get_query
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, q, request):\n return Group.objects.filter(Q(name__icontains=q) | Q(\n description__icontains=q))\n",
"role": "user"
},
{
"content": "get_query",
"role": "assistant"
}
] |
def x(self, obj):
result = [escape(obj.name)]
if obj.description:
result.append(escape(obj.description))
return ' '.join(result)
|
format_match
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj):\n result = [escape(obj.name)]\n if obj.description:\n result.append(escape(obj.description))\n return ' '.join(result)\n",
"role": "user"
},
{
"content": "format_match",
"role": "assistant"
}
] |
def x(obj):
if isinstance(obj, logging.Logger):
return True
else:
return inspect.isclass(obj) and inspect.ismethod(getattr(obj,
'debug', None)) and inspect.ismethod(getattr(obj,
'isEnabledFor', None)) and inspect.ismethod(getattr(obj,
'setLevel', None))
|
loggable
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(obj):\n if isinstance(obj, logging.Logger):\n return True\n else:\n return inspect.isclass(obj) and inspect.ismethod(getattr(obj,\n 'debug', None)) and inspect.ismethod(getattr(obj,\n 'isEnabledFor', None)) and inspect.ismethod(getattr(obj,\n 'setLevel', None))\n",
"role": "user"
},
{
"content": "loggable",
"role": "assistant"
}
] |
def x(name, value):
__mname = value.__module__
if __mname != '__main__':
return '%s = <%s.%s object at 0x%x>' % (name, __mname, value.
__class__.__name__, id(value))
else:
return '%s = <%s object at 0x%x>' % (name, value.__class__.__name__,
id(value))
|
formatter_self
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, value):\n __mname = value.__module__\n if __mname != '__main__':\n return '%s = <%s.%s object at 0x%x>' % (name, __mname, value.\n __class__.__name__, id(value))\n else:\n return '%s = <%s object at 0x%x>' % (name, value.__class__.__name__,\n id(value))\n",
"role": "user"
},
{
"content": "formatter_self",
"role": "assistant"
}
] |
def x(name, value):
__mname = value.__module__
if __mname != '__main__':
return "%s = <type '%s.%s'>" % (name, __mname, value.__name__)
else:
return "%s = <type '%s'>" % (name, value.__name__)
|
formatter_class
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, value):\n __mname = value.__module__\n if __mname != '__main__':\n return \"%s = <type '%s.%s'>\" % (name, __mname, value.__name__)\n else:\n return \"%s = <type '%s'>\" % (name, value.__name__)\n",
"role": "user"
},
{
"content": "formatter_class",
"role": "assistant"
}
] |
def x(name):
if name in ('self', 'instance', 'this'):
return af_self
elif name == 'class':
return af_class
elif name in ('named', 'param', 'parameter'):
return af_named
elif name in ('default', 'optional'):
return af_default
elif name in ('keyword', 'pair', 'pairs'):
return af_keyword
else:
raise ValueError('unknown trace formatter %r' % name)
|
get_formatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n if name in ('self', 'instance', 'this'):\n return af_self\n elif name == 'class':\n return af_class\n elif name in ('named', 'param', 'parameter'):\n return af_named\n elif name in ('default', 'optional'):\n return af_default\n elif name in ('keyword', 'pair', 'pairs'):\n return af_keyword\n else:\n raise ValueError('unknown trace formatter %r' % name)\n",
"role": "user"
},
{
"content": "get_formatter",
"role": "assistant"
}
] |
def x(name, func):
if name in ('self', 'instance', 'this'):
global af_self
af_self = _formatter_self if func is None else func
elif name == 'class':
global af_class
af_class = _formatter_class if func is None else func
elif name in ('named', 'param', 'parameter'):
global af_named
af_named = _formatter_named if func is None else func
elif name in ('default', 'optional'):
global af_default
af_default = _formatter_defaults if func is None else func
elif name in ('anonymous', 'arbitrary', 'unnamed'):
global af_anonymous
af_anonymous = chop if func is None else func
elif name in ('keyword', 'pair', 'pairs'):
global af_keyword
af_keyword = _formatter_named if func is None else func
else:
raise ValueError('unknown trace formatter %r' % name)
|
set_formatter
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name, func):\n if name in ('self', 'instance', 'this'):\n global af_self\n af_self = _formatter_self if func is None else func\n elif name == 'class':\n global af_class\n af_class = _formatter_class if func is None else func\n elif name in ('named', 'param', 'parameter'):\n global af_named\n af_named = _formatter_named if func is None else func\n elif name in ('default', 'optional'):\n global af_default\n af_default = _formatter_defaults if func is None else func\n elif name in ('anonymous', 'arbitrary', 'unnamed'):\n global af_anonymous\n af_anonymous = chop if func is None else func\n elif name in ('keyword', 'pair', 'pairs'):\n global af_keyword\n af_keyword = _formatter_named if func is None else func\n else:\n raise ValueError('unknown trace formatter %r' % name)\n",
"role": "user"
},
{
"content": "set_formatter",
"role": "assistant"
}
] |
def x(name):
global __builtin_functions
if __builtin_functions is None:
builtins = dict()
for proto in __builtins:
pos = proto.find('(')
name, params, defaults = proto[:pos], list(), dict()
for param in proto[pos + 1:-1].split(','):
pos = param.find('=')
if not pos < 0:
param, value = param[:pos], param[pos + 1:]
try:
defaults[param] = __builtin_defaults[value]
except KeyError:
raise ValueError(
'builtin function %s: parameter %s: unknown default %r'
% (name, param, value))
params.append(param)
builtins[name] = params, defaults
__builtin_functions = builtins
try:
params, defaults = __builtin_functions[name]
except KeyError:
params, defaults = tuple(), dict()
__builtin_functions[name] = params, defaults
print('Warning: builtin function %r is missing prototype' % name,
file=sys.stderr)
return len(params), params, defaults
|
lookup_builtin
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n global __builtin_functions\n if __builtin_functions is None:\n builtins = dict()\n for proto in __builtins:\n pos = proto.find('(')\n name, params, defaults = proto[:pos], list(), dict()\n for param in proto[pos + 1:-1].split(','):\n pos = param.find('=')\n if not pos < 0:\n param, value = param[:pos], param[pos + 1:]\n try:\n defaults[param] = __builtin_defaults[value]\n except KeyError:\n raise ValueError(\n 'builtin function %s: parameter %s: unknown default %r'\n % (name, param, value))\n params.append(param)\n builtins[name] = params, defaults\n __builtin_functions = builtins\n try:\n params, defaults = __builtin_functions[name]\n except KeyError:\n params, defaults = tuple(), dict()\n __builtin_functions[name] = params, defaults\n print('Warning: builtin function %r is missing prototype' % name,\n file=sys.stderr)\n return len(params), params, defaults\n",
"role": "user"
},
{
"content": "lookup_builtin",
"role": "assistant"
}
] |
def x(_name):
def x(_func):
def x(name, value):
if name is __self:
return af_self(name, value)
elif name is __klass:
return af_class(name, value)
else:
return af_named(name, value)
def x(*__argv, **__kwds):
if not logger.isEnabledFor(logging.DEBUG) or _.value:
return _func(*__argv, **__kwds)
try:
_.value = True
params = dict(co_defaults)
params.update(__kwds)
params.update(zip(co_varnames, __argv))
if 'raw_password' in params:
params['raw_password'] = '<censored>'
position = [positional(n, params.pop(n)) for n in
co_varnames[:len(__argv)]]
defaults = [af_default(n, params.pop(n)) for n in
co_varnames[len(__argv):]]
nameless = (af_unnamed(v) for v in __argv[co_argcount:])
keywords = (af_keyword(n, params[n]) for n in sorted(params
.keys()))
params = ', '.join(filter(None, chain(position, defaults,
nameless, keywords)))
enter = [pre_enter]
if params:
enter.append(' ')
enter.append(params)
enter.append(' ')
enter.append(')')
leave = [pre_leave]
try:
logger.debug(''.join(enter))
try:
try:
_.value = False
result = _func(*__argv, **__kwds)
finally:
_.value = True
except Exception:
ex_type, value, traceback = sys.exc_info()
leave.append(' => exception thrown\n\traise ')
__mname = ex_type.__module__
if __mname != '__main__':
leave.append(__mname)
leave.append('.')
leave.append(ex_type.__name__)
if value.args:
leave.append('(')
leave.append(', '.join(chop(v) for v in value.args)
)
leave.append(')')
else:
leave.append('()')
raise
else:
if result is not None:
leave.append(' => ')
leave.append(chop(result))
finally:
logger.debug(''.join(leave))
finally:
_.value = False
return result
__self = False
__klass = False
def x(x):
return x
__rewrap = nop
if type(_func) in FunctionTypes:
__cname = None
elif type(_func) in MethodTypes:
if _func.im_self is not None:
__rewrap = classmethod
__cname = _func.im_self.__name__
__klass = True
else:
__cname = _func.im_class.__name__
__self = True
_func = _func.im_func
else:
return _func
__module = _func.__module__
__fname = _func.__name__
if __fname in ('__init__', '__new__', '__repr__', '__str__'):
return __rewrap(_func)
__fqfn = list()
if __module != '__main__':
__fqfn.append(__module)
__fqfn.append('.')
if __cname is not None:
__fqfn.append(__cname)
__fqfn.append('.')
__fqfn.append(__fname)
__fqfn = ''.join(__fqfn)
if type(_name) in CallableTypes:
logger = get_logger_factory().get_logger(__fqfn)
elif loggable(_name):
logger = _name
elif isinstance(_name, six.string_types):
logger = get_logger_factory().get_logger(_name)
else:
raise ValueError(
'invalid object %r: must be a function, a method, a string or an object that implements the Logger API'
% _name)
pre_enter = ['>>> ', __fqfn, '(']
pre_enter = ''.join(pre_enter)
pre_leave = ['<<< ', __fqfn]
pre_leave = ''.join(pre_leave)
try:
code = _func.__code__
except AttributeError:
co_argcount, co_varnames, co_defaults = __lookup_builtin(_func.
