source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, value): if self.exclusive: if value <= self.minimum_value: tpl = "'{value}' is lower or equal than minimum ('{min}')." raise ValidationError(tpl.format(value=value, min=self. minimum_value)) elif value < self.minimum_value: raise ValidationError("'{value}' is lower than minimum ('{min}').". format(value=value, min=self.minimum_value))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if self.exclusive:\n if value <= self.minimum_value:\n tpl = \"'{value}' is lower or equal than minimum ('{min}').\"\n raise ValidationError(tpl.format(value=value, min=self.\n minimum_value))\n elif value < self.minimum_value:\n raise ValidationError(\"'{value}' is lower than minimum ('{min}').\".\n format(value=value, min=self.minimum_value))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, field_schema): field_schema['minimum'] = self.minimum_value if self.exclusive: field_schema['exclusiveMinimum'] = True
modify_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field_schema):\n field_schema['minimum'] = self.minimum_value\n if self.exclusive:\n field_schema['exclusiveMinimum'] = True\n", "role": "user" }, { "content": "modify_schema", "role": "assistant" } ]
def x(self, value): if self.exclusive: if value >= self.maximum_value: tpl = "'{val}' is bigger or equal than maximum ('{max}')." raise ValidationError(tpl.format(val=value, max=self.maximum_value) ) elif value > self.maximum_value: raise ValidationError("'{value}' is bigger than maximum ('{max}')." .format(value=value, max=self.maximum_value))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if self.exclusive:\n if value >= self.maximum_value:\n tpl = \"'{val}' is bigger or equal than maximum ('{max}').\"\n raise ValidationError(tpl.format(val=value, max=self.maximum_value)\n )\n elif value > self.maximum_value:\n raise ValidationError(\"'{value}' is bigger than maximum ('{max}').\"\n .format(value=value, max=self.maximum_value))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, field_schema): field_schema['maximum'] = self.maximum_value if self.exclusive: field_schema['exclusiveMaximum'] = True
modify_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field_schema):\n field_schema['maximum'] = self.maximum_value\n if self.exclusive:\n field_schema['exclusiveMaximum'] = True\n", "role": "user" }, { "content": "modify_schema", "role": "assistant" } ]
def x(self, value): flags = self._calculate_flags() try: result = re.search(self.pattern, value, flags) except TypeError as te: raise ValidationError(*te.args) if not result: raise ValidationError( 'Value "{value}" did not match pattern "{pattern}".'.format( value=value, pattern=self.pattern))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n flags = self._calculate_flags()\n try:\n result = re.search(self.pattern, value, flags)\n except TypeError as te:\n raise ValidationError(*te.args)\n if not result:\n raise ValidationError(\n 'Value \"{value}\" did not match pattern \"{pattern}\".'.format(\n value=value, pattern=self.pattern))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, field_schema): field_schema['pattern'] = utilities.convert_python_regex_to_ecma(self. pattern, self.flags)
modify_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field_schema):\n field_schema['pattern'] = utilities.convert_python_regex_to_ecma(self.\n pattern, self.flags)\n", "role": "user" }, { "content": "modify_schema", "role": "assistant" } ]
def x(self, value): len_ = len(value) if self.minimum_value is not None and len_ < self.minimum_value: tpl = "Value '{val}' length is lower than allowed minimum '{min}'." raise ValidationError(tpl.format(val=value, min=self.minimum_value)) if self.maximum_value is not None and len_ > self.maximum_value: raise ValidationError( "Value '{val}' length is bigger than allowed maximum '{max}'.". format(val=value, max=self.maximum_value))
validate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n len_ = len(value)\n if self.minimum_value is not None and len_ < self.minimum_value:\n tpl = \"Value '{val}' length is lower than allowed minimum '{min}'.\"\n raise ValidationError(tpl.format(val=value, min=self.minimum_value))\n if self.maximum_value is not None and len_ > self.maximum_value:\n raise ValidationError(\n \"Value '{val}' length is bigger than allowed maximum '{max}'.\".\n format(val=value, max=self.maximum_value))\n", "role": "user" }, { "content": "validate", "role": "assistant" } ]
def x(self, field_schema): if self.minimum_value: field_schema['minLength'] = self.minimum_value if self.maximum_value: field_schema['maxLength'] = self.maximum_value
modify_schema
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, field_schema):\n if self.minimum_value:\n field_schema['minLength'] = self.minimum_value\n if self.maximum_value:\n field_schema['maxLength'] = self.maximum_value\n", "role": "user" }, { "content": "modify_schema", "role": "assistant" } ]
def x(model): model.validate() resp = {} for _, name, field in model.iterate_with_name(): value = field.__get__(model) if value is None: continue value = field.to_struct(value) resp[name] = value return resp
to_struct
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(model):\n model.validate()\n resp = {}\n for _, name, field in model.iterate_with_name():\n value = field.__get__(model)\n if value is None:\n continue\n value = field.to_struct(value)\n resp[name] = value\n return resp\n", "role": "user" }, { "content": "to_struct", "role": "assistant" } ]
def x(self, argv): parser = self.create_parser(argv[0], argv[1]) args = parser.parse_args(argv[2:]) handle_default_options(args) try: self.execute(args) except Exception as e: try: fallback_stderr = OutputWrapper(sys.stderr, self.style.ERROR) except: fallback_stderr = self.stdout stderr = getattr(self, 'stderr', fallback_stderr) if args.traceback: stderr.write(traceback.format_exc()) else: stderr.write('%s: %s' % (e.__class__.__name__, e)) sys.exit(1)
run_from_argv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, argv):\n parser = self.create_parser(argv[0], argv[1])\n args = parser.parse_args(argv[2:])\n handle_default_options(args)\n try:\n self.execute(args)\n except Exception as e:\n try:\n fallback_stderr = OutputWrapper(sys.stderr, self.style.ERROR)\n except:\n fallback_stderr = self.stdout\n stderr = getattr(self, 'stderr', fallback_stderr)\n if args.traceback:\n stderr.write(traceback.format_exc())\n else:\n stderr.write('%s: %s' % (e.__class__.__name__, e))\n sys.exit(1)\n", "role": "user" }, { "content": "run_from_argv", "role": "assistant" } ]
def x(self, prog_name, subcommand): parser = argparse.ArgumentParser(prog='%s %s' % (prog_name, subcommand), description=self.help) parser.add_argument('-v', '--verbosity', action='store', default=1, type=int, choices=range(4), help= 'Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output' ), parser.add_argument('--settings', help= 'The Python path to a settings module, e.g. "myproject.settings.main". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.' ), parser.add_argument('--pythonpath', help= 'A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".' ), parser.add_argument('--traceback', action='store_true', help= 'Print traceback on exception'), subparsers = parser.add_subparsers(description= 'JavaScript command to execute') for subparser in self.subparsers: subparser(self, subparsers) return parser
create_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, prog_name, subcommand):\n parser = argparse.ArgumentParser(prog='%s %s' % (prog_name, subcommand),\n description=self.help)\n parser.add_argument('-v', '--verbosity', action='store', default=1,\n type=int, choices=range(4), help=\n 'Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output'\n ),\n parser.add_argument('--settings', help=\n 'The Python path to a settings module, e.g. \"myproject.settings.main\". If this isn\\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.'\n ),\n parser.add_argument('--pythonpath', help=\n 'A directory to add to the Python path, e.g. \"/home/djangoprojects/myproject\".'\n ),\n parser.add_argument('--traceback', action='store_true', help=\n 'Print traceback on exception'),\n subparsers = parser.add_subparsers(description=\n 'JavaScript command to execute')\n for subparser in self.subparsers:\n subparser(self, subparsers)\n return parser\n", "role": "user" }, { "content": "create_parser", "role": "assistant" } ]
def x(filename): content = codecs.open(filename, encoding='utf-8').read() for regex, replacement in PYPI_RST_FILTERS: content = re.sub(regex, replacement, content) return content
rst
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename):\n content = codecs.open(filename, encoding='utf-8').read()\n for regex, replacement in PYPI_RST_FILTERS:\n content = re.sub(regex, replacement, content)\n return content\n", "role": "user" }, { "content": "rst", "role": "assistant" } ]
def x(filename, type='text/javascript'): if '?' in filename and len(filename.split('?')) is 2: filename, params = filename.split('?') return '<script type="%s" src="%s?%s"></script>' % (type, staticfiles_storage.url(filename), params) else: return '<script type="%s" src="%s"></script>' % (type, staticfiles_storage.url(filename))
javascript
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(filename, type='text/javascript'):\n if '?' in filename and len(filename.split('?')) is 2:\n filename, params = filename.split('?')\n return '<script type=\"%s\" src=\"%s?%s\"></script>' % (type,\n staticfiles_storage.url(filename), params)\n else:\n return '<script type=\"%s\" src=\"%s\"></script>' % (type,\n staticfiles_storage.url(filename))\n", "role": "user" }, { "content": "javascript", "role": "assistant" } ]
def x(version=None, migrate=False): version = version or settings.JQUERY_VERSION suffix = '.min' if not settings.DEBUG else '' libs = [js_lib('jquery-%s%s.js' % (version, suffix))] if _boolean(migrate): libs.append(js_lib('jquery-migrate-%s%s.js' % ( JQUERY_MIGRATE_VERSION, suffix))) return '\n'.join(libs)
jquery_js
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(version=None, migrate=False):\n version = version or settings.JQUERY_VERSION\n suffix = '.min' if not settings.DEBUG else ''\n libs = [js_lib('jquery-%s%s.js' % (version, suffix))]\n if _boolean(migrate):\n libs.append(js_lib('jquery-migrate-%s%s.js' % (\n JQUERY_MIGRATE_VERSION, suffix)))\n return '\\n'.join(libs)\n", "role": "user" }, { "content": "jquery_js", "role": "assistant" } ]
def x(context, jquery=True, i18n=True, csrf=True, init=True): return {'js': {'minified': not settings.DEBUG, 'jquery': _boolean( jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init': _boolean(init)}}
django_js
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, jquery=True, i18n=True, csrf=True, init=True):\n return {'js': {'minified': not settings.DEBUG, 'jquery': _boolean(\n jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init':\n _boolean(init)}}\n", "role": "user" }, { "content": "django_js", "role": "assistant" } ]
def x(context, jquery=False, i18n=True, csrf=True, init=True): return {'js': {'jquery': _boolean(jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init': _boolean(init)}}
django_js_init
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(context, jquery=False, i18n=True, csrf=True, init=True):\n return {'js': {'jquery': _boolean(jquery), 'i18n': _boolean(i18n),\n 'csrf': _boolean(csrf), 'init': _boolean(init)}}\n", "role": "user" }, { "content": "django_js_init", "role": "assistant" } ]
def x(self): data = {} if settings.JS_CONTEXT_ENABLED: for context in RequestContext(self.request): for key, value in six.iteritems(context): if settings.JS_CONTEXT and key not in settings.JS_CONTEXT: continue if (settings.JS_CONTEXT_EXCLUDE and key in settings. JS_CONTEXT_EXCLUDE): continue handler_name = 'process_%s' % key if hasattr(self, handler_name): handler = getattr(self, handler_name) data[key] = handler(value, data) elif isinstance(value, SERIALIZABLE_TYPES): data[key] = value if settings.JS_USER_ENABLED: self.handle_user(data) return data
as_dict
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n data = {}\n if settings.JS_CONTEXT_ENABLED:\n for context in RequestContext(self.request):\n for key, value in six.iteritems(context):\n if settings.JS_CONTEXT and key not in settings.JS_CONTEXT:\n continue\n if (settings.JS_CONTEXT_EXCLUDE and key in settings.\n JS_CONTEXT_EXCLUDE):\n continue\n handler_name = 'process_%s' % key\n if hasattr(self, handler_name):\n handler = getattr(self, handler_name)\n data[key] = handler(value, data)\n elif isinstance(value, SERIALIZABLE_TYPES):\n data[key] = value\n if settings.JS_USER_ENABLED:\n self.handle_user(data)\n return data\n", "role": "user" }, { "content": "as_dict", "role": "assistant" } ]
def x(self, language_code, data): language_code = 'en-us' if language_code == 'en' else language_code language = translation.get_language_info('en' if language_code == 'en-us' else language_code) if (not settings.JS_CONTEXT or 'LANGUAGE_NAME' in settings.JS_CONTEXT or settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME' in settings. JS_CONTEXT_EXCLUDE): data['LANGUAGE_NAME'] = language['name'] if (not settings.JS_CONTEXT or 'LANGUAGE_NAME_LOCAL' in settings. JS_CONTEXT or settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME_LOCAL' in settings.JS_CONTEXT_EXCLUDE): data['LANGUAGE_NAME_LOCAL'] = language['name_local'] return language_code
process_LANGUAGE_CODE
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, language_code, data):\n language_code = 'en-us' if language_code == 'en' else language_code\n language = translation.get_language_info('en' if language_code ==\n 'en-us' else language_code)\n if (not settings.JS_CONTEXT or 'LANGUAGE_NAME' in settings.JS_CONTEXT or\n settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME' in settings.\n JS_CONTEXT_EXCLUDE):\n data['LANGUAGE_NAME'] = language['name']\n if (not settings.JS_CONTEXT or 'LANGUAGE_NAME_LOCAL' in settings.\n JS_CONTEXT or settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME_LOCAL' in\n settings.JS_CONTEXT_EXCLUDE):\n data['LANGUAGE_NAME_LOCAL'] = language['name_local']\n return language_code\n", "role": "user" }, { "content": "process_LANGUAGE_CODE", "role": "assistant" } ]
def x(self, data): data['user'] = {'username': '', 'is_authenticated': False, 'is_staff': False, 'is_superuser': False, 'permissions': tuple()} if ('django.contrib.sessions.middleware.SessionMiddleware' in settings. MIDDLEWARE_CLASSES): user = self.request.user data['user']['is_authenticated'] = user.is_authenticated() if hasattr(user, 'username'): data['user']['username'] = user.username elif hasattr(user, 'get_username'): data['user']['username'] = user.get_username() if hasattr(user, 'is_staff'): data['user']['is_staff'] = user.is_staff if hasattr(user, 'is_superuser'): data['user']['is_superuser'] = user.is_superuser if hasattr(user, 'get_all_permissions'): data['user']['permissions'] = tuple(user.get_all_permissions())
handle_user
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, data):\n data['user'] = {'username': '', 'is_authenticated': False, 'is_staff': \n False, 'is_superuser': False, 'permissions': tuple()}\n if ('django.contrib.sessions.middleware.SessionMiddleware' in settings.\n MIDDLEWARE_CLASSES):\n user = self.request.user\n data['user']['is_authenticated'] = user.is_authenticated()\n if hasattr(user, 'username'):\n data['user']['username'] = user.username\n elif hasattr(user, 'get_username'):\n data['user']['username'] = user.get_username()\n if hasattr(user, 'is_staff'):\n data['user']['is_staff'] = user.is_staff\n if hasattr(user, 'is_superuser'):\n data['user']['is_superuser'] = user.is_superuser\n if hasattr(user, 'get_all_permissions'):\n data['user']['permissions'] = tuple(user.get_all_permissions())\n", "role": "user" }, { "content": "handle_user", "role": "assistant" } ]
def x(name): module_name, class_name = name.rsplit('.', 1) __import__(module_name) module = sys.modules[module_name] return getattr(module, class_name)
class_from_string
