source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, value):
if self.exclusive:
if value <= self.minimum_value:
tpl = "'{value}' is lower or equal than minimum ('{min}')."
raise ValidationError(tpl.format(value=value, min=self.
minimum_value))
elif value < self.minimum_value:
raise ValidationError("'{value}' is lower than minimum ('{min}').".
format(value=value, min=self.minimum_value))
| validate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if self.exclusive:\n if value <= self.minimum_value:\n tpl = \"'{value}' is lower or equal than minimum ('{min}').\"\n raise ValidationError(tpl.format(value=value, min=self.\n minimum_value))\n elif value < self.minimum_value:\n raise ValidationError(\"'{value}' is lower than minimum ('{min}').\".\n format(value=value, min=self.minimum_value))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, field_schema):
field_schema['minimum'] = self.minimum_value
if self.exclusive:
field_schema['exclusiveMinimum'] = True
| modify_schema | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field_schema):\n field_schema['minimum'] = self.minimum_value\n if self.exclusive:\n field_schema['exclusiveMinimum'] = True\n",
"role": "user"
},
{
"content": "modify_schema",
"role": "assistant"
}
] |
def x(self, value):
if self.exclusive:
if value >= self.maximum_value:
tpl = "'{val}' is bigger or equal than maximum ('{max}')."
raise ValidationError(tpl.format(val=value, max=self.maximum_value)
)
elif value > self.maximum_value:
raise ValidationError("'{value}' is bigger than maximum ('{max}')."
.format(value=value, max=self.maximum_value))
| validate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if self.exclusive:\n if value >= self.maximum_value:\n tpl = \"'{val}' is bigger or equal than maximum ('{max}').\"\n raise ValidationError(tpl.format(val=value, max=self.maximum_value)\n )\n elif value > self.maximum_value:\n raise ValidationError(\"'{value}' is bigger than maximum ('{max}').\"\n .format(value=value, max=self.maximum_value))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, field_schema):
field_schema['maximum'] = self.maximum_value
if self.exclusive:
field_schema['exclusiveMaximum'] = True
| modify_schema | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field_schema):\n field_schema['maximum'] = self.maximum_value\n if self.exclusive:\n field_schema['exclusiveMaximum'] = True\n",
"role": "user"
},
{
"content": "modify_schema",
"role": "assistant"
}
] |
def x(self, value):
flags = self._calculate_flags()
try:
result = re.search(self.pattern, value, flags)
except TypeError as te:
raise ValidationError(*te.args)
if not result:
raise ValidationError(
'Value "{value}" did not match pattern "{pattern}".'.format(
value=value, pattern=self.pattern))
| validate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n flags = self._calculate_flags()\n try:\n result = re.search(self.pattern, value, flags)\n except TypeError as te:\n raise ValidationError(*te.args)\n if not result:\n raise ValidationError(\n 'Value \"{value}\" did not match pattern \"{pattern}\".'.format(\n value=value, pattern=self.pattern))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, field_schema):
field_schema['pattern'] = utilities.convert_python_regex_to_ecma(self.
pattern, self.flags)
| modify_schema | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field_schema):\n field_schema['pattern'] = utilities.convert_python_regex_to_ecma(self.\n pattern, self.flags)\n",
"role": "user"
},
{
"content": "modify_schema",
"role": "assistant"
}
] |
def x(self, value):
len_ = len(value)
if self.minimum_value is not None and len_ < self.minimum_value:
tpl = "Value '{val}' length is lower than allowed minimum '{min}'."
raise ValidationError(tpl.format(val=value, min=self.minimum_value))
if self.maximum_value is not None and len_ > self.maximum_value:
raise ValidationError(
"Value '{val}' length is bigger than allowed maximum '{max}'.".
format(val=value, max=self.maximum_value))
| validate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n len_ = len(value)\n if self.minimum_value is not None and len_ < self.minimum_value:\n tpl = \"Value '{val}' length is lower than allowed minimum '{min}'.\"\n raise ValidationError(tpl.format(val=value, min=self.minimum_value))\n if self.maximum_value is not None and len_ > self.maximum_value:\n raise ValidationError(\n \"Value '{val}' length is bigger than allowed maximum '{max}'.\".\n format(val=value, max=self.maximum_value))\n",
"role": "user"
},
{
"content": "validate",
"role": "assistant"
}
] |
def x(self, field_schema):
if self.minimum_value:
field_schema['minLength'] = self.minimum_value
if self.maximum_value:
field_schema['maxLength'] = self.maximum_value
| modify_schema | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, field_schema):\n if self.minimum_value:\n field_schema['minLength'] = self.minimum_value\n if self.maximum_value:\n field_schema['maxLength'] = self.maximum_value\n",
"role": "user"
},
{
"content": "modify_schema",
"role": "assistant"
}
] |
def x(model):
model.validate()
resp = {}
for _, name, field in model.iterate_with_name():
value = field.__get__(model)
if value is None:
continue
value = field.to_struct(value)
resp[name] = value
return resp
| to_struct | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(model):\n model.validate()\n resp = {}\n for _, name, field in model.iterate_with_name():\n value = field.__get__(model)\n if value is None:\n continue\n value = field.to_struct(value)\n resp[name] = value\n return resp\n",
"role": "user"
},
{
"content": "to_struct",
"role": "assistant"
}
] |
def x(self, argv):
parser = self.create_parser(argv[0], argv[1])
args = parser.parse_args(argv[2:])
handle_default_options(args)
try:
self.execute(args)
except Exception as e:
try:
fallback_stderr = OutputWrapper(sys.stderr, self.style.ERROR)
except:
fallback_stderr = self.stdout
stderr = getattr(self, 'stderr', fallback_stderr)
if args.traceback:
stderr.write(traceback.format_exc())
else:
stderr.write('%s: %s' % (e.__class__.__name__, e))
sys.exit(1)
| run_from_argv | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, argv):\n parser = self.create_parser(argv[0], argv[1])\n args = parser.parse_args(argv[2:])\n handle_default_options(args)\n try:\n self.execute(args)\n except Exception as e:\n try:\n fallback_stderr = OutputWrapper(sys.stderr, self.style.ERROR)\n except:\n fallback_stderr = self.stdout\n stderr = getattr(self, 'stderr', fallback_stderr)\n if args.traceback:\n stderr.write(traceback.format_exc())\n else:\n stderr.write('%s: %s' % (e.__class__.__name__, e))\n sys.exit(1)\n",
"role": "user"
},
{
"content": "run_from_argv",
"role": "assistant"
}
] |
def x(self, prog_name, subcommand):
parser = argparse.ArgumentParser(prog='%s %s' % (prog_name, subcommand),
description=self.help)
parser.add_argument('-v', '--verbosity', action='store', default=1,
type=int, choices=range(4), help=
'Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output'
),
parser.add_argument('--settings', help=
'The Python path to a settings module, e.g. "myproject.settings.main". If this isn\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.'
),
parser.add_argument('--pythonpath', help=
'A directory to add to the Python path, e.g. "/home/djangoprojects/myproject".'
),
parser.add_argument('--traceback', action='store_true', help=
'Print traceback on exception'),
subparsers = parser.add_subparsers(description=
'JavaScript command to execute')
for subparser in self.subparsers:
subparser(self, subparsers)
return parser
| create_parser | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, prog_name, subcommand):\n parser = argparse.ArgumentParser(prog='%s %s' % (prog_name, subcommand),\n description=self.help)\n parser.add_argument('-v', '--verbosity', action='store', default=1,\n type=int, choices=range(4), help=\n 'Verbosity level; 0=minimal output, 1=normal output, 2=verbose output, 3=very verbose output'\n ),\n parser.add_argument('--settings', help=\n 'The Python path to a settings module, e.g. \"myproject.settings.main\". If this isn\\'t provided, the DJANGO_SETTINGS_MODULE environment variable will be used.'\n ),\n parser.add_argument('--pythonpath', help=\n 'A directory to add to the Python path, e.g. \"/home/djangoprojects/myproject\".'\n ),\n parser.add_argument('--traceback', action='store_true', help=\n 'Print traceback on exception'),\n subparsers = parser.add_subparsers(description=\n 'JavaScript command to execute')\n for subparser in self.subparsers:\n subparser(self, subparsers)\n return parser\n",
"role": "user"
},
{
"content": "create_parser",
"role": "assistant"
}
] |
def x(filename):
content = codecs.open(filename, encoding='utf-8').read()
for regex, replacement in PYPI_RST_FILTERS:
content = re.sub(regex, replacement, content)
return content
| rst | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename):\n content = codecs.open(filename, encoding='utf-8').read()\n for regex, replacement in PYPI_RST_FILTERS:\n content = re.sub(regex, replacement, content)\n return content\n",
"role": "user"
},
{
"content": "rst",
"role": "assistant"
}
] |
def x(filename, type='text/javascript'):
if '?' in filename and len(filename.split('?')) is 2:
filename, params = filename.split('?')
return '<script type="%s" src="%s?%s"></script>' % (type,
staticfiles_storage.url(filename), params)
else:
return '<script type="%s" src="%s"></script>' % (type,
staticfiles_storage.url(filename))
| javascript | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(filename, type='text/javascript'):\n if '?' in filename and len(filename.split('?')) is 2:\n filename, params = filename.split('?')\n return '<script type=\"%s\" src=\"%s?%s\"></script>' % (type,\n staticfiles_storage.url(filename), params)\n else:\n return '<script type=\"%s\" src=\"%s\"></script>' % (type,\n staticfiles_storage.url(filename))\n",
"role": "user"
},
{
"content": "javascript",
"role": "assistant"
}
] |
def x(version=None, migrate=False):
version = version or settings.JQUERY_VERSION
suffix = '.min' if not settings.DEBUG else ''
libs = [js_lib('jquery-%s%s.js' % (version, suffix))]
if _boolean(migrate):
libs.append(js_lib('jquery-migrate-%s%s.js' % (
JQUERY_MIGRATE_VERSION, suffix)))
return '\n'.join(libs)
| jquery_js | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(version=None, migrate=False):\n version = version or settings.JQUERY_VERSION\n suffix = '.min' if not settings.DEBUG else ''\n libs = [js_lib('jquery-%s%s.js' % (version, suffix))]\n if _boolean(migrate):\n libs.append(js_lib('jquery-migrate-%s%s.js' % (\n JQUERY_MIGRATE_VERSION, suffix)))\n return '\\n'.join(libs)\n",
"role": "user"
},
{
"content": "jquery_js",
"role": "assistant"
}
] |
def x(context, jquery=True, i18n=True, csrf=True, init=True):
return {'js': {'minified': not settings.DEBUG, 'jquery': _boolean(
jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init':
_boolean(init)}}
| django_js | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, jquery=True, i18n=True, csrf=True, init=True):\n return {'js': {'minified': not settings.DEBUG, 'jquery': _boolean(\n jquery), 'i18n': _boolean(i18n), 'csrf': _boolean(csrf), 'init':\n _boolean(init)}}\n",
"role": "user"
},
{
"content": "django_js",
"role": "assistant"
}
] |
def x(context, jquery=False, i18n=True, csrf=True, init=True):
return {'js': {'jquery': _boolean(jquery), 'i18n': _boolean(i18n),
'csrf': _boolean(csrf), 'init': _boolean(init)}}
| django_js_init | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(context, jquery=False, i18n=True, csrf=True, init=True):\n return {'js': {'jquery': _boolean(jquery), 'i18n': _boolean(i18n),\n 'csrf': _boolean(csrf), 'init': _boolean(init)}}\n",
"role": "user"
},
{
"content": "django_js_init",
"role": "assistant"
}
] |
def x(self):
data = {}
if settings.JS_CONTEXT_ENABLED:
for context in RequestContext(self.request):
for key, value in six.iteritems(context):
if settings.JS_CONTEXT and key not in settings.JS_CONTEXT:
continue
if (settings.JS_CONTEXT_EXCLUDE and key in settings.
JS_CONTEXT_EXCLUDE):
continue
handler_name = 'process_%s' % key
if hasattr(self, handler_name):
handler = getattr(self, handler_name)
data[key] = handler(value, data)
elif isinstance(value, SERIALIZABLE_TYPES):
data[key] = value
if settings.JS_USER_ENABLED:
self.handle_user(data)
return data
| as_dict | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n data = {}\n if settings.JS_CONTEXT_ENABLED:\n for context in RequestContext(self.request):\n for key, value in six.iteritems(context):\n if settings.JS_CONTEXT and key not in settings.JS_CONTEXT:\n continue\n if (settings.JS_CONTEXT_EXCLUDE and key in settings.\n JS_CONTEXT_EXCLUDE):\n continue\n handler_name = 'process_%s' % key\n if hasattr(self, handler_name):\n handler = getattr(self, handler_name)\n data[key] = handler(value, data)\n elif isinstance(value, SERIALIZABLE_TYPES):\n data[key] = value\n if settings.JS_USER_ENABLED:\n self.handle_user(data)\n return data\n",
"role": "user"
},
{
"content": "as_dict",
"role": "assistant"
}
] |
def x(self, language_code, data):
language_code = 'en-us' if language_code == 'en' else language_code
language = translation.get_language_info('en' if language_code ==
'en-us' else language_code)
if (not settings.JS_CONTEXT or 'LANGUAGE_NAME' in settings.JS_CONTEXT or
settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME' in settings.
JS_CONTEXT_EXCLUDE):
data['LANGUAGE_NAME'] = language['name']
if (not settings.JS_CONTEXT or 'LANGUAGE_NAME_LOCAL' in settings.
JS_CONTEXT or settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME_LOCAL' in
settings.JS_CONTEXT_EXCLUDE):
data['LANGUAGE_NAME_LOCAL'] = language['name_local']
return language_code
| process_LANGUAGE_CODE | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, language_code, data):\n language_code = 'en-us' if language_code == 'en' else language_code\n language = translation.get_language_info('en' if language_code ==\n 'en-us' else language_code)\n if (not settings.JS_CONTEXT or 'LANGUAGE_NAME' in settings.JS_CONTEXT or\n settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME' in settings.\n JS_CONTEXT_EXCLUDE):\n data['LANGUAGE_NAME'] = language['name']\n if (not settings.JS_CONTEXT or 'LANGUAGE_NAME_LOCAL' in settings.\n JS_CONTEXT or settings.JS_CONTEXT_EXCLUDE and 'LANGUAGE_NAME_LOCAL' in\n settings.JS_CONTEXT_EXCLUDE):\n data['LANGUAGE_NAME_LOCAL'] = language['name_local']\n return language_code\n",
"role": "user"
},
{
"content": "process_LANGUAGE_CODE",
"role": "assistant"
}
] |
def x(self, data):
data['user'] = {'username': '', 'is_authenticated': False, 'is_staff':
False, 'is_superuser': False, 'permissions': tuple()}
if ('django.contrib.sessions.middleware.SessionMiddleware' in settings.