__name__)
else:
co_argcount = code.co_argcount
co_varnames = code.co_varnames[:co_argcount]
if _func.__defaults__:
co_defaults = dict(zip(co_varnames[-len(_func.__defaults__)
:], _func.__defaults__))
else:
co_defaults = dict()
if __klass:
__klass = co_varnames[0]
if __self:
__self = co_varnames[0]
return __rewrap(wraps(_func)(wrapper))
if type(_name) in CallableTypes:
return decorator(_name)
else:
return decorator
|
trace
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(_name):\n\n def x(_func):\n\n def x(name, value):\n if name is __self:\n return af_self(name, value)\n elif name is __klass:\n return af_class(name, value)\n else:\n return af_named(name, value)\n\n def x(*__argv, **__kwds):\n if not logger.isEnabledFor(logging.DEBUG) or _.value:\n return _func(*__argv, **__kwds)\n try:\n _.value = True\n params = dict(co_defaults)\n params.update(__kwds)\n params.update(zip(co_varnames, __argv))\n if 'raw_password' in params:\n params['raw_password'] = '<censored>'\n position = [positional(n, params.pop(n)) for n in\n co_varnames[:len(__argv)]]\n defaults = [af_default(n, params.pop(n)) for n in\n co_varnames[len(__argv):]]\n nameless = (af_unnamed(v) for v in __argv[co_argcount:])\n keywords = (af_keyword(n, params[n]) for n in sorted(params\n .keys()))\n params = ', '.join(filter(None, chain(position, defaults,\n nameless, keywords)))\n enter = [pre_enter]\n if params:\n enter.append(' ')\n enter.append(params)\n enter.append(' ')\n enter.append(')')\n leave = [pre_leave]\n try:\n logger.debug(''.join(enter))\n try:\n try:\n _.value = False\n result = _func(*__argv, **__kwds)\n finally:\n _.value = True\n except Exception:\n ex_type, value, traceback = sys.exc_info()\n leave.append(' => exception thrown\\n\\traise ')\n __mname = ex_type.__module__\n if __mname != '__main__':\n leave.append(__mname)\n leave.append('.')\n leave.append(ex_type.__name__)\n if value.args:\n leave.append('(')\n leave.append(', '.join(chop(v) for v in value.args)\n )\n leave.append(')')\n else:\n leave.append('()')\n raise\n else:\n if result is not None:\n leave.append(' => ')\n leave.append(chop(result))\n finally:\n logger.debug(''.join(leave))\n finally:\n _.value = False\n return result\n __self = False\n __klass = False\n\n def x(x):\n return x\n __rewrap = nop\n if type(_func) in FunctionTypes:\n __cname = None\n elif type(_func) in MethodTypes:\n if _func.im_self is not None:\n __rewrap = classmethod\n __cname = _func.im_self.__name__\n __klass = True\n else:\n __cname = _func.im_class.__name__\n __self = True\n _func = _func.im_func\n else:\n return _func\n __module = _func.__module__\n __fname = _func.__name__\n if __fname in ('__init__', '__new__', '__repr__', '__str__'):\n return __rewrap(_func)\n __fqfn = list()\n if __module != '__main__':\n __fqfn.append(__module)\n __fqfn.append('.')\n if __cname is not None:\n __fqfn.append(__cname)\n __fqfn.append('.')\n __fqfn.append(__fname)\n __fqfn = ''.join(__fqfn)\n if type(_name) in CallableTypes:\n logger = get_logger_factory().get_logger(__fqfn)\n elif loggable(_name):\n logger = _name\n elif isinstance(_name, six.string_types):\n logger = get_logger_factory().get_logger(_name)\n else:\n raise ValueError(\n 'invalid object %r: must be a function, a method, a string or an object that implements the Logger API'\n % _name)\n pre_enter = ['>>> ', __fqfn, '(']\n pre_enter = ''.join(pre_enter)\n pre_leave = ['<<< ', __fqfn]\n pre_leave = ''.join(pre_leave)\n try:\n code = _func.__code__\n except AttributeError:\n co_argcount, co_varnames, co_defaults = __lookup_builtin(_func.\n __name__)\n else:\n co_argcount = code.co_argcount\n co_varnames = code.co_varnames[:co_argcount]\n if _func.__defaults__:\n co_defaults = dict(zip(co_varnames[-len(_func.__defaults__)\n :], _func.__defaults__))\n else:\n co_defaults = dict()\n if __klass:\n __klass = co_varnames[0]\n if __self:\n __self = co_varnames[0]\n return __rewrap(wraps(_func)(wrapper))\n if type(_name) in CallableTypes:\n return decorator(_name)\n else:\n return decorator\n",
"role": "user"
},
{
"content": "trace",
"role": "assistant"
}
] |
def x(decorator, obj, recursive=True):
if inspect.ismodule(obj):
for name, fn in inspect.getmembers(obj, inspect.isfunction):
setattr(obj, name, decorator(fn))
for name, klass in inspect.getmembers(obj, inspect.isclass):
attach_to_class(decorator, klass, recursive)
elif inspect.isclass(obj):
attach_to_class(decorator, obj, recursive)
|
attach
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(decorator, obj, recursive=True):\n if inspect.ismodule(obj):\n for name, fn in inspect.getmembers(obj, inspect.isfunction):\n setattr(obj, name, decorator(fn))\n for name, klass in inspect.getmembers(obj, inspect.isclass):\n attach_to_class(decorator, klass, recursive)\n elif inspect.isclass(obj):\n attach_to_class(decorator, obj, recursive)\n",
"role": "user"
},
{
"content": "attach",
"role": "assistant"
}
] |
def x(sender, instance, action, reverse, model, pk_set, **kwargs):
if action == 'post_add':
if not reverse:
project = instance
for person in model.objects.filter(pk__in=pk_set):
log.change(person, 'Added person to project %s leaders' %
project)
log.change(project, 'Added person %s to project leaders' %
person)
else:
person = instance
for project in model.objects.filter(pk__in=pk_set):
log.change(person, 'Added person to project %s leaders' %
project)
log.change(project, 'Added person %s to project leaders' %
person)
elif action == 'post_remove':
if not reverse:
project = instance
for person in model.objects.filter(pk__in=pk_set):
log.change(person, 'Removed person from project %s leaders' %
project)
log.change(project,
'Removed person %s from project leaders' % person)
else:
person = instance
for project in model.objects.filter(pk__in=pk_set):
log.change(person, 'Removed person from project %s leaders' %
project)
log.change(project,
'Removed person %s from project leaders' % person)
elif action == 'pre_clear':
if not reverse:
project = instance
log.change(project, 'Removed all project leaders')
for person in project.leaders.all():
log.change(project,
'Removed person %s from project leaders' % person)
else:
person = instance
log.change(person, 'Removed person from all project leaders')
for project in person.leads.all():
log.change(project,
'Removed person %s from project leaders' % person)
|
leaders_changed
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sender, instance, action, reverse, model, pk_set, **kwargs):\n if action == 'post_add':\n if not reverse:\n project = instance\n for person in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Added person to project %s leaders' %\n project)\n log.change(project, 'Added person %s to project leaders' %\n person)\n else:\n person = instance\n for project in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Added person to project %s leaders' %\n project)\n log.change(project, 'Added person %s to project leaders' %\n person)\n elif action == 'post_remove':\n if not reverse:\n project = instance\n for person in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Removed person from project %s leaders' %\n project)\n log.change(project, \n 'Removed person %s from project leaders' % person)\n else:\n person = instance\n for project in model.objects.filter(pk__in=pk_set):\n log.change(person, 'Removed person from project %s leaders' %\n project)\n log.change(project, \n 'Removed person %s from project leaders' % person)\n elif action == 'pre_clear':\n if not reverse:\n project = instance\n log.change(project, 'Removed all project leaders')\n for person in project.leaders.all():\n log.change(project, \n 'Removed person %s from project leaders' % person)\n else:\n person = instance\n log.change(person, 'Removed person from all project leaders')\n for project in person.leads.all():\n log.change(project, \n 'Removed person %s from project leaders' % person)\n",
"role": "user"
},
{
"content": "leaders_changed",
"role": "assistant"
}
] |
def x(log_list, date, machine_name, log_type):
output = []
count = fail = skip = updated = 0
try:
machine = Machine.objects.get(name=machine_name)
except Machine.DoesNotExist:
return "ERROR: Couldn't find machine named: %s" % machine_name
if log_type == 'alogger':
parser = AloggerParser()
else:
parser = get_parser(log_type)
for line_no, line in enumerate(log_list):
try:
data = parser.line_to_dict(line)
except ValueError:
output.append('%d: Error reading line' % line_no)
continue
if data is None:
skip += 1
continue
required_fields = ['user', 'project', 'jobid', 'jobname',
'cpu_usage', 'cores', 'act_wall_time', 'est_wall_time', 'mem',
'vmem', 'list_pmem', 'list_mem', 'list_pvmem', 'ctime', 'qtime',
'etime', 'start']
for field in required_fields:
if field not in data:
output.append('line %d: %s field not given.' % (line_no, field)
)
fail = fail + 1
continue
try:
account = Account.objects.get(username=data['user'],
date_deleted__isnull=True)
except Account.DoesNotExist:
output.append(
"line %d: Couldn't find user account for username=%s." % (
line_no, data['user']))
fail += 1
continue
except Account.MultipleObjectsReturned:
output.append(
'line %d: Username %s has multiple active accounts.' % (
line_no, data['user']))
fail += 1
continue
if data['project'] is None:
output.append('line %d: Project was not supplied.' % line_no)
fail += 1
continue
try:
project = Project.objects.get(pid=data['project'])
except Project.DoesNotExist:
output.append("line %d: Couldn't find specified project %s" % (
line_no, data['project']))
fail += 1
continue
if machine.mem_per_core:
avail_mem_per_core = machine.mem_per_core * 1024
avail_mem_for_job = avail_mem_per_core * data['cores']
if data['list_pmem'] * data['cores'] > data['list_mem']:
memory_used_per_core = data['list_pmem']
memory_used_for_job = data['list_pmem'] * data['cores']
else:
memory_used_per_core = data['list_mem'] / data['cores']
memory_used_for_job = data['list_mem']
if memory_used_for_job > avail_mem_for_job:
data['cpu_usage'] = ceil(memory_used_per_core /
avail_mem_per_core * data['act_wall_time'] * data['cores'])
data['cpu_usage'] = data['cpu_usage'] * machine.scaling_factor
queue, created = Queue.objects.get_or_create(name=data['queue'])
try:
cpujob, created = CPUJob.objects.get_or_create(jobid=data['jobid'])
cpujob.account = account
cpujob.username = data['user']
cpujob.project = project
cpujob.machine = machine
cpujob.date = date
cpujob.queue = queue
cpujob.cpu_usage = data['cpu_usage']
cpujob.est_wall_time = data['est_wall_time']
cpujob.act_wall_time = data['act_wall_time']
cpujob.mem = data['mem']
cpujob.vmem = data['vmem']
cpujob.ctime = data['ctime']
cpujob.qtime = data['qtime']
cpujob.etime = data['etime']
cpujob.start = data['start']
cpujob.cores = data['cores']
cpujob.exit_status = data['exit_status']
cpujob.jobname = data['jobname']
cpujob.list_mem = data['list_mem']
cpujob.list_vmem = data['list_vmem']
cpujob.list_pmem = data['list_pmem']
cpujob.list_pvmem = data['list_pvmem']
cpujob.save()
except Exception as e:
output.append('line %d: Failed to insert a line - %s' % (
line_no, e))
fail += 1
continue
if created:
count += 1
else:
updated += 1
summary = 'Inserted : %i\nUpdated : %i\nFailed : %i\nSkiped : %i' % (
count, updated, fail, skip)
logger.debug('Inserted : %i' % count)
logger.debug('Updated : %i' % updated)
logger.debug('Failed : %i' % fail)
logger.debug('Skiped : %i' % skip)
return summary, output
|
parse_logs
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(log_list, date, machine_name, log_type):\n output = []\n count = fail = skip = updated = 0\n try:\n machine = Machine.objects.get(name=machine_name)\n except Machine.DoesNotExist:\n return \"ERROR: Couldn't find machine named: %s\" % machine_name\n if log_type == 'alogger':\n parser = AloggerParser()\n else:\n parser = get_parser(log_type)\n for line_no, line in enumerate(log_list):\n try:\n data = parser.line_to_dict(line)\n except ValueError:\n output.append('%d: Error reading line' % line_no)\n continue\n if data is None:\n skip += 1\n continue\n required_fields = ['user', 'project', 'jobid', 'jobname',\n 'cpu_usage', 'cores', 'act_wall_time', 'est_wall_time', 'mem',\n 'vmem', 'list_pmem', 'list_mem', 'list_pvmem', 'ctime', 'qtime',\n 'etime', 'start']\n for field in required_fields:\n if field not in data:\n output.append('line %d: %s field not given.' % (line_no, field)\n )\n fail = fail + 1\n continue\n try:\n account = Account.objects.get(username=data['user'],\n date_deleted__isnull=True)\n except Account.DoesNotExist:\n output.append(\n \"line %d: Couldn't find user account for username=%s.\" % (\n line_no, data['user']))\n fail += 1\n continue\n except Account.MultipleObjectsReturned:\n output.append(\n 'line %d: Username %s has multiple active accounts.' % (\n line_no, data['user']))\n fail += 1\n continue\n if data['project'] is None:\n output.append('line %d: Project was not supplied.' % line_no)\n fail += 1\n continue\n try:\n project = Project.objects.get(pid=data['project'])\n except Project.DoesNotExist:\n output.append(\"line %d: Couldn't find specified project %s\" % (\n line_no, data['project']))\n fail += 1\n continue\n if machine.mem_per_core:\n avail_mem_per_core = machine.mem_per_core * 1024\n avail_mem_for_job = avail_mem_per_core * data['cores']\n if data['list_pmem'] * data['cores'] > data['list_mem']:\n memory_used_per_core = data['list_pmem']\n memory_used_for_job = data['list_pmem'] * data['cores']\n else:\n memory_used_per_core = data['list_mem'] / data['cores']\n memory_used_for_job = data['list_mem']\n if memory_used_for_job > avail_mem_for_job:\n data['cpu_usage'] = ceil(memory_used_per_core /\n avail_mem_per_core * data['act_wall_time'] * data['cores'])\n data['cpu_usage'] = data['cpu_usage'] * machine.scaling_factor\n queue, created = Queue.objects.get_or_create(name=data['queue'])\n try:\n cpujob, created = CPUJob.objects.get_or_create(jobid=data['jobid'])\n cpujob.account = account\n cpujob.username = data['user']\n cpujob.project = project\n cpujob.machine = machine\n cpujob.date = date\n cpujob.queue = queue\n cpujob.cpu_usage = data['cpu_usage']\n cpujob.est_wall_time = data['est_wall_time']\n cpujob.act_wall_time = data['act_wall_time']\n cpujob.mem = data['mem']\n cpujob.vmem = data['vmem']\n cpujob.ctime = data['ctime']\n cpujob.qtime = data['qtime']\n cpujob.etime = data['etime']\n cpujob.start = data['start']\n cpujob.cores = data['cores']\n cpujob.exit_status = data['exit_status']\n cpujob.jobname = data['jobname']\n cpujob.list_mem = data['list_mem']\n cpujob.list_vmem = data['list_vmem']\n cpujob.list_pmem = data['list_pmem']\n cpujob.list_pvmem = data['list_pvmem']\n cpujob.save()\n except Exception as e:\n output.append('line %d: Failed to insert a line - %s' % (\n line_no, e))\n fail += 1\n continue\n if created:\n count += 1\n else:\n updated += 1\n summary = 'Inserted : %i\\nUpdated : %i\\nFailed : %i\\nSkiped : %i' % (\n count, updated, fail, skip)\n logger.debug('Inserted : %i' % count)\n logger.debug('Updated : %i' % updated)\n logger.debug('Failed : %i' % fail)\n logger.debug('Skiped : %i' % skip)\n return summary, output\n",
"role": "user"
},
{
"content": "parse_logs",
"role": "assistant"
}
] |
def x(request):
if util.is_admin(request):
queryset = Application.objects.all()
else:
queryset = Application.objects.get_for_applicant(request.user)
q_filter = ApplicationFilter(request.GET, queryset=queryset)
table = ApplicationTable(q_filter.qs.order_by('-expires'))
tables.RequestConfig(request).configure(table)
spec = []
for name, value in six.iteritems(q_filter.form.cleaned_data):
if value is not None and value != '':
name = name.replace('_', ' ').capitalize()
spec.append((name, value))
return render(template_name='kgapplications/application_list.html',
context={'table': table, 'filter': q_filter, 'spec': spec, 'title':
'Application list'}, request=request)
|
application_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n if util.is_admin(request):\n queryset = Application.objects.all()\n else:\n queryset = Application.objects.get_for_applicant(request.user)\n q_filter = ApplicationFilter(request.GET, queryset=queryset)\n table = ApplicationTable(q_filter.qs.order_by('-expires'))\n tables.RequestConfig(request).configure(table)\n spec = []\n for name, value in six.iteritems(q_filter.form.cleaned_data):\n if value is not None and value != '':\n name = name.replace('_', ' ').capitalize()\n spec.append((name, value))\n return render(template_name='kgapplications/application_list.html',\n context={'table': table, 'filter': q_filter, 'spec': spec, 'title':\n 'Application list'}, request=request)\n",
"role": "user"
},
{
"content": "application_list",
"role": "assistant"
}
] |
def x(request):
config = tables.RequestConfig(request, paginate={'per_page': 5})
person = request.user
my_applications = Application.objects.get_for_applicant(person)
my_applications = ApplicationTable(my_applications, prefix='mine-')
config.configure(my_applications)
requires_attention = Application.objects.requires_attention(request)
requires_attention = ApplicationTable(requires_attention, prefix='attn-')
config.configure(requires_attention)
return render(template_name='kgapplications/profile_applications.html',
context={'person': request.user, 'my_applications': my_applications,
'requires_attention': requires_attention}, request=request)
|
profile_application_list
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n config = tables.RequestConfig(request, paginate={'per_page': 5})\n person = request.user\n my_applications = Application.objects.get_for_applicant(person)\n my_applications = ApplicationTable(my_applications, prefix='mine-')\n config.configure(my_applications)\n requires_attention = Application.objects.requires_attention(request)\n requires_attention = ApplicationTable(requires_attention, prefix='attn-')\n config.configure(requires_attention)\n return render(template_name='kgapplications/profile_applications.html',\n context={'person': request.user, 'my_applications': my_applications,\n 'requires_attention': requires_attention}, request=request)\n",
"role": "user"
},
{
"content": "profile_application_list",
"role": "assistant"
}
] |
def x(request, application_id, state=None, label=None):
application = base.get_application(pk=application_id)
state_machine = base.get_state_machine(application)
return state_machine.process(request, application, state, label)
|
application_detail
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, application_id, state=None, label=None):\n application = base.get_application(pk=application_id)\n state_machine = base.get_state_machine(application)\n return state_machine.process(request, application, state, label)\n",
"role": "user"
},
{
"content": "application_detail",
"role": "assistant"
}
] |
def x(request, token, state=None, label=None):
application = base.get_application(secret_token=token)
if application.expires < datetime.datetime.now():
return render(template_name='kgapplications/common_expired.html',
context={'application': application}, request=request)
roles = {'is_applicant', 'is_authorised'}
if request.user.is_authenticated:
if request.user == application.applicant:
url = base.get_url(request, application, roles, label)
return HttpResponseRedirect(url)
state_machine = base.get_state_machine(application)
return state_machine.process(request, application, state, label, roles)
|
application_unauthenticated
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, token, state=None, label=None):\n application = base.get_application(secret_token=token)\n if application.expires < datetime.datetime.now():\n return render(template_name='kgapplications/common_expired.html',\n context={'application': application}, request=request)\n roles = {'is_applicant', 'is_authorised'}\n if request.user.is_authenticated:\n if request.user == application.applicant:\n url = base.get_url(request, application, roles, label)\n return HttpResponseRedirect(url)\n state_machine = base.get_state_machine(application)\n return state_machine.process(request, application, state, label, roles)\n",
"role": "user"
},
{
"content": "application_unauthenticated",
"role": "assistant"
}
] |
def x(institute, start, end):
try:
cache = InstituteCache.objects.get(institute=institute, date=
datetime.date.today(), start=start, end=end)
return cache.cpu_time, cache.no_jobs
except InstituteCache.DoesNotExist:
return 0, 0
|
get_institute_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(institute, start, end):\n try:\n cache = InstituteCache.objects.get(institute=institute, date=\n datetime.date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except InstituteCache.DoesNotExist:\n return 0, 0\n",
"role": "user"
},
{
"content": "get_institute_usage",
"role": "assistant"
}
] |
def x(project, start, end):
try:
cache = ProjectCache.objects.get(project=project, date=datetime.