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(name):\n module_name, class_name = name.rsplit('.', 1)\n __import__(module_name)\n module = sys.modules[module_name]\n return getattr(module, class_name)\n", "role": "user" }, { "content": "class_from_string", "role": "assistant" } ]
def x(cls, files=None): files = files or [] if isinstance(files, str): files = os.path.normpath(files) matches = lambda path: matches_patterns(path, [files]) return [path for path in cls.get_static_files() if matches(path)] elif isinstance(files, (list, tuple)): all_files = cls.get_static_files() files = [os.path.normpath(f) for f in files] sorted_result = [] for pattern in files: sorted_result.extend([f for f in all_files if matches_patterns( f, [pattern])]) return sorted_result
glob
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, files=None):\n files = files or []\n if isinstance(files, str):\n files = os.path.normpath(files)\n matches = lambda path: matches_patterns(path, [files])\n return [path for path in cls.get_static_files() if matches(path)]\n elif isinstance(files, (list, tuple)):\n all_files = cls.get_static_files()\n files = [os.path.normpath(f) for f in files]\n sorted_result = []\n for pattern in files:\n sorted_result.extend([f for f in all_files if matches_patterns(\n f, [pattern])])\n return sorted_result\n", "role": "user" }, { "content": "glob", "role": "assistant" } ]
def x(self, command): process = Popen(command, stdout=PIPE, stderr=STDOUT, universal_newlines =True) while True: if process.poll() is not None: self.returncode = process.returncode break yield process.stdout.readline()
execute
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command):\n process = Popen(command, stdout=PIPE, stderr=STDOUT, universal_newlines\n =True)\n while True:\n if process.poll() is not None:\n self.returncode = process.returncode\n break\n yield process.stdout.readline()\n", "role": "user" }, { "content": "execute", "role": "assistant" } ]
def x(self, *args, **kwargs): separator = '=' * LINE_SIZE title = kwargs['title'] if 'title' in kwargs else 'phantomjs output' nb_spaces = (LINE_SIZE - len(title)) // 2 if VERBOSE: print('') print(separator) print(' ' * nb_spaces + title) print(separator) sys.stdout.flush() with NamedTemporaryFile(delete=True) as cookies_file: cmd = ('phantomjs', '--cookies-file=%s' % cookies_file.name) + args if self.timeout: cmd += str(self.timeout), parser = TapParser(debug=VERBOSITY > 2) output = self.execute(cmd) for item in parser.parse(output): if VERBOSE: print(item.display()) sys.stdout.flush() if VERBOSE: print(separator) sys.stdout.flush() failures = parser.suites.get_all_failures() if failures: raise JsTestException('Failed javascript assertions', failures) if self.returncode > 0: raise JsTestException( 'PhantomJS return with non-zero exit code (%s)' % self.returncode)
phantomjs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n separator = '=' * LINE_SIZE\n title = kwargs['title'] if 'title' in kwargs else 'phantomjs output'\n nb_spaces = (LINE_SIZE - len(title)) // 2\n if VERBOSE:\n print('')\n print(separator)\n print(' ' * nb_spaces + title)\n print(separator)\n sys.stdout.flush()\n with NamedTemporaryFile(delete=True) as cookies_file:\n cmd = ('phantomjs', '--cookies-file=%s' % cookies_file.name) + args\n if self.timeout:\n cmd += str(self.timeout),\n parser = TapParser(debug=VERBOSITY > 2)\n output = self.execute(cmd)\n for item in parser.parse(output):\n if VERBOSE:\n print(item.display())\n sys.stdout.flush()\n if VERBOSE:\n print(separator)\n sys.stdout.flush()\n failures = parser.suites.get_all_failures()\n if failures:\n raise JsTestException('Failed javascript assertions', failures)\n if self.returncode > 0:\n raise JsTestException(\n 'PhantomJS return with non-zero exit code (%s)' % self.returncode)\n", "role": "user" }, { "content": "phantomjs", "role": "assistant" } ]
def x(self): if not self.phantomjs_runner: raise JsTestException('phantomjs_runner need to be defined') url = self.get_url() self.phantomjs(self.phantomjs_runner, url, title=self.title) self.cleanup()
run_suite
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.phantomjs_runner:\n raise JsTestException('phantomjs_runner need to be defined')\n url = self.get_url()\n self.phantomjs(self.phantomjs_runner, url, title=self.title)\n self.cleanup()\n", "role": "user" }, { "content": "run_suite", "role": "assistant" } ]
def x(self, rows, keyed=False): for row in rows: keyed_row = row if not keyed: keyed_row = dict(zip(self.__schema.field_names, row)) keyed_row = self.__convert_row(keyed_row) if self.__check_existing(keyed_row): for wr in self.__insert(): yield wr ret = self.__update(keyed_row) if ret is not None: yield WrittenRow(keyed_row, True, ret if self. __autoincrement else None) continue self.__buffer.append(keyed_row) if len(self.__buffer) > BUFFER_SIZE: for wr in self.__insert(): yield wr for wr in self.__insert(): yield wr
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, rows, keyed=False):\n for row in rows:\n keyed_row = row\n if not keyed:\n keyed_row = dict(zip(self.__schema.field_names, row))\n keyed_row = self.__convert_row(keyed_row)\n if self.__check_existing(keyed_row):\n for wr in self.__insert():\n yield wr\n ret = self.__update(keyed_row)\n if ret is not None:\n yield WrittenRow(keyed_row, True, ret if self.\n __autoincrement else None)\n continue\n self.__buffer.append(keyed_row)\n if len(self.__buffer) > BUFFER_SIZE:\n for wr in self.__insert():\n yield wr\n for wr in self.__insert():\n yield wr\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self): self.__bloom = pybloom_live.ScalableBloomFilter() columns = [getattr(self.__table.c, key) for key in self.__update_keys] keys = select(columns).execution_options(stream_results=True).execute() for key in keys: self.__bloom.add(tuple(key))
prepare_bloom
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.__bloom = pybloom_live.ScalableBloomFilter()\n columns = [getattr(self.__table.c, key) for key in self.__update_keys]\n keys = select(columns).execution_options(stream_results=True).execute()\n for key in keys:\n self.__bloom.add(tuple(key))\n", "role": "user" }, { "content": "prepare_bloom", "role": "assistant" } ]
def x(self): if len(self.__buffer) > 0: statement = self.__table.insert() if self.__autoincrement: statement = statement.returning(getattr(self.__table.c, self. __autoincrement)) statement = statement.values(self.__buffer) res = statement.execute() for id, in res: row = self.__buffer.pop(0) yield WrittenRow(row, False, id) else: statement.execute(self.__buffer) for row in self.__buffer: yield WrittenRow(row, False, None) self.__buffer = []
insert
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if len(self.__buffer) > 0:\n statement = self.__table.insert()\n if self.__autoincrement:\n statement = statement.returning(getattr(self.__table.c, self.\n __autoincrement))\n statement = statement.values(self.__buffer)\n res = statement.execute()\n for id, in res:\n row = self.__buffer.pop(0)\n yield WrittenRow(row, False, id)\n else:\n statement.execute(self.__buffer)\n for row in self.__buffer:\n yield WrittenRow(row, False, None)\n self.__buffer = []\n", "role": "user" }, { "content": "insert", "role": "assistant" } ]
def x(self, row): expr = self.__table.update().values(row) for key in self.__update_keys: expr = expr.where(getattr(self.__table.c, key) == row[key]) if self.__autoincrement: expr = expr.returning(getattr(self.__table.c, self.__autoincrement)) res = expr.execute() if res.rowcount > 0: if self.__autoincrement: first = next(iter(res)) last_row_id = first[0] return last_row_id return 0 return None
update
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row):\n expr = self.__table.update().values(row)\n for key in self.__update_keys:\n expr = expr.where(getattr(self.__table.c, key) == row[key])\n if self.__autoincrement:\n expr = expr.returning(getattr(self.__table.c, self.__autoincrement))\n res = expr.execute()\n if res.rowcount > 0:\n if self.__autoincrement:\n first = next(iter(res))\n last_row_id = first[0]\n return last_row_id\n return 0\n return None\n", "role": "user" }, { "content": "update", "role": "assistant" } ]
def x(self, row): if self.__update_keys is not None: key = tuple(row[key] for key in self.__update_keys) if key in self.__bloom: return True self.__bloom.add(key) return False return False
check_existing
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row):\n if self.__update_keys is not None:\n key = tuple(row[key] for key in self.__update_keys)\n if key in self.__bloom:\n return True\n self.__bloom.add(key)\n return False\n return False\n", "role": "user" }, { "content": "check_existing", "role": "assistant" } ]
def x(self): buckets = [] for table in self.__metadata.sorted_tables: bucket = self.__mapper.restore_bucket(table.name) if bucket is not None: buckets.append(bucket) return buckets
buckets
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n buckets = []\n for table in self.__metadata.sorted_tables:\n bucket = self.__mapper.restore_bucket(table.name)\n if bucket is not None:\n buckets.append(bucket)\n return buckets\n", "role": "user" }, { "content": "buckets", "role": "assistant" } ]
def x(self, bucket, descriptor, force=False, indexes_fields=None): buckets = bucket if isinstance(bucket, six.string_types): buckets = [bucket] descriptors = descriptor if isinstance(descriptor, dict): descriptors = [descriptor] if indexes_fields is None or len(indexes_fields) == 0: indexes_fields = [()] * len(descriptors) elif type(indexes_fields[0][0]) not in {list, tuple}: indexes_fields = [indexes_fields] if not len(buckets) == len(descriptors) == len(indexes_fields): raise tableschema.exceptions.StorageError('Wrong argument dimensions') for bucket in reversed(self.buckets): if bucket in buckets: if not force: message = 'Bucket "%s" already exists.' % bucket raise tableschema.exceptions.StorageError(message) self.delete(bucket) for bucket, descriptor, index_fields in zip(buckets, descriptors, indexes_fields): tableschema.validate(descriptor) table_name = self.__mapper.convert_bucket(bucket) columns, constraints, indexes, fallbacks, table_comment = (self. __mapper.convert_descriptor(bucket, descriptor, index_fields, self.__autoincrement)) Table(table_name, self.__metadata, *(columns + constraints + indexes), comment=table_comment) self.__descriptors[bucket] = descriptor self.__fallbacks[bucket] = fallbacks self.__metadata.create_all()
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket, descriptor, force=False, indexes_fields=None):\n buckets = bucket\n if isinstance(bucket, six.string_types):\n buckets = [bucket]\n descriptors = descriptor\n if isinstance(descriptor, dict):\n descriptors = [descriptor]\n if indexes_fields is None or len(indexes_fields) == 0:\n indexes_fields = [()] * len(descriptors)\n elif type(indexes_fields[0][0]) not in {list, tuple}:\n indexes_fields = [indexes_fields]\n if not len(buckets) == len(descriptors) == len(indexes_fields):\n raise tableschema.exceptions.StorageError('Wrong argument dimensions')\n for bucket in reversed(self.buckets):\n if bucket in buckets:\n if not force:\n message = 'Bucket \"%s\" already exists.' % bucket\n raise tableschema.exceptions.StorageError(message)\n self.delete(bucket)\n for bucket, descriptor, index_fields in zip(buckets, descriptors,\n indexes_fields):\n tableschema.validate(descriptor)\n table_name = self.__mapper.convert_bucket(bucket)\n columns, constraints, indexes, fallbacks, table_comment = (self.\n __mapper.convert_descriptor(bucket, descriptor, index_fields,\n self.__autoincrement))\n Table(table_name, self.__metadata, *(columns + constraints +\n indexes), comment=table_comment)\n self.__descriptors[bucket] = descriptor\n self.__fallbacks[bucket] = fallbacks\n self.__metadata.create_all()\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, bucket=None, ignore=False): buckets = bucket if isinstance(bucket, six.string_types): buckets = [bucket] elif bucket is None: buckets = reversed(self.buckets) tables = [] for bucket in buckets: if bucket not in self.buckets: if not ignore: message = 'Bucket "%s" doesn\'t exist.' % bucket raise tableschema.exceptions.StorageError(message) return if bucket in self.__descriptors: del self.__descriptors[bucket] table = self.__get_table(bucket) tables.append(table) self.__metadata.drop_all(tables=tables) self.__metadata.clear() self.__reflect()
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket=None, ignore=False):\n buckets = bucket\n if isinstance(bucket, six.string_types):\n buckets = [bucket]\n elif bucket is None:\n buckets = reversed(self.buckets)\n tables = []\n for bucket in buckets:\n if bucket not in self.buckets:\n if not ignore:\n message = 'Bucket \"%s\" doesn\\'t exist.' % bucket\n raise tableschema.exceptions.StorageError(message)\n return\n if bucket in self.__descriptors:\n del self.__descriptors[bucket]\n table = self.__get_table(bucket)\n tables.append(table)\n self.__metadata.drop_all(tables=tables)\n self.__metadata.clear()\n self.__reflect()\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, bucket, descriptor=None): if descriptor is not None: self.__descriptors[bucket] = descriptor else: descriptor = self.__descriptors.get(bucket) if descriptor is None: table = self.__get_table(bucket) descriptor = self.__mapper.restore_descriptor(table.name, table .columns, table.constraints, self.__autoincrement) return descriptor
describe
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket, descriptor=None):\n if descriptor is not None:\n self.__descriptors[bucket] = descriptor\n else:\n descriptor = self.__descriptors.get(bucket)\n if descriptor is None:\n table = self.__get_table(bucket)\n descriptor = self.__mapper.restore_descriptor(table.name, table\n .columns, table.constraints, self.__autoincrement)\n return descriptor\n", "role": "user" }, { "content": "describe", "role": "assistant" } ]
def x(self, bucket): table = self.__get_table(bucket) schema = tableschema.Schema(self.describe(bucket)) with self.__connection.begin(): select = table.select().execution_options(stream_results=True) result = select.execute() for row in result: row = self.__mapper.restore_row(row, schema=schema) yield row
iter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket):\n table = self.__get_table(bucket)\n schema = tableschema.Schema(self.describe(bucket))\n with self.__connection.begin():\n select = table.select().execution_options(stream_results=True)\n result = select.execute()\n for row in result:\n row = self.__mapper.restore_row(row, schema=schema)\n yield row\n", "role": "user" }, { "content": "iter", "role": "assistant" } ]
def x(self, bucket, rows, keyed=False, as_generator=False, update_keys=None): if update_keys is not None and len(update_keys) == 0: message = 'Argument "update_keys" cannot be an empty list' raise tableschema.exceptions.StorageError(message) table = self.__get_table(bucket) schema = tableschema.Schema(self.describe(bucket)) fallbacks = self.__fallbacks.get(bucket, []) convert_row = partial(self.__mapper.convert_row, schema=schema, fallbacks=fallbacks) writer = Writer(table, schema, update_keys, self.__autoincrement, convert_row) with self.__connection.begin(): gen = writer.write(rows, keyed=keyed) if as_generator: return gen collections.deque(gen, maxlen=0)
write
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket, rows, keyed=False, as_generator=False, update_keys=None):\n if update_keys is not None and len(update_keys) == 0:\n message = 'Argument \"update_keys\" cannot be an empty list'\n raise tableschema.exceptions.StorageError(message)\n table = self.__get_table(bucket)\n schema = tableschema.Schema(self.describe(bucket))\n fallbacks = self.__fallbacks.get(bucket, [])\n convert_row = partial(self.__mapper.convert_row, schema=schema,\n fallbacks=fallbacks)\n writer = Writer(table, schema, update_keys, self.__autoincrement,\n convert_row)\n with self.__connection.begin():\n gen = writer.write(rows, keyed=keyed)\n if as_generator:\n return gen\n collections.deque(gen, maxlen=0)\n", "role": "user" }, { "content": "write", "role": "assistant" } ]