MIDDLEWARE_CLASSES):
user = self.request.user
data['user']['is_authenticated'] = user.is_authenticated()
if hasattr(user, 'username'):
data['user']['username'] = user.username
elif hasattr(user, 'get_username'):
data['user']['username'] = user.get_username()
if hasattr(user, 'is_staff'):
data['user']['is_staff'] = user.is_staff
if hasattr(user, 'is_superuser'):
data['user']['is_superuser'] = user.is_superuser
if hasattr(user, 'get_all_permissions'):
data['user']['permissions'] = tuple(user.get_all_permissions())
| handle_user | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, data):\n data['user'] = {'username': '', 'is_authenticated': False, 'is_staff': \n False, 'is_superuser': False, 'permissions': tuple()}\n if ('django.contrib.sessions.middleware.SessionMiddleware' in settings.\n MIDDLEWARE_CLASSES):\n user = self.request.user\n data['user']['is_authenticated'] = user.is_authenticated()\n if hasattr(user, 'username'):\n data['user']['username'] = user.username\n elif hasattr(user, 'get_username'):\n data['user']['username'] = user.get_username()\n if hasattr(user, 'is_staff'):\n data['user']['is_staff'] = user.is_staff\n if hasattr(user, 'is_superuser'):\n data['user']['is_superuser'] = user.is_superuser\n if hasattr(user, 'get_all_permissions'):\n data['user']['permissions'] = tuple(user.get_all_permissions())\n",
"role": "user"
},
{
"content": "handle_user",
"role": "assistant"
}
] |
def x(name):
module_name, class_name = name.rsplit('.', 1)
__import__(module_name)
module = sys.modules[module_name]
return getattr(module, class_name)
| class_from_string | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(name):\n module_name, class_name = name.rsplit('.', 1)\n __import__(module_name)\n module = sys.modules[module_name]\n return getattr(module, class_name)\n",
"role": "user"
},
{
"content": "class_from_string",
"role": "assistant"
}
] |
def x(cls, files=None):
files = files or []
if isinstance(files, str):
files = os.path.normpath(files)
matches = lambda path: matches_patterns(path, [files])
return [path for path in cls.get_static_files() if matches(path)]
elif isinstance(files, (list, tuple)):
all_files = cls.get_static_files()
files = [os.path.normpath(f) for f in files]
sorted_result = []
for pattern in files:
sorted_result.extend([f for f in all_files if matches_patterns(
f, [pattern])])
return sorted_result
| glob | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, files=None):\n files = files or []\n if isinstance(files, str):\n files = os.path.normpath(files)\n matches = lambda path: matches_patterns(path, [files])\n return [path for path in cls.get_static_files() if matches(path)]\n elif isinstance(files, (list, tuple)):\n all_files = cls.get_static_files()\n files = [os.path.normpath(f) for f in files]\n sorted_result = []\n for pattern in files:\n sorted_result.extend([f for f in all_files if matches_patterns(\n f, [pattern])])\n return sorted_result\n",
"role": "user"
},
{
"content": "glob",
"role": "assistant"
}
] |
def x(self, command):
process = Popen(command, stdout=PIPE, stderr=STDOUT, universal_newlines
=True)
while True:
if process.poll() is not None:
self.returncode = process.returncode
break
yield process.stdout.readline()
| execute | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command):\n process = Popen(command, stdout=PIPE, stderr=STDOUT, universal_newlines\n =True)\n while True:\n if process.poll() is not None:\n self.returncode = process.returncode\n break\n yield process.stdout.readline()\n",
"role": "user"
},
{
"content": "execute",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
separator = '=' * LINE_SIZE
title = kwargs['title'] if 'title' in kwargs else 'phantomjs output'
nb_spaces = (LINE_SIZE - len(title)) // 2
if VERBOSE:
print('')
print(separator)
print(' ' * nb_spaces + title)
print(separator)
sys.stdout.flush()
with NamedTemporaryFile(delete=True) as cookies_file:
cmd = ('phantomjs', '--cookies-file=%s' % cookies_file.name) + args
if self.timeout:
cmd += str(self.timeout),
parser = TapParser(debug=VERBOSITY > 2)
output = self.execute(cmd)
for item in parser.parse(output):
if VERBOSE:
print(item.display())
sys.stdout.flush()
if VERBOSE:
print(separator)
sys.stdout.flush()
failures = parser.suites.get_all_failures()
if failures:
raise JsTestException('Failed javascript assertions', failures)
if self.returncode > 0:
raise JsTestException(
'PhantomJS return with non-zero exit code (%s)' % self.returncode)
| phantomjs | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n separator = '=' * LINE_SIZE\n title = kwargs['title'] if 'title' in kwargs else 'phantomjs output'\n nb_spaces = (LINE_SIZE - len(title)) // 2\n if VERBOSE:\n print('')\n print(separator)\n print(' ' * nb_spaces + title)\n print(separator)\n sys.stdout.flush()\n with NamedTemporaryFile(delete=True) as cookies_file:\n cmd = ('phantomjs', '--cookies-file=%s' % cookies_file.name) + args\n if self.timeout:\n cmd += str(self.timeout),\n parser = TapParser(debug=VERBOSITY > 2)\n output = self.execute(cmd)\n for item in parser.parse(output):\n if VERBOSE:\n print(item.display())\n sys.stdout.flush()\n if VERBOSE:\n print(separator)\n sys.stdout.flush()\n failures = parser.suites.get_all_failures()\n if failures:\n raise JsTestException('Failed javascript assertions', failures)\n if self.returncode > 0:\n raise JsTestException(\n 'PhantomJS return with non-zero exit code (%s)' % self.returncode)\n",
"role": "user"
},
{
"content": "phantomjs",
"role": "assistant"
}
] |
def x(self):
if not self.phantomjs_runner:
raise JsTestException('phantomjs_runner need to be defined')
url = self.get_url()
self.phantomjs(self.phantomjs_runner, url, title=self.title)
self.cleanup()
| run_suite | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.phantomjs_runner:\n raise JsTestException('phantomjs_runner need to be defined')\n url = self.get_url()\n self.phantomjs(self.phantomjs_runner, url, title=self.title)\n self.cleanup()\n",
"role": "user"
},
{
"content": "run_suite",
"role": "assistant"
}
] |
def x(self, rows, keyed=False):
for row in rows:
keyed_row = row
if not keyed:
keyed_row = dict(zip(self.__schema.field_names, row))
keyed_row = self.__convert_row(keyed_row)
if self.__check_existing(keyed_row):
for wr in self.__insert():
yield wr
ret = self.__update(keyed_row)
if ret is not None:
yield WrittenRow(keyed_row, True, ret if self.
__autoincrement else None)
continue
self.__buffer.append(keyed_row)
if len(self.__buffer) > BUFFER_SIZE:
for wr in self.__insert():
yield wr
for wr in self.__insert():
yield wr
| write | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, rows, keyed=False):\n for row in rows:\n keyed_row = row\n if not keyed:\n keyed_row = dict(zip(self.__schema.field_names, row))\n keyed_row = self.__convert_row(keyed_row)\n if self.__check_existing(keyed_row):\n for wr in self.__insert():\n yield wr\n ret = self.__update(keyed_row)\n if ret is not None:\n yield WrittenRow(keyed_row, True, ret if self.\n __autoincrement else None)\n continue\n self.__buffer.append(keyed_row)\n if len(self.__buffer) > BUFFER_SIZE:\n for wr in self.__insert():\n yield wr\n for wr in self.__insert():\n yield wr\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self):
self.__bloom = pybloom_live.ScalableBloomFilter()
columns = [getattr(self.__table.c, key) for key in self.__update_keys]
keys = select(columns).execution_options(stream_results=True).execute()
for key in keys:
self.__bloom.add(tuple(key))
| prepare_bloom | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.__bloom = pybloom_live.ScalableBloomFilter()\n columns = [getattr(self.__table.c, key) for key in self.__update_keys]\n keys = select(columns).execution_options(stream_results=True).execute()\n for key in keys:\n self.__bloom.add(tuple(key))\n",
"role": "user"
},
{
"content": "prepare_bloom",
"role": "assistant"
}
] |
def x(self):
if len(self.__buffer) > 0:
statement = self.__table.insert()
if self.__autoincrement:
statement = statement.returning(getattr(self.__table.c, self.
__autoincrement))
statement = statement.values(self.__buffer)
res = statement.execute()
for id, in res:
row = self.__buffer.pop(0)
yield WrittenRow(row, False, id)
else:
statement.execute(self.__buffer)
for row in self.__buffer:
yield WrittenRow(row, False, None)
self.__buffer = []
| insert | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if len(self.__buffer) > 0:\n statement = self.__table.insert()\n if self.__autoincrement:\n statement = statement.returning(getattr(self.__table.c, self.\n __autoincrement))\n statement = statement.values(self.__buffer)\n res = statement.execute()\n for id, in res:\n row = self.__buffer.pop(0)\n yield WrittenRow(row, False, id)\n else:\n statement.execute(self.__buffer)\n for row in self.__buffer:\n yield WrittenRow(row, False, None)\n self.__buffer = []\n",
"role": "user"
},
{
"content": "insert",
"role": "assistant"
}
] |
def x(self, row):
expr = self.__table.update().values(row)
for key in self.__update_keys:
expr = expr.where(getattr(self.__table.c, key) == row[key])
if self.__autoincrement:
expr = expr.returning(getattr(self.__table.c, self.__autoincrement))
res = expr.execute()
if res.rowcount > 0:
if self.__autoincrement:
first = next(iter(res))
last_row_id = first[0]
return last_row_id
return 0
return None
| update | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row):\n expr = self.__table.update().values(row)\n for key in self.__update_keys:\n expr = expr.where(getattr(self.__table.c, key) == row[key])\n if self.__autoincrement:\n expr = expr.returning(getattr(self.__table.c, self.__autoincrement))\n res = expr.execute()\n if res.rowcount > 0:\n if self.__autoincrement:\n first = next(iter(res))\n last_row_id = first[0]\n return last_row_id\n return 0\n return None\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, row):
if self.__update_keys is not None:
key = tuple(row[key] for key in self.__update_keys)
if key in self.__bloom:
return True
self.__bloom.add(key)
return False
return False
| check_existing | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row):\n if self.__update_keys is not None:\n key = tuple(row[key] for key in self.__update_keys)\n if key in self.__bloom:\n return True\n self.__bloom.add(key)\n return False\n return False\n",
"role": "user"
},
{
"content": "check_existing",
"role": "assistant"
}
] |
def x(self):
buckets = []
for table in self.__metadata.sorted_tables:
bucket = self.__mapper.restore_bucket(table.name)
if bucket is not None:
buckets.append(bucket)
return buckets
| buckets | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n buckets = []\n for table in self.__metadata.sorted_tables:\n bucket = self.__mapper.restore_bucket(table.name)\n if bucket is not None:\n buckets.append(bucket)\n return buckets\n",
"role": "user"
},
{
"content": "buckets",
"role": "assistant"
}
] |
def x(self, bucket, descriptor, force=False, indexes_fields=None):
buckets = bucket
if isinstance(bucket, six.string_types):
buckets = [bucket]
descriptors = descriptor
if isinstance(descriptor, dict):
descriptors = [descriptor]
if indexes_fields is None or len(indexes_fields) == 0:
indexes_fields = [()] * len(descriptors)
elif type(indexes_fields[0][0]) not in {list, tuple}:
indexes_fields = [indexes_fields]
if not len(buckets) == len(descriptors) == len(indexes_fields):
raise tableschema.exceptions.StorageError('Wrong argument dimensions')
for bucket in reversed(self.buckets):
if bucket in buckets:
if not force:
message = 'Bucket "%s" already exists.' % bucket
raise tableschema.exceptions.StorageError(message)
self.delete(bucket)
for bucket, descriptor, index_fields in zip(buckets, descriptors,
indexes_fields):
tableschema.validate(descriptor)
table_name = self.__mapper.convert_bucket(bucket)
columns, constraints, indexes, fallbacks, table_comment = (self.
__mapper.convert_descriptor(bucket, descriptor, index_fields,
self.__autoincrement))
Table(table_name, self.__metadata, *(columns + constraints +
indexes), comment=table_comment)
self.__descriptors[bucket] = descriptor
self.__fallbacks[bucket] = fallbacks
self.__metadata.create_all()
| create | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket, descriptor, force=False, indexes_fields=None):\n buckets = bucket\n if isinstance(bucket, six.string_types):\n buckets = [bucket]\n descriptors = descriptor\n if isinstance(descriptor, dict):\n descriptors = [descriptor]\n if indexes_fields is None or len(indexes_fields) == 0:\n indexes_fields = [()] * len(descriptors)\n elif type(indexes_fields[0][0]) not in {list, tuple}:\n indexes_fields = [indexes_fields]\n if not len(buckets) == len(descriptors) == len(indexes_fields):\n raise tableschema.exceptions.StorageError('Wrong argument dimensions')\n for bucket in reversed(self.buckets):\n if bucket in buckets:\n if not force:\n message = 'Bucket \"%s\" already exists.' % bucket\n raise tableschema.exceptions.StorageError(message)\n self.delete(bucket)\n for bucket, descriptor, index_fields in zip(buckets, descriptors,\n indexes_fields):\n tableschema.validate(descriptor)\n table_name = self.__mapper.convert_bucket(bucket)\n columns, constraints, indexes, fallbacks, table_comment = (self.\n __mapper.convert_descriptor(bucket, descriptor, index_fields,\n self.__autoincrement))\n Table(table_name, self.__metadata, *(columns + constraints +\n indexes), comment=table_comment)\n self.__descriptors[bucket] = descriptor\n self.__fallbacks[bucket] = fallbacks\n self.__metadata.create_all()\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, bucket=None, ignore=False):
buckets = bucket
if isinstance(bucket, six.string_types):
buckets = [bucket]
elif bucket is None:
buckets = reversed(self.buckets)
tables = []
for bucket in buckets:
if bucket not in self.buckets:
if not ignore:
message = 'Bucket "%s" doesn\'t exist.' % bucket
raise tableschema.exceptions.StorageError(message)
return
if bucket in self.__descriptors:
del self.__descriptors[bucket]
table = self.__get_table(bucket)
tables.append(table)
self.__metadata.drop_all(tables=tables)
self.__metadata.clear()
self.__reflect()
| delete | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket=None, ignore=False):\n buckets = bucket\n if isinstance(bucket, six.string_types):\n buckets = [bucket]\n elif bucket is None:\n buckets = reversed(self.buckets)\n tables = []\n for bucket in buckets:\n if bucket not in self.buckets:\n if not ignore:\n message = 'Bucket \"%s\" doesn\\'t exist.' % bucket\n raise tableschema.exceptions.StorageError(message)\n return\n if bucket in self.__descriptors:\n del self.__descriptors[bucket]\n table = self.__get_table(bucket)\n tables.append(table)\n self.__metadata.drop_all(tables=tables)\n self.__metadata.clear()\n self.__reflect()\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, bucket, descriptor=None):
if descriptor is not None:
self.__descriptors[bucket] = descriptor
else:
descriptor = self.__descriptors.get(bucket)
if descriptor is None:
table = self.__get_table(bucket)
descriptor = self.__mapper.restore_descriptor(table.name, table
.columns, table.constraints, self.__autoincrement)
return descriptor
| describe | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket, descriptor=None):\n if descriptor is not None:\n self.__descriptors[bucket] = descriptor\n else:\n descriptor = self.__descriptors.get(bucket)\n if descriptor is None:\n table = self.__get_table(bucket)\n descriptor = self.__mapper.restore_descriptor(table.name, table\n .columns, table.constraints, self.__autoincrement)\n return descriptor\n",
"role": "user"
},
{
"content": "describe",
"role": "assistant"
}
] |
def x(self, bucket):
table = self.__get_table(bucket)
schema = tableschema.Schema(self.describe(bucket))
with self.__connection.begin():
select = table.select().execution_options(stream_results=True)
result = select.execute()
for row in result:
row = self.__mapper.restore_row(row, schema=schema)
yield row
| iter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket):\n table = self.__get_table(bucket)\n schema = tableschema.Schema(self.describe(bucket))\n with self.__connection.begin():\n select = table.select().execution_options(stream_results=True)\n result = select.execute()\n for row in result:\n row = self.__mapper.restore_row(row, schema=schema)\n yield row\n",
"role": "user"
},
{
"content": "iter",
"role": "assistant"
}
] |
def x(self, bucket, rows, keyed=False, as_generator=False, update_keys=None):
if update_keys is not None and len(update_keys) == 0:
message = 'Argument "update_keys" cannot be an empty list'
raise tableschema.exceptions.StorageError(message)
table = self.__get_table(bucket)
schema = tableschema.Schema(self.describe(bucket))
fallbacks = self.__fallbacks.get(bucket, [])
convert_row = partial(self.__mapper.convert_row, schema=schema,
fallbacks=fallbacks)
writer = Writer(table, schema, update_keys, self.__autoincrement,
convert_row)
with self.__connection.begin():
gen = writer.write(rows, keyed=keyed)
if as_generator:
return gen
collections.deque(gen, maxlen=0)
| write | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket, rows, keyed=False, as_generator=False, update_keys=None):\n if update_keys is not None and len(update_keys) == 0:\n message = 'Argument \"update_keys\" cannot be an empty list'\n raise tableschema.exceptions.StorageError(message)\n table = self.__get_table(bucket)\n schema = tableschema.Schema(self.describe(bucket))\n fallbacks = self.__fallbacks.get(bucket, [])\n convert_row = partial(self.__mapper.convert_row, schema=schema,\n fallbacks=fallbacks)\n writer = Writer(table, schema, update_keys, self.__autoincrement,\n convert_row)\n with self.__connection.begin():\n gen = writer.write(rows, keyed=keyed)\n if as_generator:\n return gen\n collections.deque(gen, maxlen=0)\n",
"role": "user"
},
{
"content": "write",
"role": "assistant"
}
] |
def x(self, bucket):
table_name = self.__mapper.convert_bucket(bucket)
if self.__dbschema:
table_name = '.'.join((self.__dbschema, table_name))
return self.__metadata.tables[table_name]
| get_table | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket):\n table_name = self.__mapper.convert_bucket(bucket)\n if self.__dbschema:\n table_name = '.'.join((self.__dbschema, table_name))\n return self.__metadata.tables[table_name]\n",
"role": "user"
},
{
"content": "get_table",
"role": "assistant"
}
] |
def x(self):
def x(name, _):
return self.__only(name) and self.__mapper.restore_bucket(name
) is not None
self.__metadata.reflect(only=only)
| reflect | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n\n def x(name, _):\n return self.__only(name) and self.__mapper.restore_bucket(name\n ) is not None\n self.__metadata.reflect(only=only)\n",
"role": "user"
},
{
"content": "reflect",
"role": "assistant"
}
] |
def x(field, separator=' - '):
title = field.descriptor.get('title') or ''
description = field.descriptor.get('description') or ''
return _get_comment(description, title, separator)
| get_field_comment | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(field, separator=' - '):\n title = field.descriptor.get('title') or ''\n description = field.descriptor.get('description') or ''\n return _get_comment(description, title, separator)\n",
"role": "user"
},
{
"content": "get_field_comment",
"role": "assistant"
}
] |
def x(self, bucket, descriptor, index_fields=[], autoincrement=None):
columns = []
indexes = []
fallbacks = []
constraints = []
column_mapping = {}
table_name = self.convert_bucket(bucket)
table_comment = _get_comment(descriptor.get('title', ''), descriptor.