date.today(), start=start, end=end)
return cache.cpu_time, cache.no_jobs
except ProjectCache.DoesNotExist:
return 0, 0
|
get_project_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(project, start, end):\n try:\n cache = ProjectCache.objects.get(project=project, date=datetime.\n date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except ProjectCache.DoesNotExist:\n return 0, 0\n",
"role": "user"
},
{
"content": "get_project_usage",
"role": "assistant"
}
] |
def x(person, project, start, end):
try:
cache = PersonCache.objects.get(person=person, project=project,
date=datetime.date.today(), start=start, end=end)
return cache.cpu_time, cache.no_jobs
except PersonCache.DoesNotExist:
return 0, 0
|
get_person_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(person, project, start, end):\n try:\n cache = PersonCache.objects.get(person=person, project=project,\n date=datetime.date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except PersonCache.DoesNotExist:\n return 0, 0\n",
"role": "user"
},
{
"content": "get_person_usage",
"role": "assistant"
}
] |
def x(machine, start, end):
try:
cache = MachineCache.objects.get(machine=machine, date=datetime.
date.today(), start=start, end=end)
return cache.cpu_time, cache.no_jobs
except MachineCache.DoesNotExist:
return 0, 0
|
get_machine_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(machine, start, end):\n try:\n cache = MachineCache.objects.get(machine=machine, date=datetime.\n date.today(), start=start, end=end)\n return cache.cpu_time, cache.no_jobs\n except MachineCache.DoesNotExist:\n return 0, 0\n",
"role": "user"
},
{
"content": "get_machine_usage",
"role": "assistant"
}
] |
def x(start, end):
cache = MachineCategoryCache.objects.get(date=datetime.date.today(),
start=start, end=end)
return cache
|
get_machine_category_usage
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(start, end):\n cache = MachineCategoryCache.objects.get(date=datetime.date.today(),\n start=start, end=end)\n return cache\n",
"role": "user"
},
{
"content": "get_machine_category_usage",
"role": "assistant"
}
] |
def x(email):
try:
applicant = Person.active.get(email=email)
existing_person = True
except Person.DoesNotExist:
applicant = Applicant.objects.create(email=email)
existing_person = False
except Person.MultipleObjectsReturned:
applicant = None
existing_person = False
return applicant, existing_person
|
get_applicant_from_email
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(email):\n try:\n applicant = Person.active.get(email=email)\n existing_person = True\n except Person.DoesNotExist:\n applicant = Applicant.objects.create(email=email)\n existing_person = False\n except Person.MultipleObjectsReturned:\n applicant = None\n existing_person = False\n return applicant, existing_person\n",
"role": "user"
},
{
"content": "get_applicant_from_email",
"role": "assistant"
}
] |
def x(request, project):
form = forms.InviteUserApplicationForm(request.POST or None)
if request.method == 'POST':
if form.is_valid():
email = form.cleaned_data['email']
applicant, existing_person = get_applicant_from_email(email)
if applicant is None:
return render(template_name=
'kgapplications/project_common_invite_multiple.html',
context={'form': form, 'email': email}, request=request)
if existing_person and 'existing' not in request.POST:
return render(template_name=
'kgapplications/project_common_invite_existing.html',
context={'form': form, 'person': applicant}, request=
request)
application = form.save(commit=False)
application.applicant = applicant
application.project = project
application.save()
state_machine = get_application_state_machine()
response = state_machine.start(request, application)
return response
return render(template_name=
'kgapplications/project_common_invite_other.html', context={'form':
form, 'project': project}, request=request)
|
send_invitation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, project):\n form = forms.InviteUserApplicationForm(request.POST or None)\n if request.method == 'POST':\n if form.is_valid():\n email = form.cleaned_data['email']\n applicant, existing_person = get_applicant_from_email(email)\n if applicant is None:\n return render(template_name=\n 'kgapplications/project_common_invite_multiple.html',\n context={'form': form, 'email': email}, request=request)\n if existing_person and 'existing' not in request.POST:\n return render(template_name=\n 'kgapplications/project_common_invite_existing.html',\n context={'form': form, 'person': applicant}, request=\n request)\n application = form.save(commit=False)\n application.applicant = applicant\n application.project = project\n application.save()\n state_machine = get_application_state_machine()\n response = state_machine.start(request, application)\n return response\n return render(template_name=\n 'kgapplications/project_common_invite_other.html', context={'form':\n form, 'project': project}, request=request)\n",
"role": "user"
},
{
"content": "send_invitation",
"role": "assistant"
}
] |
def x(request, project_id=None):
project = None
if project_id is not None:
project = get_object_or_404(Project, id=project_id)
if project is None:
if not is_admin(request):
return HttpResponseForbidden('<h1>Access Denied</h1>')
elif not project.can_edit(request):
return HttpResponseForbidden('<h1>Access Denied</h1>')
return _send_invitation(request, project)
|
send_invitation
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request, project_id=None):\n project = None\n if project_id is not None:\n project = get_object_or_404(Project, id=project_id)\n if project is None:\n if not is_admin(request):\n return HttpResponseForbidden('<h1>Access Denied</h1>')\n elif not project.can_edit(request):\n return HttpResponseForbidden('<h1>Access Denied</h1>')\n return _send_invitation(request, project)\n",
"role": "user"
},
{
"content": "send_invitation",
"role": "assistant"
}
] |
def x(request):
if not settings.ALLOW_REGISTRATIONS:
return render(template_name=
'kgapplications/project_common_disabled.html', context={},
request=request)
roles = {'is_applicant', 'is_authorised'}
if not request.user.is_authenticated:
attrs, _ = saml.parse_attributes(request)
defaults = {'email': attrs['email']}
form = forms.UnauthenticatedInviteUserApplicationForm(request.POST or
None, initial=defaults)
if request.method == 'POST':
if form.is_valid():
email = form.cleaned_data['email']
applicant, existing_person = get_applicant_from_email(email)
assert applicant is not None
assert not existing_person
application = ProjectApplication()
application.applicant = applicant
application.save()
state_machine = get_application_state_machine()
state_machine.start(request, application, roles)
url = reverse('index')
return HttpResponseRedirect(url)
return render(template_name=
'kgapplications/project_common_invite_unauthenticated.html',
context={'form': form}, request=request)
else:
if request.method == 'POST':
person = request.user
application = ProjectApplication()
application.applicant = person
application.save()
state_machine = get_application_state_machine()
response = state_machine.start(request, application, roles)
return response
return render(template_name=
'kgapplications/project_common_invite_authenticated.html',
context={}, request=request)
|
new_application
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(request):\n if not settings.ALLOW_REGISTRATIONS:\n return render(template_name=\n 'kgapplications/project_common_disabled.html', context={},\n request=request)\n roles = {'is_applicant', 'is_authorised'}\n if not request.user.is_authenticated:\n attrs, _ = saml.parse_attributes(request)\n defaults = {'email': attrs['email']}\n form = forms.UnauthenticatedInviteUserApplicationForm(request.POST or\n None, initial=defaults)\n if request.method == 'POST':\n if form.is_valid():\n email = form.cleaned_data['email']\n applicant, existing_person = get_applicant_from_email(email)\n assert applicant is not None\n assert not existing_person\n application = ProjectApplication()\n application.applicant = applicant\n application.save()\n state_machine = get_application_state_machine()\n state_machine.start(request, application, roles)\n url = reverse('index')\n return HttpResponseRedirect(url)\n return render(template_name=\n 'kgapplications/project_common_invite_unauthenticated.html',\n context={'form': form}, request=request)\n else:\n if request.method == 'POST':\n person = request.user\n application = ProjectApplication()\n application.applicant = person\n application.save()\n state_machine = get_application_state_machine()\n response = state_machine.start(request, application, roles)\n return response\n return render(template_name=\n 'kgapplications/project_common_invite_authenticated.html',\n context={}, request=request)\n",
"role": "user"
},
{
"content": "new_application",
"role": "assistant"
}
] |
def x():
if sys.platform == 'win32':
prefix = getattr(sys, 'real_prefix', sys.prefix)
libs = os.path.join(prefix, str('libs'))
return str('-L{} -lpython{}{}').format(libs, *sys.version_info[:2])
cc = subprocess.check_output(('go', 'env', 'CC')).decode('UTF-8').strip()
with _tmpdir() as tmpdir:
testf = os.path.join(tmpdir, 'test.c')
with io.open(testf, 'w') as f:
f.write('int f(int); int main(void) { return f(0); }\n')
for lflag in LFLAGS:
try:
subprocess.check_call((cc, testf, lflag), cwd=tmpdir)
return lflag
except subprocess.CalledProcessError:
pass
else:
return LFLAG_GCC
|
get_ldflags
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n if sys.platform == 'win32':\n prefix = getattr(sys, 'real_prefix', sys.prefix)\n libs = os.path.join(prefix, str('libs'))\n return str('-L{} -lpython{}{}').format(libs, *sys.version_info[:2])\n cc = subprocess.check_output(('go', 'env', 'CC')).decode('UTF-8').strip()\n with _tmpdir() as tmpdir:\n testf = os.path.join(tmpdir, 'test.c')\n with io.open(testf, 'w') as f:\n f.write('int f(int); int main(void) { return f(0); }\\n')\n for lflag in LFLAGS:\n try:\n subprocess.check_call((cc, testf, lflag), cwd=tmpdir)\n return lflag\n except subprocess.CalledProcessError:\n pass\n else:\n return LFLAG_GCC\n",
"role": "user"
},
{
"content": "get_ldflags",
"role": "assistant"
}
] |
def x(specification):
feasible_configurations = specification.feasible_configurations
if specification.vartype is dimod.BINARY:
feasible_configurations = {tuple(2 * v - 1 for v in config): en for
config, en in feasible_configurations.items()}
ising_quadratic_ranges = specification.ising_quadratic_ranges
quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in
specification.graph.edges}
bqm, gap = generate(specification.graph, feasible_configurations,
specification.decision_variables, specification.ising_linear_ranges,
quadratic_ranges, specification.min_classical_gap, None)
try:
ground = max(feasible_configurations.values())
except ValueError:
ground = 0.0
return pm.PenaltyModel.from_specification(specification, bqm, gap, ground)
|
get_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specification):\n feasible_configurations = specification.feasible_configurations\n if specification.vartype is dimod.BINARY:\n feasible_configurations = {tuple(2 * v - 1 for v in config): en for\n config, en in feasible_configurations.items()}\n ising_quadratic_ranges = specification.ising_quadratic_ranges\n quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in\n specification.graph.edges}\n bqm, gap = generate(specification.graph, feasible_configurations,\n specification.decision_variables, specification.ising_linear_ranges,\n quadratic_ranges, specification.min_classical_gap, None)\n try:\n ground = max(feasible_configurations.values())\n except ValueError:\n ground = 0.0\n return pm.PenaltyModel.from_specification(specification, bqm, gap, ground)\n",
"role": "user"
},
{
"content": "get_penalty_model",
"role": "assistant"
}
] |
def x(cur, feasible_configurations, encoded_data=None):
if encoded_data is None:
encoded_data = {}
if 'num_variables' not in encoded_data:
encoded_data['num_variables'] = len(next(iter(feasible_configurations))
)
if 'num_feasible_configurations' not in encoded_data:
encoded_data['num_feasible_configurations'] = len(
feasible_configurations)
if ('feasible_configurations' not in encoded_data or 'energies' not in
encoded_data):
encoded = {_serialize_config(config): en for config, en in
feasible_configurations.items()}
configs, energies = zip(*sorted(encoded.items()))
encoded_data['feasible_configurations'] = json.dumps(configs,
separators=(',', ':'))
encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))
insert = """
INSERT OR IGNORE INTO feasible_configurations(
num_variables,
num_feasible_configurations,
feasible_configurations,
energies)
VALUES (