def x(self, bucket): table_name = self.__mapper.convert_bucket(bucket) if self.__dbschema: table_name = '.'.join((self.__dbschema, table_name)) return self.__metadata.tables[table_name]
get_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket):\n table_name = self.__mapper.convert_bucket(bucket)\n if self.__dbschema:\n table_name = '.'.join((self.__dbschema, table_name))\n return self.__metadata.tables[table_name]\n", "role": "user" }, { "content": "get_table", "role": "assistant" } ]
def x(self): def x(name, _): return self.__only(name) and self.__mapper.restore_bucket(name ) is not None self.__metadata.reflect(only=only)
reflect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n\n def x(name, _):\n return self.__only(name) and self.__mapper.restore_bucket(name\n ) is not None\n self.__metadata.reflect(only=only)\n", "role": "user" }, { "content": "reflect", "role": "assistant" } ]
def x(field, separator=' - '): title = field.descriptor.get('title') or '' description = field.descriptor.get('description') or '' return _get_comment(description, title, separator)
get_field_comment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(field, separator=' - '):\n title = field.descriptor.get('title') or ''\n description = field.descriptor.get('description') or ''\n return _get_comment(description, title, separator)\n", "role": "user" }, { "content": "get_field_comment", "role": "assistant" } ]
def x(self, bucket, descriptor, index_fields=[], autoincrement=None): columns = [] indexes = [] fallbacks = [] constraints = [] column_mapping = {} table_name = self.convert_bucket(bucket) table_comment = _get_comment(descriptor.get('title', ''), descriptor. get('description', '')) schema = tableschema.Schema(descriptor) if autoincrement is not None: columns.append(sa.Column(autoincrement, sa.Integer, autoincrement= True, nullable=False)) for field in schema.fields: column_type = self.convert_type(field.type) if not column_type: column_type = sa.Text fallbacks.append(field.name) nullable = not field.required table_comment = _get_field_comment(field) unique = field.constraints.get('unique', False) column = sa.Column(field.name, column_type, nullable=nullable, comment=table_comment, unique=unique) columns.append(column) column_mapping[field.name] = column pk = descriptor.get('primaryKey', None) if pk is not None: if isinstance(pk, six.string_types): pk = [pk] if autoincrement is not None: if pk is not None: pk = [autoincrement] + pk else: pk = [autoincrement] if pk is not None: constraint = sa.PrimaryKeyConstraint(*pk) constraints.append(constraint) if self.__dialect == 'postgresql': fks = descriptor.get('foreignKeys', []) for fk in fks: fields = fk['fields'] resource = fk['reference']['resource'] foreign_fields = fk['reference']['fields'] if isinstance(fields, six.string_types): fields = [fields] if resource != '': table_name = self.convert_bucket(resource) if isinstance(foreign_fields, six.string_types): foreign_fields = [foreign_fields] composer = lambda field: '.'.join([table_name, field]) foreign_fields = list(map(composer, foreign_fields)) constraint = sa.ForeignKeyConstraint(fields, foreign_fields) constraints.append(constraint) if self.__dialect == 'postgresql': for index, index_definition in enumerate(index_fields): name = table_name + '_ix%03d' % index index_columns = [column_mapping[field] for field in index_definition] indexes.append(sa.Index(name, *index_columns)) return columns, constraints, indexes, fallbacks, table_comment
convert_descriptor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, bucket, descriptor, index_fields=[], autoincrement=None):\n columns = []\n indexes = []\n fallbacks = []\n constraints = []\n column_mapping = {}\n table_name = self.convert_bucket(bucket)\n table_comment = _get_comment(descriptor.get('title', ''), descriptor.\n get('description', ''))\n schema = tableschema.Schema(descriptor)\n if autoincrement is not None:\n columns.append(sa.Column(autoincrement, sa.Integer, autoincrement=\n True, nullable=False))\n for field in schema.fields:\n column_type = self.convert_type(field.type)\n if not column_type:\n column_type = sa.Text\n fallbacks.append(field.name)\n nullable = not field.required\n table_comment = _get_field_comment(field)\n unique = field.constraints.get('unique', False)\n column = sa.Column(field.name, column_type, nullable=nullable,\n comment=table_comment, unique=unique)\n columns.append(column)\n column_mapping[field.name] = column\n pk = descriptor.get('primaryKey', None)\n if pk is not None:\n if isinstance(pk, six.string_types):\n pk = [pk]\n if autoincrement is not None:\n if pk is not None:\n pk = [autoincrement] + pk\n else:\n pk = [autoincrement]\n if pk is not None:\n constraint = sa.PrimaryKeyConstraint(*pk)\n constraints.append(constraint)\n if self.__dialect == 'postgresql':\n fks = descriptor.get('foreignKeys', [])\n for fk in fks:\n fields = fk['fields']\n resource = fk['reference']['resource']\n foreign_fields = fk['reference']['fields']\n if isinstance(fields, six.string_types):\n fields = [fields]\n if resource != '':\n table_name = self.convert_bucket(resource)\n if isinstance(foreign_fields, six.string_types):\n foreign_fields = [foreign_fields]\n composer = lambda field: '.'.join([table_name, field])\n foreign_fields = list(map(composer, foreign_fields))\n constraint = sa.ForeignKeyConstraint(fields, foreign_fields)\n constraints.append(constraint)\n if self.__dialect == 'postgresql':\n for index, index_definition in enumerate(index_fields):\n name = table_name + '_ix%03d' % index\n index_columns = [column_mapping[field] for field in\n index_definition]\n indexes.append(sa.Index(name, *index_columns))\n return columns, constraints, indexes, fallbacks, table_comment\n", "role": "user" }, { "content": "convert_descriptor", "role": "assistant" } ]
def x(self, keyed_row, schema, fallbacks): for key, value in list(keyed_row.items()): field = schema.get_field(key) if not field: del keyed_row[key] if key in fallbacks: value = _uncast_value(value, field=field) else: value = field.cast_value(value) keyed_row[key] = value return keyed_row
convert_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, keyed_row, schema, fallbacks):\n for key, value in list(keyed_row.items()):\n field = schema.get_field(key)\n if not field:\n del keyed_row[key]\n if key in fallbacks:\n value = _uncast_value(value, field=field)\n else:\n value = field.cast_value(value)\n keyed_row[key] = value\n return keyed_row\n", "role": "user" }, { "content": "convert_row", "role": "assistant" } ]
def x(self, type): mapping = {'any': sa.Text, 'array': None, 'boolean': sa.Boolean, 'date': sa.Date, 'datetime': sa.DateTime, 'duration': None, 'geojson': None, 'geopoint': None, 'integer': sa.Integer, 'number': sa.Float, 'object': None, 'string': sa.Text, 'time': sa.Time, 'year': sa. Integer, 'yearmonth': None} if self.__dialect == 'postgresql': mapping.update({'array': JSONB, 'geojson': JSONB, 'number': sa. Numeric, 'object': JSONB}) if type not in mapping: message = 'Field type "%s" is not supported' raise tableschema.exceptions.StorageError(message % type) return mapping[type]
convert_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, type):\n mapping = {'any': sa.Text, 'array': None, 'boolean': sa.Boolean, 'date':\n sa.Date, 'datetime': sa.DateTime, 'duration': None, 'geojson': None,\n 'geopoint': None, 'integer': sa.Integer, 'number': sa.Float,\n 'object': None, 'string': sa.Text, 'time': sa.Time, 'year': sa.\n Integer, 'yearmonth': None}\n if self.__dialect == 'postgresql':\n mapping.update({'array': JSONB, 'geojson': JSONB, 'number': sa.\n Numeric, 'object': JSONB})\n if type not in mapping:\n message = 'Field type \"%s\" is not supported'\n raise tableschema.exceptions.StorageError(message % type)\n return mapping[type]\n", "role": "user" }, { "content": "convert_type", "role": "assistant" } ]
def x(self, table_name): if table_name.startswith(self.__prefix): return table_name.replace(self.__prefix, '', 1) return None
restore_bucket
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, table_name):\n if table_name.startswith(self.__prefix):\n return table_name.replace(self.__prefix, '', 1)\n return None\n", "role": "user" }, { "content": "restore_bucket", "role": "assistant" } ]
def x(self, table_name, columns, constraints, autoincrement_column=None): fields = [] for column in columns: if column.name == autoincrement_column: continue field_type = self.restore_type(column.type) field = {'name': column.name, 'type': field_type} if not column.nullable: field['constraints'] = {'required': True} fields.append(field) pk = [] for constraint in constraints: if isinstance(constraint, sa.PrimaryKeyConstraint): for column in constraint.columns: if column.name == autoincrement_column: continue pk.append(column.name) fks = [] if self.__dialect == 'postgresql': for constraint in constraints: if isinstance(constraint, sa.ForeignKeyConstraint): resource = '' own_fields = [] foreign_fields = [] for element in constraint.elements: own_fields.append(element.parent.name) if element.column.table.name != table_name: resource = self.restore_bucket(element.column.table .name) foreign_fields.append(element.column.name) if len(own_fields) == len(foreign_fields) == 1: own_fields = own_fields.pop() foreign_fields = foreign_fields.pop() fks.append({'fields': own_fields, 'reference': {'resource': resource, 'fields': foreign_fields}}) descriptor = {} descriptor['fields'] = fields if len(pk) > 0: if len(pk) == 1: pk = pk.pop() descriptor['primaryKey'] = pk if len(fks) > 0: descriptor['foreignKeys'] = fks return descriptor
restore_descriptor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, table_name, columns, constraints, autoincrement_column=None):\n fields = []\n for column in columns:\n if column.name == autoincrement_column:\n continue\n field_type = self.restore_type(column.type)\n field = {'name': column.name, 'type': field_type}\n if not column.nullable:\n field['constraints'] = {'required': True}\n fields.append(field)\n pk = []\n for constraint in constraints:\n if isinstance(constraint, sa.PrimaryKeyConstraint):\n for column in constraint.columns:\n if column.name == autoincrement_column:\n continue\n pk.append(column.name)\n fks = []\n if self.__dialect == 'postgresql':\n for constraint in constraints:\n if isinstance(constraint, sa.ForeignKeyConstraint):\n resource = ''\n own_fields = []\n foreign_fields = []\n for element in constraint.elements:\n own_fields.append(element.parent.name)\n if element.column.table.name != table_name:\n resource = self.restore_bucket(element.column.table\n .name)\n foreign_fields.append(element.column.name)\n if len(own_fields) == len(foreign_fields) == 1:\n own_fields = own_fields.pop()\n foreign_fields = foreign_fields.pop()\n fks.append({'fields': own_fields, 'reference': {'resource':\n resource, 'fields': foreign_fields}})\n descriptor = {}\n descriptor['fields'] = fields\n if len(pk) > 0:\n if len(pk) == 1:\n pk = pk.pop()\n descriptor['primaryKey'] = pk\n if len(fks) > 0:\n descriptor['foreignKeys'] = fks\n return descriptor\n", "role": "user" }, { "content": "restore_descriptor", "role": "assistant" } ]
def x(self, row, schema): row = list(row) for index, field in enumerate(schema.fields): if self.__dialect == 'postgresql': if field.type in ['array', 'object']: continue row[index] = field.cast_value(row[index]) return row
restore_row
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, row, schema):\n row = list(row)\n for index, field in enumerate(schema.fields):\n if self.__dialect == 'postgresql':\n if field.type in ['array', 'object']:\n continue\n row[index] = field.cast_value(row[index])\n return row\n", "role": "user" }, { "content": "restore_row", "role": "assistant" } ]
def x(self, type): mapping = {ARRAY: 'array', sa.Boolean: 'boolean', sa.Date: 'date', sa. DateTime: 'datetime', sa.Float: 'number', sa.Integer: 'integer', JSONB: 'object', JSON: 'object', sa.Numeric: 'number', sa.Text: 'string', sa.Time: 'time', sa.VARCHAR: 'string', UUID: 'string'} field_type = None for key, value in mapping.items(): if isinstance(type, key): field_type = value if field_type is None: message = 'Type "%s" is not supported' raise tableschema.exceptions.StorageError(message % type) return field_type
restore_type
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, type):\n mapping = {ARRAY: 'array', sa.Boolean: 'boolean', sa.Date: 'date', sa.\n DateTime: 'datetime', sa.Float: 'number', sa.Integer: 'integer',\n JSONB: 'object', JSON: 'object', sa.Numeric: 'number', sa.Text:\n 'string', sa.Time: 'time', sa.VARCHAR: 'string', UUID: 'string'}\n field_type = None\n for key, value in mapping.items():\n if isinstance(type, key):\n field_type = value\n if field_type is None:\n message = 'Type \"%s\" is not supported'\n raise tableschema.exceptions.StorageError(message % type)\n return field_type\n", "role": "user" }, { "content": "restore_type", "role": "assistant" } ]
def x(self, path, relative_to_object_id, object_id, create_file_type=0): try: return self.process.OpenHierarchy(path, relative_to_object_id, '', create_file_type) except Exception as e: print(e) print('Could not Open Hierarchy')
open_hierarchy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, path, relative_to_object_id, object_id, create_file_type=0):\n try:\n return self.process.OpenHierarchy(path, relative_to_object_id, '',\n create_file_type)\n except Exception as e:\n print(e)\n print('Could not Open Hierarchy')\n", "role": "user" }, { "content": "open_hierarchy", "role": "assistant" } ]
def x(self, section_id, new_page_style=0): try: self.process.CreateNewPage(section_id, '', new_page_style) except Exception as e: print(e) print('Unable to create the page')
create_new_page
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, section_id, new_page_style=0):\n try:\n self.process.CreateNewPage(section_id, '', new_page_style)\n except Exception as e:\n print(e)\n print('Unable to create the page')\n", "role": "user" }, { "content": "create_new_page", "role": "assistant" } ]
def x(self, page_id, page_info=0): try: return self.process.GetPageContent(page_id, '', page_info) except Exception as e: print(e) print('Could not get Page Content')
get_page_content
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, page_id, page_info=0):\n try:\n return self.process.GetPageContent(page_id, '', page_info)\n except Exception as e:\n print(e)\n print('Could not get Page Content')\n", "role": "user" }, { "content": "get_page_content", "role": "assistant" } ]
def x(self, hierarchy_id, target_file_path, publish_format, clsid_of_exporter=''): try: self.process.Publish(hierarchy_id, target_file_path, publish_format, clsid_of_exporter) except Exception as e: print(e) print('Could not Publish')
publish
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, hierarchy_id, target_file_path, publish_format,\n clsid_of_exporter=''):\n try:\n self.process.Publish(hierarchy_id, target_file_path, publish_format,\n clsid_of_exporter)\n except Exception as e:\n print(e)\n print('Could not Publish')\n", "role": "user" }, { "content": "publish", "role": "assistant" } ]
def x(self, special_location=0): try: return self.process.GetSpecialLocation(special_location) except Exception as e: print(e) print('Could not retreive special location')
get_special_location
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, special_location=0):\n try:\n return self.process.GetSpecialLocation(special_location)\n except Exception as e:\n print(e)\n print('Could not retreive special location')\n", "role": "user" }, { "content": "get_special_location", "role": "assistant" } ]
def x(): mem_info = dict() for k, v in psutil.virtual_memory()._asdict().items(): mem_info[k] = int(v) return mem_info
memory
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n mem_info = dict()\n for k, v in psutil.virtual_memory()._asdict().items():\n mem_info[k] = int(v)\n return mem_info\n", "role": "user" }, { "content": "memory", "role": "assistant" } ]