get('description', ''))
schema = tableschema.Schema(descriptor)
if autoincrement is not None:
columns.append(sa.Column(autoincrement, sa.Integer, autoincrement=
True, nullable=False))
for field in schema.fields:
column_type = self.convert_type(field.type)
if not column_type:
column_type = sa.Text
fallbacks.append(field.name)
nullable = not field.required
table_comment = _get_field_comment(field)
unique = field.constraints.get('unique', False)
column = sa.Column(field.name, column_type, nullable=nullable,
comment=table_comment, unique=unique)
columns.append(column)
column_mapping[field.name] = column
pk = descriptor.get('primaryKey', None)
if pk is not None:
if isinstance(pk, six.string_types):
pk = [pk]
if autoincrement is not None:
if pk is not None:
pk = [autoincrement] + pk
else:
pk = [autoincrement]
if pk is not None:
constraint = sa.PrimaryKeyConstraint(*pk)
constraints.append(constraint)
if self.__dialect == 'postgresql':
fks = descriptor.get('foreignKeys', [])
for fk in fks:
fields = fk['fields']
resource = fk['reference']['resource']
foreign_fields = fk['reference']['fields']
if isinstance(fields, six.string_types):
fields = [fields]
if resource != '':
table_name = self.convert_bucket(resource)
if isinstance(foreign_fields, six.string_types):
foreign_fields = [foreign_fields]
composer = lambda field: '.'.join([table_name, field])
foreign_fields = list(map(composer, foreign_fields))
constraint = sa.ForeignKeyConstraint(fields, foreign_fields)
constraints.append(constraint)
if self.__dialect == 'postgresql':
for index, index_definition in enumerate(index_fields):
name = table_name + '_ix%03d' % index
index_columns = [column_mapping[field] for field in
index_definition]
indexes.append(sa.Index(name, *index_columns))
return columns, constraints, indexes, fallbacks, table_comment
| convert_descriptor | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, bucket, descriptor, index_fields=[], autoincrement=None):\n columns = []\n indexes = []\n fallbacks = []\n constraints = []\n column_mapping = {}\n table_name = self.convert_bucket(bucket)\n table_comment = _get_comment(descriptor.get('title', ''), descriptor.\n get('description', ''))\n schema = tableschema.Schema(descriptor)\n if autoincrement is not None:\n columns.append(sa.Column(autoincrement, sa.Integer, autoincrement=\n True, nullable=False))\n for field in schema.fields:\n column_type = self.convert_type(field.type)\n if not column_type:\n column_type = sa.Text\n fallbacks.append(field.name)\n nullable = not field.required\n table_comment = _get_field_comment(field)\n unique = field.constraints.get('unique', False)\n column = sa.Column(field.name, column_type, nullable=nullable,\n comment=table_comment, unique=unique)\n columns.append(column)\n column_mapping[field.name] = column\n pk = descriptor.get('primaryKey', None)\n if pk is not None:\n if isinstance(pk, six.string_types):\n pk = [pk]\n if autoincrement is not None:\n if pk is not None:\n pk = [autoincrement] + pk\n else:\n pk = [autoincrement]\n if pk is not None:\n constraint = sa.PrimaryKeyConstraint(*pk)\n constraints.append(constraint)\n if self.__dialect == 'postgresql':\n fks = descriptor.get('foreignKeys', [])\n for fk in fks:\n fields = fk['fields']\n resource = fk['reference']['resource']\n foreign_fields = fk['reference']['fields']\n if isinstance(fields, six.string_types):\n fields = [fields]\n if resource != '':\n table_name = self.convert_bucket(resource)\n if isinstance(foreign_fields, six.string_types):\n foreign_fields = [foreign_fields]\n composer = lambda field: '.'.join([table_name, field])\n foreign_fields = list(map(composer, foreign_fields))\n constraint = sa.ForeignKeyConstraint(fields, foreign_fields)\n constraints.append(constraint)\n if self.__dialect == 'postgresql':\n for index, index_definition in enumerate(index_fields):\n name = table_name + '_ix%03d' % index\n index_columns = [column_mapping[field] for field in\n index_definition]\n indexes.append(sa.Index(name, *index_columns))\n return columns, constraints, indexes, fallbacks, table_comment\n",
"role": "user"
},
{
"content": "convert_descriptor",
"role": "assistant"
}
] |
def x(self, keyed_row, schema, fallbacks):
for key, value in list(keyed_row.items()):
field = schema.get_field(key)
if not field:
del keyed_row[key]
if key in fallbacks:
value = _uncast_value(value, field=field)
else:
value = field.cast_value(value)
keyed_row[key] = value
return keyed_row
| convert_row | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, keyed_row, schema, fallbacks):\n for key, value in list(keyed_row.items()):\n field = schema.get_field(key)\n if not field:\n del keyed_row[key]\n if key in fallbacks:\n value = _uncast_value(value, field=field)\n else:\n value = field.cast_value(value)\n keyed_row[key] = value\n return keyed_row\n",
"role": "user"
},
{
"content": "convert_row",
"role": "assistant"
}
] |
def x(self, type):
mapping = {'any': sa.Text, 'array': None, 'boolean': sa.Boolean, 'date':
sa.Date, 'datetime': sa.DateTime, 'duration': None, 'geojson': None,
'geopoint': None, 'integer': sa.Integer, 'number': sa.Float,
'object': None, 'string': sa.Text, 'time': sa.Time, 'year': sa.
Integer, 'yearmonth': None}
if self.__dialect == 'postgresql':
mapping.update({'array': JSONB, 'geojson': JSONB, 'number': sa.
Numeric, 'object': JSONB})
if type not in mapping:
message = 'Field type "%s" is not supported'
raise tableschema.exceptions.StorageError(message % type)
return mapping[type]
| convert_type | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, type):\n mapping = {'any': sa.Text, 'array': None, 'boolean': sa.Boolean, 'date':\n sa.Date, 'datetime': sa.DateTime, 'duration': None, 'geojson': None,\n 'geopoint': None, 'integer': sa.Integer, 'number': sa.Float,\n 'object': None, 'string': sa.Text, 'time': sa.Time, 'year': sa.\n Integer, 'yearmonth': None}\n if self.__dialect == 'postgresql':\n mapping.update({'array': JSONB, 'geojson': JSONB, 'number': sa.\n Numeric, 'object': JSONB})\n if type not in mapping:\n message = 'Field type \"%s\" is not supported'\n raise tableschema.exceptions.StorageError(message % type)\n return mapping[type]\n",
"role": "user"
},
{
"content": "convert_type",
"role": "assistant"
}
] |
def x(self, table_name):
if table_name.startswith(self.__prefix):
return table_name.replace(self.__prefix, '', 1)
return None
| restore_bucket | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, table_name):\n if table_name.startswith(self.__prefix):\n return table_name.replace(self.__prefix, '', 1)\n return None\n",
"role": "user"
},
{
"content": "restore_bucket",
"role": "assistant"
}
] |
def x(self, table_name, columns, constraints, autoincrement_column=None):
fields = []
for column in columns:
if column.name == autoincrement_column:
continue
field_type = self.restore_type(column.type)
field = {'name': column.name, 'type': field_type}
if not column.nullable:
field['constraints'] = {'required': True}
fields.append(field)
pk = []
for constraint in constraints:
if isinstance(constraint, sa.PrimaryKeyConstraint):
for column in constraint.columns:
if column.name == autoincrement_column:
continue
pk.append(column.name)
fks = []
if self.__dialect == 'postgresql':
for constraint in constraints:
if isinstance(constraint, sa.ForeignKeyConstraint):
resource = ''
own_fields = []
foreign_fields = []
for element in constraint.elements:
own_fields.append(element.parent.name)
if element.column.table.name != table_name:
resource = self.restore_bucket(element.column.table
.name)
foreign_fields.append(element.column.name)
if len(own_fields) == len(foreign_fields) == 1:
own_fields = own_fields.pop()
foreign_fields = foreign_fields.pop()
fks.append({'fields': own_fields, 'reference': {'resource':
resource, 'fields': foreign_fields}})
descriptor = {}
descriptor['fields'] = fields
if len(pk) > 0:
if len(pk) == 1:
pk = pk.pop()
descriptor['primaryKey'] = pk
if len(fks) > 0:
descriptor['foreignKeys'] = fks
return descriptor
| restore_descriptor | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, table_name, columns, constraints, autoincrement_column=None):\n fields = []\n for column in columns:\n if column.name == autoincrement_column:\n continue\n field_type = self.restore_type(column.type)\n field = {'name': column.name, 'type': field_type}\n if not column.nullable:\n field['constraints'] = {'required': True}\n fields.append(field)\n pk = []\n for constraint in constraints:\n if isinstance(constraint, sa.PrimaryKeyConstraint):\n for column in constraint.columns:\n if column.name == autoincrement_column:\n continue\n pk.append(column.name)\n fks = []\n if self.__dialect == 'postgresql':\n for constraint in constraints:\n if isinstance(constraint, sa.ForeignKeyConstraint):\n resource = ''\n own_fields = []\n foreign_fields = []\n for element in constraint.elements:\n own_fields.append(element.parent.name)\n if element.column.table.name != table_name:\n resource = self.restore_bucket(element.column.table\n .name)\n foreign_fields.append(element.column.name)\n if len(own_fields) == len(foreign_fields) == 1:\n own_fields = own_fields.pop()\n foreign_fields = foreign_fields.pop()\n fks.append({'fields': own_fields, 'reference': {'resource':\n resource, 'fields': foreign_fields}})\n descriptor = {}\n descriptor['fields'] = fields\n if len(pk) > 0:\n if len(pk) == 1:\n pk = pk.pop()\n descriptor['primaryKey'] = pk\n if len(fks) > 0:\n descriptor['foreignKeys'] = fks\n return descriptor\n",
"role": "user"
},
{
"content": "restore_descriptor",
"role": "assistant"
}
] |
def x(self, row, schema):
row = list(row)
for index, field in enumerate(schema.fields):
if self.__dialect == 'postgresql':
if field.type in ['array', 'object']:
continue
row[index] = field.cast_value(row[index])
return row
| restore_row | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, row, schema):\n row = list(row)\n for index, field in enumerate(schema.fields):\n if self.__dialect == 'postgresql':\n if field.type in ['array', 'object']:\n continue\n row[index] = field.cast_value(row[index])\n return row\n",
"role": "user"
},
{
"content": "restore_row",
"role": "assistant"
}
] |
def x(self, type):
mapping = {ARRAY: 'array', sa.Boolean: 'boolean', sa.Date: 'date', sa.
DateTime: 'datetime', sa.Float: 'number', sa.Integer: 'integer',
JSONB: 'object', JSON: 'object', sa.Numeric: 'number', sa.Text:
'string', sa.Time: 'time', sa.VARCHAR: 'string', UUID: 'string'}
field_type = None
for key, value in mapping.items():
if isinstance(type, key):
field_type = value
if field_type is None:
message = 'Type "%s" is not supported'
raise tableschema.exceptions.StorageError(message % type)
return field_type
| restore_type | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, type):\n mapping = {ARRAY: 'array', sa.Boolean: 'boolean', sa.Date: 'date', sa.\n DateTime: 'datetime', sa.Float: 'number', sa.Integer: 'integer',\n JSONB: 'object', JSON: 'object', sa.Numeric: 'number', sa.Text:\n 'string', sa.Time: 'time', sa.VARCHAR: 'string', UUID: 'string'}\n field_type = None\n for key, value in mapping.items():\n if isinstance(type, key):\n field_type = value\n if field_type is None:\n message = 'Type \"%s\" is not supported'\n raise tableschema.exceptions.StorageError(message % type)\n return field_type\n",
"role": "user"
},
{
"content": "restore_type",
"role": "assistant"
}
] |
def x(self, path, relative_to_object_id, object_id, create_file_type=0):
try:
return self.process.OpenHierarchy(path, relative_to_object_id, '',
create_file_type)
except Exception as e:
print(e)
print('Could not Open Hierarchy')
| open_hierarchy | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, path, relative_to_object_id, object_id, create_file_type=0):\n try:\n return self.process.OpenHierarchy(path, relative_to_object_id, '',\n create_file_type)\n except Exception as e:\n print(e)\n print('Could not Open Hierarchy')\n",
"role": "user"
},
{
"content": "open_hierarchy",
"role": "assistant"
}
] |
def x(self, section_id, new_page_style=0):
try:
self.process.CreateNewPage(section_id, '', new_page_style)
except Exception as e:
print(e)
print('Unable to create the page')
| create_new_page | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, section_id, new_page_style=0):\n try:\n self.process.CreateNewPage(section_id, '', new_page_style)\n except Exception as e:\n print(e)\n print('Unable to create the page')\n",
"role": "user"
},
{
"content": "create_new_page",
"role": "assistant"
}
] |
def x(self, page_id, page_info=0):
try:
return self.process.GetPageContent(page_id, '', page_info)
except Exception as e:
print(e)
print('Could not get Page Content')
| get_page_content | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, page_id, page_info=0):\n try:\n return self.process.GetPageContent(page_id, '', page_info)\n except Exception as e:\n print(e)\n print('Could not get Page Content')\n",
"role": "user"
},
{
"content": "get_page_content",
"role": "assistant"
}
] |
def x(self, hierarchy_id, target_file_path, publish_format,
clsid_of_exporter=''):
try:
self.process.Publish(hierarchy_id, target_file_path, publish_format,
clsid_of_exporter)
except Exception as e:
print(e)
print('Could not Publish')
| publish | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, hierarchy_id, target_file_path, publish_format,\n clsid_of_exporter=''):\n try:\n self.process.Publish(hierarchy_id, target_file_path, publish_format,\n clsid_of_exporter)\n except Exception as e:\n print(e)\n print('Could not Publish')\n",
"role": "user"
},
{
"content": "publish",
"role": "assistant"
}
] |
def x(self, special_location=0):
try:
return self.process.GetSpecialLocation(special_location)
except Exception as e:
print(e)
print('Could not retreive special location')
| get_special_location | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, special_location=0):\n try:\n return self.process.GetSpecialLocation(special_location)\n except Exception as e:\n print(e)\n print('Could not retreive special location')\n",
"role": "user"
},
{
"content": "get_special_location",
"role": "assistant"
}
] |
def x():
mem_info = dict()
for k, v in psutil.virtual_memory()._asdict().items():
mem_info[k] = int(v)
return mem_info
| memory | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n mem_info = dict()\n for k, v in psutil.virtual_memory()._asdict().items():\n mem_info[k] = int(v)\n return mem_info\n",
"role": "user"
},
{
"content": "memory",
"role": "assistant"
}
] |
def x(N, n):
mem_free = memory()['free']
if mem_free > 60000000:
chunk_size = int((mem_free - 10000000) * 1000 / (4 * n * N))
return chunk_size
elif mem_free > 40000000:
chunk_size = int((mem_free - 7000000) * 1000 / (4 * n * N))
return chunk_size
elif mem_free > 14000000:
chunk_size = int((mem_free - 2000000) * 1000 / (4 * n * N))
return chunk_size
elif mem_free > 8000000:
chunk_size = int((mem_free - 1400000) * 1000 / (4 * n * N))
return chunk_size
elif mem_free > 2000000:
chunk_size = int((mem_free - 900000) * 1000 / (4 * n * N))
return chunk_size
elif mem_free > 1000000:
chunk_size = int((mem_free - 400000) * 1000 / (4 * n * N))
return chunk_size
else:
print(
"""
ERROR: Cluster_Ensembles: get_chunk_size: this machine does not have enough free memory resources to perform ensemble clustering.