:num_variables,
:num_feasible_configurations,
:feasible_configurations,
:energies);
"""
cur.execute(insert, encoded_data)
|
insert_feasible_configurations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur, feasible_configurations, encoded_data=None):\n if encoded_data is None:\n encoded_data = {}\n if 'num_variables' not in encoded_data:\n encoded_data['num_variables'] = len(next(iter(feasible_configurations))\n )\n if 'num_feasible_configurations' not in encoded_data:\n encoded_data['num_feasible_configurations'] = len(\n feasible_configurations)\n if ('feasible_configurations' not in encoded_data or 'energies' not in\n encoded_data):\n encoded = {_serialize_config(config): en for config, en in\n feasible_configurations.items()}\n configs, energies = zip(*sorted(encoded.items()))\n encoded_data['feasible_configurations'] = json.dumps(configs,\n separators=(',', ':'))\n encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))\n insert = \"\"\"\n INSERT OR IGNORE INTO feasible_configurations(\n num_variables,\n num_feasible_configurations,\n feasible_configurations,\n energies)\n VALUES (\n :num_variables,\n :num_feasible_configurations,\n :feasible_configurations,\n :energies);\n \"\"\"\n cur.execute(insert, encoded_data)\n",
"role": "user"
},
{
"content": "insert_feasible_configurations",
"role": "assistant"
}
] |
def x(cur):
select = """
SELECT num_variables, feasible_configurations, energies
FROM feasible_configurations
"""
for num_variables, feasible_configurations, energies in cur.execute(select
):
configs = json.loads(feasible_configurations)
energies = json.loads(energies)
yield {_decode_config(config, num_variables): energy for config,
energy in zip(configs, energies)}
|
iter_feasible_configurations
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur):\n select = \"\"\"\n SELECT num_variables, feasible_configurations, energies\n FROM feasible_configurations\n \"\"\"\n for num_variables, feasible_configurations, energies in cur.execute(select\n ):\n configs = json.loads(feasible_configurations)\n energies = json.loads(energies)\n yield {_decode_config(config, num_variables): energy for config,\n energy in zip(configs, energies)}\n",
"role": "user"
},
{
"content": "iter_feasible_configurations",
"role": "assistant"
}
] |
def x(c, num_variables):
def x(c):
n = 1 << num_variables - 1
for __ in range(num_variables):
yield 1 if c & n else -1
n >>= 1
return tuple(bits(c))
|
decode_config
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(c, num_variables):\n\n def x(c):\n n = 1 << num_variables - 1\n for __ in range(num_variables):\n yield 1 if c & n else -1\n n >>= 1\n return tuple(bits(c))\n",
"role": "user"
},
{
"content": "decode_config",
"role": "assistant"
}
] |
def x(cur, nodelist, edgelist, linear, quadratic, offset, encoded_data=None):
if encoded_data is None:
encoded_data = {}
insert_graph(cur, nodelist, edgelist, encoded_data=encoded_data)
if 'linear_biases' not in encoded_data:
encoded_data['linear_biases'] = _serialize_linear_biases(linear,
nodelist)
if 'quadratic_biases' not in encoded_data:
encoded_data['quadratic_biases'] = _serialize_quadratic_biases(
quadratic, edgelist)
if 'offset' not in encoded_data:
encoded_data['offset'] = offset
if 'max_quadratic_bias' not in encoded_data:
encoded_data['max_quadratic_bias'] = max(itervalues(quadratic))
if 'min_quadratic_bias' not in encoded_data:
encoded_data['min_quadratic_bias'] = min(itervalues(quadratic))
if 'max_linear_bias' not in encoded_data:
encoded_data['max_linear_bias'] = max(itervalues(linear))
if 'min_linear_bias' not in encoded_data:
encoded_data['min_linear_bias'] = min(itervalues(linear))
insert = """
INSERT OR IGNORE INTO ising_model(
linear_biases,
quadratic_biases,
offset,
max_quadratic_bias,
min_quadratic_bias,
max_linear_bias,
min_linear_bias,
graph_id)
SELECT
:linear_biases,
:quadratic_biases,
:offset,
:max_quadratic_bias,
:min_quadratic_bias,
:max_linear_bias,
:min_linear_bias,
graph.id
FROM graph WHERE
num_nodes = :num_nodes AND
num_edges = :num_edges AND
edges = :edges;
"""
cur.execute(insert, encoded_data)
|
insert_ising_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur, nodelist, edgelist, linear, quadratic, offset, encoded_data=None):\n if encoded_data is None:\n encoded_data = {}\n insert_graph(cur, nodelist, edgelist, encoded_data=encoded_data)\n if 'linear_biases' not in encoded_data:\n encoded_data['linear_biases'] = _serialize_linear_biases(linear,\n nodelist)\n if 'quadratic_biases' not in encoded_data:\n encoded_data['quadratic_biases'] = _serialize_quadratic_biases(\n quadratic, edgelist)\n if 'offset' not in encoded_data:\n encoded_data['offset'] = offset\n if 'max_quadratic_bias' not in encoded_data:\n encoded_data['max_quadratic_bias'] = max(itervalues(quadratic))\n if 'min_quadratic_bias' not in encoded_data:\n encoded_data['min_quadratic_bias'] = min(itervalues(quadratic))\n if 'max_linear_bias' not in encoded_data:\n encoded_data['max_linear_bias'] = max(itervalues(linear))\n if 'min_linear_bias' not in encoded_data:\n encoded_data['min_linear_bias'] = min(itervalues(linear))\n insert = \"\"\"\n INSERT OR IGNORE INTO ising_model(\n linear_biases,\n quadratic_biases,\n offset,\n max_quadratic_bias,\n min_quadratic_bias,\n max_linear_bias,\n min_linear_bias,\n graph_id)\n SELECT\n :linear_biases,\n :quadratic_biases,\n :offset,\n :max_quadratic_bias,\n :min_quadratic_bias,\n :max_linear_bias,\n :min_linear_bias,\n graph.id\n FROM graph WHERE\n num_nodes = :num_nodes AND\n num_edges = :num_edges AND\n edges = :edges;\n \"\"\"\n cur.execute(insert, encoded_data)\n",
"role": "user"
},
{
"content": "insert_ising_model",
"role": "assistant"
}
] |
def x(linear, nodelist):
linear_bytes = struct.pack('<' + 'd' * len(linear), *[linear[i] for i in
nodelist])
return base64.b64encode(linear_bytes).decode('utf-8')
|
serialize_linear_biases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(linear, nodelist):\n linear_bytes = struct.pack('<' + 'd' * len(linear), *[linear[i] for i in\n nodelist])\n return base64.b64encode(linear_bytes).decode('utf-8')\n",
"role": "user"
},
{
"content": "serialize_linear_biases",
"role": "assistant"
}
] |
def x(quadratic, edgelist):
quadratic_list = [(quadratic[u, v] if (u, v) in quadratic else
quadratic[v, u]) for u, v in edgelist]
quadratic_bytes = struct.pack('<' + 'd' * len(quadratic), *quadratic_list)
return base64.b64encode(quadratic_bytes).decode('utf-8')
|
serialize_quadratic_biases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quadratic, edgelist):\n quadratic_list = [(quadratic[u, v] if (u, v) in quadratic else\n quadratic[v, u]) for u, v in edgelist]\n quadratic_bytes = struct.pack('<' + 'd' * len(quadratic), *quadratic_list)\n return base64.b64encode(quadratic_bytes).decode('utf-8')\n",
"role": "user"
},
{
"content": "serialize_quadratic_biases",
"role": "assistant"
}
] |
def x(cur):
select = """
SELECT linear_biases, quadratic_biases, num_nodes, edges, offset
FROM ising_model, graph
WHERE graph.id = ising_model.graph_id;
"""
for linear_biases, quadratic_biases, num_nodes, edges, offset in cur.execute(
select):
nodelist = list(range(num_nodes))
edgelist = json.loads(edges)
yield nodelist, edgelist, _decode_linear_biases(linear_biases, nodelist
), _decode_quadratic_biases(quadratic_biases, edgelist), offset
|
iter_ising_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur):\n select = \"\"\"\n SELECT linear_biases, quadratic_biases, num_nodes, edges, offset\n FROM ising_model, graph\n WHERE graph.id = ising_model.graph_id;\n \"\"\"\n for linear_biases, quadratic_biases, num_nodes, edges, offset in cur.execute(\n select):\n nodelist = list(range(num_nodes))\n edgelist = json.loads(edges)\n yield nodelist, edgelist, _decode_linear_biases(linear_biases, nodelist\n ), _decode_quadratic_biases(quadratic_biases, edgelist), offset\n",
"role": "user"
},
{
"content": "iter_ising_model",
"role": "assistant"
}
] |
def x(linear_string, nodelist):
linear_bytes = base64.b64decode(linear_string)
return dict(zip(nodelist, struct.unpack('<' + 'd' * (len(linear_bytes) //
8), linear_bytes)))
|
decode_linear_biases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(linear_string, nodelist):\n linear_bytes = base64.b64decode(linear_string)\n return dict(zip(nodelist, struct.unpack('<' + 'd' * (len(linear_bytes) //\n 8), linear_bytes)))\n",
"role": "user"
},
{
"content": "decode_linear_biases",
"role": "assistant"
}
] |
def x(quadratic_string, edgelist):
quadratic_bytes = base64.b64decode(quadratic_string)
return {tuple(edge): bias for edge, bias in zip(edgelist, struct.unpack
('<' + 'd' * (len(quadratic_bytes) // 8), quadratic_bytes))}
|
decode_quadratic_biases
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quadratic_string, edgelist):\n quadratic_bytes = base64.b64decode(quadratic_string)\n return {tuple(edge): bias for edge, bias in zip(edgelist, struct.unpack\n ('<' + 'd' * (len(quadratic_bytes) // 8), quadratic_bytes))}\n",
"role": "user"
},
{
"content": "decode_quadratic_biases",
"role": "assistant"
}
] |
def x(cur, penalty_model):
encoded_data = {}
linear, quadratic, offset = penalty_model.model.to_ising()
nodelist = sorted(linear)
edgelist = sorted(sorted(edge) for edge in penalty_model.graph.edges)
insert_graph(cur, nodelist, edgelist, encoded_data)
insert_feasible_configurations(cur, penalty_model.
feasible_configurations, encoded_data)
insert_ising_model(cur, nodelist, edgelist, linear, quadratic, offset,
encoded_data)
encoded_data['decision_variables'] = json.dumps(penalty_model.
decision_variables, separators=(',', ':'))
encoded_data['classical_gap'] = penalty_model.classical_gap
encoded_data['ground_energy'] = penalty_model.ground_energy
insert = """
INSERT OR IGNORE INTO penalty_model(
decision_variables,
classical_gap,
ground_energy,
feasible_configurations_id,
ising_model_id)
SELECT
:decision_variables,
:classical_gap,
:ground_energy,
feasible_configurations.id,
ising_model.id
FROM feasible_configurations, ising_model, graph
WHERE
graph.edges = :edges AND
graph.num_nodes = :num_nodes AND
ising_model.graph_id = graph.id AND
ising_model.linear_biases = :linear_biases AND
ising_model.quadratic_biases = :quadratic_biases AND
ising_model.offset = :offset AND
feasible_configurations.num_variables = :num_variables AND
feasible_configurations.num_feasible_configurations = :num_feasible_configurations AND
feasible_configurations.feasible_configurations = :feasible_configurations AND
feasible_configurations.energies = :energies;
"""
cur.execute(insert, encoded_data)
|
insert_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur, penalty_model):\n encoded_data = {}\n linear, quadratic, offset = penalty_model.model.to_ising()\n nodelist = sorted(linear)\n edgelist = sorted(sorted(edge) for edge in penalty_model.graph.edges)\n insert_graph(cur, nodelist, edgelist, encoded_data)\n insert_feasible_configurations(cur, penalty_model.\n feasible_configurations, encoded_data)\n insert_ising_model(cur, nodelist, edgelist, linear, quadratic, offset,\n encoded_data)\n encoded_data['decision_variables'] = json.dumps(penalty_model.\n decision_variables, separators=(',', ':'))\n encoded_data['classical_gap'] = penalty_model.classical_gap\n encoded_data['ground_energy'] = penalty_model.ground_energy\n insert = \"\"\"\n INSERT OR IGNORE INTO penalty_model(\n decision_variables,\n classical_gap,\n ground_energy,\n feasible_configurations_id,\n ising_model_id)\n SELECT\n :decision_variables,\n :classical_gap,\n :ground_energy,\n feasible_configurations.id,\n ising_model.id\n FROM feasible_configurations, ising_model, graph\n WHERE\n graph.edges = :edges AND\n graph.num_nodes = :num_nodes AND\n ising_model.graph_id = graph.id AND\n ising_model.linear_biases = :linear_biases AND\n ising_model.quadratic_biases = :quadratic_biases AND\n ising_model.offset = :offset AND\n feasible_configurations.num_variables = :num_variables AND\n feasible_configurations.num_feasible_configurations = :num_feasible_configurations AND\n feasible_configurations.feasible_configurations = :feasible_configurations AND\n feasible_configurations.energies = :energies;\n \"\"\"\n cur.execute(insert, encoded_data)\n",
"role": "user"
},
{
"content": "insert_penalty_model",
"role": "assistant"
}
] |
def x(cur, specification):
encoded_data = {}
nodelist = sorted(specification.graph)
edgelist = sorted(sorted(edge) for edge in specification.graph.edges)
encoded_data['num_nodes'] = len(nodelist)
encoded_data['num_edges'] = len(edgelist)
encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':'))
encoded_data['num_variables'] = len(next(iter(specification.
feasible_configurations)))
encoded_data['num_feasible_configurations'] = len(specification.