def x(N, n): mem_free = memory()['free'] if mem_free > 60000000: chunk_size = int((mem_free - 10000000) * 1000 / (4 * n * N)) return chunk_size elif mem_free > 40000000: chunk_size = int((mem_free - 7000000) * 1000 / (4 * n * N)) return chunk_size elif mem_free > 14000000: chunk_size = int((mem_free - 2000000) * 1000 / (4 * n * N)) return chunk_size elif mem_free > 8000000: chunk_size = int((mem_free - 1400000) * 1000 / (4 * n * N)) return chunk_size elif mem_free > 2000000: chunk_size = int((mem_free - 900000) * 1000 / (4 * n * N)) return chunk_size elif mem_free > 1000000: chunk_size = int((mem_free - 400000) * 1000 / (4 * n * N)) return chunk_size else: print( """ ERROR: Cluster_Ensembles: get_chunk_size: this machine does not have enough free memory resources to perform ensemble clustering. """ ) sys.exit(1)
get_chunk_size
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N, n):\n mem_free = memory()['free']\n if mem_free > 60000000:\n chunk_size = int((mem_free - 10000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 40000000:\n chunk_size = int((mem_free - 7000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 14000000:\n chunk_size = int((mem_free - 2000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 8000000:\n chunk_size = int((mem_free - 1400000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 2000000:\n chunk_size = int((mem_free - 900000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 1000000:\n chunk_size = int((mem_free - 400000) * 1000 / (4 * n * N))\n return chunk_size\n else:\n print(\n \"\"\"\nERROR: Cluster_Ensembles: get_chunk_size: this machine does not have enough free memory resources to perform ensemble clustering.\n\"\"\"\n )\n sys.exit(1)\n", "role": "user" }, { "content": "get_chunk_size", "role": "assistant" } ]
def x(byte_counts): assert isinstance(byte_counts, numbers.Integral) and byte_counts > 0 if 2 * byte_counts > 1000 * memory()['free']: try: FILTERS = tables.filters(complevel=5, complib='blosc', shuffle= True, least_significant_digit=6) except tables.FiltersWarning: FILTERS = tables.filters(complevel=5, complib='lzo', shuffle= True, least_significant_digit=6) else: FILTERS = None return FILTERS
get_compression_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(byte_counts):\n assert isinstance(byte_counts, numbers.Integral) and byte_counts > 0\n if 2 * byte_counts > 1000 * memory()['free']:\n try:\n FILTERS = tables.filters(complevel=5, complib='blosc', shuffle=\n True, least_significant_digit=6)\n except tables.FiltersWarning:\n FILTERS = tables.filters(complevel=5, complib='lzo', shuffle=\n True, least_significant_digit=6)\n else:\n FILTERS = None\n return FILTERS\n", "role": "user" }, { "content": "get_compression_filter", "role": "assistant" } ]
def x(cluster_runs): N_runs = cluster_runs.shape[0] hypergraph_adjacency = create_membership_matrix(cluster_runs[0]) for i in range(1, N_runs): hypergraph_adjacency = scipy.sparse.vstack([hypergraph_adjacency, create_membership_matrix(cluster_runs[i])], format='csr') return hypergraph_adjacency
build_hypergraph_adjacency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_runs):\n N_runs = cluster_runs.shape[0]\n hypergraph_adjacency = create_membership_matrix(cluster_runs[0])\n for i in range(1, N_runs):\n hypergraph_adjacency = scipy.sparse.vstack([hypergraph_adjacency,\n create_membership_matrix(cluster_runs[i])], format='csr')\n return hypergraph_adjacency\n", "role": "user" }, { "content": "build_hypergraph_adjacency", "role": "assistant" } ]
def x(hypergraph_adjacency, hdf5_file_name): assert hypergraph_adjacency.__class__ == scipy.sparse.csr.csr_matrix byte_counts = (hypergraph_adjacency.data.nbytes + hypergraph_adjacency. indices.nbytes + hypergraph_adjacency.indptr.nbytes) FILTERS = get_compression_filter(byte_counts) with tables.open_file(hdf5_file_name, 'r+') as fileh: for par in ('data', 'indices', 'indptr', 'shape'): try: n = getattr(fileh.root.consensus_group, par) n._f_remove() except AttributeError: pass array = np.array(getattr(hypergraph_adjacency, par)) atom = tables.Atom.from_dtype(array.dtype) ds = fileh.create_carray(fileh.root.consensus_group, par, atom, array.shape, filters=FILTERS) ds[:] = array
store_hypergraph_adjacency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hypergraph_adjacency, hdf5_file_name):\n assert hypergraph_adjacency.__class__ == scipy.sparse.csr.csr_matrix\n byte_counts = (hypergraph_adjacency.data.nbytes + hypergraph_adjacency.\n indices.nbytes + hypergraph_adjacency.indptr.nbytes)\n FILTERS = get_compression_filter(byte_counts)\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n for par in ('data', 'indices', 'indptr', 'shape'):\n try:\n n = getattr(fileh.root.consensus_group, par)\n n._f_remove()\n except AttributeError:\n pass\n array = np.array(getattr(hypergraph_adjacency, par))\n atom = tables.Atom.from_dtype(array.dtype)\n ds = fileh.create_carray(fileh.root.consensus_group, par, atom,\n array.shape, filters=FILTERS)\n ds[:] = array\n", "role": "user" }, { "content": "store_hypergraph_adjacency", "role": "assistant" } ]
def x(hdf5_file_name): with tables.open_file(hdf5_file_name, 'r+') as fileh: pars = [] for par in ('data', 'indices', 'indptr', 'shape'): pars.append(getattr(fileh.root.consensus_group, par).read()) hypergraph_adjacency = scipy.sparse.csr_matrix(tuple(pars[:3]), shape= pars[3]) return hypergraph_adjacency
load_hypergraph_adjacency
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name):\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n pars = []\n for par in ('data', 'indices', 'indptr', 'shape'):\n pars.append(getattr(fileh.root.consensus_group, par).read())\n hypergraph_adjacency = scipy.sparse.csr_matrix(tuple(pars[:3]), shape=\n pars[3])\n return hypergraph_adjacency\n", "role": "user" }, { "content": "load_hypergraph_adjacency", "role": "assistant" } ]
def x(cluster_runs, hdf5_file_name=None, verbose=False, N_clusters_max=None): if hdf5_file_name is None: hdf5_file_name = './Cluster_Ensembles.h5' fileh = tables.open_file(hdf5_file_name, 'w') fileh.create_group(fileh.root, 'consensus_group') fileh.close() cluster_ensemble = [] score = np.empty(0) if cluster_runs.shape[1] > 10000: consensus_functions = [HGPA, MCLA] function_names = ['HGPA', 'MCLA'] print( """ INFO: Cluster_Ensembles: cluster_ensembles: due to a rather large number of cells in your data-set, using only 'HyperGraph Partitioning Algorithm' (HGPA) and 'Meta-CLustering Algorithm' (MCLA) as ensemble consensus functions. """ ) else: consensus_functions = [CSPA, HGPA, MCLA] function_names = ['CSPA', 'HGPA', 'MCLA'] hypergraph_adjacency = build_hypergraph_adjacency(cluster_runs) store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name) for i in range(len(consensus_functions)): cluster_ensemble.append(consensus_functions[i](hdf5_file_name, cluster_runs, verbose, N_clusters_max)) score = np.append(score, ceEvalMutual(cluster_runs, cluster_ensemble[i], verbose)) print('\nINFO: Cluster_Ensembles: cluster_ensembles: {0} at {1}.'. format(function_names[i], score[i])) print('*****') return cluster_ensemble[np.argmax(score)]
cluster_ensembles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_runs, hdf5_file_name=None, verbose=False, N_clusters_max=None):\n if hdf5_file_name is None:\n hdf5_file_name = './Cluster_Ensembles.h5'\n fileh = tables.open_file(hdf5_file_name, 'w')\n fileh.create_group(fileh.root, 'consensus_group')\n fileh.close()\n cluster_ensemble = []\n score = np.empty(0)\n if cluster_runs.shape[1] > 10000:\n consensus_functions = [HGPA, MCLA]\n function_names = ['HGPA', 'MCLA']\n print(\n \"\"\"\nINFO: Cluster_Ensembles: cluster_ensembles: due to a rather large number of cells in your data-set, using only 'HyperGraph Partitioning Algorithm' (HGPA) and 'Meta-CLustering Algorithm' (MCLA) as ensemble consensus functions.\n\"\"\"\n )\n else:\n consensus_functions = [CSPA, HGPA, MCLA]\n function_names = ['CSPA', 'HGPA', 'MCLA']\n hypergraph_adjacency = build_hypergraph_adjacency(cluster_runs)\n store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name)\n for i in range(len(consensus_functions)):\n cluster_ensemble.append(consensus_functions[i](hdf5_file_name,\n cluster_runs, verbose, N_clusters_max))\n score = np.append(score, ceEvalMutual(cluster_runs,\n cluster_ensemble[i], verbose))\n print('\\nINFO: Cluster_Ensembles: cluster_ensembles: {0} at {1}.'.\n format(function_names[i], score[i]))\n print('*****')\n return cluster_ensemble[np.argmax(score)]\n", "role": "user" }, { "content": "cluster_ensembles", "role": "assistant" } ]
def x(cluster_runs, cluster_ensemble=None, verbose=False): if cluster_ensemble is None: return 0.0 if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape): cluster_runs = cluster_runs.reshape(1, -1) weighted_average_mutual_information = 0 N_labelled_indices = 0 for i in range(cluster_runs.shape[0]): labelled_indices = np.where(np.isfinite(cluster_runs[i]))[0] N = labelled_indices.size x = np.reshape(checkcl(cluster_ensemble[labelled_indices], verbose), newshape=N) y = np.reshape(checkcl(np.rint(cluster_runs[i, labelled_indices]), verbose), newshape=N) q = normalized_mutual_info_score(x, y) weighted_average_mutual_information += q * N N_labelled_indices += N return float(weighted_average_mutual_information) / N_labelled_indices
ceEvalMutual
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_runs, cluster_ensemble=None, verbose=False):\n if cluster_ensemble is None:\n return 0.0\n if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):\n cluster_runs = cluster_runs.reshape(1, -1)\n weighted_average_mutual_information = 0\n N_labelled_indices = 0\n for i in range(cluster_runs.shape[0]):\n labelled_indices = np.where(np.isfinite(cluster_runs[i]))[0]\n N = labelled_indices.size\n x = np.reshape(checkcl(cluster_ensemble[labelled_indices], verbose),\n newshape=N)\n y = np.reshape(checkcl(np.rint(cluster_runs[i, labelled_indices]),\n verbose), newshape=N)\n q = normalized_mutual_info_score(x, y)\n weighted_average_mutual_information += q * N\n N_labelled_indices += N\n return float(weighted_average_mutual_information) / N_labelled_indices\n", "role": "user" }, { "content": "ceEvalMutual", "role": "assistant" } ]
def x(cluster_run, verbose=False): cluster_run = np.asanyarray(cluster_run) if cluster_run.size == 0: raise ValueError( '\nERROR: Cluster_Ensembles: checkcl: empty vector provided as input.\n' ) elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape): raise ValueError( """ ERROR: Cluster_Ensembles: checkl: problem in dimensions of the cluster label vector under consideration. """ ) elif np.where(np.isnan(cluster_run))[0].size != 0: raise ValueError( """ ERROR: Cluster_Ensembles: checkl: vector of cluster labellings provided as input contains at least one 'NaN'. """ ) else: min_label = np.amin(cluster_run) if min_label < 0: if verbose: print( """ INFO: Cluster_Ensembles: checkcl: detected negative values as cluster labellings.""" ) cluster_run -= min_label if verbose: print( "\nINFO: Cluster_Ensembles: checkcl: offset to a minimum value of '0'." ) x = one_to_max(cluster_run) if np.amax(cluster_run) != np.amax(x): if verbose: print( """ INFO: Cluster_Ensembles: checkcl: the vector cluster labellings provided is not a dense integer mapping.""" ) cluster_run = x if verbose: print( """INFO: Cluster_Ensembles: checkcl: brought modification to this vector so that its labels range from 0 to {0}, included. """ .format(np.amax(cluster_run))) return cluster_run
checkcl
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_run, verbose=False):\n cluster_run = np.asanyarray(cluster_run)\n if cluster_run.size == 0:\n raise ValueError(\n '\\nERROR: Cluster_Ensembles: checkcl: empty vector provided as input.\\n'\n )\n elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checkl: problem in dimensions of the cluster label vector under consideration.\n\"\"\"\n )\n elif np.where(np.isnan(cluster_run))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checkl: vector of cluster labellings provided as input contains at least one 'NaN'.\n\"\"\"\n )\n else:\n min_label = np.amin(cluster_run)\n if min_label < 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checkcl: detected negative values as cluster labellings.\"\"\"\n )\n cluster_run -= min_label\n if verbose:\n print(\n \"\\nINFO: Cluster_Ensembles: checkcl: offset to a minimum value of '0'.\"\n )\n x = one_to_max(cluster_run)\n if np.amax(cluster_run) != np.amax(x):\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checkcl: the vector cluster labellings provided is not a dense integer mapping.\"\"\"\n )\n cluster_run = x\n if verbose:\n print(\n \"\"\"INFO: Cluster_Ensembles: checkcl: brought modification to this vector so that its labels range from 0 to {0}, included.\n\"\"\"\n .format(np.amax(cluster_run)))\n return cluster_run\n", "role": "user" }, { "content": "checkcl", "role": "assistant" } ]
def x(array_in): x = np.asanyarray(array_in) N_in = x.size array_in = x.reshape(N_in) sorted_array = np.sort(array_in) sorting_indices = np.argsort(array_in) last = np.nan current_index = -1 for i in range(N_in): if last != sorted_array[i] or np.isnan(last): last = sorted_array[i] current_index += 1 sorted_array[i] = current_index result = np.empty(N_in, dtype=int) result[sorting_indices] = sorted_array return result
one_to_max
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(array_in):\n x = np.asanyarray(array_in)\n N_in = x.size\n array_in = x.reshape(N_in)\n sorted_array = np.sort(array_in)\n sorting_indices = np.argsort(array_in)\n last = np.nan\n current_index = -1\n for i in range(N_in):\n if last != sorted_array[i] or np.isnan(last):\n last = sorted_array[i]\n current_index += 1\n sorted_array[i] = current_index\n result = np.empty(N_in, dtype=int)\n result[sorting_indices] = sorted_array\n return result\n", "role": "user" }, { "content": "one_to_max", "role": "assistant" } ]
def x(similarities, verbose=False): if similarities.size == 0: raise ValueError( """ ERROR: Cluster_Ensembles: checks: the similarities matrix provided as input happens to be empty. """ ) elif np.where(np.isnan(similarities))[0].size != 0: raise ValueError( """ ERROR: Cluster_Ensembles: checks: input similarities matrix contains at least one 'NaN'. """ ) elif np.where(np.isinf(similarities))[0].size != 0: raise ValueError( """ ERROR: Cluster_Ensembles: checks: at least one infinite entry detected in input similarities matrix. """ ) else: if np.where(np.logical_not(np.isreal(similarities)))[0].size != 0: if verbose: print( """ INFO: Cluster_Ensembles: checks: complex entries found in the similarities matrix.""" ) similarities = similarities.real if verbose: print( '\nINFO: Cluster_Ensembles: checks: truncated to their real components.' ) if similarities.shape[0] != similarities.shape[1]: if verbose: print( '\nINFO: Cluster_Ensembles: checks: non-square matrix provided.' ) N_square = min(similarities.shape) similarities = similarities[:N_square, :N_square] if verbose: print( '\nINFO: Cluster_Ensembles: checks: using largest square sub-matrix.' ) max_sim = np.amax(similarities) min_sim = np.amin(similarities) if max_sim > 1 or min_sim < 0: if verbose: print( """ INFO: Cluster_Ensembles: checks: strictly negative or bigger than unity entries spotted in input similarities matrix.""" ) indices_too_big = np.where(similarities > 1) indices_negative = np.where(similarities < 0) similarities[indices_too_big] = 1.0 similarities[indices_negative] = 0.0 if verbose: print( """ INFO: Cluster_Ensembles: checks: done setting them to the lower or upper accepted values.""" ) if not np.allclose(similarities, np.transpose(similarities)): if verbose: print( '\nINFO: Cluster_Ensembles: checks: non-symmetric input similarities matrix.' ) similarities = np.divide(similarities + np.transpose( similarities), 2.0) if verbose: print('\nINFO: Cluster_Ensembles: checks: now symmetrized.') if not np.allclose(np.diag(similarities), np.ones(similarities. shape[0])): if verbose: print( """ INFO: Cluster_Ensembles: checks: the self-similarities provided as input are not all of unit value.""" ) similarities[np.diag_indices(similarities.shape[0])] = 1 if verbose: print('\nINFO: Cluster_Ensembles: checks: issue corrected.')