"""
)
sys.exit(1)
| get_chunk_size | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N, n):\n mem_free = memory()['free']\n if mem_free > 60000000:\n chunk_size = int((mem_free - 10000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 40000000:\n chunk_size = int((mem_free - 7000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 14000000:\n chunk_size = int((mem_free - 2000000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 8000000:\n chunk_size = int((mem_free - 1400000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 2000000:\n chunk_size = int((mem_free - 900000) * 1000 / (4 * n * N))\n return chunk_size\n elif mem_free > 1000000:\n chunk_size = int((mem_free - 400000) * 1000 / (4 * n * N))\n return chunk_size\n else:\n print(\n \"\"\"\nERROR: Cluster_Ensembles: get_chunk_size: this machine does not have enough free memory resources to perform ensemble clustering.\n\"\"\"\n )\n sys.exit(1)\n",
"role": "user"
},
{
"content": "get_chunk_size",
"role": "assistant"
}
] |
def x(byte_counts):
assert isinstance(byte_counts, numbers.Integral) and byte_counts > 0
if 2 * byte_counts > 1000 * memory()['free']:
try:
FILTERS = tables.filters(complevel=5, complib='blosc', shuffle=
True, least_significant_digit=6)
except tables.FiltersWarning:
FILTERS = tables.filters(complevel=5, complib='lzo', shuffle=
True, least_significant_digit=6)
else:
FILTERS = None
return FILTERS
| get_compression_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(byte_counts):\n assert isinstance(byte_counts, numbers.Integral) and byte_counts > 0\n if 2 * byte_counts > 1000 * memory()['free']:\n try:\n FILTERS = tables.filters(complevel=5, complib='blosc', shuffle=\n True, least_significant_digit=6)\n except tables.FiltersWarning:\n FILTERS = tables.filters(complevel=5, complib='lzo', shuffle=\n True, least_significant_digit=6)\n else:\n FILTERS = None\n return FILTERS\n",
"role": "user"
},
{
"content": "get_compression_filter",
"role": "assistant"
}
] |
def x(cluster_runs):
N_runs = cluster_runs.shape[0]
hypergraph_adjacency = create_membership_matrix(cluster_runs[0])
for i in range(1, N_runs):
hypergraph_adjacency = scipy.sparse.vstack([hypergraph_adjacency,
create_membership_matrix(cluster_runs[i])], format='csr')
return hypergraph_adjacency
| build_hypergraph_adjacency | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cluster_runs):\n N_runs = cluster_runs.shape[0]\n hypergraph_adjacency = create_membership_matrix(cluster_runs[0])\n for i in range(1, N_runs):\n hypergraph_adjacency = scipy.sparse.vstack([hypergraph_adjacency,\n create_membership_matrix(cluster_runs[i])], format='csr')\n return hypergraph_adjacency\n",
"role": "user"
},
{
"content": "build_hypergraph_adjacency",
"role": "assistant"
}
] |
def x(hypergraph_adjacency, hdf5_file_name):
assert hypergraph_adjacency.__class__ == scipy.sparse.csr.csr_matrix
byte_counts = (hypergraph_adjacency.data.nbytes + hypergraph_adjacency.
indices.nbytes + hypergraph_adjacency.indptr.nbytes)
FILTERS = get_compression_filter(byte_counts)
with tables.open_file(hdf5_file_name, 'r+') as fileh:
for par in ('data', 'indices', 'indptr', 'shape'):
try:
n = getattr(fileh.root.consensus_group, par)
n._f_remove()
except AttributeError:
pass
array = np.array(getattr(hypergraph_adjacency, par))
atom = tables.Atom.from_dtype(array.dtype)
ds = fileh.create_carray(fileh.root.consensus_group, par, atom,
array.shape, filters=FILTERS)
ds[:] = array
| store_hypergraph_adjacency | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hypergraph_adjacency, hdf5_file_name):\n assert hypergraph_adjacency.__class__ == scipy.sparse.csr.csr_matrix\n byte_counts = (hypergraph_adjacency.data.nbytes + hypergraph_adjacency.\n indices.nbytes + hypergraph_adjacency.indptr.nbytes)\n FILTERS = get_compression_filter(byte_counts)\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n for par in ('data', 'indices', 'indptr', 'shape'):\n try:\n n = getattr(fileh.root.consensus_group, par)\n n._f_remove()\n except AttributeError:\n pass\n array = np.array(getattr(hypergraph_adjacency, par))\n atom = tables.Atom.from_dtype(array.dtype)\n ds = fileh.create_carray(fileh.root.consensus_group, par, atom,\n array.shape, filters=FILTERS)\n ds[:] = array\n",
"role": "user"
},
{
"content": "store_hypergraph_adjacency",
"role": "assistant"
}
] |
def x(hdf5_file_name):
with tables.open_file(hdf5_file_name, 'r+') as fileh:
pars = []
for par in ('data', 'indices', 'indptr', 'shape'):
pars.append(getattr(fileh.root.consensus_group, par).read())
hypergraph_adjacency = scipy.sparse.csr_matrix(tuple(pars[:3]), shape=
pars[3])
return hypergraph_adjacency
| load_hypergraph_adjacency | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name):\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n pars = []\n for par in ('data', 'indices', 'indptr', 'shape'):\n pars.append(getattr(fileh.root.consensus_group, par).read())\n hypergraph_adjacency = scipy.sparse.csr_matrix(tuple(pars[:3]), shape=\n pars[3])\n return hypergraph_adjacency\n",
"role": "user"
},
{
"content": "load_hypergraph_adjacency",
"role": "assistant"
}
] |
def x(cluster_runs, hdf5_file_name=None, verbose=False, N_clusters_max=None):
if hdf5_file_name is None:
hdf5_file_name = './Cluster_Ensembles.h5'
fileh = tables.open_file(hdf5_file_name, 'w')
fileh.create_group(fileh.root, 'consensus_group')
fileh.close()
cluster_ensemble = []
score = np.empty(0)
if cluster_runs.shape[1] > 10000:
consensus_functions = [HGPA, MCLA]
function_names = ['HGPA', 'MCLA']
print(
"""
INFO: Cluster_Ensembles: cluster_ensembles: due to a rather large number of cells in your data-set, using only 'HyperGraph Partitioning Algorithm' (HGPA) and 'Meta-CLustering Algorithm' (MCLA) as ensemble consensus functions.
"""
)
else:
consensus_functions = [CSPA, HGPA, MCLA]
function_names = ['CSPA', 'HGPA', 'MCLA']
hypergraph_adjacency = build_hypergraph_adjacency(cluster_runs)
store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name)
for i in range(len(consensus_functions)):
cluster_ensemble.append(consensus_functions[i](hdf5_file_name,
cluster_runs, verbose, N_clusters_max))
score = np.append(score, ceEvalMutual(cluster_runs,
cluster_ensemble[i], verbose))
print('\nINFO: Cluster_Ensembles: cluster_ensembles: {0} at {1}.'.
format(function_names[i], score[i]))
print('*****')
return cluster_ensemble[np.argmax(score)]
| cluster_ensembles | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cluster_runs, hdf5_file_name=None, verbose=False, N_clusters_max=None):\n if hdf5_file_name is None:\n hdf5_file_name = './Cluster_Ensembles.h5'\n fileh = tables.open_file(hdf5_file_name, 'w')\n fileh.create_group(fileh.root, 'consensus_group')\n fileh.close()\n cluster_ensemble = []\n score = np.empty(0)\n if cluster_runs.shape[1] > 10000:\n consensus_functions = [HGPA, MCLA]\n function_names = ['HGPA', 'MCLA']\n print(\n \"\"\"\nINFO: Cluster_Ensembles: cluster_ensembles: due to a rather large number of cells in your data-set, using only 'HyperGraph Partitioning Algorithm' (HGPA) and 'Meta-CLustering Algorithm' (MCLA) as ensemble consensus functions.\n\"\"\"\n )\n else:\n consensus_functions = [CSPA, HGPA, MCLA]\n function_names = ['CSPA', 'HGPA', 'MCLA']\n hypergraph_adjacency = build_hypergraph_adjacency(cluster_runs)\n store_hypergraph_adjacency(hypergraph_adjacency, hdf5_file_name)\n for i in range(len(consensus_functions)):\n cluster_ensemble.append(consensus_functions[i](hdf5_file_name,\n cluster_runs, verbose, N_clusters_max))\n score = np.append(score, ceEvalMutual(cluster_runs,\n cluster_ensemble[i], verbose))\n print('\\nINFO: Cluster_Ensembles: cluster_ensembles: {0} at {1}.'.\n format(function_names[i], score[i]))\n print('*****')\n return cluster_ensemble[np.argmax(score)]\n",
"role": "user"
},
{
"content": "cluster_ensembles",
"role": "assistant"
}
] |
def x(cluster_runs, cluster_ensemble=None, verbose=False):
if cluster_ensemble is None:
return 0.0
if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):
cluster_runs = cluster_runs.reshape(1, -1)
weighted_average_mutual_information = 0
N_labelled_indices = 0
for i in range(cluster_runs.shape[0]):
labelled_indices = np.where(np.isfinite(cluster_runs[i]))[0]
N = labelled_indices.size
x = np.reshape(checkcl(cluster_ensemble[labelled_indices], verbose),
newshape=N)
y = np.reshape(checkcl(np.rint(cluster_runs[i, labelled_indices]),
verbose), newshape=N)
q = normalized_mutual_info_score(x, y)
weighted_average_mutual_information += q * N
N_labelled_indices += N
return float(weighted_average_mutual_information) / N_labelled_indices
| ceEvalMutual | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cluster_runs, cluster_ensemble=None, verbose=False):\n if cluster_ensemble is None:\n return 0.0\n if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):\n cluster_runs = cluster_runs.reshape(1, -1)\n weighted_average_mutual_information = 0\n N_labelled_indices = 0\n for i in range(cluster_runs.shape[0]):\n labelled_indices = np.where(np.isfinite(cluster_runs[i]))[0]\n N = labelled_indices.size\n x = np.reshape(checkcl(cluster_ensemble[labelled_indices], verbose),\n newshape=N)\n y = np.reshape(checkcl(np.rint(cluster_runs[i, labelled_indices]),\n verbose), newshape=N)\n q = normalized_mutual_info_score(x, y)\n weighted_average_mutual_information += q * N\n N_labelled_indices += N\n return float(weighted_average_mutual_information) / N_labelled_indices\n",
"role": "user"
},
{
"content": "ceEvalMutual",
"role": "assistant"
}
] |
def x(cluster_run, verbose=False):
cluster_run = np.asanyarray(cluster_run)
if cluster_run.size == 0:
raise ValueError(
'\nERROR: Cluster_Ensembles: checkcl: empty vector provided as input.\n'
)
elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):
raise ValueError(
"""
ERROR: Cluster_Ensembles: checkl: problem in dimensions of the cluster label vector under consideration.
"""
)
elif np.where(np.isnan(cluster_run))[0].size != 0:
raise ValueError(
"""
ERROR: Cluster_Ensembles: checkl: vector of cluster labellings provided as input contains at least one 'NaN'.
"""
)
else:
min_label = np.amin(cluster_run)
if min_label < 0:
if verbose:
print(
"""
INFO: Cluster_Ensembles: checkcl: detected negative values as cluster labellings."""
)
cluster_run -= min_label
if verbose:
print(
"\nINFO: Cluster_Ensembles: checkcl: offset to a minimum value of '0'."
)
x = one_to_max(cluster_run)
if np.amax(cluster_run) != np.amax(x):
if verbose:
print(
"""
INFO: Cluster_Ensembles: checkcl: the vector cluster labellings provided is not a dense integer mapping."""
)
cluster_run = x
if verbose:
print(
"""INFO: Cluster_Ensembles: checkcl: brought modification to this vector so that its labels range from 0 to {0}, included.
"""
.format(np.amax(cluster_run)))
return cluster_run
| checkcl | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cluster_run, verbose=False):\n cluster_run = np.asanyarray(cluster_run)\n if cluster_run.size == 0:\n raise ValueError(\n '\\nERROR: Cluster_Ensembles: checkcl: empty vector provided as input.\\n'\n )\n elif reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checkl: problem in dimensions of the cluster label vector under consideration.\n\"\"\"\n )\n elif np.where(np.isnan(cluster_run))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checkl: vector of cluster labellings provided as input contains at least one 'NaN'.\n\"\"\"\n )\n else:\n min_label = np.amin(cluster_run)\n if min_label < 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checkcl: detected negative values as cluster labellings.\"\"\"\n )\n cluster_run -= min_label\n if verbose:\n print(\n \"\\nINFO: Cluster_Ensembles: checkcl: offset to a minimum value of '0'.\"\n )\n x = one_to_max(cluster_run)\n if np.amax(cluster_run) != np.amax(x):\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checkcl: the vector cluster labellings provided is not a dense integer mapping.\"\"\"\n )\n cluster_run = x\n if verbose:\n print(\n \"\"\"INFO: Cluster_Ensembles: checkcl: brought modification to this vector so that its labels range from 0 to {0}, included.\n\"\"\"\n .format(np.amax(cluster_run)))\n return cluster_run\n",
"role": "user"
},
{
"content": "checkcl",
"role": "assistant"
}
] |
def x(array_in):
x = np.asanyarray(array_in)
N_in = x.size
array_in = x.reshape(N_in)
sorted_array = np.sort(array_in)
sorting_indices = np.argsort(array_in)
last = np.nan
current_index = -1
for i in range(N_in):
if last != sorted_array[i] or np.isnan(last):
last = sorted_array[i]
current_index += 1
sorted_array[i] = current_index
result = np.empty(N_in, dtype=int)
result[sorting_indices] = sorted_array
return result
| one_to_max | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(array_in):\n x = np.asanyarray(array_in)\n N_in = x.size\n array_in = x.reshape(N_in)\n sorted_array = np.sort(array_in)\n sorting_indices = np.argsort(array_in)\n last = np.nan\n current_index = -1\n for i in range(N_in):\n if last != sorted_array[i] or np.isnan(last):\n last = sorted_array[i]\n current_index += 1\n sorted_array[i] = current_index\n result = np.empty(N_in, dtype=int)\n result[sorting_indices] = sorted_array\n return result\n",
"role": "user"
},
{
"content": "one_to_max",
"role": "assistant"
}
] |
def x(similarities, verbose=False):
if similarities.size == 0:
raise ValueError(
"""
ERROR: Cluster_Ensembles: checks: the similarities matrix provided as input happens to be empty.
"""
)
elif np.where(np.isnan(similarities))[0].size != 0:
raise ValueError(
"""
ERROR: Cluster_Ensembles: checks: input similarities matrix contains at least one 'NaN'.
"""
)
elif np.where(np.isinf(similarities))[0].size != 0:
raise ValueError(
"""
ERROR: Cluster_Ensembles: checks: at least one infinite entry detected in input similarities matrix.
"""
)
else:
if np.where(np.logical_not(np.isreal(similarities)))[0].size != 0:
if verbose:
print(
"""
INFO: Cluster_Ensembles: checks: complex entries found in the similarities matrix."""
)
similarities = similarities.real
if verbose:
print(
'\nINFO: Cluster_Ensembles: checks: truncated to their real components.'
)
if similarities.shape[0] != similarities.shape[1]:
if verbose:
print(
'\nINFO: Cluster_Ensembles: checks: non-square matrix provided.'
)
N_square = min(similarities.shape)
similarities = similarities[:N_square, :N_square]
if verbose:
print(
'\nINFO: Cluster_Ensembles: checks: using largest square sub-matrix.'
)
max_sim = np.amax(similarities)
min_sim = np.amin(similarities)
if max_sim > 1 or min_sim < 0:
if verbose:
print(
"""
INFO: Cluster_Ensembles: checks: strictly negative or bigger than unity entries spotted in input similarities matrix."""
)
indices_too_big = np.where(similarities > 1)
indices_negative = np.where(similarities < 0)
similarities[indices_too_big] = 1.0
similarities[indices_negative] = 0.0
if verbose:
print(
"""
INFO: Cluster_Ensembles: checks: done setting them to the lower or upper accepted values."""
)
if not np.allclose(similarities, np.transpose(similarities)):
if verbose:
print(
'\nINFO: Cluster_Ensembles: checks: non-symmetric input similarities matrix.'
)
similarities = np.divide(similarities + np.transpose(
similarities), 2.0)
if verbose:
print('\nINFO: Cluster_Ensembles: checks: now symmetrized.')
if not np.allclose(np.diag(similarities), np.ones(similarities.
shape[0])):
if verbose:
print(
"""
INFO: Cluster_Ensembles: checks: the self-similarities provided as input are not all of unit value."""
)
similarities[np.diag_indices(similarities.shape[0])] = 1
if verbose:
print('\nINFO: Cluster_Ensembles: checks: issue corrected.')
| checks | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(similarities, verbose=False):\n if similarities.size == 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: the similarities matrix provided as input happens to be empty.\n\"\"\"\n )\n elif np.where(np.isnan(similarities))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: input similarities matrix contains at least one 'NaN'.\n\"\"\"\n )\n elif np.where(np.isinf(similarities))[0].size != 0:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: checks: at least one infinite entry detected in input similarities matrix.\n\"\"\"\n )\n else:\n if np.where(np.logical_not(np.isreal(similarities)))[0].size != 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: complex entries found in the similarities matrix.\"\"\"\n )\n similarities = similarities.real\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: truncated to their real components.'\n )\n if similarities.shape[0] != similarities.shape[1]:\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: non-square matrix provided.'\n )\n N_square = min(similarities.shape)\n similarities = similarities[:N_square, :N_square]\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: using largest square sub-matrix.'\n )\n max_sim = np.amax(similarities)\n min_sim = np.amin(similarities)\n if max_sim > 1 or min_sim < 0:\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: strictly negative or bigger than unity entries spotted in input similarities matrix.\"\"\"\n )\n indices_too_big = np.where(similarities > 1)\n indices_negative = np.where(similarities < 0)\n similarities[indices_too_big] = 1.0\n similarities[indices_negative] = 0.0\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: done setting them to the lower or upper accepted values.\"\"\"\n )\n if not np.allclose(similarities, np.transpose(similarities)):\n if verbose:\n print(\n '\\nINFO: Cluster_Ensembles: checks: non-symmetric input similarities matrix.'\n )\n similarities = np.divide(similarities + np.transpose(\n similarities), 2.0)\n if verbose:\n print('\\nINFO: Cluster_Ensembles: checks: now symmetrized.')\n if not np.allclose(np.diag(similarities), np.ones(similarities.\n shape[0])):\n if verbose:\n print(\n \"\"\"\nINFO: Cluster_Ensembles: checks: the self-similarities provided as input are not all of unit value.\"\"\"\n )\n similarities[np.diag_indices(similarities.shape[0])] = 1\n if verbose:\n print('\\nINFO: Cluster_Ensembles: checks: issue corrected.')\n",
"role": "user"
},
{
"content": "checks",
"role": "assistant"
}
] |
def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):
print('*****')
print('INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.')
if N_clusters_max == None:
N_clusters_max = int(np.nanmax(cluster_runs)) + 1
N_runs = cluster_runs.shape[0]
N_samples = cluster_runs.shape[1]
if N_samples > 20000:
raise ValueError(
"""
ERROR: Cluster_Ensembles: CSPA: cannot efficiently deal with too large a number of cells."""