feasible_configurations)
encoded = {_serialize_config(config): en for config, en in
specification.feasible_configurations.items()}
configs, energies = zip(*sorted(encoded.items()))
encoded_data['feasible_configurations'] = json.dumps(configs,
separators=(',', ':'))
encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))
encoded_data['decision_variables'] = json.dumps(specification.
decision_variables, separators=(',', ':'))
encoded_data['classical_gap'] = json.dumps(specification.
min_classical_gap, separators=(',', ':'))
select = """
SELECT
linear_biases,
quadratic_biases,
offset,
decision_variables,
classical_gap,
ground_energy
FROM penalty_model_view
WHERE
-- graph:
num_nodes = :num_nodes AND
num_edges = :num_edges AND
edges = :edges AND
-- feasible_configurations:
num_variables = :num_variables AND
num_feasible_configurations = :num_feasible_configurations AND
feasible_configurations = :feasible_configurations AND
energies = :energies AND
-- decision variables:
decision_variables = :decision_variables AND
-- we could apply filters based on the energy ranges but in practice this seems slower
classical_gap >= :classical_gap
ORDER BY classical_gap DESC;
"""
for row in cur.execute(select, encoded_data):
linear = _decode_linear_biases(row['linear_biases'], nodelist)
quadratic = _decode_quadratic_biases(row['quadratic_biases'], edgelist)
model = dimod.BinaryQuadraticModel(linear, quadratic, row['offset'],
dimod.SPIN)
yield pm.PenaltyModel.from_specification(specification, model, row[
'classical_gap'], row['ground_energy'])
|
iter_penalty_model_from_specification
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cur, specification):\n encoded_data = {}\n nodelist = sorted(specification.graph)\n edgelist = sorted(sorted(edge) for edge in specification.graph.edges)\n encoded_data['num_nodes'] = len(nodelist)\n encoded_data['num_edges'] = len(edgelist)\n encoded_data['edges'] = json.dumps(edgelist, separators=(',', ':'))\n encoded_data['num_variables'] = len(next(iter(specification.\n feasible_configurations)))\n encoded_data['num_feasible_configurations'] = len(specification.\n feasible_configurations)\n encoded = {_serialize_config(config): en for config, en in\n specification.feasible_configurations.items()}\n configs, energies = zip(*sorted(encoded.items()))\n encoded_data['feasible_configurations'] = json.dumps(configs,\n separators=(',', ':'))\n encoded_data['energies'] = json.dumps(energies, separators=(',', ':'))\n encoded_data['decision_variables'] = json.dumps(specification.\n decision_variables, separators=(',', ':'))\n encoded_data['classical_gap'] = json.dumps(specification.\n min_classical_gap, separators=(',', ':'))\n select = \"\"\"\n SELECT\n linear_biases,\n quadratic_biases,\n offset,\n decision_variables,\n classical_gap,\n ground_energy\n FROM penalty_model_view\n WHERE\n -- graph:\n num_nodes = :num_nodes AND\n num_edges = :num_edges AND\n edges = :edges AND\n -- feasible_configurations:\n num_variables = :num_variables AND\n num_feasible_configurations = :num_feasible_configurations AND\n feasible_configurations = :feasible_configurations AND\n energies = :energies AND\n -- decision variables:\n decision_variables = :decision_variables AND\n -- we could apply filters based on the energy ranges but in practice this seems slower\n classical_gap >= :classical_gap\n ORDER BY classical_gap DESC;\n \"\"\"\n for row in cur.execute(select, encoded_data):\n linear = _decode_linear_biases(row['linear_biases'], nodelist)\n quadratic = _decode_quadratic_biases(row['quadratic_biases'], edgelist)\n model = dimod.BinaryQuadraticModel(linear, quadratic, row['offset'],\n dimod.SPIN)\n yield pm.PenaltyModel.from_specification(specification, model, row[\n 'classical_gap'], row['ground_energy'])\n",
"role": "user"
},
{
"content": "iter_penalty_model_from_specification",
"role": "assistant"
}
] |
def x(cls, specification, model, classical_gap, ground_energy):
return cls(specification.graph, specification.decision_variables,
specification.feasible_configurations, specification.vartype, model,
classical_gap, ground_energy, ising_linear_ranges=specification.
ising_linear_ranges, ising_quadratic_ranges=specification.
ising_quadratic_ranges)
|
from_specification
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, specification, model, classical_gap, ground_energy):\n return cls(specification.graph, specification.decision_variables,\n specification.feasible_configurations, specification.vartype, model,\n classical_gap, ground_energy, ising_linear_ranges=specification.\n ising_linear_ranges, ising_quadratic_ranges=specification.\n ising_quadratic_ranges)\n",
"role": "user"
},
{
"content": "from_specification",
"role": "assistant"
}
] |
def x(self, mapping, inplace=True):
if inplace:
Specification.relabel_variables(self, mapping, inplace=True)
self.model.relabel_variables(mapping, inplace=True)
return self
else:
spec = Specification.relabel_variables(self, mapping, inplace=False)
model = self.model.relabel_variables(mapping, inplace=False)
return PenaltyModel.from_specification(spec, model, self.
classical_gap, self.ground_energy)
|
relabel_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mapping, inplace=True):\n if inplace:\n Specification.relabel_variables(self, mapping, inplace=True)\n self.model.relabel_variables(mapping, inplace=True)\n return self\n else:\n spec = Specification.relabel_variables(self, mapping, inplace=False)\n model = self.model.relabel_variables(mapping, inplace=False)\n return PenaltyModel.from_specification(spec, model, self.\n classical_gap, self.ground_energy)\n",
"role": "user"
},
{
"content": "relabel_variables",
"role": "assistant"
}
] |
def x(specification, database=None):
if not _is_index_labelled(specification.graph):
relabel_applied = True
mapping, inverse_mapping = _graph_canonicalization(specification.graph)
specification = specification.relabel_variables(mapping, inplace=False)
else:
relabel_applied = False
if database is None:
conn = cache_connect()
else:
conn = cache_connect(database)
with conn as cur:
try:
widget = next(iter_penalty_model_from_specification(cur,
specification))
except StopIteration:
widget = None
conn.close()
if widget is None:
raise pm.MissingPenaltyModel(
'no penalty model with the given specification found in cache')
if relabel_applied:
widget.relabel_variables(inverse_mapping, inplace=True)
return widget
|
get_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specification, database=None):\n if not _is_index_labelled(specification.graph):\n relabel_applied = True\n mapping, inverse_mapping = _graph_canonicalization(specification.graph)\n specification = specification.relabel_variables(mapping, inplace=False)\n else:\n relabel_applied = False\n if database is None:\n conn = cache_connect()\n else:\n conn = cache_connect(database)\n with conn as cur:\n try:\n widget = next(iter_penalty_model_from_specification(cur,\n specification))\n except StopIteration:\n widget = None\n conn.close()\n if widget is None:\n raise pm.MissingPenaltyModel(\n 'no penalty model with the given specification found in cache')\n if relabel_applied:\n widget.relabel_variables(inverse_mapping, inplace=True)\n return widget\n",
"role": "user"
},
{
"content": "get_penalty_model",
"role": "assistant"
}
] |
def x(penalty_model, database=None):
if not _is_index_labelled(penalty_model.graph):
mapping, __ = _graph_canonicalization(penalty_model.graph)
penalty_model = penalty_model.relabel_variables(mapping, inplace=False)
if database is None:
conn = cache_connect()
else:
conn = cache_connect(database)
with conn as cur:
insert_penalty_model(cur, penalty_model)
conn.close()
|
cache_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(penalty_model, database=None):\n if not _is_index_labelled(penalty_model.graph):\n mapping, __ = _graph_canonicalization(penalty_model.graph)\n penalty_model = penalty_model.relabel_variables(mapping, inplace=False)\n if database is None:\n conn = cache_connect()\n else:\n conn = cache_connect(database)\n with conn as cur:\n insert_penalty_model(cur, penalty_model)\n conn.close()\n",
"role": "user"
},
{
"content": "cache_penalty_model",
"role": "assistant"
}
] |
def x(specification):
for factory in iter_factories():
try:
pm = factory(specification)
except ImpossiblePenaltyModel as e:
raise e
except FactoryException:
continue
for cache in iter_caches():
cache(pm)
return pm
return None
|
get_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specification):\n for factory in iter_factories():\n try:\n pm = factory(specification)\n except ImpossiblePenaltyModel as e:\n raise e\n except FactoryException:\n continue\n for cache in iter_caches():\n cache(pm)\n return pm\n return None\n",
"role": "user"
},
{
"content": "get_penalty_model",
"role": "assistant"
}
] |
def x():
factories = (entry.load() for entry in iter_entry_points(
FACTORY_ENTRYPOINT))
for factory in sorted(factories, key=lambda f: getattr(f, 'priority', -
1000), reverse=True):
yield factory
|
iter_factories
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n factories = (entry.load() for entry in iter_entry_points(\n FACTORY_ENTRYPOINT))\n for factory in sorted(factories, key=lambda f: getattr(f, 'priority', -\n 1000), reverse=True):\n yield factory\n",
"role": "user"
},
{
"content": "iter_factories",
"role": "assistant"
}
] |
def x(graph, table, decision, linear_energy_ranges=None,
quadratic_energy_ranges=None, min_classical_gap=2, precision=7,
max_decision=8, max_variables=10, return_auxiliary=False):
if not isinstance(graph, nx.Graph):
raise TypeError('expected input graph to be a NetworkX Graph.')
if not set().union(*table).issubset({-1, 1}):
raise ValueError('expected table to be spin-valued')
if not isinstance(decision, list):
decision = list(decision)
if not all(v in graph for v in decision):
raise ValueError(
'given graph does not match the variable labels in decision variables'
)
num_var = len(decision)
if any(len(config) != num_var for config in table):
raise ValueError(
'number of decision variables does not match all of the entires in the table'
)
if len(decision) > max_decision:
raise ValueError(
'The table is too large. Note that larger models can be built by setting max_decision to a higher number, but generation could be extremely slow.'
)
if len(graph) > max_variables:
raise ValueError(
'The graph is too large. Note that larger models can be built by setting max_variables to a higher number, but generation could be extremely slow.'
)
if linear_energy_ranges is None:
linear_energy_ranges = defaultdict(lambda : (-2, 2))
if quadratic_energy_ranges is None:
quadratic_energy_ranges = defaultdict(lambda : (-1, 1))
if not isinstance(table, Mapping):
table = {config: (0.0) for config in table}
h, J, offset, gap, aux = _generate_ising(graph, table, decision,
min_classical_gap, linear_energy_ranges, quadratic_energy_ranges)
bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)
bqm.add_variables_from((v, round(bias, precision)) for v, bias in h.items()
)
bqm.add_interactions_from((u, v, round(bias, precision)) for (u, v),
bias in J.items())
bqm.add_offset(round(offset, precision))
if return_auxiliary:
return bqm, round(gap, precision), aux
else:
return bqm, round(gap, precision)
|
generate_bqm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, table, decision, linear_energy_ranges=None,\n quadratic_energy_ranges=None, min_classical_gap=2, precision=7,\n max_decision=8, max_variables=10, return_auxiliary=False):\n if not isinstance(graph, nx.Graph):\n raise TypeError('expected input graph to be a NetworkX Graph.')\n if not set().union(*table).issubset({-1, 1}):\n raise ValueError('expected table to be spin-valued')\n if not isinstance(decision, list):\n decision = list(decision)\n if not all(v in graph for v in decision):\n raise ValueError(\n 'given graph does not match the variable labels in decision variables'\n )\n num_var = len(decision)\n if any(len(config) != num_var for config in table):\n raise ValueError(\n 'number of decision variables does not match all of the entires in the table'\n )\n if len(decision) > max_decision:\n raise ValueError(\n 'The table is too large. Note that larger models can be built by setting max_decision to a higher number, but generation could be extremely slow.'\n )\n if len(graph) > max_variables:\n raise ValueError(\n 'The graph is too large. Note that larger models can be built by setting max_variables to a higher number, but generation could be extremely slow.'\n )\n if linear_energy_ranges is None:\n linear_energy_ranges = defaultdict(lambda : (-2, 2))\n if quadratic_energy_ranges is None:\n quadratic_energy_ranges = defaultdict(lambda : (-1, 1))\n if not isinstance(table, Mapping):\n table = {config: (0.0) for config in table}\n h, J, offset, gap, aux = _generate_ising(graph, table, decision,\n min_classical_gap, linear_energy_ranges, quadratic_energy_ranges)\n bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)\n bqm.add_variables_from((v, round(bias, precision)) for v, bias in h.items()\n )\n bqm.add_interactions_from((u, v, round(bias, precision)) for (u, v),\n bias in J.items())\n bqm.add_offset(round(offset, precision))\n if return_auxiliary:\n return bqm, round(gap, precision), aux\n else:\n return bqm, round(gap, precision)\n",
"role": "user"
},
{
"content": "generate_bqm",
"role": "assistant"
}
] |
def x(specification):
feasible_configurations = specification.feasible_configurations
if specification.vartype is dimod.BINARY:
feasible_configurations = {tuple(2 * v - 1 for v in config): en for
config, en in iteritems(feasible_configurations)}
ising_quadratic_ranges = specification.ising_quadratic_ranges
quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in
specification.graph.edges}
try:
bqm, gap = generate_bqm(specification.graph,
feasible_configurations, specification.decision_variables,
linear_energy_ranges=specification.ising_linear_ranges,
quadratic_energy_ranges=quadratic_ranges, min_classical_gap=
specification.min_classical_gap)
except ValueError:
raise pm.exceptions.FactoryException(
'Specification is for too large of a model')
return pm.PenaltyModel.from_specification(specification, bqm, gap, 0.0)
|
get_penalty_model
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(specification):\n feasible_configurations = specification.feasible_configurations\n if specification.vartype is dimod.BINARY:\n feasible_configurations = {tuple(2 * v - 1 for v in config): en for\n config, en in iteritems(feasible_configurations)}\n ising_quadratic_ranges = specification.ising_quadratic_ranges\n quadratic_ranges = {(u, v): ising_quadratic_ranges[u][v] for u, v in\n specification.graph.edges}\n try:\n bqm, gap = generate_bqm(specification.graph,\n feasible_configurations, specification.decision_variables,\n linear_energy_ranges=specification.ising_linear_ranges,\n quadratic_energy_ranges=quadratic_ranges, min_classical_gap=\n specification.min_classical_gap)\n except ValueError:\n raise pm.exceptions.FactoryException(\n 'Specification is for too large of a model')\n return pm.PenaltyModel.from_specification(specification, bqm, gap, 0.0)\n",
"role": "user"
},
{
"content": "get_penalty_model",
"role": "assistant"
}
] |
def x(linear_ranges, graph):
if linear_ranges is None:
linear_ranges = {}
for v in graph:
if v in linear_ranges:
linear_ranges[v] = Specification._check_range(linear_ranges[v])
else:
linear_ranges[v] = [-2, 2]
return linear_ranges
|
check_ising_linear_ranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(linear_ranges, graph):\n if linear_ranges is None:\n linear_ranges = {}\n for v in graph:\n if v in linear_ranges:\n linear_ranges[v] = Specification._check_range(linear_ranges[v])\n else:\n linear_ranges[v] = [-2, 2]\n return linear_ranges\n",
"role": "user"
},
{
"content": "check_ising_linear_ranges",
"role": "assistant"
}
] |
def x(quad_ranges, graph):
if quad_ranges is None:
quad_ranges = {}
for u in graph:
if u not in quad_ranges:
quad_ranges[u] = {}
for u, neighbors in iteritems(quad_ranges):
for v, rang in iteritems(neighbors):
rang = Specification._check_range(rang)
if u in quad_ranges[v]:
if quad_ranges[u][v] != quad_ranges[v][u]:
raise ValueError(
'mismatched ranges for ising_quadratic_ranges')
quad_ranges[v][u] = quad_ranges[u][v] = rang
for u, v in graph.edges:
if u not in quad_ranges[v]:
quad_ranges[u][v] = quad_ranges[v][u] = [-1, 1]
return quad_ranges
|
check_ising_quadratic_ranges
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quad_ranges, graph):\n if quad_ranges is None:\n quad_ranges = {}\n for u in graph:\n if u not in quad_ranges:\n quad_ranges[u] = {}\n for u, neighbors in iteritems(quad_ranges):\n for v, rang in iteritems(neighbors):\n rang = Specification._check_range(rang)\n if u in quad_ranges[v]:\n if quad_ranges[u][v] != quad_ranges[v][u]:\n raise ValueError(\n 'mismatched ranges for ising_quadratic_ranges')\n quad_ranges[v][u] = quad_ranges[u][v] = rang\n for u, v in graph.edges:\n if u not in quad_ranges[v]:\n quad_ranges[u][v] = quad_ranges[v][u] = [-1, 1]\n return quad_ranges\n",
"role": "user"
},
{
"content": "check_ising_quadratic_ranges",
"role": "assistant"
}
] |
def x(range_):
try:
if not isinstance(range_, list):
range_ = list(range_)
min_, max_ = range_
except (ValueError, TypeError):
raise TypeError(
'each range in ising_linear_ranges should be a list of length 2.')