checks
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(similarities, verbose=False):\n if similarities.size == 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: the similarities matrix provided as input happens to be empty.\n\"\"\"\n )\n elif np.where(np.isnan(similarities))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: input similarities matrix contains at least one 'NaN'.\n\"\"\"\n )\n elif np.where(np.isinf(similarities))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: at least one infinite entry detected in input similarities matrix.\n\"\"\"\n )\n else:\n if np.where(np.logical_not(np.isreal(similarities)))[0].size != 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: complex entries found in the similarities matrix.\"\"\"\n )\n similarities = similarities.real\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: truncated to their real components.'\n )\n if similarities.shape[0] != similarities.shape[1]:\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: non-square matrix provided.'\n )\n N_square = min(similarities.shape)\n similarities = similarities[:N_square, :N_square]\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: using largest square sub-matrix.'\n )\n max_sim = np.amax(similarities)\n min_sim = np.amin(similarities)\n if max_sim > 1 or min_sim < 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: strictly negative or bigger than unity entries spotted in input similarities matrix.\"\"\"\n )\n indices_too_big = np.where(similarities > 1)\n indices_negative = np.where(similarities < 0)\n similarities[indices_too_big] = 1.0\n similarities[indices_negative] = 0.0\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: done setting them to the lower or upper accepted values.\"\"\"\n )\n if not np.allclose(similarities, np.transpose(similarities)):\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: non-symmetric input similarities matrix.'\n )\n similarities = np.divide(similarities + np.transpose(\n similarities), 2.0)\n if verbose:\n print('\\nINFO: Cluster_Ensembles: checks: now symmetrized.')\n if not np.allclose(np.diag(similarities), np.ones(similarities.\n shape[0])):\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: the self-similarities provided as input are not all of unit value.\"\"\"\n )\n similarities[np.diag_indices(similarities.shape[0])] = 1\n if verbose:\n print('\\nINFO: Cluster_Ensembles: checks: issue corrected.')\n", "role": "user" }, { "content": "checks", "role": "assistant" } ]
def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None): print('*****') print('INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.') if N_clusters_max == None: N_clusters_max = int(np.nanmax(cluster_runs)) + 1 N_runs = cluster_runs.shape[0] N_samples = cluster_runs.shape[1] if N_samples > 20000: raise ValueError( """ ERROR: Cluster_Ensembles: CSPA: cannot efficiently deal with too large a number of cells.""" ) hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name) s = scipy.sparse.csr_matrix.dot(hypergraph_adjacency.transpose().tocsr( ), hypergraph_adjacency) s = np.squeeze(np.asarray(s.todense())) del hypergraph_adjacency gc.collect() checks(np.divide(s, float(N_runs)), verbose) e_sum_before = s.sum() sum_after = 100000000.0 scale_factor = sum_after / float(e_sum_before) with tables.open_file(hdf5_file_name, 'r+') as fileh: atom = tables.Float32Atom() FILTERS = get_compression_filter(4 * N_samples ** 2) S = fileh.create_carray(fileh.root.consensus_group, 'similarities_CSPA', atom, (N_samples, N_samples), 'Matrix of similarities arising in Cluster-based Similarity Partitioning' , filters=FILTERS) expr = tables.Expr('s * scale_factor') expr.set_output(S) expr.eval() chunks_size = get_chunk_size(N_samples, 3) for i in range(0, N_samples, chunks_size): tmp = S[i:min(i + chunks_size, N_samples)] S[i:min(i + chunks_size, N_samples)] = np.rint(tmp) return metis(hdf5_file_name, N_clusters_max)
CSPA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):\n print('*****')\n print('INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.')\n if N_clusters_max == None:\n N_clusters_max = int(np.nanmax(cluster_runs)) + 1\n N_runs = cluster_runs.shape[0]\n N_samples = cluster_runs.shape[1]\n if N_samples > 20000:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: CSPA: cannot efficiently deal with too large a number of cells.\"\"\"\n )\n hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)\n s = scipy.sparse.csr_matrix.dot(hypergraph_adjacency.transpose().tocsr(\n ), hypergraph_adjacency)\n s = np.squeeze(np.asarray(s.todense()))\n del hypergraph_adjacency\n gc.collect()\n checks(np.divide(s, float(N_runs)), verbose)\n e_sum_before = s.sum()\n sum_after = 100000000.0\n scale_factor = sum_after / float(e_sum_before)\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n atom = tables.Float32Atom()\n FILTERS = get_compression_filter(4 * N_samples ** 2)\n S = fileh.create_carray(fileh.root.consensus_group,\n 'similarities_CSPA', atom, (N_samples, N_samples),\n 'Matrix of similarities arising in Cluster-based Similarity Partitioning'\n , filters=FILTERS)\n expr = tables.Expr('s * scale_factor')\n expr.set_output(S)\n expr.eval()\n chunks_size = get_chunk_size(N_samples, 3)\n for i in range(0, N_samples, chunks_size):\n tmp = S[i:min(i + chunks_size, N_samples)]\n S[i:min(i + chunks_size, N_samples)] = np.rint(tmp)\n return metis(hdf5_file_name, N_clusters_max)\n", "role": "user" }, { "content": "CSPA", "role": "assistant" } ]
def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None): print('\n*****') print('INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.') if N_clusters_max == None: N_clusters_max = int(np.nanmax(cluster_runs)) + 1 return hmetis(hdf5_file_name, N_clusters_max)
HGPA
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):\n print('\\n*****')\n print('INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.')\n if N_clusters_max == None:\n N_clusters_max = int(np.nanmax(cluster_runs)) + 1\n return hmetis(hdf5_file_name, N_clusters_max)\n", "role": "user" }, { "content": "HGPA", "role": "assistant" } ]
def x(cluster_run): cluster_run = np.asanyarray(cluster_run) if reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape): raise ValueError( """ ERROR: Cluster_Ensembles: create_membership_matrix: problem in dimensions of the cluster label vector under consideration.""" ) else: cluster_run = cluster_run.reshape(cluster_run.size) cluster_ids = np.unique(np.compress(np.isfinite(cluster_run), cluster_run)) indices = np.empty(0, dtype=np.int32) indptr = np.zeros(1, dtype=np.int32) for elt in cluster_ids: indices = np.append(indices, np.where(cluster_run == elt)[0]) indptr = np.append(indptr, indices.size) data = np.ones(indices.size, dtype=int) return scipy.sparse.csr_matrix((data, indices, indptr), shape=( cluster_ids.size, cluster_run.size))
create_membership_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cluster_run):\n cluster_run = np.asanyarray(cluster_run)\n if reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: create_membership_matrix: problem in dimensions of the cluster label vector under consideration.\"\"\"\n )\n else:\n cluster_run = cluster_run.reshape(cluster_run.size)\n cluster_ids = np.unique(np.compress(np.isfinite(cluster_run),\n cluster_run))\n indices = np.empty(0, dtype=np.int32)\n indptr = np.zeros(1, dtype=np.int32)\n for elt in cluster_ids:\n indices = np.append(indices, np.where(cluster_run == elt)[0])\n indptr = np.append(indptr, indices.size)\n data = np.ones(indices.size, dtype=int)\n return scipy.sparse.csr_matrix((data, indices, indptr), shape=(\n cluster_ids.size, cluster_run.size))\n", "role": "user" }, { "content": "create_membership_matrix", "role": "assistant" } ]
def x(hdf5_file_name, N_clusters_max): file_name = wgraph(hdf5_file_name) labels = sgraph(N_clusters_max, file_name) subprocess.call(['rm', file_name]) return labels
metis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, N_clusters_max):\n file_name = wgraph(hdf5_file_name)\n labels = sgraph(N_clusters_max, file_name)\n subprocess.call(['rm', file_name])\n return labels\n", "role": "user" }, { "content": "metis", "role": "assistant" } ]
def x(hdf5_file_name, N_clusters_max, w=None): if w is None: file_name = wgraph(hdf5_file_name, None, 2) else: file_name = wgraph(hdf5_file_name, w, 3) labels = sgraph(N_clusters_max, file_name) labels = one_to_max(labels) subprocess.call(['rm', file_name]) return labels
hmetis
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, N_clusters_max, w=None):\n if w is None:\n file_name = wgraph(hdf5_file_name, None, 2)\n else:\n file_name = wgraph(hdf5_file_name, w, 3)\n labels = sgraph(N_clusters_max, file_name)\n labels = one_to_max(labels)\n subprocess.call(['rm', file_name])\n return labels\n", "role": "user" }, { "content": "hmetis", "role": "assistant" } ]
def x(hdf5_file_name, w=None, method=0): print('\n#') if method == 0: fileh = tables.open_file(hdf5_file_name, 'r+') e_mat = fileh.root.consensus_group.similarities_CSPA file_name = 'wgraph_CSPA' elif method == 1: fileh = tables.open_file(hdf5_file_name, 'r+') e_mat = fileh.root.consensus_group.similarities_MCLA file_name = 'wgraph_MCLA' elif method in {2, 3}: hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name) e_mat = hypergraph_adjacency.copy().transpose() file_name = 'wgraph_HGPA' fileh = tables.open_file(hdf5_file_name, 'r+') else: raise ValueError( """ ERROR: Cluster_Ensembles: wgraph: invalid code for choice of method; choose either 0, 1, 2 or 3.""" ) if w is None: w = [] N_rows = e_mat.shape[0] N_cols = e_mat.shape[1] if method in {0, 1}: diag_ind = np.diag_indices(N_rows) e_mat[diag_ind] = 0 if method == 1: scale_factor = 100.0 w_sum_before = np.sum(w) w *= scale_factor w = np.rint(w) with open(file_name, 'w') as file: print('INFO: Cluster_Ensembles: wgraph: writing {}.'.format(file_name)) if method == 0: sz = float(np.sum(e_mat[:] > 0)) / 2 if int(sz) == 0: return 'DO_NOT_PROCESS' else: file.write('{} {} 1\n'.format(N_rows, int(sz))) elif method == 1: chunks_size = get_chunk_size(N_cols, 2) N_chunks, remainder = divmod(N_rows, chunks_size) if N_chunks == 0: sz = float(np.sum(e_mat[:] > 0)) / 2 else: sz = 0 for i in range(N_chunks): M = e_mat[i * chunks_size:(i + 1) * chunks_size] sz += float(np.sum(M > 0)) if remainder != 0: M = e_mat[N_chunks * chunks_size:N_rows] sz += float(np.sum(M > 0)) sz = float(sz) / 2 file.write('{} {} 11\n'.format(N_rows, int(sz))) else: file.write('{} {} 1\n'.format(N_cols, N_rows)) if method in {0, 1}: chunks_size = get_chunk_size(N_cols, 2) for i in range(0, N_rows, chunks_size): M = e_mat[i:min(i + chunks_size, N_rows)] for j in range(M.shape[0]): edges = np.where(M[j] > 0)[0] weights = M[j, edges] if method == 0: interlaced = np.zeros(2 * edges.size, dtype=int) interlaced[::2] = edges + 1 interlaced[1::2] = weights else: interlaced = np.zeros(1 + 2 * edges.size, dtype=int) interlaced[0] = w[i + j] interlaced[1::2] = edges + 1 interlaced[2::2] = weights for elt in interlaced: file.write('{} '.format(int(elt))) file.write('\n') else: print( 'INFO: Cluster_Ensembles: wgraph: {N_rows} vertices and {N_cols} non-zero hyper-edges.' .format(**locals())) chunks_size = get_chunk_size(N_rows, 2) for i in range(0, N_cols, chunks_size): M = np.asarray(e_mat[:, i:min(i + chunks_size, N_cols)]. todense()) for j in range(M.shape[1]): edges = np.where(M[:, j] > 0)[0] if method == 2: weight = np.array(M[:, j].sum(), dtype=int) else: weight = w[i + j] interlaced = np.append(weight, edges + 1) for elt in interlaced: file.write('{} '.format(int(elt))) file.write('\n') if method in {0, 1}: fileh.remove_node(fileh.root.consensus_group, e_mat.name) fileh.close() print('#') return file_name
wgraph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, w=None, method=0):\n print('\\n#')\n if method == 0:\n fileh = tables.open_file(hdf5_file_name, 'r+')\n e_mat = fileh.root.consensus_group.similarities_CSPA\n file_name = 'wgraph_CSPA'\n elif method == 1:\n fileh = tables.open_file(hdf5_file_name, 'r+')\n e_mat = fileh.root.consensus_group.similarities_MCLA\n file_name = 'wgraph_MCLA'\n elif method in {2, 3}:\n hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)\n e_mat = hypergraph_adjacency.copy().transpose()\n file_name = 'wgraph_HGPA'\n fileh = tables.open_file(hdf5_file_name, 'r+')\n else:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: wgraph: invalid code for choice of method; choose either 0, 1, 2 or 3.\"\"\"\n )\n if w is None:\n w = []\n N_rows = e_mat.shape[0]\n N_cols = e_mat.shape[1]\n if method in {0, 1}:\n diag_ind = np.diag_indices(N_rows)\n e_mat[diag_ind] = 0\n if method == 1:\n scale_factor = 100.0\n w_sum_before = np.sum(w)\n w *= scale_factor\n w = np.rint(w)\n with open(file_name, 'w') as file:\n print('INFO: Cluster_Ensembles: wgraph: writing {}.'.format(file_name))\n if method == 0:\n sz = float(np.sum(e_mat[:] > 0)) / 2\n if int(sz) == 0:\n return 'DO_NOT_PROCESS'\n else:\n file.write('{} {} 1\\n'.format(N_rows, int(sz)))\n elif method == 1:\n chunks_size = get_chunk_size(N_cols, 2)\n N_chunks, remainder = divmod(N_rows, chunks_size)\n if N_chunks == 0:\n sz = float(np.sum(e_mat[:] > 0)) / 2\n else:\n sz = 0\n for i in range(N_chunks):\n M = e_mat[i * chunks_size:(i + 1) * chunks_size]\n sz += float(np.sum(M > 0))\n if remainder != 0:\n M = e_mat[N_chunks * chunks_size:N_rows]\n sz += float(np.sum(M > 0))\n sz = float(sz) / 2\n file.write('{} {} 11\\n'.format(N_rows, int(sz)))\n else:\n file.write('{} {} 1\\n'.format(N_cols, N_rows))\n if method in {0, 1}:\n chunks_size = get_chunk_size(N_cols, 2)\n for i in range(0, N_rows, chunks_size):\n M = e_mat[i:min(i + chunks_size, N_rows)]\n for j in range(M.shape[0]):\n edges = np.where(M[j] > 0)[0]\n weights = M[j, edges]\n if method == 0:\n interlaced = np.zeros(2 * edges.size, dtype=int)\n interlaced[::2] = edges + 1\n interlaced[1::2] = weights\n else:\n interlaced = np.zeros(1 + 2 * edges.size, dtype=int)\n interlaced[0] = w[i + j]\n interlaced[1::2] = edges + 1\n interlaced[2::2] = weights\n for elt in interlaced:\n file.write('{} '.format(int(elt)))\n file.write('\\n')\n else:\n print(\n 'INFO: Cluster_Ensembles: wgraph: {N_rows} vertices and {N_cols} non-zero hyper-edges.'\n .format(**locals()))\n chunks_size = get_chunk_size(N_rows, 2)\n for i in range(0, N_cols, chunks_size):\n M = np.asarray(e_mat[:, i:min(i + chunks_size, N_cols)].\n todense())\n for j in range(M.shape[1]):\n edges = np.where(M[:, j] > 0)[0]\n if method == 2:\n weight = np.array(M[:, j].sum(), dtype=int)\n else:\n weight = w[i + j]\n interlaced = np.append(weight, edges + 1)\n for elt in interlaced:\n file.write('{} '.format(int(elt)))\n file.write('\\n')\n if method in {0, 1}:\n fileh.remove_node(fileh.root.consensus_group, e_mat.name)\n fileh.close()\n print('#')\n return file_name\n", "role": "user" }, { "content": "wgraph", "role": "assistant" } ]
def x(N_clusters_max, file_name): if file_name == 'DO_NOT_PROCESS': return [] print('\n#') k = str(N_clusters_max) out_name = file_name + '.part.' + k if file_name == 'wgraph_HGPA': print( 'INFO: Cluster_Ensembles: sgraph: calling shmetis for hypergraph partitioning.' ) if sys.platform.startswith('linux'): shmetis_path = pkg_resources.resource_filename(__name__, 'Hypergraph_Partitioning/hmetis-1.5-linux/shmetis') elif sys.platform.startswith('darwin'): shmetis_path = pkg_resources.resource_filename(__name__, 'Hypergraph_Partitioning/hmetis-1.5-osx-i686/shmetis') else: print( """ERROR: Cluster_Ensembles: sgraph: your platform is not supported. Some code required for graph partition is only available for Linux distributions and OS X.""" ) sys.exit(1) args = '{0} ./'.format(shmetis_path) + file_name + ' ' + k + ' 15' subprocess.call(args, shell=True) elif file_name == 'wgraph_CSPA' or file_name == 'wgraph_MCLA': print( 'INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.' ) args = 'gpmetis ./' + file_name + ' ' + k subprocess.call(args, shell=True) else: raise NameError( 'ERROR: Cluster_Ensembles: sgraph: {} is not an acceptable file-name.' .format(file_name)) labels = np.empty(0, dtype=int) with open(out_name, 'r') as file: print( 'INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading {}' .format(out_name)) labels = np.loadtxt(out_name, dtype=int) labels = labels.reshape(labels.size) labels = one_to_max(labels) subprocess.call(['rm', out_name]) print('#') return labels
sgraph