)
hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)
s = scipy.sparse.csr_matrix.dot(hypergraph_adjacency.transpose().tocsr(
), hypergraph_adjacency)
s = np.squeeze(np.asarray(s.todense()))
del hypergraph_adjacency
gc.collect()
checks(np.divide(s, float(N_runs)), verbose)
e_sum_before = s.sum()
sum_after = 100000000.0
scale_factor = sum_after / float(e_sum_before)
with tables.open_file(hdf5_file_name, 'r+') as fileh:
atom = tables.Float32Atom()
FILTERS = get_compression_filter(4 * N_samples ** 2)
S = fileh.create_carray(fileh.root.consensus_group,
'similarities_CSPA', atom, (N_samples, N_samples),
'Matrix of similarities arising in Cluster-based Similarity Partitioning'
, filters=FILTERS)
expr = tables.Expr('s * scale_factor')
expr.set_output(S)
expr.eval()
chunks_size = get_chunk_size(N_samples, 3)
for i in range(0, N_samples, chunks_size):
tmp = S[i:min(i + chunks_size, N_samples)]
S[i:min(i + chunks_size, N_samples)] = np.rint(tmp)
return metis(hdf5_file_name, N_clusters_max)
| CSPA | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):\n print('*****')\n print('INFO: Cluster_Ensembles: CSPA: consensus clustering using CSPA.')\n if N_clusters_max == None:\n N_clusters_max = int(np.nanmax(cluster_runs)) + 1\n N_runs = cluster_runs.shape[0]\n N_samples = cluster_runs.shape[1]\n if N_samples > 20000:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: CSPA: cannot efficiently deal with too large a number of cells.\"\"\"\n )\n hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)\n s = scipy.sparse.csr_matrix.dot(hypergraph_adjacency.transpose().tocsr(\n ), hypergraph_adjacency)\n s = np.squeeze(np.asarray(s.todense()))\n del hypergraph_adjacency\n gc.collect()\n checks(np.divide(s, float(N_runs)), verbose)\n e_sum_before = s.sum()\n sum_after = 100000000.0\n scale_factor = sum_after / float(e_sum_before)\n with tables.open_file(hdf5_file_name, 'r+') as fileh:\n atom = tables.Float32Atom()\n FILTERS = get_compression_filter(4 * N_samples ** 2)\n S = fileh.create_carray(fileh.root.consensus_group,\n 'similarities_CSPA', atom, (N_samples, N_samples),\n 'Matrix of similarities arising in Cluster-based Similarity Partitioning'\n , filters=FILTERS)\n expr = tables.Expr('s * scale_factor')\n expr.set_output(S)\n expr.eval()\n chunks_size = get_chunk_size(N_samples, 3)\n for i in range(0, N_samples, chunks_size):\n tmp = S[i:min(i + chunks_size, N_samples)]\n S[i:min(i + chunks_size, N_samples)] = np.rint(tmp)\n return metis(hdf5_file_name, N_clusters_max)\n",
"role": "user"
},
{
"content": "CSPA",
"role": "assistant"
}
] |
def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):
print('\n*****')
print('INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.')
if N_clusters_max == None:
N_clusters_max = int(np.nanmax(cluster_runs)) + 1
return hmetis(hdf5_file_name, N_clusters_max)
| HGPA | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, cluster_runs, verbose=False, N_clusters_max=None):\n print('\\n*****')\n print('INFO: Cluster_Ensembles: HGPA: consensus clustering using HGPA.')\n if N_clusters_max == None:\n N_clusters_max = int(np.nanmax(cluster_runs)) + 1\n return hmetis(hdf5_file_name, N_clusters_max)\n",
"role": "user"
},
{
"content": "HGPA",
"role": "assistant"
}
] |
def x(cluster_run):
cluster_run = np.asanyarray(cluster_run)
if reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):
raise ValueError(
"""
ERROR: Cluster_Ensembles: create_membership_matrix: problem in dimensions of the cluster label vector under consideration."""
)
else:
cluster_run = cluster_run.reshape(cluster_run.size)
cluster_ids = np.unique(np.compress(np.isfinite(cluster_run),
cluster_run))
indices = np.empty(0, dtype=np.int32)
indptr = np.zeros(1, dtype=np.int32)
for elt in cluster_ids:
indices = np.append(indices, np.where(cluster_run == elt)[0])
indptr = np.append(indptr, indices.size)
data = np.ones(indices.size, dtype=int)
return scipy.sparse.csr_matrix((data, indices, indptr), shape=(
cluster_ids.size, cluster_run.size))
| create_membership_matrix | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cluster_run):\n cluster_run = np.asanyarray(cluster_run)\n if reduce(operator.mul, cluster_run.shape, 1) != max(cluster_run.shape):\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: create_membership_matrix: problem in dimensions of the cluster label vector under consideration.\"\"\"\n )\n else:\n cluster_run = cluster_run.reshape(cluster_run.size)\n cluster_ids = np.unique(np.compress(np.isfinite(cluster_run),\n cluster_run))\n indices = np.empty(0, dtype=np.int32)\n indptr = np.zeros(1, dtype=np.int32)\n for elt in cluster_ids:\n indices = np.append(indices, np.where(cluster_run == elt)[0])\n indptr = np.append(indptr, indices.size)\n data = np.ones(indices.size, dtype=int)\n return scipy.sparse.csr_matrix((data, indices, indptr), shape=(\n cluster_ids.size, cluster_run.size))\n",
"role": "user"
},
{
"content": "create_membership_matrix",
"role": "assistant"
}
] |
def x(hdf5_file_name, N_clusters_max):
file_name = wgraph(hdf5_file_name)
labels = sgraph(N_clusters_max, file_name)
subprocess.call(['rm', file_name])
return labels
| metis | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, N_clusters_max):\n file_name = wgraph(hdf5_file_name)\n labels = sgraph(N_clusters_max, file_name)\n subprocess.call(['rm', file_name])\n return labels\n",
"role": "user"
},
{
"content": "metis",
"role": "assistant"
}
] |
def x(hdf5_file_name, N_clusters_max, w=None):
if w is None:
file_name = wgraph(hdf5_file_name, None, 2)
else:
file_name = wgraph(hdf5_file_name, w, 3)
labels = sgraph(N_clusters_max, file_name)
labels = one_to_max(labels)
subprocess.call(['rm', file_name])
return labels
| hmetis | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, N_clusters_max, w=None):\n if w is None:\n file_name = wgraph(hdf5_file_name, None, 2)\n else:\n file_name = wgraph(hdf5_file_name, w, 3)\n labels = sgraph(N_clusters_max, file_name)\n labels = one_to_max(labels)\n subprocess.call(['rm', file_name])\n return labels\n",
"role": "user"
},
{
"content": "hmetis",
"role": "assistant"
}
] |
def x(hdf5_file_name, w=None, method=0):
print('\n#')
if method == 0:
fileh = tables.open_file(hdf5_file_name, 'r+')
e_mat = fileh.root.consensus_group.similarities_CSPA
file_name = 'wgraph_CSPA'
elif method == 1:
fileh = tables.open_file(hdf5_file_name, 'r+')
e_mat = fileh.root.consensus_group.similarities_MCLA
file_name = 'wgraph_MCLA'
elif method in {2, 3}:
hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)
e_mat = hypergraph_adjacency.copy().transpose()
file_name = 'wgraph_HGPA'
fileh = tables.open_file(hdf5_file_name, 'r+')
else:
raise ValueError(
"""
ERROR: Cluster_Ensembles: wgraph: invalid code for choice of method; choose either 0, 1, 2 or 3."""
)
if w is None:
w = []
N_rows = e_mat.shape[0]
N_cols = e_mat.shape[1]
if method in {0, 1}:
diag_ind = np.diag_indices(N_rows)
e_mat[diag_ind] = 0
if method == 1:
scale_factor = 100.0
w_sum_before = np.sum(w)
w *= scale_factor
w = np.rint(w)
with open(file_name, 'w') as file:
print('INFO: Cluster_Ensembles: wgraph: writing {}.'.format(file_name))
if method == 0:
sz = float(np.sum(e_mat[:] > 0)) / 2
if int(sz) == 0:
return 'DO_NOT_PROCESS'
else:
file.write('{} {} 1\n'.format(N_rows, int(sz)))
elif method == 1:
chunks_size = get_chunk_size(N_cols, 2)
N_chunks, remainder = divmod(N_rows, chunks_size)
if N_chunks == 0:
sz = float(np.sum(e_mat[:] > 0)) / 2
else:
sz = 0
for i in range(N_chunks):
M = e_mat[i * chunks_size:(i + 1) * chunks_size]
sz += float(np.sum(M > 0))
if remainder != 0:
M = e_mat[N_chunks * chunks_size:N_rows]
sz += float(np.sum(M > 0))
sz = float(sz) / 2
file.write('{} {} 11\n'.format(N_rows, int(sz)))
else:
file.write('{} {} 1\n'.format(N_cols, N_rows))
if method in {0, 1}:
chunks_size = get_chunk_size(N_cols, 2)
for i in range(0, N_rows, chunks_size):
M = e_mat[i:min(i + chunks_size, N_rows)]
for j in range(M.shape[0]):
edges = np.where(M[j] > 0)[0]
weights = M[j, edges]
if method == 0:
interlaced = np.zeros(2 * edges.size, dtype=int)
interlaced[::2] = edges + 1
interlaced[1::2] = weights
else:
interlaced = np.zeros(1 + 2 * edges.size, dtype=int)
interlaced[0] = w[i + j]
interlaced[1::2] = edges + 1
interlaced[2::2] = weights
for elt in interlaced:
file.write('{} '.format(int(elt)))
file.write('\n')
else:
print(
'INFO: Cluster_Ensembles: wgraph: {N_rows} vertices and {N_cols} non-zero hyper-edges.'
.format(**locals()))
chunks_size = get_chunk_size(N_rows, 2)
for i in range(0, N_cols, chunks_size):
M = np.asarray(e_mat[:, i:min(i + chunks_size, N_cols)].
todense())
for j in range(M.shape[1]):
edges = np.where(M[:, j] > 0)[0]
if method == 2:
weight = np.array(M[:, j].sum(), dtype=int)
else:
weight = w[i + j]
interlaced = np.append(weight, edges + 1)
for elt in interlaced:
file.write('{} '.format(int(elt)))
file.write('\n')
if method in {0, 1}:
fileh.remove_node(fileh.root.consensus_group, e_mat.name)
fileh.close()
print('#')
return file_name
| wgraph | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, w=None, method=0):\n print('\\n#')\n if method == 0:\n fileh = tables.open_file(hdf5_file_name, 'r+')\n e_mat = fileh.root.consensus_group.similarities_CSPA\n file_name = 'wgraph_CSPA'\n elif method == 1:\n fileh = tables.open_file(hdf5_file_name, 'r+')\n e_mat = fileh.root.consensus_group.similarities_MCLA\n file_name = 'wgraph_MCLA'\n elif method in {2, 3}:\n hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)\n e_mat = hypergraph_adjacency.copy().transpose()\n file_name = 'wgraph_HGPA'\n fileh = tables.open_file(hdf5_file_name, 'r+')\n else:\n raise ValueError(\n \"\"\"\nERROR: Cluster_Ensembles: wgraph: invalid code for choice of method; choose either 0, 1, 2 or 3.\"\"\"\n )\n if w is None:\n w = []\n N_rows = e_mat.shape[0]\n N_cols = e_mat.shape[1]\n if method in {0, 1}:\n diag_ind = np.diag_indices(N_rows)\n e_mat[diag_ind] = 0\n if method == 1:\n scale_factor = 100.0\n w_sum_before = np.sum(w)\n w *= scale_factor\n w = np.rint(w)\n with open(file_name, 'w') as file:\n print('INFO: Cluster_Ensembles: wgraph: writing {}.'.format(file_name))\n if method == 0:\n sz = float(np.sum(e_mat[:] > 0)) / 2\n if int(sz) == 0:\n return 'DO_NOT_PROCESS'\n else:\n file.write('{} {} 1\\n'.format(N_rows, int(sz)))\n elif method == 1:\n chunks_size = get_chunk_size(N_cols, 2)\n N_chunks, remainder = divmod(N_rows, chunks_size)\n if N_chunks == 0:\n sz = float(np.sum(e_mat[:] > 0)) / 2\n else:\n sz = 0\n for i in range(N_chunks):\n M = e_mat[i * chunks_size:(i + 1) * chunks_size]\n sz += float(np.sum(M > 0))\n if remainder != 0:\n M = e_mat[N_chunks * chunks_size:N_rows]\n sz += float(np.sum(M > 0))\n sz = float(sz) / 2\n file.write('{} {} 11\\n'.format(N_rows, int(sz)))\n else:\n file.write('{} {} 1\\n'.format(N_cols, N_rows))\n if method in {0, 1}:\n chunks_size = get_chunk_size(N_cols, 2)\n for i in range(0, N_rows, chunks_size):\n M = e_mat[i:min(i + chunks_size, N_rows)]\n for j in range(M.shape[0]):\n edges = np.where(M[j] > 0)[0]\n weights = M[j, edges]\n if method == 0:\n interlaced = np.zeros(2 * edges.size, dtype=int)\n interlaced[::2] = edges + 1\n interlaced[1::2] = weights\n else:\n interlaced = np.zeros(1 + 2 * edges.size, dtype=int)\n interlaced[0] = w[i + j]\n interlaced[1::2] = edges + 1\n interlaced[2::2] = weights\n for elt in interlaced:\n file.write('{} '.format(int(elt)))\n file.write('\\n')\n else:\n print(\n 'INFO: Cluster_Ensembles: wgraph: {N_rows} vertices and {N_cols} non-zero hyper-edges.'\n .format(**locals()))\n chunks_size = get_chunk_size(N_rows, 2)\n for i in range(0, N_cols, chunks_size):\n M = np.asarray(e_mat[:, i:min(i + chunks_size, N_cols)].\n todense())\n for j in range(M.shape[1]):\n edges = np.where(M[:, j] > 0)[0]\n if method == 2:\n weight = np.array(M[:, j].sum(), dtype=int)\n else:\n weight = w[i + j]\n interlaced = np.append(weight, edges + 1)\n for elt in interlaced:\n file.write('{} '.format(int(elt)))\n file.write('\\n')\n if method in {0, 1}:\n fileh.remove_node(fileh.root.consensus_group, e_mat.name)\n fileh.close()\n print('#')\n return file_name\n",
"role": "user"
},
{
"content": "wgraph",
"role": "assistant"
}
] |
def x(N_clusters_max, file_name):
if file_name == 'DO_NOT_PROCESS':
return []
print('\n#')
k = str(N_clusters_max)
out_name = file_name + '.part.' + k
if file_name == 'wgraph_HGPA':
print(
'INFO: Cluster_Ensembles: sgraph: calling shmetis for hypergraph partitioning.'
)
if sys.platform.startswith('linux'):
shmetis_path = pkg_resources.resource_filename(__name__,
'Hypergraph_Partitioning/hmetis-1.5-linux/shmetis')
elif sys.platform.startswith('darwin'):
shmetis_path = pkg_resources.resource_filename(__name__,
'Hypergraph_Partitioning/hmetis-1.5-osx-i686/shmetis')
else:
print(
"""ERROR: Cluster_Ensembles: sgraph:
your platform is not supported. Some code required for graph partition is only available for Linux distributions and OS X."""
)
sys.exit(1)
args = '{0} ./'.format(shmetis_path) + file_name + ' ' + k + ' 15'
subprocess.call(args, shell=True)
elif file_name == 'wgraph_CSPA' or file_name == 'wgraph_MCLA':
print(
'INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.'
)
args = 'gpmetis ./' + file_name + ' ' + k
subprocess.call(args, shell=True)
else:
raise NameError(
'ERROR: Cluster_Ensembles: sgraph: {} is not an acceptable file-name.'