if not isinstance(min_, Number) or not isinstance(max_, Number
) or min_ > max_:
raise ValueError(
'each range in ising_linear_ranges should be a 2-tuple (min, max) where min <= max'
)
return range_
|
check_range
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(range_):\n try:\n if not isinstance(range_, list):\n range_ = list(range_)\n min_, max_ = range_\n except (ValueError, TypeError):\n raise TypeError(\n 'each range in ising_linear_ranges should be a list of length 2.')\n if not isinstance(min_, Number) or not isinstance(max_, Number\n ) or min_ > max_:\n raise ValueError(\n 'each range in ising_linear_ranges should be a 2-tuple (min, max) where min <= max'\n )\n return range_\n",
"role": "user"
},
{
"content": "check_range",
"role": "assistant"
}
] |
def x(self, mapping, inplace=True):
graph = self.graph
ising_linear_ranges = self.ising_linear_ranges
ising_quadratic_ranges = self.ising_quadratic_ranges
try:
old_labels = set(iterkeys(mapping))
new_labels = set(itervalues(mapping))
except TypeError:
raise ValueError('mapping targets must be hashable objects')
for v in new_labels:
if v in graph and v not in old_labels:
raise ValueError(
'A variable cannot be relabeled "{}" without also relabeling the existing variable of the same name'
.format(v))
if not inplace:
return Specification(nx.relabel_nodes(graph, mapping, copy=True),
tuple(mapping.get(v, v) for v in self.decision_variables), self
.feasible_configurations, vartype=self.vartype,
ising_linear_ranges={mapping.get(v, v): ising_linear_ranges[v] for
v in graph}, ising_quadratic_ranges={mapping.get(v, v): {
mapping.get(u, u): r for u, r in iteritems(neighbors)} for v,
neighbors in iteritems(ising_quadratic_ranges)})
else:
shared = old_labels & new_labels
if shared:
counter = itertools.count(2 * len(self))
old_to_intermediate = {}
intermediate_to_new = {}
for old, new in iteritems(mapping):
if old == new:
continue
if old in new_labels or new in old_labels:
lbl = next(counter)
while lbl in new_labels or lbl in old_labels:
lbl = next(counter)
old_to_intermediate[old] = lbl
intermediate_to_new[lbl] = new
else:
old_to_intermediate[old] = new
Specification.relabel_variables(self, old_to_intermediate,
inplace=True)
Specification.relabel_variables(self, intermediate_to_new,
inplace=True)
return self
nx.relabel_nodes(self.graph, mapping, copy=False)
self.decision_variables = tuple(mapping.get(v, v) for v in self.
decision_variables)
for v in old_labels:
if v in mapping:
ising_linear_ranges[mapping[v]] = ising_linear_ranges[v]
del ising_linear_ranges[v]
for neighbors in itervalues(ising_quadratic_ranges):
for v in list(neighbors):
if v in mapping:
neighbors[mapping[v]] = neighbors[v]
del neighbors[v]
for v in old_labels:
if v in mapping:
ising_quadratic_ranges[mapping[v]] = ising_quadratic_ranges[v]
del ising_quadratic_ranges[v]
return self
|
relabel_variables
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mapping, inplace=True):\n graph = self.graph\n ising_linear_ranges = self.ising_linear_ranges\n ising_quadratic_ranges = self.ising_quadratic_ranges\n try:\n old_labels = set(iterkeys(mapping))\n new_labels = set(itervalues(mapping))\n except TypeError:\n raise ValueError('mapping targets must be hashable objects')\n for v in new_labels:\n if v in graph and v not in old_labels:\n raise ValueError(\n 'A variable cannot be relabeled \"{}\" without also relabeling the existing variable of the same name'\n .format(v))\n if not inplace:\n return Specification(nx.relabel_nodes(graph, mapping, copy=True),\n tuple(mapping.get(v, v) for v in self.decision_variables), self\n .feasible_configurations, vartype=self.vartype,\n ising_linear_ranges={mapping.get(v, v): ising_linear_ranges[v] for\n v in graph}, ising_quadratic_ranges={mapping.get(v, v): {\n mapping.get(u, u): r for u, r in iteritems(neighbors)} for v,\n neighbors in iteritems(ising_quadratic_ranges)})\n else:\n shared = old_labels & new_labels\n if shared:\n counter = itertools.count(2 * len(self))\n old_to_intermediate = {}\n intermediate_to_new = {}\n for old, new in iteritems(mapping):\n if old == new:\n continue\n if old in new_labels or new in old_labels:\n lbl = next(counter)\n while lbl in new_labels or lbl in old_labels:\n lbl = next(counter)\n old_to_intermediate[old] = lbl\n intermediate_to_new[lbl] = new\n else:\n old_to_intermediate[old] = new\n Specification.relabel_variables(self, old_to_intermediate,\n inplace=True)\n Specification.relabel_variables(self, intermediate_to_new,\n inplace=True)\n return self\n nx.relabel_nodes(self.graph, mapping, copy=False)\n self.decision_variables = tuple(mapping.get(v, v) for v in self.\n decision_variables)\n for v in old_labels:\n if v in mapping:\n ising_linear_ranges[mapping[v]] = ising_linear_ranges[v]\n del ising_linear_ranges[v]\n for neighbors in itervalues(ising_quadratic_ranges):\n for v in list(neighbors):\n if v in mapping:\n neighbors[mapping[v]] = neighbors[v]\n del neighbors[v]\n for v in old_labels:\n if v in mapping:\n ising_quadratic_ranges[mapping[v]] = ising_quadratic_ranges[v]\n del ising_quadratic_ranges[v]\n return self\n",
"role": "user"
},
{
"content": "relabel_variables",
"role": "assistant"
}
] |
def x(dictionary, tuple_key, default_value):
u, v = tuple_key
tuple1 = dictionary.get((u, v), None)
tuple2 = dictionary.get((v, u), None)
return tuple1 or tuple2 or default_value
|
get_item
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(dictionary, tuple_key, default_value):\n u, v = tuple_key\n tuple1 = dictionary.get((u, v), None)\n tuple2 = dictionary.get((v, u), None)\n return tuple1 or tuple2 or default_value\n",
"role": "user"
},
{
"content": "get_item",
"role": "assistant"
}
] |
def x(spin_states, nodes, edges, offset_weight, gap_weight):
if len(spin_states) == 0:
return None
n_states = len(spin_states)
m_linear = len(nodes)
m_quadratic = len(edges)
matrix = np.empty((n_states, m_linear + m_quadratic + 2))
if spin_states.ndim == 1:
spin_states = np.expand_dims(spin_states, 1)
matrix[:, :m_linear] = spin_states
node_indices = dict(zip(nodes, range(m_linear)))
for j, (u, v) in enumerate(edges):
u_ind = node_indices[u]
v_ind = node_indices[v]
matrix[:, j + m_linear] = np.multiply(matrix[:, u_ind], matrix[:,
v_ind])
matrix[:, -2] = offset_weight
matrix[:, -1] = gap_weight
return matrix
|
get_lp_matrix
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spin_states, nodes, edges, offset_weight, gap_weight):\n if len(spin_states) == 0:\n return None\n n_states = len(spin_states)\n m_linear = len(nodes)\n m_quadratic = len(edges)\n matrix = np.empty((n_states, m_linear + m_quadratic + 2))\n if spin_states.ndim == 1:\n spin_states = np.expand_dims(spin_states, 1)\n matrix[:, :m_linear] = spin_states\n node_indices = dict(zip(nodes, range(m_linear)))\n for j, (u, v) in enumerate(edges):\n u_ind = node_indices[u]\n v_ind = node_indices[v]\n matrix[:, j + m_linear] = np.multiply(matrix[:, u_ind], matrix[:,\n v_ind])\n matrix[:, -2] = offset_weight\n matrix[:, -1] = gap_weight\n return matrix\n",
"role": "user"
},
{
"content": "get_lp_matrix",
"role": "assistant"
}
] |
def x(graph, table, decision_variables, linear_energy_ranges=None,
quadratic_energy_ranges=None, min_classical_gap=2):
if len(graph) != len(decision_variables):
raise ValueError(
'Penaltymodel-lp does not handle problems with auxiliary variables'
)
if not linear_energy_ranges:
linear_energy_ranges = {}
if not quadratic_energy_ranges:
quadratic_energy_ranges = {}
nodes = decision_variables
edges = graph.edges
m_linear = len(nodes)
m_quadratic = len(edges)
n_noted = len(table)
n_unnoted = 2 ** m_linear - n_noted
noted_states = table.keys() if isinstance(table, dict) else table
noted_states = list(noted_states)
noted_matrix = _get_lp_matrix(np.asarray(noted_states), nodes, edges, 1, 0)
spin_states = product([-1, 1], repeat=m_linear) if m_linear > 1 else [-1, 1
]
unnoted_states = [state for state in spin_states if state not in
noted_states]
unnoted_matrix = _get_lp_matrix(np.asarray(unnoted_states), nodes,
edges, 1, -1)
if unnoted_matrix is not None:
unnoted_matrix *= -1
if isinstance(table, dict):
noted_bound = np.asarray([table[state] for state in noted_states])
unnoted_bound = np.full((n_unnoted, 1), -1 * max(table.values()))
else:
noted_bound = np.zeros((n_noted, 1))
unnoted_bound = np.zeros((n_unnoted, 1))
linear_range = MIN_LINEAR_BIAS, MAX_LINEAR_BIAS
quadratic_range = MIN_QUADRATIC_BIAS, MAX_QUADRATIC_BIAS
bounds = [linear_energy_ranges.get(node, linear_range) for node in nodes]
bounds += [get_item(quadratic_energy_ranges, edge, quadratic_range) for
edge in edges]
max_gap = 2 * sum(max(abs(lbound), abs(ubound)) for lbound, ubound in
bounds)
bounds.append((None, None))
bounds.append((min_classical_gap, max_gap))
cost_weights = np.zeros((1, m_linear + m_quadratic + 2))
cost_weights[0, -1] = -1
result = linprog(cost_weights.flatten(), A_eq=noted_matrix, b_eq=
noted_bound, A_ub=unnoted_matrix, b_ub=unnoted_bound, bounds=bounds)
if not result.success:
raise ValueError('Penaltymodel-lp is unable to find a solution.')
x = result.x
h = x[:m_linear]
j = x[m_linear:-2]
offset = x[-2]
gap = x[-1]
if gap <= 0:
raise ValueError('Penaltymodel-lp is unable to find a solution.')
bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)
bqm.add_variables_from((v, bias) for v, bias in zip(nodes, h))
bqm.add_interactions_from((u, v, bias) for (u, v), bias in zip(edges, j))
bqm.add_offset(offset)
return bqm, gap
|
generate_bqm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, table, decision_variables, linear_energy_ranges=None,\n quadratic_energy_ranges=None, min_classical_gap=2):\n if len(graph) != len(decision_variables):\n raise ValueError(\n 'Penaltymodel-lp does not handle problems with auxiliary variables'\n )\n if not linear_energy_ranges:\n linear_energy_ranges = {}\n if not quadratic_energy_ranges:\n quadratic_energy_ranges = {}\n nodes = decision_variables\n edges = graph.edges\n m_linear = len(nodes)\n m_quadratic = len(edges)\n n_noted = len(table)\n n_unnoted = 2 ** m_linear - n_noted\n noted_states = table.keys() if isinstance(table, dict) else table\n noted_states = list(noted_states)\n noted_matrix = _get_lp_matrix(np.asarray(noted_states), nodes, edges, 1, 0)\n spin_states = product([-1, 1], repeat=m_linear) if m_linear > 1 else [-1, 1\n ]\n unnoted_states = [state for state in spin_states if state not in\n noted_states]\n unnoted_matrix = _get_lp_matrix(np.asarray(unnoted_states), nodes,\n edges, 1, -1)\n if unnoted_matrix is not None:\n unnoted_matrix *= -1\n if isinstance(table, dict):\n noted_bound = np.asarray([table[state] for state in noted_states])\n unnoted_bound = np.full((n_unnoted, 1), -1 * max(table.values()))\n else:\n noted_bound = np.zeros((n_noted, 1))\n unnoted_bound = np.zeros((n_unnoted, 1))\n linear_range = MIN_LINEAR_BIAS, MAX_LINEAR_BIAS\n quadratic_range = MIN_QUADRATIC_BIAS, MAX_QUADRATIC_BIAS\n bounds = [linear_energy_ranges.get(node, linear_range) for node in nodes]\n bounds += [get_item(quadratic_energy_ranges, edge, quadratic_range) for\n edge in edges]\n max_gap = 2 * sum(max(abs(lbound), abs(ubound)) for lbound, ubound in\n bounds)\n bounds.append((None, None))\n bounds.append((min_classical_gap, max_gap))\n cost_weights = np.zeros((1, m_linear + m_quadratic + 2))\n cost_weights[0, -1] = -1\n result = linprog(cost_weights.flatten(), A_eq=noted_matrix, b_eq=\n noted_bound, A_ub=unnoted_matrix, b_ub=unnoted_bound, bounds=bounds)\n if not result.success:\n raise ValueError('Penaltymodel-lp is unable to find a solution.')\n x = result.x\n h = x[:m_linear]\n j = x[m_linear:-2]\n offset = x[-2]\n gap = x[-1]\n if gap <= 0:\n raise ValueError('Penaltymodel-lp is unable to find a solution.')\n bqm = dimod.BinaryQuadraticModel.empty(dimod.SPIN)\n bqm.add_variables_from((v, bias) for v, bias in zip(nodes, h))\n bqm.add_interactions_from((u, v, bias) for (u, v), bias in zip(edges, j))\n bqm.add_offset(offset)\n return bqm, gap\n",
"role": "user"
},
{
"content": "generate_bqm",
"role": "assistant"
}
] |
def x(graph, feasible_configurations, decision_variables,
linear_energy_ranges, quadratic_energy_ranges, min_classical_gap,
smt_solver_name=None):
if len(graph) == 0:
return dimod.BinaryQuadraticModel.empty(dimod.SPIN), float('inf')
table = Table(graph, decision_variables, linear_energy_ranges,
quadratic_energy_ranges)
for config in itertools.product((-1, 1), repeat=len(decision_variables)):
spins = dict(zip(decision_variables, config))
if config in feasible_configurations:
table.set_energy(spins, feasible_configurations[config])
else:
if isinstance(feasible_configurations, dict
) and feasible_configurations:
highest_feasible_energy = max(feasible_configurations.values())
else:
highest_feasible_energy = 0
table.set_energy_upperbound(spins, highest_feasible_energy)
with Solver(smt_solver_name) as solver:
for assertion in table.assertions:
solver.add_assertion(assertion)
gap_assertion = table.gap_bound_assertion(min_classical_gap)
solver.add_assertion(gap_assertion)
if solver.solve():
model = solver.get_model()
gmin = min_classical_gap
gmax = sum(max(abs(r) for r in linear_energy_ranges[v]) for v in
graph)
gmax += sum(max(abs(r) for r in quadratic_energy_ranges[u, v]) for
u, v in graph.edges)
gmax *= 2
g = max(2.0, gmin)
while abs(gmax - gmin) >= MAX_GAP_DELTA:
solver.push()
gap_assertion = table.gap_bound_assertion(g)
solver.add_assertion(gap_assertion)
if solver.solve():
model = solver.get_model()
gmin = float(model.get_py_value(table.gap))
else:
solver.pop()
gmax = g
g = min(gmin + 0.1, (gmax + gmin) / 2)
else:
raise ImpossiblePenaltyModel('Model cannot be built')
classical_gap = float(model.get_py_value(table.gap))
if len(decision_variables) == len(graph) and decision_variables and len(
feasible_configurations) == 2 ** len(decision_variables):
classical_gap = float('inf')
return table.theta.to_bqm(model), classical_gap
|
generate
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(graph, feasible_configurations, decision_variables,\n linear_energy_ranges, quadratic_energy_ranges, min_classical_gap,\n smt_solver_name=None):\n if len(graph) == 0:\n return dimod.BinaryQuadraticModel.empty(dimod.SPIN), float('inf')\n table = Table(graph, decision_variables, linear_energy_ranges,\n quadratic_energy_ranges)\n for config in itertools.product((-1, 1), repeat=len(decision_variables)):\n spins = dict(zip(decision_variables, config))\n if config in feasible_configurations:\n table.set_energy(spins, feasible_configurations[config])\n else:\n if isinstance(feasible_configurations, dict\n ) and feasible_configurations:\n highest_feasible_energy = max(feasible_configurations.values())\n else:\n highest_feasible_energy = 0\n table.set_energy_upperbound(spins, highest_feasible_energy)\n with Solver(smt_solver_name) as solver:\n for assertion in table.assertions:\n solver.add_assertion(assertion)\n gap_assertion = table.gap_bound_assertion(min_classical_gap)\n solver.add_assertion(gap_assertion)\n if solver.solve():\n model = solver.get_model()\n gmin = min_classical_gap\n gmax = sum(max(abs(r) for r in linear_energy_ranges[v]) for v in\n graph)\n gmax += sum(max(abs(r) for r in quadratic_energy_ranges[u, v]) for\n u, v in graph.edges)\n gmax *= 2\n g = max(2.0, gmin)\n while abs(gmax - gmin) >= MAX_GAP_DELTA:\n solver.push()\n gap_assertion = table.gap_bound_assertion(g)\n solver.add_assertion(gap_assertion)\n if solver.solve():\n model = solver.get_model()\n gmin = float(model.get_py_value(table.gap))\n else:\n solver.pop()\n gmax = g\n g = min(gmin + 0.1, (gmax + gmin) / 2)\n else:\n raise ImpossiblePenaltyModel('Model cannot be built')\n classical_gap = float(model.get_py_value(table.gap))\n if len(decision_variables) == len(graph) and decision_variables and len(\n feasible_configurations) == 2 ** len(decision_variables):\n classical_gap = float('inf')\n return table.theta.to_bqm(model), classical_gap\n",
"role": "user"
},
{
"content": "generate",
"role": "assistant"
}
] |
def x(x, max_denominator=1000000):
f = Fraction(x).limit_denominator(max_denominator)
return Real((f.numerator, f.denominator))
|
limitReal
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, max_denominator=1000000):\n f = Fraction(x).limit_denominator(max_denominator)\n return Real((f.numerator, f.denominator))\n",
"role": "user"
},
{
"content": "limitReal",
"role": "assistant"
}
] |
def x(cls, graph, linear_energy_ranges, quadratic_energy_ranges):
get_env().enable_infix_notation = True
theta = cls.empty(dimod.SPIN)
theta.add_offset(Symbol('offset', REAL))
def x(v):
bias = Symbol('h_{}'.format(v), REAL)
min_, max_ = linear_energy_ranges[v]
theta.assertions.add(LE(bias, limitReal(max_)))
theta.assertions.add(GE(bias, limitReal(min_)))
return bias
def x(u, v):
bias = Symbol('J_{},{}'.format(u, v), REAL)
if (v, u) in quadratic_energy_ranges:
min_, max_ = quadratic_energy_ranges[v, u]
else:
min_, max_ = quadratic_energy_ranges[u, v]
theta.assertions.add(LE(bias, limitReal(max_)))
theta.assertions.add(GE(bias, limitReal(min_)))
return bias
for v in graph.nodes:
theta.add_variable(v, Linear(v))
for u, v in graph.edges:
theta.add_interaction(u, v, Quadratic(u, v))
return theta
|
from_graph
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, graph, linear_energy_ranges, quadratic_energy_ranges):\n get_env().enable_infix_notation = True\n theta = cls.empty(dimod.SPIN)\n theta.add_offset(Symbol('offset', REAL))\n\n def x(v):\n bias = Symbol('h_{}'.format(v), REAL)\n min_, max_ = linear_energy_ranges[v]\n theta.assertions.add(LE(bias, limitReal(max_)))\n theta.assertions.add(GE(bias, limitReal(min_)))\n return bias\n\n def x(u, v):\n bias = Symbol('J_{},{}'.format(u, v), REAL)\n if (v, u) in quadratic_energy_ranges:\n min_, max_ = quadratic_energy_ranges[v, u]\n else:\n min_, max_ = quadratic_energy_ranges[u, v]\n theta.assertions.add(LE(bias, limitReal(max_)))\n theta.assertions.add(GE(bias, limitReal(min_)))\n return bias\n for v in graph.nodes:\n theta.add_variable(v, Linear(v))\n for u, v in graph.edges:\n theta.add_interaction(u, v, Quadratic(u, v))\n return theta\n",
"role": "user"
},
{
"content": "from_graph",
"role": "assistant"
}
] |
def x(self, model):
linear = ((v, float(model.get_py_value(bias))) for v, bias in self.
linear.items())
quadratic = ((u, v, float(model.get_py_value(bias))) for (u, v), bias in
self.quadratic.items())
offset = float(model.get_py_value(self.offset))
return dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.SPIN)
|
to_bqm
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, model):\n linear = ((v, float(model.get_py_value(bias))) for v, bias in self.\n linear.items())\n quadratic = ((u, v, float(model.get_py_value(bias))) for (u, v), bias in\n self.quadratic.items())\n offset = float(model.get_py_value(self.offset))\n return dimod.BinaryQuadraticModel(linear, quadratic, offset, dimod.SPIN)\n",
"role": "user"
},
{
"content": "to_bqm",
"role": "assistant"
}
] |
def x(spin, bias):
if not isinstance(spin, int):
raise TypeError('spin must be an int')
if spin == -1:
return Times(Real((-1, 1)), bias)
elif spin == 1:
return bias
else:
raise ValueError('expected spins to be -1., or 1.')
|
SpinTimes
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(spin, bias):\n if not isinstance(spin, int):\n raise TypeError('spin must be an int')\n if spin == -1:\n return Times(Real((-1, 1)), bias)\n elif spin == 1:\n return bias\n else:\n raise ValueError('expected spins to be -1., or 1.')\n",
"role": "user"
},
{
"content": "SpinTimes",
"role": "assistant"
}
] |
def x(theta, decision_variables):
auxiliary_variables = set(n for n in theta.linear if n not in
decision_variables)
adj = {v: {u for u in theta.adj[v] if u in auxiliary_variables} for v in
theta.adj if v in auxiliary_variables}
tw, order = dnx.treewidth_branch_and_bound(adj)
ancestors = {}
for n in order:
ancestors[n] = set(adj[n])
neighbors = adj[n]
for u, v in itertools.combinations(neighbors, 2):
adj[u].add(v)
adj[v].add(u)
for v in neighbors:
adj[v].discard(n)
del adj[n]
roots = {}
nodes = {v: {} for v in ancestors}
for vidx in range(len(order) - 1, -1, -1):
v = order[vidx]
if ancestors[v]:
for u in order[vidx + 1:]:
if u in ancestors[v]:
nodes[u][v] = nodes[v]
break
else:
roots[v] = nodes[v]
return roots, ancestors
|
elimination_trees
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(theta, decision_variables):\n auxiliary_variables = set(n for n in theta.linear if n not in\n decision_variables)\n adj = {v: {u for u in theta.adj[v] if u in auxiliary_variables} for v in\n theta.adj if v in auxiliary_variables}\n tw, order = dnx.treewidth_branch_and_bound(adj)\n ancestors = {}\n for n in order:\n ancestors[n] = set(adj[n])\n neighbors = adj[n]\n for u, v in itertools.combinations(neighbors, 2):\n adj[u].add(v)\n adj[v].add(u)\n for v in neighbors:\n adj[v].discard(n)\n del adj[n]\n roots = {}\n nodes = {v: {} for v in ancestors}\n for vidx in range(len(order) - 1, -1, -1):\n v = order[vidx]\n if ancestors[v]:\n for u in order[vidx + 1:]:\n if u in ancestors[v]:\n nodes[u][v] = nodes[v]\n break\n else:\n roots[v] = nodes[v]\n return roots, ancestors\n",
"role": "user"
},
{
"content": "elimination_trees",
"role": "assistant"
}
] |
def x(self, spins):
subtheta = self.theta.copy()
subtheta.fix_variables(spins)
trees = self._trees
if not trees:
assert not subtheta.linear and not subtheta.quadratic
return subtheta.offset
energy = Plus(self.message_upperbound(trees, {}, subtheta), subtheta.offset
)
return energy
|
energy_upperbound
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spins):\n subtheta = self.theta.copy()\n subtheta.fix_variables(spins)\n trees = self._trees\n if not trees:\n assert not subtheta.linear and not subtheta.quadratic\n return subtheta.offset\n energy = Plus(self.message_upperbound(trees, {}, subtheta), subtheta.offset\n )\n return energy\n",
"role": "user"
},
{
"content": "energy_upperbound",
"role": "assistant"
}
] |
def x(self, spins, break_aux_symmetry=True):
subtheta = self.theta.copy()
subtheta.fix_variables(spins)
av = next(self._auxvar_counter)
auxvars = {v: Symbol('aux{}_{}'.format(av, v), BOOL) for v in subtheta.