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(N_clusters_max, file_name):\n if file_name == 'DO_NOT_PROCESS':\n return []\n print('\\n#')\n k = str(N_clusters_max)\n out_name = file_name + '.part.' + k\n if file_name == 'wgraph_HGPA':\n print(\n 'INFO: Cluster_Ensembles: sgraph: calling shmetis for hypergraph partitioning.'\n )\n if sys.platform.startswith('linux'):\n shmetis_path = pkg_resources.resource_filename(__name__,\n 'Hypergraph_Partitioning/hmetis-1.5-linux/shmetis')\n elif sys.platform.startswith('darwin'):\n shmetis_path = pkg_resources.resource_filename(__name__,\n 'Hypergraph_Partitioning/hmetis-1.5-osx-i686/shmetis')\n else:\n print(\n \"\"\"ERROR: Cluster_Ensembles: sgraph:\nyour platform is not supported. Some code required for graph partition is only available for Linux distributions and OS X.\"\"\"\n )\n sys.exit(1)\n args = '{0} ./'.format(shmetis_path) + file_name + ' ' + k + ' 15'\n subprocess.call(args, shell=True)\n elif file_name == 'wgraph_CSPA' or file_name == 'wgraph_MCLA':\n print(\n 'INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.'\n )\n args = 'gpmetis ./' + file_name + ' ' + k\n subprocess.call(args, shell=True)\n else:\n raise NameError(\n 'ERROR: Cluster_Ensembles: sgraph: {} is not an acceptable file-name.'\n .format(file_name))\n labels = np.empty(0, dtype=int)\n with open(out_name, 'r') as file:\n print(\n 'INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading {}'\n .format(out_name))\n labels = np.loadtxt(out_name, dtype=int)\n labels = labels.reshape(labels.size)\n labels = one_to_max(labels)\n subprocess.call(['rm', out_name])\n print('#')\n return labels\n", "role": "user" }, { "content": "sgraph", "role": "assistant" } ]
def x(hdf5_file_name, consensus_labels, cluster_runs): if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape): cluster_runs = cluster_runs.reshape(1, -1) N_runs, N_samples = cluster_runs.shape N_consensus_labels = np.unique(consensus_labels).size indices_consensus_adjacency = np.empty(0, dtype=np.int32) indptr_consensus_adjacency = np.zeros(1, dtype=np.int64) for k in range(N_consensus_labels): indices_consensus_adjacency = np.append(indices_consensus_adjacency, np.where(consensus_labels == k)[0]) indptr_consensus_adjacency = np.append(indptr_consensus_adjacency, indices_consensus_adjacency.size) data_consensus_adjacency = np.ones(indices_consensus_adjacency.size, dtype=int) consensus_adjacency = scipy.sparse.csr_matrix((data_consensus_adjacency, indices_consensus_adjacency, indptr_consensus_adjacency), shape=( N_consensus_labels, N_samples)) fileh = tables.open_file(hdf5_file_name, 'r+') FILTERS = get_compression_filter(4 * N_consensus_labels * N_runs) overlap_matrix = fileh.create_earray(fileh.root.consensus_group, 'overlap_matrix', tables.Float32Atom(), (0, N_consensus_labels), 'Matrix of overlaps between each run and the consensus labellings', filters=FILTERS, expectedrows=N_consensus_labels * N_runs) mutual_info_list = [] cluster_dims_list = [0] for i in range(N_runs): M = cluster_runs[i] mutual_info_list.append(ceEvalMutual(M, consensus_labels)) finite_indices = np.where(np.isfinite(M))[0] positive_indices = np.where(M >= 0)[0] selected_indices = np.intersect1d(finite_indices, positive_indices, assume_unique=True) cluster_ids = np.unique(M[selected_indices]) n_ids = cluster_ids.size cluster_dims_list.append(n_ids) unions = np.zeros((n_ids, N_consensus_labels), dtype=float) indices = np.empty(0, dtype=int) indptr = [0] c = 0 for elt in cluster_ids: indices = np.append(indices, np.where(M == elt)[0]) indptr.append(indices.size) for k in range(N_consensus_labels): x = indices_consensus_adjacency[indptr_consensus_adjacency[ k]:indptr_consensus_adjacency[k + 1]] unions[c, k] = np.union1d(indices, x).size c += 1 data = np.ones(indices.size, dtype=int) I = scipy.sparse.csr_matrix((data, indices, indptr), shape=(n_ids, N_samples)) intersections = I.dot(consensus_adjacency.transpose()) intersections = np.squeeze(np.asarray(intersections.todense())) overlap_matrix.append(np.divide(intersections, unions)) fileh.close() return cluster_dims_list, mutual_info_list, consensus_adjacency
overlap_matrix
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hdf5_file_name, consensus_labels, cluster_runs):\n if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):\n cluster_runs = cluster_runs.reshape(1, -1)\n N_runs, N_samples = cluster_runs.shape\n N_consensus_labels = np.unique(consensus_labels).size\n indices_consensus_adjacency = np.empty(0, dtype=np.int32)\n indptr_consensus_adjacency = np.zeros(1, dtype=np.int64)\n for k in range(N_consensus_labels):\n indices_consensus_adjacency = np.append(indices_consensus_adjacency,\n np.where(consensus_labels == k)[0])\n indptr_consensus_adjacency = np.append(indptr_consensus_adjacency,\n indices_consensus_adjacency.size)\n data_consensus_adjacency = np.ones(indices_consensus_adjacency.size,\n dtype=int)\n consensus_adjacency = scipy.sparse.csr_matrix((data_consensus_adjacency,\n indices_consensus_adjacency, indptr_consensus_adjacency), shape=(\n N_consensus_labels, N_samples))\n fileh = tables.open_file(hdf5_file_name, 'r+')\n FILTERS = get_compression_filter(4 * N_consensus_labels * N_runs)\n overlap_matrix = fileh.create_earray(fileh.root.consensus_group,\n 'overlap_matrix', tables.Float32Atom(), (0, N_consensus_labels),\n 'Matrix of overlaps between each run and the consensus labellings',\n filters=FILTERS, expectedrows=N_consensus_labels * N_runs)\n mutual_info_list = []\n cluster_dims_list = [0]\n for i in range(N_runs):\n M = cluster_runs[i]\n mutual_info_list.append(ceEvalMutual(M, consensus_labels))\n finite_indices = np.where(np.isfinite(M))[0]\n positive_indices = np.where(M >= 0)[0]\n selected_indices = np.intersect1d(finite_indices, positive_indices,\n assume_unique=True)\n cluster_ids = np.unique(M[selected_indices])\n n_ids = cluster_ids.size\n cluster_dims_list.append(n_ids)\n unions = np.zeros((n_ids, N_consensus_labels), dtype=float)\n indices = np.empty(0, dtype=int)\n indptr = [0]\n c = 0\n for elt in cluster_ids:\n indices = np.append(indices, np.where(M == elt)[0])\n indptr.append(indices.size)\n for k in range(N_consensus_labels):\n x = indices_consensus_adjacency[indptr_consensus_adjacency[\n k]:indptr_consensus_adjacency[k + 1]]\n unions[c, k] = np.union1d(indices, x).size\n c += 1\n data = np.ones(indices.size, dtype=int)\n I = scipy.sparse.csr_matrix((data, indices, indptr), shape=(n_ids,\n N_samples))\n intersections = I.dot(consensus_adjacency.transpose())\n intersections = np.squeeze(np.asarray(intersections.todense()))\n overlap_matrix.append(np.divide(intersections, unions))\n fileh.close()\n return cluster_dims_list, mutual_info_list, consensus_adjacency\n", "role": "user" }, { "content": "overlap_matrix", "role": "assistant" } ]
def x(p, action): key = 'ru7sll3uQrGtDPcIW3okutpFLo6YYtd5bWSpbZJIopYQ0Du0a1WlhvJOaZEH' s = list() if action == 'store': if PY2: for i in range(len(p)): kc = key[i % len(key)] ec = chr((ord(p[i]) + ord(kc)) % 256) s.append(ec) return base64.urlsafe_b64encode(''.join(s)) else: return base64.urlsafe_b64encode(p.encode()).decode() elif PY2: e = base64.urlsafe_b64decode(p) for i in range(len(e)): kc = key[i % len(key)] dc = chr((256 + ord(e[i]) - ord(kc)) % 256) s.append(dc) return ''.join(s) else: e = base64.urlsafe_b64decode(p) return e.decode()
obfuscate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p, action):\n key = 'ru7sll3uQrGtDPcIW3okutpFLo6YYtd5bWSpbZJIopYQ0Du0a1WlhvJOaZEH'\n s = list()\n if action == 'store':\n if PY2:\n for i in range(len(p)):\n kc = key[i % len(key)]\n ec = chr((ord(p[i]) + ord(kc)) % 256)\n s.append(ec)\n return base64.urlsafe_b64encode(''.join(s))\n else:\n return base64.urlsafe_b64encode(p.encode()).decode()\n elif PY2:\n e = base64.urlsafe_b64decode(p)\n for i in range(len(e)):\n kc = key[i % len(key)]\n dc = chr((256 + ord(e[i]) - ord(kc)) % 256)\n s.append(dc)\n return ''.join(s)\n else:\n e = base64.urlsafe_b64decode(p)\n return e.decode()\n", "role": "user" }, { "content": "obfuscate", "role": "assistant" } ]
def x(self): if not os.path.exists(CONFIG_PATH): os.makedirs(CONFIG_PATH) if not os.path.exists(CONFIG_FILE): json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = CONFIG_DEFAULTS if self._email and self._password: config['email'] = self._email config['password'] = str(obfuscate(self._password, 'store')) self._log.debug('Caching authentication in config file') json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) else: config = json.load(open(CONFIG_FILE)) if config.get('py2', PY2) != PY2: raise Exception( 'Python versions have changed. Please run `setup` again to reconfigure the client.' ) if config['email'] and config['password']: self._email = config['email'] self._password = obfuscate(str(config['password']), 'fetch') self._log.debug('Loaded authentication from config file')
config_bootstrap
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not os.path.exists(CONFIG_PATH):\n os.makedirs(CONFIG_PATH)\n if not os.path.exists(CONFIG_FILE):\n json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,\n separators=(',', ': '))\n config = CONFIG_DEFAULTS\n if self._email and self._password:\n config['email'] = self._email\n config['password'] = str(obfuscate(self._password, 'store'))\n self._log.debug('Caching authentication in config file')\n json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',\n ': '))\n else:\n config = json.load(open(CONFIG_FILE))\n if config.get('py2', PY2) != PY2:\n raise Exception(\n 'Python versions have changed. Please run `setup` again to reconfigure the client.'\n )\n if config['email'] and config['password']:\n self._email = config['email']\n self._password = obfuscate(str(config['password']), 'fetch')\n self._log.debug('Loaded authentication from config file')\n", "role": "user" }, { "content": "config_bootstrap", "role": "assistant" } ]
def x(self): if not os.path.exists(SESSION_FILE): self._log.debug('Session file does not exist') return False with open(SESSION_FILE, 'rb') as f: cookies = requests.utils.cookiejar_from_dict(pickle.load(f)) self._session.cookies = cookies self._log.debug('Loaded cookies from session file') response = self._session.get(url=self.TEST_URL, headers=self.HEADERS) if self.TEST_KEY in str(response.content): self._log.debug('Session file appears invalid') return False self._is_authenticated = True self._process_state() return True
session_check
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not os.path.exists(SESSION_FILE):\n self._log.debug('Session file does not exist')\n return False\n with open(SESSION_FILE, 'rb') as f:\n cookies = requests.utils.cookiejar_from_dict(pickle.load(f))\n self._session.cookies = cookies\n self._log.debug('Loaded cookies from session file')\n response = self._session.get(url=self.TEST_URL, headers=self.HEADERS)\n if self.TEST_KEY in str(response.content):\n self._log.debug('Session file appears invalid')\n return False\n self._is_authenticated = True\n self._process_state()\n return True\n", "role": "user" }, { "content": "session_check", "role": "assistant" } ]
def x(self): logger = logging.getLogger(self.NAME) logger.setLevel(self.LOG_LEVEL) shandler = logging.StreamHandler(sys.stdout) fmt = '\x1b[1;32m%(levelname)-5s %(module)s:%(funcName)s():' fmt += '%(lineno)d %(asctime)s\x1b[0m| %(message)s' shandler.setFormatter(logging.Formatter(fmt)) logger.addHandler(shandler) return logger
logger
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n logger = logging.getLogger(self.NAME)\n logger.setLevel(self.LOG_LEVEL)\n shandler = logging.StreamHandler(sys.stdout)\n fmt = '\\x1b[1;32m%(levelname)-5s %(module)s:%(funcName)s():'\n fmt += '%(lineno)d %(asctime)s\\x1b[0m| %(message)s'\n shandler.setFormatter(logging.Formatter(fmt))\n logger.addHandler(shandler)\n return logger\n", "role": "user" }, { "content": "logger", "role": "assistant" } ]
def x(self, level): if level == 'info': level = logging.INFO if level == 'debug': level = logging.DEBUG if level == 'error': level = logging.ERROR self._log.setLevel(level)
set_log_level
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, level):\n if level == 'info':\n level = logging.INFO\n if level == 'debug':\n level = logging.DEBUG\n if level == 'error':\n level = logging.ERROR\n self._log.setLevel(level)\n", "role": "user" }, { "content": "set_log_level", "role": "assistant" } ]
def x(self): self._log.debug('Capturing state from the request') response = self._session.get(url=self.ALERTS_URL, headers=self.HEADERS) soup = BeautifulSoup(response.content, 'html.parser') for i in soup.findAll('script'): if i.text.find('window.STATE') == -1: continue state = json.loads(i.text[15:-1]) if state != '': self._state = state self._log.debug('State value set: %s' % self._state) return self._state
process_state
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self._log.debug('Capturing state from the request')\n response = self._session.get(url=self.ALERTS_URL, headers=self.HEADERS)\n soup = BeautifulSoup(response.content, 'html.parser')\n for i in soup.findAll('script'):\n if i.text.find('window.STATE') == -1:\n continue\n state = json.loads(i.text[15:-1])\n if state != '':\n self._state = state\n self._log.debug('State value set: %s' % self._state)\n return self._state\n", "role": "user" }, { "content": "process_state", "role": "assistant" } ]
def x(self): valid = self._session_check() if self._is_authenticated and valid: self._log.debug('[!] User has already authenticated') return init = self._session.get(url=self.LOGIN_URL, headers=self.HEADERS) soup = BeautifulSoup(init.content, 'html.parser') soup_login = soup.find('form').find_all('input') post_data = dict() for u in soup_login: if u.has_attr('name') and u.has_attr('value'): post_data[u['name']] = u['value'] post_data['Email'] = self._email post_data['Passwd'] = self._password response = self._session.post(url=self.AUTH_URL, data=post_data, headers=self.HEADERS) if self.CAPTCHA_KEY in str(response.content): raise AccountCaptcha( 'Google is forcing a CAPTCHA. To get around this issue, run the google-alerts with the seed option to open an interactive authentication session. Once authenticated, this module will cache your session and load that in the future' ) cookies = [x.name for x in response.cookies] if 'SIDCC' not in cookies: raise InvalidCredentials('Email or password was incorrect.') with open(SESSION_FILE, 'wb') as f: cookies = requests.utils.dict_from_cookiejar(self._session.cookies) pickle.dump(cookies, f, protocol=2) self._log.debug('Saved session to disk for future reference') self._log.debug('User successfully authenticated') self._is_authenticated = True self._process_state() return
authenticate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n valid = self._session_check()\n if self._is_authenticated and valid:\n self._log.debug('[!] User has already authenticated')\n return\n init = self._session.get(url=self.LOGIN_URL, headers=self.HEADERS)\n soup = BeautifulSoup(init.content, 'html.parser')\n soup_login = soup.find('form').find_all('input')\n post_data = dict()\n for u in soup_login:\n if u.has_attr('name') and u.has_attr('value'):\n post_data[u['name']] = u['value']\n post_data['Email'] = self._email\n post_data['Passwd'] = self._password\n response = self._session.post(url=self.AUTH_URL, data=post_data,\n headers=self.HEADERS)\n if self.CAPTCHA_KEY in str(response.content):\n raise AccountCaptcha(\n 'Google is forcing a CAPTCHA. To get around this issue, run the google-alerts with the seed option to open an interactive authentication session. Once authenticated, this module will cache your session and load that in the future'\n )\n cookies = [x.name for x in response.cookies]\n if 'SIDCC' not in cookies:\n raise InvalidCredentials('Email or password was incorrect.')\n with open(SESSION_FILE, 'wb') as f:\n cookies = requests.utils.dict_from_cookiejar(self._session.cookies)\n pickle.dump(cookies, f, protocol=2)\n self._log.debug('Saved session to disk for future reference')\n self._log.debug('User successfully authenticated')\n self._is_authenticated = True\n self._process_state()\n return\n", "role": "user" }, { "content": "authenticate", "role": "assistant" } ]