.format(file_name))
labels = np.empty(0, dtype=int)
with open(out_name, 'r') as file:
print(
'INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading {}'
.format(out_name))
labels = np.loadtxt(out_name, dtype=int)
labels = labels.reshape(labels.size)
labels = one_to_max(labels)
subprocess.call(['rm', out_name])
print('#')
return labels
| sgraph | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(N_clusters_max, file_name):\n if file_name == 'DO_NOT_PROCESS':\n return []\n print('\\n#')\n k = str(N_clusters_max)\n out_name = file_name + '.part.' + k\n if file_name == 'wgraph_HGPA':\n print(\n 'INFO: Cluster_Ensembles: sgraph: calling shmetis for hypergraph partitioning.'\n )\n if sys.platform.startswith('linux'):\n shmetis_path = pkg_resources.resource_filename(__name__,\n 'Hypergraph_Partitioning/hmetis-1.5-linux/shmetis')\n elif sys.platform.startswith('darwin'):\n shmetis_path = pkg_resources.resource_filename(__name__,\n 'Hypergraph_Partitioning/hmetis-1.5-osx-i686/shmetis')\n else:\n print(\n \"\"\"ERROR: Cluster_Ensembles: sgraph:\nyour platform is not supported. Some code required for graph partition is only available for Linux distributions and OS X.\"\"\"\n )\n sys.exit(1)\n args = '{0} ./'.format(shmetis_path) + file_name + ' ' + k + ' 15'\n subprocess.call(args, shell=True)\n elif file_name == 'wgraph_CSPA' or file_name == 'wgraph_MCLA':\n print(\n 'INFO: Cluster_Ensembles: sgraph: calling gpmetis for graph partitioning.'\n )\n args = 'gpmetis ./' + file_name + ' ' + k\n subprocess.call(args, shell=True)\n else:\n raise NameError(\n 'ERROR: Cluster_Ensembles: sgraph: {} is not an acceptable file-name.'\n .format(file_name))\n labels = np.empty(0, dtype=int)\n with open(out_name, 'r') as file:\n print(\n 'INFO: Cluster_Ensembles: sgraph: (hyper)-graph partitioning completed; loading {}'\n .format(out_name))\n labels = np.loadtxt(out_name, dtype=int)\n labels = labels.reshape(labels.size)\n labels = one_to_max(labels)\n subprocess.call(['rm', out_name])\n print('#')\n return labels\n",
"role": "user"
},
{
"content": "sgraph",
"role": "assistant"
}
] |
def x(hdf5_file_name, consensus_labels, cluster_runs):
if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):
cluster_runs = cluster_runs.reshape(1, -1)
N_runs, N_samples = cluster_runs.shape
N_consensus_labels = np.unique(consensus_labels).size
indices_consensus_adjacency = np.empty(0, dtype=np.int32)
indptr_consensus_adjacency = np.zeros(1, dtype=np.int64)
for k in range(N_consensus_labels):
indices_consensus_adjacency = np.append(indices_consensus_adjacency,
np.where(consensus_labels == k)[0])
indptr_consensus_adjacency = np.append(indptr_consensus_adjacency,
indices_consensus_adjacency.size)
data_consensus_adjacency = np.ones(indices_consensus_adjacency.size,
dtype=int)
consensus_adjacency = scipy.sparse.csr_matrix((data_consensus_adjacency,
indices_consensus_adjacency, indptr_consensus_adjacency), shape=(
N_consensus_labels, N_samples))
fileh = tables.open_file(hdf5_file_name, 'r+')
FILTERS = get_compression_filter(4 * N_consensus_labels * N_runs)
overlap_matrix = fileh.create_earray(fileh.root.consensus_group,
'overlap_matrix', tables.Float32Atom(), (0, N_consensus_labels),
'Matrix of overlaps between each run and the consensus labellings',
filters=FILTERS, expectedrows=N_consensus_labels * N_runs)
mutual_info_list = []
cluster_dims_list = [0]
for i in range(N_runs):
M = cluster_runs[i]
mutual_info_list.append(ceEvalMutual(M, consensus_labels))
finite_indices = np.where(np.isfinite(M))[0]
positive_indices = np.where(M >= 0)[0]
selected_indices = np.intersect1d(finite_indices, positive_indices,
assume_unique=True)
cluster_ids = np.unique(M[selected_indices])
n_ids = cluster_ids.size
cluster_dims_list.append(n_ids)
unions = np.zeros((n_ids, N_consensus_labels), dtype=float)
indices = np.empty(0, dtype=int)
indptr = [0]
c = 0
for elt in cluster_ids:
indices = np.append(indices, np.where(M == elt)[0])
indptr.append(indices.size)
for k in range(N_consensus_labels):
x = indices_consensus_adjacency[indptr_consensus_adjacency[
k]:indptr_consensus_adjacency[k + 1]]
unions[c, k] = np.union1d(indices, x).size
c += 1
data = np.ones(indices.size, dtype=int)
I = scipy.sparse.csr_matrix((data, indices, indptr), shape=(n_ids,
N_samples))
intersections = I.dot(consensus_adjacency.transpose())
intersections = np.squeeze(np.asarray(intersections.todense()))
overlap_matrix.append(np.divide(intersections, unions))
fileh.close()
return cluster_dims_list, mutual_info_list, consensus_adjacency
| overlap_matrix | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hdf5_file_name, consensus_labels, cluster_runs):\n if reduce(operator.mul, cluster_runs.shape, 1) == max(cluster_runs.shape):\n cluster_runs = cluster_runs.reshape(1, -1)\n N_runs, N_samples = cluster_runs.shape\n N_consensus_labels = np.unique(consensus_labels).size\n indices_consensus_adjacency = np.empty(0, dtype=np.int32)\n indptr_consensus_adjacency = np.zeros(1, dtype=np.int64)\n for k in range(N_consensus_labels):\n indices_consensus_adjacency = np.append(indices_consensus_adjacency,\n np.where(consensus_labels == k)[0])\n indptr_consensus_adjacency = np.append(indptr_consensus_adjacency,\n indices_consensus_adjacency.size)\n data_consensus_adjacency = np.ones(indices_consensus_adjacency.size,\n dtype=int)\n consensus_adjacency = scipy.sparse.csr_matrix((data_consensus_adjacency,\n indices_consensus_adjacency, indptr_consensus_adjacency), shape=(\n N_consensus_labels, N_samples))\n fileh = tables.open_file(hdf5_file_name, 'r+')\n FILTERS = get_compression_filter(4 * N_consensus_labels * N_runs)\n overlap_matrix = fileh.create_earray(fileh.root.consensus_group,\n 'overlap_matrix', tables.Float32Atom(), (0, N_consensus_labels),\n 'Matrix of overlaps between each run and the consensus labellings',\n filters=FILTERS, expectedrows=N_consensus_labels * N_runs)\n mutual_info_list = []\n cluster_dims_list = [0]\n for i in range(N_runs):\n M = cluster_runs[i]\n mutual_info_list.append(ceEvalMutual(M, consensus_labels))\n finite_indices = np.where(np.isfinite(M))[0]\n positive_indices = np.where(M >= 0)[0]\n selected_indices = np.intersect1d(finite_indices, positive_indices,\n assume_unique=True)\n cluster_ids = np.unique(M[selected_indices])\n n_ids = cluster_ids.size\n cluster_dims_list.append(n_ids)\n unions = np.zeros((n_ids, N_consensus_labels), dtype=float)\n indices = np.empty(0, dtype=int)\n indptr = [0]\n c = 0\n for elt in cluster_ids:\n indices = np.append(indices, np.where(M == elt)[0])\n indptr.append(indices.size)\n for k in range(N_consensus_labels):\n x = indices_consensus_adjacency[indptr_consensus_adjacency[\n k]:indptr_consensus_adjacency[k + 1]]\n unions[c, k] = np.union1d(indices, x).size\n c += 1\n data = np.ones(indices.size, dtype=int)\n I = scipy.sparse.csr_matrix((data, indices, indptr), shape=(n_ids,\n N_samples))\n intersections = I.dot(consensus_adjacency.transpose())\n intersections = np.squeeze(np.asarray(intersections.todense()))\n overlap_matrix.append(np.divide(intersections, unions))\n fileh.close()\n return cluster_dims_list, mutual_info_list, consensus_adjacency\n",
"role": "user"
},
{
"content": "overlap_matrix",
"role": "assistant"
}
] |
def x(p, action):
key = 'ru7sll3uQrGtDPcIW3okutpFLo6YYtd5bWSpbZJIopYQ0Du0a1WlhvJOaZEH'
s = list()
if action == 'store':
if PY2:
for i in range(len(p)):
kc = key[i % len(key)]
ec = chr((ord(p[i]) + ord(kc)) % 256)
s.append(ec)
return base64.urlsafe_b64encode(''.join(s))
else:
return base64.urlsafe_b64encode(p.encode()).decode()
elif PY2:
e = base64.urlsafe_b64decode(p)
for i in range(len(e)):
kc = key[i % len(key)]
dc = chr((256 + ord(e[i]) - ord(kc)) % 256)
s.append(dc)
return ''.join(s)
else:
e = base64.urlsafe_b64decode(p)
return e.decode()
| obfuscate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p, action):\n key = 'ru7sll3uQrGtDPcIW3okutpFLo6YYtd5bWSpbZJIopYQ0Du0a1WlhvJOaZEH'\n s = list()\n if action == 'store':\n if PY2:\n for i in range(len(p)):\n kc = key[i % len(key)]\n ec = chr((ord(p[i]) + ord(kc)) % 256)\n s.append(ec)\n return base64.urlsafe_b64encode(''.join(s))\n else:\n return base64.urlsafe_b64encode(p.encode()).decode()\n elif PY2:\n e = base64.urlsafe_b64decode(p)\n for i in range(len(e)):\n kc = key[i % len(key)]\n dc = chr((256 + ord(e[i]) - ord(kc)) % 256)\n s.append(dc)\n return ''.join(s)\n else:\n e = base64.urlsafe_b64decode(p)\n return e.decode()\n",
"role": "user"
},
{
"content": "obfuscate",
"role": "assistant"
}
] |
def x(self):
if not os.path.exists(CONFIG_PATH):
os.makedirs(CONFIG_PATH)
if not os.path.exists(CONFIG_FILE):
json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,
separators=(',', ': '))
config = CONFIG_DEFAULTS
if self._email and self._password:
config['email'] = self._email
config['password'] = str(obfuscate(self._password, 'store'))
self._log.debug('Caching authentication in config file')
json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',
': '))
else:
config = json.load(open(CONFIG_FILE))
if config.get('py2', PY2) != PY2:
raise Exception(
'Python versions have changed. Please run `setup` again to reconfigure the client.'
)
if config['email'] and config['password']:
self._email = config['email']
self._password = obfuscate(str(config['password']), 'fetch')
self._log.debug('Loaded authentication from config file')
| config_bootstrap | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not os.path.exists(CONFIG_PATH):\n os.makedirs(CONFIG_PATH)\n if not os.path.exists(CONFIG_FILE):\n json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,\n separators=(',', ': '))\n config = CONFIG_DEFAULTS\n if self._email and self._password:\n config['email'] = self._email\n config['password'] = str(obfuscate(self._password, 'store'))\n self._log.debug('Caching authentication in config file')\n json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',\n ': '))\n else:\n config = json.load(open(CONFIG_FILE))\n if config.get('py2', PY2) != PY2:\n raise Exception(\n 'Python versions have changed. Please run `setup` again to reconfigure the client.'\n )\n if config['email'] and config['password']:\n self._email = config['email']\n self._password = obfuscate(str(config['password']), 'fetch')\n self._log.debug('Loaded authentication from config file')\n",
"role": "user"
},
{
"content": "config_bootstrap",
"role": "assistant"
}
] |
def x(self):
if not os.path.exists(SESSION_FILE):
self._log.debug('Session file does not exist')
return False
with open(SESSION_FILE, 'rb') as f:
cookies = requests.utils.cookiejar_from_dict(pickle.load(f))
self._session.cookies = cookies
self._log.debug('Loaded cookies from session file')
response = self._session.get(url=self.TEST_URL, headers=self.HEADERS)
if self.TEST_KEY in str(response.content):
self._log.debug('Session file appears invalid')
return False
self._is_authenticated = True
self._process_state()
return True
| session_check | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not os.path.exists(SESSION_FILE):\n self._log.debug('Session file does not exist')\n return False\n with open(SESSION_FILE, 'rb') as f:\n cookies = requests.utils.cookiejar_from_dict(pickle.load(f))\n self._session.cookies = cookies\n self._log.debug('Loaded cookies from session file')\n response = self._session.get(url=self.TEST_URL, headers=self.HEADERS)\n if self.TEST_KEY in str(response.content):\n self._log.debug('Session file appears invalid')\n return False\n self._is_authenticated = True\n self._process_state()\n return True\n",
"role": "user"
},
{
"content": "session_check",
"role": "assistant"
}
] |
def x(self):
logger = logging.getLogger(self.NAME)
logger.setLevel(self.LOG_LEVEL)
shandler = logging.StreamHandler(sys.stdout)
fmt = '\x1b[1;32m%(levelname)-5s %(module)s:%(funcName)s():'
fmt += '%(lineno)d %(asctime)s\x1b[0m| %(message)s'
shandler.setFormatter(logging.Formatter(fmt))
logger.addHandler(shandler)
return logger
| logger | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n logger = logging.getLogger(self.NAME)\n logger.setLevel(self.LOG_LEVEL)\n shandler = logging.StreamHandler(sys.stdout)\n fmt = '\\x1b[1;32m%(levelname)-5s %(module)s:%(funcName)s():'\n fmt += '%(lineno)d %(asctime)s\\x1b[0m| %(message)s'\n shandler.setFormatter(logging.Formatter(fmt))\n logger.addHandler(shandler)\n return logger\n",
"role": "user"
},
{
"content": "logger",
"role": "assistant"
}
] |
def x(self, level):
if level == 'info':
level = logging.INFO
if level == 'debug':
level = logging.DEBUG
if level == 'error':
level = logging.ERROR
self._log.setLevel(level)
| set_log_level | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, level):\n if level == 'info':\n level = logging.INFO\n if level == 'debug':\n level = logging.DEBUG\n if level == 'error':\n level = logging.ERROR\n self._log.setLevel(level)\n",
"role": "user"
},
{
"content": "set_log_level",
"role": "assistant"
}
] |
def x(self):
self._log.debug('Capturing state from the request')
response = self._session.get(url=self.ALERTS_URL, headers=self.HEADERS)
soup = BeautifulSoup(response.content, 'html.parser')
for i in soup.findAll('script'):
if i.text.find('window.STATE') == -1:
continue
state = json.loads(i.text[15:-1])
if state != '':
self._state = state
self._log.debug('State value set: %s' % self._state)
return self._state
| process_state | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self._log.debug('Capturing state from the request')\n response = self._session.get(url=self.ALERTS_URL, headers=self.HEADERS)\n soup = BeautifulSoup(response.content, 'html.parser')\n for i in soup.findAll('script'):\n if i.text.find('window.STATE') == -1:\n continue\n state = json.loads(i.text[15:-1])\n if state != '':\n self._state = state\n self._log.debug('State value set: %s' % self._state)\n return self._state\n",
"role": "user"
},
{
"content": "process_state",
"role": "assistant"
}
] |
def x(self):
valid = self._session_check()
if self._is_authenticated and valid:
self._log.debug('[!] User has already authenticated')
return
init = self._session.get(url=self.LOGIN_URL, headers=self.HEADERS)
soup = BeautifulSoup(init.content, 'html.parser')
soup_login = soup.find('form').find_all('input')
post_data = dict()
for u in soup_login:
if u.has_attr('name') and u.has_attr('value'):
post_data[u['name']] = u['value']
post_data['Email'] = self._email
post_data['Passwd'] = self._password
response = self._session.post(url=self.AUTH_URL, data=post_data,
headers=self.HEADERS)
if self.CAPTCHA_KEY in str(response.content):
raise AccountCaptcha(
'Google is forcing a CAPTCHA. To get around this issue, run the google-alerts with the seed option to open an interactive authentication session. Once authenticated, this module will cache your session and load that in the future'
)
cookies = [x.name for x in response.cookies]
if 'SIDCC' not in cookies:
raise InvalidCredentials('Email or password was incorrect.')
with open(SESSION_FILE, 'wb') as f:
cookies = requests.utils.dict_from_cookiejar(self._session.cookies)
pickle.dump(cookies, f, protocol=2)
self._log.debug('Saved session to disk for future reference')
self._log.debug('User successfully authenticated')
self._is_authenticated = True
self._process_state()
return
| authenticate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n valid = self._session_check()\n if self._is_authenticated and valid:\n self._log.debug('[!] User has already authenticated')\n return\n init = self._session.get(url=self.LOGIN_URL, headers=self.HEADERS)\n soup = BeautifulSoup(init.content, 'html.parser')\n soup_login = soup.find('form').find_all('input')\n post_data = dict()\n for u in soup_login:\n if u.has_attr('name') and u.has_attr('value'):\n post_data[u['name']] = u['value']\n post_data['Email'] = self._email\n post_data['Passwd'] = self._password\n response = self._session.post(url=self.AUTH_URL, data=post_data,\n headers=self.HEADERS)\n if self.CAPTCHA_KEY in str(response.content):\n raise AccountCaptcha(\n 'Google is forcing a CAPTCHA. To get around this issue, run the google-alerts with the seed option to open an interactive authentication session. Once authenticated, this module will cache your session and load that in the future'\n )\n cookies = [x.name for x in response.cookies]\n if 'SIDCC' not in cookies:\n raise InvalidCredentials('Email or password was incorrect.')\n with open(SESSION_FILE, 'wb') as f:\n cookies = requests.utils.dict_from_cookiejar(self._session.cookies)\n pickle.dump(cookies, f, protocol=2)\n self._log.debug('Saved session to disk for future reference')\n self._log.debug('User successfully authenticated')\n self._is_authenticated = True\n self._process_state()\n return\n",
"role": "user"
},
{
"content": "authenticate",
"role": "assistant"
}
] |
def x(self, term=None):
if not self._state:
raise InvalidState('State was not properly obtained from the app')
self._process_state()
if not self._state[1]:
self._log.info('No monitors have been created yet.')