linear}
if break_aux_symmetry and av == 0:
self.assertions.update(set(auxvars.values()))
trees = self._trees
if not trees:
assert not subtheta.linear and not subtheta.quadratic
return subtheta.offset
energy = Plus(self.message(trees, {}, subtheta, auxvars), subtheta.offset)
return energy
|
energy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spins, break_aux_symmetry=True):\n subtheta = self.theta.copy()\n subtheta.fix_variables(spins)\n av = next(self._auxvar_counter)\n auxvars = {v: Symbol('aux{}_{}'.format(av, v), BOOL) for v in subtheta.\n linear}\n if break_aux_symmetry and av == 0:\n self.assertions.update(set(auxvars.values()))\n trees = self._trees\n if not trees:\n assert not subtheta.linear and not subtheta.quadratic\n return subtheta.offset\n energy = Plus(self.message(trees, {}, subtheta, auxvars), subtheta.offset)\n return energy\n",
"role": "user"
},
{
"content": "energy",
"role": "assistant"
}
] |
def x(self, tree, spins, subtheta, auxvars):
energy_sources = set()
for v, children in tree.items():
aux = auxvars[v]
assert all(u in spins for u in self._ancestors[v])
def x():
yield subtheta.linear[v]
for u, bias in subtheta.adj[v].items():
if u in spins:
yield SpinTimes(spins[u], bias)
plus_energy = Plus(energy_contributions())
minus_energy = SpinTimes(-1, plus_energy)
if children:
spins[v] = 1
plus_energy = Plus(plus_energy, self.message(children, spins,
subtheta, auxvars))
spins[v] = -1
minus_energy = Plus(minus_energy, self.message(children, spins,
subtheta, auxvars))
del spins[v]
m = FreshSymbol(REAL)
ancestor_aux = {(auxvars[u] if spins[u] > 0 else Not(auxvars[u])) for
u in self._ancestors[v]}
plus_aux = And({aux}.union(ancestor_aux))
minus_aux = And({Not(aux)}.union(ancestor_aux))
self.assertions.update({LE(m, plus_energy), LE(m, minus_energy),
Implies(plus_aux, GE(m, plus_energy)), Implies(minus_aux, GE(m,
minus_energy))})
energy_sources.add(m)
return Plus(energy_sources)
|
message
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tree, spins, subtheta, auxvars):\n energy_sources = set()\n for v, children in tree.items():\n aux = auxvars[v]\n assert all(u in spins for u in self._ancestors[v])\n\n def x():\n yield subtheta.linear[v]\n for u, bias in subtheta.adj[v].items():\n if u in spins:\n yield SpinTimes(spins[u], bias)\n plus_energy = Plus(energy_contributions())\n minus_energy = SpinTimes(-1, plus_energy)\n if children:\n spins[v] = 1\n plus_energy = Plus(plus_energy, self.message(children, spins,\n subtheta, auxvars))\n spins[v] = -1\n minus_energy = Plus(minus_energy, self.message(children, spins,\n subtheta, auxvars))\n del spins[v]\n m = FreshSymbol(REAL)\n ancestor_aux = {(auxvars[u] if spins[u] > 0 else Not(auxvars[u])) for\n u in self._ancestors[v]}\n plus_aux = And({aux}.union(ancestor_aux))\n minus_aux = And({Not(aux)}.union(ancestor_aux))\n self.assertions.update({LE(m, plus_energy), LE(m, minus_energy),\n Implies(plus_aux, GE(m, plus_energy)), Implies(minus_aux, GE(m,\n minus_energy))})\n energy_sources.add(m)\n return Plus(energy_sources)\n",
"role": "user"
},
{
"content": "message",
"role": "assistant"
}
] |
def x(self, tree, spins, subtheta):
energy_sources = set()
for v, subtree in tree.items():
assert all(u in spins for u in self._ancestors[v])
def x():
yield subtheta.linear[v]
for u, bias in subtheta.adj[v].items():
if u in spins:
yield Times(limitReal(spins[u]), bias)
energy = Plus(energy_contributions())
if subtree:
spins[v] = 1.0
plus = self.message_upperbound(subtree, spins, subtheta)
spins[v] = -1.0
minus = self.message_upperbound(subtree, spins, subtheta)
del spins[v]
else:
plus = minus = limitReal(0.0)
m = FreshSymbol(REAL)
self.assertions.update({LE(m, Plus(energy, plus)), LE(m, Plus(Times
(energy, limitReal(-1.0)), minus))})
energy_sources.add(m)
return Plus(energy_sources)
|
message_upperbound
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, tree, spins, subtheta):\n energy_sources = set()\n for v, subtree in tree.items():\n assert all(u in spins for u in self._ancestors[v])\n\n def x():\n yield subtheta.linear[v]\n for u, bias in subtheta.adj[v].items():\n if u in spins:\n yield Times(limitReal(spins[u]), bias)\n energy = Plus(energy_contributions())\n if subtree:\n spins[v] = 1.0\n plus = self.message_upperbound(subtree, spins, subtheta)\n spins[v] = -1.0\n minus = self.message_upperbound(subtree, spins, subtheta)\n del spins[v]\n else:\n plus = minus = limitReal(0.0)\n m = FreshSymbol(REAL)\n self.assertions.update({LE(m, Plus(energy, plus)), LE(m, Plus(Times\n (energy, limitReal(-1.0)), minus))})\n energy_sources.add(m)\n return Plus(energy_sources)\n",
"role": "user"
},
{
"content": "message_upperbound",
"role": "assistant"
}
] |
def x(self, spins, target_energy):
spin_energy = self.energy(spins)
self.assertions.add(Equals(spin_energy, limitReal(target_energy)))
|
set_energy
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spins, target_energy):\n spin_energy = self.energy(spins)\n self.assertions.add(Equals(spin_energy, limitReal(target_energy)))\n",
"role": "user"
},
{
"content": "set_energy",
"role": "assistant"
}
] |
def x(self, spins, offset=0):
spin_energy = self.energy_upperbound(spins)
self.assertions.add(GE(spin_energy, self.gap + offset))
|
set_energy_upperbound
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, spins, offset=0):\n spin_energy = self.energy_upperbound(spins)\n self.assertions.add(GE(spin_energy, self.gap + offset))\n",
"role": "user"
},
{
"content": "set_energy_upperbound",
"role": "assistant"
}
] |
def x(self):
next_poll = time.time()
while True:
next_poll += self._poll_period
timeout = next_poll - time.time()
if timeout < 0:
timeout = 0
try:
return self._stop_queue.get(timeout=timeout)
except TimeoutError:
pass
try:
self.handle_changes(self.client.get_changes())
except Exception:
self.log.exception('Error while getting changes')
|
poll_loop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n next_poll = time.time()\n while True:\n next_poll += self._poll_period\n timeout = next_poll - time.time()\n if timeout < 0:\n timeout = 0\n try:\n return self._stop_queue.get(timeout=timeout)\n except TimeoutError:\n pass\n try:\n self.handle_changes(self.client.get_changes())\n except Exception:\n self.log.exception('Error while getting changes')\n",
"role": "user"
},
{
"content": "poll_loop",
"role": "assistant"
}
] |
def x(name):
split = re.findall('[A-Z]?[a-z0-9]+|[A-Z]+(?=[A-Z]|$)', name)
ret = ' '.join(split)
ret = ret[0].upper() + ret[1:]
return ret
|
camel_to_title
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n split = re.findall('[A-Z]?[a-z0-9]+|[A-Z]+(?=[A-Z]|$)', name)\n ret = ' '.join(split)\n ret = ret[0].upper() + ret[1:]\n return ret\n",
"role": "user"
},
{
"content": "camel_to_title",
"role": "assistant"
}
] |
def x(name):
ret = ''.join(x.title() for x in name.split('_'))
ret = ret[0].lower() + ret[1:]
return ret
|
snake_to_camel
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n ret = ''.join(x.title() for x in name.split('_'))\n ret = ret[0].lower() + ret[1:]\n return ret\n",
"role": "user"
},
{
"content": "snake_to_camel",
"role": "assistant"
}
] |
def x(self):
d = OrderedDict()
if self.typeid:
d['typeid'] = self.typeid
for k in self.call_types:
d[k] = serialize_object(getattr(self, k))
return d
|
to_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n d = OrderedDict()\n if self.typeid:\n d['typeid'] = self.typeid\n for k in self.call_types:\n d[k] = serialize_object(getattr(self, k))\n return d\n",
"role": "user"
},
{
"content": "to_dict",
"role": "assistant"
}
] |
def x(cls, d, ignore=()):
filtered = {}
for k, v in d.items():
if k == 'typeid':
assert v == cls.typeid, 'Dict has typeid %s but %s has typeid %s' % (
v, cls, cls.typeid)
elif k not in ignore:
filtered[k] = v
try:
inst = cls(**filtered)
except TypeError as e:
raise TypeError('%s raised error: %s' % (cls.typeid, str(e)))
return inst
|
from_dict
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, d, ignore=()):\n filtered = {}\n for k, v in d.items():\n if k == 'typeid':\n assert v == cls.typeid, 'Dict has typeid %s but %s has typeid %s' % (\n v, cls, cls.typeid)\n elif k not in ignore:\n filtered[k] = v\n try:\n inst = cls(**filtered)\n except TypeError as e:\n raise TypeError('%s raised error: %s' % (cls.typeid, str(e)))\n return inst\n",
"role": "user"
},
{
"content": "from_dict",
"role": "assistant"
}
] |
def x(cls, typeid):
def x(subclass):
cls._subcls_lookup[typeid] = subclass
subclass.typeid = typeid
return subclass
return decorator
|
register_subclass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, typeid):\n\n def x(subclass):\n cls._subcls_lookup[typeid] = subclass\n subclass.typeid = typeid\n return subclass\n return decorator\n",
"role": "user"
},
{
"content": "register_subclass",
"role": "assistant"
}
] |
def x(cls, d):
try:
typeid = d['typeid']
except KeyError:
raise FieldError('typeid not present in keys %s' % list(d))
subclass = cls._subcls_lookup.get(typeid, None)
if not subclass:
raise FieldError("'%s' not a valid typeid" % typeid)
else:
return subclass
|
lookup_subclass
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, d):\n try:\n typeid = d['typeid']\n except KeyError:\n raise FieldError('typeid not present in keys %s' % list(d))\n subclass = cls._subcls_lookup.get(typeid, None)\n if not subclass:\n raise FieldError(\"'%s' not a valid typeid\" % typeid)\n else:\n return subclass\n",
"role": "user"
},
{
"content": "lookup_subclass",
"role": "assistant"
}
] |
def x(self, timeout=None):
assert self.state == STOPPED, 'Process already started'
self.state = STARTING
should_publish = self._start_controllers(self._controllers.values(),
timeout)
if should_publish:
self._publish_controllers(timeout)
self.state = STARTED
|
start
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout=None):\n assert self.state == STOPPED, 'Process already started'\n self.state = STARTING\n should_publish = self._start_controllers(self._controllers.values(),\n timeout)\n if should_publish:\n self._publish_controllers(timeout)\n self.state = STARTED\n",
"role": "user"
},
{
"content": "start",
"role": "assistant"
}
] |
def x(self, timeout=None):
assert self.state == STARTED, 'Process not started'
self.state = STOPPING
self._run_hook(ProcessStopHook, timeout=timeout)
for s in self._spawned:
if not s.ready():
self.log.debug('Waiting for %s *%s **%s', s._function, s._args,
s._kwargs)
s.wait(timeout=timeout)
self._spawned = []
self._controllers = OrderedDict()
self._unpublished = set()
self.state = STOPPED
self.log.debug('Done process.stop()')
|
stop
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, timeout=None):\n assert self.state == STARTED, 'Process not started'\n self.state = STOPPING\n self._run_hook(ProcessStopHook, timeout=timeout)\n for s in self._spawned:\n if not s.ready():\n self.log.debug('Waiting for %s *%s **%s', s._function, s._args,\n s._kwargs)\n s.wait(timeout=timeout)\n self._spawned = []\n self._controllers = OrderedDict()\n self._unpublished = set()\n self.state = STOPPED\n self.log.debug('Done process.stop()')\n",
"role": "user"
},
{
"content": "stop",
"role": "assistant"
}
] |
def x(self, function, *args, **kwargs):
assert self.state != STOPPED, "Can't spawn when process stopped"
spawned = Spawned(function, args, kwargs)
self._spawned.append(spawned)
self._spawn_count += 1
if self._spawn_count > SPAWN_CLEAR_COUNT:
self._clear_spawn_list()
return spawned
|
spawn
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, function, *args, **kwargs):\n assert self.state != STOPPED, \"Can't spawn when process stopped\"\n spawned = Spawned(function, args, kwargs)\n self._spawned.append(spawned)\n self._spawn_count += 1\n if self._spawn_count > SPAWN_CLEAR_COUNT:\n self._clear_spawn_list()\n return spawned\n",
"role": "user"
},
{
"content": "spawn",
"role": "assistant"
}
] |
def x(self, controller, timeout=None):
assert controller.mri not in self._controllers, 'Controller already exists for %s' % controller.mri
self._controllers[controller.mri] = controller
controller.setup(self)
if self.state:
should_publish = self._start_controllers([controller], timeout)
if self.state == STARTED and should_publish:
self._publish_controllers(timeout)
|
add_controller
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, controller, timeout=None):\n assert controller.mri not in self._controllers, 'Controller already exists for %s' % controller.mri\n self._controllers[controller.mri] = controller\n controller.setup(self)\n if self.state:\n should_publish = self._start_controllers([controller], timeout)\n if self.state == STARTED and should_publish:\n self._publish_controllers(timeout)\n",
"role": "user"
},
{
"content": "add_controller",
"role": "assistant"
}
] |
def x(self, mri):
controller = self.get_controller(mri)
block = controller.block_view()
return block
|
block_view
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, mri):\n controller = self.get_controller(mri)\n block = controller.block_view()\n return block\n",
"role": "user"
},
{
"content": "block_view",
"role": "assistant"
}
] |
def x(self, _, info):
with self._lock:
self._block.meta.set_label(info.title)
|
update_title
|
[
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, _, info):\n with self._lock:\n self._block.meta.set_label(info.title)\n",
"role": "user"
},
{
"content": "update_title",
"role": "assistant"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.