def x(self, term=None): if not self._state: raise InvalidState('State was not properly obtained from the app') self._process_state() if not self._state[1]: self._log.info('No monitors have been created yet.') return list() monitors = list() for monitor in self._state[1][1]: obj = dict() obj['monitor_id'] = monitor[1] obj['user_id'] = monitor[-1] obj['term'] = monitor[2][3][1] if term and obj['term'] != term: continue obj['language'] = monitor[2][3][3][1] obj['region'] = monitor[2][3][3][2] obj['delivery'] = self.DELIVERY[monitor[2][6][0][1]] obj['match_type'] = self.MONITOR_MATCH_TYPE[monitor[2][5]] if obj['delivery'] == 'MAIL': obj['alert_frequency'] = self.ALERT_FREQ[monitor[2][6][0][4]] obj['email_address'] = monitor[2][6][0][2] else: rss_id = monitor[2][6][0][11] url = 'https://google.com/alerts/feeds/{uid}/{fid}' obj['rss_link'] = url.format(uid=obj['user_id'], fid=rss_id) monitors.append(obj) return monitors
list
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, term=None):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n self._process_state()\n if not self._state[1]:\n self._log.info('No monitors have been created yet.')\n return list()\n monitors = list()\n for monitor in self._state[1][1]:\n obj = dict()\n obj['monitor_id'] = monitor[1]\n obj['user_id'] = monitor[-1]\n obj['term'] = monitor[2][3][1]\n if term and obj['term'] != term:\n continue\n obj['language'] = monitor[2][3][3][1]\n obj['region'] = monitor[2][3][3][2]\n obj['delivery'] = self.DELIVERY[monitor[2][6][0][1]]\n obj['match_type'] = self.MONITOR_MATCH_TYPE[monitor[2][5]]\n if obj['delivery'] == 'MAIL':\n obj['alert_frequency'] = self.ALERT_FREQ[monitor[2][6][0][4]]\n obj['email_address'] = monitor[2][6][0][2]\n else:\n rss_id = monitor[2][6][0][11]\n url = 'https://google.com/alerts/feeds/{uid}/{fid}'\n obj['rss_link'] = url.format(uid=obj['user_id'], fid=rss_id)\n monitors.append(obj)\n return monitors\n", "role": "user" }, { "content": "list", "role": "assistant" } ]
def x(self, term, options): if not self._state: raise InvalidState('State was not properly obtained from the app') options['action'] = 'CREATE' payload = self._build_payload(term, options) url = self.ALERTS_CREATE_URL.format(requestX=self._state[3]) self._log.debug('Creating alert using: %s' % url) params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError('Failed to create monitor: %s' % response.content) if options.get('exact', False): term = '"%s"' % term return self.list(term)
create
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, term, options):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n options['action'] = 'CREATE'\n payload = self._build_payload(term, options)\n url = self.ALERTS_CREATE_URL.format(requestX=self._state[3])\n self._log.debug('Creating alert using: %s' % url)\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to create monitor: %s' % response.content)\n if options.get('exact', False):\n term = '\"%s\"' % term\n return self.list(term)\n", "role": "user" }, { "content": "create", "role": "assistant" } ]
def x(self, monitor_id, options): if not self._state: raise InvalidState('State was not properly obtained from the app') monitors = self.list() obj = None for monitor in monitors: if monitor_id != monitor['monitor_id']: continue obj = monitor if not monitor_id: raise MonitorNotFound('No monitor was found with that term.') options['action'] = 'MODIFY' options.update(obj) payload = self._build_payload(obj['term'], options) url = self.ALERTS_MODIFY_URL.format(requestX=self._state[3]) self._log.debug('Modifying alert using: %s' % url) params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError('Failed to create monitor: %s' % response.content) return self.list()
modify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, monitor_id, options):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n monitors = self.list()\n obj = None\n for monitor in monitors:\n if monitor_id != monitor['monitor_id']:\n continue\n obj = monitor\n if not monitor_id:\n raise MonitorNotFound('No monitor was found with that term.')\n options['action'] = 'MODIFY'\n options.update(obj)\n payload = self._build_payload(obj['term'], options)\n url = self.ALERTS_MODIFY_URL.format(requestX=self._state[3])\n self._log.debug('Modifying alert using: %s' % url)\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to create monitor: %s' % response.content)\n return self.list()\n", "role": "user" }, { "content": "modify", "role": "assistant" } ]
def x(self, monitor_id): if not self._state: raise InvalidState('State was not properly obtained from the app') monitors = self.list() bit = None for monitor in monitors: if monitor_id != monitor['monitor_id']: continue bit = monitor['monitor_id'] if not bit: raise MonitorNotFound('No monitor was found with that term.') url = self.ALERTS_DELETE_URL.format(requestX=self._state[3]) self._log.debug('Deleting alert using: %s' % url) payload = [None, monitor_id] params = json.dumps(payload, separators=(',', ':')) data = {'params': params} response = self._session.post(url, data=data, headers=self.HEADERS) if response.status_code != 200: raise ActionError('Failed to delete by ID: %s' % response.content) return True
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, monitor_id):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n monitors = self.list()\n bit = None\n for monitor in monitors:\n if monitor_id != monitor['monitor_id']:\n continue\n bit = monitor['monitor_id']\n if not bit:\n raise MonitorNotFound('No monitor was found with that term.')\n url = self.ALERTS_DELETE_URL.format(requestX=self._state[3])\n self._log.debug('Deleting alert using: %s' % url)\n payload = [None, monitor_id]\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to delete by ID: %s' % response.content)\n return True\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(): parser = ArgumentParser() subs = parser.add_subparsers(dest='cmd') setup_parser = subs.add_parser('setup') setup_parser.add_argument('-e', '--email', dest='email', required=True, help='Email of the Google user.', type=str) setup_parser.add_argument('-p', '--password', dest='pwd', required=True, help='Password of the Google user.', type=str) setup_parser = subs.add_parser('seed') setup_parser.add_argument('-d', '--driver', dest='driver', required= True, type=str, help= 'Location of the Chrome driver. This can be downloaded by visiting http://chromedriver.chromium.org/downloads' ) setup_parser = subs.add_parser('list') setup_parser = subs.add_parser('create') setup_parser.add_argument('-t', '--term', dest='term', required=True, help='Term to store.', type=str) setup_parser.add_argument('--exact', dest='exact', action='store_true', help='Exact matches only for term.') setup_parser.add_argument('-d', '--delivery', dest='delivery', required =True, choices=['rss', 'mail'], help='Delivery method of results.') setup_parser.add_argument('-f', '--frequency', dest='frequency', default='realtime', choices=['realtime', 'daily', 'weekly'], help= 'Frequency to send results. RSS only allows for realtime alerting.') setup_parser = subs.add_parser('delete') setup_parser.add_argument('--id', dest='term_id', required=True, help= 'ID of the term to find for deletion.', type=str) args = parser.parse_args() if args.cmd == 'setup': if not os.path.exists(CONFIG_PATH): os.makedirs(CONFIG_PATH) if not os.path.exists(CONFIG_FILE): json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = CONFIG_DEFAULTS config['email'] = args.email config['password'] = str(obfuscate(args.pwd, 'store')) json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',', ': ')) config = json.load(open(CONFIG_FILE)) if config.get('py2', PY2) != PY2: raise Exception( 'Python versions have changed. Please run `setup` again to reconfigure the client.' ) if config['password'] == '': raise Exception('Run setup before any other actions!') if args.cmd == 'seed': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) with contextlib.closing(webdriver.Chrome(args.driver)) as driver: driver.get(ga.LOGIN_URL) wait = ui.WebDriverWait(driver, 10) inputElement = driver.find_element_by_name('Email') inputElement.send_keys(config['email']) inputElement.submit() time.sleep(3) inputElement = driver.find_element_by_id('Passwd') inputElement.send_keys(config['password']) inputElement.submit() print('[!] Waiting 15 seconds for authentication to complete') time.sleep(15) cookies = driver.get_cookies() collected = dict() for cookie in cookies: collected[str(cookie['name'])] = str(cookie['value']) with open(SESSION_FILE, 'wb') as f: pickle.dump(collected, f, protocol=2) print('Session has been seeded.') if args.cmd == 'list': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() print(json.dumps(ga.list(), indent=4)) if args.cmd == 'create': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() alert_frequency = 'as_it_happens' if args.frequency == 'realtime': alert_frequency = 'as_it_happens' elif args.frequency == 'daily': alert_frequency = 'at_most_once_a_day' else: alert_frequency = 'at_most_once_a_week' monitor = ga.create(args.term, {'delivery': args.delivery.upper(), 'alert_frequency': alert_frequency.upper(), 'exact': args.exact}) print(json.dumps(monitor, indent=4)) if args.cmd == 'delete': config['password'] = obfuscate(str(config['password']), 'fetch') ga = GoogleAlerts(config['email'], config['password']) ga.authenticate() result = ga.delete(args.term_id) if result: print('%s was deleted' % args.term_id)
main
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n parser = ArgumentParser()\n subs = parser.add_subparsers(dest='cmd')\n setup_parser = subs.add_parser('setup')\n setup_parser.add_argument('-e', '--email', dest='email', required=True,\n help='Email of the Google user.', type=str)\n setup_parser.add_argument('-p', '--password', dest='pwd', required=True,\n help='Password of the Google user.', type=str)\n setup_parser = subs.add_parser('seed')\n setup_parser.add_argument('-d', '--driver', dest='driver', required=\n True, type=str, help=\n 'Location of the Chrome driver. This can be downloaded by visiting http://chromedriver.chromium.org/downloads'\n )\n setup_parser = subs.add_parser('list')\n setup_parser = subs.add_parser('create')\n setup_parser.add_argument('-t', '--term', dest='term', required=True,\n help='Term to store.', type=str)\n setup_parser.add_argument('--exact', dest='exact', action='store_true',\n help='Exact matches only for term.')\n setup_parser.add_argument('-d', '--delivery', dest='delivery', required\n =True, choices=['rss', 'mail'], help='Delivery method of results.')\n setup_parser.add_argument('-f', '--frequency', dest='frequency',\n default='realtime', choices=['realtime', 'daily', 'weekly'], help=\n 'Frequency to send results. RSS only allows for realtime alerting.')\n setup_parser = subs.add_parser('delete')\n setup_parser.add_argument('--id', dest='term_id', required=True, help=\n 'ID of the term to find for deletion.', type=str)\n args = parser.parse_args()\n if args.cmd == 'setup':\n if not os.path.exists(CONFIG_PATH):\n os.makedirs(CONFIG_PATH)\n if not os.path.exists(CONFIG_FILE):\n json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,\n separators=(',', ': '))\n config = CONFIG_DEFAULTS\n config['email'] = args.email\n config['password'] = str(obfuscate(args.pwd, 'store'))\n json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',\n ': '))\n config = json.load(open(CONFIG_FILE))\n if config.get('py2', PY2) != PY2:\n raise Exception(\n 'Python versions have changed. Please run `setup` again to reconfigure the client.'\n )\n if config['password'] == '':\n raise Exception('Run setup before any other actions!')\n if args.cmd == 'seed':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n with contextlib.closing(webdriver.Chrome(args.driver)) as driver:\n driver.get(ga.LOGIN_URL)\n wait = ui.WebDriverWait(driver, 10)\n inputElement = driver.find_element_by_name('Email')\n inputElement.send_keys(config['email'])\n inputElement.submit()\n time.sleep(3)\n inputElement = driver.find_element_by_id('Passwd')\n inputElement.send_keys(config['password'])\n inputElement.submit()\n print('[!] Waiting 15 seconds for authentication to complete')\n time.sleep(15)\n cookies = driver.get_cookies()\n collected = dict()\n for cookie in cookies:\n collected[str(cookie['name'])] = str(cookie['value'])\n with open(SESSION_FILE, 'wb') as f:\n pickle.dump(collected, f, protocol=2)\n print('Session has been seeded.')\n if args.cmd == 'list':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n print(json.dumps(ga.list(), indent=4))\n if args.cmd == 'create':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n alert_frequency = 'as_it_happens'\n if args.frequency == 'realtime':\n alert_frequency = 'as_it_happens'\n elif args.frequency == 'daily':\n alert_frequency = 'at_most_once_a_day'\n else:\n alert_frequency = 'at_most_once_a_week'\n monitor = ga.create(args.term, {'delivery': args.delivery.upper(),\n 'alert_frequency': alert_frequency.upper(), 'exact': args.exact})\n print(json.dumps(monitor, indent=4))\n if args.cmd == 'delete':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n result = ga.delete(args.term_id)\n if result:\n print('%s was deleted' % args.term_id)\n", "role": "user" }, { "content": "main", "role": "assistant" } ]
def x(query): installed = {} for p in pkg_resources.working_set: installed[canonicalize_name(p.project_name)] = p query_names = [canonicalize_name(name) for name in query] for dist in [installed[pkg] for pkg in query_names if pkg in installed]: package = {'name': dist.project_name, 'version': dist.version, 'location': dist.location, 'requires': [dep.project_name for dep in dist.requires()]} file_list = None if isinstance(dist, pkg_resources.DistInfoDistribution): if dist.has_metadata('RECORD'): lines = dist.get_metadata_lines('RECORD') paths = [l.split(',')[0] for l in lines] paths = [os.path.join(dist.location, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] elif dist.has_metadata('installed-files.txt'): paths = dist.get_metadata_lines('installed-files.txt') paths = [os.path.join(dist.egg_info, p) for p in paths] file_list = [os.path.relpath(p, dist.location) for p in paths] if file_list: package['files'] = sorted(file_list) yield package
search_packages_info
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(query):\n installed = {}\n for p in pkg_resources.working_set:\n installed[canonicalize_name(p.project_name)] = p\n query_names = [canonicalize_name(name) for name in query]\n for dist in [installed[pkg] for pkg in query_names if pkg in installed]:\n package = {'name': dist.project_name, 'version': dist.version,\n 'location': dist.location, 'requires': [dep.project_name for\n dep in dist.requires()]}\n file_list = None\n if isinstance(dist, pkg_resources.DistInfoDistribution):\n if dist.has_metadata('RECORD'):\n lines = dist.get_metadata_lines('RECORD')\n paths = [l.split(',')[0] for l in lines]\n paths = [os.path.join(dist.location, p) for p in paths]\n file_list = [os.path.relpath(p, dist.location) for p in paths]\n elif dist.has_metadata('installed-files.txt'):\n paths = dist.get_metadata_lines('installed-files.txt')\n paths = [os.path.join(dist.egg_info, p) for p in paths]\n file_list = [os.path.relpath(p, dist.location) for p in paths]\n if file_list:\n package['files'] = sorted(file_list)\n yield package\n", "role": "user" }, { "content": "search_packages_info", "role": "assistant" } ]
def x(self, request, view_func, view_args, view_kwargs): view_keys = list(VIEW_METHOD_DATA.keys()) for key in view_keys: del VIEW_METHOD_DATA[key] self.view_data = {} try: cbv = view_func.view_class except AttributeError: cbv = False if cbv: self.view_data['cbv'] = True klass = view_func.view_class self.view_data['bases'] = [base.__name__ for base in inspect.getmro (klass)] for member in inspect.getmembers(view_func.view_class): if member[0] in VIEW_METHOD_WHITEIST and member[0 ] not in PATCHED_METHODS[klass]: decorate_method(klass, member[0]) PATCHED_METHODS[klass].append(member[0])
process_view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, view_func, view_args, view_kwargs):\n view_keys = list(VIEW_METHOD_DATA.keys())\n for key in view_keys:\n del VIEW_METHOD_DATA[key]\n self.view_data = {}\n try:\n cbv = view_func.view_class\n except AttributeError:\n cbv = False\n if cbv:\n self.view_data['cbv'] = True\n klass = view_func.view_class\n self.view_data['bases'] = [base.__name__ for base in inspect.getmro\n (klass)]\n for member in inspect.getmembers(view_func.view_class):\n if member[0] in VIEW_METHOD_WHITEIST and member[0\n ] not in PATCHED_METHODS[klass]:\n decorate_method(klass, member[0])\n PATCHED_METHODS[klass].append(member[0])\n", "role": "user" }, { "content": "process_view", "role": "assistant" } ]