return list()
monitors = list()
for monitor in self._state[1][1]:
obj = dict()
obj['monitor_id'] = monitor[1]
obj['user_id'] = monitor[-1]
obj['term'] = monitor[2][3][1]
if term and obj['term'] != term:
continue
obj['language'] = monitor[2][3][3][1]
obj['region'] = monitor[2][3][3][2]
obj['delivery'] = self.DELIVERY[monitor[2][6][0][1]]
obj['match_type'] = self.MONITOR_MATCH_TYPE[monitor[2][5]]
if obj['delivery'] == 'MAIL':
obj['alert_frequency'] = self.ALERT_FREQ[monitor[2][6][0][4]]
obj['email_address'] = monitor[2][6][0][2]
else:
rss_id = monitor[2][6][0][11]
url = 'https://google.com/alerts/feeds/{uid}/{fid}'
obj['rss_link'] = url.format(uid=obj['user_id'], fid=rss_id)
monitors.append(obj)
return monitors
| list | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, term=None):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n self._process_state()\n if not self._state[1]:\n self._log.info('No monitors have been created yet.')\n return list()\n monitors = list()\n for monitor in self._state[1][1]:\n obj = dict()\n obj['monitor_id'] = monitor[1]\n obj['user_id'] = monitor[-1]\n obj['term'] = monitor[2][3][1]\n if term and obj['term'] != term:\n continue\n obj['language'] = monitor[2][3][3][1]\n obj['region'] = monitor[2][3][3][2]\n obj['delivery'] = self.DELIVERY[monitor[2][6][0][1]]\n obj['match_type'] = self.MONITOR_MATCH_TYPE[monitor[2][5]]\n if obj['delivery'] == 'MAIL':\n obj['alert_frequency'] = self.ALERT_FREQ[monitor[2][6][0][4]]\n obj['email_address'] = monitor[2][6][0][2]\n else:\n rss_id = monitor[2][6][0][11]\n url = 'https://google.com/alerts/feeds/{uid}/{fid}'\n obj['rss_link'] = url.format(uid=obj['user_id'], fid=rss_id)\n monitors.append(obj)\n return monitors\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(self, term, options):
if not self._state:
raise InvalidState('State was not properly obtained from the app')
options['action'] = 'CREATE'
payload = self._build_payload(term, options)
url = self.ALERTS_CREATE_URL.format(requestX=self._state[3])
self._log.debug('Creating alert using: %s' % url)
params = json.dumps(payload, separators=(',', ':'))
data = {'params': params}
response = self._session.post(url, data=data, headers=self.HEADERS)
if response.status_code != 200:
raise ActionError('Failed to create monitor: %s' % response.content)
if options.get('exact', False):
term = '"%s"' % term
return self.list(term)
| create | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, term, options):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n options['action'] = 'CREATE'\n payload = self._build_payload(term, options)\n url = self.ALERTS_CREATE_URL.format(requestX=self._state[3])\n self._log.debug('Creating alert using: %s' % url)\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to create monitor: %s' % response.content)\n if options.get('exact', False):\n term = '\"%s\"' % term\n return self.list(term)\n",
"role": "user"
},
{
"content": "create",
"role": "assistant"
}
] |
def x(self, monitor_id, options):
if not self._state:
raise InvalidState('State was not properly obtained from the app')
monitors = self.list()
obj = None
for monitor in monitors:
if monitor_id != monitor['monitor_id']:
continue
obj = monitor
if not monitor_id:
raise MonitorNotFound('No monitor was found with that term.')
options['action'] = 'MODIFY'
options.update(obj)
payload = self._build_payload(obj['term'], options)
url = self.ALERTS_MODIFY_URL.format(requestX=self._state[3])
self._log.debug('Modifying alert using: %s' % url)
params = json.dumps(payload, separators=(',', ':'))
data = {'params': params}
response = self._session.post(url, data=data, headers=self.HEADERS)
if response.status_code != 200:
raise ActionError('Failed to create monitor: %s' % response.content)
return self.list()
| modify | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, monitor_id, options):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n monitors = self.list()\n obj = None\n for monitor in monitors:\n if monitor_id != monitor['monitor_id']:\n continue\n obj = monitor\n if not monitor_id:\n raise MonitorNotFound('No monitor was found with that term.')\n options['action'] = 'MODIFY'\n options.update(obj)\n payload = self._build_payload(obj['term'], options)\n url = self.ALERTS_MODIFY_URL.format(requestX=self._state[3])\n self._log.debug('Modifying alert using: %s' % url)\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to create monitor: %s' % response.content)\n return self.list()\n",
"role": "user"
},
{
"content": "modify",
"role": "assistant"
}
] |
def x(self, monitor_id):
if not self._state:
raise InvalidState('State was not properly obtained from the app')
monitors = self.list()
bit = None
for monitor in monitors:
if monitor_id != monitor['monitor_id']:
continue
bit = monitor['monitor_id']
if not bit:
raise MonitorNotFound('No monitor was found with that term.')
url = self.ALERTS_DELETE_URL.format(requestX=self._state[3])
self._log.debug('Deleting alert using: %s' % url)
payload = [None, monitor_id]
params = json.dumps(payload, separators=(',', ':'))
data = {'params': params}
response = self._session.post(url, data=data, headers=self.HEADERS)
if response.status_code != 200:
raise ActionError('Failed to delete by ID: %s' % response.content)
return True
| delete | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, monitor_id):\n if not self._state:\n raise InvalidState('State was not properly obtained from the app')\n monitors = self.list()\n bit = None\n for monitor in monitors:\n if monitor_id != monitor['monitor_id']:\n continue\n bit = monitor['monitor_id']\n if not bit:\n raise MonitorNotFound('No monitor was found with that term.')\n url = self.ALERTS_DELETE_URL.format(requestX=self._state[3])\n self._log.debug('Deleting alert using: %s' % url)\n payload = [None, monitor_id]\n params = json.dumps(payload, separators=(',', ':'))\n data = {'params': params}\n response = self._session.post(url, data=data, headers=self.HEADERS)\n if response.status_code != 200:\n raise ActionError('Failed to delete by ID: %s' % response.content)\n return True\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x():
parser = ArgumentParser()
subs = parser.add_subparsers(dest='cmd')
setup_parser = subs.add_parser('setup')
setup_parser.add_argument('-e', '--email', dest='email', required=True,
help='Email of the Google user.', type=str)
setup_parser.add_argument('-p', '--password', dest='pwd', required=True,
help='Password of the Google user.', type=str)
setup_parser = subs.add_parser('seed')
setup_parser.add_argument('-d', '--driver', dest='driver', required=
True, type=str, help=
'Location of the Chrome driver. This can be downloaded by visiting http://chromedriver.chromium.org/downloads'
)
setup_parser = subs.add_parser('list')
setup_parser = subs.add_parser('create')
setup_parser.add_argument('-t', '--term', dest='term', required=True,
help='Term to store.', type=str)
setup_parser.add_argument('--exact', dest='exact', action='store_true',
help='Exact matches only for term.')
setup_parser.add_argument('-d', '--delivery', dest='delivery', required
=True, choices=['rss', 'mail'], help='Delivery method of results.')
setup_parser.add_argument('-f', '--frequency', dest='frequency',
default='realtime', choices=['realtime', 'daily', 'weekly'], help=
'Frequency to send results. RSS only allows for realtime alerting.')
setup_parser = subs.add_parser('delete')
setup_parser.add_argument('--id', dest='term_id', required=True, help=
'ID of the term to find for deletion.', type=str)
args = parser.parse_args()
if args.cmd == 'setup':
if not os.path.exists(CONFIG_PATH):
os.makedirs(CONFIG_PATH)
if not os.path.exists(CONFIG_FILE):
json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,
separators=(',', ': '))
config = CONFIG_DEFAULTS
config['email'] = args.email
config['password'] = str(obfuscate(args.pwd, 'store'))
json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',
': '))
config = json.load(open(CONFIG_FILE))
if config.get('py2', PY2) != PY2:
raise Exception(
'Python versions have changed. Please run `setup` again to reconfigure the client.'
)
if config['password'] == '':
raise Exception('Run setup before any other actions!')
if args.cmd == 'seed':
config['password'] = obfuscate(str(config['password']), 'fetch')
ga = GoogleAlerts(config['email'], config['password'])
with contextlib.closing(webdriver.Chrome(args.driver)) as driver:
driver.get(ga.LOGIN_URL)
wait = ui.WebDriverWait(driver, 10)
inputElement = driver.find_element_by_name('Email')
inputElement.send_keys(config['email'])
inputElement.submit()
time.sleep(3)
inputElement = driver.find_element_by_id('Passwd')
inputElement.send_keys(config['password'])
inputElement.submit()
print('[!] Waiting 15 seconds for authentication to complete')
time.sleep(15)
cookies = driver.get_cookies()
collected = dict()
for cookie in cookies:
collected[str(cookie['name'])] = str(cookie['value'])
with open(SESSION_FILE, 'wb') as f:
pickle.dump(collected, f, protocol=2)
print('Session has been seeded.')
if args.cmd == 'list':
config['password'] = obfuscate(str(config['password']), 'fetch')
ga = GoogleAlerts(config['email'], config['password'])
ga.authenticate()
print(json.dumps(ga.list(), indent=4))
if args.cmd == 'create':
config['password'] = obfuscate(str(config['password']), 'fetch')
ga = GoogleAlerts(config['email'], config['password'])
ga.authenticate()
alert_frequency = 'as_it_happens'
if args.frequency == 'realtime':
alert_frequency = 'as_it_happens'
elif args.frequency == 'daily':
alert_frequency = 'at_most_once_a_day'
else:
alert_frequency = 'at_most_once_a_week'
monitor = ga.create(args.term, {'delivery': args.delivery.upper(),
'alert_frequency': alert_frequency.upper(), 'exact': args.exact})
print(json.dumps(monitor, indent=4))
if args.cmd == 'delete':
config['password'] = obfuscate(str(config['password']), 'fetch')
ga = GoogleAlerts(config['email'], config['password'])
ga.authenticate()
result = ga.delete(args.term_id)
if result:
print('%s was deleted' % args.term_id)
| main | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n parser = ArgumentParser()\n subs = parser.add_subparsers(dest='cmd')\n setup_parser = subs.add_parser('setup')\n setup_parser.add_argument('-e', '--email', dest='email', required=True,\n help='Email of the Google user.', type=str)\n setup_parser.add_argument('-p', '--password', dest='pwd', required=True,\n help='Password of the Google user.', type=str)\n setup_parser = subs.add_parser('seed')\n setup_parser.add_argument('-d', '--driver', dest='driver', required=\n True, type=str, help=\n 'Location of the Chrome driver. This can be downloaded by visiting http://chromedriver.chromium.org/downloads'\n )\n setup_parser = subs.add_parser('list')\n setup_parser = subs.add_parser('create')\n setup_parser.add_argument('-t', '--term', dest='term', required=True,\n help='Term to store.', type=str)\n setup_parser.add_argument('--exact', dest='exact', action='store_true',\n help='Exact matches only for term.')\n setup_parser.add_argument('-d', '--delivery', dest='delivery', required\n =True, choices=['rss', 'mail'], help='Delivery method of results.')\n setup_parser.add_argument('-f', '--frequency', dest='frequency',\n default='realtime', choices=['realtime', 'daily', 'weekly'], help=\n 'Frequency to send results. RSS only allows for realtime alerting.')\n setup_parser = subs.add_parser('delete')\n setup_parser.add_argument('--id', dest='term_id', required=True, help=\n 'ID of the term to find for deletion.', type=str)\n args = parser.parse_args()\n if args.cmd == 'setup':\n if not os.path.exists(CONFIG_PATH):\n os.makedirs(CONFIG_PATH)\n if not os.path.exists(CONFIG_FILE):\n json.dump(CONFIG_DEFAULTS, open(CONFIG_FILE, 'w'), indent=4,\n separators=(',', ': '))\n config = CONFIG_DEFAULTS\n config['email'] = args.email\n config['password'] = str(obfuscate(args.pwd, 'store'))\n json.dump(config, open(CONFIG_FILE, 'w'), indent=4, separators=(',',\n ': '))\n config = json.load(open(CONFIG_FILE))\n if config.get('py2', PY2) != PY2:\n raise Exception(\n 'Python versions have changed. Please run `setup` again to reconfigure the client.'\n )\n if config['password'] == '':\n raise Exception('Run setup before any other actions!')\n if args.cmd == 'seed':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n with contextlib.closing(webdriver.Chrome(args.driver)) as driver:\n driver.get(ga.LOGIN_URL)\n wait = ui.WebDriverWait(driver, 10)\n inputElement = driver.find_element_by_name('Email')\n inputElement.send_keys(config['email'])\n inputElement.submit()\n time.sleep(3)\n inputElement = driver.find_element_by_id('Passwd')\n inputElement.send_keys(config['password'])\n inputElement.submit()\n print('[!] Waiting 15 seconds for authentication to complete')\n time.sleep(15)\n cookies = driver.get_cookies()\n collected = dict()\n for cookie in cookies:\n collected[str(cookie['name'])] = str(cookie['value'])\n with open(SESSION_FILE, 'wb') as f:\n pickle.dump(collected, f, protocol=2)\n print('Session has been seeded.')\n if args.cmd == 'list':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n print(json.dumps(ga.list(), indent=4))\n if args.cmd == 'create':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n alert_frequency = 'as_it_happens'\n if args.frequency == 'realtime':\n alert_frequency = 'as_it_happens'\n elif args.frequency == 'daily':\n alert_frequency = 'at_most_once_a_day'\n else:\n alert_frequency = 'at_most_once_a_week'\n monitor = ga.create(args.term, {'delivery': args.delivery.upper(),\n 'alert_frequency': alert_frequency.upper(), 'exact': args.exact})\n print(json.dumps(monitor, indent=4))\n if args.cmd == 'delete':\n config['password'] = obfuscate(str(config['password']), 'fetch')\n ga = GoogleAlerts(config['email'], config['password'])\n ga.authenticate()\n result = ga.delete(args.term_id)\n if result:\n print('%s was deleted' % args.term_id)\n",
"role": "user"
},
{
"content": "main",
"role": "assistant"
}
] |
def x(query):
installed = {}
for p in pkg_resources.working_set:
installed[canonicalize_name(p.project_name)] = p
query_names = [canonicalize_name(name) for name in query]
for dist in [installed[pkg] for pkg in query_names if pkg in installed]:
package = {'name': dist.project_name, 'version': dist.version,
'location': dist.location, 'requires': [dep.project_name for
dep in dist.requires()]}
file_list = None
if isinstance(dist, pkg_resources.DistInfoDistribution):
if dist.has_metadata('RECORD'):
lines = dist.get_metadata_lines('RECORD')
paths = [l.split(',')[0] for l in lines]
paths = [os.path.join(dist.location, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
elif dist.has_metadata('installed-files.txt'):
paths = dist.get_metadata_lines('installed-files.txt')
paths = [os.path.join(dist.egg_info, p) for p in paths]
file_list = [os.path.relpath(p, dist.location) for p in paths]
if file_list:
package['files'] = sorted(file_list)
yield package
| search_packages_info | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(query):\n installed = {}\n for p in pkg_resources.working_set:\n installed[canonicalize_name(p.project_name)] = p\n query_names = [canonicalize_name(name) for name in query]\n for dist in [installed[pkg] for pkg in query_names if pkg in installed]:\n package = {'name': dist.project_name, 'version': dist.version,\n 'location': dist.location, 'requires': [dep.project_name for\n dep in dist.requires()]}\n file_list = None\n if isinstance(dist, pkg_resources.DistInfoDistribution):\n if dist.has_metadata('RECORD'):\n lines = dist.get_metadata_lines('RECORD')\n paths = [l.split(',')[0] for l in lines]\n paths = [os.path.join(dist.location, p) for p in paths]\n file_list = [os.path.relpath(p, dist.location) for p in paths]\n elif dist.has_metadata('installed-files.txt'):\n paths = dist.get_metadata_lines('installed-files.txt')\n paths = [os.path.join(dist.egg_info, p) for p in paths]\n file_list = [os.path.relpath(p, dist.location) for p in paths]\n if file_list:\n package['files'] = sorted(file_list)\n yield package\n",
"role": "user"
},
{
"content": "search_packages_info",
"role": "assistant"
}
] |
def x(self, request, view_func, view_args, view_kwargs):
view_keys = list(VIEW_METHOD_DATA.keys())
for key in view_keys:
del VIEW_METHOD_DATA[key]
self.view_data = {}
try:
cbv = view_func.view_class
except AttributeError:
cbv = False
if cbv:
self.view_data['cbv'] = True
klass = view_func.view_class
self.view_data['bases'] = [base.__name__ for base in inspect.getmro
(klass)]
for member in inspect.getmembers(view_func.view_class):
if member[0] in VIEW_METHOD_WHITEIST and member[0
] not in PATCHED_METHODS[klass]:
decorate_method(klass, member[0])
PATCHED_METHODS[klass].append(member[0])
| process_view | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, view_func, view_args, view_kwargs):\n view_keys = list(VIEW_METHOD_DATA.keys())\n for key in view_keys:\n del VIEW_METHOD_DATA[key]\n self.view_data = {}\n try:\n cbv = view_func.view_class\n except AttributeError:\n cbv = False\n if cbv:\n self.view_data['cbv'] = True\n klass = view_func.view_class\n self.view_data['bases'] = [base.__name__ for base in inspect.getmro\n (klass)]\n for member in inspect.getmembers(view_func.view_class):\n if member[0] in VIEW_METHOD_WHITEIST and member[0\n ] not in PATCHED_METHODS[klass]:\n decorate_method(klass, member[0])\n PATCHED_METHODS[klass].append(member[0])\n",
"role": "user"
},
{
"content": "process_view",
"role": "assistant"
}
] |
def x(self, request, response):
if not settings.DEBUG:
return response
content_encoding = response.get('Content-Encoding', '')
content_type = response.get('Content-Type', '').split(';')[0]
if any((getattr(response, 'streaming', False), 'gzip' in
content_encoding, content_type not in _HTML_TYPES)):
return response
content = force_text(response.content, encoding=settings.DEFAULT_CHARSET)
pattern = re.escape('</body>')
bits = re.split(pattern, content, flags=re.IGNORECASE)
if len(bits) > 1:
bits[-2] += debug_payload(request, response, self.view_data)
response.content = '</body>'.join(bits)
if response.get('Content-Length', None):
response['Content-Length'] = len(response.content)
return response
| process_response | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, request, response):\n if not settings.DEBUG:\n return response\n content_encoding = response.get('Content-Encoding', '')\n content_type = response.get('Content-Type', '').split(';')[0]\n if any((getattr(response, 'streaming', False), 'gzip' in\n content_encoding, content_type not in _HTML_TYPES)):\n return response\n content = force_text(response.content, encoding=settings.DEFAULT_CHARSET)\n pattern = re.escape('</body>')\n bits = re.split(pattern, content, flags=re.IGNORECASE)\n if len(bits) > 1:\n bits[-2] += debug_payload(request, response, self.view_data)\n response.content = '</body>'.join(bits)\n if response.get('Content-Length', None):\n response['Content-Length'] = len(response.content)\n return response\n",
"role": "user"
},
{
"content": "process_response",
"role": "assistant"
}
] |
def x(klass_str):
mod_name, klass_name = klass_str.rsplit('.', 1)
try:
mod = importlib.import_module(mod_name)
except ImportError as e:
logger.error("Error importing job module %s: '%s'", mod_name, e)
return
try:
klass = getattr(mod, klass_name)
except AttributeError:
logger.error("Module '%s' does not define a '%s' class", mod_name,
klass_name)
return
return klass
| get_job_class | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(klass_str):\n mod_name, klass_name = klass_str.rsplit('.', 1)\n try:\n mod = importlib.import_module(mod_name)\n except ImportError as e:\n logger.error(\"Error importing job module %s: '%s'\", mod_name, e)\n return\n try:\n klass = getattr(mod, klass_name)\n except AttributeError:\n logger.error(\"Module '%s' does not define a '%s' class\", mod_name,\n klass_name)\n return\n return klass\n",
"role": "user"
},
{
"content": "get_job_class",
"role": "assistant"
}
] |
def x(self, *raw_args, **raw_kwargs):
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
item = self.cache.get(key)
call = Call(args=raw_args, kwargs=raw_kwargs)
if item is None:
if self.should_missing_item_be_fetched_synchronously(*args, **kwargs):
logger.debug(
"Job %s with key '%s' - cache MISS - running synchronous refresh"
, self.class_path, key)
result = self.refresh(*args, **kwargs)
return self.process_result(result, call=call, cache_status=self
.MISS, sync_fetch=True)
else:
logger.debug(
"Job %s with key '%s' - cache MISS - triggering async refresh and returning empty result"
, self.class_path, key)
result = self.empty()
self.store(key, self.timeout(*args, **kwargs), result)
self.async_refresh(*args, **kwargs)
return self.process_result(result, call=call, cache_status=self
.MISS, sync_fetch=False)
expiry, data = item
delta = time.time() - expiry
if delta > 0:
if self.should_stale_item_be_fetched_synchronously(delta, *args, **
kwargs):
logger.debug(
"Job %s with key '%s' - STALE cache hit - running synchronous refresh"
, self.class_path, key)
result = self.refresh(*args, **kwargs)
return self.process_result(result, call=call, cache_status=self
.STALE, sync_fetch=True)
else:
logger.debug(
"Job %s with key '%s' - STALE cache hit - triggering async refresh and returning stale result"
, self.class_path, key)
timeout = self.timeout(*args, **kwargs)
self.store(key, timeout, data)
self.async_refresh(*args, **kwargs)
return self.process_result(data, call=call, cache_status=self.