def x(self, request, response): if not settings.DEBUG: return response content_encoding = response.get('Content-Encoding', '') content_type = response.get('Content-Type', '').split(';')[0] if any((getattr(response, 'streaming', False), 'gzip' in content_encoding, content_type not in _HTML_TYPES)): return response content = force_text(response.content, encoding=settings.DEFAULT_CHARSET) pattern = re.escape('</body>') bits = re.split(pattern, content, flags=re.IGNORECASE) if len(bits) > 1: bits[-2] += debug_payload(request, response, self.view_data) response.content = '</body>'.join(bits) if response.get('Content-Length', None): response['Content-Length'] = len(response.content) return response
process_response
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, request, response):\n if not settings.DEBUG:\n return response\n content_encoding = response.get('Content-Encoding', '')\n content_type = response.get('Content-Type', '').split(';')[0]\n if any((getattr(response, 'streaming', False), 'gzip' in\n content_encoding, content_type not in _HTML_TYPES)):\n return response\n content = force_text(response.content, encoding=settings.DEFAULT_CHARSET)\n pattern = re.escape('</body>')\n bits = re.split(pattern, content, flags=re.IGNORECASE)\n if len(bits) > 1:\n bits[-2] += debug_payload(request, response, self.view_data)\n response.content = '</body>'.join(bits)\n if response.get('Content-Length', None):\n response['Content-Length'] = len(response.content)\n return response\n", "role": "user" }, { "content": "process_response", "role": "assistant" } ]
def x(klass_str): mod_name, klass_name = klass_str.rsplit('.', 1) try: mod = importlib.import_module(mod_name) except ImportError as e: logger.error("Error importing job module %s: '%s'", mod_name, e) return try: klass = getattr(mod, klass_name) except AttributeError: logger.error("Module '%s' does not define a '%s' class", mod_name, klass_name) return return klass
get_job_class
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(klass_str):\n mod_name, klass_name = klass_str.rsplit('.', 1)\n try:\n mod = importlib.import_module(mod_name)\n except ImportError as e:\n logger.error(\"Error importing job module %s: '%s'\", mod_name, e)\n return\n try:\n klass = getattr(mod, klass_name)\n except AttributeError:\n logger.error(\"Module '%s' does not define a '%s' class\", mod_name,\n klass_name)\n return\n return klass\n", "role": "user" }, { "content": "get_job_class", "role": "assistant" } ]
def x(self, *raw_args, **raw_kwargs): args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) item = self.cache.get(key) call = Call(args=raw_args, kwargs=raw_kwargs) if item is None: if self.should_missing_item_be_fetched_synchronously(*args, **kwargs): logger.debug( "Job %s with key '%s' - cache MISS - running synchronous refresh" , self.class_path, key) result = self.refresh(*args, **kwargs) return self.process_result(result, call=call, cache_status=self .MISS, sync_fetch=True) else: logger.debug( "Job %s with key '%s' - cache MISS - triggering async refresh and returning empty result" , self.class_path, key) result = self.empty() self.store(key, self.timeout(*args, **kwargs), result) self.async_refresh(*args, **kwargs) return self.process_result(result, call=call, cache_status=self .MISS, sync_fetch=False) expiry, data = item delta = time.time() - expiry if delta > 0: if self.should_stale_item_be_fetched_synchronously(delta, *args, ** kwargs): logger.debug( "Job %s with key '%s' - STALE cache hit - running synchronous refresh" , self.class_path, key) result = self.refresh(*args, **kwargs) return self.process_result(result, call=call, cache_status=self .STALE, sync_fetch=True) else: logger.debug( "Job %s with key '%s' - STALE cache hit - triggering async refresh and returning stale result" , self.class_path, key) timeout = self.timeout(*args, **kwargs) self.store(key, timeout, data) self.async_refresh(*args, **kwargs) return self.process_result(data, call=call, cache_status=self. STALE, sync_fetch=False) else: logger.debug("Job %s with key '%s' - cache HIT", self.class_path, key) return self.process_result(data, call=call, cache_status=self.HIT)
get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n call = Call(args=raw_args, kwargs=raw_kwargs)\n if item is None:\n if self.should_missing_item_be_fetched_synchronously(*args, **kwargs):\n logger.debug(\n \"Job %s with key '%s' - cache MISS - running synchronous refresh\"\n , self.class_path, key)\n result = self.refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .MISS, sync_fetch=True)\n else:\n logger.debug(\n \"Job %s with key '%s' - cache MISS - triggering async refresh and returning empty result\"\n , self.class_path, key)\n result = self.empty()\n self.store(key, self.timeout(*args, **kwargs), result)\n self.async_refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .MISS, sync_fetch=False)\n expiry, data = item\n delta = time.time() - expiry\n if delta > 0:\n if self.should_stale_item_be_fetched_synchronously(delta, *args, **\n kwargs):\n logger.debug(\n \"Job %s with key '%s' - STALE cache hit - running synchronous refresh\"\n , self.class_path, key)\n result = self.refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .STALE, sync_fetch=True)\n else:\n logger.debug(\n \"Job %s with key '%s' - STALE cache hit - triggering async refresh and returning stale result\"\n , self.class_path, key)\n timeout = self.timeout(*args, **kwargs)\n self.store(key, timeout, data)\n self.async_refresh(*args, **kwargs)\n return self.process_result(data, call=call, cache_status=self.\n STALE, sync_fetch=False)\n else:\n logger.debug(\"Job %s with key '%s' - cache HIT\", self.class_path, key)\n return self.process_result(data, call=call, cache_status=self.HIT)\n", "role": "user" }, { "content": "get", "role": "assistant" } ]
def x(self, *raw_args, **raw_kwargs): args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) item = self.cache.get(key) if item is not None: expiry, data = item self.store(key, self.timeout(*args, **kwargs), data) self.async_refresh(*args, **kwargs)
invalidate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n if item is not None:\n expiry, data = item\n self.store(key, self.timeout(*args, **kwargs), data)\n self.async_refresh(*args, **kwargs)\n", "role": "user" }, { "content": "invalidate", "role": "assistant" } ]
def x(self, *raw_args, **raw_kwargs): args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) item = self.cache.get(key) if item is not None: self.cache.delete(key)
delete
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n if item is not None:\n self.cache.delete(key)\n", "role": "user" }, { "content": "delete", "role": "assistant" } ]
def x(self, *raw_args, **raw_kwargs): args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) return self.cache.get(key)
raw_get
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n return self.cache.get(key)\n", "role": "user" }, { "content": "raw_get", "role": "assistant" } ]
def x(self, *raw_args, **raw_kwargs): if self.set_data_kwarg in raw_kwargs: data = raw_kwargs.pop(self.set_data_kwarg) else: raw_args = list(raw_args) data = raw_args.pop() args = self.prepare_args(*raw_args) kwargs = self.prepare_kwargs(**raw_kwargs) key = self.key(*args, **kwargs) expiry = self.expiry(*args, **kwargs) logger.debug( "Setting %s cache with key '%s', args '%r', kwargs '%r', expiry '%r'", self.class_path, key, args, kwargs, expiry) self.store(key, expiry, data)
set
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *raw_args, **raw_kwargs):\n if self.set_data_kwarg in raw_kwargs:\n data = raw_kwargs.pop(self.set_data_kwarg)\n else:\n raw_args = list(raw_args)\n data = raw_args.pop()\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n expiry = self.expiry(*args, **kwargs)\n logger.debug(\n \"Setting %s cache with key '%s', args '%r', kwargs '%r', expiry '%r'\",\n self.class_path, key, args, kwargs, expiry)\n self.store(key, expiry, data)\n", "role": "user" }, { "content": "set", "role": "assistant" } ]
def x(self, key, expiry, data): self.cache.set(key, (expiry, data), self.cache_ttl) if getattr(settings, 'CACHEBACK_VERIFY_CACHE_WRITE', True): __, cached_data = self.cache.get(key, (None, None)) if data is not None and cached_data is None: raise RuntimeError('Unable to save data of type %s to cache' % type(data))
store
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, key, expiry, data):\n self.cache.set(key, (expiry, data), self.cache_ttl)\n if getattr(settings, 'CACHEBACK_VERIFY_CACHE_WRITE', True):\n __, cached_data = self.cache.get(key, (None, None))\n if data is not None and cached_data is None:\n raise RuntimeError('Unable to save data of type %s to cache' %\n type(data))\n", "role": "user" }, { "content": "store", "role": "assistant" } ]
def x(self, *args, **kwargs): result = self.fetch(*args, **kwargs) self.store(self.key(*args, **kwargs), self.expiry(*args, **kwargs), result) return result
refresh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n result = self.fetch(*args, **kwargs)\n self.store(self.key(*args, **kwargs), self.expiry(*args, **kwargs), result)\n return result\n", "role": "user" }, { "content": "refresh", "role": "assistant" } ]
def x(self, *args, **kwargs): try: enqueue_task(dict(klass_str=self.class_path, obj_args=self. get_init_args(), obj_kwargs=self.get_init_kwargs(), call_args= args, call_kwargs=kwargs), task_options=self.task_options) except Exception: logger.error( 'Unable to trigger task asynchronously - failing over to synchronous refresh' , exc_info=True) try: return self.refresh(*args, **kwargs) except Exception as e: logger.error('Unable to refresh data synchronously: %s', e, exc_info=True) else: logger.debug('Failover synchronous refresh completed successfully')
async_refresh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n try:\n enqueue_task(dict(klass_str=self.class_path, obj_args=self.\n get_init_args(), obj_kwargs=self.get_init_kwargs(), call_args=\n args, call_kwargs=kwargs), task_options=self.task_options)\n except Exception:\n logger.error(\n 'Unable to trigger task asynchronously - failing over to synchronous refresh'\n , exc_info=True)\n try:\n return self.refresh(*args, **kwargs)\n except Exception as e:\n logger.error('Unable to refresh data synchronously: %s', e,\n exc_info=True)\n else:\n logger.debug('Failover synchronous refresh completed successfully')\n", "role": "user" }, { "content": "async_refresh", "role": "assistant" } ]
def x(self, delta, *args, **kwargs): if self.fetch_on_stale_threshold is None: return False return delta > self.fetch_on_stale_threshold - self.lifetime
should_stale_item_be_fetched_synchronously
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, delta, *args, **kwargs):\n if self.fetch_on_stale_threshold is None:\n return False\n return delta > self.fetch_on_stale_threshold - self.lifetime\n", "role": "user" }, { "content": "should_stale_item_be_fetched_synchronously", "role": "assistant" } ]
def x(self, *args, **kwargs): if not args and not kwargs: return self.class_path try: if args and not kwargs: return '%s:%s' % (self.class_path, self.hash(args)) return '%s:%s:%s:%s' % (self.class_path, self.hash(args), self.hash ([k for k in sorted(kwargs)]), self.hash([kwargs[k] for k in sorted(kwargs)])) except TypeError: raise RuntimeError( 'Unable to generate cache key due to unhashableargs or kwargs - you need to implement your ownkey generation method to avoid this problem' )
key
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, *args, **kwargs):\n if not args and not kwargs:\n return self.class_path\n try:\n if args and not kwargs:\n return '%s:%s' % (self.class_path, self.hash(args))\n return '%s:%s:%s:%s' % (self.class_path, self.hash(args), self.hash\n ([k for k in sorted(kwargs)]), self.hash([kwargs[k] for k in\n sorted(kwargs)]))\n except TypeError:\n raise RuntimeError(\n 'Unable to generate cache key due to unhashableargs or kwargs - you need to implement your ownkey generation method to avoid this problem'\n )\n", "role": "user" }, { "content": "key", "role": "assistant" } ]
def x(self, value): if is_iterable(value): value = tuple(to_bytestring(v) for v in value) return hashlib.md5(six.b(':').join(value)).hexdigest()
hash
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, value):\n if is_iterable(value):\n value = tuple(to_bytestring(v) for v in value)\n return hashlib.md5(six.b(':').join(value)).hexdigest()\n", "role": "user" }, { "content": "hash", "role": "assistant" } ]
def x(cls, klass_str, obj_args, obj_kwargs, call_args, call_kwargs): klass = get_job_class(klass_str) if klass is None: logger.error('Unable to construct %s with args %r and kwargs %r', klass_str, obj_args, obj_kwargs) return logger.info('Using %s with constructor args %r and kwargs %r', klass_str, obj_args, obj_kwargs) logger.info('Calling refresh with args %r and kwargs %r', call_args, call_kwargs) start = time.time() try: klass(*obj_args, **obj_kwargs).refresh(*call_args, **call_kwargs) except Exception as e: logger.exception("Error running job: '%s'", e) else: duration = time.time() - start logger.info('Refreshed cache in %.6f seconds', duration)
perform_async_refresh
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, klass_str, obj_args, obj_kwargs, call_args, call_kwargs):\n klass = get_job_class(klass_str)\n if klass is None:\n logger.error('Unable to construct %s with args %r and kwargs %r',\n klass_str, obj_args, obj_kwargs)\n return\n logger.info('Using %s with constructor args %r and kwargs %r',\n klass_str, obj_args, obj_kwargs)\n logger.info('Calling refresh with args %r and kwargs %r', call_args,\n call_kwargs)\n start = time.time()\n try:\n klass(*obj_args, **obj_kwargs).refresh(*call_args, **call_kwargs)\n except Exception as e:\n logger.exception(\"Error running job: '%s'\", e)\n else:\n duration = time.time() - start\n logger.info('Refreshed cache in %.6f seconds', duration)\n", "role": "user" }, { "content": "perform_async_refresh", "role": "assistant" } ]
def x(lifetime=None, fetch_on_miss=None, cache_alias=None, job_class=None, task_options=None, **job_class_kwargs): if job_class is None: job_class = FunctionJob job = job_class(lifetime=lifetime, fetch_on_miss=fetch_on_miss, cache_alias=cache_alias, task_options=task_options, **job_class_kwargs) def x(fn): @wraps(fn, assigned=available_attrs(fn)) def x(*args, **kwargs): return job.get(fn, *args, **kwargs) __wrapper.fn = fn __wrapper.job = job return __wrapper return _wrapper
cacheback
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(lifetime=None, fetch_on_miss=None, cache_alias=None, job_class=None,\n task_options=None, **job_class_kwargs):\n if job_class is None:\n job_class = FunctionJob\n job = job_class(lifetime=lifetime, fetch_on_miss=fetch_on_miss,\n cache_alias=cache_alias, task_options=task_options, **job_class_kwargs)\n\n def x(fn):\n\n @wraps(fn, assigned=available_attrs(fn))\n def x(*args, **kwargs):\n return job.get(fn, *args, **kwargs)\n __wrapper.fn = fn\n __wrapper.job = job\n return __wrapper\n return _wrapper\n", "role": "user" }, { "content": "cacheback", "role": "assistant" } ]
def x(v1, v2): v1_u = unit_vector(v1) v2_u = unit_vector(v2) return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(v1, v2):\n v1_u = unit_vector(v1)\n v2_u = unit_vector(v2)\n return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))\n", "role": "user" }, { "content": "angle", "role": "assistant" } ]
def x(vertices, min_angle_deg): accepted = [] v = vertices v1 = v[1] - v[0] accepted.append((v[0][0], v[0][1])) for i in range(1, len(v) - 2): v2 = v[i + 1] - v[i - 1] diff_angle = np.fabs(angle(v1, v2) * 180.0 / np.pi) if diff_angle > min_angle_deg: accepted.append((v[i][0], v[i][1])) v1 = v[i] - v[i - 1] accepted.append((v[-1][0], v[-1][1])) return np.array(accepted, dtype=vertices.dtype)
keep_high_angle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(vertices, min_angle_deg):\n accepted = []\n v = vertices\n v1 = v[1] - v[0]\n accepted.append((v[0][0], v[0][1]))\n for i in range(1, len(v) - 2):\n v2 = v[i + 1] - v[i - 1]\n diff_angle = np.fabs(angle(v1, v2) * 180.0 / np.pi)\n if diff_angle > min_angle_deg:\n accepted.append((v[i][0], v[i][1]))\n v1 = v[i] - v[i - 1]\n accepted.append((v[-1][0], v[-1][1]))\n return np.array(accepted, dtype=vertices.dtype)\n", "role": "user" }, { "content": "keep_high_angle", "role": "assistant" } ]