STALE, sync_fetch=False)
else:
logger.debug("Job %s with key '%s' - cache HIT", self.class_path, key)
return self.process_result(data, call=call, cache_status=self.HIT)
| get | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n call = Call(args=raw_args, kwargs=raw_kwargs)\n if item is None:\n if self.should_missing_item_be_fetched_synchronously(*args, **kwargs):\n logger.debug(\n \"Job %s with key '%s' - cache MISS - running synchronous refresh\"\n , self.class_path, key)\n result = self.refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .MISS, sync_fetch=True)\n else:\n logger.debug(\n \"Job %s with key '%s' - cache MISS - triggering async refresh and returning empty result\"\n , self.class_path, key)\n result = self.empty()\n self.store(key, self.timeout(*args, **kwargs), result)\n self.async_refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .MISS, sync_fetch=False)\n expiry, data = item\n delta = time.time() - expiry\n if delta > 0:\n if self.should_stale_item_be_fetched_synchronously(delta, *args, **\n kwargs):\n logger.debug(\n \"Job %s with key '%s' - STALE cache hit - running synchronous refresh\"\n , self.class_path, key)\n result = self.refresh(*args, **kwargs)\n return self.process_result(result, call=call, cache_status=self\n .STALE, sync_fetch=True)\n else:\n logger.debug(\n \"Job %s with key '%s' - STALE cache hit - triggering async refresh and returning stale result\"\n , self.class_path, key)\n timeout = self.timeout(*args, **kwargs)\n self.store(key, timeout, data)\n self.async_refresh(*args, **kwargs)\n return self.process_result(data, call=call, cache_status=self.\n STALE, sync_fetch=False)\n else:\n logger.debug(\"Job %s with key '%s' - cache HIT\", self.class_path, key)\n return self.process_result(data, call=call, cache_status=self.HIT)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, *raw_args, **raw_kwargs):
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
item = self.cache.get(key)
if item is not None:
expiry, data = item
self.store(key, self.timeout(*args, **kwargs), data)
self.async_refresh(*args, **kwargs)
| invalidate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n if item is not None:\n expiry, data = item\n self.store(key, self.timeout(*args, **kwargs), data)\n self.async_refresh(*args, **kwargs)\n",
"role": "user"
},
{
"content": "invalidate",
"role": "assistant"
}
] |
def x(self, *raw_args, **raw_kwargs):
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
item = self.cache.get(key)
if item is not None:
self.cache.delete(key)
| delete | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n item = self.cache.get(key)\n if item is not None:\n self.cache.delete(key)\n",
"role": "user"
},
{
"content": "delete",
"role": "assistant"
}
] |
def x(self, *raw_args, **raw_kwargs):
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
return self.cache.get(key)
| raw_get | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *raw_args, **raw_kwargs):\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n return self.cache.get(key)\n",
"role": "user"
},
{
"content": "raw_get",
"role": "assistant"
}
] |
def x(self, *raw_args, **raw_kwargs):
if self.set_data_kwarg in raw_kwargs:
data = raw_kwargs.pop(self.set_data_kwarg)
else:
raw_args = list(raw_args)
data = raw_args.pop()
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
expiry = self.expiry(*args, **kwargs)
logger.debug(
"Setting %s cache with key '%s', args '%r', kwargs '%r', expiry '%r'",
self.class_path, key, args, kwargs, expiry)
self.store(key, expiry, data)
| set | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *raw_args, **raw_kwargs):\n if self.set_data_kwarg in raw_kwargs:\n data = raw_kwargs.pop(self.set_data_kwarg)\n else:\n raw_args = list(raw_args)\n data = raw_args.pop()\n args = self.prepare_args(*raw_args)\n kwargs = self.prepare_kwargs(**raw_kwargs)\n key = self.key(*args, **kwargs)\n expiry = self.expiry(*args, **kwargs)\n logger.debug(\n \"Setting %s cache with key '%s', args '%r', kwargs '%r', expiry '%r'\",\n self.class_path, key, args, kwargs, expiry)\n self.store(key, expiry, data)\n",
"role": "user"
},
{
"content": "set",
"role": "assistant"
}
] |
def x(self, key, expiry, data):
self.cache.set(key, (expiry, data), self.cache_ttl)
if getattr(settings, 'CACHEBACK_VERIFY_CACHE_WRITE', True):
__, cached_data = self.cache.get(key, (None, None))
if data is not None and cached_data is None:
raise RuntimeError('Unable to save data of type %s to cache' %
type(data))
| store | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, key, expiry, data):\n self.cache.set(key, (expiry, data), self.cache_ttl)\n if getattr(settings, 'CACHEBACK_VERIFY_CACHE_WRITE', True):\n __, cached_data = self.cache.get(key, (None, None))\n if data is not None and cached_data is None:\n raise RuntimeError('Unable to save data of type %s to cache' %\n type(data))\n",
"role": "user"
},
{
"content": "store",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
result = self.fetch(*args, **kwargs)
self.store(self.key(*args, **kwargs), self.expiry(*args, **kwargs), result)
return result
| refresh | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n result = self.fetch(*args, **kwargs)\n self.store(self.key(*args, **kwargs), self.expiry(*args, **kwargs), result)\n return result\n",
"role": "user"
},
{
"content": "refresh",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
try:
enqueue_task(dict(klass_str=self.class_path, obj_args=self.
get_init_args(), obj_kwargs=self.get_init_kwargs(), call_args=
args, call_kwargs=kwargs), task_options=self.task_options)
except Exception:
logger.error(
'Unable to trigger task asynchronously - failing over to synchronous refresh'
, exc_info=True)
try:
return self.refresh(*args, **kwargs)
except Exception as e:
logger.error('Unable to refresh data synchronously: %s', e,
exc_info=True)
else:
logger.debug('Failover synchronous refresh completed successfully')
| async_refresh | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n try:\n enqueue_task(dict(klass_str=self.class_path, obj_args=self.\n get_init_args(), obj_kwargs=self.get_init_kwargs(), call_args=\n args, call_kwargs=kwargs), task_options=self.task_options)\n except Exception:\n logger.error(\n 'Unable to trigger task asynchronously - failing over to synchronous refresh'\n , exc_info=True)\n try:\n return self.refresh(*args, **kwargs)\n except Exception as e:\n logger.error('Unable to refresh data synchronously: %s', e,\n exc_info=True)\n else:\n logger.debug('Failover synchronous refresh completed successfully')\n",
"role": "user"
},
{
"content": "async_refresh",
"role": "assistant"
}
] |
def x(self, delta, *args, **kwargs):
if self.fetch_on_stale_threshold is None:
return False
return delta > self.fetch_on_stale_threshold - self.lifetime
| should_stale_item_be_fetched_synchronously | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, delta, *args, **kwargs):\n if self.fetch_on_stale_threshold is None:\n return False\n return delta > self.fetch_on_stale_threshold - self.lifetime\n",
"role": "user"
},
{
"content": "should_stale_item_be_fetched_synchronously",
"role": "assistant"
}
] |
def x(self, *args, **kwargs):
if not args and not kwargs:
return self.class_path
try:
if args and not kwargs:
return '%s:%s' % (self.class_path, self.hash(args))
return '%s:%s:%s:%s' % (self.class_path, self.hash(args), self.hash
([k for k in sorted(kwargs)]), self.hash([kwargs[k] for k in
sorted(kwargs)]))
except TypeError:
raise RuntimeError(
'Unable to generate cache key due to unhashableargs or kwargs - you need to implement your ownkey generation method to avoid this problem'
)
| key | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, *args, **kwargs):\n if not args and not kwargs:\n return self.class_path\n try:\n if args and not kwargs:\n return '%s:%s' % (self.class_path, self.hash(args))\n return '%s:%s:%s:%s' % (self.class_path, self.hash(args), self.hash\n ([k for k in sorted(kwargs)]), self.hash([kwargs[k] for k in\n sorted(kwargs)]))\n except TypeError:\n raise RuntimeError(\n 'Unable to generate cache key due to unhashableargs or kwargs - you need to implement your ownkey generation method to avoid this problem'\n )\n",
"role": "user"
},
{
"content": "key",
"role": "assistant"
}
] |
def x(self, value):
if is_iterable(value):
value = tuple(to_bytestring(v) for v in value)
return hashlib.md5(six.b(':').join(value)).hexdigest()
| hash | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, value):\n if is_iterable(value):\n value = tuple(to_bytestring(v) for v in value)\n return hashlib.md5(six.b(':').join(value)).hexdigest()\n",
"role": "user"
},
{
"content": "hash",
"role": "assistant"
}
] |
def x(cls, klass_str, obj_args, obj_kwargs, call_args, call_kwargs):
klass = get_job_class(klass_str)
if klass is None:
logger.error('Unable to construct %s with args %r and kwargs %r',
klass_str, obj_args, obj_kwargs)
return
logger.info('Using %s with constructor args %r and kwargs %r',
klass_str, obj_args, obj_kwargs)
logger.info('Calling refresh with args %r and kwargs %r', call_args,
call_kwargs)
start = time.time()
try:
klass(*obj_args, **obj_kwargs).refresh(*call_args, **call_kwargs)
except Exception as e:
logger.exception("Error running job: '%s'", e)
else:
duration = time.time() - start
logger.info('Refreshed cache in %.6f seconds', duration)
| perform_async_refresh | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, klass_str, obj_args, obj_kwargs, call_args, call_kwargs):\n klass = get_job_class(klass_str)\n if klass is None:\n logger.error('Unable to construct %s with args %r and kwargs %r',\n klass_str, obj_args, obj_kwargs)\n return\n logger.info('Using %s with constructor args %r and kwargs %r',\n klass_str, obj_args, obj_kwargs)\n logger.info('Calling refresh with args %r and kwargs %r', call_args,\n call_kwargs)\n start = time.time()\n try:\n klass(*obj_args, **obj_kwargs).refresh(*call_args, **call_kwargs)\n except Exception as e:\n logger.exception(\"Error running job: '%s'\", e)\n else:\n duration = time.time() - start\n logger.info('Refreshed cache in %.6f seconds', duration)\n",
"role": "user"
},
{
"content": "perform_async_refresh",
"role": "assistant"
}
] |
def x(lifetime=None, fetch_on_miss=None, cache_alias=None, job_class=None,
task_options=None, **job_class_kwargs):
if job_class is None:
job_class = FunctionJob
job = job_class(lifetime=lifetime, fetch_on_miss=fetch_on_miss,
cache_alias=cache_alias, task_options=task_options, **job_class_kwargs)
def x(fn):
@wraps(fn, assigned=available_attrs(fn))
def x(*args, **kwargs):
return job.get(fn, *args, **kwargs)
__wrapper.fn = fn
__wrapper.job = job
return __wrapper
return _wrapper
| cacheback | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(lifetime=None, fetch_on_miss=None, cache_alias=None, job_class=None,\n task_options=None, **job_class_kwargs):\n if job_class is None:\n job_class = FunctionJob\n job = job_class(lifetime=lifetime, fetch_on_miss=fetch_on_miss,\n cache_alias=cache_alias, task_options=task_options, **job_class_kwargs)\n\n def x(fn):\n\n @wraps(fn, assigned=available_attrs(fn))\n def x(*args, **kwargs):\n return job.get(fn, *args, **kwargs)\n __wrapper.fn = fn\n __wrapper.job = job\n return __wrapper\n return _wrapper\n",
"role": "user"
},
{
"content": "cacheback",
"role": "assistant"
}
] |
def x(v1, v2):
v1_u = unit_vector(v1)
v2_u = unit_vector(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
| angle | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(v1, v2):\n v1_u = unit_vector(v1)\n v2_u = unit_vector(v2)\n return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))\n",
"role": "user"
},
{
"content": "angle",
"role": "assistant"
}
] |
def x(vertices, min_angle_deg):
accepted = []
v = vertices
v1 = v[1] - v[0]
accepted.append((v[0][0], v[0][1]))
for i in range(1, len(v) - 2):
v2 = v[i + 1] - v[i - 1]
diff_angle = np.fabs(angle(v1, v2) * 180.0 / np.pi)
if diff_angle > min_angle_deg:
accepted.append((v[i][0], v[i][1]))
v1 = v[i] - v[i - 1]
accepted.append((v[-1][0], v[-1][1]))
return np.array(accepted, dtype=vertices.dtype)
| keep_high_angle | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(vertices, min_angle_deg):\n accepted = []\n v = vertices\n v1 = v[1] - v[0]\n accepted.append((v[0][0], v[0][1]))\n for i in range(1, len(v) - 2):\n v2 = v[i + 1] - v[i - 1]\n diff_angle = np.fabs(angle(v1, v2) * 180.0 / np.pi)\n if diff_angle > min_angle_deg:\n accepted.append((v[i][0], v[i][1]))\n v1 = v[i] - v[i - 1]\n accepted.append((v[-1][0], v[-1][1]))\n return np.array(accepted, dtype=vertices.dtype)\n",
"role": "user"
},
{
"content": "keep_high_angle",
"role": "assistant"
}
] |